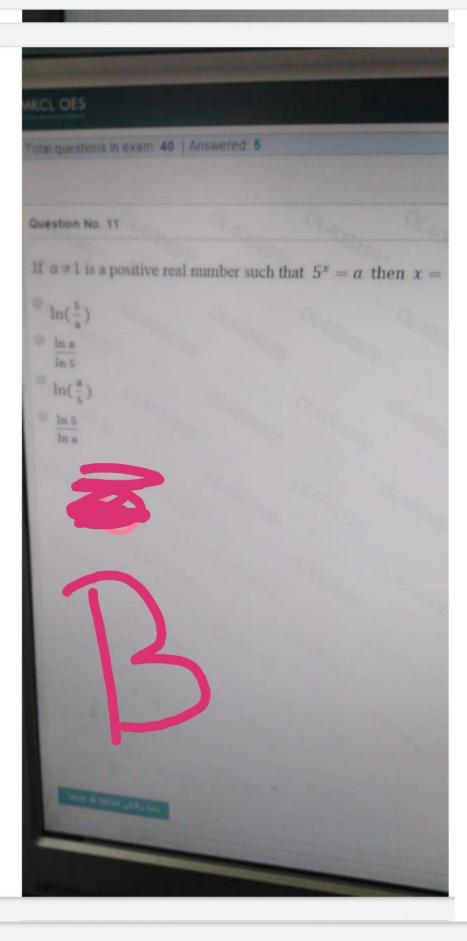


Total questions in exam: 40 | Answered: 12

Question No. 30

The supplement of the angle 20° is:

70°


80°

180°

160°

Question No. 29

Let $f(x) = ax^2 + bx + 1$, find the values of a and b such that f(x) = f(-x), for all $x \in \mathbb{R}$.

- a = b = 1.
- a = -1 and b = 1.
- $a \in \mathbb{R}$ and $b \neq 0$,
- $a \in \mathbb{R}$ and b = 1.

Question No. 2

Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8|+a>0 is $(-\infty,2) \cup (2,+\infty)$

- @ a = 1
- a=0
- a=2
- a = -1

Question No. 2

The solution of the equation $2^x = 3^{2x-1}$ is

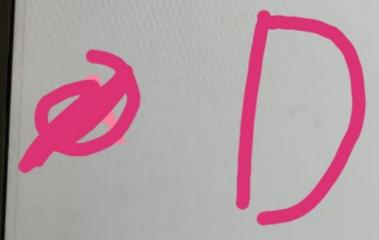
- ln 2 2 ln 3-ln 2

- ln 3 2 ln 3-ln 2

Math_FT_Sem

Total questions in exam 40 | Answered 0

Question No. 10


Let $f(x) = x^2 + c$ and g(x) = x, give the value of c such that f(x + 1) = xg(x) + 2x.

0 c=0

0 c=1

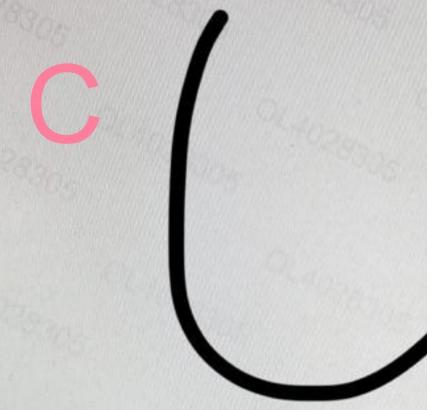
D c=4

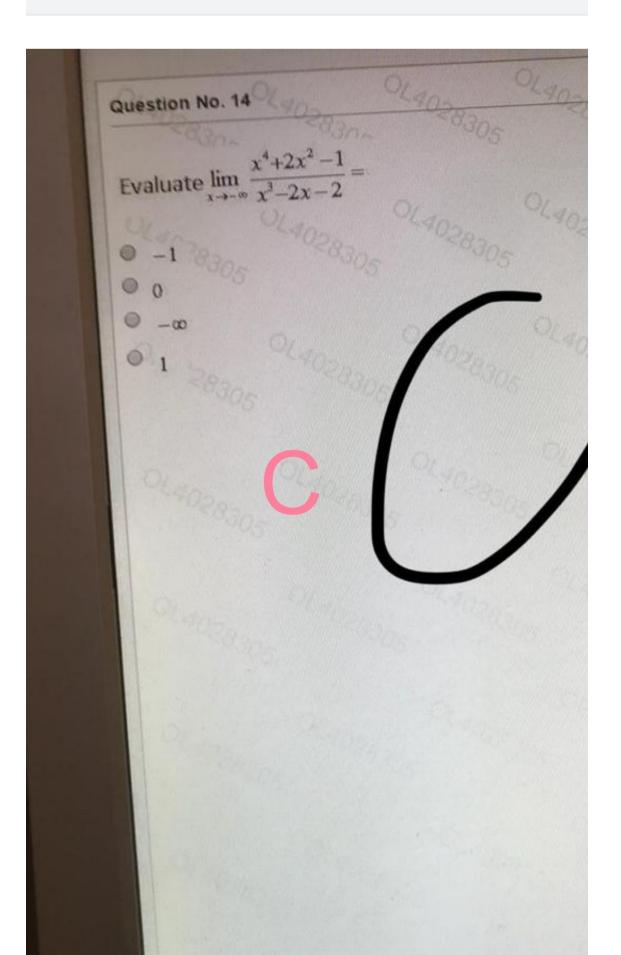
C =-1

Question No. 14

The range of the function $f(x) = -x^2 + 1$ is

- 0 (--.1]
- 0 [1,-)
 - [-1,-)
- 0 (-4,-1)




4

Question No. 15

The graph of $f(x) = -3x^2 + x + 4$ is

- Open left
- Open right
- Open down
- Open up

The supplement of the angle 45° is:

- 9 45°
- 60°
- 80°
- 0 135°

Total questions in exam: 40 | Answered: 19

Question No. 31

Which of the following functions is one-to-one

- F= { (-3,-3), (0,0), (4,-2), (1,-5) }
- F= { (3,5), (6,0), (3,-2), (1,-5) }
- F= { (4,-3), (1,0), (5,-2), (1,-3) }
- F= { (-3,-2), (0,4), (3,-2), (1,-5) }

MACH CIES

Total questions in exam: 40. | Answered: 13

Question No. 35

If a function f(x) has an inverse function and f(-2) = 11, then

- 6 f-1(11) = -1
- ⊕ f⁻¹(-2) = -11
- 6 f-1(11)=-2
- $0 f^{-1}(2) = -11$

C

Save & Next , Lik, Lin

Total questions in exam. 40 1

Question No. 16

Evaluate
$$\lim_{x \to -3} \frac{x^2 + 7x + 12}{x + 3} =$$

- 0 4
- 0 1
- 0 -3
- 00

3

(4)

Question No. 10

Which of the following functions is one-to-one

$$f(x) = \sqrt{16 - x^2}$$

$$f(x) = -2x + 5$$

$$f(x) = 5x^2 - 1$$

$$f(x) = -2x^2 + 5$$

017/05.

Math_F

Total questions in exam: 40 | Answered: 40

Question No. 37

Let a > 1. The solution set of the equation $\log_x(2x^2 - a^2) = 2$ is

- @ S = {a, 2a}
- @ S = {a}
- ⊕ S = {-a}
- ® S = {-a, a}

B

Save & Next at \$2 km

Question No. 13

Let $a, b \in \mathbb{R}$. Give the values of a and b that make this statement true:

$$2b + (3a - \sqrt{2})i = b - 2 + (a + \sqrt{8})i$$

$$a = \frac{3\sqrt{2}}{2} \text{ and } b = -2$$

$$a = -3\sqrt{2}$$
 and $b = -2$

$$a = 3\sqrt{2}$$
 and $b = 2$

$$a = 3\sqrt{2} \text{ and } b = 2$$

$$a = -\frac{2\sqrt{2}}{3} \text{ and } b = -2$$

Save & Next منظر الثاني

Question No. 2

If $x \in \mathbb{N}$, then the value of i^{4x-1} is

- 0 -1
- 0 1
- 0 -
- 0

Math_FT_Sem

Total questions in exam: 40 | Answered: 13

Question No. 18

Which of the following points are on the graph of $f(x) = 4 + 2 \log_3(1 - 2x)$?

- $(0,4), (-1,6) \text{ and } (\frac{1}{3},-2)$
- (3,1), (1,0) and $(\frac{1}{3},-1)$
- $(0,4), (-1,6) \text{ and } (\frac{1}{3},2)$
- $(0,6), (-1,4) \text{ and } (\frac{1}{3},2)$

B

D

Save & Next Links

Question No. 24

Let $a \in (-\infty, 0]$. Solve the inequality $|2x - 2| \le |-2a|$.

$$(-\infty, 1+a] \cup [1-a, +\infty)$$

 $[1-a, 1+a]$

$$[1-a,1+a]$$

$$[1+a,1-a]$$

عملواللي Save & Next

Math_FT_Sem1_2018

Total questions in exam: 40 | Answered: 14

Question No. 4

Assume that z = -3 + 4i and zw = -14 + 2i. Find the value of w in the form a + bi, where $a, b \in$

- w = 50 50i
- w=2-2i
- w = 50 + 50i

مطراقلي Save & Next

Compag (£171)

Question No. 7

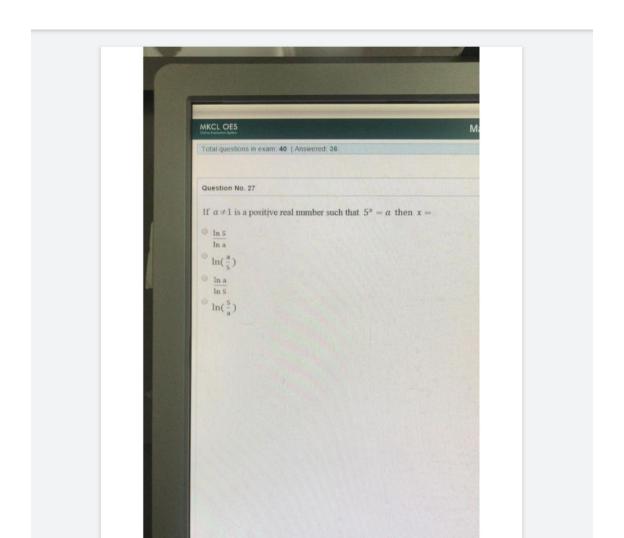
The expression $(1 + \cot^2 \theta)$ equals

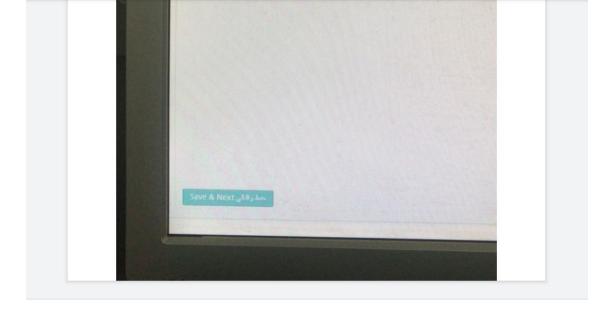
- $\odot \cos^2\theta$
- sec²θ
- $\sin^2\theta$
- © csc²θ

Total questions in exam: 40 | Answered: 14

Question No. 40

The solution set of the equation $log_5(x+2) + log_5(x-2) = 1$ is


- 00
- {-3}
- **(3)**
- **(-3,3)**


Total questions in exam: 40 | Answered: 38

Question No. 4

Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2-3a+2)x-1} - a$. Give the condition on a such that f(x) is increasing:

a $\in (2,\infty)$ a $\in (-\infty,1)$ a $\in (1,2)$ a $\in (-\infty,1] \cup [2,\infty)$

Question No. 16		
Find the value of 'c' that will allow	this polynomial to be $x^2 - x + c$	written as a perfect square.
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1905/82 0400	
B		

Question No. 2	0/40	0/47	9/40		
Let $a \in \mathbb{R}$. If the solu	ntion set of the	inequality 4x	-8 +a>0 is	(-∞,2)∪(2,+x
a=1					

Question No. 18

The solution set of the equation $-1 + \log_8(3x + 2) = -\frac{1}{3}$ is

- $\{\frac{2}{3}\}$
- $\left\{-\frac{2}{3}\right\}$
- $\{\frac{3}{2}\}$
- $\left\{-\frac{1}{3}\right\}$

A

Question No. 14

The equation $y = 3^{x-1}$ can be written a

$$0 x = \log_3 y$$

$$x = \log_3(y+1)$$

$$x = 1 + \log_3 y$$

$$y = 1 + \log_3 x$$

Total questions in exam: 40 | Answered:

Question No. 12

Evaluate
$$\lim_{x \to -\infty} \frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} =$$

- 0 -1

 - 0
- 0 -0

Total questions in exam: 40 | Answered: 5

Question No. 10

The expression $(\cos^2\theta + \sin^2\theta)$ equals

- sec² θ
- © csc²θ
 - -1

B

Math

Total questions in exam. 40 | Answered: 40

Question No. 27

The range of the function $f(x) = 1 - \frac{3}{2+x}$ is

- @ R\{0}
- @ R \ {3}
- @ R\{1}
- R\{-2}

D

منذرقلی Save & Next

Math_FT_Sem1_2018

Total questions in exam: 40 | Answered: 40

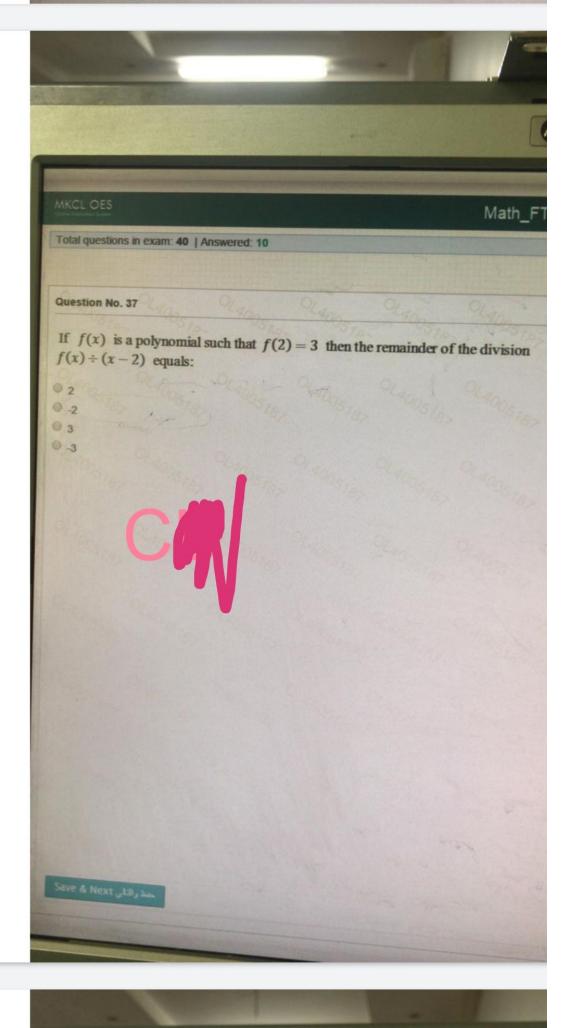
Question No. 26

Let a > 0 and $f(x) = (a^2 - 9)x^2 + x - a$. Give the value of a such that f(x) is a one-to-one function.

@ a=2

@ a = - 3

Save & Next مطروقان


Compaq LE1711

Question No. 1

Evaluate
$$\lim_{x\to 2} \frac{x^3-1}{x-1} =$$

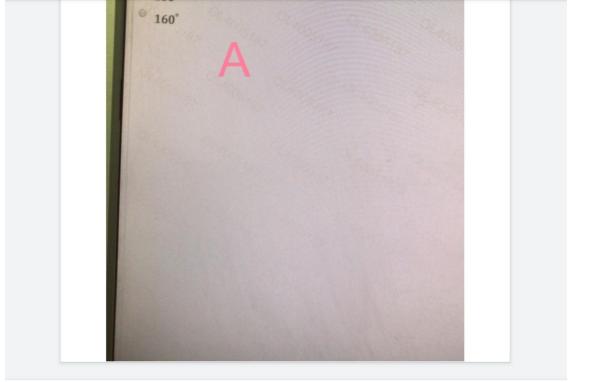
- 01
- 0 7
- 0 2
- 0 4

B

Total questions in exam: 40 | Answered: 10

Question No. 36

The function f(x) is constant on an interval I if for $x_1, x_2 \in I$,


- if $x_1 < x_2$, then $f(x_1) < f(x_2)$,
- if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,
- o if $x_1 < x_2$, then $f(x_1) > f(x_2)$,
- o if $x_1 > x_2$, then $f(x_1) > f(x_2)$,

B

Jave & Navr 14

MKCL OES

Tatal avantage to an ana

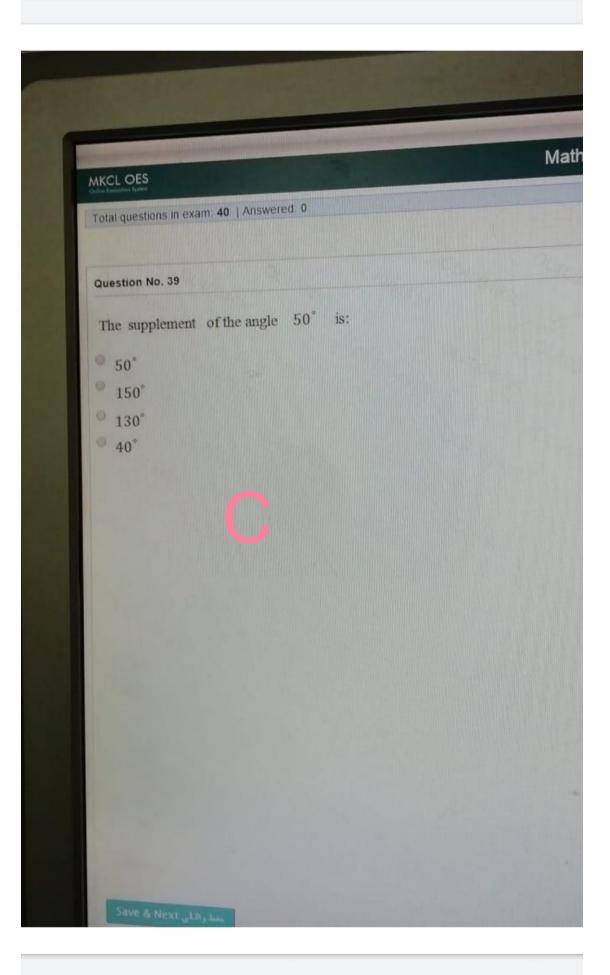
Question No. 26 Let a and b be nonzero real numbers. Find the inverse of the function $f(x) = \frac{a+bx}{b-ax}$. $f^{-1}(x) = \frac{ax+b}{bx-a}$ $f^{-1}(x) = \frac{bx-a}{ax-b}$ $f^{-1}(x) = \frac{bx-a}{ax+b}$ $f^{-1}(x) = \frac{bx-a}{ax+b}$

Question No. 2

Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8|+a>0 is $(-\infty,2) \cup (2,+\infty)$ then

a=1

a=0

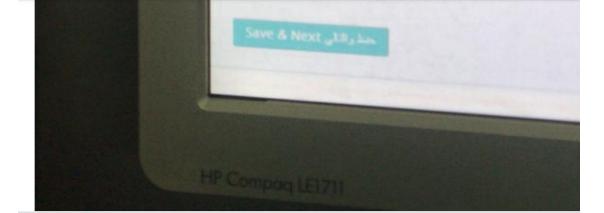

a=2

a = -1

Question No. 40

The graph of
$$f(x) = -\left(\frac{1}{2}\right)^x$$
 is

- Increasing
- O Constant
- Decreasing
- Decreasing and Increasing


Total questions in exam: 40 | Answered: 10

Question No. 39

The equation $y = \log_{\alpha} x$ is equivalent to the equation

- $x = y^a$
- $x = a^y$
- $y = x^a$
- $v = a^x$

B

Question No. 39

Use set notation, and write the elements belonging to the set {x|x is a natural number less than 3}

- 00
- @ {0}
- ◎ {1,2}
- ◎ {1,2,3}

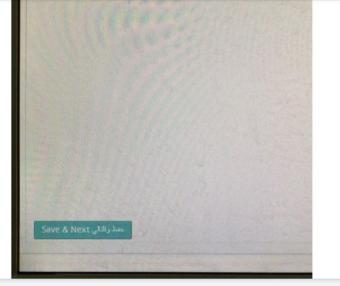
C

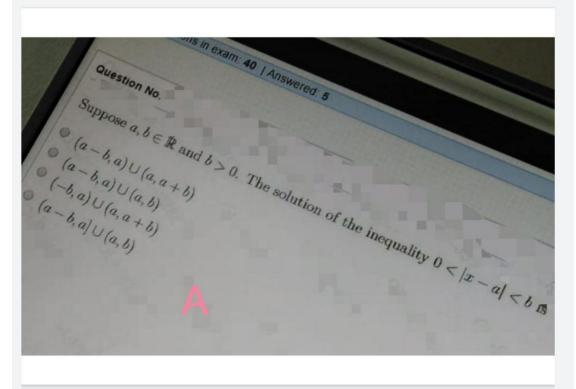
Total questions in exam: 40 | Answered: 11

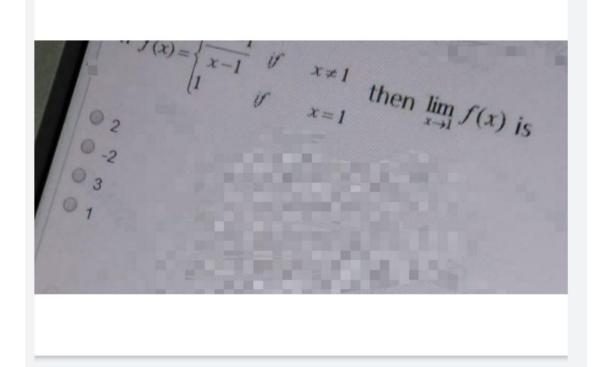
Question No. 9

Evaluate
$$\lim_{x\to 2} \frac{x-2}{|x-2|} =$$

- 0 -2
- 00
- 02
- Does not exist


D


Question No. 27


If
$$f(x) = -\frac{1}{3}x + 1$$
, the domain of $f^{-1}(x)$ is

- [-3,1) [-\frac{1}{3},1)
- [0,∞)
- all real numbers

MKCL OES

Question No. 23

The line through the point (-1,-3) with slope equal to zero is

- 0 x = -3
- O x = -1
- y = -3
- y = −1

Question No. 23

Simplify $\frac{1}{9} \left(\frac{12}{4} m - \frac{9}{2} n - 27 \right)$

- $\bigcirc \frac{m}{15} \frac{n}{6} 9$
- 12 m-3n-9
- $\stackrel{\text{\tiny 0}}{=} \frac{1}{3} m \frac{n}{2} 3$
- @ 27

C

حنظ واقتلي Save & Next

Question No. 7

The complement of the angle 65° is:

- © 25°
- 0 115°
- 0 125°
- 0 35°

Total questions in exam: 40 | Answered: 0

Question No. 11

If x+a is a factor of the polynomial f(x) then

$$f(-a)=0$$

$$f(a) = -a$$

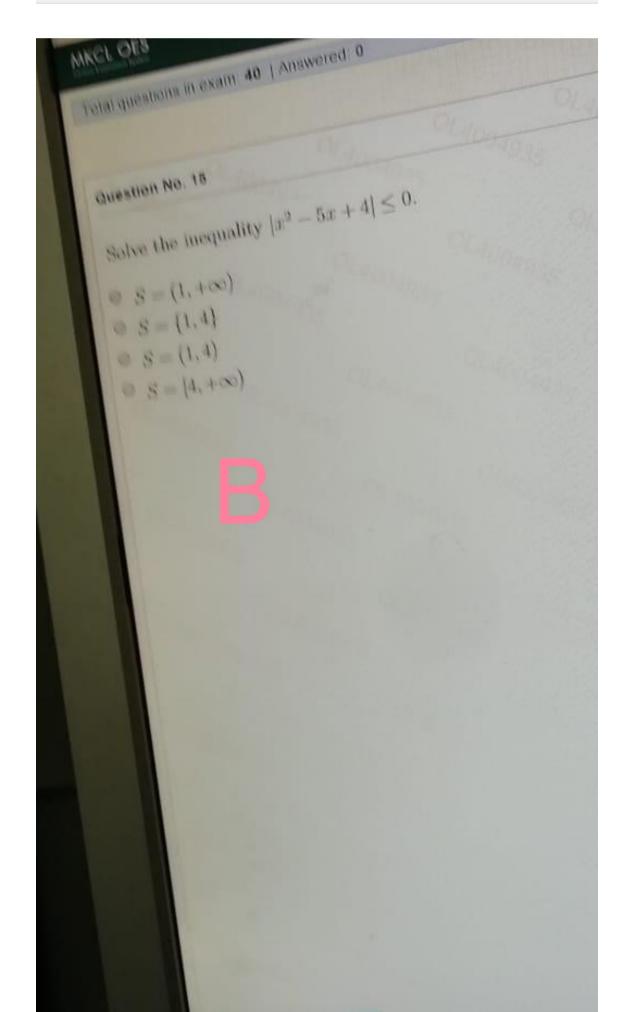
$$f(-a) \neq 0$$

$$f(a)=0$$

Ma

Total questions in exam: 40 | Answered: 0

Question No. 4


Find 2f(x) - 3g(x), where $f(x) = x^2 + 2x - 1$ and g(x) = 2x - 4.

$$2x^2 - 2x - 14$$

$$-3x^2-2x-1$$

$$-3x^2-2x-7$$

$$2x^2 - 2x + 10$$

Total questions in exam: 40 | Answered: 0

Question No. 9

If θ is an acute angle in a right triangle, then $\tan \theta =$

O opposite

hypotenuse

opposite

adjacent

adjacent opposite

adjacent

hypotenuse

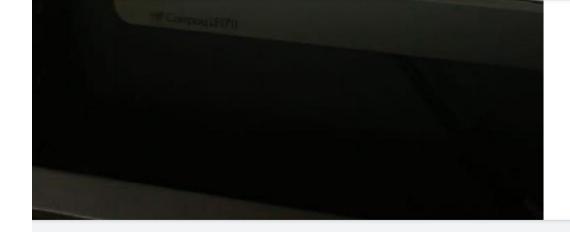
Question No. 6

Use the quadratic formula to solve this equation:

$$8x^2 = 6x - 1$$

$$x = \{4, \frac{1}{2}\}$$

$$x = \{4, \frac{1}{2}\}$$


$$x = \{-\frac{1}{2}, \frac{1}{4}\}$$

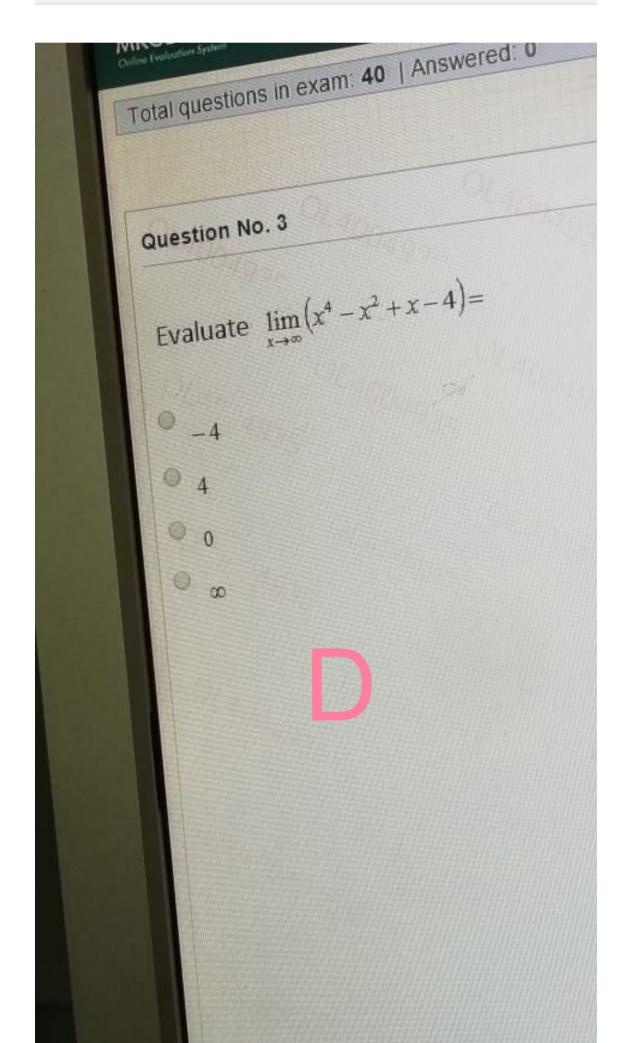
$$x = \{\frac{1}{2}, \frac{1}{4}\}$$

$$x = \{2, \frac{1}{4}\}$$

$$x = \{\frac{1}{2}, \frac{1}{4}\}$$

$$x = \{2, \frac{1}{4}\}$$

Question No. 22


Let $a \in \mathbb{R}$. Give the condition on a that makes the relation $F = \{(-1,1), (2,1), (a,3), (-2,a)\}$ a function

- $a \in \{-1, -2, 1, 2, 3\}$
- o $a \in \mathbb{R} \setminus \{1,3\}$
- $oa\in \mathbb{R}$
- $@ \ a \in \mathbb{R} \backslash \{-1,2,-2\}$

منظر اللي Save & Next

Compaq LE1711

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 16 Compute the product (x-2)(x-3)○ x²+5x+6 ○ x²-5x-6 $0 x^2 - 6x + 5$ $0 x^2 - 5x + 6$

عمل رائدلی Save & Next

Math_F MKCL OES Total questions in exam 40 | Answered: 0 Question No. 29 If f(x) is a polynomial such that the remainder of the division $f(x) \div (x + 4)$ equals 10 then f(10) = -4f(-4) = 10f(4) = 10f(10) = 4مطروقلي Save & Next

Question No. 8

$$csc\theta =$$

O 1 cos0

 $\frac{\cos\theta}{\sin\theta}$

O 1 sinθ

> sin θ cosθ

Question No. 5

The solution set of the equation 7(2x-1) = 9 + 14x is

- 0 1
- OØ
- 0 {1,2}
- 0 (5)

Question No. 25

Find the quotient $\frac{6x^2}{2x^5} \div \frac{3x}{x^4}$, where $x \neq 0$

- 0 1
- 0 1
- 0 1
- 0-1

Total questions in exam 40 | Answered: 0

Question No. 26

Which of the following functions is not one-to-one

$$f(x) = x^3$$

$$f(x) = \sqrt{x}$$

$$f(x) = -x^2$$

$$f(x) = -x$$

Question No. 24

The equation $y = \log_2(3x)$ can be written as

$$x = \frac{2^y}{3}$$

$$y = \frac{2^x}{3}$$

$$y = 3^x$$

$$0 x = 2^y$$

Question No. 30

Solve 1 < 7 - x < 10

- 0 (-6,-3)
- 0 (-3,6)
- @ (-6,3)
- 0 (3,6)

Question No. 23

Evaluate: |-12 + (5-2)|

- 09
- 06
- 0 -3
- 04

Question No. 28

If $\theta = 90^{\circ}$ then θ is called

- an obtuse angle
- a straight angle
- a right angle
- an acute angle

Total questions in exam: 40 | Answered: 0

Question No. 39

The supplement of the angle 50° is:

- ◎ 50°
- 9 150°
- 9 130°
- 9 40°

Question No. 38

The solution set of the equation $\log_2 x + \log_2(2x-1) = 2\log_2(2-x)$ is

- 0 {1,-4}
- 0 {1}
- 0 {4,-1}
- 0 0

B

Save & Next مطراقلي

Question No. 31

Evaluate $\lim_{x\to 9} \frac{\sqrt{x} - 3}{x - 9} =$

- $-\frac{1}{4}$
- 0 1/6
- $\frac{0}{2}$
- $\frac{0}{6}$

Total questions in exam: 40 | Answered: 0

Question No. 37

If
$$\sin \theta = \frac{4}{5}$$
 then $\cos \theta =$,where $0^{\circ} < 9 < 90^{\circ}$

- 0 4

- ① <u>5</u> 3

217 / 110

Question No. 36

The solution set of the equation $(\sqrt{2})^{3-5x} = 4^{a+x}$ is

$$\left\{\frac{1}{2} - \frac{1}{6}a\right\}$$

$$9 \left\{ \frac{3}{2} - \frac{2}{7}a \right\}$$

$$9 \left\{ \frac{1}{3} - \frac{4}{9}a \right\}$$

$$9 \left\{3 + \frac{4}{9}a\right\}$$

Question No. 40

The graph of $f(x) = 3^x$ is

- Increasing
- O Constant
- Decreasing and Increasing
- Decreasing

Question No. 33

Give the slope of the line 4y - 8x + 28 = 0

- 0 -2
- 0 -7
- 0 2
- 07

Question No. 32

The solution set of the equation $2 \log_2 x - \log_2 (4x + 5) = 0$ is

- 0 (5)
- 0 (-1.5)
- 00
- 0 (-1)

Total questions in exam: 40 | Answered: 0

Question No. 34

Evaluate $\lim_{x \to 1^+} \frac{x^2 - 1}{|x - 1|}$

- 02
- 06
- 0 -2
- 01

What are the factors of this quadratic equation $2x^2 - 6x - 5 = 0$

- (4x-5)(2x+1)
- 0 (8x+5)(x-1)
- (4x-1)(2x+5)
- 0 (x+1)(8x-5)

If $\sin \theta = \frac{4}{5}$ then $\cot \theta =$,where 0°<9<90°

- 0 4
- 0 3
- 9 5
- 0 3

D

If $\sin \theta = \frac{4}{5}$ then $\cot \theta =$

- 0 3
- 0 4
- 0 5
- 0 3

Evaluate $\lim_{x \to \infty} \frac{x^2 - 2}{x - 1} =$

- 0 -1
- 0 0
- 0 1
- 000

Simplify
$$\left(\frac{-4n^6m^4}{m^2}\right)^{1/2}$$
 where $m \neq 0$

- $-8n^9m^3$
- $-\frac{1}{8n^9m^3}$
- Is not a real number

Evaluate the expression $\frac{-(-3)+(-5)^2}{2(-8)-3(-3)}$

- 0 4
- $-\frac{28}{25}$
- 0 -4
- © 28 25

The line through the point (-1,-3) with slope equal to zero is

- 0 x = -3
- x = -1
- y = -3
- y = -1

The inverse of $F = \{ (-3,3), (0,0), (4,2), (1,5) \}$ is

$$\bigcirc$$
 G = { (-3,-3), (0,0), (4,-2), (1,-5) }

$$\bigcirc$$
 G = { (3,3), (0,0), (-4,2), (-1,5) }

$$\bigcirc$$
 G = { (3,3), (0,0), (2,4), (1,5) }

$$\bigcirc$$
 G = { (3,-3), (0,0), (2,4), (5,1) }


Dave or Next Cally his

Question No. 34

Find the sum $\frac{3}{2y} - \frac{5}{2y}$

- 0 1 v
- $\frac{1}{4y}$
- $\frac{1}{y}$
- $\bigcirc \frac{11}{4y^2}$

C

MKCL OES

Total questions in exam: 40 | Answered: 23

Question No. 24

Let $x \in \mathbb{Z}$. Simplify the following expression $a = 3i^{132x^2+4x-3}$

- 0 a = 3i
- a = −3i
- a = -3
- 0 a = 3

If
$$f(x) = x^3 + 2x^2 - 1$$
 then $f(a^4) =$

$$a^7 + 2a^6 - 1$$

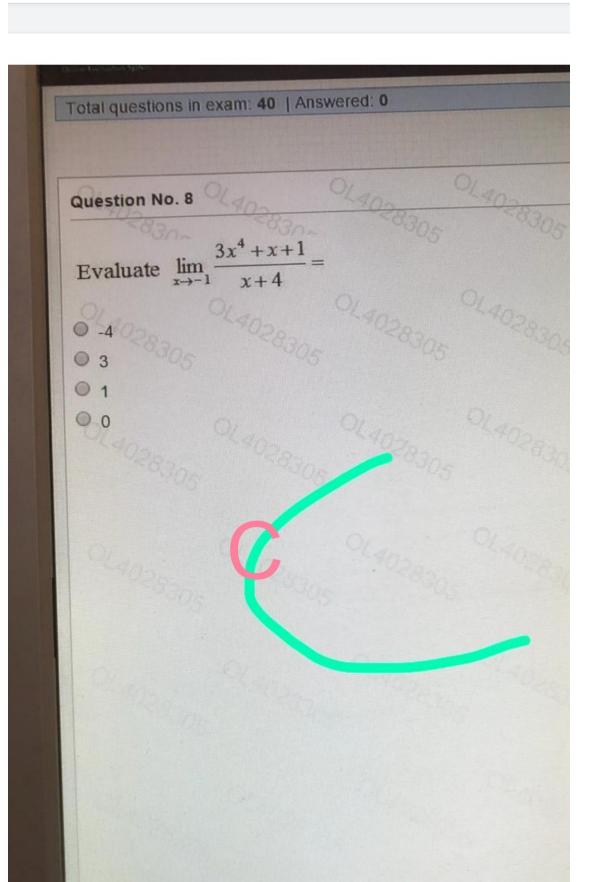
$$a+2a^{-1}-1$$

$$a^{12} + 2a^8 - 1$$

$$a^9-1$$

C

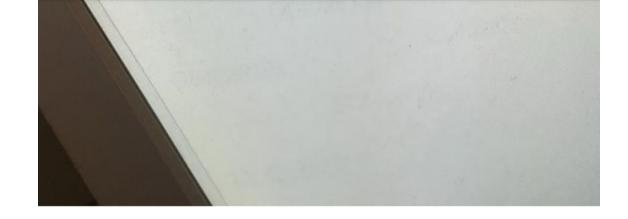
Question No. 6

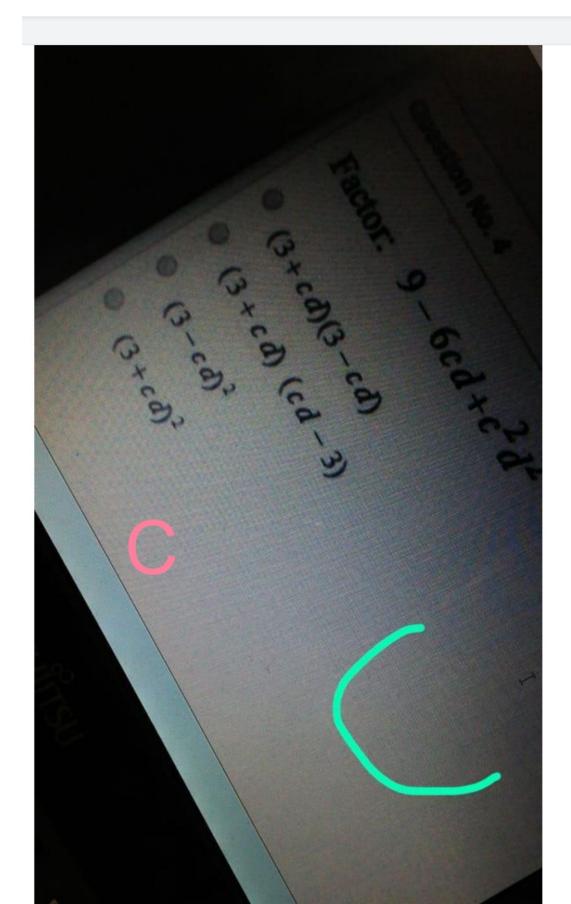

Simplify
$$\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$$

- ○x-9
- 0 x+9 05
- 0 x+3 014028305

Factor: $5x^2 - tx^2 - 5z + tz$

- $(x^2 z)(5 t)$ $(x^2 z)(5 + t)$
- $(x^2 + z)(5 + t)$
- $(x^2 + z)(5-t)$




Question No. 23

Let $f(x) = -\frac{3}{2}x + 4$, find the value of a such that f(2a) = 7.

- \bigcirc a = 0.

- ① a = 2.

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 7 The degree of the polynomial $5x^2 + 3x - 52$ is 0 5 0 3 020300 0 2 O 52

MKCL OES

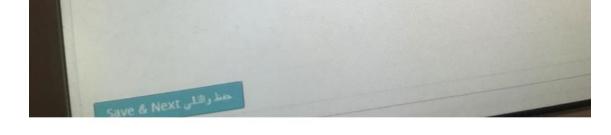
Total questions in exam: 40 | Answered: 0

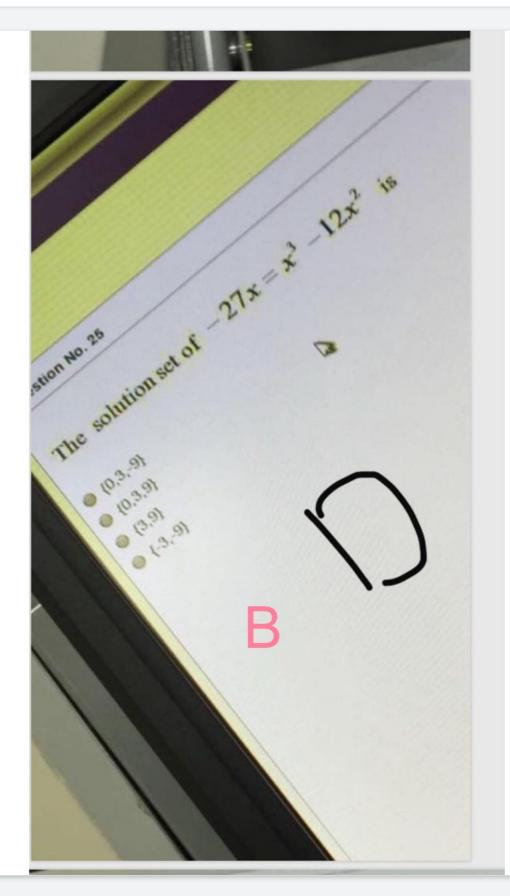
Question No. 5

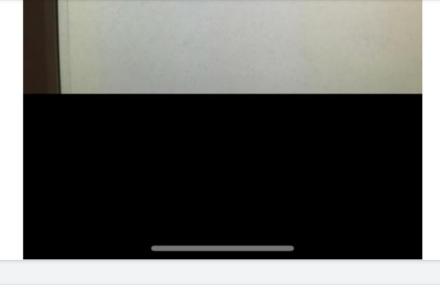
The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$.

- 0 y = 2
- 0 v=-2
- 0 y = 3
- v = -2

A

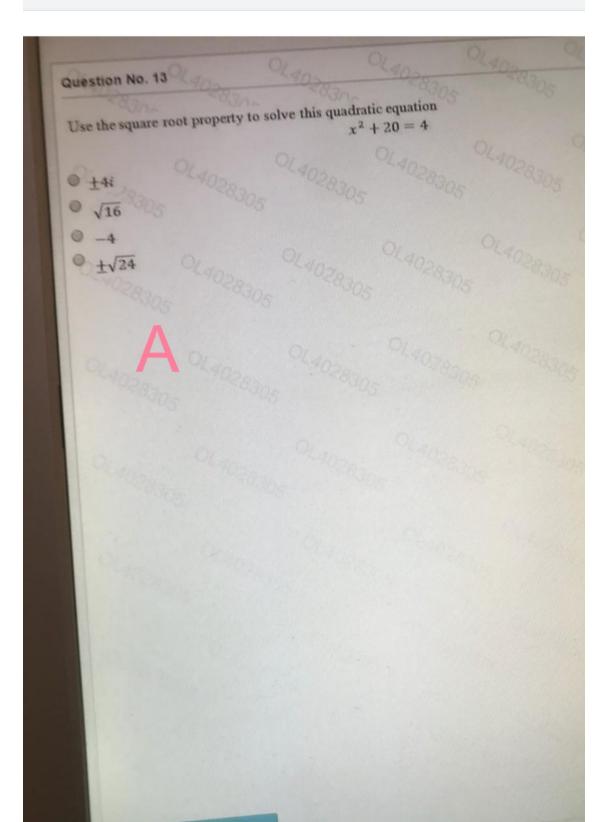

۹:۰۵ ص


+966 59 372 4422


۰ ۲/۱۲/۲۰ می ۵:۵۹ ص

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 3 The solution set of $-2 \le 3 - 5x \le 18$ is $(-\infty,1)$ \bigcirc $(-3,\infty)$ ◎ (-3,1) ◎ [-3,1]

Total questions in exam: 40 | Answered: 0 Question No. 9 OLAD If f(x) is a polynomial such that f(5) = -7 then the remainder of the $f(x) \div (x-5)$ equals: 07



Question No. 25

Given that $f(x) = \log_{\frac{1}{3}}(x+2)$, then f(2) =

- 0 1
- 0
- 0.2
- 0 -2

معطرالكلي Save & Next

Scanned by CamSo

00 / 100

Question No. 1

The solution of the equation ln(3x) = 2 is


- e2
- $\frac{e^3}{2}$
- 3e²
- $\frac{e^2}{3}$

مطرراتان Save & Next

MKCL OES

Scanned by CamSo

MKCL OES

Matn_r I

Total questions in exam: 40 | Answered: 17

Question No. 18

Which of the following is a pair of inverse functions?

f(x) = 2x - 1, where $x \in \mathbb{R}$, and $g(x) = x + \frac{1}{2}$, where $x \in \mathbb{R}$.

 $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 - 3$, where $x \in [0, \infty)$.

f(x) = x, where $x \in \mathbb{R}$, and g(x) = -x, where $x \in \mathbb{R}$.

 $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 + 3$, where $x \in [0, \infty)$.

B

مطراقلي Save & Next

Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function.

Give all values of a same
$$F = \{(7, -1), (5, 1-a), (0, 5), (-2, a), (1, 3)\}$$

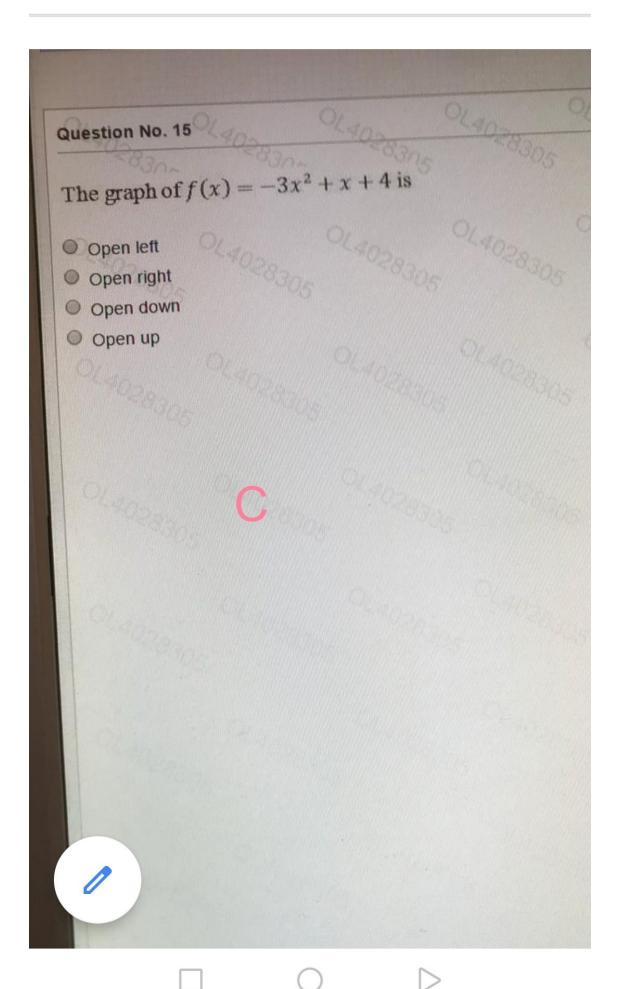
- $a \in \mathbb{R} \setminus \{-1, 5, 3, 2\}$
- $a \in \mathbb{R} \setminus \{-1, 5, 3, 2, -4, -2\}$
- $\bigcirc \ a \in {\rm I\!R} \backslash \{5,3,2\}$
- $a \in \{1, 5, -2\}$

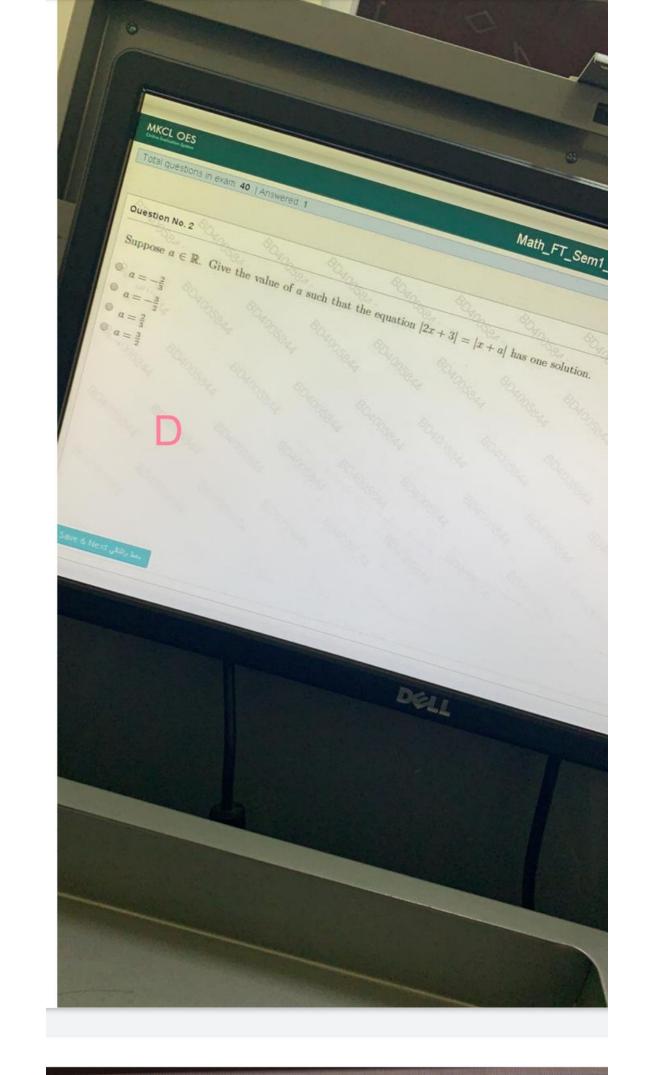
حفظ والتالي Save & Next

Total questions in exam: 40 | Answered: 0

Question No. 12

F is a one-to-one function.



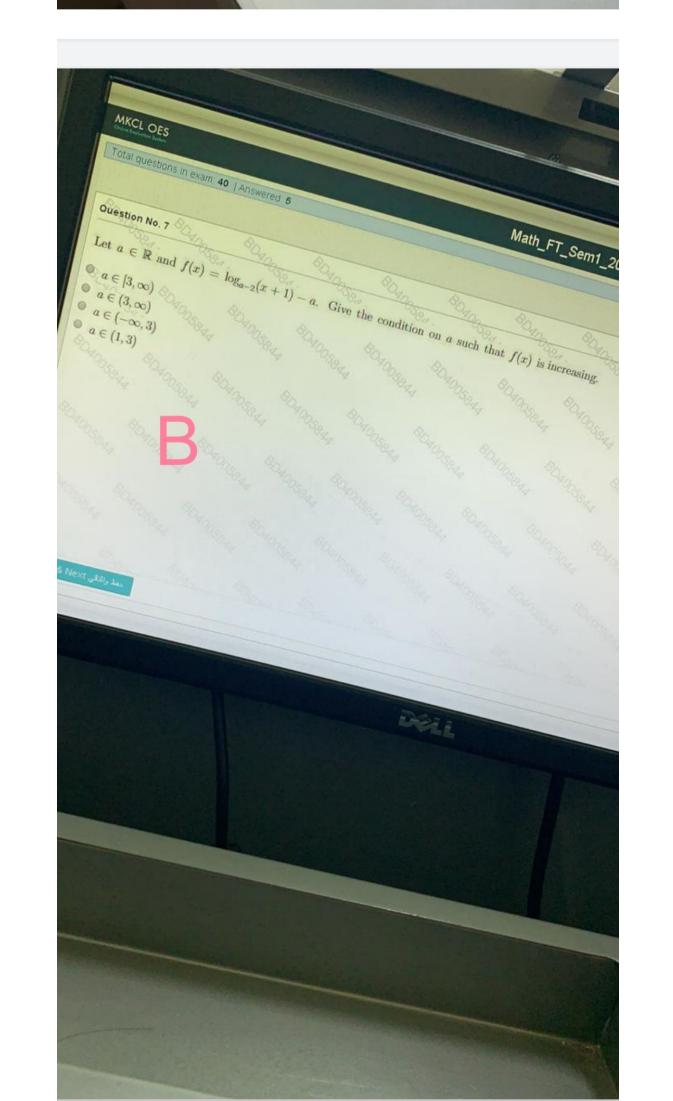


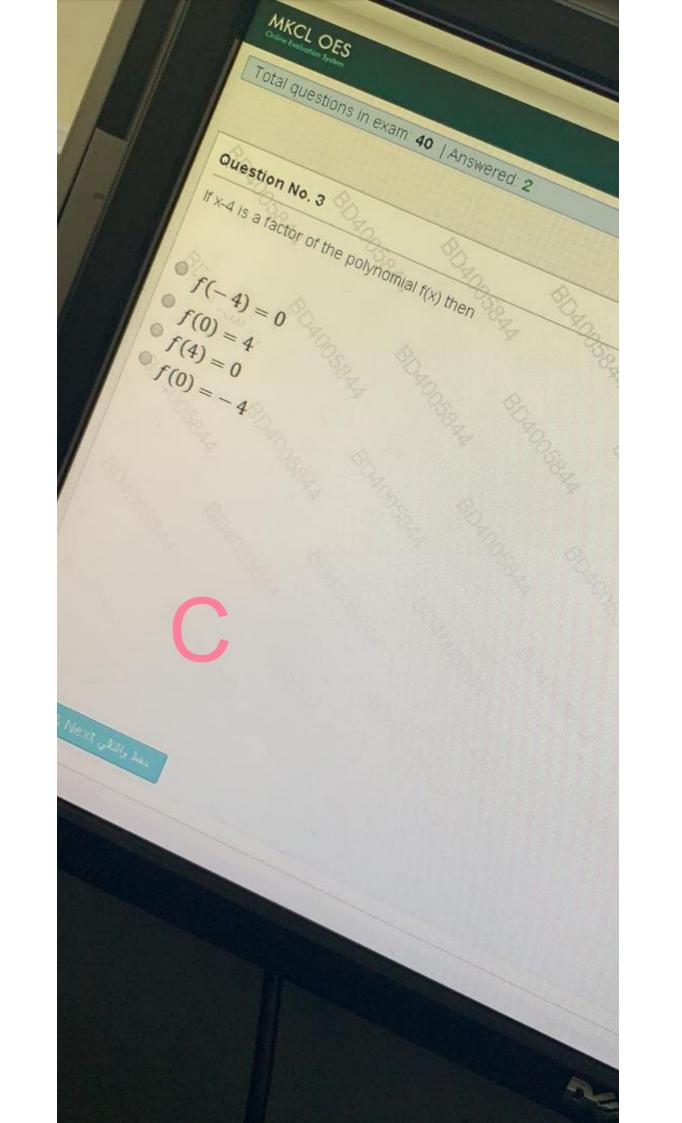
MATH Final2018...

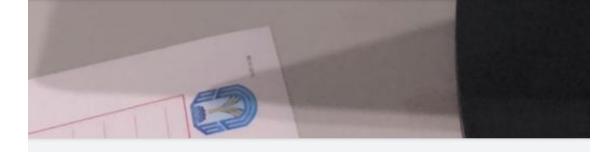
Question No. 20 The solution set of the equation 3(x+3) = 3x - 9 is • the set of real numbers 0 {2,3} 0 1 00

Question No. 24

If x-2 is a factor of the polynomial f(x) then

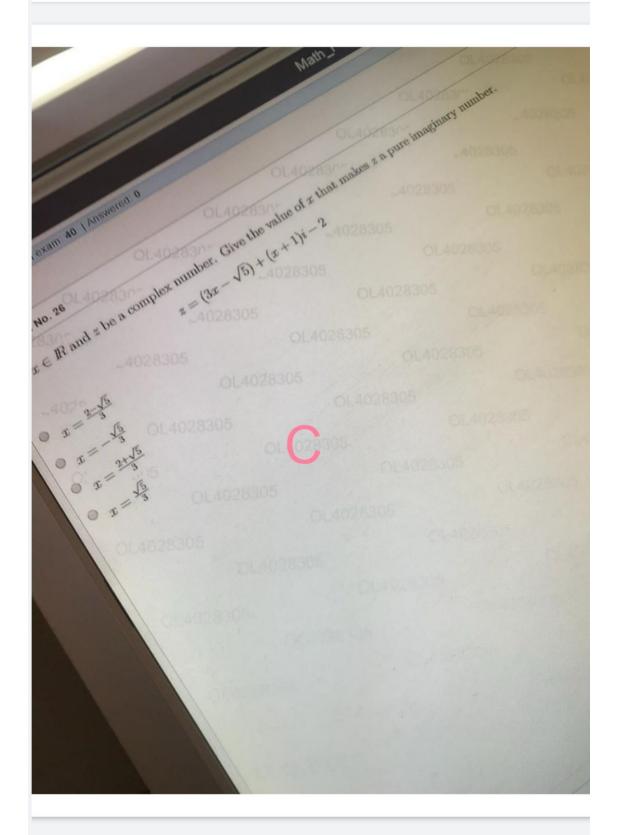

$$f(-2) = 0$$
 $f(2) = 0$


$$f(2) = 0$$

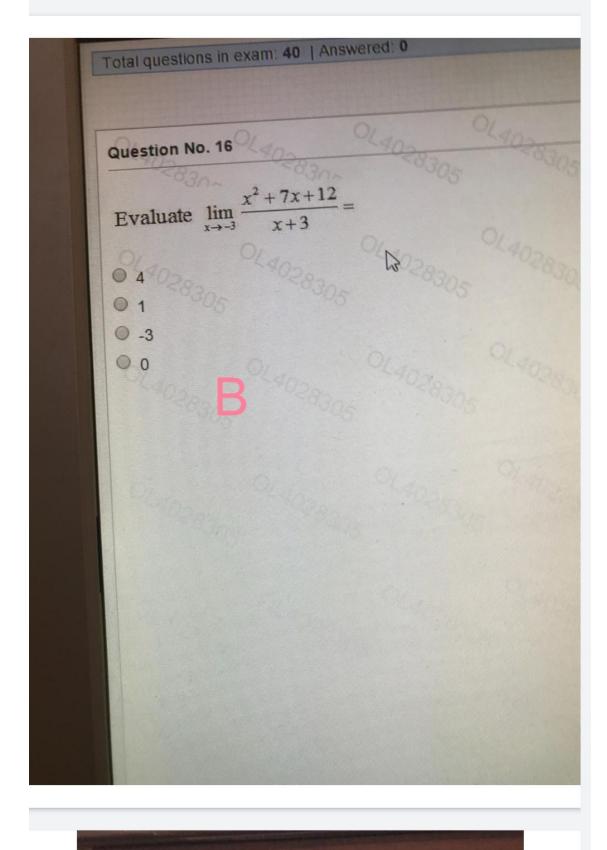

$$f(0) = -2$$

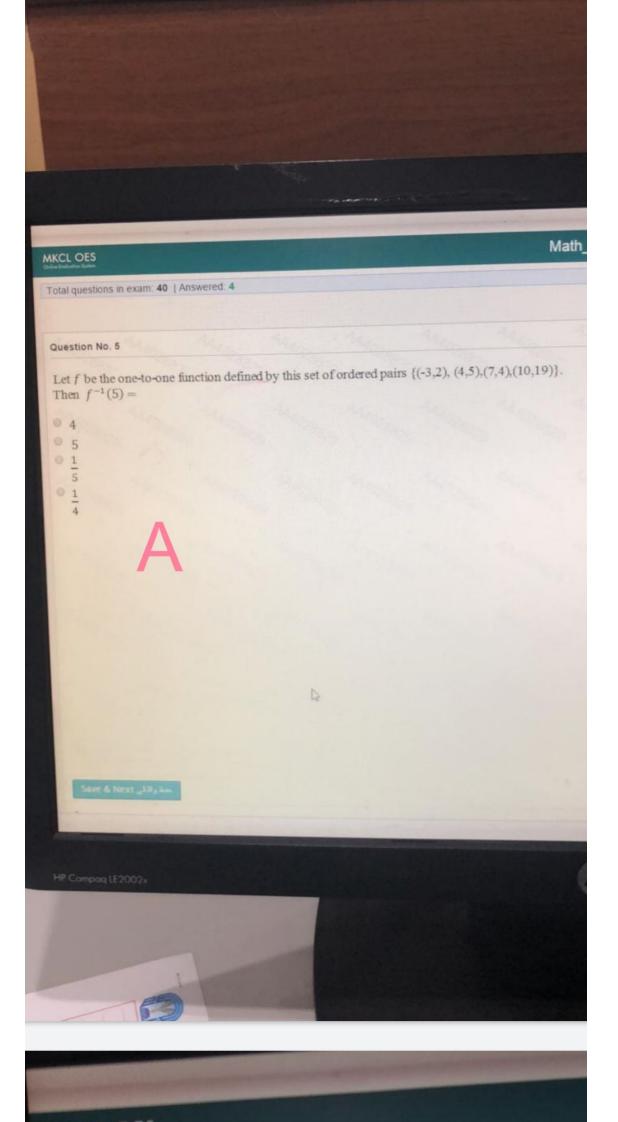
$$f(0) = 2$$

$$f(0) = 2$$


Question No. 2 Evaluate $\lim_{x\to 1} (x^3 + x - 6) =$ 0 -6 حط واقتلي Save & Next

Question No. 7 The horizontal asymptote to the graph of $f(x) = 2^x - 3$.


- y = -3
- x=-2
- 0 y = 3
- 0 x = 2


B

مظراتلي Save & Next

Total questions in exam: 40	Answered: 0	
	0/	Olas
Question No. 16	2400	7455

Total questions in exam: 40 | Answered: 0

Question No. 17

The domain of the function $f(x) = e^{x^2-3x+1} - 2$ is:

- O R

- $\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$

Question No. 18 The function has an inverse if None of these answers doesn't satisfy the horizontal line test it is quadratic

Question No. 18

Evaluate $\lim_{x \to -3} \frac{|x+3|}{x+3}$ 000000000 0 2 01 O Does not exist

Question No. 19

Evaluate $\lim_{x\to -\infty} \frac{x+5}{2x+3} =$

- 0 5 3

AKCL OFS				Math_F
Total questions in exam: 40 A	inswered: 0		NAME OF TAXABLE PARTY.	
Question No. 21				
Let U = {0,1,2,3,4,5,6	, 7,9), and	A= (1,3,5,7) the complen	ientof A is
0 0 0 {1,2,3,4,5,6,7}				
	В			

Total questions in exam: 40 | Answered: 0

Question No. 22

 $\begin{cases} x^4 & \text{if } x \le 1 \\ \end{cases}$ is continuous if The function $f(x) = \begin{cases} x^4 & \text{if } x \le 1 \\ k - x^4 & \text{if } x > 1 \end{cases}$

- k=-1

- k=2

MCL OFS ne position is easy 40 | Asswered 1 Question No. 2 The solution set of the equation 12(x-2)=4-2x is 0.2 00 0 (2,-2) 9 (2)

Total questions in exam: 40 | Answered: 0

Question No. 1

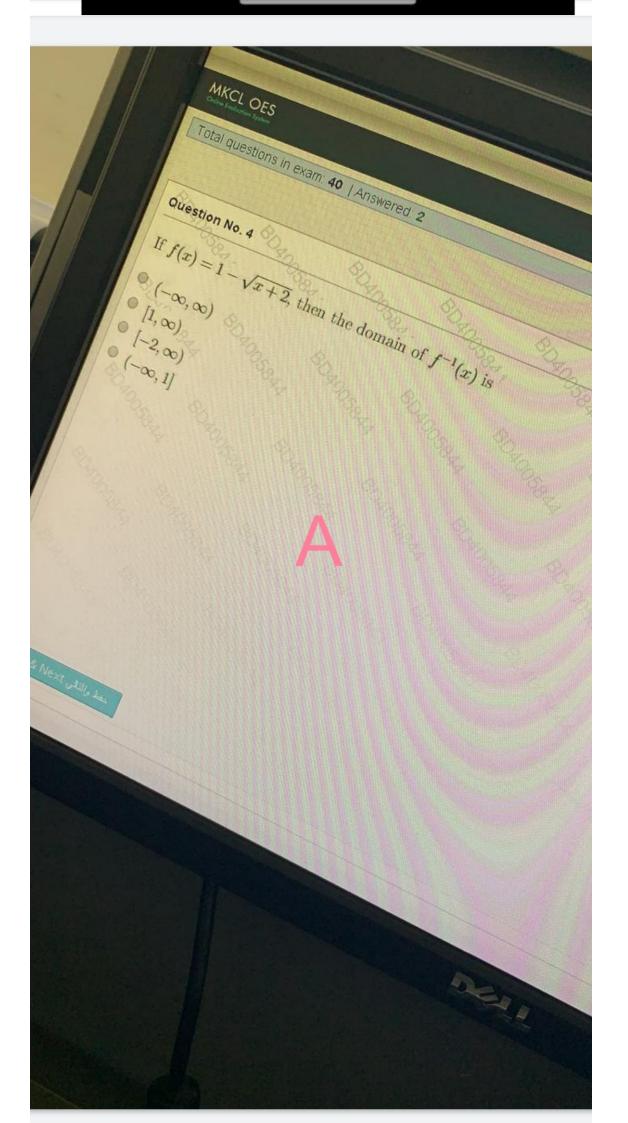
Perform the indicated operations $a b(a^{-1} - b^{-1})$, where $a \neq 0$, $b \neq 0$

- b − a
- $\frac{1}{b} \frac{1}{a}$
- 0 0
- ◎ a b

6

منذرافلي Save & Next

MATH Final-BAT...



Question No. 15

If $p(x) = \sqrt{x+3}$ and $q(x) = \sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$.

- $x \in (-\infty, -3) \cup (4, \infty)$
- $x \in [-3, 4]$
- $0 x \in [4, \infty)$
- $0 x \in (-3, 4)$

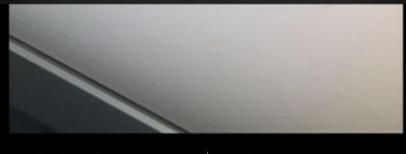
MKCL OES

Total questions in exam: 40 | Answered: 7

Question No. 8

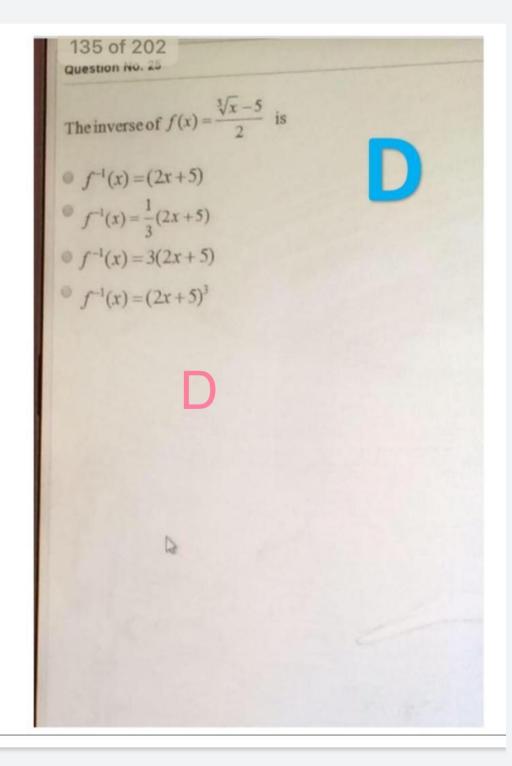
Let $U=\{1,2,3,4,5,6,7\}$, $A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A\cup B'$

- 0 {2,4,3}
- 0 {1,2,3,5,7}
- 0 {4,6}
- 0 {1,2,3,4}


منظر الثاني Save & Next

HP Compaq LE2002

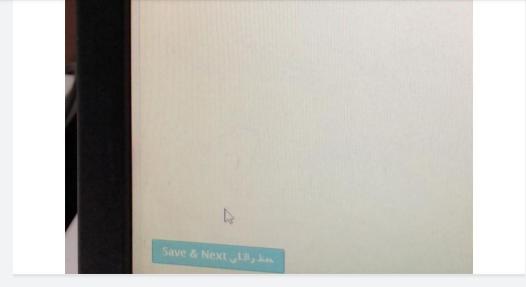
.Dr.Shadi 🌚 @ Plan (A)

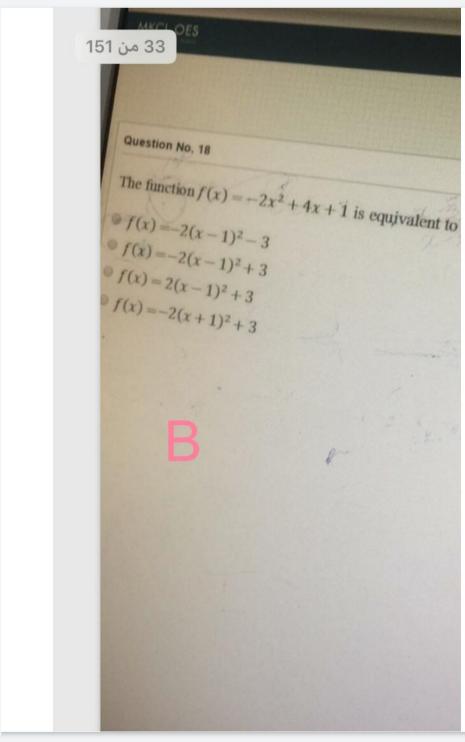

باحث مقدمة في الرياضيات طلاب و طالبات النهائي • 🖃 ورقتان ٢

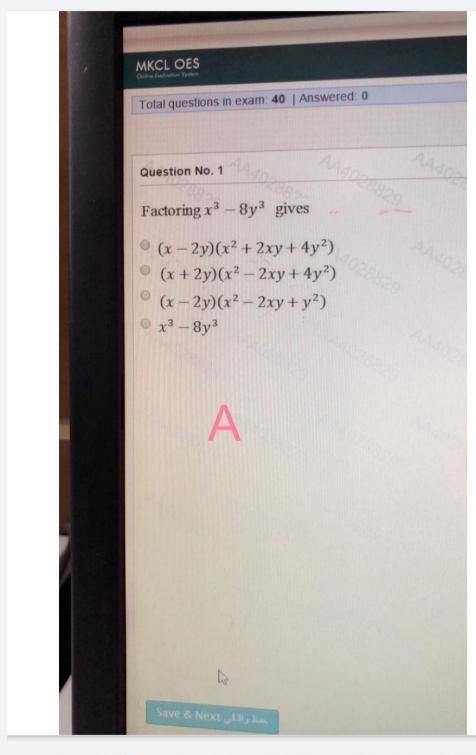
Question No. 33

if
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$
 then $\lim_{x \to 1} f(x)$ is

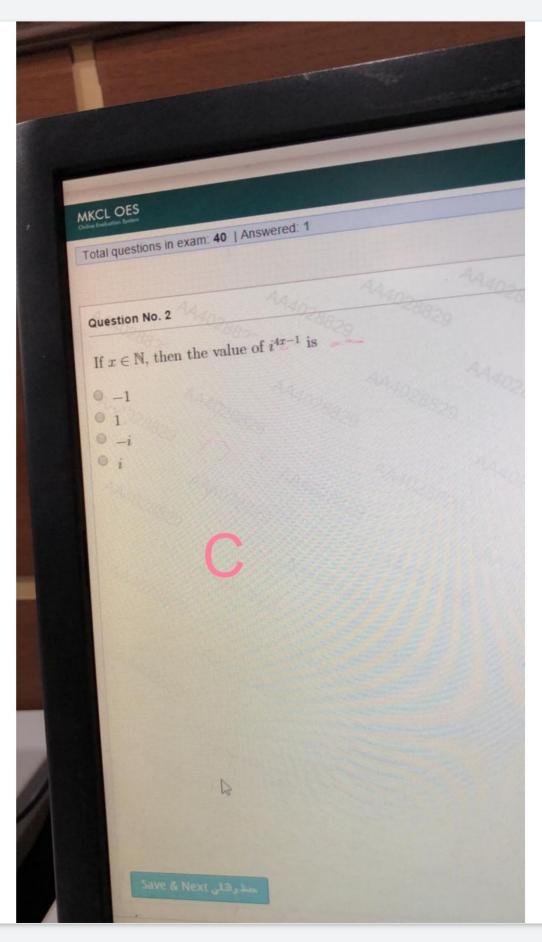
- 0 -2
- 02
- 0 1
- 03




MKCL OES Outlier Levilvolvolum Firsten Total questions in exam: 40 | Answered: 0 Question No. 1 Factoring $x^3 - 8y^3$ gives


Question No. 33

The function $f(x) = \begin{cases} kx - k & \text{if } x \ge 3 \\ 4 & \text{if } x < 3 \end{cases}$ is continuous if


- k=2 k=3 $k=\frac{4}{3}$
- 0 k=1

مطراقلی Save & Next

MKCL OES

actions in exam: 40 | Answered: 2

Total questions in exam: 40 | Answered: 2 Question No. 3 AA40 Evaluate $\lim_{x\to -\infty} \frac{x^3 + x^2 - 1}{x^2 - x - 1} =$ AA/A • -1 8820 0 0 0 -00 01

MKCL OES

Total questions in exam: 40 | Answered: 5

Question No. 6

Evaluate $\lim_{x\to\infty} (x^3 + x - 3) =$

- 0 0
- 0
- 0 _
- 0 a