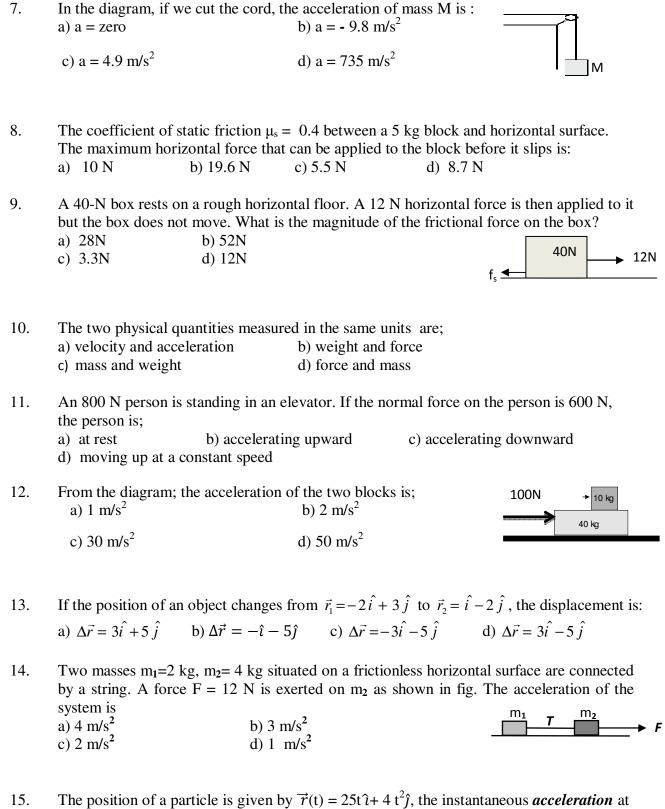

KING ABDULAZIZ UNIVERSITY SCIENCE FACULTY PHYSICS DEPARTMENT Summer Term Second Exam	WI MARKET WINNER	Α				
Student Name:	Student Number:	Group:				
 CHOOSE THE CORRECT ANSWER: A Ball is thrown from ground level making an angle of 30° above the horizontal. The ball 						



6. A block of mass m is connected to a block of mass M as shown, the normal force on block m is :

(c)

(d)

15. The position of a particle is given by $r(t) = 25ti + 4t^2 j$, the instantaneous *acceleration* at t = 1 s is: a) $(25\hat{i} + 8\hat{j})$ m/s² b) $(25\hat{i} + 8t\hat{j})$ m/s² c) $8\hat{j}$ m/s² d) 2 m/s² 16. A box, has mass of 4 kg, is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:

a) 39.2 N	b) 59.2 N	🐙 40N
c) 19.2 N	d) 40 N	4kg 30°

17. If the net forces applied to a 5.0 kg box is 10 N, then the magnitude of the acceleration of the box is: a) 0.50 m/s^2 b) 2.0 m/s^2 c) 2.8 m/s^2 d) 10 m/s^2

18. The angle that gives the maximum range for a projectile is: a) $\theta = 40^{\circ}$ b) $\theta = 44^{\circ}$ c) $\theta = 90^{\circ}$ d) $\theta = 45^{\circ}$

A 400 N steel ball is suspended by a light rope from the ceiling. The tension in the rope is:
a) 400N
b) 800N
c) zero
d) 200N

20. Which law says that force is equal to mass times acceleration (F=MA)?
a) Newton's first law of motion
b) Newton's third law of motion
c) Newton's second law of motion
d) none

21. A particle's displacement is given by $r_x = 4t^2+2$ and $r_y = 2t^3$. The velocity components are: a) $v_x=8t$, $v_y=6t^2$ b) $v_x=-8t$, $v_y=6t$ c) $v_x=8t+2$, $v_y=6t^2$ d) $v_x=4t$, $v_y=0$

22. As in Newton's second law, acceleration is always in the direction:

- a) of the displacement b) of the final velocity
 - c) of the initial velocity d) of the net force

23. From the diagram; the magnitude of the normal force F_N acting on the box a) Mg b) Mg cos θ c) Mg sin θ d) Mg tan θ

24. A car travels east at constant velocity. The net force on the car is; a) east b) west c) up d) zero
25. The gravitational force of earth acting on a 1 kg is a) 8.9N b) 9.8N c) 980N d) 1N

26. An 80 kg man stands on a scale in an elevator cab, if the cab accelerate upward with 1.2 m/s^2 , the normal force (F_N) is; a) 80 N b) 880 N c) zero N d) 680 N

27.	$\vec{F}_1 = 3\hat{i} - 5\hat{j}$ N, what	at is the other force?	?	elocity, one of the forces is d) $\vec{F}_2 = -5\hat{i} + 8\hat{j}$
28.	A 10 N horizontal speed, the value of t a) 0.2	-	-	make it move with constant d) 0.10
29.	A man of mass 72 k cab is not moving? a) 21 N	g stands on a scale b) 200 N	in an elevator cab. W	hat does the scale read if the d) 0
30.	The y component of a) A tan θ	f a vector A ; (A _y) i b) A sin θ	s given by: c) A cos θ	d) A cot θ
31.	A ball in projectile r a) $v_y = 0$. b) $v_y = \text{constant}$ c) $v_y = \text{constant}$ d) $v_y = 0$.	and $v_x = const$ and $v_x = 0$	ant	
32.	A girl weighs 489 N a) 489 kg		c) 0 kg	d) 50 kg
33.	 In Newton's third la a) Both forces are b) Both are in the s c) The action force 	equal and opposite is ame direction.	in direction.	

c) The action force is greater than the reaction force.d) The reaction force is greater than the action force.

	te per
King Abdulaziz University Faculty of Sciences Physics Department	First Term 1432-1433 H
Second Exam - Phys 110	Date: 10/ 1/ 1433H
Name:	ID No: Section:
n an	
CHOOSE THE CORRECT ANSV	WER
1. A girl of mass 50 kg stand	ding in a stationary elevator, her weight is:
a) 490 N b) 550 N c)	245 N d) 392 N $W = 50 \times 9.8 = 490 N$
2 Three forces act on a 2 kg	kg object give it an acceleration $\vec{a} = -8\hat{i} + 6\hat{j}$. if
$\vec{F_1} = 30\hat{i} + 16\hat{j}$ and $\vec{F_2} = -1$	$-12\hat{i} + 8\hat{j}$ the third force is $2r = m\alpha$
a) $\vec{F}_3 = 34\hat{i} + 12\hat{j}$	a) $\vec{E} = -30\hat{i} - 6\hat{i} + 3\hat{i} + 1\hat{i} + 1\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}\hat{i}$
a) $F_3 = -34\hat{i} - 12\hat{j}$ b) $\vec{F}_3 = -34\hat{i} - 12\hat{j}$	d) $F_2 = 8i - 16j$ $P_1 + 24j + F_2 - 16j$
•••• •••	$F_3 = -34i - 1$
 A particle in uniform circu distance that the participant 	cular motion of radius r = 2m moved one period. The ticle travelled in meters is:
	d) 3π 2π 2π 2π $r = 4\pi$ $(r = 2\pi)$
a) 4π b) 2π c) π	المساف المتطومة
4. A particle is said to be in	n uniform circular motion if
a) its velocity has a con	nstant magnitude
b) its velocity has a contc) its velocity is directed	ed towards the center
d) its velocity equals zer	ero
5. 10.3 N is equal to	
	$kg.m^2 \rightarrow 10.2 kg^2.m^2 \rightarrow 10.3 kg.m$ $F = m \propto$
kg.m	$\frac{1}{s^2}$ c) 10.5 $\frac{1}{s^2}$ u) 10.5 s N = Kem/ 2
a) $10.3 \frac{kg.m}{s^2}$ b) $10.3 \frac{kg}{s}$	5
a) $10.3 \frac{kg.m}{s^2}$ b) $10.3 \frac{kg}{s}$	10.3 N = 10.3 Kom
a) $10.3 \frac{kg.m}{s^2}$ b) $10.3 \frac{kg}{s}$	$\frac{kg \cdot m^2}{s^2}$ c) $10.3 \frac{kg^2 \cdot m^2}{s^2}$ d) $10.3 \frac{kg \cdot m}{s}$ F = m a N = $\frac{kg \cdot m}{s^2}$ 10.3 N = 10.3 Kom

6. At the maximum height of a projectile, what of the following is correct?

- a) Its velocity is zero
- c) Its x-component velocity is zerod) Its acceleration is zero

 $F_N = mg \cos \theta$ = 8.5 (9.8) cos 30

mysind

0=9

no=9.851130

= 72.14 N

Use the following to answer questions 7-9:

b) Its y-component velocity is zero

In the figure, a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at an angle $\theta = 30^{\circ}$.

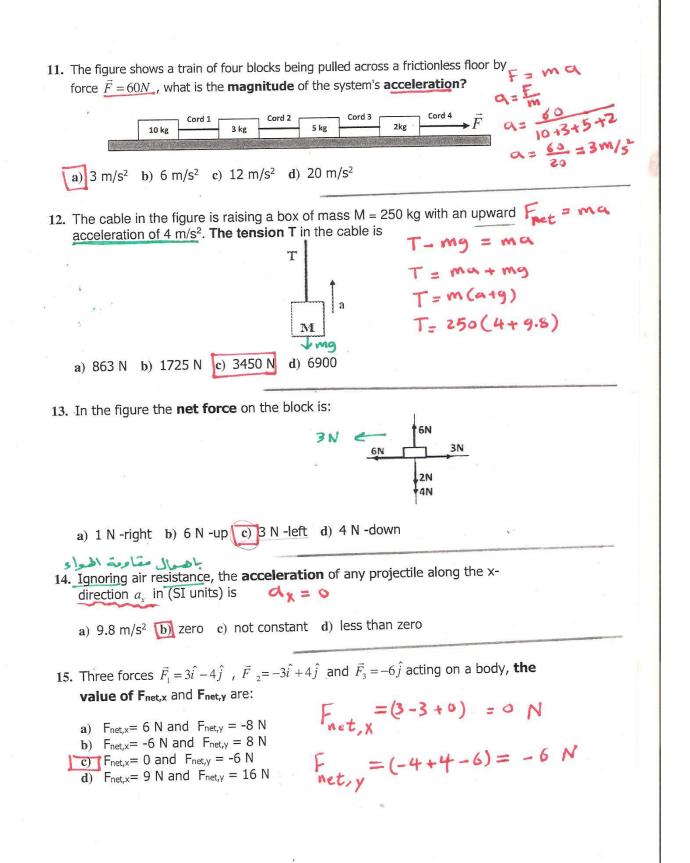
7. The tension in the cord T equals:

ida

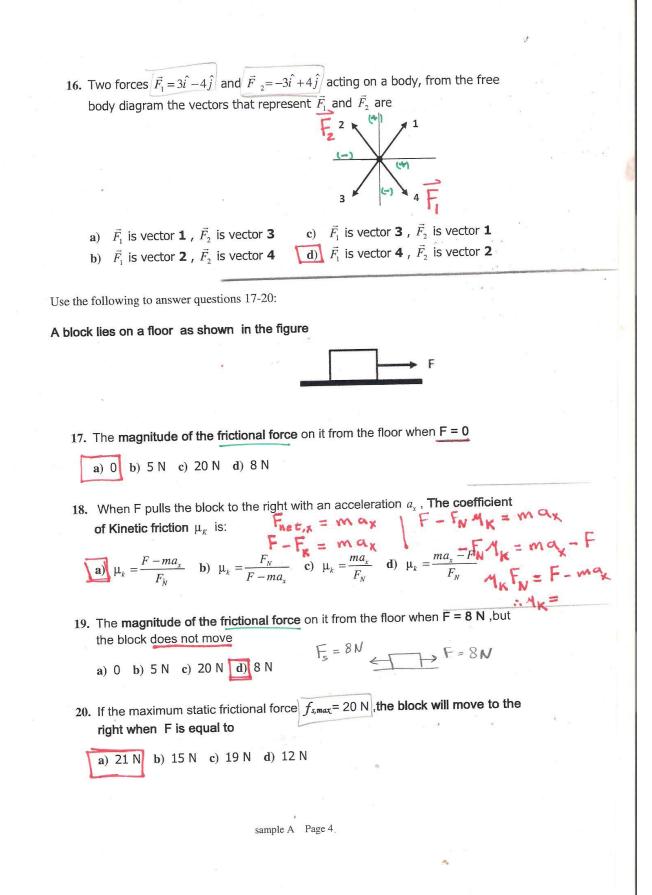
a) 72.14 N b) 83.3 N c) 53.14 N d) 41.65 N

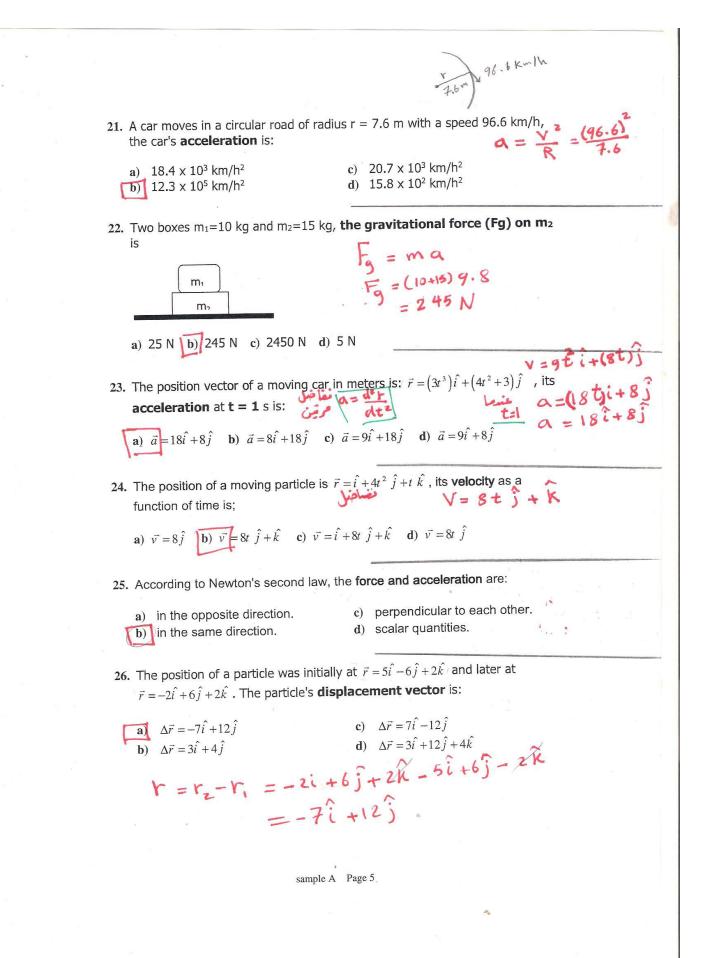
The normal Force F_N acting on the block is

a) 53.14 N b) 41.65 N c) 83.3 N d) 72.14 N


9. If the cord is cut, the magnitude of the **acceleration** of the block is T = 0 $T_{-}mq \sin \theta = mq$

a) zero b) 4.9 m/s² c) 6 m/s² d) 4 m/s²


10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:


- a) The force of Earth on the bag
- b) The force of the table on the bag
- c) The force of the Earth on the table
- d) The force of the bag on Earth

sample A Page 3

- 27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x = -2t^2 + 10t + 30$, and $y = t^2 - 5t + 10$ at t = $y = (10)^{3} - 5(10) + 10$ = 100 - 50 + 10 = 60 **10 s** the **position vector** \vec{r} is:
 - **a**) $\bar{r} = 70\hat{i} 60\hat{j}$
 - **b**) $\vec{r} = 60\hat{i} 70\hat{j}$

c) $\vec{r} = -60\hat{i} + 70\hat{j}$ d) $\vec{r} = -70\hat{i} + 60\hat{j}$

t = 10, $X = -2(10)^{2} + 10(10) + 30$ = -200 + 100 + 30 = -70

0=0

= 90.9 m

Vy= 29.7 m/s

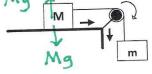
Vox = 30 m/s

sino=0

Use the following to answer questions 28-30:

A ball rolls horizontally off the top of a building with a speed of 30 m/s. If the ball tables 3.03 5 $t = \sqrt{\frac{2h}{9}}$ $t^{2} = \frac{2h}{9} \Rightarrow h = \frac{9t^{2}}{2} =$ landed on the ground in a time t = 3.03 s

28. The height of the building from the ground is


a) 45 m b) 14.8 m c) 90 m d) 22 m

29. At what horizontal distance from the rolling point does the projectile strikes X-Xo=Voxt the ground = 30 (3.03)

30. What is the magnitude of the vertical component of its velocity as it strikes $V_y = V_0 \sin \sigma_0 - gt$ = 0-9.8 (3.03) the ground

a) 2.9 m/s b) 0.31 m/s c) 3.2 m/s d) 29.7 m/s

31. A block of mass M is connected to a block of mass m as shown. The normal force on block M is: $F_{N} = Mg$

a)
$$F_N = Mg$$
 b) $F_N = Mg - T$ c) $F_N = mg - T$ d) $F_N = mg$

sample A Page 6

32. A particle moves from $\vec{r_1} = (-10m)\hat{k}$ to $\vec{r_2} = (24m)\hat{i}$ in 2 s. Its **average** velocity is:

	$\vec{v}_{avg} = \left(24\frac{m}{s}\right)\hat{i} + \left(10\frac{m}{s}\right)\hat{k}$	
b)	$\vec{v}_{avg} = \left(12\frac{m}{s}\right)\hat{i} + \left(5\frac{m}{s}\right)\hat{k}$	

c) $\vec{v}_{avg} = \left(-10\frac{m}{s}\right)\hat{i} + \left(24\frac{m}{s}\right)\hat{k}$ **d**) $\vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$

 $\vec{V}_{avg} = \frac{r_2 - r_1}{t_2 - t_1} = \frac{24i - (-10)\hat{k}}{2}$

33. A force F is applied to an object of mass m₁= 45 kg produces an acceleration of 2 m/s². The same force is applied to a second object of mass m₂ produces an acceleration of 1.5 m/s². The value of m₂ is

a) 45 kg b) 60 kg c) 30 kg d) 67 kg
b) 60 kg c) 30 kg d) 67 kg
c) 45 x 2 = m₂ x1.5

 $m_2 = \frac{45 \times 2}{1.5}$ = 60 kg King Abdulaziz University Faculty of Sciences Physics Department

Second Exam - Phys 110

First Term 1432-1433 H

Date: 10/ 1/ 1433H

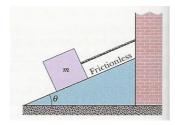
Name:	ID No:	Section:

CHOOSE THE CORRECT ANSWER

- 1. A girl of mass 50 kg standing in a stationary elevator, her **weight** is:
 - a) 490 N b) 550 N c) 245 N d) 392 N
- 2. Three forces act on a 2 kg object give it an acceleration $\vec{a} = -8\hat{i} + 6\hat{j}$. if $\vec{F_1} = 30\hat{i} + 16\hat{j}$ and $\vec{F_2} = -12\hat{i} + 8\hat{j}$ the **third force** is
 - **a**) $\vec{F_3} = 34\hat{i} + 12\hat{j}$ **b**) $\vec{F_3} = -34\hat{i} - 12\hat{j}$ **c**) $\vec{F_3} = -30\hat{i} - 6\hat{j}$ **d**) $\vec{F_3} = 8\hat{i} - 16\hat{j}$
- **3.** A particle in uniform circular motion of radius r = 2m moved one period. **The distance that the particle travelled** in meters is:

a) 4π **b**) 2π **c**) π **d**) 3π

- 4. A particle is said to be in uniform circular motion if
 - a) its velocity has a constant magnitude
 - b) its velocity has a constant direction
 - c) its velocity is directed towards the center
 - d) its velocity equals zero
- 5. 10.3 N is equal to


a)
$$10.3 \frac{kg.m}{s^2}$$
 b) $10.3 \frac{kg.m^2}{s^2}$ **c)** $10.3 \frac{kg^2.m^2}{s^2}$ **d)** $10.3 \frac{kg.m}{s}$

- 6. At the maximum height of a projectile, what of the following is correct?
 - a) Its velocity is zero

- c) Its x-component velocity is zero
- **b**) Its y-component velocity is zero
- d) Its acceleration is zero

Use the following to answer questions 7-9:

In the figure, a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at an angle $\theta = 30^{\circ}$.

7. The tension in the cord T equals:

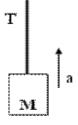
a) 72.14 N b) 83.3 N c) 53.14 N d) 41.65 N

8. The **normal Force** F_N acting on the block is

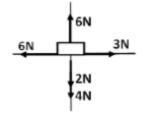
a) 53.14 N b) 41.65 N c) 83.3 N d) 72.14 N

9. If the cord is cut, the magnitude of the **acceleration** of the block is

a) zero b) 4.9 m/s^2 c) 6 m/s^2 d) 4 m/s^2


- 10. A bag rests on a table, exerting a downward force on the table. The **reaction to this force is:**
 - a) The force of Earth on the bag
 - $\mathbf{b}) \quad \text{The force of the table on the bag}$
 - c) The force of the Earth on the table
 - d) The force of the bag on Earth

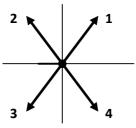
11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F} = 60N$, what is the **magnitude** of the system's **acceleration?**

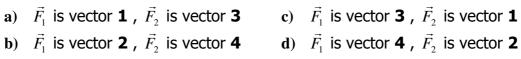


a) 3 m/s² b) 6 m/s² c) 12 m/s² d) 20 m/s²

12. The cable in the figure is raising a box of mass M = 250 kg with an upward acceleration of 4 m/s². The tension T in the cable is

- a) 863 N b) 1725 N c) 3450 N d) 6900
- 13. In the figure the **net force** on the block is:


a) 1 N -right b) 6 N -up c) 3 N -left d) 4 N -down


14. Ignoring air resistance, the **acceleration** of any projectile along the x-direction a_x in (SI units) is

a) 9.8 m/s² b) zero c) not constant d) less than zero

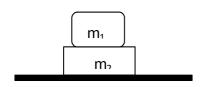
- 15. Three forces $\vec{F_1} = 3\hat{i} 4\hat{j}$, $\vec{F_2} = -3\hat{i} + 4\hat{j}$ and $\vec{F_3} = -6\hat{j}$ acting on a body, the value of F_{net,x} and F_{net,y} are:
 - a) $F_{net,x} = 6 \text{ N}$ and $F_{net,y} = -8 \text{ N}$
 - **b**) $F_{net,x} = -6 \text{ N}$ and $F_{net,y} = 8 \text{ N}$
 - c) $F_{net,x} = 0$ and $F_{net,y} = -6$ N
 - d) $F_{net,x}$ = 9 N and $F_{net,y}$ = 16 N

16. Two forces $\vec{F_1} = 3\hat{i} - 4\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body, from the free body diagram the vectors that represent $\vec{F_1}$ and $\vec{F_2}$ are

Use the following to answer questions 17-20:

A block lies on a floor as shown in the figure

- 17. The magnitude of the frictional force on it from the floor when F = 0
 - a) 0 b) 5 N c) 20 N d) 8 N
- 18. When F pulls the block to the right with an acceleration a_x , **The coefficient** of Kinetic friction μ_{κ} is:


a)
$$\mu_k = \frac{F - ma_x}{F_N}$$
 b) $\mu_k = \frac{F_N}{F - ma_x}$ **c**) $\mu_k = \frac{ma_x}{F_N}$ **d**) $\mu_k = \frac{ma_x - F}{F_N}$

19. The magnitude of the frictional force on it from the floor when F = 8 N, but the block does not move

a) 0 b) 5 N c) 20 N d) 8 N

- 20. If the maximum static frictional force $f_{s,max}$ = 20 N, the block will move to the right when F is equal to
 - a) 21 N b) 15 N c) 19 N d) 12 N

- 21. A car moves in a circular road of radius r = 7.6 m with a speed 96.6 km/h, the car's **acceleration** is:
 - a) 18.4 x 10^3 km/h² c) 20.7 x 10³ km/h²
 - **b**) 12.3 x 10⁵ km/h² d) 15.8 x 10^2 km/h²
- 22. Two boxes $m_1=10$ kg and $m_2=15$ kg, the gravitational force (Fg) on m_2 is

- a) 25 N b) 245 N c) 2450 N d) 5 N
- **23.** The position vector of a moving car in meters is: $\vec{r} = (3t^3)\hat{i} + (4t^2 + 3)\hat{j}$, its acceleration at t = 1 s is:
 - **a**) $\vec{a} = 18\hat{i} + 8\hat{j}$ **b**) $\vec{a} = 8\hat{i} + 18\hat{j}$ **c**) $\vec{a} = 9\hat{i} + 18\hat{j}$ **d**) $\vec{a} = 9\hat{i} + 8\hat{j}$
- 24. The position of a moving particle is $\vec{r} = \hat{i} + 4t^2 \hat{j} + t \hat{k}$, its velocity as a function of time is:

a)
$$\vec{v} = 8\hat{j}$$
 b) $\vec{v} = 8t\hat{j} + \hat{k}$ **c**) $\vec{v} = \hat{i} + 8t\hat{j} + \hat{k}$ **d**) $\vec{v} = 8t\hat{j}$

- 25. According to Newton's second law, the force and acceleration are:
 - a) in the opposite direction. c) perpendicular to each other.
 - **b**) in the same direction. d) scalar quantities.
- **26.** The position of a particle was initially at $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and later at $\vec{r} = -2\hat{i} + 6\hat{j} + 2\hat{k}$. The particle's **displacement vector** is:
 - c) $\Delta \vec{r} = 7\hat{i} 12\hat{j}$ d) $\Delta \vec{r} = 3\hat{i} + 12\hat{j} + 4\hat{k}$ a) $\Delta \vec{r} = -7\hat{i} + 12\hat{j}$
 - **b**) $\Delta \vec{r} = 3\hat{i} + 4\hat{j}$

27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x = -2t^2 + 10t + 30$, and $y = t^2 - 5t + 10$ at **t** = **10** s the **position vector** \vec{r} is:

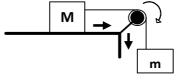
a)	$\vec{r} = 70\hat{i} - 60\hat{j}$	c)	$\vec{r} = -60\hat{i} + 70\hat{j}$
b)	$\vec{r} = 60\hat{i} - 70\hat{j}$	d)	$\vec{r} = -70\hat{i} + 60\hat{j}$

Use the following to answer questions 28-30:

A ball rolls horizontally off the top of a building with a speed of 30 m/s. If the ball landed on the ground in a time t = 3.03 s

28. The height of the building from the ground is

a) 45 m b) 14.8 m c) 90 m d) 22 m


29. At what **horizontal distance** from the rolling point does the projectile strikes the ground

a) 9.9 m b) 90.9 m c) 0.9 m d) 99 m

30. What is the magnitude of **the vertical component of its velocity** as it strikes the ground

a) 2.9 m/s b) 0.31 m/s c) 3.2 m/s d) 29.7 m/s

31. A block of mass M is connected to a block of mass m as shown. The **normal force on block M** is:

a) $F_N = M g$ b) $F_N = M g - T$ c) $F_N = m g - T$ d) $F_N = m g$

32. A particle moves from $\vec{r_1} = (-10m)\hat{k}$ to $\vec{r_2} = (24m)\hat{i}$ in 2 s. Its average velocity is:

a)
$$\vec{v}_{avg} = \left(24\frac{m}{s}\right)\hat{i} + \left(10\frac{m}{s}\right)\hat{k}$$

b) $\vec{v}_{avg} = \left(12\frac{m}{s}\right)\hat{i} + \left(5\frac{m}{s}\right)\hat{k}$
c) $\vec{v}_{avg} = \left(-10\frac{m}{s}\right)\hat{i} + \left(24\frac{m}{s}\right)\hat{k}$
d) $\vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$

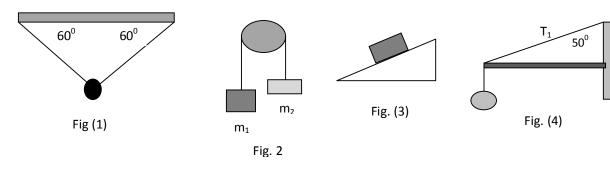
- **33.** A force F is applied to an object of mass m_1 = 45 kg produces an acceleration of 2 m/s². The same force is applied to a second object of mass m_2 produces an acceleration of 1.5 m/s². **The value of m**₂ is
 - **a**) 45 kg **b**) 60 kg **c**) 30 kg **d**) 67 kg

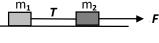
Answer Key

- **1.** a
- **2.** b
- **3.** a
- **4.** a
- 5. a 6. b
- **7.** d
- **8.** d
- **9.** b
- 10. b
- **11.** a
- 12. c 13. c
- 14. b
- 15. c
- **16.** d
- **17.** a
- **18.** a
- **19.** d **20.** a
- **20.** a **21.** b
- **22.** b
- **23.** a
- **24.** b
- **25.** b
- **26.** a **27.** d
- **27.** a **28.** a
- **29.** b
- **30.** d
- **31.** a
- **32.** b
- **33.** b

جامعة الملك عبد العزيز/كلية العلوم/ قسم الفيزياء اختبار الدوري الثانمي للفيزياء 110 – زمن الاختبار 90 دقيقة 1431/6/4

الشعبة:		الرقم الجامعي:	أسم الطالب <u>:</u>
Q1-1. If the position	n of an object change	s from $\vec{r_1} = -2\hat{i} + 3\hat{j}$ to	$\vec{r_2} = \hat{i} - 2\hat{j}$, the displacement is:
		C) $\Delta \vec{r} = -3\hat{i} - 5\hat{j}$	
		of 30^0 to the horizontal v	with a speed of 100 m/s . The
maximum height of A) 100m	B) 127.55 m	C) 250 m	D) 44.0 m
Ω_3 Referring to Ω_1^{\prime}	2, the range of the pro	viactila is:	
A) 88.37 m	B) 383 m	C)8.8 m	D) 883.69 m
Ω_{4} - Referring to Ω'_{4}	2, its time of flight is:		
A) 10.2 s	B) 25.2 s	C) 6.04 s	D) 5.02 s
	the time it takes to hi		ove the sea level. If the velocity of s
component of the v	elocity is:		ith a speed of 80 m/s . The vertical
A) 40 m/s	B) 4.0 m/s	C) 15 m/s	D) 35 m/s
	B) -9.8 m/s ² C)	eleration of the object is Zero D) Constant	
Q8- If a body slidin A) mg sin θ	g down on an incline B) mg cos θ	smooth plane. The force C) mg tan θ	ce causing the body to slide is: D) mg
Q9- An object weig	hing 600 N is pulled	up a frictionless incline	d plan of an angle of 30^{0} at a
constant velocity. T A) 200 N	The force causing the B) 245 N	motion is: C) 520 N	D) 300 N
Q10- A body move	s in a circular orbit w	ith constant velocity. Its	s acceleration is:
A) zero	B)	in the direction of the ta	angent
C) toward the cente	D)	outward, of the center	
Q11- A car travels i The radial accelerat		200 m in circumference	at a constant velocity of 18 m/s.
A) 8.37 m/s^2	B) 12.8 m/s^2	C) 7.31 m/s ²	D) 10.2 m/s ²
-		kg hangs from the ceilir is 60 ⁰ . The tension in th	ng by means of two cords. The
A) 56.6 N	B) 28.65 N	C)20.63 N	D)5.66N


A


Α			
A) 3.26	B) 1.25	C) 1.09	D) 1.9
-	N pulls a 5 kg crate up $\mu_k = 0.5$, the accelera B) 1.2 m/s ²	e	ace with angle30°. If the D) 1.39 m/s ²
Q15- An object weig A) 20.78 N	thing 24 N is placed on B) 17.02N	a 30 ⁰ slope as shown C) 23.02 N	in figure (3). The normal force is: D) 24.78 N
Q16- Referring to Q A) 8.38 N	15, the force preventing B) 12 N	g the object from mov C) 10 N	ing is: D) Zero
Q17- Weight of 50 I A) 45.77 N	N is supported by a rod B) 138.59 N	l and a cable as shown C) 77.78 N	in figure (4). The tension (T ₁) is: D) 87.77 N
Q18- The coefficient A) angle	t of static friction μ_s of B) mass	1 I	ls on: cceleration
	fired with a velocity of tial velocity was 60 m/ B) 54.5 ⁰	-	θ to the horizontal. If the vertical $)^0$
Q20- A bullet is fired in 3.0 s is:	d horizontally from the	e roof of a building w	ith a velocity of 850 m/s. Its height
A) 29.4 m	B) - 44.1 m	C) -100 m	D) 19.60 m
Q21- Referring to Q2 A) 3.13 s	21, If the building is 10 B) 81.32 s	00 m height, the time f C) 4.52 s	For the bullet to reach the ground is: D) 20.41 s
Q22- A ball kicked w maximum range is:	with a velocity of 15 m	/s and with an angle o	f θ from the horizontal. The
A) 25.85 m	B) 40.82m	C) 50.20 m	D) 22.96 m
	ng 800 N is standing in on the floor of the eleve	-	ith a constant velocity. The force
A) less than 80 N	B) 800 N	C)between 80 and 8	00 N D) more than 800 N
-	pushed across a friction. The acceleration of the		r with a force of 30 N, directed 20°
A) 1.13 m/s^2	B)1 .5 m/s ²	C) 2.82 m/s ²	D) 0.75 m/s ²
Q25- Referring to Q2	24, the normal force ac		the box is:
A)108.26 N	B) 25 N	C) 255.26 N	D) 125 N
Q26- A car moves in without sliding is:	a circular road of rad	ius 120 m. If $\mu_s = 0.5$,	then the maximum speed of the car
A)24.25 m/s	B) 22.1m/s	C)19.79 m/s	D) 17.15 m/s
-	1050 kg is traveling at prevent the car from sl		oad with radius of 60 m. The force
A) 6800 N	B) 5124.1 N	C) 7000 N	D) 6600 N

Q28- A block of mass 80 kg is moving along a rough horizontal surface with a coefficient of kinetic friction equal 0.2. If its initial speed is14 m/s, the block will stop after covering a distance: A) 57.39 m B) 50.0 m C) 106.3 m D) 33.33 m

Q29- Two masses $m_1=2 \text{ kg}$, $m_2 = 4 \text{ kg}$ situated on a frictionless horizontal surface are connected by a string. A force F = 12 N is exerted on m_2 as shown in fig. (5). The acceleration of the system is A) 4 m/s² B) 3 m/s² C) 2 m/s² D) 1 m/s²

Q 30- A 25 kg block moves with an initial velocity of 25 m/s on a frictionless surface. The blockcame to rest by the effect of an external force F=-235i N. The distance the block moved is:A) 76.1 mB) 266.66 mC) 33.24 mD) 14.6 m

Referring	العودة الي	Tension	الشد	Ceiling	سقف
Skier	متزلج على الثلج	Launched	اطلقت	Hang	معلق
Vertically	عامودي	Elevator	مصعد	Prevent	يمنع
Circumference	محيط الدائرة	Circular	دائر ي	Tangent	مماس
Crate	صندوق	Rough	خشن	Cliff	جرف بحري
Radius	نصف قطر	Coefficient	معامل	Friction	الاحتكاك
Sliding	ينزلق	Static	السكوني	causing	المسبب للحركة
Radial	دائري	Kinetic	الحركي	equilibrium	متزن
Support	یدعم	Rod	قضيب	Situated	موضوع على

Α

و نصف 1431/1/14هـ	ي الثاني/ زمن الاختبار <mark>ساعة</mark>	الدوري	عبد العزيز / كلية العلوم/ قسم الفيزياء	(A) جامعة الملك .
1- In the projectile motion (a)Zero	on, the y-component of the (b) constant	velocity at the maximu (c) the maximum va	-	
2- In the projectile motion	on, the x-component of the	velocity is:		
(a) $v_0 \sin \theta$		(c) $v_0 \cos \theta$	(d) $- v_0 \tan \theta$	
$(a)90^0$	ion, the angle for the maximum (b) 75 ⁰	(c) 180°	(d) 45°	
	on, the maximum range is:			
(a) $\frac{v_0^2}{g}(\cos 2\theta)$	(b) $\frac{v_0^2}{g}$ (c) $\frac{v}{s}$	<u>o</u> (d	$\frac{v_0^2}{g}(\cos\theta)^2$	
5-A body move with a v	velocity $\vec{v} = 2\hat{i} - 3\hat{j} m/$'s and acceleration \vec{a} :	$= 2\hat{i} + \hat{j} m / s^2$. The velocity after 2	es (in SI unit) is:
(a) $\vec{v} = 6\hat{i} - \hat{j}$	(b) $\vec{v} = 6\hat{i} + \hat{j}$	(c) $\vec{v} = -6\hat{i} - \hat{j}$	(d) $\vec{v} = +6\hat{i} + \hat{j}$	
6-A ball is thrown with (a)30 m/s	a velocity of 15 m/s at an a (b) 7.5 m/s	ngle of 30 ⁰ . The y-com (c)15 m/s	ponent of the velocity is : (d) 13m/s	
7- In question (6), the x- (a)30 m/s	-component of the velocity (b) 7.5 m/s	is: (c)15 m/s	(d) 13m/s	
8- In question (6), the m (a)2870m	aximum height is : (b)287m	(c)2.87 m	(d) 28.7 m	
9- In question (6), the ra (a) 19.88 m	nge is: (b)198.8 m	(c) 1988 m	(d) 1.988 m	
10- In question (6), the t (a)0.015 s	time of flight is: (b)0.15 s	(c) 15 s	(d) 1.5 s	
11- A boy hold a rope o 3 m/s. The acceleration (a) 0.03 m/s^2		d and the other end a sto (c)3.0 m/s ²	ne, he rotate the stone in a horizontal c (d) 300 m/s ²	circle with speed of
	ground level, if his mass is		(0) 500 m/s	
(a) 7.84 N	(b)784 N	(c) 78.4 N	(d)7840 N	$\Theta = 30^{\circ}$
13- A body of mass m, i The value of mass is:	s hung by the ropes, at eq	uilibrium, as shown in t	he figure. $T_1=16.4$	T ₂ =19 N
(a) 950 kg	(b) 0.97 kg	(c) 9.5 kg	(d) 95 kg	m = ?
14- The force needed to (a) 98 N	keep the mass (m=20 kg) (b)980 N	at rest , as shown in the (c)9.8 N	figure, the force is: (d)0.98 N	
15 In an				$\theta = 30^{\circ}$
15- In question (14), the (a) 1.69 N	e normal force on the body (b) 10.0 N	is: (c) 16.97 N	(d) 169.7 N	
16- From the figure m_1 = bodies by 2 m/s ² , the for	= 20kg and m ₂ $= 10$ kg. The	force acting to accelerat	e the two	
(a) 60 N	(b) 6.0 N	(c)600 N (d)0.06 N	m ₁ m ₂
17- A racing car of mass (a) 225 N	s 600 kg moves is decelera (b)0.225 N		e brakes, the frictional force is:) 2.25 N	

18- In the figure shown, if m_1 = of 2 m/s ² and the tension in the (a)2.5 kg (b)1	e rope was 10 N. Th 28 kg	e value of m ₂ i (c)8.0 kg		I		
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	(c) 4.9 N	(d) 4	10 N		
(a) 0.49 N (b) 2	+90 IN	(C) 4.9 N	(u) -	+9 IN		
20- A block of mass 10 kg, was pulled by a force 30 N, the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is: (a)25.98 N F (b)259.8 N m (c) 2.598 N(d) 0.2598N						
21- A space satellite moves in of the satellite is: (the earth rad		ind the cartin, a	at attitude of 550 km	i and with speed of 8.	2 KII/S. THE acceleration	
	3 m/s^2	(c)9.74 m/s	² (d)5	$.5 \text{ m/s}^2$		
(4) 0.277 1145 (0	<i>)</i> 5 m/s	(0)).71113	(u)5	.9 11/5		
22- In the figure shown two bo If $m_1=3$ kg and $m_2=1.5$ kg. the (a) 2.7 m/s ² (b)				.27 m/s ²		
23- Two boxes m ₁ =10 kg and r (a)25 N (b	n ₂ =15 kg, the gravit)245 N	ational force of (c)2450 N	n m ₂ is (d)5	Ν		
24- In question 23, the gravitati (a)0.98 N (b)	ional force on m ₁ is: 9.8 N	: (c)98 0 N	(d)9	8 N	m2	
25- A man of mass 80 kg stand	d on elevator, if the	elevator is goi	ing upward with acc	eleration of 2 m/s ² , th	e apparent weight of the	
man is:		-				
(a)944 N (b)8	0 N	(c)44 N	(d)9.8 N		
26- In question (25), if the elev (a) 80 N (b)7	vator is going with c .84 N	constant velocit (c)784 N		of the man is:)78.4 N		
27- A box stands on rough inc (a) 1.00 (b) :		vhen just about (c) Zero	to move, the static c (c) 0.5		s:	
28- A box stands on rough incl (a) mg sin θ (b) r	ine plane of θ , the b ng tan θ	ox is moving v (c) mg cos 6		ity, the frictional force) mg	e is:	
29- A box of mass 5 kg is slidi	ng down with a cor	stant velocity	on a rough incline s	surface at an angle 20°	with the horizontal The	
kinetic friction coefficient is:			a reagn menne s	and at an angle 20		
(a) 0.1 (b) 2	6	(c)0.36	(d) 1.00		
30- A car was going in a circul(a) 0.816(b) 0		s of 50m with c (c) 1.00	•	25 m/s, the static fricti (d) 1.27	on coefficient is:	
	¥1 - ¥1	.	4 - 4		· · ·	
Referring	العودة الي	Initial	ابتدائي ا	Hitting	اصطدم	
Thrown	قذف		إرتفاع عن سطح الأرض	Magnitude	القيمة العددية	
Vertically	عامودي	Elevator	مصعد	Prevent	يمنع	
Hangs	معلق	Circular	دائري	Apparent weigh	الوزن الظاهري nt	
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية	
Radius	نصف قطر	Coefficient	معامل t	Frictional	الاحتكاك	
Sliding	ينزلق	Static	السكوني	Floor	الارض	
Upward	إلى أعلى	Kinetic	الحركي	Stand	بقف	
opinata	، ی ی		ر ي	Stund	*	

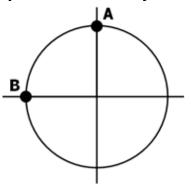
ةو نصف 1431/1/14هـ	ي الثاني/ زمن الاختبار ساعا	اء الدور	ملك عبد العزيز / كلية العلوم/ قسم الفيزي	A)جامعة ال
1- In the projectile motio (a)Zero	n, the y-component of the v (b) constant	relocity at the maximum he (c) the maximum value	eight is: (d) Negative	
2- In the projectile motio (a) $v_0 \sin \theta$	n, the x-component of the v (b) $-v_0 \sin \theta$	(c) $v_0 \cos \theta$	(d) $-v_0 \tan \theta$	
$(a)90^{0}$	(b) 75°	um range is: (c) 180 ⁰	(d) 45 ⁰	
	n, the maximum range is: (b) $\frac{v_0^2}{g}$ (c) $\frac{v_0}{g}$	(d) $\frac{v_0^2}{g}$	$(\cos\theta)^2$	
			$\hat{\vec{x}} + \hat{j} m \neq s^2$. The velocity after 2s ((d) $\vec{v} = +6\hat{i} + \hat{j}$	(in SI unit) is:
6-A ball is thrown with a (a)30 m/s	velocity of 15 m/s at an and (b) 7.5 m/s	gle of 30 ⁰ . The y-compone (c)15 m/s	ent of the velocity is : (d) 13m/s	
7- In question (6), the x-c (a)30 m/s	component of the velocity is (b) 7.5 m/s	s: (c)15 m/s	(d) 13m/s	
8- In question (6), the ma (a)2870m	aximum height is : (b)287m	(c)2.87 m	(d) 28.7 m	
9- In question (6), the rar (a) 19.88 m	nge is: (b)198.8 m	(c) 1988 m	(d) 1.988 m	
10- In question (6), the ti (a)0.015 s	me of flight is: (b)0.15 s	(c) 15 s	(d) 1.5 s	
11- A boy hold a rope of 3 m/s. The acceleration o (a) 0.03 m/s^2		and the other end a stone, l (c)3.0 m/s ²	he rotate the stone in a horizontal circ (d) 300 m/s ²	cle with speed of
12- A man stand on the g (a) 7.84 N	round level, if his mass is 8 (b)784 N	80 kg, his weight is: (c) 78.4 N	(d)7840 N @	= 30 ⁰
13- A body of mass m, is The value of mass is:	s hung by the ropes, at equi	librium, as shown in the fi	gure.	T ₂ =19 N
(a) 950 kg	(b) 0.97 kg	(c) 9.5 kg	(d) 95 kg	m = ?
14- The force needed to I (a) 98 N	keep the mass (m=20 kg) at (b)980 N	rest, as shown in the figu (c)9.8 N	(d)0.98 N	30 ⁰
15- In question (14), the (a) 1.69 N	normal force on the body is (b) 10.0 N	: (c) 16.97 N	(d) 169.7 N	
16- From the figure $m_1=2$ bodies by 2 m/s ² , the force (a) 60 N	20kg and $m_2 = 10$ kg. The fo ce is: (b) 6.0 N	rce acting to accelerate the (c)600 N (d)0.0		1 m ₂
17- A racing car of mass (a) 225 N	600 kg moves is decelerate (b)0.225 N	$\begin{array}{c} \text{d by 4.5 m/s}^2 \text{ using the bra} \\ \hline \text{(c)2700 N} \\ \hline \text{(d) 2.2} \end{array}$		

					
18- In the figure shown, i of 2 m/s ² and the tension (a)2.5 kg	in the rope was 10 N. Th (b)1.28 kg	e value of m ₂ is: (c)8.0 kg	(d)50 kg	[m ₁ T T m ₂
19- In question (18), the $(a) 0.40$ N) NI	
(a) 0.49 N	(b) 490 N	(c) 4.9 N	(d) 49	V N	
20- A block of mass 10 k a constant speed (as show (a) 25.98 N			ction force is:	2598N	F θ= <u>30</u> ⁰
21- A space satellite mov		und the earth, at a	altitude of 530 km	and with speed of 8.2	km/s. The acceleration
of the satellite is: (the early $(x) = 0.074 \text{ m/s}^2$		$(-)0.74 = 1-^{2}$	(1) 5 5	· · · · / -2	
(a) 0.974 m/s^2	(b)3 m/s ²	(c)9.74 m/s ²	(d)5.5	o m/s²	•
22- In the figure shown tw If $m_1=3$ kg and $m_2=1.5$ k (a) 2.7 m/s ²				27 m/s ²	
23- In the figure, two box (a)25 N	es m ₁ =10 kg and m ₂ =15 (b)245 N	kg, the gravitation (c)2450 N	nal force on m ₂ is (d)5 N		n ₁
24- In question 23, the gr (a)0.98 N	(b)9.8 N	(c)98 0 N	(d)98	N	m ₂
25- A man of mass 80 kg	stand on elevator, if the	elevator is going	g upward with acce	leration of 2 m/s ² , the	apparent weight of the
man is: (a)944 N	(b)80 N	(c)44 N	(d)9	9.8 N	
26- In question (25), if th (a) 80 N	(b)7.84 N	(c)784 N	(d)7	/8.4 N	
27- A box stands on roug (a) 1.00	(b) 5.8 (b) 5.8	(c) Zero) 0.58	:
28- A box stands on roug	h incline plane of θ , the b	ox is moving wit	h a constant velocit	v. the frictional force	is:
(a) mg sin θ	(b) mg tan θ	(c) mg cos θ		mg	
29- A box of mass 5 kg i		nstant velocity on	a rough incline su	rface at an angle 20°	with the horizontal. The
kinetic friction coefficien		(a)0.26	-	-	
kinetic friction coefficien (a) 0.1	t is: (b) 2.6	(c)0.36	(d)	1.00	
kinetic friction coefficien	(b) 2.6	. ,	nstant velocity of 2.	1.00	on coefficient is:
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816	(b) 2.6 circular road with a radiu (b) 1.27	s of 50m with cor (c) 1.00	nstant velocity of 2.	1.00 5 m/s, the static frictio (d) 1.27	
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى	s of 50m with con (c) 1.00	nstant velocity of 2. ابتدائي	1.00 5 m/s, the static frictio (d) 1.27 Hitting	اصطدم
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف	s of 50m with cor (c) 1.00 Initial altitude	nstant velocity of 2. ابتدائي إرتفاع عن سطح الارو	1.00 5 m/s, the static frictio (d) 1.27 Hitting Magnitude	اصطدم القيمة العددية
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown Vertically	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف عامودي	s of 50m with con (c) 1.00 Initial altitude نف Elevator	nstant velocity of 2. ابتدائي ارتفاع عن سطح الارم مصعد	1.00 5 m/s, the static frictio (d) 1.27 Hitting Magnitude Prevent	اصطدم القيمة العددية يمنع
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown Vertically Hangs	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف عامودي معلق	s of 50m with cor (c) 1.00 Initial altitude Elevator Circular	nstant velocity of 2. ابتدائي ارتفاع عن سطح الاره مصعد دائري	1.00 5 m/s, the static frictio (d) 1.27 Hitting Magnitude Prevent Apparent weigh	اصطدم القيمة العددية يمنع الوزن الظاهري
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown Vertically Hangs Horizontal	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف عامودي معلق	s of 50m with cor (c) 1.00 initial altitude Elevator Circular Rough	nstant velocity of 2 ابتدائي ارتفاع عن سطح الارم مصعد دائري خشن	1.00 5 m/s, the static friction (d) 1.27 <u>Hitting</u> <u>Magnitude</u> <u>Prevent</u> <u>Apparent weight</u> Gravitational	اصطدم القيمة العددية يمنع الوزن الظاهري الجاذبية الارضية
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown Vertically Hangs Horizontal Radius	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف عامودي معلق أفقي نصف قطر	s of 50m with cor (c) 1.00 initial altitude Elevator Circular Rough Coefficient	nstant velocity of 2. ابتدائي ارتفاع عن سطح الاره مصعد دائري خشن معامل	1.00 5 m/s, the static friction (d) 1.27 Hitting Magnitude Prevent Apparent weigh Gravitational Frictional	اصطدم القيمة العددية يمنع الوزن الظاهري الجاذبية الارضية الاحتكاك
kinetic friction coefficien (a) 0.1 30- A car was going in a (a) 0.816 Referring Thrown Vertically Hangs Horizontal	(b) 2.6 circular road with a radiu (b) 1.27 العودة الى قذف عامودي معلق	s of 50m with cor (c) 1.00 initial altitude Elevator Circular Rough	nstant velocity of 2 ابتدائي ارتفاع عن سطح الارم مصعد دائري خشن	1.00 5 m/s, the static friction (d) 1.27 <u>Hitting</u> <u>Magnitude</u> <u>Prevent</u> <u>Apparent weight</u> Gravitational	اصطدم القيمة العددية يمنع الوزن الظاهري الجاذبية الارضية

King Abdulaziz University Faculty of Sciences Physics Department

Second Exam - Phys 110

Date: 2 / 6 / 1433H


Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

- 1. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
 - A) $v_y = v_0 \sin\theta + gt$ B) $v_y = v_0 \sin\theta gt$ C) $v_y = v_0 (\cos\theta)t$ D) $v_y = v_0 (\sin\theta)t$
- 2. Two forces, have magnitudes 5 N and 10 N, are applied to an object moving along an x-axis. In **which figure** of the following the magnitude of the acceleration of the object is the least ?

3. In the figure, a car moves at constant speed around the circle path in a horizontal *xy* plane, with the center at the origin. When it is at point A its coordinates are x=0, y=3m and its velocity is (6 m/s) \hat{i} . When it is **at point B its velocity and acceleration** are:

A) $\vec{v} = +4\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively B) $\vec{v} = +6\hat{i}$ and $\vec{a} = -12\hat{i}$, respectively C) $\vec{v} = +6\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively D) $\vec{v} = -6\hat{j}$ and $\vec{a} = +12\hat{j}$, respectively **4.** A projectile is fired from the ground level with an initial velocity 283 m/s with an angle of 60° with the horizontal. **The maximum height** the projectile reached

A) 2245.9 m B) 1598.6 m C) 3064.6 m D) 8957.4 m

5. A 12 kg object is moving with a net force of 7 N north on it. The object having an **acceleration** of:

A) 1.71 m/s² south B) 0.58 m/s² south C) 0.58 m/s² north D) 1.71 m/s² north

- 6. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
 - A) accelerating downward C) stationary
 - B) moving up with constant velocity. D) accelerating upward
- 7. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4. The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:

A) 45.8 N B) 25.4 N C) 10.3 N D) 19.6 N

8. Two objects having masses of 1Kg and 2Kg moving around a circle of radius r = 1 m and with v = 1 m/s. Their **accelerations** are related by:

A)
$$\frac{a_1}{a_2} = 2$$
 B) $a_1 = a_2$ **C)** $a_1 = a_2 = 0$ **D)** $\frac{a_1}{a_2} = \frac{1}{2}$

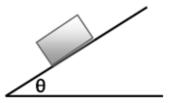
9. A 0.15 kg particle moves along an x-axis with acceleration a(t) = 8-18t with a in m/s² and t in seconds. The **net force** in Newtons acting on the particle at t = 3.40s is

A) $-5.21\hat{i}$ B) $-7.98\hat{i}$ C) $8.52\hat{i}$ D) $12.4\hat{i}$

10. The coefficient of static friction (μ_s) :

- A) is in the direction of motion C) is dimensionless
- B) has a magnitude of exactly 1 D) is in the direction of the normal force
- 11. Two forces $\vec{F_1} = 7\hat{i} 5\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body that can move over frictionless floor, the **magnitude of the net force** is :
 - A) 10 N B) 7.14 N C) 4.12 N D) 13.2 N

12. The force that always perpendicular to the surface is called


A) Friction B) Normal force C) Tension D) Gravitational force

13. The horizontal range is the horizontal distance the projectile has traveled when it returns to

A) its initial height B) the origin C) the start point D) its maximum height

Use the following to answer questions 14-15:

In the figure, a block of mass m = 25 kg is sliding down on a frictionless plane inclined at θ = 60°

14. The normal force (\vec{F}_N) on the block is:

A) mg cos θ B) mg C) mg sin θ D) ma

15. The magnitude of the force that causes the block sliding down is

A) 150 N B) 90.44 N C) 311 N D) 212.17 N

Use the following to answer questions 16-17:

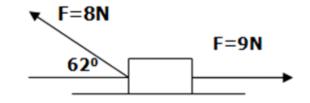
The coordinates of a particle's position vector as a function of time are given by $x=5t^2+16$, and $y=-t^3+5$, with x and y in meters and t in seconds:

16. The velocity as a function of time is:

A) $t \hat{i} + 6t \hat{j}$ B) $10t \hat{i} - 3t^2 \hat{j}$ C) $10 \hat{i} - 6t^2 \hat{j}$ D) $5t \hat{i} - 6\hat{j}$

17. The position vector \vec{r} at t=2 s is

A) $15\hat{i} - 5\hat{j}$ **B)** $81\hat{i} + 3\hat{j}$ **C)** $26\hat{i} - 7\hat{j}$ **D)** $36\hat{i} - 3\hat{j}$


18. An objects move at a constant speed of 5 m/s on a circular path of radius 10 m. The **period** in seconds is:

A) π B) $3\pi^{3}$ C) 4π D) 20

19. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of 1.7 m/s^2 , the **normal force** on the man from the elevator is:

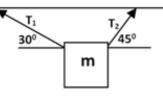
A) 607.5 N B) 323.9 N C) 523.4 N D) 700.5 N

- **20.** The position vector for an airplane initially is $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and then 10s later is $\vec{r} = -2\hat{i} + 8\hat{j} 2\hat{k}$, all in meters, its **average velocity** (\vec{v}_{avg}) in unit vector notation is
 - A) $-0.7 \hat{i} + 1.4 \hat{j} 0.4 \hat{k}$ C) $-0.3 \hat{i} 1.4 \hat{j} + 0.6 \hat{k}$ B) $-5 \hat{i} + 2.4 \hat{j} + 0.4 \hat{k}$ D) $4.7 \hat{i} 1.4 \hat{j} + 0.9 \hat{k}$
- **21.** From the figure, the **acceleration of the block** of mass 3 kg moving along an x-axis on a frictionless table is:

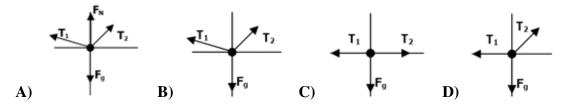
- A) 1.75 m/s² B) 3 m/s² C) 2.45 m/s² D) 2.3 m/s²
- 22. A ball is shot at an angle of 25^o above the horizontal with an initial speed of v₀. If the range it reaches is 140 m, what its initial speed?
 - A) 40 m/s B) 80 m/s C) 42.3 m/s D) 20 m/s
- 23. A car goes from $\vec{v}_i = 2\hat{i} + 4\hat{j}$ to $\vec{v}_i = 3\hat{i} + 9\hat{j}$ in 5 s. The average acceleration of the car

A) $\vec{a}_{avg} = \hat{i} - \hat{j}$ **B**) $\vec{a}_{avg} = 3\hat{i}$ **C**) $\vec{a}_{avg} = \hat{i} - 6\hat{j}$ **D**) $\vec{a}_{avg} = 0.2\hat{i} + \hat{j}$

- 24. A 980 kg car is traveling at constant speed 28 m/s around circular track of radius R = 230 m. The **magnitude of the frictional force** on the car is
 - A) 6241.6 N B) 3340.5 N C) 4141.5 N D) 1245.7 N
- 25. A bomb (
 ^{ai,i,i,i}) is fired from a cannon and has initial horizontal and vertical components of velocity equal to 23 m/s and 54 m/s, respectively .The **angle** the bomb fired with the horizontal is

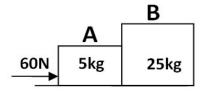

A) 85[°] B) 49[°] C) 33[°] D) 67[°]

26. A particle is projected with an initial velocity $\vec{v_0} = 5.0\hat{i} + 4.0\hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:

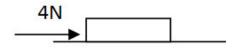

A) 5 m/s B) 7 m/s C) 12 m/s D) 2 m/s

Use the following to answer questions 27-29:

A block of mass m = 5 kg is hanging by two ropes as shown in the figure:



27. The free body diagram representing the forces on m is:



- 28. The magnitude of weight (W) in Newtons is equal to:
 - A) 49 N B) 9.8 N C) 49 N D) 9.8 N
- **29.** From the figure, **F**_{net,x} on the block is:
 - A) $T_1 \cos 45 T_2 \cos 30 = m a_x$ C) $-T_1 \cos 30 + T_2 \cos 45 = 0$
 - $T_1 \cos 30 T_2 \cos 45 = m a_x$ **B**)

- **D**) $T_1 \cos 45 T_2 \cos 30 = 0$
- **30.** In the figure, two blocks slide over a frictionless surface along an x axis with an acceleration equals 2 m/s². The force F on block A from block B is:

- A) 40 N B) 50 N C) 60 N D) 57 N
- 31. A horizontal force of 4N pushes a block of weight 10N to make it move with constant velocity, the value of the **coefficient of kinetic friction** (μ_{μ}) is :

A) 0.6 B) 0.4 C) 0.8 D) 0.3

Use the following to answer questions 32-33:

The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , with an acceleration equal to 3 m/s²

32. The magnitude of force \vec{F} on the four blocks is

A) 20 N B) 60 N C) 30 N D) 40 N

33. The total mass accelerated to the right by Cord 3 is

A) 20 kg B) 13 kg C) 18 kg D) 10 kg

Answer Key

1. B **2.** A **3.** C **4.** C **5.** C 6. D **7.** D **8.** B **9.** B **10.** C 11. C **12.** B **13.** A 14. A 15. D **16.** B 17. D 18. C **19.** A **20.** A **21.** A **22.** C 23. D **24.** B 25. D **26.** A **27.** B **28.** C **29.** C **30.** B **31.** B

32. B33. C

King Abdulaziz University Faculty of Sciences Physics Department

Second Exam - Phys 110

Date: 2 / 6 / 1433H

Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

1. A 980 kg car is traveling at constant speed 28 m/s around circular track of radius R = 230 m. The **magnitude of the frictional force** on the car is

A) 4141.5 N B) 6241.6 N C) 3340.5 N D) 1245.7 N

2. A particle is projected with an initial velocity $\vec{v_0} = 5.0\hat{i} + 4.0\hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:

A) 2 m/s B) 7 m/s C) 5 m/s D) 12 m/s

- 3. The force that always perpendicular to the surface is called
 - A) Normal force B) Gravitational force C) Tension D) Friction
- 4. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4. The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:


A) 25.4 N B) 10.3 N C) 45.8 N D) 19.6 N

5. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{\circ} . If the range it reaches is 140 m, what its **initial speed**?

A) 40 m/s B) 80 m/s C) 42.3 m/s D) 20 m/s

Use the following to answer questions 6-7:

The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , with an acceleration equal to 3 m/s²

6. The total mass accelerated to the right by Cord 3 is

A) 20 kg B) 18 kg C) 10 kg D) 13 kg

- 7. The magnitude of force \vec{F} on the four blocks is
 - A) 60 N B) 40 N C) 30 N D) 20 N
- 8. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to

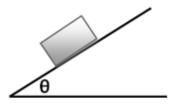
A) $v_y = v_0 \sin\theta + gt$ B) $v_y = v_0 \sin\theta - gt$ C) $v_y = v_0 (\cos\theta)t$ D) $v_y = v_0 (\sin\theta)t$

- 9. The coefficient of static friction (μ_s) :
 - A) is in the direction of the normal force C) is direction
 - **B**) is in the direction of motion
- C) is dimensionless
- D) has a magnitude of exactly 1

Use the following to answer questions 10-11:

The coordinates of a particle's position vector as a function of time are given by $x=5t^2+16$, and $y=-t^3+5$, with x and y in meters and t in seconds:

10. The position vector \vec{r} at t=2 s is

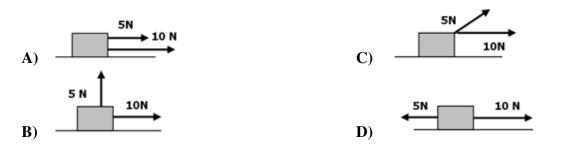

A)
$$81\hat{i} + 3\hat{j}$$
 B) $36\hat{i} - 3\hat{j}$ C) $26\hat{i} - 7\hat{j}$ D) $15\hat{i} - 5\hat{j}$

11. The velocity as a function of time is:

A)
$$t \hat{i} + 6t \hat{j}$$
 B) $10t \hat{i} - 3t^2 \hat{j}$ **C**) $10 \hat{i} - 6t^2 \hat{j}$ **D**) $5t \hat{i} - 6\hat{j}$

Use the following to answer questions 12-13:

In the figure, a block of mass m = 25 kg is sliding down on a frictionless plane inclined at θ = 60°


12. The normal force (\vec{F}_N) on the block is:

A) mg cos θ B) mg C) mg sin θ D) ma

13. The magnitude of the force that causes the block sliding down is

A) 311 N B) 90.44 N C) 212.17 N D) 150 N

14. Two forces, have magnitudes 5 N and 10 N, are applied to an object moving along an x-axis. In **which figure** of the following the magnitude of the acceleration of the object is the least ?

15. A car goes from $\vec{v}_i = 2\hat{i} + 4\hat{j}$ to $\vec{v}_i = 3\hat{i} + 9\hat{j}$ in 5 s. The average acceleration of the car

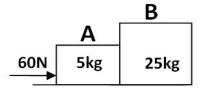
A)
$$\vec{a}_{avg} = \hat{i} - \hat{j}$$
 B) $\vec{a}_{avg} = 3\hat{i}$ **C)** $\vec{a}_{avg} = \hat{i} - 6\hat{j}$ **D)** $\vec{a}_{avg} = 0.2\hat{i} + \hat{j}$

16. A projectile is fired from the ground level with an initial velocity 283 m/s with an angle of 60° with the horizontal. **The maximum height** the projectile reached

A) 8957.4 m B) 2245.9 m C) 3064.6 m D) 1598.6 m

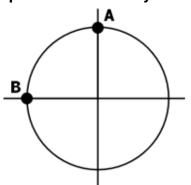
17. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of 1.7 m/s^2 , the **normal force** on the man from the elevator is:

A) 523.4 N B) 323.9 N C) 700.5 N D) 607.5 N


18. A bomb ("i) is fired from a cannon and has initial horizontal and vertical components of velocity equal to 23 m/s and 54 m/s, respectively .The **angle** the bomb fired with the horizontal is

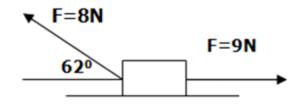
A) 67[°] B) 49[°] C) 85[°] D) 33[°]

19. A 12 kg object is moving with a net force of 7 N north on it. The object having an **acceleration** of:

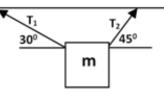

A) 0.58 m/s² north B) 1.71 m/s² south C) 0.58 m/s² south D) 1.71 m/s² north

20. In the figure, two blocks slide over a frictionless surface along an x – axis with an acceleration equals 2 m/s². The force F on block A from block B is:

A) 40 N B) 50 N C) 60 N D) 57 N

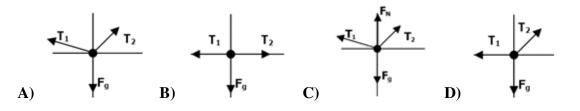

21. In the figure, a car moves at constant speed around the circle path in a horizontal xy plane, with the center at the origin. When it is at point A its coordinates are x = 0, y = 3 m and its velocity is (6 m/s) \hat{i} . When it is at point B its velocity and acceleration are:

- A) $\vec{v} = +6\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively C) $\vec{v} = +4\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively **B**) $\vec{v} = -6\hat{j}$ and $\vec{a} = +12\hat{j}$, respectively
 - **D**) $\vec{v} = +6\hat{i}$ and $\vec{a} = -12\hat{i}$, respectively
- 22. The **horizontal range** is the horizontal distance the projectile has traveled when it returns to
 - A) its initial height B) the origin C) the start point D) its maximum height
- 23. Two forces $\vec{F_1} = 7\hat{i} 5\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :

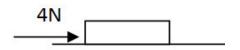

A) 4.12 N B) 10 N C) 7.14 N D) 13.2 N

24. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) 1.75 m/s² B) 2.45 m/s² C) - 2.3 m/s² D) 3 m/s²


A block of mass m = 5 kg is hanging by two ropes as shown in the figure:

25. The magnitude of weight (W) in Newtons is equal to:


A) 49 N B) - 49 N C) 9.8 N D) - 9.8 N

- 26. From the figure, $F_{net,x}$ on the block is:
 - A) $-T_1 \cos 30 + T_2 \cos 45 = 0$ C) $T_1 \cos 45 T_2 \cos 30 = ma_x$
 - **B**) $T_1 \cos 45 T_2 \cos 30 = 0$ **D**) $T_1 \cos 30 T_2 \cos 45 = m a_x$
- 27. The free body diagram representing the forces on m is:

- **28.** A 0.15 kg particle moves along an x-axis with acceleration a(t) = 8-18t with a in m/s² and t in seconds. The **net force** in Newtons acting on the particle at t = 3.40s is
 - A) $8.52\hat{i}$ B) $12.4\hat{i}$ C) $-5.21\hat{i}$ D) $-7.98\hat{i}$
- **29.** The position vector for an airplane initially is $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and then 10s later is $\vec{r} = -2\hat{i} + 8\hat{j} 2\hat{k}$, all in meters, its **average velocity** (\vec{v}_{avg}) in unit vector notation is
 - A) $-5\hat{i} + 2.4\hat{j} + 0.4\hat{k}$ C) $4.7\hat{i} 1.4\hat{j} + 0.9\hat{k}$ B) $-0.7\hat{i} + 1.4\hat{j} 0.4\hat{k}$ D) $-0.3\hat{i} 1.4\hat{j} + 0.6\hat{k}$

30. A horizontal force of 4N pushes a block of weight 10N to make it move with constant velocity, the value of the **coefficient of kinetic friction** (μ_{ν}) is :

- A) 0.6 B) 0.8 C) 0.3 D) 0.4
- **31.** An objects move at a constant speed of 5 m/s on a circular path of radius 10 m. The **period** in seconds is:
 - A) π B) $3\pi^{3}$ C) 4π D) 20
- **32.** Two objects having masses of 1Kg and 2Kg moving around a circle of radius r = 1 m and with v = 1 m/s. Their **accelerations** are related by:
 - **A)** $a_1 = a_2 = 0$ **B)** $a_1 = a_2$ **C)** $\frac{a_1}{a_2} = \frac{1}{2}$ **D)** $\frac{a_1}{a_2} = 2$
- **33.** When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
 - A) accelerating downward

C) accelerating upward

B) stationary

D) moving up with constant velocity.

Answer Key

1. C **2.** C **3.** A **4.** D 5. C **6.** B **7.** A **8.** B 9. C **10.** B **11.** B 12. A **13.** C 14. D 15. D 16. C 17. D 18. A **19.** A **20.** B **21.** A **22.** A **23.** A **24.** A **25.** A **26.** A 27. A 28. D **29.** B **30.** D **31.** C

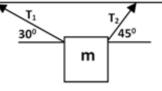
32. B33. C

King Abdulaziz University Faculty of Sciences Physics Department

Second Exam - Phys 110

Date: 2 / 6 / 1433H

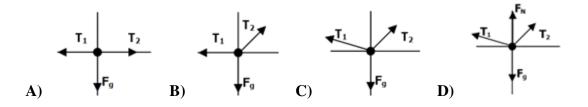
Name:	ID No:	Section:


CHOOSE THE CORRECT ANSWER

- 1. A 12 kg object is moving with a net force of 7 N north on it. The object having an **acceleration** of:
 - A) 1.71 m/s² north B) 0.58 m/s² north C) 1.71 m/s² south D) 0.58 m/s² south
- 2. A car goes from $\vec{v}_i = 2\hat{i} + 4\hat{j}$ to $\vec{v}_j = 3\hat{i} + 9\hat{j}$ in 5 s. The average acceleration of the car

A) $\vec{a}_{avg} = 3\hat{i}$ **B)** $\vec{a}_{avg} = \hat{i} - 6\hat{j}$ **C)** $\vec{a}_{avg} = 0.2\hat{i} + \hat{j}$ **D)** $\vec{a}_{avg} = \hat{i} - \hat{j}$

Use the following to answer questions 3-5:


A block of mass m = 5 kg is hanging by two ropes as shown in the figure:

3. The magnitude of weight (W) in Newtons is equal to:

A) - 9.8 N B) 9.8 N C) 49 N D) - 49 N

4. The free body diagram representing the forces on m is:

- 5. From the figure, $\mathbf{F}_{net,x}$ on the block is:
 - A) $T_1 \cos 45 T_2 \cos 30 = 0$
 - **B**) $T_1 \cos 30 T_2 \cos 45 = ma$ **D**) $T_1 \cos 45 - T_2 \cos 30 = ma$
- 6. A bomb (^a, bomb (^a) is fired from a cannon and has initial horizontal and vertical components of velocity equal to 23 m/s and 54 m/s, respectively .The **angle** the bomb fired with the horizontal is

C) $-T_1 \cos 30 + T_2 \cos 45 = 0$

A) 49° B) 33° C) 67° D) 85°

- 7. The position vector for an airplane initially is $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and then 10s later is $\vec{r} = -2\hat{i} + 8\hat{j} 2\hat{k}$, all in meters, its **average velocity** (\vec{v}_{avg}) in unit vector notation is
 - A) $-0.3 \hat{i} 1.4 \hat{j} + 0.6 \hat{k}$ C) $-5 \hat{i} + 2.4 \hat{j} + 0.4 \hat{k}$ B) $4.7 \hat{i} 1.4 \hat{j} + 0.9 \hat{k}$ D) $-0.7 \hat{i} + 1.4 \hat{j} 0.4 \hat{k}$
- A 980 kg car is traveling at constant speed 28 m/s around circular track of radius R = 230 m. The magnitude of the frictional force on the car is

A) 3340.5 N B) 1245.7 N C) 6241.6 N D) 4141.5 N

9. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of 1.7 m/s², the **normal force** on the man from the elevator is:

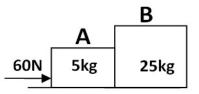
A) 700.5 N B) 523.4 N C) 607.5 N D) 323.9 N

Use the following to answer questions 10-11:

The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , with an acceleration equal to 3 m/s²

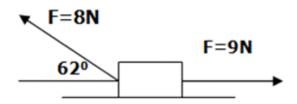
10. The magnitude of force \vec{F} on the four blocks is

A) 30 N B) 60 N C) 20 N D) 40 N


11. The total mass accelerated to the right by Cord 3 is

A) 10 kg B) 20 kg C) 13 kg D) 18 kg

12. An objects move at a constant speed of 5 m/s on a circular path of radius 10 m. The **period** in seconds is:

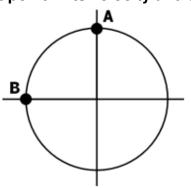

A) 4π B) 20 C) $3\pi^{3}$ D) π

13. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals 2 m/s². The force F on block A from block B is:


A) 57 N B) 40 N C) 50 N D) 60 N

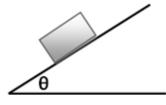
- 14. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{\circ} . If the range it reaches is 140 m, what its **initial speed**?
 - A) 42.3 m/s B) 20 m/s C) 80 m/s D) 40 m/s
- 15. The force that always perpendicular to the surface is called
 - A) Friction B) Normal force C) Gravitational force D) Tension
- 16. A 0.15 kg particle moves along an *x*-axis with acceleration a(t) = 8-18t with *a* in m/s² and *t* in seconds. The **net force** in Newtons acting on the particle at t = 3.40s is
 - **A)** -7.98 \hat{i} **B)** -5.21 \hat{i} **C)** 8.52 \hat{i} **D)** 12.4 \hat{i}
- 17. From the figure, the **acceleration of the block** of mass 3 kg moving along an x-axis on a frictionless table is:

A) 3 m/s² B) - 2.3 m/s² C) 1.75 m/s² D) 2.45 m/s²


18. Two forces, have magnitudes 5 N and 10 N, are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least ?

19. A particle is projected with an initial velocity $\vec{v_0} = 5.0\hat{i} + 4.0\hat{j}$ in meters per second. The **horizontal component of its velocity at the maximum height** is:

A) 5 m/s B) 12 m/s C) 7 m/s D) 2 m/s


20. In the figure, a car moves at constant speed around the circle path in a horizontal *xy* plane, with the center at the origin. When it is at point A its coordinates are x = 0, y = 3m and its velocity is (6 m/s) \hat{i} . When it is **at point B its velocity and acceleration** are:

A) $\vec{v} = +4\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively B) $\vec{v} = +6\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively C) $\vec{v} = +6\hat{i}$ and $\vec{a} = -12\hat{i}$, respectively D) $\vec{v} = -6\hat{j}$ and $\vec{a} = +12\hat{j}$, respectively

Use the following to answer questions 21-22:

In the figure, a block of mass m = 25 kg is sliding down on a frictionless plane inclined at θ = 60°

21. The magnitude of the force that causes the block sliding down is

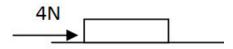
A) 90.44 N B) 212.17 N C) 150 N D) 311 N

22. The normal force (\vec{F}_N) on the block is:

A) mg B) ma C) mg cos θ D) mg sin θ

Use the following to answer questions 23-24:

The coordinates of a particle's position vector as a function of time are given by $x=5t^2+16$, and $y=-t^3+5$, with x and y in meters and t in seconds:


23. The velocity as a function of time is:

A) $5t \hat{i} - 6 \hat{j}$ B) $t \hat{i} + 6t \hat{j}$ C) $10t \hat{i} - 3t^2 \hat{j}$ D) $10 \hat{i} - 6t^2 \hat{j}$

24. The position vector \vec{r} at t=2 s is

A) $15\hat{i} - 5\hat{j}$ B) $81\hat{i} + 3\hat{j}$ C) $36\hat{i} - 3\hat{j}$ D) $26\hat{i} - 7\hat{j}$

25. A horizontal force of 4N pushes a block of weight 10N to make it move with constant velocity, the value of the **coefficient of kinetic friction** (μ_k) is :

A) 0.4 B) 0.3 C) 0.6 D) 0.8

26. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to

A) $v_y = v_o (\cos\theta)t$ B) $v_y = v_o \sin\theta + gt$ C) $v_y = v_o (\sin\theta)t$ D) $v_y = v_o \sin\theta - gt$

A projectile is fired from the ground level with an initial velocity 283 m/s with an angle of 60° with the horizontal. The maximum height the projectile reached

A) 2245.9 m B) 1598.6 m C) 8957.4 m D) 3064.6 m

28. The horizontal range is the horizontal distance the projectile has traveled when it returns to

A) its maximum height B) its initial height C) the origin D) the start point

29. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4. The maximum horizontal force that can be applied to the block before it slips (ينزنق) is:

A) 10.3 N B) 19.6 N C) 25.4 N D) 45.8 N

- **30.** When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
 - A) accelerating upward
 - B) accelerating downward

- C) moving up with constant velocity.
- D) stationary
- **31.** The coefficient of static friction (μ_s) :
 - A) is dimensionless

- C) has a magnitude of exactly 1
- **B**) is in the direction of the normal force
- **D**) is in the direction of motion
- **32.** Two objects having masses of 1Kg and 2Kg moving around a circle of radius r = 1 m and with v = 1 m/s. Their **accelerations** are related by:
 - **A)** $a_1 = a_2$ **B)** $\frac{a_1}{a_2} = 2$ **C)** $a_1 = a_2 = 0$ **D)** $\frac{a_1}{a_2} = \frac{1}{2}$
- **33.** Two forces $\vec{F_1} = 7\hat{i} 5\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body that can move over frictionless floor, the **magnitude of the net force** is :
 - A) 13.2 N B) 7.14 N C) 4.12 N D) 10 N

Answer Key

1. B **2.** C **3.** C **4.** C **5.** C 6. C **7.** D 8. A 9. C **10.** B 11. D 12. A **13.** C 14. A **15.** B 16. A **17.** C **18.** B **19.** A **20.** B **21.** B **22.** C **23.** C **24.** C **25.** A 26. D **27.** D **28.** B **29.** B **30.** A **31.** A

32. A 33. C

King Abdulaziz Un Faculty of Science Physics Dept. Physics 110				A
Test #2 Student Name:		22/1/1434H Student no.		Time:90 min. Section:
Q.1 The displacen	nent of a particle movir	ng from $\vec{r}_1 = \hat{i} + 2\hat{j}$	+ 3 \hat{k} to $\vec{r}_2 = 2\hat{i} - 3\hat{j} + 4\hat{k}$ is	5:
(A) 5î+4ĵ-5k	(B) î + 5ĵ + k̂	(C) 25	(D) î - 5ĵ + ƙ	(E) k
Q.2 A particle mo x=t ³ -5t m and y=3	ves in x-y plane in su t ² +6 m. where t is mea	uch a way that its isured in seconds.	x and y coordinates vary The velocity of the particle	with time according to
(A) 7î - 12ĵ m/s	(B) 12î +7ĵ m/s	(C) 14 m/s	(D) 7î +12ĵ m/s	(E) k
Q.3 If you drive we	est at 20 km/h for one	hour, then drive e	ast at 15 km/h for one hou	r, your net displacement
(A) 5 km east	(B) 35 km west	(C) 15 km we	st (D) 35 km east	(E) 5 km west
Q.4 If a ball is provelocity of the ball (A) 5 m/s	after one second is:	0 m/s at angle of (C) 0.2 m/s	30° with the horizontal. T (D) 10 m/s	
	ion 4, the time taken b (B) 4 s	and a second	and the second	(E) 12 m/s (E) 3 s
Q.6 Refer to quest (A) 100 m	ion 4, the range of the (B) 200 m			(E) 20 m
(A) 5.1 m	ion 4, the maximum he (B) 20 m	(C) 100 m	(D) 10 m	(E) 25 m
Q.8 A body of 80 is:	0 N running in a circ	ular path of R=1	m at a velocity of 8 m/	s. The centripetal force
(A) 64.5 N	(B) 5224.5 N	(C) 4096 N	(D) 408 N	(E) 81.5 N
(A) 8800 N	(B) 12800 N	vith an acceleratio (C) Zero	n of 1.2 m/s ² . The tension i (D) 10400 N	in the cable is: (E) 6880 N
Q.10 The diagram rough horizontal su on the object is:	n shows a 4 kg objeo Irface. The magnitude	ct accelerating at of the frictional fo	10 m/s ² on prce f_k acting f_k	a=10 m/s ²
(A) 20 N (B) 4	40 N (C) 10 N	(D) 50 N	(E) 25 N	m=4 kg
Q.11 You drive 10 revolutions are (A) 30 m/s	your car clockwise ound the track in 2 m (B) 9.8 m/s	around a circ ninutes. Your ave (C) 10 m/s	ular track of radius 3 erage speed is: (D) 4.8 m/s	
(A) Remain at rest	on an object are baland if initially at rest. g in a straight line if ini	ced, the object will		(E) 15.7 m/s

					A
Q.13 Which of the $(A) \text{ kg} \cdot \text{m}^2/\text{s}$	following units is equiv (B) g⋅cm/s	alent to a newto (C) kg.s²/m	n (N)? (D) kç	g.m/s	(E) kg.m/s²
Q.14 At the highest (A) 9.8 m/s ²	t point, the magnitude (B) Zero	of the accelerati (C) 4.9 m/s ²		le is 9.6 m/s²	(E) -9.8 m/s ²
Q.15 An object is p	ulled northward with a	a force of 10 N a	ind southward	with a force (of 15 N. The magnitude
of the net force on t (A) Zero	he object is: (B) 5 N	(C) 10 N	(D) 15		(E) 25 N
 (A) The object accel (B) The object accel (C) The object accel (D) The object accel (D) The object accel (D) The object does Q.17 A 10 kg brick a (A) The same as the 	erates at 1.5 m/s ² (rigl erates at 10 m/s ² (righ erates at 15 m/s ² (righ erates at 3 m/s ² (right)	nt) t) it) opped in a vacut		22 N	
Q.19 A ball is shot	from the ground inte	onal force	(D) Applied for		(E) Normal force bity is observed to be
v = 5.8i + 9.7j in m/ (A) 18.41 m/s	s. The magnitude of th	he ball's initial ve	locity is:		ity is observed to be
	(B) 5.8 m/s	(C) 19.3 m/s	(D) 9.7	m/s	(E) 33.6 m/s
on the Felix is: (A) 300 N downward	(B) 500 N downward	te and experiend	ces an air resis	tance force o N upward	f 500 N. The net force (E) 500 N upward
Q.21 A 5 kg mass is magnitude of F is:	held at rest on a fricti	onless 30º inclin	e by force F	The	1
(A) 5 N (B) 50	(-)	(D) 24.5 N	(E) Zer	4	F
	is applied to move a s (B) 12 m/s ²	(-) 10 11/0	(D) o m/	he accelerations ²	on of the body is: (E) 4 m/s ²
	=2 kg and m ₂ =1 kg the horizontal plane is anal force exerted on n	1 50 The inst			m ₂
(A) Zero (B) 9.8	3 N (C) 19.6 N	(D) 2 N	(E) 4.9 N	30°	

is inted up until ti	of mass M, is resting he toolbox just to sli	de. The angle θ tha	e end of the boa t the board mak	ard see		1
with norizontal to	r this to occur deper	nds on the				\sim
(A) mass, M (D) coefficient of	(B) gravity is n static friction		normal force none of these		θ	
Q.25 A block is i	initially sliding with a	acceleration of -1 m	/s ² on a rough h	orizontal s	urface The coof	ficiont
friction between t (A) 0.3	he block and the sur (B) 0.2	rface is: (C) 0.1	(D) 0.4		(E) 0.15	
Q.26 An object m	noves left to right (right	ght is positive) with s	speed decreasin	ng at a cons	stant rate,	
(C) the net force of	on it is increasing	(B) the net f (D) its accele	orce on it is dec eration is negativ	reasing ve.	(E) none of	
Q.27 A ball was paint	projected upward at after three seconds,	angle θ_0 with the ho	prizontal at an ir	nitial speed	50 m/s. The ball	reache
(A) 5.7°	(B) 36°	(C) 60°	(D) 34	.4°	(E) 11.3°	· · · ·
Q.28 Two forces	act on a particle of	mass 2 kg. F ₁ (80i ·	+ 60 i) N and F	$\frac{1}{2}(40\hat{i}+10)$	0î) N The mag	nitude c
acceleration is: (A) 10 m/s ²	(B) Zero	(C) 50 m/s ²		00 m/s ²		
once on the partic	f mass m=2 kg is m de in SI units is:	oving with velocity,	$v(t) = [(5t^2)\hat{i} - (2t^2)\hat{i}]$	2t)ĵ]m/s	where t is time.	The ne
A) 5î-4ĵ	(B) 14tj	(C) 25	(D) 20	tî - 4ĵ	(E) 16î	
2.30 In the figure	e $m_1=2kg$ and $m_2=1$ ley. The tension in the	kg are connected	by a light string	g that pass	Ses and a second	
) 23.52 N		(C) 39.20 N	(D) 13.07 N	(E) zero	ρ	
					1 kg	kg
			**			
					2	2

A

نماذج الاختبار الدوري الثاني لمقرر فيزياء ١١٠

PHYS 110 CH.5,6 and 7

ing Abdulaziz University aculty of Science hysics Dept. hysics 110

Test#2				Time: 90 min.
Student Name:		Student no.:		Section:
Q.1 A man of mass 6 (A) 58.8 N	kg. His weight is: (B) 6.12 N	(C) 122 N	(D) 9.8 N	(E) 588 N
Q.2 1Newton is equiv (A) 9.8 kg.m/s ²	valent to: (B) 1 kg. m/s²	(C) 1 kg m/s ³	(D) 1 m²/s²	(E) none of these
O 3 The displacement	nt of a particle moving	g from $\vec{r}_1 = 5\hat{i} - 6\hat{j} + 2$	\hat{k} to $\vec{r}_2 = +5\hat{i} + 6\hat{j} + 2$	k̂ is:
(A) -10î	(B) $4\vec{j} + 6\vec{k}$	(C) 12ĵ	(D) 5j	(E) 10î +5 <i>ĵ</i>
The component	s of a car velocity as	a function of time ar	e given by v _x =t ² +2 an	d $v_y=t^2-2$, then its velocity
⊽ at(t = 3s) is : (A) ⊽ = 8î - 10ĵ	(B) v = 9i - 3j ·	(C) $\vec{v} = 8\hat{i} + 10\hat{j}$	(D) ⊽ =11î -7j	(E) ⊽ = 10î - 8ĵ
Q.5 In the projectile (A) 4.9 m/s ²	s motion the acceler (B) 9.8 m/s²	ation in the horizonta (C) 19.6 m/s²	l direction is: (D) 32 m/s ²	(E) Zero
second (i horizontal, (A) 5 m/s	(B) 18.41 m/s	(C) 19.3 m/s	(D) 16.12 m/s	efore it hits the ground? (E) Zero
Q.7 A projectile is fi initial velocity is:	ired from the ground.	. If it reaches the max	kimum range at 45 m t	from the starting point, the
initial velocity is: (A) 21 m/s	ired from the ground. (B) 10 m/s	. If it reaches the max (C) 196 m/s	(D) 24.25 m/s	from the starting point, the (E) 22.14 m/s
initial velocity is: (A) 21 m/s .8 Two forces are magnitude of the ac (A) 4 m/s ²	(B) 10 m/s (B) 10 m/s applied to a 13 kg o celeration of the obje (B) 2 m/s ²	(C) 196 m/s bject, one is 33 N to ect is: (C) 3 m/s ²	(D) 24.25 m/s the north and the othe (D) Zero	from the starting point, the (E) 22.14 m/s er is 56 N to the west. The (E) 5 m/s ²
initial velocity is: (A) 21 m/s .8 Two forces are magnitude of the ac (A) 4 m/s ²	(B) 10 m/s (B) 10 m/s applied to a 13 kg o celeration of the obje (B) 2 m/s ²	(C) 196 m/s bject, one is 33 N to ect is: (C) 3 m/s ²	(D) 24.25 m/s the north and the othe (D) Zero	from the starting point, the (E) 22.14 m/s er is 56 N to the west. The (E) 5 m/s ²
initial velocity is: (A) 21 m/s .8 Two forces are magnitude of the ac (A) 4 m/s ²	(B) 10 m/s (B) 10 m/s applied to a 13 kg o celeration of the obje (B) 2 m/s ²	(C) 196 m/s bject, one is 33 N to ect is: (C) 3 m/s ²	timum range at 45 m f (D) 24.25 m/s the north and the othe (D) Zero peed. If $\overline{F}_1 = -5\hat{i} - 4\hat{j}_N$	from the starting point, the (E) 22.14 m/s er is 56 N to the west. The

(A) 9.8 m/s ²	(B) 4.14 m/s²	(C) Zero	(D) 5.55 m/5	eleration of the block is: (E) 1 m/s ²
(A) in the same direc	acceleration of a body tion (B) differed by	135° (C) perpendicul	lar (D) unuparalier	(E) none of these
Q.14 A cable holds a A) 500 N	a ball of mass 30 kg ir (B) 294 N	n static equilibrium. Ti (C) 220 N	he tension in the cord (D) zero	is: (E) 196 N
Q.15 A 1200 kg box (A) 9.8 N	is moving with a cons (B) 1500 N	stant speed. The net (C) 14700 N	force on the box is: (D) Zero	(E) 153 N
Q.16 A forward hori horizontal floor. The (A) 1	zontal force of 12 N is coefficient of friction (B) 0.1	s used to pull a 120 N is: (C) 2.3	crate at constant velo (D) 0.3	ocity across a (E) 0.05
floor by an applied f	nass m is pulled at co orce F as shown. The Γ sinθ (C) Ttanθ	onstant velocity along e magnitude of the fric (D) T cosθ	g a rough horizontal ctional force is: (E) zero	ΓFig.(1) θ m
(A) 360°	al range for the project (B) 60°	(C) 45°	(D) 90°	(E) 180°
16.3 m, the coeffici (A) 1	ent of friction betweer (B) 0.1	(C) 2.3	(D) 0.3	me to rest in a distance o (E) 0.5
5 s. The acceleration (A) 15 m/s ²	on is: (B)10 m/s ²	(C) 8 m/s ²	(D) 12.34 m/s ²	
Q.21 The x-and	d y-components of the	e velocity at t=0 is:		are given by: x=18t-6 an (E) (-6,10) m/s
A) (-3,-12) m/s	(B) (10,-6) m/s	(C) (18,-6) m/s	(D) (-6,-3) m/s	(E) (-0, 10) m/s
A) (-3,-12) m/s	(B) (10,-6) m/s for the centripetal acc (B) F=ma	(C) (10,-0) 11/3	(D) (-6,-3) m/s (D) $a = \frac{v^2}{R}$	(E) (-0, 10) m/s
A) (-3,-12) m/s Q.22 The formula (A) F = $m \frac{v^2}{R}$ Q.23 A boy kicks	(B) (10,-6) m/s for the centripetal acc (B) F=ma a ball at an angle of 3	(C) (18,-0) his celeration is: (C) F=mg	(D) $a = \frac{v^2}{R}$	
A) (-3,-12) m/s Q.22 The formula (A) F = $m \frac{v^2}{R}$	(B) (10,-6) m/s for the centripetal acc (B) F=ma a ball at an angle of 3	(C) (18,-0) his celeration is: (C) F=mg	(D) $a = \frac{v^2}{R}$	(E) none of these

orizontal force.	which preve	ents the box	from slipping d	lined plane. The down the plane,	Fig.(2)	m=0.7 kg	
nen the magnitu							
A) 2 45 N (B) 9.8 N	(C) 3.65 N	(D) 2.83 N	(E)Zero	F		-
() 2.1011	_,				20°		
2.26 In the figu	re (2), if F=4	N then the va	alue of box acce	eleration is:		30°	
A) 1 m/s ² (E	3) 6 m/s ²	(C) 9.8 m/s ²	(D) 0.50 m/s ²	² (E) 2.03 m/s ²			NO CONTRACTOR
			ormal force on t	the box is: (D) 5.9	DA N	(E) Zero	
A) 7.31 N	(B) 3.1	N	(C) 2 N	(D) 5.			
2.28 The formu				(D) E	=N	(E) f=µ N	
A) F=2f	(B) F=	-ma	(C) w=mg		-11		
2.29 In the fi	gure, the bl	ock is about	to slide when	a force F is	Fig.(3)	T	F
enplied. If the	coetticient o	T STATIC TRICTIO	on μ_s =0.45, the	in the applied	f _s ←	w=49 N	
						Texamour in surgering and the second s	
(A) 13.23 N	(B) 30) N	(C) 26.46 N	(D) 22	2.05 N	(E) Zero	
Q.30 Refer to a	uestion 29, 1	the normal for	rce on the box i	IS:	2 1		
(A) 26.4 N	(B) 84	4.87 N	(C) 49 N	(D) 58	3.8 N	(E) Zero	
					1		
				and the second sec		and a second sec	

					6.90 V		
					6.90 V		
					6.90 V		
					6.90 V		
					6.90 V		
					6.90 V		
					6.90 V		

I Abdulaziz University Ilty of Science sics Dept. sics 110

				Time: 90 min.
est#2 tudent Name:		Student no.:		Section:
1.1 A car of mass 12 A) 122.45 N	200 kg. Its weight is: (B) 11760 N	(C) zero	(D) 9.8 N	(E) 1200 N
	(B) 1 kg. m/s²	(C)-1 kg of mass	(D) 1 kg of force	
) 3 - narticle movin	a from $\vec{r}_1 = 2\hat{i} + 5\hat{j} + 8$	$\hat{\mathbf{k}} \ to \ \overline{r}_2 = 2\hat{i} + 10\hat{j} + 8\hat{k}$	then the displacem	ent is:
(A) 10i - 3j	(B) 4j + 6k	(C) 10i+5 <i>j</i>	(D) 5j	(E) 8
A The y-and y-co	ordinates of a partic	le in motion, as funct	ions of time t, are	given by: x=5t ² -3t+6 m
y=3t-3 m. The magn (A) Zero	itude of the accelerati (B)10 m/s ²	on is: (C) 5 m/s ²	(D) 12 m/s ²	(E) 15 m/s ²
(A) always 9.8 m/s ²	(B) large then 9.8 m/s	he time. The acceleration S^2 (C) can be horizontal	(D) 2010	
O.C. A particle of ma	es 3 ka is movina with	velocity $v(t) = (13t^2)^2$	+25j)m/s where ti	s time. The net force on
the particle in SI uni				
(A) 26Î	(B) 78tî	(C) 9.8	(D) 15j	(E) 25j
Q 7 A projectile is f	ired from the ground a	at 45° above the horizo	ntal. If it reaches the	ground at 60 m from the
ε ting point, the in (A) 34.3 m/s	itial velocity is: (B) 10 m/s	(C) 196 m/s		
	lly at a speed of 9.8 m	ys on a rough horizont	al surface. If it come	to rest in a distance of
49 m. the coefficier	it of friction between th	he block and the surfac	e is:	
(A) 1	(B) 0.1	(C) 2.3	(D) 0.3	(E) 0.5
09 A particle mov	es at constant speed i	n a horizontal circle of	radius 5 m, making a	a complete circle in 4 s.
The acceleration is (A) 15 m/s ²	: (B)10 m/s ²	(C) 8 m/s ²	(D) 12.34 m/s ²	(E) Zero
010 The y-and y	-coordinates of a parti	cle in motion, as function	ons of time t, are give	en by:
x=5t ² -3t+6 y=3t ³ - (A) (-3,-12) m/s	(B) (10,-6) m/s	y-components of the ve (C) (18,-6) m/s	elocity at t=0 is: (D) (-6,-3) m/s	(E) (-6,10) m/s

A CALL AND AND A CALL AND A the second second second second and the standard states and the states of th

		(*) 		
2.11 A car rounds a 2 A) Zero	20 m radius curve at (B) 5 m/s²	10 m/s. The magnitue (C) 2 m/s²	de of its acceleration is (D) 4 m/s ²	s: (E) 6 m/s ²
2	the centripetal force (B) F=ma	is: (C) F=mg	(D) $F = m \frac{v^2}{R}$	(E) none of these
Q.13 As shown in f magnitude of F Whic The magnitude of F (A) 2.83 N (B) 9.	the figure a box on th prevents the box fi is: 8 N (C) 4.9 N F=4 N then the value m/s ² (C) 9.8 m/s ²	(D) 8.3 N (E)	e plane is.) Zero is:	m=0.5 kg 30°
Q.15 In the figure, if (A) 2 N	F=4 N then the norm (B) 2.24 N	nal force on the box i (C) 6.24 N	is: (D) 4.24 N	(E) Zero
Q.16 A boy kicks a reach the horizontal (A) 0.92 s	range is: (B) 0.71 s	(C) 0.15 s	(D) 1.43 s	m/s. The time it takes t (E) 0.38 s
the ball can reach is	s: (B) 4.13 m	(C) 15.33 m	(D) 12.68 m	
the ball can reach is	s: (B) 19.7 m	(C) 15.33 m	(D) 12.68 m	
(A) 9.8 m/s ²	s down on a frictionle (B) 4.9 m/s²	ss inclined plane at a (C) Zero	an angle of 20º. The a (D) 3.35 m/s²	cceleration of the block i (E) 1 m/s ²
(A) F=2f	for the friction force is (B) F=ma	(0) while	(D) F=N	(E) f=µ N
(A) differed by 45°		5 (C) perpendicu		(E) none of these
Q.22 In the figure coefficient of statio	, the block is about to friction $\mu_s=0.45$, the	o slide when a force l n the applied force is	F is applied. If the :	f _s m=6 kg F
(A) 6 N	(B) 30 N	(C) 26.46 N	(D) 13.23 N	(E) Zero
Q.23 Refer to que (A) 49 N	estion 22, the normal (B) 84.87 N	force on the box is: (C) Zero	(D) 58.8 N	(E) 26.4 N
0				and the second state of the se

المحكوم المحكوم

.

				•
) 500 N	(B) 9.8 N	(C) 220 N	The tension in the cord (D) zero	IS: (E) 196 N
A) Zero	car is moving with a co (B) 1500 N	(C) 14700 N		(E) 153 N
A) 900 N	(B) 1800 N	(C) Zero	m/s. The centripetal of (D) 3600 N	(-)
(A) 9800 N (E	3) 12800 N (C		² . The tension in the ca (D) 1000 N	
Q.28 A forward horizontal floor. (r., l	horizontal force of 12 M The coefficient of friction (B) 0.1	N is used to pull a 240 on is: (C) 2.3	N crate at constant velo	(E) 0.05
floor by an appli	of mass m is pulled at c ied force T as shown. T (B) T sinθ (C) T tar	The magnitude of the h	a rough horizontal ictional force is: (E) zero	m D D
			-	
Q.30 A box is	s sliding down an inclin celeration of the crate is (B) 2.4 m/s ²	ne that is 35° above t s: (C) 5.8 m/s²	he horizontal. If the co (D) 8.8 m/s²	efficient of kinetic frictio
Q.30 A box is is 0.40, the acc	eleration of the crate is	5.		
Q.30 A box is is 0.40, the acc	eleration of the crate is	5.	(D) 8.8 m/s ²	(E) 1.3 m/s ²
Q.30 A box is is 0.40, the acc (A) Zero	eleration of the crate is	5.	(D) 8.8 m/s ²	(E) 1.3 m/s² Good Lu

Q.1 A 5 kg box is pushed up a rough surface $\mu_k=0.5$ inclined at 30° to the horizontal by a horizontal force of magnitude of 100 N.

		F = 100 N	3	0°
a) The Normal force is: (a) 42.4 N (b) 92.4 N	(c) 86.6 N	(d) Zero		(e) 100 N
b) The frictional force is: (a) 50 N (b) 100 N	(c) Zero	(d) 109.87 N		(e) 46.2 N
c) The acceleration of the box is: (a) 3.18 m/s ² (b) 9.8 m/s ²	(c) 1.58 m/s ²	(d) Zero		(e) 8 m/s ²
d) If the acceleration is equal to zero, the contract of the acceleration is equal to zero, the contract of th	(c) Zero	(d) 50 N		(e) 86.6 N

Q.2

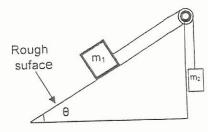
In the figure (1), the mass m of the block is 3 kg rests on a frictionless surface, the force F is 10 N θ =30° and Φ =15°. The magnitude of the acceleration of the block is:

Fig. (1)

(a) 1.3 m/s^2 (b) 0.7 m/s^2 (c) 1.04 m/s^2 (d) 2.9 m/s^2 (e) 4.5 m/s^2 (f) 1.68 m/s^2

Q.3

In the figure (1) the magnitude of the normal force exerted outward on the block by the plane on which on which it rests is:


(a) 9.7 N	(b) 3 N	(c) 22.87 N	(d) 25.5 N	(e) Zero	(f) 2.59 N	2, Lucill
						C

A 4 kg block is sliding on a frictionless plane inclined at θ =20°. The magnitude of the acceleration (a) 3.35 m/s^2 (b) 9.8 m/s^2 (c) 16.76 m/s^2 (d) 4.9 m/s^2 (e) 9.2 m/s^2 (f) Zero

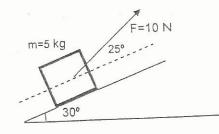
Q.5

In the figure (2) a crate of mass m_1 =12 kg moves along a plane that makes an angle of θ =30° with the horizontal, That crate is connected to a crate of mass $m_2=12$ kg by a taut, massless cord. The hang crate descends with constant velocity. The magnitude of the frictional force exerted on m1 by the plane is:

Fig.(2)

(a) 24 N

(c) 29.7 N (b) 12 N


(d) 117.6 N (e) Zero

(f) 58.8 N

1/3

					2/3
ุuestion, th) 0.12	e coefficient of kineti (c) 0.58	ic friction μ _k is (d) 1.7	: (e) Zero	(f) 0.08	
	lo A with the borizonta	I, with a speed	of 30 m/s. The	time that the	e object needs
mum range i	s: (c) 42.4 s	(d) 0.41 s	(e) 6.1 s	(f) 129.9 s	
n up with a s	peed of 20 m/s makin	ig an angle 45°	with the horizo	ntal. The hei	ght of the stone
e IS:	(c) 20.4 m	(d) 10.21 m	(e) 203.8 m	(f) 40 m	2
nt after three b) 34.4°	(c) 36°	(d) 60°	(e) 5.7°	(f) 30° 	le by a force with
			m ₂ T	m1	F
(b) 4 m/s ²	(c) 5 m/s ²	(d) 6 m/s ²	(e) 7 m/s ²	(f) 2 m/s ²	
		=	Si N and E	=(40i+100	N The
	narticle of mass 2 kg	E = (801 + 60)	J) N and 12	() =)	
	aking an ang mum range i b) 3.1 s n up with a s is: b) 99.8 m ected upward t after three b) 34.4° o blocks are 84 N. If the	b) 0.12 (c) 0.35 aking an angle θ with the horizontal mum range is: b) 3.1 s (c) 42.4 s n up with a speed of 20 m/s making is: b) 99.8 m (c) 20.4 m ected upward at angle θ_0 with the left after three seconds, the angle θ_0 b) 34.4° (c) 36° o blocks are connected and bulled 84 N. If the mass m ₁ = 8 kg and r	(b) 0.12 (c) 0.38 (d) 1.7 (d) 1.7 (e) 0.12 (c) 0.38 (d) 0.41 s (e) 0.31 s (c) 42.4 s (d) 0.41 s (f) 0.41 s (f) 0.41 s (f) $0.99.8$ m (c) 20.4 m (d) 10.21 m (f) 10.21 m (h) 10.2	aking an angle θ with the horizontal, with a speed of 30 m/s. The mum range is: b) 3.1 s (c) 42.4 s (d) 0.41 s (e) 6.1 s n up with a speed of 20 m/s making an angle 45° with the horizon is: b) 99.8 m (c) 20.4 m (d) 10.21 m (e) 203.8 m ected upward at angle θ_0 with the horizontal and an initial speed it after three seconds, the angle θ_0 is: b) 34.4° (c) 36° (d) 60° (e) 5.7° o blocks are connected and bulled to the right on a horizontal fri 84 N. If the mass m ₁ = 8 kg and m ₂ =13 kg, the acceleration of $m_2 - T$	b) 0.12 (c) 0.56 (d) 1.1 (c) 2.4 (c) 2.4 (d) 0.41 s (e) 2.5 (f) 129.9 s aking an angle θ with the horizontal, with a speed of 30 m/s. The time that the mum range is: b) 3.1 s (c) 42.4 s (d) 0.41 s (e) 6.1 s (f) 129.9 s in up with a speed of 20 m/s making an angle 45° with the horizontal. The heiler is: b) 99.8 m (c) 20.4 m (d) 10.21 m (e) 203.8 m (f) 40 m exceed upward at angle θ_0 with the horizontal and an initial speed of 50 m/s. The after three seconds, the angle θ_0 is: b) 34.4° (c) 36° (d) 60° (e) 5.7° (f) 30° o blocks are connected and bulled to the right on a horizontal frictionless table 84 N. If the mass m ₁ = 8 kg and m ₂ = 13 kg , the acceleration of the system $\frac{m_2 - T - m_1}{m_1}$ (b) 4 m/s ² (c) 5 m/s ² (d) 6 m/s ² (e) 7 m/s ² (f) 2 m/s ²

(e) Zero (d) 46.7 N (a) 39.2 N (b) 4.2 N (c) 42.4 N

(f) 10 N

	no of two cords	nown mass M han s. The angle $θ_1 = 2$ e tension in cord 2	ngs by a cord from t 20° and θ ₂ = 40°. T 2 is:	the he	Cord 1	θ ₂ Cord 2 M
)122.7 N	(b) 110.4 N	(c) 85.9 N	(d) 98.1 N	(e) 9.2 N	(f) Zero	:
.15	clides down or	a frictionless incl	ined plane at an ar	ngle of 25°. Th	e magnitude c	of the net force
n it is: a) Zero	(b) 11 N	(c) 44.4 N	(d) 29 N	(e) 62.2 N	(f) 20.7 N	
2.16	clides down of	n an inclined plane	e at an angle of 25	°. The friction	coefficient μ_k is	s 0.2. The
a) 65.4 N	of the net force (b) 16.6 N	on it is: (c) 40.3 N	(d) 11.8 N		(f) 4 N	
2.17	olorates a 5 kg	particle of mass	from rest to a spee	d of 12 m/s in	4 s. The mag	nitude of this
a force acc force is: (a) 10 N	(b) Zero	(c) 20 N	(d) 25 N	(e) 15 N	(f) 30 N	
(a) 1645 N Q.19	of the frictional (b) 1539 N	(c) 1458 N	18 m/s around circ (d) 1377 N eed of 24.7 m/s . Th (d) 31.5 N	N (e) 1296	N (t) 729 N	
Q.20 A boy sho		rtically up with an ial speed. The init	initial speed v _o . Wh ial speed is : (d) 4.8 n	nen the ball wa	as 2 m above t (e) 19.6 m/s	he ground, the (f) 5 m/s
Q.21 A ball is I (a) 0.1 s	kicked with an i (b) 8.7 s	nitial speed of 7.2 (c) 1.5 s	m/s. The time the (d) 0.75	ball takes to r s	each the maxi (e) 11s	mum range is: (f) 1.04 s
Q.22 A stone stone lan (a) 50 m	nded on the roo	building of height of of the building ² (b) 32.45 m (c)	h with initial spee seconds after lau 16 m (d) 8 m	d 32 m/s direc nching. The he	oted 60° above eight is: (e) 100 m	e the horizontal. ⊤ (f) Zero
Q.23 A projec a target (a) 800	on the ground		nitial speed of 72 m tween the target ar) 16 m (d) 45		le 30° above t is: (e) 1600 m	he horizontal and ((f) 72 m
Q.24 In the p (a) 144	previous questi	on the maximum (b) 66.1 m (c	height the projectile ;) 98 m (d) 33	e reaches is: 8 m	(e) Zero	(f) 18 m

3/3

1/2

3				
		ацая. ••••1		
		21 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
		and the second secon		
- In the projectile motio	n, the y-component of the v (b) constant	velocity at the max (c) the maximum	imum height is: n value (d) Ze	ero :
(a) Negative	n, the x-component of the			
(a) $v_0 \sin \theta$	(b) $-\upsilon_0 \sin\theta$	(c) $U_0 \cos \theta$	(d) —	$v_0 \sin \theta$
		Columnation of the second s		
$(a)45^{\circ}$	on, the angle for the maxim (b) 75 ⁰	(C) 100	(d) 14	15 ⁰
4- At the projectile moti	on, the maximum range is:			2
(a) $\frac{v_0^2}{g}(\cos 2\theta)$	(b) $\frac{v_0^2}{g}(\cos\theta)^2$	(c) $\frac{v_0}{g}$	(d) -	<u>s</u>
S. In the figure shown I	$m_1 = 10$ kg and $m_2 = 15$ kg. A	force acting to acc	celerate	
the two bodies by 2 m/s	² is:			
(a) 60 N	(b) 500 N	(c)50 N	(d)0.05 N	m ₁ m ₂
6e force needed to	keep the mass (mass=30 kg	g) at rest a shown in	n the figure is:	
(a) 98 N	(b)147 N	(c)9.8 N	(d) 14.7 N	θ = 30°
7- In question (6), the (a) 2.54 N	normal force on the m ₁ is: (b) 2540 N	(c) 25.4 N	· (d) 2	254.6N
a constant speed (as sh (a) 34.64 N	kg, was pulled by a force 4 own in the figure) on a rou (b) 3.464 N	(c) 346.4 N	(d) 0.3464 N	
Q. A space satellite in	a circular orbit around the	e earth, at altitude	of 530 km and with spee	d of 7.5 km/s. The acceleration of the
satellite is: (the earth $(a) 9.8 \text{ m/s}^2$	radius 6.37×10 ⁶ m) (b)0.815 m/s ²	(c)8.15 m/s ²	(d)81.5 m/s ²	
10- As show in the fig	gure two bodies are hung by	y a rope over a frac	tionaless pulley.	
If $m_1=3$ kg and $m_2=1$.5 kg. the acceleration of th (b) 4.9 m/s ²	(c) 9.8 m/s^2	(d)3.27 m/s ²	
(a) -9.8 m/s ²	(D) 4.9 m/s	(0) 5.0 mile		
11- A boy stand on th (a) 3.92 N	e ground level, if his mass (b)392 N	is 40 kg, his weigh (c) 39.2 N	tt is: (d)3920 N	$\Theta = 35^{\circ}$ T ₂ =20 N
10 A hody of more n	n, is hung by the ropes at e	ouilibrium as show	n in the figure.	12 2011
The value of the mass	s is:			T1=16.38N
(a) 1.17 kg	(b) 11.7 kg	(c) 117 kg	(d) 0.117 kg	5 m = ?
14- In the figure show of 2 m/s ² and the ter (a) 0.15 kg	wn, if m ₁ =6kg and the systension in the rope was 12 N. (b)154 kg	em move with acce The value of m ₂ is (c)1.54 kg	leration : (d)15.4 kg	
	the normal force on the bo 0.588 N (c	ody is:) 5.88 N (d) 58.8 N	m ₂
	with velocity $\overline{v} = \hat{i} - \hat{j}$ m	a / s and acceleration	on $\bar{a} = \hat{i} + \hat{j} m / s^2$. T	The velocity after 2s (in SI unit) is:
	(b) $\overline{v} = -\hat{i} - 3\hat{j}$		$\bar{v} = 6\hat{i} - 3\hat{j}$	
17- A box stands on a) sin θ	rough incline plane of 30 ⁰ b) 0.58	, when just about c) 1	to move, the static coeffic .00	ient of fraction is: d) zero

7.7 m/s	(b) 1.77 m/s	(c)177 m/s	component of the v (d) 0.177r		
In question (18), the x 1.77 m/s	-component of the velo (b) 17.7 m/s	ocity is : (c)177 m/s	(d) 0.177	m/s	· · · · · · · · · · · · · · · · · · ·
In question (18), the r 0.159m	naximum height is : (b) 1.594m	(c)15.94 m	(d) 159.4	m	
In question (18), the 1 6.377 m	range is: (b)637.7 m	(c) 6377 m	(d) 63.77	⁷ m	
- In question (18), the 3.6 s	(b)0.36 s	(c) 36 s	(d) 0.36		
- A boy hold a rope of	f 30 cm long, from on	e end and the other end	a stone, he rotate t	he stone with the hor	rizontal circle with the
eed of 4 m/s, the accel	eration of the stone is.	(c) 5.33 m/s^2		(d) 0.533 m/s ²	
$) 0.053 \text{ m/s}^2$	(b) 53.3 m/s ²	Automation and a second s		In The statio frigti	on coefficient is:
170	(D) /.9	f a radius <u>80</u> m with con (c) 0.79			
5- A man of mass 60	kg stands in elevator,	if the elevator going up	oward with acceler	ation of 2 m/s, the	apparent weight of an
an is: a) 7080 N	(b) 7.08 N	(c)70.8 N		(d) 708 N	
6- A man of mass 60 1	(b) 5.88 N	(c) 58.8 N	in consume vereency	(d) 5880 N	
a) 588 N	(b) 5.88 N	iver stopped the car by 5 m/s^2 . The frictional for	using the brake,		
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N	using the brake, prce is:	(d) 31.50 N	
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N 28- A box of mass m s	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the	using the brake, prce is: box moving with a	(d) 31.50 N constant velocity . T	The frictional force is:
f the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ cg is sliding down with	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the	using the brake, prce is: box moving with a	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20 ⁰	The frictional force is:
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k kinetic friction coeffic	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ cg is sliding down with	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the	using the brake, prce is: box moving with a	(d) 31.50 N constant velocity . T	The frictional force is:
a) 588 N 27- A racing car of ma if the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k kinetic friction coeffic (1) 0.36 30- Two boxes m ₁ =15 (a)25 N	 (b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ cg is sliding down with the sient is: (b) 26.7 	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N	box moving with a rough incline su	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20 ⁰	The frictional force is:
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k kinetic friction coeffic (-) 0.36 30- Two boxes m ₁ =15 (a)25 N 24- In Question 30, t	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ (c) is sliding down with cient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N the gravitational force of	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is:	box moving with a rough incline sum m ₂ is: (d)5 N	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20° (d) 1.00	The frictional force is: with the horizontal. T m_1 m_2
a) 588 N 7- A racing car of man f the car was going wind a) 315 N 28- A box of mass m so a) mg 29- A box of mass 8 k kinetic friction coeffice (a) 25 N 24- In Question 30, to (a) 0.96 N	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ (c) is sliding down with sient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N the gravitational force (b)9.6 N	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is: (c)196 N	using the brake, proce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20° (d) 1.00 Hitting	The frictional force is: with the horizontal. T m ₁ m ₂
a) 588 N 7- A racing car of ma 7 the car was going wi a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k cinetic friction coeffic (a) 0.36 30- Two boxes m1=15 (a) 25 N 24- In Question 30, t (a) 0.96 N Referring	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ (c) is sliding down with sient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N the gravitational force (b)9.6 N	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is: (c)196 N	t using the brake, borce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20° (d) 1.00 Hitting Magnitude	The frictional force is: with the horizontal. T m ₁ m ₂ <u>اصطدم</u> القيمة العددية
a) 588 N 7- A racing car of man f the car was going wind a) 315 N 28- A box of mass m so a) mg 29- A box of mass 8 k kinetic friction coeffice (a) 25 N 24- In Question 30, to (a) 0.96 N	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N sliding down on an incl (b) mg tan θ cg is sliding down with cient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N the gravitational force (b)9.6 N	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is: (c)196 N Ll Initial altitude Elevator	t using the brake, borce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20° (d) 1.00 Hitting Magnitude Prevent	The frictional force is: with the horizontal. T m ₁ m ₂ مطدم القيمة العددية
a) 588 N 7- A racing car of ma f the car was going wi a) 315 N 28- A box of mass m s a) mg 29- A box of mass m s a) mg 29- A box of mass m s a) mg 29- A box of mass 8 k kinetic friction coeffic (a) 0.36 30- Two boxes m ₁ =15 (a) 25 N 24- In Question 30, t (a) 0.96 N Referring Thrown	(b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N Sliding down on an incl (b) mg tan θ (c) is sliding down with sient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N the gravitational force of (b)9.6 N general size (b)9.6 N	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is: (c)196 N U Initial altitude Elevator Circular	t using the brake, borce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N (d)147 N	(d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20 ⁰ (d) 1.00 Hitting Magnitude Prevent Apparent weigh	The frictional force is: with the horizontal. T m ₁ m ₂ <u>اصطدم</u> القيمة العددية nt الوزن الظاهري
a) 588 N 7- A racing car of main f the car was going wind a) 315 N 28- A box of mass m second 29- A box of mass 8 k 29- A box of mass 8 k 29- A box of mass 8 k 29- A box of mass 8 k 20- Two boxes m ₁ =15 (a) 25 N 24- In Question 30, to (a) 0.96 N Referring Thrown Vertically	(b) 5.88 N (b) 5.88 N ss 700 kg move, the dr th a acceleration of 4.5 (b) 3150 N Sliding down on an incl. (b) mg tan θ (c) is sliding down with the cient is: (b) 26.7 5 kg and m ₂ =20 kg, the (b)343 N She gravitational force of (b)9.6 N State State<	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ h a constant velocity on (c) 2.67 e gravitational force on (c) 2450 N on m ₁ is: (c) 196 N Ll Initial altitude Elevator Circular Rough	using the brake, proce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N <u>(</u> يتاع عن سطح الارم مصعد دائر ي دائر ي	 (d) 31.50 N a constant velocity . T (d) mg cos θ a rface at an angle 20° (d) 1.00 (d) 1.00 Hitting Magnitude Prevent Apparent weigh Gravitational 	The frictional force is: with the horizontal. T m ₁ m ₂ <u>القيمة العددية</u> nt الوزن الظاهري الجاذبية الإرضية
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass m s (a) 29- A box of mass 8 k kinetic friction coeffic (a) 20- Two boxes m ₁ =15 (a) 25 N 24- In Question 30, t (a) 0.96 N Referring Thrown Vertically Hangs	(b) 5.88 N (b) 5.88 N ss 700 kg move, the drith a acceleration of 4.5 (b) 3150 N Sliding down on an inclination (b) mg tan θ (cg is sliding down with the series (b) 26.7 5 kg and m ₂ =20 kg, the (b) 343 N She gravitational force (b) 9.6 N State <	iver stopped the car by 5 m/s^2 . The frictional for (c) 3.150 N line plane of θ^0 , and the (c) mg sin θ in a constant velocity on (c) 2.67 e gravitational force on (c)2450 N on m ₁ is: (c)196 N Ul Initial altitude ω Elevator Circular Rough Coefficient	t using the brake, proce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N <u>(</u> d)147 N	 (d) 31.50 N a constant velocity . T (d) mg cos θ rface at an angle 20° (d) 1.00 (d) 1.00 Hitting Magnitude Prevent Apparent weigh Gravitational Frictional 	The frictional force is: with the horizontal. T m ₁ m ₂ <u>مطدم</u> القيمة العددية ما الوزن الظاهري الجاذبية الإرضية الاحتكاك
a) 588 N 27- A racing car of ma f the car was going wi (a) 315 N 28- A box of mass m s a) mg 29- A box of mass 8 k kinetic friction coeffic (a) 25 N 24- In Question 30, t (a) 0.96 N Referring Thrown Vertically Hangs Horizonta	 (b) 5.88 N (c) 5.88 N (c) 5.88 N (c) 5.88 N (c) 3150 N<td>iver stopped the car by 5 m/s^2. The frictional forms is the first of θ^0, and the first of</td><td>using the brake, proce is: box moving with a a rough incline sur m₂ is: (d)5 N (d)147 N (d)147 N <u>(</u>d)147 N <u>(</u>d)147 N <u>(</u>d)147 N <u>(</u>d)147 N</td><td> (d) 31.50 N a constant velocity . T (d) mg cos θ a rface at an angle 20° (d) 1.00 (d) 1.00 Hitting Magnitude Prevent Apparent weigh Gravitational </td><td>The frictional force is: with the horizontal. T m₁ m₂ <u>القيمة العددية</u> nt الوزن الظاهري الجاذبية الإرضية</td>	iver stopped the car by 5 m/s^2 . The frictional forms is the first of θ^0 , and the first of	using the brake, proce is: box moving with a a rough incline sur m ₂ is: (d)5 N (d)147 N (d)147 N <u>(</u> d)147 N <u>(</u> d)147 N <u>(</u> d)147 N <u>(</u> d)147 N	 (d) 31.50 N a constant velocity . T (d) mg cos θ a rface at an angle 20° (d) 1.00 (d) 1.00 Hitting Magnitude Prevent Apparent weigh Gravitational 	The frictional force is: with the horizontal. T m ₁ m ₂ <u>القيمة العددية</u> nt الوزن الظاهري الجاذبية الإرضية

g Abdulaziz University of Science	ersity			1/3
ysics Dept. ysics 110		TEST # 2		
O 1 The velocity of a	a particle moving in the >	k-y plane is $\vec{v}(t) =$	[(12 <i>t</i> - 3t ²) <i>î</i> + 5 <i>ĵ</i>]m/s.	The acceleration is zero
when the time is:	(B) 2 s	(C) zero	(D) 14 s	(E) 5 s
Q.2 A car is moving	in x-y plane, has x-and	y-coordinates that	vary with time $x=2-t^2$	and y=2t+3. Where x (in
(A) 2i m	(B) $2\hat{i} + 3\hat{j}m$	(C) 25 km	(D) 9ĵm	(E) 10 j m
Q.3 Referring to qu (A) 1 m/s	estion (2), the magnitude (B) 3.3 m/s	e of the instantane (C) 1.64 m/s	ous velocity at t=2 s is: (D) 4.5 m/s	(E) 25 m/s
	es so that its position (in	meters) as a func	tion of time (in seconds) is $\vec{r} = 4t^2\hat{i} + 2t\hat{j}$
	tions of time is: (B) 10t $\hat{j} + \hat{k}$ m/s			(E) 4 m/s
	ves so that its position (in		the second se	s) is $\bar{r} = 4t^2\hat{i} + 2t\hat{j}$
Its acceleration as (A) $4\hat{i} + 5\hat{j}$ m/s ²	functions of time is. (B) $\hat{j} + \hat{k} m/s^2$	(C) 8î m/s²	(D) 9 j m/s ²	(E) 10 ĵ m/s ²
	woling with a constant	speed of 16 m/s.	When the truck follow	ws a curve in the road, it
centripetal acceler (A) 3.8 m	(B) 14 m	(C) 56 m	(D) 64 m	(E) 210 m
Q.7 A stone throw	vn from the top of a tall b	ouilding follows a p	ath that is:	
(A) parabolic	(B) two straight line			(E) a straight line
	laver kicke a ball off w	vith an initial spee	ed 6 m/s and angle 4	0° with the horizontal. Th
(A) 1.38 m	(B) 0.76 m	(C) 1.5 m	(D) 1.23 m	(E) none of these
(A) 3 m/s	question (8), the vertical (B) 6 m/s	(0) 00 111 0		
Q.10 The period	d of a particle moving at a	a constant speed o	of 4 m/s on a circular pa	th of radius 12 m is:
(A) π s	(B) 2πs	(C)4π s	(D)6π s	(E)8π s
Q.11 The horizo (A) 120°	ontal range for the projec (B) 45°	tile is maximum w (C) 30°	hen it launch angle is: (D) 90°	(E) 180°

				2/3
Q.12 A car travels ea	ast at constant velocity	. The net force on the	car is:	
(A) East	(B) West	(C) Zero	(D) Down	(E) up
Q.13 A string from th (A) 29.4 N	ne ceiling suspends a i (B) 12 N	mass of 3 kg. The tens (C) zero	sion in the string is: (D) 19.6 N	(E) 10 N
Q.14 A particle movi	ing from $\vec{r}_1 = 2\hat{i} + 5\hat{j} + 2\hat{k}$	to $\overline{r}_2 = 6\hat{i} + 5\hat{j} + 4\hat{k}$	then the displacement	in SI units is:
(A) 10î+3ĵ	(B) $2\vec{j} + 2\vec{k}$	(C) $4\hat{i} + 2\bar{k}$	(D) 5ĵ	(E) 4
Q.15 In which case	will the magnitude of t	he normal force on the	e block be equal to (Mg	$g - F \sin \theta$)?
 (A) case 1only (B) case 2 only (C) both cases 1 and (D) both cases 2 and (E) cases 1, 2, and 3 	13	F Fig. (1) M Case 1	M M Case 2	M M Case 3
Q.16 Referring to qu (Mg cosθ)?	uestion (15), in which c	case will the y-compor	ent of the weight of the	block be equal to
(A) case 1 only	(B) case 2 only	(C) cases 1 and 2	(D) cases 2 and 3	(E) case 3 only
	ng 700 N is in an ele by the elevator's floor		ting upward at 3 m/s ²	. The magnitude of the
(A) 990 N	(B) 290 N	(C) Zero	(D) 914 N	(E) 71 N
	ce called the Newton is (B) 1 kg. m/s ²		(D) 1 kg of force	(E) none of these
Q.19 Two forces ac	t on a particle in which	it moves with constar	nt velocity, if $\vec{F}_1 = -6\hat{i} - 5\hat{j}$	then \overline{F}_2 is:
((A) 4î-5ĵ	(B) 2 î + 2 <i>Ĵ</i>	(C) 5î	(D) 5ĵ	(E) 6î+5ĵ
	and B) are in contact A 40 N constant force ation of A is:		m _A =5 kg, m _B =2 F=40 N	20 kg
		Fig.(3		
(A) 1.1 m/s ²	(B) 6 m/s ²	(C) 1.6 m/s ²	(D) 3 m/s ²	(E) 3.6 m/s ²
	s always in the directio (B) initial velocity		net force (E) opposite to	o the frictional force
Q.22 A 4 kg block is block is: (A) 3.35 m/s ²		ss plane inclined at θ= (C) 16.76 m/s²	25°. The magnitude of (D) 4.1 m/s ²	the acceleration of the (E) 9.2 m/s ²

Q.23 A boy pulls a	wooden box alor	ng a rough horizo	ntal floor		Sector <u>s</u> ector de la compañía	(Abo Earos	
at constant speed.	which of the fol	lowing must be ti		(4) N	F:magnitude o	of the force of tric	tion
(A) $F=f_k$ and $N=F_g$			Fig.	(4)	N· magnitude	of the normal force of gr	e
(B) $F=f_k$ and N >F				En	Fg. Magnitude		
(C) F>fk and N <f< td=""><td></td><td></td><td>f_k ←</td><td></td><td></td><td></td><td></td></f<>			f _k ←				
(D) $F > f_k$ and $N = F_c$							
				🖌 Fg			
(E) none of these							
Q.24 Referring to	question (23).	if the force F m	akes an ang	le of 30° with	the horizonta	al, which of the	e followir
must be true?	, question (20)		- () N		and N=F	(E) none of	these
must be true? (A) $F = f_k$ and $N =$	F_g (B) F=f _k as	nd N >Fg (C)	F>tk and N<		k allu iv-i g	(_)	
	ura (5) a crate	of mass mi="	10 kg moves	along the	Rough surface		
	These serio in			00 111/ 0		m1	0
	and The hand (carre descenus	WILLI COLISIA	10 10100.01.			T
by a massless co e magnitude c	of the frictional f	orce exerted or	i mi ny me p	uno lo.			H
(A) 1.5 N (E	3) 58.8 N (C	C) 29.7 N (E	0) 49 N	(E) zero	Fig.(5))	m ₂
(A) 1.0 10 (-	.,	*					
				5 - 65 -			
Q.26 Referring	to question (25), the Normal fo	orce between	the surface a	and m ₁ is:	(E) 10 N	
(A) 98 N	(B) 12 N	()	C) zero	(D) 1	17.6 N	(E) 10 N	
		the tension is	the cord is			1	с. С
Q.27 Referring	to question (25 B) 49 N	c), the tension in (C) zero	T THE COLUMN.	(D) 6 N	(E)) none of these	9
(A) 58.8 N (D) 49 N	(0)				marine a starting of the	
	(0) if an and 1	ka and m = 12 k	a The accel	eration is:			
Q.28 In the figu	$re(6)$ if $m_1=5$	kg and m2-12 k					
(A) 4 m/s ²	(B) 12 m/s ²	$(0) 0.17 m/s^2$	(D) 2	33 m/s ² (E) Z	7 or o		and the second
		(0) 9.17 11/3	(D) 5.	551115 (L/L	_010		n,
						the	n,
Q.29 A 1100 k		oving upward w				the Fig.(6)	m
Q.29 A 1100 k able is:	g elevator is m	oving upward w	ith accelerat	on 4 m/s². Th		the Fig.(6)	m
Q.29 A 1100 k able is: (A) 1224 N	g elevator is mo (B) 650 N	oving upward w (C) 15180 N	/ith accelerati (D) 1	on 4 m/s ² . Th 100 N (E) (e tension in 6380 N		m ₂
Q.29 A 1100 k able is: (A) 1224 N	g elevator is mo (B) 650 N	oving upward w (C) 15180 N	ith accelerati (D) 1	on 4 m/s ² . Th 100 N (E) (e tension in 6380 N ficient of frict	tion between t	m ₂
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m	g elevator is mo (B) 650 N nobile moves o aximum speed	oving upward w (C) 15180 N on a circular roa with which this	ith accelerati (D) 1 d of radius 4 car can roun	on 4 m/s ² . Th 100 N (E) () m. The coef d this curve w	e tension in 6380 N ficient of frict rithout sliding	tion between t	res and
Q.29 A 1100 k able is: (A) 1224 N	g elevator is mo (B) 650 N	oving upward w (C) 15180 N on a circular roa with which this	ith accelerati (D) 1	on 4 m/s ² . Th 100 N (E) () m. The coef d this curve w	e tension in 6380 N ficient of frict	tion between t	res and
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m	g elevator is mo (B) 650 N nobile moves o aximum speed	oving upward w (C) 15180 N on a circular roa with which this	ith accelerati (D) 1 d of radius 4 car can roun	on 4 m/s ² . Th 100 N (E) () m. The coef d this curve w	e tension in 6380 N ficient of frict rithout sliding	tion between t	res and
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m	g elevator is mo (B) 650 N nobile moves o aximum speed	oving upward w (C) 15180 N on a circular roa with which this	/ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s	on 4 m/s ² . Th 100 N (E) (0 m. The coef d this curve w (D)	e tension in 6380 N ficient of frict rithout sliding 12.12 m/s	tion between ti j is: (E) 13 n	res and
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m	g elevator is mo (B) 650 N nobile moves o aximum speed	oving upward w (C) 15180 N on a circular roa with which this	ith accelerati (D) 1 d of radius 4 car can roun	on 4 m/s ² . Th 100 N (E) () m. The coef d this curve w	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s	tion between ti i is: (E) 13 n Aangle	m2 res and n/s
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Radius Referring to	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر	oving upward w (C) 15180 N on a circular roa with which this) m/s	/ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s	on 4 m/s ² . Th 100 N (E) (0 m. The coef d this curve w (D)	e tension in 6380 N ficient of frict rithout sliding 12.12 m/s	tion between ti j is: (E) 13 n	res and
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Referring to question	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر بالرجوع الى السوال السابق	oving upward w (C) 15180 N on a circular roa with which this m/s Parabolic Period	ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s قاطع مكافئ الزمن الدوري	on 4 m/s ² . Th 100 N (E) 6 0 m. The coef d this curve w (D) Elevator Exerted	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s	tion between ti i is: (E) 13 n Aangle Automobile Block	res and n/s <u>آراویة</u> سیارة
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Referring to question truck	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر بالرجوع الى السوال السابق	oving upward w (C) 15180 N on a circular roa with which this) m/s Parabolic Period Rough surface	ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s قاطع مکافئ	on 4 m/s ² . Th 100 N (E) (0 m. The coef d this curve w (D) Elevator	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s معنی معنی معنی قطاعی زائد	tion between ti is: (E) 13 n Aangle Automobile Block Brake	res and n/s سيارة بيم فرامل
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Referring to question truck Upwards	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر بالرجوع الى السوال السابق شاحنه	oving upward w (C) 15180 N on a circular roa with which this m/s Parabolic Period Rough surface Speed	ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s قاطع مكافئ الزمن الدوري سطح خشن	on 4 m/s ² . Th 100 N (E) (0 m. The coef d this curve w (D) Elevator Exerted Hang Hyperbolic Initial	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s معلق معلق قطاعي زاند الابتدانية	tion between ti i is: (E) 13 n Aangle Automobile Block Brake Component	res and n/s سيارة سيارة فرامل فرامل
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Referring to question truck Upwards Vertically	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر السوال السابق شاحنه للاعلى عموديا	oving upward w (C) 15180 N on a circular roa with which this) m/s Parabolic Period Rough surface	rith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s قاطع مكافئ الزمن الدوري سطح خشن سرعة الشد	on 4 m/s ² . Th 100 N (E) 6 0 m. The coef d this curve w (D) Elevator Exerted Hang Hyperbolic Initial Magnitude	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s 12.12 m/s معلق مبذولة قطاعي زائد الابتدانية قيمية	tion between ti is: (E) 13 m Aangle Automobile Block Brake Component Cord	۳2 res and n/s <u>قراوی</u> <u>مرکبة</u> حبل حبل
Q.29 A 1100 k able is: (A) 1224 N Q.30 An autor is 0.50. The m (A) 3 m/s Referring to question truck Upwards	g elevator is mo (B) 650 N nobile moves o aximum speed (B) 4.9 نصف القطر بالرجوع الى السوال السابق شاحنه	oving upward w (C) 15180 N on a circular roa with which this m/s Parabolic Period Rough surface Speed String	ith accelerati (D) 1 d of radius 4 car can roun (C) 14 m/s قاطع مكافئ الزمن الدوري سطح خشن خيط	on 4 m/s ² . Th 100 N (E) (0 m. The coef d this curve w (D) Elevator Exerted Hang Hyperbolic Initial	e tension in 6380 N ficient of frict ithout sliding 12.12 m/s معلق معلق قطاعي زاند الابتدانية	tion between ti i is: (E) 13 n Aangle Automobile Block Brake Component	res and n/s سيارة سيارة فرامل فرامل

3-

King Abdulaziz University Faculty of Science Physics Dept. Physics 110

Test 2			1 1	Time: 90 min.
Student Name:		Student no.:		Section:
Q.1 A man of weight (A) 40 kg	t 490 N. His mass is: (B) 980 kg	(C) zero	(D) <u>50 kg</u>	(E) 490 kg
Q.2 1Newton is equi (A) 9.8 kg.m/s ²	(B) 1 kg of force			(E) none of these
O 3 A particle movir	ng from $\bar{r}_{c} = 2\hat{i} + 5\hat{j} + 8\hat{j}$	$3\hat{k}$ to $\bar{r}_2 = 2\hat{i} + 10\hat{j}$	$+18\hat{k}$ then the displace	cement is:
(A) 10î - 3j	(B) <u>5j</u> +10k	(C) 10î+5 <i>ĵ</i>	(D) 5ĵ	(E) 8
0.4 Two forces are	applied to an object	of mass 18.25 kg.	One force is 27.5 N to	the north and the other is
24.0 N to the west. (A) <u>2.0 m/s²</u>	The magnitude of the (B) 3.0 m/s ²	(C) 4.0 m/s ²	(D) 2.5 m/s ²	(E) 5.0 m/s ²
Q.5 A boy kicks a b	all at an angle of 40°	to the horizontal w	ith a speed of 14.0 m/s	. The time it takes to reach
the highest point is: (A) 0.92 s		(C) 0.15 s	(D) 1.12 s	(E) 0.38 s
Q.6 Referring to qu (A) 9.87 m	estion 5, the maximur (B) 4.13 m	n height that the ba (C) 15.33 m	ll can reach is: (D) 12.68 m	(E) 14.0 m
Q.7 Referring to qu (A) 9.87 m	estion 5, the horizonta (B) 19.7 m	al range that the ba (C) 15.33 m	ll can reach is: (D) 12.68 m	(E) 14.0 m
Q.8 A block slides (A) 9.8 m/s ²	down on a frictionless (B) 4.9 m/s²	inclined plane at a (C) Zero	n angle of 30°. The acc (D) 19.6 m/s ²	eleration of the block is: (E) 1 m/s²
Q.9 A particle is the (A) 1.2 s	rown with an initial velo (B) 2.89 s	ocity of 40 m/s. The (C) 3 s	time it takes to reach it (D) 4.10 s	ts maximum range is: (<u>E) 5.77 s</u>
Q.10 The initial vel the projectile's max (A) 90°	locity of a projectile is timum height is: (B) 45°	150 m/s. The angle (C) <u>Zero</u>	(D) 63.1°	ector and the trajectory at (E) 36.9°
(A) <u>15.71 m/s</u>	cond. Then its speed is (B) 3.14 m/s	s: (C) 7.5 m/s	n in radius with a consta (D) 0.20 m/s	(E) Zero
Q.12 At t=0, a car	moves with velocity	$\vec{v}_0 = 2\hat{i} + \hat{j} (m/s) an$	d acceleration $\vec{a} = 2\hat{j}$ (n	n/s²). The velocity of the ca
at t=2 s is: (A) 6î + ĵ	(B) <u>2î+5j</u>	(C) 2î + ĵ	(D) î+5ĵ	(E) 1

Q.13 A particle move at t=1 s is:	s in xy plane as x(t)=			of the particle in vector notior
(),]()	(B) 2î + ĵ (m/s)			ĵ (m/s) (E) 10 (m/s)
0.4.4 A projectile is la	unched to achieve a n	naximum range	e of 140 m, the speed of	f the projectile must be:
(A) 17 m/s	(B) 27 m/s	(C) 37 m/s	(D) 45 m/s	(E) 10 m/s
Q.15 The formula for (A) <u>f=µ N</u>	(B) F=ma	(C) w=mg	(D) F=N	(E) F=2f
(A) greater than zero		(C) zero	(D) 9.0 N	(E) 4.9 N
	a curved rounds a 20 (B) 5 m/s^2	0 m radius curv (C) 2 m/s ²	ve at 10 m/s. The magni (D) 4 m/s ²	tude of its acceleration is: (E) 6 m/s ²
Q.18 As shown in th negligible mass. The	e figure, if the two blo tension T in that rope 15 kg	cks are moving is:	g on frictionless surface 5 kg	and connected with a rope of 40 N
	m ₁	T	m ₂ 35°	••• =*
(A) 2.5 N	(B) 9.98 N	(C) 23 N	(D) Zero	(E) <u>24.57 N</u>
0 19 Referring to gu	estion 18, the normal	force on the bl	ock m₁ is:	
(A) <u>147 N</u>	(B) 5 N	(C) Zero	(D) 15 N	(E) 49 N
Q.20 A car is traveli	ng at 20 m/s on a hori:	zontal highway	. If the coefficient of fric	tion between the road and tire
on rainy day is 0.1, t (A) 408 m	he distance in which th (B) Zero	ne car will stop (C) 20 m	is: (D) 204.1 m	(E) 10.2 m
(A) differed by 45°	nd acceleration of a bo (B) perpendicular	(C) differed b	by 135° (D) parallel	(E) none of these
Q.22 A 60 kg perso (A) zero	n weighs 100 N on the (B) 4.9 m/s ²	e moon. The ac (C) 19.6 m/s	celeration of gravity on 2 (D)· <u>1.67 m/s²</u>	the moon is: (E) 9.8 m/s ²
Q.23 A block slides when a parallel force	s on a rough surface e of 30 N is applied. T	(see Figure). The coefficient of	The block starts to slide of static friction µ₅ is:	e fs w=65 N F=50 N
(A) 1	(B) <u>0.77</u>	(C) 0.33	(D) 0.67	(E) Zero
Q.24 A cable holds (A) 500 N	a ball of weight 350 N (B) 9.8 N	I in static equili (C) 250 N	ibrium. The tension in th (D) zero	ne cord is: (E) <u>350 N</u>
				5 } -

Q.25 The formula formula for (A) $a = \frac{v^2}{R}$	or the centripetal forc (B) F=ma	e is: (C) F=mg	(D) $F = m \frac{v^2}{R}$	(E) none of these
Q.26 In the figure a speed up the friction. The magnitude of \overline{F}	a 5 kg box is pushed a onless ramp by a horiz is:	at a constant zontal force \bar{F} .	F 30	
(A) 44.5 N	(B) 98 N	(C) 49 N	(D) <u>24.5 N</u>	(E) Zero
(D) 49 N	stion 26, the normal fo (B) 84.87 N	(C) 2010	(D) 98 N	(E) <u>42.44 N</u>
Q.28 Three forces	act on a particle in w	hich it moves with c	onstant speed, if $\overline{E}_1 = (-8)$	\hat{i}) N and $\bar{F}_2 = (10\hat{j})$ N .
Then \overline{F}_3 is:	(B) 8î	(C) <u>8î-10ĵ</u>	(D) 10ĵ	(E) 18ĥ
(A) 245.10 N	s moving with a const (B) 190.20 N	(0) <u>Zeio</u>	(2) 0	(E) 70.70 N
Q.30 A 1000 kg e (A) 9800 N	elevator is moving up (B) <u>12800</u> N	with acceleration 3 r (C) Zero	n/s². The tension in the c (D) 1000 N	able is: (E) 6800 N

King Abdul-Aziz University Faculty of Science Physics Dept

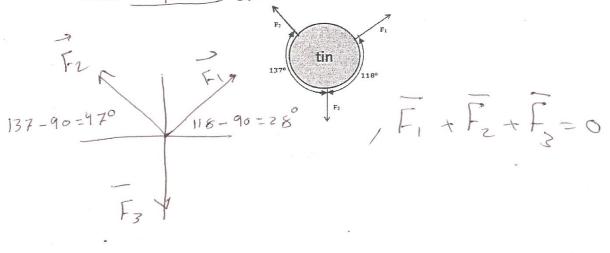
PHYS 110 2 nd EXAM			Time: 90 min.
udent Name:		Student Number:	Section:
Choose the correct a	nswer:		
1. Newton's second law	w is written as:		
(a) $\vec{a} = \vec{F}m$	(b) $\vec{a} = \frac{\vec{F}}{m}$	(c) $m = \overline{F}\overline{a}$	(d) $\vec{F} = \frac{\vec{a}}{m}$
2. 10 ⁵ g.cm/s ² is equ	al:	Sec. A	
(a) 10 N	(b) 1 N	(c) 100 N	(d) 1000 N
3. Acceleration is always	ays in the direction of the	:	
(a) displacement	(b) initial velocity	(c) final velocity	(d) net force
4. The maximum ra	nge of a projectile is at I	aunch angle	
(a) θ = 25°	(b) θ = 35°	(c) θ = 45°	(d) $\theta = 55^{\circ}$
5. The force that opp	oses the motion is calle	ed	
(a) Tension	(b) Friction	(c) Normal force	(d) gravitational force
	motion the acceleration	in the horizontal direction	on is:
(a) 19.6 m/s ²	(b) zero		(d) 4.9 m/s ²
7. If the x compone	ent of vector r is 2.6 m	and the y component	is -2.3 m then \overline{r} in unit-vector
notation is:			(d) 3.2 $\hat{i} - 6.2 \hat{j}$
8. The displacement	nt of a particle moving fr	om $\vec{r}_1 = 5\hat{i} - 6\hat{j} +$	$2\hat{k}$ to $\vec{r}_2 = -2\hat{i} + 6\hat{j} + 2\hat{k}$ is:
	(b) $3\hat{i} + 4\hat{k}$	(c) $7\hat{i} - 12\hat{j}$	$(d) - 3\hat{i} - 4\hat{k}$
9. The components	of a car's velocity as a fur	nction of time are given	by :
$V_x = 2t + 3$, and	$V_y = 4 t - 1$, its velocity	\bar{V} at (t= 1 s) is:	
			(d) $\vec{V} = 11\hat{i} + 15\hat{j}$
10. A rope from the	ceiling suspends a ball of	weight 400 N. The te	ension in the rope is:
(2) 800 N	(b) 200 N	(c) 560 N	(d) 400 N
11. The component	s of a car's velocity as a mponents are:	function of time are g	given by $v_x = 6t^2 - 5$, $v_y = -3t^3$. The
(a) $a_x = 10 t$ $a_y = -12 t^2$	(b) $a_x = 4 t$ $a_y = -6 t^2$	(c) $a_x = 6 t$ $a_y = -15 t^2$	(d) $a_x = 12 t$ $a_y = -9 t^2$

غوذج A

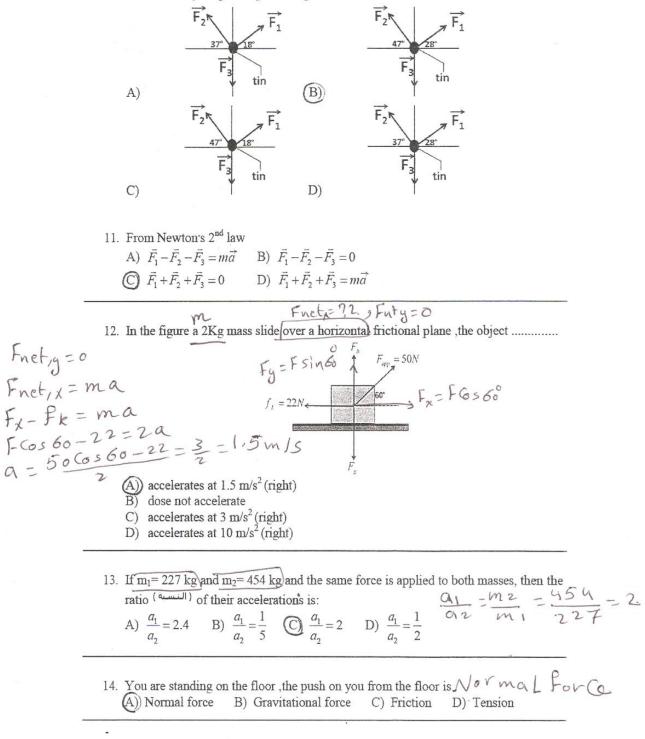
A particle moving	ent v_x of the final velo	city of (c=2 b) is :	
	(b) - 17 m/s	(c) -27 m/s	(d) -37 m/s
-7 m/s		a of 200 shove the boriz	ontal with an initial speed 50 m/s is:
. The range of a	ball is thrown at an angl		(), 220.0 m
) 318.1 m	(b) 267.3 m	(c) 373.4 m	(d) 220.9 m
1. The period of a	in objects moving at a co	onstant speed of 4 m/s of	on a circular path of radius 2 m is:
)πs	(b) 2π s	(c) 4π s	(d) 8π s
5. Referring to q	uestion 14, the accele	eration of the object is:	
a) 1 m/s²	(b) 2 m/s ²	(c) 4 m/s ²	(d) 8 m/s ²
	est at constant velocity .	The net force on the car	is:
a) east	(b) west	(c) zero	(d) up
	on a particle that move	s with constant velocity	y , if $\vec{F}_1 = 2\hat{i} - 6\hat{j}$, then \vec{F}_2 equals:
			+2 \hat{j} (d) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$
		dy, its acceleration is 2 n	(d) $F_2 = -2I + 0J$ n/s² . The mass of the body is: (d) 1/4
(a) 4 kg	of 8 N is applied to a bo	dy, its acceleration is 2 n (c) 8 kg e block of mass	n/s ² . The mass of the body is:
 (a) 4 kg 19. From the figurent m= 0.5 kg model (a) - 2m/s² 	of 8 N is applied to a bo (b) 16 kg The the acceleration of the oving along the x-axis or (b) $- 4 \text{ m/s}^2$	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ²	m/s ² . The mass of the body is: (d) 1/4 $F_1=3N \iff F_2=$ (d) - 8 m/s ²
 (a) 4 kg 19. From the figurent m= 0.5 kg model (a) - 2m/s² 	of 8 N is applied to a bo (b) 16 kg The the acceleration of the oving along the x-axis or (b) $- 4 \text{ m/s}^2$	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ²	n/s^2 . The mass of the body is: (d) 1/4 $F_1=3N \longleftarrow F_2=$
 (a) 4 kg 19. From the figure m= 0.5 kg model (a) - 2m/s² 20. From the figure 	of 8 N is applied to a bo (b) 16 kg The the acceleration of the oving along the x-axis or (b) $- 4 \text{ m/s}^2$	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ²	m/s ² . The mass of the body is: (d) 1/4 $F_1=3N \longleftarrow F_2=$ (d) - 8 m/s ² wn a frictionless inclined
 (a) 4 kg 19. From the figure m= 0.5 kg models (a) - 2m/s² 20. From the figure plane is: (a) 9.8 N 21. Referring to 6 (a) 19.6 N 	of 8 N is applied to a bo (b) 16 kg re the acceleration of the oving along the x-axis or (b) – 4 m/s ² ure the normal force Fr (b) 33.95 question 21 , if the block (b) zero	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ² on a block sliding dow (c) 16.97 N (c) 16.97 N	m/s ² . The mass of the body is: (d) 1/4 $F_1=3N \longleftarrow F_2=$ (d) - 8 m/s ² where a frictionless inclined (d) 19.8 N 2^{kg} 30° estant speed then the magnitude of F is: (d) 4.9 N
 (a) 4 kg 19. From the figure m= 0.5 kg models (a) - 2m/s² 20. From the figure plane is: (a) 9.8 N 21. Referring to (a) 19.6 N 22. Referring to (a) 19.6 m/s² 	of 8 № is applied to a bo (b) 16 kg The the acceleration of the bying along the x-axis or (b) – 4 m/s ² ure the normal force F ₁ (b) 33.95 question 21 , if the block (b) zero question 21 , if the magn (b) zero	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ² on a block sliding dow (c) 16.97 N (c) 16.97 N (c) 9.8 N nitude of F is zero then th (c) 9.8 m/s ²	m/s ² . The mass of the body is: (d) 1/4 $F_1=3N \longleftarrow F_2=$ (d) - 8 m/s ² (d) - 8 m/s ² (d) 19.8 N (d) 19.8 N 2 kg 30° 30° istant speed then the magnitude of F is: (d) 4.9 N he acceleration of the block is: (d) 4.9 m/s ²
 (a) 4 kg 19. From the figure m= 0.5 kg models (a) - 2m/s² 20. From the figure plane is: (a) 9.8 N 21. Referring to (a) 19.6 N 22. Referring to (a) 19.6 m/s² 	of 8 № is applied to a bo (b) 16 kg The the acceleration of the bying along the x-axis or (b) – 4 m/s ² ure the normal force F ₁ (b) 33.95 question 21 , if the block (b) zero question 21 , if the magn (b) zero	dy, its acceleration is 2 m (c) 8 kg e block of mass a frictionless table is: (c) – 6 m/s ² on a block sliding dow (c) 16.97 N (c) 16.97 N (c) 9.8 N	m/s ² . The mass of the body is: (d) 1/4 $F_1=3N \longleftarrow F_2=$ (d) - 8 m/s ² (d) - 8 m/s ² (d) 19.8 N (d) 19.8 N 2 kg 30° 30° istant speed then the magnitude of F is: (d) 4.9 N he acceleration of the block is: (d) 4.9 m/s ²

4. A horizontal for The coefficient	ce of 200N is required to of static friction is:) start moving a 800-N c	rate initially at rest on a horizont	tal floor.
a) 4	(b) 0.25	(c) zero	(d) 0.5	
5. A block of mas between the bl	ss 100 kg slides on a ho ock and the surface is:	prizontal surface with acc	celeration a=6 m/s², the force	of friction
a) -360 N	(b) - 480 N	(c) - 600 N	(d) – 720 N	
6. A block of we friction μ _k is:	ight 5 N moves with co	nstant speed by a force	e of 3 N, the value of the coeff	icient of
a) 0.3	(b) 0.4	(c) 0.5	(d) 0.6	
speed , then t (a) µ_kmg	he magnitude of F is: (b) mg	(c) µ _k g	izontal force \vec{F} along the x-axis (d) F_N eight at a point where $g = 0$ is:	
(a) 9.8 N	(b) 49 N	(c) 98 N	(d) zero	
29. As shown in t velocity along a ro of the frictional fo	he figure, a block of mas bugh horizontal surface b orce is:	as m is pulled at constan by a force F. The magnit	t ude	θ
(a) F sin θ	(b) zero	(c) mg cos θ	(d) F cos θ	
30. Referring to α (a) mg-F sin θ	question 29 , the normal (b) mg+F sin θ	force is: (c) mg	(d) F sin θ-mg	

			يمانع	horizontal	أفقى	rope	حبل
launch	قدف	opposes		J-mention and a second second second	The second secon	circular	دائرى
ceiling	الدقف	suspends	يعلق	initial	إبتدائي	Circulai	Conception of Conception of Conception
Centry		Contraction of the sector of t	أثر ت	frictionless	ا املس	table	طاوله
path	مسار	applied			110 11.	elevator	مصعد
sliding	ينزلق	inclined	مائل	Referring to	بالرجوع إلى		
Silulity	0.5.	amito	عربه	pulls	يسحب	rough	خشن
tension	شد	crate	عرب	L Puilo			


King Abdulaziz University Faculty of Sciences Physics Department		Second Term 1433-1434 H	C
Second Exam-PHYS 110	مالك عدادي	Date : 13 / 6 / 1434	+ n
Name:	ID No:	Sect	tion :
CHOOSE THE CORRECT ANS	SWER :	Vy=	0
1. In the projectile motion, A) positive (B) zero		f the velocity at the ma D) the maximum va	
 2. A man of mass m stands the scale reading is : A) F_N = m (-a_y - g) C) F_N = m (a_y - g) 3. The coefficients µ s and A) always parallel to the 	B) $F_N = m a_y$ D) $F_N = m (a_y - \frac{p_s}{r_s})$	Fret, $g =$ +g) FN-Fg = FN = mg - $\frac{N}{M-1}$ FN = m	may may = mag (ay + g)
 (C) have no units 4. In Newton's First law, I A) the body's velocity of B) the body's velocity of C) the body's velocity of D) the body's velocity of D) the body's velocity of D) 	f no net force act c annot change , tha an change , that is, an change , that is,	t is, the body can accel the body can accelerat the body cannot accel	erate te erate
5. In the figure the net force	e on the block is :	-1N,1eft =0	6 N

Sample C Page 1


IFF7 \$ max 6. In the figure the block will move on the floor if F equals $f_{s,max} = 15N$ 715 A) 15N B) 13N C) 14N (D)) 16N 7. In the uniform circular motion, the centripetal force is: $F = m\alpha = m\left(\frac{\sqrt{2}}{R}\right)$ A) $m\frac{v}{R}$ B) $\frac{v^2}{R}$ C) $m\frac{v^2}{R}$ D) $m\frac{v^2}{R^2}$ 8. Two forces $\vec{F_1} = 8\hat{i} + 6\hat{j}$ and $\vec{F_2} = 4\hat{i} + 10\hat{j}$ act on a particle of mass 2Kg. The $a = F_1 + F_2$ acceleration is: A) $4\hat{i} + 3\hat{j}$ B) $2\hat{i} + 5\hat{j}$ (C) $6\hat{i} + 8\hat{j}$ D) $2\hat{i} + 2\hat{j} = \frac{(8+4)\hat{k} + (6+10)\hat{j}}{-8\hat{k} + 8\hat{j}}$ ^{9.} Projectile is fired (iddle) from a ground at angle 45°above the horizontal. If it reaches the ground at 60 m from the starting point, the initial velocity (v₀) is: $\Re = \sqrt{25} i \sqrt{26}$ C) 31.3m/s D) 50m/s Sinz(45)=1, $V_0^2 = Rg + V_6 = \sqrt{Rg}$ A) 9.8m/s (B)) 24.2 m/s

Use the following to answer questions 10-11:

Three forces act horizontally on a tin $(2 \pm 2 \pm 3)$ at the angles shown in the figure , the tin remains $(2 \pm 2 \pm 3)$ stationary $\Delta = 0$

10. The free body diagram representing the forces on tin is :

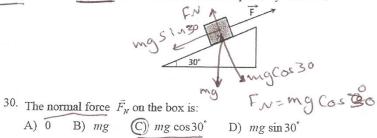
- 15. The centripetal force accelerates a body by changing the direction of the body's <u>Velocity</u> without changing the body's speed.
 A) acceleration B) displacement (C) velocity D) path
- Use the following to answer questions 16-17: A plane enters a horizontal circular turn with $\vec{v_i} = 300\hat{i} \, m/s$ and 15 s later leaves the turn with $\vec{v_f} = -300\hat{i} \, m/s$: $-300\hat{i} \, G$ 16. If the radius of the circular path is 4890 m, then the centripetal acceleration is $: O_1 = \frac{\sqrt{2}}{R} = \frac{(300)^2}{4890}$ A) 9183.6m/s² B) 18.4m/s² C) 30.6m/s² D) 0.06m/s² $= 18 \cdot 4 m/s^2$ 17. The period of the plane is : (A) 30s B) 45s C) 60s D) 15s T = 2(15) = 30 S
 - 18. Two bodies A and B interact, the magnitude of the forces on the bodies from each other are :

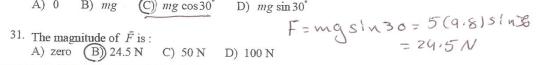
A) $F_{AB}\langle F_{BA}$

D) $F_{AB} \rangle F_{BA}$

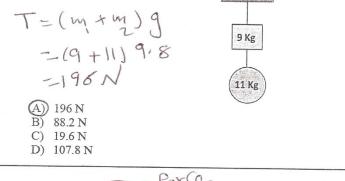
 $\begin{array}{c} \textcircled{B} & F_{AB} = F_{BA} \\ \hline C & F_{AB} = F_{BA} = 0 \end{array}$

19. A particle moved a displacement $\Delta \vec{r} = (18m)\hat{i} + (22m)\hat{j} + (22m)\hat{k}$ in 2s. Its average velocity is: (A) $\vec{v}_{avg} = 9\hat{i} + 11\hat{j} + 11\hat{k}$ B) $\vec{v}_{avg} = 8\hat{i} + 11\hat{j} + 11\hat{k}$ (A) $\vec{v}_{avg} = -\frac{\Delta V}{\Delta t} - \frac{18\hat{c} + 22\hat{\Delta} + 22\hat{k}}{2}\hat{k}$ (C) $\vec{v}_{avg} = 9\hat{i} + 11\hat{k}$ D) $\vec{v}_{avg} = 8\hat{i} + 11\hat{k}$ (C) $\vec{v}_{avg} = 9\hat{i} + 11\hat{k}$ (C) $\vec{v}_{avg} = 10\hat{i} + 11\hat{k$


20. A 0.15kg particle moves along an x-axis with acceleration $a(t)=2-12t (m/s^2)$, the net force acting on the particle at t=1s is : A) $(-1.8N)\hat{i}$ (B) $(-1.5N)\hat{i}$ (C) $(0.3N)\hat{i}$ (D) $(2.1N)\hat{i}$ 21. The components of a car's position as a function of time are given by $r_x = 2t + 3$, and $r_y = 4t - 1$. The position vector at t=2s is : $r_x = (2)(2) \times 3 = 79$ $r_y = 4(2) - 1 = 7$ (A) $\vec{r} = 7\hat{i} + 7\hat{j}$ (B) $\vec{r} = 11\hat{i} + 15\hat{j}$ (C) $\vec{r} = 5\hat{i} + 3\hat{j}$ (D) $\vec{r} = 9\hat{i} + 11\hat{j}$ $\vec{r} = 7\hat{i} + 7\hat{j}$ (Sample C Page 4 Use the following to answer questions 22-24:


A ball is thrown with initial velocity $v_0=95$ m/s at an angle $\theta_0 = 30^\circ$ above the horizontal:

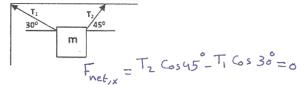
D) 230.2 m $h = \frac{10^2 sin^2 0}{29}$ 22. The maximum height that the ball can reach is: B) 460.4 m (C) 115.1 m A) 57.55 m =115,1m 23. The ball's initial velocity v_0 in unit vector notation is: $V_{0,1} = V_0 C_{0,2} = 95C_0 = 30 = 82.3$ $(D) \vec{v_0} = 82.3\hat{i} + 47.5\hat{j}$ $V_{og} = V_{os} + 0.5i = 455i = 47.5\hat{j}$ $V_{og} = 82.3\hat{i} + 47.5\hat{j}$ $V_{og} = 82.3\hat{i} - 47.5\hat{j}$ $V_{og} = 82.3\hat{i} - 47.5\hat{j}$ C) $\vec{v_0} = 47.5\hat{j}$ 24. The ball's acceleration in unit vector notation is: A) $\vec{a} = 0$ (B) $\vec{a} = -9.8\hat{j}$ C) $\vec{a} = -9.8i$ D) $\vec{a} = 9.8\hat{i} + 9.8\hat{j}$ 25. A block of mass 3.5 Kg slides on horizontal surface the coefficient of kinetic friction is 0.47, the kinetic friction force between the block and the surface is : $P_{\chi} = M + N = M + M = M + M = M + M = M + M = (\sigma \cdot 47)(3 \cdot 5)(9 \cdot 8)$ - 16.1N 26. A 22 kg mass is sliding horizontally on a frictionless surface, the normal force F_N is: A) 204N B) 121N \bigcirc 215.6N D) 334N $F_N = mcy = (22)(9.8) = 215.6N$ F_G 50 N=50kg.m13 27. A force of 50N is: A) 50 kg. m^{2}/s (B) 50 kg.m/s² C) 50 g.m/s² D) 50 kg.m/s 28. The coefficient of static friction between a 5kg block and horizontal surface is 0.4. The maximum static frictional force is : fsim = Ms FN = (0:4)(3)(9:8) = 19.6N (A)) 19.6N B) 49N C) 10N D) 5.5N = ? ? 29. Three forces $\vec{F_1} = 3i$, $\vec{F_2} = 4j$ and $\vec{F_3}$ act on a body which is moving with a constant velocity $\overline{F_2}$ is: A) $\vec{F_3} = -3\hat{i} + 4\hat{j}$ B) $\vec{F_3} = 3\hat{i} + 4\hat{j}$ C) $\vec{F_3} = -3\hat{i} - 4\hat{j}$ D) $\vec{F_3} = 3\hat{i} - 4\hat{j}$ N=Const a - 0 Fupt=0 Fi+ F2+ F3=0 $F_3 = -F_1 - F_2$ $F_2 = -3\hat{c} - 4\hat{0}$ Sample C Page 5


Use the following to answer questions 30-31:

A 5 Kg box is held at rest on a frictionless inclined plane by a force \vec{F}

^{32.} Two blocks are suspended (asigmable) by a rope as shown, the tension in the top rope is:

33. The SI unit of weight is : A) Kilogram B) pound (C) Newton D) gram


Faculty of Sciences Physics Department			
Second Exam - Phys 110 ۲ ۲ ۲ ۲ ۱ هـ الدوري ال	Date: 2 / 6	/ 1433H	
Name:	ID No:	Section:	
	10 100.		
HOOSE THE CORRECT ANSWE	R		
1. A projectile is fired from the with the horizontal. The max	ground level with an initia imum height the projectile	l velocity 283 m/s with an ang preached h= V2 sin a	le of 60°
		$m h = \frac{(83)^{5} \sin^{2} 6}{(2)(9.8)} = 3004.6$	
2. A car goes from $\vec{v_i} = 2\hat{i} + 4\hat{j}$	to $\vec{v}_f = 3\hat{i} + 9\hat{j}$ in 5 s. The	average acceleration of the c	ar -2) î-1 (9-
2. A car goes from $\vec{v_i} = 2\hat{i} + 4\hat{j}$ A) $\vec{a}_{avg} = \hat{i} - 6\hat{j}$ (B) $\vec{a}_{avg} = \hat{i}$	$0.2\hat{i} + \hat{j} \text{C}) \vec{a}_{avg} = 3\hat{i} \text{D}$	$\vec{a}_{avg} = \hat{i} - \hat{j} = \frac{\hat{c} + 5\hat{s}}{5} = 0.2$	2 + 3
 An objects move at a consta seconds is: 	int speed of 5 m/s on a circ $T = \frac{2\pi V}{V} = \frac{2}{V}$	cular path of radius 10 m. The p $\frac{\Pi(l_0)}{5} = 4 \Pi$	period in
A) $3\pi^{3}$ B) 4π C) 20 1			
4. The horizontal range is the	horizontal distance the proj	ectile has traveled when it retur	ns to
A) its maximum height B) it	s initial height C) the origin	D) the start point	
Se the following to answer questions 5	i-6:		
The coordinates of a particle's po $y = -t^3 + 5$, with x and y in mete		of time are given by $x = 5t^2 + 5t^2$	-16 , and
5. The velocity as a function of ti	me is:		
$(A) 10t \ \hat{i} - 3t^2 \ \hat{j} B) \ 10t \ \hat{i}$	10000 (1000) 10	D) $t \hat{i} + 6t \hat{j}$ $\vec{r} = (5t^2 + 16)\hat{i} + (-t^3 + 16)\hat{i}$ $\vec{v} = \frac{d\vec{r}}{dt} = (16t)\hat{i} - (3t)\hat{i}$	5)Ĵ ² ĴĴ
		~ ()	

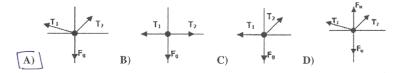
6. The position vector \vec{r} at t=2 s is

The position vector
$$\vec{r}$$
 at $t=2$ s is
A) $26\hat{i} - 7\hat{j}$ B) $36\hat{i} - 3\hat{j}$ C) $81\hat{i} + 3\hat{j}$ D) $15\hat{i} - 5\hat{j} = 3\hat{c}\hat{c} - 3\hat{j}$

Use the following to answer questions 7-9:

A block of mass m = 5 kg is hanging by two ropes as shown in the figure:

7. From the figure, $F_{net,x}$ on the block is:


A) $T_1 \cos 45 - T_2 \cos 30 = 0$ **B**) $-T_1 \cos 30 + T_2 \cos 45 = 0$ C) $T_1 \cos 45 - T_2 \cos 30 = m a_1$

D) $T_1 \cos 30 - T_2 \cos 45 = m a$

8. The magnitude of weight (W) in Newtons is equal to: $\omega = mg = 5 (9.8) = 49 N$

A) 9.8 N B) - 9.8 N C) - 49 N D) 49 N

9. The free body diagram representing the forces on m is:

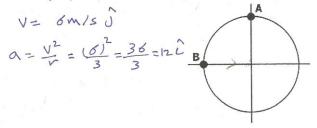
10. The coefficient of static friction (μ_s):

A) has a magnitude of exactly 1 (B) is dimensionless

C) is in the direction of the normal force

D) is in the direction of motion

11. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to


A) $v_y = v_o(\cos\theta)t$ B) $v_y = v_o(\sin\theta)t (\overline{C}) v_y = v_o\sin\theta - gt$ D) $v_y = v_o\sin\theta + gt$

12. Two forces $\vec{F_1} = 7\hat{i} - 5\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is : A) 7.14 N \vec{B} 4.12 N C) 13.2 N D) 10 N | $\vec{F_{ne}}_{t} = \sqrt{q^2_{t}(-q^2)} = \sqrt{16} + \sqrt{17} = 4.12 \text{ M}$

13. A 0.15 kg particle moves along an x-axis with acceleration a(t) = 8 - 18t with a in m/s² and t

in seconds. The **net force** in Newtons acting on the particle at t = 3.40s is $\vec{F}_{net} = m\vec{a}$ \vec{A} $\vec{A$

14. In the figure, a car moves at constant speed around the circle path in a horizontal xy plane, with the center at the origin. When it is at point A its coordinates are x=0, y=3m and its velocity is (6 m/s) \hat{i} . When it is at point B its velocity and acceleration are:

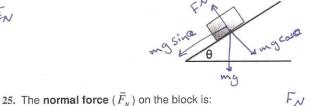
- \vec{A} $\vec{v} = +6\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively C) $\vec{v} = +6\hat{i}$ and $\vec{a} = -12\hat{i}$, respectively **D**) $\vec{v} = +4\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively **B**) $\vec{v} = -6\hat{j}$ and $\vec{a} = +12\hat{j}$, respectively
- 15. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of: $\begin{array}{ccc}
 \alpha &=& \frac{F_{net}}{m} = \frac{7}{12} = 0.58 \text{ m/s}^2 \text{ north} \\
 \hline
 \textbf{(A)} 0.58 \text{ m/s}^2 \text{ north} \quad \textbf{B}) 1.71 \text{ m/s}^2 \text{ south} \quad \textbf{C}) 1.71 \text{ m/s}^2 \text{ north} \quad \textbf{D}) 0.58 \text{ m/s}^2 \text{ south}
 \end{array}$

16. The position vector for an airplane initially is $\vec{r} = 5\hat{i} - 6\hat{j} + 2\hat{k}$ and then 10s later is $\vec{r} = -2\hat{i} + 8\hat{j} - 2\hat{k}$, all in meters, its average velocity (\vec{v}_{ave}) in unit vector notation is

C) $4.7\hat{i} - 1.4\hat{i} + 0.9\hat{k}$ A) $-0.3\hat{i} - 1.4\hat{j} + 0.6\hat{k}$ (B) $-0.7\hat{i} + 1.4\hat{j} - 0.4\hat{k}$ (B) $-0.7\hat{i} + 1.4\hat{j} - 0.4\hat{k}$ (D) $-5\hat{i} + 2.4\hat{j} + 0.4\hat{k}$ ($N_{NO} = \frac{V_2 - V_1}{2} = (\frac{-2L + 8U - 2K}{2} - (5\hat{L} - 6\hat{J} + 2K)) = -\frac{7}{2}\hat{L} + 14\hat{J} - 4K = -0.7\hat{L} + 14\hat{J} - 0.4\hat{L} + 14\hat{J} + 14\hat{J} + 15\hat{L} + 14\hat{J} - 0.4\hat{L} + 14\hat{J} - 0.4\hat{L} + 14\hat{J} + 14\hat{J} + 14\hat{J} + 15\hat{L} + 14\hat{J} + 15\hat{L} + 14\hat{J} - 14\hat{J} + 15\hat{L} + 14\hat{J} - 14\hat{J} + 15\hat{L} + 15\hat{L} + 14\hat{J} + 15\hat{L} + 15\hat{L} + 14\hat{J} + 15\hat{L} + 15\hat{L} + 14\hat{J} + 15\hat{L} +$ A) 4141.5 N B) 1245.7 N C) 3340.5 N D) 6241.6 N = 3340.5 A

18. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is: Fre = ma 9-860562°=(3)a F=9N $\alpha = \frac{9 - 8 \cos 62^{\circ}}{3} = \frac{5 \cdot 24}{3} = 1 \cdot 75 \, \text{m/s}^{\circ}$ 620 A) 2.45 m/s² (B) (1.75 m/s² C) - 2.3 m/s² D) 3 m/s² 19. A particle is projected with an initial velocity $\vec{v_0} = 5.0\hat{i} + 4.0\hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is: Katmaximum height = 5m/s A) 7 m/s B) 12 m/s C) 2 m/s D 5 m/s 20. A bomb (قنبلة) is fired from a cannon and has initial horizontal and vertical components of velocity equal to 23 m/s and 54 m/s, respectively .The angle the bomb fired with the horizontal Vox = 23m/s, Voy = 54 m/s Q = tan' (Voy) - tan' (54) = 66.93° Vox) - tan' (54) = 66.93° x 67° is A) 49° B) 67° C) 85° D) 33° 21. A horizontal force of 4N pushes a block of weight 10N to make it move with constant velocity, the value of the coefficient of kinetic friction (μ_{k}) is : Fuer = ma 4N F_k Constant ve locity = A = 0 $F_{k} = 0$ $F_{k} = 4$ A) 0.8 B) 0.6 C) 0.3 D) 0.4 $M_{k} = \frac{4}{F_{N}} = \frac{4}{10} = 0.4$ Use the following to answer questions 22-23: The figure shows a train of four blocks being pulled across a frictionless floor by force $ec{F}$, with an acceleration equal to 3 m/s² $2 \text{ kg} \xrightarrow{\text{Cord 4}} \vec{F}$ 5 kg 10 kg $F = Ma = (m_1 + m_2 + m_3 + m_4) (a)$ 22. The magnitude of force \vec{F} on the four blocks is = (10+3+5+2)(3)=20x3=60N

A) 40 N B) 30 N C) 20 N D) 60 N


- 23. The total mass accelerated to the right by Cord 3 is m,+ m2+m = 10+3+5=18tg (A) 18 kg B) 20 kg C) 10 kg D) 13 kg
- 24. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of 1.7 m/s², the **normal force** on the man from the elevator is: $F_{\mathcal{N}} = \mathcal{N}(g - \alpha)$

A) 523.4 N B) 700.5 N C) 323.9 N D 607.5 N

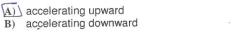
Use the following to answer questions 25-26:

In the figure, a block of mass m = 25 kg is sliding down on a frictionless plane inclined at $\theta\,$ = 60°

- A) mg B) m a (C) mg cos θ D) mg sin θ
- 26. The magnitude of the force that causes the block sliding down is F = -mg sin a

A) 212.17 N B) 150 N C) 90.44 N D) 311 N

= 75 (9.8-1.7)= 607.5N


27. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals 2 m/s². The force F on block A from block B is:

$$f_{AB} = ??$$

$$f_{AB} = m_{A} \alpha = (5)(2)$$

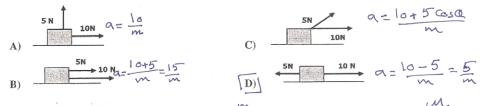
$$f_{AB} = 60 - 10 = 50 N$$

28. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :

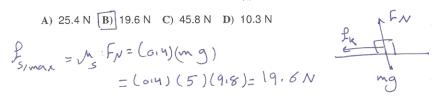
- C) moving up with constant velocity.
- D) stationary

29. A ball is shot at an angle of 25° above the horizontal with an initial speed of vo . If the range it reaches is 140 m, what its initial speed? R=Vo2Sin2Q $V_0 = \sqrt{\frac{R9}{Sin20}} = \sqrt{\frac{140 \times 9.8}{Sin50}} = 42.3 \text{m/s}$

A) 80 m/s B) 20 m/s C) 40 m/s D) 42.3 m/s


30. The force that always perpendicular to the surface is called

A) Gravitational force B) Tension C) Friction D) Normal force


31. Two objects having masses of 1Kg and 2Kg moving around a circle of radius r = 1 m and with v = 1 m/s. Their **accelerations** are related by: (A) $\frac{a_1}{v} = \frac{1}{v}$ (B) $\frac{a_1}{v} = 2$ (C) a = a (D) a = a = 0 (C) a = a = 0

A)
$$\frac{a_1}{a_2} = \frac{1}{2}$$
 B) $\frac{a_1}{a_2} = 2$ (C) $a_1 = a_2$ D) $a_1 = a_2 = 0$

32. Two forces, have magnitudes 5 N and 10 N, are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is (the least)?

33. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4. The maximum horizontal force that can be applied to the block before it slips (ينزنق) is:

King Abdulaziz University Faculty of Sciences Physics Department

Second Exam - Phys 110

Second Term 1432-1433 H

Date: 2 / 6 / 1433H

Name:

ID No:

Section:

CHOOSE THE CORRECT ANSWER

- 1. A projectile is fired from the ground level with an initial velocity 283 m/s with an angle of 60° with the horizontal. **The maximum height** the projectile reached
 - A) 8957.4 m B) 3064.6 m C) 2245.9 m D) 1598.6 m
- 2. A car goes from $\vec{v}_i = 2\hat{i} + 4\hat{j}$ to $\vec{v}_i = 3\hat{i} + 9\hat{j}$ in 5 s. The average acceleration of the car

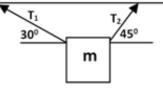
A)
$$\vec{a}_{avg} = \hat{i} - 6 \hat{j}$$
 B) $\vec{a}_{avg} = 0.2 \hat{i} + \hat{j}$ **C**) $\vec{a}_{avg} = 3 \hat{i}$ **D**) $\vec{a}_{avg} = \hat{i} - \hat{j}$

- 3. An objects move at a constant speed of 5 m/s on a circular path of radius 10 m. The **period** in seconds is:
 - A) $3\pi^3$ B) 4π C) 20 D) π
- 4. The horizontal range is the horizontal distance the projectile has traveled when it returns to
 - A) its maximum height B) its initial height C) the origin D) the start point

Use the following to answer questions 5-6:

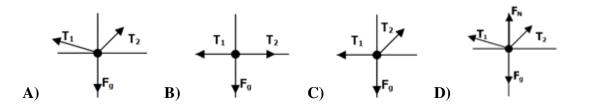
The coordinates of a particle's position vector as a function of time are given by $x=5t^2+16$, and $y=-t^3+5$, with x and y in meters and t in seconds:

5. The **velocity** as a function of time is:


A)
$$10t \ \hat{i} - 3t^2 \ \hat{j}$$
 B) $10 \ \hat{i} - 6t^2 \ \hat{j}$ **C)** $5t \ \hat{i} - 6 \ \hat{j}$ **D)** $t \ \hat{i} + 6t \ \hat{j}$

6. The position vector \vec{r} at t=2 s is

A) $26\hat{i} - 7\hat{j}$ B) $36\hat{i} - 3\hat{j}$ C) $81\hat{i} + 3\hat{j}$ D) $15\hat{i} - 5\hat{j}$


Use the following to answer questions 7-9:

A block of mass m = 5 kg is hanging by two ropes as shown in the figure:

- 7. From the figure, $\mathbf{F}_{net,x}$ on the block is:
 - A) $T_1 \cos 45 T_2 \cos 30 = 0$ C) $T_1 \cos 45 T_2 \cos 30 = m a_x$
 - **B**) $-T_1 \cos 30 + T_2 \cos 45 = 0$

- **D)** $T_1 \cos 30 T_2 \cos 45 = ma_x$
- 8. The magnitude of weight (W) in Newtons is equal to:
 - A) 9.8 N B) 9.8 N C) 49 N D) 49 N
- 9. The free body diagram representing the forces on m is:

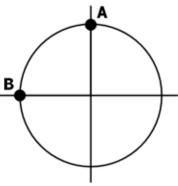
- **10.** The coefficient of static friction (μ_s) :
 - A) has a magnitude of exactly 1

C) is in the direction of the normal force

B) is dimensionless

- **D**) is in the direction of motion
- **11.** In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to

A) $v_y = v_o (\cos\theta)t$ B) $v_y = v_o (\sin\theta)t$ C) $v_y = v_o \sin\theta - gt$ D) $v_y = v_o \sin\theta + gt$

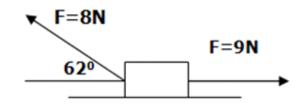

12. Two forces $\vec{F}_1 = 7\hat{i} - 5\hat{j}$ and $\vec{F}_2 = -3\hat{i} + 4\hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :

A) 7.14 N B) 4.12 N C) 13.2 N D) 10 N

13. A 0.15 kg particle moves along an x-axis with acceleration a(t) = 8-18t with a in m/s² and t in seconds. The **net force** in Newtons acting on the particle at t = 3.40s is

A) -7.98
$$\hat{i}$$
 B) 12.4 \hat{i} **C)** -5.21 \hat{i} **D)** 8.52 \hat{i}

14. In the figure, a car moves at constant speed around the circle path in a horizontal xy plane, with the center at the origin. When it is at point A its coordinates are x=0, y=3m and its velocity is (6 m/s) \hat{i} . When it is at point B its velocity and acceleration are:



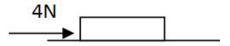
- A) $\vec{v} = +6\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively C) $\vec{v} = +6\hat{i}$ and $\vec{a} = -12\hat{i}$, respectively **B**) $\vec{v} = -6\hat{j}$ and $\vec{a} = +12\hat{j}$, respectively **D**) $\vec{v} = +4\hat{j}$ and $\vec{a} = +12\hat{i}$, respectively
- 15. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:

A) 0.58 m/s² north B) 1.71 m/s² south C) 1.71 m/s² north D) 0.58 m/s² south

- 16. The position vector for an airplane initially is $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and then 10s later is $\vec{r} = -2\hat{i} + 8\hat{j} - 2\hat{k}$, all in meters, its **average velocity** (\vec{v}_{avg}) in unit vector notation is
 - C) 4.7 \hat{i} 1.4 \hat{j} + 0.9 \hat{k} A) $-0.3\hat{i} - 1.4\hat{j} + 0.6\hat{k}$ **D**) $-5\hat{i} + 2.4\hat{j} + 0.4\hat{k}$ **B**) $-0.7 \hat{i} + 1.4 \hat{j} - 0.4 \hat{k}$
- 17. A 980 kg car is traveling at constant speed 28 m/s around circular track of radius R = 230 m. The magnitude of the frictional force on the car is
 - A) 4141.5 N B) 1245.7 N C) 3340.5 N D) 6241.6 N

18. From the figure, the **acceleration of the block** of mass 3 kg moving along an x-axis on a frictionless table is:

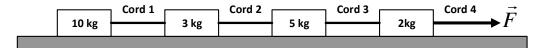
A) 2.45 m/s² B) 1.75 m/s² C) - 2.3 m/s² D) 3 m/s²


19. A particle is projected with an initial velocity $\vec{v_0} = 5.0\hat{i} + 4.0\hat{j}$ in meters per second. The **horizontal component of its velocity at the maximum height** is:

A) 7 m/s B) 12 m/s C) 2 m/s D) 5 m/s

20. A bomb (is fired from a cannon and has initial horizontal and vertical components of velocity equal to 23 m/s and 54 m/s, respectively .The angle the bomb fired with the horizontal is

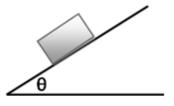
A) 49[°] B) 67[°] C) 85[°] D) 33[°]


21. A horizontal force of 4N pushes a block of weight 10N to make it move with constant velocity, the value of the **coefficient of kinetic friction** (μ_{ν}) is :

A) 0.8 B) 0.6 C) 0.3 D) 0.4

Use the following to answer questions 22-23:

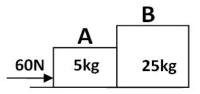
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , with an acceleration equal to 3 m/s²


22. The magnitude of force \vec{F} on the four blocks is

A) 40 N **B)** 30 N **C)** 20 N **D)** 60 N

- 23. The total mass accelerated to the right by Cord 3 is
 - A) 18 kg B) 20 kg C) 10 kg D) 13 kg
- 24. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of 1.7 m/s², the **normal force** on the man from the elevator is:
 - A) 523.4 N B) 700.5 N C) 323.9 N D) 607.5 N

Use the following to answer questions 25-26:


In the figure, a block of mass m = 25 kg is sliding down on a frictionless plane inclined at θ = 60°

- **25.** The normal force (\vec{F}_N) on the block is:
 - A) mg B) ma C) mg cos θ D) mg sin θ
- 26. The magnitude of the force that causes the block sliding down is

A) 212.17 N B) 150 N C) 90.44 N D) 311 N

27. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals 2 m/s². The force F on block A from block B is:

A) 50 N B) 60 N C) 57 N D) 40 N

- 28. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
 - A) accelerating upward
 - B) accelerating downward

- C) moving up with constant velocity.
- D) stationary

- **29.** A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{\circ} . If the range it reaches is 140 m, what its **initial speed**?
 - A) 80 m/s B) 20 m/s C) 40 m/s D) 42.3 m/s
- 30. The force that always perpendicular to the surface is called
 - A) Gravitational force B) Tension C) Friction D) Normal force
- 31. Two objects having masses of 1Kg and 2Kg moving around a circle of radius r = 1 m and with v = 1 m/s. Their **accelerations** are related by:
 - **A)** $\frac{a_1}{a_2} = \frac{1}{2}$ **B)** $\frac{a_1}{a_2} = 2$ **C)** $a_1 = a_2$ **D)** $a_1 = a_2 = 0$
- 32. Two forces, have magnitudes 5 N and 10 N, are applied to an object moving along an x-axis. In **which figure** of the following the magnitude of the acceleration of the object is the least ?

33. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4. The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:

A) 25.4 N B) 19.6 N C) 45.8 N D) 10.3 N

Answer Key

- **1.** B
- **2.** B
- **3.** B
- **4.** B
- **5.** A
- **6.** B
- 7. B
- 8. D
- 9. A 10. B
- 11. C
- 11. C 12. B
- 12. D 13. A
- 13. A 14. A
- 15. A
- 16. B
- 17. C
- 18. B
- 19. D
- **20.** B
- 21. D
- 22. D
- 23. A
- **24.** D
- **25.** C
- **26.** A
- 27. A
- **28.** A
- **29.** D
- **30.** D
- **31.** C
- 32. D33. B

King Abdulaziz University Faculty of Sciences First Term **Physics Department** 1433-1434 H Date: 20 / 1/ 1434H Second Exam - Phys 110 Name: ID No: Section: CHOOSE THE CORRECT ANSWER **1.** A particle initially has $v = 4\hat{i} - 2\hat{j} + 3\hat{k}$ m/s and then 4 s later has $v = -2\hat{i} - 2\hat{j} + 5\hat{k}$ m/s, the magnitude of the average acceleration a_{avg} is the magnitude of the average acceleration a_{avg} is **a)** 2.25 m/s² **b)** 1.58 m/s² **c)** 0.25 m/s² **d)** 1.85 m/s² $avg = \frac{V - V_0}{4}$ e following to answer questions 2-3: $avg = \frac{V - V_0}{4}$ = -1.5 L + 0.5 K $avg = \frac{V - V_0}{4}$ = -1.5 L + 0.5 K $avg = \frac{V - V_0}{4}$ = -1.5 L + 0.5 KUse the following to answer questions 2-3: A particle moves with initial velocity $v_0 = 6\hat{i} - 2.6\hat{j}$ m/s, and a constant acceleration $\hat{a} = -0.3\hat{i} + \hat{j}$ m/s² **2. How long** does the particle take to reach its maximum x -coordinate) $V_{0X} = 0$, a = -0.3 $t = \frac{V_{X} - V_{0X}}{a_{X}} = \frac{0 - \delta}{-\delta} = 205$ $V^{2} = \frac{V_{0X}^{2}}{2} = 2a_{X}(x - x_{0})$ (a))20 s b) 2.6 s c) 4.3 s d) 22.6 s 3. What is the **particle's maximum** x -coordinate a) 7 m b) 3.6 m (c) 60 m d) 36 m $X - X_0 = -\frac{36}{-0.6} = [6]^{\frac{1}{2}} + 2(-0.3)(X - X_0)$ Use the following to answer questions 4-6: A ball is projected with initial velocity $v_0 = 82$ m/s at an angle $\theta_0 = 60^\circ$ above the horizontal $v_0 = v_{0x} \hat{c}^* + v_0 \hat{y} \hat{U}$ **4.** At the maximum height ,the ball's velocity \vec{v} in unit vector notation is $V_{0\lambda} = V_0 \cos \omega$ (a) $\vec{v} = 41\hat{i}$ b) $\vec{v} = 82\hat{i} + 71\hat{j}$ c) $\vec{v} = 41\hat{i} + 71\hat{j}$ d) $\vec{v} = 71\hat{j}$ 5. The ball's velocity \overline{v}_0 in unit vector notation is: $\overline{v}_0 = 410 + 710$ 8y - Vo Sin Q =82 Cam 80 **a)** $\vec{v_0} = 30\hat{i}$ **b)** $\vec{v_0} = 24\hat{i} + 52\hat{j}$ **(c)** $\vec{v_0} = 41\hat{i} + 71\hat{j}$ **d)** $\vec{v_0} = 71\hat{j}$ The maximum range \mathbf{R}_{max} is $\mathbf{R}_{\text{max}} = \mathbf{V}_0^2 + \mathbf{S} +$ 6. The maximum range Rmax is $= \frac{V_{0}^{2}}{8} = \frac{(82)^{2}}{9.8} \quad V_{0} = 410 \pm 71.0$ a) 442 m b) 820 m c) 541 m d) 686 m Sample A Page 1

7. The position vector for moving particle as it moves in xy plane is

 $\vec{r} = (-3t^3 - 4t)\hat{i} + (-5t^2 + 6)\hat{j}$, the x and y acceleration components are: $v = (-9t^2 - 4)\hat{c} + (-10t)\hat{d} = 5\hat{a} = -18t\hat{c} - 10\hat{j} = 5\hat{a} = -18t\hat{b} m/s$ **a)** $a_x = \text{constant}, \text{ and } a_y = \text{not constant}$

b) a_{ν} = constant, and a_{ν} = constant

(c) a_{1} = not constant, and a_{2} = constant

d) $a_x = \text{not constant, and } a_y = \text{not constant}$

Use the following to answer questions 8-10:

a)
$$x = 15 \text{ m}$$
 b) $x = 5 \text{ m}$ **c)** $x = 125 \text{ m}$ **d)** $x = 1.25 \text{ m}$

Use the following to answer questions 8-10:	
A ball is projected horizontally with a velocity v_0 of magnitude 5m/s p	a = 0 , V=5m/s
8. The x - component of its position after 0.25 s is	6= 0:255
a) $x = 15 \text{ m}$ b) $x = 5 \text{ m}$ c) $x = 125 \text{ m}$ d) $x = 1.25 \text{ m}$	X-XO=VO COSQ t
9. The vertical component of its position after 0.25 s is	$x - 0 = 5 C_{03}(0) (0.25)$
a) $y = -0.613 \text{ m}$ b) $y = -0.306 \text{ m}$ c) $y = -1.22 \text{ m}$ d) $y = -2.45 \text{ m}$	8) [X = 1.25 m] 9-90= [V sine]E-Lat

10. The x - component of its velocity after 0.25 s is

a) $v_x = 3 \text{ m/s}$ **b)** $v_x = 2 \text{ m/s}$ **c)** $v_x = 4 \text{ m/s}$ **d)** $v_x = 5 \text{ m/s}$ **b)** $v_x = 2 \text{ m/s}$ **c)** $v_x = 4 \text{ m/s}$ **d)** $v_x = 5 \text{ m/s}$ **b)** $v_x = 5 \text{ m/s}$

11. The speed of a car moving in a circular path of radius 5m making two complete circle in 8 s is = 4 5 V = 21Tr = 2 1T(5) = 7.85m/s

9-90=18 sine t-1gt

a) 1.25 m/s b) 2.5 m/s c) 3.925 m/s d) 7.85 m/s

Use the following to answer questions 12-13:

A particle is moving in circular path, at y = 5 m the particles velocity is $\vec{v} = (3 m/s)\hat{i}$

12. At which point **the velocity** is $\vec{v} = -3 \hat{j}$

a) y = -5m (b) x = +5m c) y = +5m d) x = -5m

13. The acceleration at x = -5m is $\alpha = \frac{\sqrt{2}}{7} = \frac{(3)^2}{5} = 1.8 \text{ m/s}^2$ $9^2 = -5m$

a)
$$\vec{a} = (0.6 \ m \ / \ s^2) \hat{i}$$

(b) $\vec{a} = (1.8 \ m \ / \ s^2) \hat{i}$
(c) $\vec{a} = (-1.8 \ m \ / \ s^2) \hat{i}$
(d) $\vec{a} = (-0.6 \ m \ / \ s^2) \hat{i}$

14. A 5 kg block is supported ($\dot{()}$) by a cord and pulled upward with an acceleration of 2 m/s², the tension in the cord is $F_{nety} = m ay$ $T_{-mg} = m ay$ T = m (g + ay) $= 5(q \cdot s + z) = 5 = 3 \Lambda$

a=+2m/5 upward

Use the following to answer questions 15-16:

A box of mass m=100 kg is pushed at constant speed up the frictionless inclined plane of angle 300 by a force F as shown in the figure

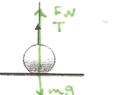
m = lookgConstant speed

> 15) Frety = may **15.** Applying Newton's second law to the x -axis, the **magnitude of F** is

6 = 30

(a) F = 565.8 N b) F = 490.7 N c) F = 980 N d) F = 577 N

16. Applying Newton's second law to the y - axis, the **normal force F**_N is:


a) $F_N = F \sin \theta - mg \cos \theta$ (c) $F_N = F \sin \theta + mg \cos \theta$ d) $F_N = mg \sin \theta - mg$ **b)** $F_N = mg$

17. Three forces $\vec{F_1} = 27.7\hat{i} + 16\hat{j}$, $\vec{F_2} = 55\hat{i}$ and $\vec{F_3} = 20.5\hat{i} - 35.5\hat{j}$ acting on a 120 kg block that can slide over a frictionless floor, the **acceleration** of the block in unit vector notation is Fret=ma => Fi+F2+F3=ma=>a=F1+F2+F3

a)
$$\vec{a} = (0.46 m / s^2) \hat{i} - (0.7 m / s^2) \hat{j}$$
 c) $\vec{a} = (0.18 m / s^2) \hat{i} - (0.34 m / s^2)$
(b) $\vec{a} = (0.86 m / s^2) \hat{i} - (0.16 m / s^2) \hat{j}$ d) $\vec{a} = (0.54 m / s^2) \hat{i} - (0.12 m / s^2)$

Use the following to answer questions 18-20:

A ball with a weight of 3 N is at rest on a horizontal surface. A tension force T=1N is applied to the w = 3Nball by an attached vertical rope but the ball is still at rest

Free-ma FN+ T-mg=0 FN=mg-T= 3N-1N=2N

Inety = ma

 $F_{coso} = -mgsin 0 = 0$ F = mgsin 0 = 565.8N Coso = 565.8N

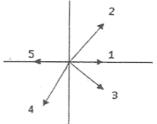
ag = 0 FN - Fsine - mgc

FN=Fsina +mg cosa

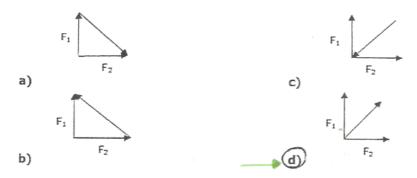
18. The normal force FN acting on the ball is

a) $F_N = 1 N$ **b**) $F_N = 4 N$ **(c**) $F_N = 2 N$ **d**) $F_N = 3 N$

19. The ball exerting a downward force on the surface. The reaction to this force is


The force of Earth on the ball
 The force of the surface on the ball

- The force of the earth on the surface c)
- d) The force of the ball on Earth


20. The ball's mass is

The ball's mass is mg = 3Na) 0.6 kg (b) 0.31 kg c) 0.11 kg d) 0.5 kg $m = \frac{3}{9} = \frac{3}{9.8} \ge 0.31 \text{ kg}$

21. Three forces $\vec{F_1} = -\hat{i} - \hat{j}$, $\vec{F_2} = -\hat{i}$ and $\vec{F_3} = \hat{i} + \hat{j}$ acting on a body, from the free body diagram the vectors that represent these forces are:

- a) $\vec{F_1}$ is vector 5 , $\vec{F_2}$ is vector 2 , $\vec{F_3}$ is vector 3
- **b)** $\vec{F_1}$ is vector **3** , $\vec{F_2}$ is vector **4** , $\vec{F_3}$ is vector **1**
- \rightarrow C) $\vec{F_1}$ is vector **4** , $\vec{F_2}$ is vector **5** , $\vec{F_3}$ is vector **2**
 - d) $\vec{F_1}$ is vector **1** , $\vec{F_2}$ is vector **3** , $\vec{F_3}$ is vector **4**
- 22. Which of the figures show the vector addition of forces F_1 and F_2 to give their **net force** Fnet :

Use the following to answer questions 23-24:

A person pushes horizontally a 38 kg block with a force F to move it across a floor along the + x axis

23. The coefficient of kinetic friction is 0.35, the magnitude of friction force is

a) $f_k = 13.3 \text{ N}$ **b)** $f_k = 12.25 \text{ N}$ **c)** $f_k = 3.43 \text{ N}$ **d)** $f_k = 130.3 \text{ N}$ m = 38 kg $M_{\rm b} = 0.35$ fu = MK FN Sample A Page 4 $f_{k} = M_{k} F N$ Sample A Page 4 $f_{v} = M_{k} (mg) = 0.35 (38)(q.8) = 130.3 N$

Fret = ma F-fk=ma=>a= F-fk m 24. The acceleration of the block is: \rightarrow (a) $a = \frac{F - f_k}{m}$ (b) $a = \frac{F}{m}$ (c) $a = \frac{F_N - \mu_k f}{m}$ (d) $a = \frac{f_s - F}{m}$ 25. A block of mass 50 kg lies on a floor, the magnitude of the frictional force on it from be cause is No Force at sliding F=0 the floor is: a) 490 N (b) 0 c) 50 N d) 4.9 N a) $F_{N} = 0$ (c) $F_{N} = 45 \text{ N}$ (c) $F_{N} = 45 \text{ N}$ $F_{N} = 45 \text{ N}$ (c) $F_{N} = 0$ (c) $F_{N} > 45 \text{ N}$ (c) $F_{N} = 45 \text{ N}$ $F_{N} = 45 \text{ N}$ (c) $F_{N} = 0$ (c) $F_{N} = 45 \text{ N}$ (c) 26. A block of weight 45N resting on a table in an elevator moving upward at increasing speed, \star 0, 27. The physical quantities are measured in the same units are: velocity and displacement (d) weight and tension b) friction and acceleration N / m/52 $N \neq N$ **28.** In the figure, if the body does not move, then the static frictional force f_{\perp} and the component of F are: a) $f_s = zero$ **b)** $f_s >$ the component of F $f_s = and opposite of the component of F$ $d) f_s < the component of F$ N= lkg.mlst= F=ma 29. A newton is the force: a) of gravity on a 1 kg body b) of gravity on a 1 g body c) that gives a 1 g body an acceleration of 1 cm/s² (d)) that gives a 1 kg body an acceleration of 1m/s² 30. In a given figure, the weight exerted on Earth from the ball is 700N boy -Ball -)50N W=700+50=750N

(a))750N b) 50N c) 700N d) 490N

Vx = const => ax = 0

31. In projectile motion, the acceleration of any projectile along the x-direction is:

- a) -9.8m/s² (b) 0 c) less than zero d) great than zero
- **32.** The position vector \vec{r} of a body is defined by equation $\vec{r} = (P t Q t^3) \hat{i} + N \hat{j}$ where P_r *Q* and *N* are constants. The **velocity of the particle will be zero at time** equal to: V=0 at t= χ V= $\frac{dv}{dt} = (P - 3Qt^2)\hat{c}$ 0= $P - 3Qt^2 = \chi t = \sqrt{\frac{+P}{+3Q}}$

a)
$$\frac{Q}{P}$$
 (b) $\sqrt{\frac{P}{3Q}}$ (c) $\sqrt{\frac{3Q}{P}}$ (d) \sqrt{PQ}

33. The direction of the centripetal force acting on a body moving in uniform circular motion is always point toward the conter of the circle