Kingdom of Saudi Arabia Ministry of Education Taibah University Unified Scientific Track

Studetn Name: Student ID: Section No.:

INTRODUCTION TO CHEMISTRY (CHEM 101)

Assessment on Chapter 05 - Topic 16

1. Express the equilibrium constant for the following reaction.

	$2 \operatorname{CH}_{3}\operatorname{Cl}_{(g)} + \operatorname{Cl}_{2(g)} \rightleftharpoons 2 \operatorname{CH}_{2}\operatorname{Cl}_{2(g)} + \operatorname{H}_{2(g)}$
a . K= $\frac{[CH_2Cl_2].[H_2]}{[CH_3Cl].[Cl_2]}$	b . K= $\frac{[CH_2Cl_2]^2[H_2]}{[CH_3Cl]^2[Cl_2]}$
$\Box \text{ c. } \text{K} = \frac{[CH_3Cl]^2[Cl_2]}{[CH_2Cl_2]^2[H_2]}$	$\Box \text{ d. } \text{K} = \frac{[CH_2Cl_2]^2[H_2]}{[CH_3Cl][Cl_2]}$

2 Express the equilibrium constant for the following reaction.

	$N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$
a . K = $\frac{[NH_3]^{1/2}}{[N_2] \cdot [H_2]^{1/3}}$	b . $K = \frac{[NH_3]}{[N_2] \cdot [H_2]}$
$\Box \text{ c. } \mathbf{K} = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3}$	$\Box \text{ d. } \text{K} = \frac{[N_2] \cdot [H_2]^3}{[NH_3]^2}$

3. Which of the following is the correct expression for the equilibrium constant?

$\square a. K_c = \frac{[Reactants]}{[Products]}$	\Box b. $K_c = [Reactants] \times [Products]$
$\Box \text{ c. } K_{c} = \frac{[\text{Products}]}{[\text{Reactants}]}$	\Box d. $K_c = [Reactants] + [Products]$

4. If $K_c \ll 1$, the reverse reaction is favored.

□ a. True □ b. False

5. A chemical system is considered to have reached dynamic equilibrium when

 \Box a. the amount of the products equals the amount of the reactants.

□ b. all of reactants have been converted to products.

 \Box c. the sum of the concentrations of the reactant species is equal to the sum of the concentrations of the product species.

 \Box d. the rate of the forward reaction is equal to the rate of the reverse reaction.

6. Express the equilibrium constant for the following reaction.

$$P_{4(s)} + 5 O_{2(g)} \rightleftharpoons P_{4}O_{10(s)}$$

$$\square a. K_{eq} = \frac{[P_4] \cdot [O_2]^5}{[P_4 O_{10}]}$$

$$\square b. K_{eq} = \frac{[P_4 O_{10}]}{[P_4] \cdot [O_2]^5}$$

$$\square d. K_{eq} = [O_2]^5$$

7. Express the equilibrium constant for the following reaction.

$$2 \text{ Na}_{(s)} + 2 \text{ H}_2 \text{O}_{(l)} \rightleftharpoons 2 \text{ NaOH}_{(aq)} + \text{ H}_{2(g)}$$

$$\square \text{ a. } \text{K}_{eq} = \frac{[NaOH]^2 [H_2]}{[Na]^2 [H_2O]^2}$$

$$\square \text{ b. } \text{K}_{eq} = [\text{H}_2][\text{NaOH}]^{-2}$$

$$\square \text{ d. } \text{K}_{eq} = [\text{H}_2][\text{NaOH}]^2$$

8. Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows: $[N_2]_{eq} = 3.6 \text{ M}; [O_2]_{eq} = 4.1 \text{ M}; [N_2O]_{eq} = 3.3 \times 10^{-18} \text{ M}$

$$2 N_{2(g)} + O_{2(g)} \rightleftharpoons 2 N_2 O_{(g)}$$

$$\Box a. 2.2 \times 10^{-19} \qquad \Box b. 4.5 \times 10^{18} \qquad \Box c. 2.0 \times 10^{-37} \qquad \Box d. 5.0 \times 10^{36}$$

9. Determine the value of K_c for the following reaction, if the equilibrium concentrations are as follows: $[N_2]_{eq} = 1.5 \text{ M}$; $[H_2]_{eq} = 1.1 \text{ M}$; $[NH_3]_{eq} = 0.47 \text{ M}$

$$N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$$

□ a. 3.5 □ b. 0.28 □ c. 9.1 □ d. 0.11

10. Consider the following reaction at equilibrium. What effect will adding more SO₃ have on the system?

$$SO_{2(g)} + NO_{2(g)} \rightleftharpoons SO_{3(g)} + NO_{(g)}$$

 \Box a. The reaction will shift in the direction of products.

□ b. The reaction will shift to decrease the pressure.

 \Box c. No change will occur since SO₃ is not included in the equilibrium expression.

□ d. The reaction will shift in the direction of reactants.

11. Consider the following reaction at equilibrium. What effect will adding more H₂S have on the system?

$$2 H_2 S_{(g)} + 3 O_{2(g)} \rightleftharpoons 2 H_2 O_{(g)} + 2 SO_{2(g)}$$

 \Box a. The reaction will shift to the left.

□ b. No change will be observed.

C. The equilibrium constant will increase.

d. The reaction will shift in the direction of products.

12. Consider the following reaction at equilibrium. What effect will reducing the volume of the reaction mixture have on the system?

$$\operatorname{CuS}_{(s)}$$
 + $\operatorname{O}_{2(g)}$ \rightleftharpoons $\operatorname{Cu}_{(s)}$ + $\operatorname{SO}_{2(g)}$

□ a. The equilibrium constant will decrease.

□ b. No effect will be observed.

 \Box c. The reaction will shift to the right in the direction of the product.

□ d. The equilibrium constant will increase.

13. Consider the following reaction at equilibrium. What effect will increasing the volume of the reaction mixture have on the system?

$$2 H_2 S_{(g)} + 3 O_2_{(g)} \rightleftharpoons 2 H_2 O_{(g)} + 2 SO_2_{(g)}$$

 \Box a. The reaction will shift to the right in the direction of products.

□ b. No effect will be observed.

 \Box c. The reaction will shift to the left in the direction of reactants.

□ d. The equilibrium constant will decrease.

14. What will happen to the following <u>endothermic</u> reaction in equilibrium if the temperature is raised?

	$N_2O_4_{(g)} \rightleftharpoons 2 NO_2_{(g)}$
\Box a. More NO ₂ will be produced.	\Box b. Less NO ₂ will be produced.
\Box c. More N ₂ O ₄ will be produced.	□ d. There will be no change in concentrations.

Studetn Name: Student ID: Section No.:

INTRODUCTION TO CHEMISTRY (CHEM 101)

Assessment on Chapter 05 - Topic 17

1. Which of the following compounds is the weakest acid?					
🗖 a. HBr	□ b. HCl		□ c. HF		🗖 d. HI
2. According to Ar	rhenius definition, a	an acid is a	substan	ce that produce	s in water
🗖 a. NaCl	\Box b. H ₂ O ⁺		\Box c. H ⁺ or H ₃ O ⁺		\Box d. OH ⁻
3. One of the follow	ving acids is a dipro	tic acid			
□ a. HNO ₃	□ b. HClO ₄		\Box c. H ₂ SO ₃		□ d. H ₃ PO ₄
4. What is the conj	ugate acid of HCO ₃	-?			
\Box a. H ₃ O ⁺	b . H ₂ O	\Box c. CO ₃ ²	2-	\Box d. OH ⁻	\Box e. H ₂ CO ₃
5. What is the conjugate base of H_2PO_4 ?					
\Box a. HPO ₄ ²⁻	\Box b. PO ₄ ³⁻	□ c. H ₃ PO	D_4	\Box d. H ₃ O ⁺	\Box e. OH ⁻
6. Which of the fol	lowing is NOT a cor	njugate aci	d-base pa	air?	
\Box a. NH ₄ ⁺ / NH ₃			□ b. H ₃ C	O^+ / OH^-	
$\Box c. H_2 SO_3 / HSO_3^-$		\Box d. HC ₂ H ₃ O ₂ / C ₂ H ₃ O ₂			
\Box e. All of them					
7. Which pair is N	OT a conjugate acid	l-base pair	?		
a . $(CH_3)_3NH^+ / (0)$	$CH_3)_3N$		\Box b. H ₂ S	$O_4 / H_2 SO_3$	
\Box c. HNO ₂ / NO ₂ ⁻		\Box d. H ₃ O ⁺ / H ₂ O			
8. Identify a tripro	tic acid.				
□ a. CH ₃ COOH	□ b. H ₃ PO ₄	\Box c. H ₂ SO	D_3	d. HClO ₄	\Box e. H ₂ SO ₄

9. Calculate the p	H of a solution that	contains $3.9 \times$	10 ⁻⁴ M H ₃ O ⁺ at 25°C	2.
□ a. 4.59	b . 3.41	c . 10.59	🖵 d. 9.41	e . 0.59
10. Calculate the	pH of a solution tha	t contains 2.4 >	< 10 ⁻⁵ M H ₃ O ⁺ at 25°	°C.
□ a. 2.40	□ b. 9.38	□ c. 4.62	d . 11.60	u e. 4.17
11. Calculate the	hydronium ion conc	entration in ar	n aqueous solution w	vith a pH of 9.85 at 25°C.
a . 7.1×10^{-5} M	b . 4.2×10^{-10} M	a c. 8.7×10^{-11}	⁰ M \Box d. 6.5 × 10 ⁻⁵	M \Box e. 1.4 × 10 ⁻¹⁰ M
12. Calculate the	pH of a solution tha	t contains 7.8 >	< 10 ⁻⁶ M OH ⁻ at 25°(2.
□ a. 1.28	□ b. 5.11	c . 12.72	🗖 d. 8.89	u e. 9.64
13. Calculate the	pH for an aqueous s	olution of acet	ic acid that contains	$32.15 \times 10^{-3} \mathrm{M H_3O^+}.$
a . 4.65×10^{-12} M	$\square b. 2.15 \times 1$	0^{-3} M	c. 2.67	□ d. 11.33
14. Calculate the	pH for an aqueous s	olution of pyri	dine that contains 2	$.15 imes 10^{-4}\mathrm{M}$ hydroxide ion.
a . 4.65×10^{-11}	□ b. 2.15 × 1	0^{-4}	c. 3.67	□ d. 10.33
15. What is the hy	dronium ion conce	ntration of an a	ncid rain sample tha	t has a pH of 3.45?
a . 2.82×10^{-11} M	$\square b. 3.55 \times 1$	0^{-4} M	c. 3.45 M	□ d. 10.55 M
16. What is the hy	droxide ion concen	tration of a lye	solution that has a	pH of 9.20?
a . 6.31×10^{-10} N	$\mathbf{A} \qquad \mathbf{\Box} \text{ b. } 1.58 \times 1$	0^{-5} M	c. 4.80 M	□ d. 9.20 M
17. A Lewis base	is			
□ a. an electron pa	air donor.		b. an electron pair ac	ceptor.
□ c. a proton dono	or.		d. proton acceptor.	