```
KING ABDULAZIZ UNIVERSITY
SCIENCE FACULTY
PHYSICS DEPARTMENT
Summer Term
Second Exam
Summer Term
Second Exam
```


Student Number:
Group:

CHOOSE THE CORRECT ANSWER:

1. A Ball is thrown from ground level making an angle of 30° above the horizontal. The ball speed is $980 \mathrm{~m} / \mathrm{s}$. What is the of Range the projectile?
a) $4.3 \times 10^{3} \mathrm{~m}$
b) $8.5 \times 10^{3} \mathrm{~m}$
c) $43 \times 10^{3} \mathrm{~m}$
d) $84.8 \times 10^{3} \mathrm{~m}$
2. Acceleration is defined as:
a) Rate of change of position with time.
b) Distance divided by time.
c) Rate of change of velocity with time.
d) A position of an object.
3. Which of the following is a scalar quantity?
a) Speed
b) Velocity
c) Displacement
d) Acceleration
4. A force of 1 N is:
a) $1 \mathrm{~kg} / \mathrm{s}$
b) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
d) $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
5. In which figure of the following the \mathbf{Y} - Component of the net forces is Zero :

(a)

(b)

(c)

(d)
6. A block of mass m is connected to a block of mass M as shown, the normal force on block m is :
a) $\mathrm{F}_{\mathrm{N}}=m g-\mathrm{T}$
b) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}-\mathrm{T}$
c) $\mathrm{F}_{\mathrm{N}}=m g$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$

7. In the diagram, if we cut the cord, the acceleration of mass M is :
a) $\mathrm{a}=$ zero
b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
c) $\mathrm{a}=4.9 \mathrm{~m} / \mathrm{s}^{2}$
d) $\mathrm{a}=735 \mathrm{~m} / \mathrm{s}^{2}$

8. The coefficient of static friction $\mu_{\mathrm{s}}=0.4$ between a 5 kg block and horizontal surface. The maximum horizontal force that can be applied to the block before it slips is:
a) 10 N
b) 19.6 N
c) 5.5 N
d) 8.7 N
9. A 40-N box rests on a rough horizontal floor. A 12 N horizontal force is then applied to it but the box does not move. What is the magnitude of the frictional force on the box?
a) 28 N
b) 52 N
c) 3.3 N
d) 12 N

10. The two physical quantities measured in the same units are;
a) velocity and acceleration
b) weight and force
c) mass and weight
d) force and mass
11. An 800 N person is standing in an elevator. If the normal force on the person is 600 N , the person is;
a) at rest
b) accelerating upward
c) accelerating downward
d) moving up at a constant speed
12. From the diagram; the acceleration of the two blocks is;
a) $1 \mathrm{~m} / \mathrm{s}^{2}$
b) $2 \mathrm{~m} / \mathrm{s}^{2}$
c) $30 \mathrm{~m} / \mathrm{s}^{2}$
d) $50 \mathrm{~m} / \mathrm{s}^{2}$

13. If the position of an object changes from $\vec{r}_{1}=-2 \hat{i}+3 \hat{j}$ to $\vec{r}_{2}=\hat{i}-2 \hat{j}$, the displacement is:
a) $\Delta \vec{r}=3 \hat{i}+5 \hat{j}$
b) $\Delta \vec{r}=-\hat{\imath}-5 \hat{\jmath}$
c) $\Delta \vec{r}=-3 \hat{i}-5 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}-5 \hat{j}$
14. Two masses $m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=4 \mathrm{~kg}$ situated on a frictionless horizontal surface are connected by a string. A force $\mathrm{F}=12 \mathrm{~N}$ is exerted on m_{2} as shown in fig. The acceleration of the
system is
a) $4 \mathrm{~m} / \mathrm{s}^{2}$
b) $3 \mathrm{~m} / \mathrm{s}^{2}$
c) $2 \mathrm{~m} / \mathrm{s}^{2}$
d) $1 \mathrm{~m} / \mathrm{s}^{2}$

15. The position of a particle is given by $\vec{r}(\mathrm{t})=25 \mathrm{t} \hat{\imath}+4 \mathrm{t}^{2} \hat{\jmath}$, the instantaneous acceleration at $\mathrm{t}=1 \mathrm{~s}$ is:
a) $(25 \hat{\imath}+8 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
b) $(25 \hat{\imath}+8 t \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
c) $8 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}$
d) $2 \mathrm{~m} / \mathrm{s}^{2}$
16. A box, has mass of 4 kg , is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:
a) 39.2 N
b) 59.2 N
c) 19.2 N
d) 40 N

17. If the net forces applied to a 5.0 kg box is 10 N , then the magnitude of the acceleration of the box is:
a) $0.50 \mathrm{~m} / \mathrm{s}^{2}$
b) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.8 \mathrm{~m} / \mathrm{s}^{2}$
d) $10 \mathrm{~m} / \mathrm{s}^{2}$
18. The angle that gives the maximum range for a projectile is:
a) $\theta=40^{\circ}$
b) $\theta=44^{\circ}$
c) $\theta=90^{\circ}$
d) $\theta=45^{\circ}$
19. A 400 N steel ball is suspended by a light rope from the ceiling. The tension in the rope is:
a) 400 N
b) 800 N
c) zero
d) 200 N
20. Which law says that force is equal to mass times acceleration ($\mathrm{F}=\mathrm{MA}$) ?
a) Newton's first law of motion
b) Newton's third law of motion
c) Newton's second law of motion
d) none
21. A particle's displacement is given by $r_{x}=4 t^{2}+2$ and $r_{y}=2 t^{3}$. The velocity components are:
a) $v_{x}=8 t, v_{y}=6 t^{2}$
b) $\mathrm{v}_{\mathrm{x}}=-8 \mathrm{t}, \mathrm{v}_{\mathrm{y}}=6 \mathrm{t}$
c) $v_{x}=8 t+2, v_{y}=6 t^{2}$
d) $v_{x}=4 t, v_{y}=0$
22. As in Newton's second law, acceleration is always in the direction:
a) of the displacement
b) of the final velocity
c) of the initial velocity
d) of the net force
23. From the diagram; the magnitude of the normal force F_{N} acting on the box
a) Mg
b) $\mathrm{Mg} \cos \theta$
c) $\mathrm{Mg} \sin \theta$
d) $\mathrm{Mg} \tan \theta$

24. A car travels east at constant velocity. The net force on the car is;
a) east
b) west
c) up
d) zero
25. The gravitational force of earth acting on a 1 kg is
a) 8.9 N
b) 9.8 N
c) 980 N
d) 1 N
26. An 80 kg man stands on a scale in an elevator cab, if the cab accelerate upward with 1.2 $\mathrm{m} / \mathrm{s}^{2}$, the normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is;
a) 80 N
b) 880 N
c) zero N
d) 680 N
27. Two forces act on a particle that moves with constant velocity, one of the forces is $\vec{F}_{1}=3 \hat{i}-5 \hat{j} \mathrm{~N}$, what is the other force?
a) $\vec{F}_{2}=3 \hat{i}-5 \hat{j}$
b) $\vec{F}_{2}=5 \hat{i}-8 \hat{j}$
c) $\vec{F}_{2}=-3 \hat{i}+5 \hat{j}$
d) $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}$
28. A 10 N horizontal force pushes a block of weight 50 N to make it move with constant speed, the value of the coefficient of friction μ_{k} is;
a) 0.2
b) 0.4
c) 0.5
d) 0.10
29. A man of mass 72 kg stands on a scale in an elevator cab. What does the scale read if the cab is not moving?
a) 21 N
b) 200 N
c) 705.6 N
d) 0
30. The y component of a vector \mathbf{A}; $\left(\mathrm{A}_{y}\right)$ is given by:
a) $\mathrm{A} \tan \theta$
b) $\mathrm{A} \sin \theta$
c) $A \cos \theta$
d) $\mathrm{A} \cot \theta$
31. A ball in projectile motion at the highest point,
a) $v_{y}=0$.
and $\quad \mathrm{v}_{\mathrm{x}}=$ constant
b) $\mathrm{v}_{\mathrm{y}}=$ constant
$\mathrm{v}_{\mathrm{x}}=0$
c) $v_{y}=$ constant and $v_{x}=$ constant
d) $\mathrm{v}_{\mathrm{y}}=0$.
and $\quad v_{x}=0$
32. A girl weighs 489 N on Earth. Her mass is;
a) 489 kg
b) 9.8 kg
c) 0 kg
d) 50 kg
33. In Newton's third law the action and reaction forces are;
a) Both forces are equal and opposite in direction.
b) Both are in the same direction.
c) The action force is greater than the reaction force.
d) The reaction force is greater than the action force.

King Abdulaziz University

Faculty of Sciences
Physics Department
Second Exam - Phys 110

First Term 1432-1433 H

Date: 10/ 1/ 1433H

A
Name: \quad ID No: Section:

CHOOSE THE CORRECT ANSWER

1. A girl of mass 50 kg standing in a stationary elevator, her weight is:
a) 490 N
b) 550 N
c) 245 N
d) 392 N
$W=m g$
$W=50 \times 9.8=490 \mathrm{~N}$
2. Three forces act on a 2 kg object give it an acceleration $\vec{a}=-8 \hat{i}+6 \hat{j}$. if $\vec{F}_{1}=30 \hat{i}+16 \hat{j}$ and $\vec{F}_{2}=-12 \hat{i}+8 \hat{j}$ the third force is $\sum \vec{F}=m a$

$$
F_{1}+F_{2}+F_{3}=m a
$$

a) $\vec{F}_{3}=34 \hat{i}+12 \hat{j}$
c) $\vec{F}_{3}=-30 \hat{i}-6 \hat{j} \quad 30 \hat{i}+16 \hat{j}+(-12 \hat{i})+8 \hat{j}+F_{3}=2(-8 \hat{i}+6 \hat{j})$
b) $\vec{F}_{3}=-34 \hat{i}-12 \hat{j}$
d) $\vec{F}_{3}=8 \hat{i}-16 \hat{j} \quad 18 \hat{i}+24 \hat{j}+F_{3}=-16 \hat{i}+12 j$ $F_{3}=-34 \hat{i}-12 \hat{j}$
3. A particle in uniform circular motion of radius $r=2 \mathrm{~m}$ moved one period. The
distance that the particle travelled in meters is:
a) 4π
b) 2π
c) π
d) 3π
$\frac{\operatorname{ren}_{2} 1}{6+\tan (1)}=2 \pi r=4 \pi$
-tran

4. A particle is said to be in uniform circular motion if
a) its velocity has a constant magnitude
b) its velocity has a constant direction
c) its velocity is directed towards the center
d) its velocity equals zero
5. 10.3 N is equal to
a) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$
b) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
c) $10.3 \frac{\mathrm{~kg}^{2} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
d) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
$F=m a$
$N=\operatorname{lgm} / \mathrm{s}^{2}$

$$
10.3 \mathrm{~N}=10.3 \mathrm{Kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

6. At the maximum height of a projectile, what of the following is correct?
a) Its velocity is zero
c) Its x-component velocity is zero
b) Its y-component velocity is zero
d) Its acceleration is zero

Use the following to answer questions 7-9:
In the figure, a cord holds stationary a block of mass $m=8.5 \mathrm{~kg}$ on a frictionless plane that is inclined at angle $\theta=30^{\circ}$.

$$
\begin{gathered}
T-m g \sin \theta=m a \\
a=0 \\
T=m g \sin \theta \\
=8.5(9.8) \sin 30
\end{gathered}
$$

7. The tension in the cord T equals:
a) 72.14 N
b) 83.3 N
c) 53.14 N
d) 41.65 N
8. The normal Force F_{N} acting on the block is
a) 53.14 N
b) 41.65 N
c) 83.3 N d) 72.14 N

$$
\begin{aligned}
F_{N} & =m g \cos \theta \\
& =8.5(9.8) \cos 30 \\
& =72.14 \mathrm{~N}
\end{aligned}
$$

9. If the cord is cut, the magnitude of the acceleration of the block is $T=0$
a) zero
b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $6 \mathrm{~m} / \mathrm{s}^{2}$
d) $4 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& T-m g \sin \theta=m a \\
&-m g \sin \theta=m a
\end{aligned}
$$

10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:

號

a) The force of Earth on the bag
b) The force of the table on the bag
c) The force of the Earth on the table
d) The force of the bag on Earth
11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}=60 \mathrm{~N}$, what is the magnitude of the system's acceleration?

Cord $1 \quad$ Cord 2 $\quad 3 \mathrm{~kg} \quad$ Cord 3 $\quad 2 \mathrm{~kg} \xrightarrow{c}$ Cord 4 \vec{F}
a) $3 \mathrm{~m} / \mathrm{s}^{2}$
b) $6 \mathrm{~m} / \mathrm{s}^{2}$
c) $12 \mathrm{~m} / \mathrm{s}^{2}$
d) $20 \mathrm{~m} / \mathrm{s}^{2}$
12. The cable in the figure is raising a box of mass $M=250 \mathrm{~kg}$ with an upward

$$
a=\frac{60}{20}=3 \mathrm{~m} / \mathrm{s}^{2}
$$ acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The tension T in the cable is

$$
\begin{aligned}
& T-m g=m a \\
& T=m a+m g \\
& T=m(a+g) \\
& T=250(4+9.8)
\end{aligned}
$$

a) 863 N
b) 1725 N
c) 3450 N
d) 6900
13. In the figure the net force on the block is:

a) 1 N -right
b) 6 N -up c) 3 N -left
d) 4 N -down

14. Ignoring air resistance, the acceleration of any projectile along the x direction a_{x} in (SI units) is $\quad a_{x}=0$
a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ b) zero
c) not constant
d) less than zero
15. Three forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}, \vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ and $\vec{F}_{3}=-6 \hat{j}$ acting on a body, the value of $F_{\text {net, }}$ x and $F_{\text {net }, y}$ are:
a) $F_{\text {net }, x}=6 \mathrm{~N}$ and $F_{\text {net }, y}=-8 \mathrm{~N}$
b) $F_{\text {net }, x}=-6 \mathrm{~N}$ and $F_{\text {net, }, y}=8 \mathrm{~N}$
c) $F_{\text {net }, x}=0$ and $F_{\text {net, }, y}=-6 \mathrm{~N}$
d) $F_{\text {net }, x}=9 \mathrm{~N}$ and $F_{\text {net, }, y}=16 \mathrm{~N}$

$$
\begin{aligned}
& F_{n e t, x}=(3-3+0)=0 \mathrm{~N} \\
& F_{n e t, y}=(-4+4-6)=-6 \mathrm{~N}
\end{aligned}
$$

16. Two forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body, from the free body diagram the vectors that represent \vec{F}_{1} and \vec{F}_{2} are

a) \vec{F}_{1} is vector $\mathbf{1}, \vec{F}_{2}$ is vector $\mathbf{3}$
b) \vec{F}_{1} is vector $\mathbf{2}, \vec{F}_{2}$ is vector $\mathbf{4}$
c) \vec{F}_{1} is vector $\mathbf{3}, \vec{F}_{2}$ is vector $\mathbf{1}$
d) \vec{F}_{1} is vector $\mathbf{4}, \vec{F}_{2}$ is vector $\mathbf{2}$

Use the following to answer questions 17-20:
A block lies on a floor as shown in the figure

17. The magnitude of the frictional force on it from the floor when $F=0$
a) 0
b) 5 N
c) 20 N
d) 8 N
18. When F pulls the block to the right with an acceleration a_{x}, The coefficient
of Kinetic friction μ_{K} is: $\quad F_{\text {net ,x }}=m a_{x}$ - $F-F_{N} M_{K}=m a_{X}$ a) $\mu_{k}=\frac{F-m a_{x}}{F_{N}}$
b) $\mu_{k}=\frac{F_{N}}{F-m a_{x}}$
c) $\mu_{k}=\frac{m a_{x}}{F_{N}}$ d) $\mu_{k}=\frac{m a_{x}-F F_{N}}{F_{N}} \mu_{K}=m q_{X}-F F_{N}=F-m a_{K}$ $\therefore 4_{k}=$
19. The magnitude of the frictional force on it from the floor when $F=8 \mathrm{~N}$,but the block does not move
a) 0
b) 5 N
c) 20 N
d) 8 N

$$
F_{s}=8 \mathrm{~N} \longleftrightarrow F F=8 \mathrm{~N}
$$

20. If the maximum static frictional force $f_{s, \max }=20 \mathrm{~N}$, the block will move to the right when F is equal to
a) 21 N
b) 15 N
c) 19 N
d) 12 N

21. A car moves in a circular road of radius $r=7.6 \mathrm{~m}$ with a speed $96.6 \mathrm{~km} / \mathrm{h}$, the car's acceleration is:

$$
\begin{aligned}
& 6.6 \mathrm{~km} / \mathrm{h}_{1}^{2} \\
& a=\frac{v^{2}}{R}=\frac{(96.6)^{2}}{7.6}
\end{aligned}
$$

a) $18.4 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
b) $12.3 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
c) $20.7 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
d) $15.8 \times 10^{2} \mathrm{~km} / \mathrm{h}^{2}$
22. Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force $(\mathbf{F g})$ on m_{2} is

$$
\begin{aligned}
F_{g} & =m a \\
F_{g} & =(10+15) 9.8 \\
& =245 \mathrm{~N}
\end{aligned}
$$

a) 25 N b) 245 N
c) 2450 N
d) 5 N
$\bar{v}=9 t \hat{i}+(8 t) \hat{j}$
23. The position vector of a moving car in meters is: $\vec{r}=\left(3 t^{3}\right) \hat{i}+\left(4 t^{2}+3\right) \hat{j}$, its acceleration at $\mathbf{t}=1 \mathrm{~s}$ is:

a) $\vec{a}=18 \hat{i}+8 \hat{j}$
b) $\vec{a}=8 \hat{i}+18 \hat{j}$
c) $\vec{a}=9 \hat{i}+18 \hat{j}$
d) $\vec{a}=9 \hat{i}+8 \hat{j}$
$a=18 t j i+8 \hat{j}$
$a=18 \hat{i}+8 \hat{j}$
24. The position of a moving particle is $\vec{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity as a function of time is;

$$
V=8 t \hat{j}+\hat{k}
$$

a) $\vec{v}=8 \hat{j}$
$\overrightarrow{b) \vec{v}}=8 t \hat{j}+\hat{k}$
c) $\vec{v}=\hat{i}+8 t \hat{j}+\hat{k}$
d) $\vec{v}=8 t \hat{j}$
25. According to Newton's second law, the force and acceleration are:
a) in the opposite direction.
c) perpendicular to each other.
b) in the same direction.
d) scalar quantities.
26. The position of a particle was initially at $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and later at $\vec{r}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$. The particle's displacement vector is:
a) $\Delta \vec{r}=-7 \hat{i}+12 \hat{j}$
c) $\Delta \vec{r}=7 \hat{i}-12 \hat{j}$
b) $\Delta \vec{r}=3 \hat{i}+4 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}+12 \hat{j}+4 \hat{k}$

$$
\begin{array}{ll}
\Delta \vec{r}=3 \hat{i}+4 \hat{j} & \text { d) } \Delta \vec{r}=3 \hat{i}+12 \hat{j}+4 \hat{k} \\
r=r_{2}-r_{1}=-2 \hat{i}+6 \hat{j}+2 \hat{k}-5 \hat{i}+6 \hat{j}-2 \hat{k}
\end{array}
$$

$$
=-7 \hat{i}+12 \hat{j}
$$

$$
t=10, \begin{aligned}
X & =-2(10)^{2}+10(10)+30 \\
& =-200+100+30 \\
& =-70
\end{aligned}
$$

27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x=-2 t^{2}+10 t+30$, and $y=t^{2}-5 t+10$ at $\mathbf{t}=$ 10 s the position vector \vec{r} is:

$$
y=(10)^{2}-5(10)+10
$$

a) $\bar{r}=70 \hat{i}-60 \hat{j}$
c) $\vec{r}=-60 \hat{i}+70 \hat{j}$

$$
\begin{aligned}
& =100-50+10 \\
& =60
\end{aligned}
$$

b) $\vec{r}=60 \hat{i}-70 \hat{j}$
d) $\vec{r}=-70 \hat{i}+60 \hat{j}$

Use the following to answer questions 28-30:

$$
\begin{aligned}
\theta & =0 \\
V_{0 x} & =30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A ball rolls horizontally off the top of a building with a speed of $30 \mathrm{~m} / \mathrm{s}$. If the ball $t=3.03 \mathrm{~s}$ landed on the ground in a time $t=3.03 \mathrm{~s}$
28. The height of the building from the ground is

$$
\begin{aligned}
& t=\sqrt{\frac{2 h}{9}} \\
& t^{3}=\frac{2 h}{9} \Rightarrow h=\frac{9 t^{2}}{2}=\frac{9.8(3.03)^{2}}{2} \\
&=45 \mathrm{~m}
\end{aligned}
$$

a) 45 m
b) 14.8 m
c) 90 m
d) 22 m
29. At what horizontal distance from the rolling point does the projectile strikes the ground

$$
\begin{aligned}
x-x_{0} & =V_{o x} t \\
& =30(3.03) \\
& =90.9 \mathrm{~m}
\end{aligned}
$$

a) 9.9 m b) 90.9 m
c) 0.9 m
d) 99 m
30. What is the magnitude of the vertical component of its velocity as it strikes the ground

$$
\begin{aligned}
& \text { ty as it strikes } \\
& V_{y}=V_{0} \sin \sigma_{0}-g t \\
& V_{y}=0-9.8(3.03) \\
& \left|V_{y}\right|=29.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

a) $2.9 \mathrm{~m} / \mathrm{s}$
b) $0.31 \mathrm{~m} / \mathrm{s}$
c) $3.2 \mathrm{~m} / \mathrm{s}$ d) $29.7 \mathrm{~m} / \mathrm{s}$
31. A block of mass M is connected to a block of mass m as shown. The normal force on block M is:

a) $F_{N}=M g$
b) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}-\mathrm{T}$
c) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{T}$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$

$$
\vec{V}_{\text {avg }}=\frac{r_{2}-r_{1}}{t_{2}-t_{1}}=\frac{24 i-(-10) \hat{k}}{2}
$$

32. A particle moves from $\vec{r}_{1}=(-10 m) \hat{k}$ to $\vec{r}_{2}=(24 m) \hat{i}$ in 2 s . Its average velocity is:
a) $\vec{v}_{a v g}=\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
c) $\vec{v}_{\text {avg }}=\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
b) $\vec{v}_{\text {avg }}=\left(12 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
d) $\vec{v}_{\text {avg }}=\left(-5 \frac{m}{\mathrm{~s}}\right) \hat{i}+\left(12 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
33. A force F is applied to an object of mass $m_{1}=45 \mathrm{~kg}$ produces an acceleration of 2 $\mathrm{m} / \mathrm{s}^{2}$. The same force is applied to a second object of mass m_{2} produces an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. The value of m_{2} is
a) 45 kg b) 60 kg
c) 30 kg
d) 67 kg

$$
\begin{gathered}
F_{1}=F_{2} \\
m_{1} a_{1}=m_{2} a_{2} \\
45 \times 2=m_{2} \times 1.5 \\
m_{2}=\frac{45 \times 2}{1.5} \\
=60 \mathrm{~kg}
\end{gathered}
$$

King Abdulaziz University
Faculty of Sciences
Physics Department

First Term

CHOOSE THE CORRECT ANSWER

1. A girl of mass 50 kg standing in a stationary elevator, her weight is:
a) 490 N
b) 550 N
c) 245 N
d) 392 N
2. Three forces act on a 2 kg object give it an acceleration $\vec{a}=-8 \hat{i}+6 \hat{j}$. if $\vec{F}_{1}=30 \hat{i}+16 \hat{j}$ and $\vec{F}_{2}=-12 \hat{i}+8 \hat{j}$ the third force is
a) $\quad \vec{F}_{3}=34 \hat{i}+12 \hat{j}$
b) $\vec{F}_{3}=-34 \hat{i}-12 \hat{j}$
c) $\vec{F}_{3}=-30 \hat{i}-6 \hat{j}$
d) $\vec{F}_{3}=8 \hat{i}-16 \hat{j}$
3. A particle in uniform circular motion of radius $r=2 m$ moved one period. The distance that the particle travelled in meters is:
a) 4π
b) 2π
c) π
d) 3π
4. A particle is said to be in uniform circular motion if
a) its velocity has a constant magnitude
b) its velocity has a constant direction
c) its velocity is directed towards the center
d) its velocity equals zero
5. 10.3 N is equal to
a) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$
b) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
c) $10.3 \frac{\mathrm{~kg}^{2} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
d) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
6. At the maximum height of a projectile, what of the following is correct?
a) Its velocity is zero
c) Its x-component velocity is zero
b) Its y-component velocity is zero
d) Its acceleration is zero

Use the following to answer questions 7-9:
In the figure, a cord holds stationary a block of mass $\mathrm{m}=8.5 \mathrm{~kg}$ on a frictionless plane that is inclined at an angle $\theta=30^{\circ}$.

7. The tension in the cord T equals:
a) 72.14 N
b) 83.3 N
c) 53.14 N
d) 41.65 N
8. The normal Force F_{N} acting on the block is
a) 53.14 N
b) 41.65 N
c) 83.3 N
d) 72.14 N
9. If the cord is cut, the magnitude of the acceleration of the block is
a) zero
b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $6 \mathrm{~m} / \mathrm{s}^{2}$
d) $4 \mathrm{~m} / \mathrm{s}^{2}$
10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:
a) The force of Earth on the bag
b) The force of the table on the bag
c) The force of the Earth on the table
d) The force of the bag on Earth
11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}=60 \mathrm{~N}$, what is the magnitude of the system's acceleration?

a) $3 \mathrm{~m} / \mathrm{s}^{2}$
b) $6 \mathrm{~m} / \mathrm{s}^{2}$
c) $12 \mathrm{~m} / \mathrm{s}^{2}$
d) $20 \mathrm{~m} / \mathrm{s}^{2}$
12. The cable in the figure is raising a box of mass $M=250 \mathrm{~kg}$ with an upward acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The tension \mathbf{T} in the cable is

a) 863 N
b) 1725 N
c) 3450 N
d) 6900
13. In the figure the net force on the block is:

a) 1 N -right
b) 6 N -up
c) 3 N -left
d) 4 N -down
14. Ignoring air resistance, the acceleration of any projectile along the x direction a_{x} in (SI units) is
a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
b) zero
c) not constant
d) less than zero
15. Three forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}, \vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ and $\vec{F}_{3}=-6 \hat{j}$ acting on a body, the value of $F_{\text {net, } x}$ and $F_{\text {net, }}$ are:
a) $F_{\text {net }, x}=6 \mathrm{~N}$ and $F_{\text {net, }, y}=-8 \mathrm{~N}$
b) $F_{\text {net }, x}=-6 \mathrm{~N}$ and $F_{\text {net, }, y}=8 \mathrm{~N}$
c) $F_{\text {net }, x}=0$ and $F_{\text {net }, y}=-6 \mathrm{~N}$
d) $F_{\text {net }, \mathrm{x}}=9 \mathrm{~N}$ and $F_{\text {net, }, ~}=16 \mathrm{~N}$
16. Two forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body, from the free body diagram the vectors that represent \vec{F}_{1} and \vec{F}_{2} are

a) \vec{F}_{1} is vector $\mathbf{1}, \vec{F}_{2}$ is vector $\mathbf{3}$
b) \vec{F}_{1} is vector $\mathbf{2}, \vec{F}_{2}$ is vector $\mathbf{4}$
c) \vec{F}_{1} is vector $\mathbf{3}, \vec{F}_{2}$ is vector $\mathbf{1}$
d) \vec{F}_{1} is vector $\mathbf{4}, \vec{F}_{2}$ is vector $\mathbf{2}$

Use the following to answer questions 17-20:
A block lies on a floor as shown in the figure

17. The magnitude of the frictional force on it from the floor when $F=0$
a) 0
b) 5 N
c) 20 N
d) 8 N
18. When F pulls the block to the right with an acceleration a_{x}, The coefficient of Kinetic friction μ_{K} is:
a) $\mu_{k}=\frac{F-m a_{x}}{F_{N}}$
b) $\mu_{k}=\frac{F_{N}}{F-m a_{x}}$
c) $\mu_{k}=\frac{m a_{x}}{F_{N}}$
d) $\mu_{k}=\frac{m a_{x}-F}{F_{N}}$
19. The magnitude of the frictional force on it from the floor when $F=8 \mathbf{N}$, but the block does not move
a) 0
b) 5 N
c) 20 N
d) 8 N
20. If the maximum static frictional force $f_{s, \max }=20 \mathrm{~N}$, the block will move to the right when F is equal to
a) 21 N
b) 15 N
c) 19 N
d) 12 N
21. A car moves in a circular road of radius $r=7.6 \mathrm{~m}$ with a speed $96.6 \mathrm{~km} / \mathrm{h}$, the car's acceleration is:
a) $18.4 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
b) $12.3 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
c) $20.7 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
d) $15.8 \times 10^{2} \mathrm{~km} / \mathrm{h}^{2}$
22. Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force (Fg) on $\mathbf{m}_{\mathbf{2}}$ is

a) 25 N
b) 245 N
c) 2450 N
d) 5 N
23. The position vector of a moving car in meters is: $\vec{r}=\left(3 t^{3}\right) \hat{i}+\left(4 t^{2}+3\right) \hat{j}$, its acceleration at $\mathbf{t}=1 \mathrm{~s}$ is:
a) $\vec{a}=18 \hat{i}+8 \hat{j}$
b) $\vec{a}=8 \hat{i}+18 \hat{j}$
c) $\vec{a}=9 \hat{i}+18 \hat{j}$
d) $\vec{a}=9 \hat{i}+8 \hat{j}$
24. The position of a moving particle is $\vec{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity as a function of time is;
a) $\vec{v}=8 \hat{j}$
b) $\vec{v}=8 t \hat{j}+\hat{k}$
c) $\vec{v}=\hat{i}+8 t \hat{j}+\hat{k}$
d) $\vec{v}=8 t \hat{j}$
25. According to Newton's second law, the force and acceleration are:
a) in the opposite direction.
c) perpendicular to each other.
b) in the same direction.
d) scalar quantities.
26. The position of a particle was initially at $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and later at $\vec{r}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$. The particle's displacement vector is:
a) $\Delta \vec{r}=-7 \hat{i}+12 \hat{j}$
b) $\Delta \vec{r}=3 \hat{i}+4 \hat{j}$
c) $\Delta \vec{r}=7 \hat{i}-12 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}+12 \hat{j}+4 \hat{k}$
27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x=-2 t^{2}+10 t+30$, and $y=t^{2}-5 t+10$ at $\mathbf{t}=$ $10 \boldsymbol{s}$ the position vector \vec{r} is:
a) $\vec{r}=70 \hat{i}-60 \hat{j}$
b) $\vec{r}=60 \hat{i}-70 \hat{j}$
c) $\vec{r}=-60 \hat{i}+70 \hat{j}$
d) $\vec{r}=-70 \hat{i}+60 \hat{j}$

Use the following to answer questions 28-30:
A ball rolls horizontally off the top of a building with a speed of $30 \mathrm{~m} / \mathrm{s}$. If the ball landed on the ground in a time $t=3.03 \mathrm{~s}$
28. The height of the building from the ground is
a) 45 m
b) 14.8 m
c) 90 m
d) 22 m
29. At what horizontal distance from the rolling point does the projectile strikes the ground
a) 9.9 m
b) 90.9 m
c) 0.9 m
d) 99 m
30. What is the magnitude of the vertical component of its velocity as it strikes the ground
a) $2.9 \mathrm{~m} / \mathrm{s}$
b) $0.31 \mathrm{~m} / \mathrm{s}$
c) $3.2 \mathrm{~m} / \mathrm{s}$
d) $29.7 \mathrm{~m} / \mathrm{s}$
31. A block of mass M is connected to a block of mass m as shown. The normal force on block M is:

a) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$
b) $F_{N}=M g-T$
c) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{T}$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$
32. A particle moves from $\vec{r}_{1}=(-10 m) \hat{k}$ to $\vec{r}_{2}=(24 m) \hat{i}$ in 2 s . Its average velocity is:
a) $\vec{v}_{\text {avg }}=\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
b) $\vec{v}_{\text {avg }}=\left(12 \frac{m}{s}\right) \hat{i}+\left(5 \frac{m}{s}\right) \hat{k}$
c) $\vec{v}_{\text {avg }}=\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
d) $\vec{v}_{\text {avg }}=\left(-5 \frac{m}{s}\right) \hat{i}+\left(12 \frac{m}{s}\right) \hat{k}$
33. A force F is applied to an object of mass $m_{1}=45 \mathrm{~kg}$ produces an acceleration of 2 $\mathrm{m} / \mathrm{s}^{2}$. The same force is applied to a second object of mass m_{2} produces an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. The value of m_{2} is
a) 45 kg
b) 60 kg
c) 30 kg
d) 67 kg

Answer Key

1. a
2. b
3. a
4. a
5. a
6. b
7. d
8. d
9. b
10. b
11. a
12. c
13. c
14. b
15. c
16. d
17. a
18. a
19. d
20. a
21. b
22. b
23. a
24. b
25. b
26. a
27. d
28. a
29. b
30. d
31. a
32. b
33. b

السم الطالب:		

Q1-1. If the position of an object changes from $\vec{r}_{1}=-2 \hat{i}+3 \hat{j}$ to $\vec{r}_{2}=\hat{i}-2 \hat{j}$, the displacement is:
A) $\Delta \vec{r}=3 \hat{i}+5 \hat{j}$
B) $\Delta \vec{r}=-\hat{\imath}-5 \hat{\jmath}$
C) $\Delta \vec{r}=-3 \hat{i}-5 \hat{j}$
D) $\Delta \vec{r}=3 \hat{i}-5 \hat{j}$

Q2-A projectile is launched at an angle of 30° to the horizontal with a speed of $100 \mathrm{~m} / \mathrm{s}$. The maximum height of the projectile is :
A) 100 m
B) 127.55 m
C) 250 m
D) 44.0 m

Q3- Referring to Q2, the range of the projectile is:
A) 88.37 m
B) 383 m
C) 8.8 m
D) 883.69 m

Q4- Referring to Q2, its time of flight is:
A) 10.2 s
B) 25.2 s
C) 6.04 s
D) 5.02 s

Q5. A man throws a stone horizontally off a cliff that is 40 m above the sea level. If the velocity of the stone is $30 \mathrm{~m} / \mathrm{s}$, the time it takes to hit the sea level is:
A) 3.49 s
B) 4 s
C) 2.85 s
D) 6 s

Q6- An object was fired with an angle 30° with the horizontal with a speed of $80 \mathrm{~m} / \mathrm{s}$. The vertical component of the velocity is:
A) $40 \mathrm{~m} / \mathrm{s}$
B) $4.0 \mathrm{~m} / \mathrm{s}$
C) $15 \mathrm{~m} / \mathrm{s}$
D) $35 \mathrm{~m} / \mathrm{s}$

Q7- An object is in equilibrium, the acceleration of the object is:
A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) Zero
D) Constant

Q8- If a body sliding down on an incline smooth plane. The force causing the body to slide is:
A) $m g \sin \theta$
B) $\mathrm{mg} \cos \theta$
C) $m g \tan \theta$
D) mg

Q9- An object weighing 600 N is pulled up a frictionless inclined plan of an angle of 30° at a constant velocity. The force causing the motion is:
A) 200 N
B) 245 N
C) 520 N
D) 300 N

Q10- A body moves in a circular orbit with constant velocity. Its acceleration is:
A) zero
B) in the direction of the tangent
C) toward the center
D) outward, of the center

Q11- A car travels in a circular track of 200 m in circumference at a constant velocity of $18 \mathrm{~m} / \mathrm{s}$. The radial acceleration of the car is:
A) $8.37 \mathrm{~m} / \mathrm{s}^{2}$
B) $12.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $7.31 \mathrm{~m} / \mathrm{s}^{2}$
D) $10.2 \mathrm{~m} / \mathrm{s}^{2}$
Q. 12 In figure(1) a block of mass $\mathrm{m}=1 \mathrm{~kg}$ hangs from the ceiling by means of two cords. The angle between each cord and the ceiling is 60°. The tension in the right cord is:
A) 56.6 N
B) 28.65 N
C) 20.63 N
D) 5.66 N
A) 3.26
B) 1.25
C) 1.09
D) 1.9

Q14- A force of 50 N pulls a 5 kg crate up an inclined rough surface with angle 30°. If the coefficient of friction $\mu_{\mathrm{k}}=0.5$, the acceleration of the crate is:
A) $0.6 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.2 \mathrm{~m} / \mathrm{s}^{2}$
C) $0.86 \mathrm{~m} / \mathrm{s}^{2}$
D) $1.39 \mathrm{~m} / \mathrm{s}^{2}$

Q15- An object weighing 24 N is placed on a 30° slope as shown in figure (3). The normal force is:
A) 20.78 N
B) 17.02 N
C) 23.02 N
D) 24.78 N

Q16- Referring to Q15, the force preventing the object from moving is:
A) 8.38 N
B) 12 N
C) 10 N
D) Zero

Q17- Weight of 50 N is supported by a rod and a cable as shown in figure (4). The tension (T_{1}) is:
A) 45.77 N
B) 138.59 N
C) 77.78 N
D) 87.77 N

Q18- The coefficient of static friction μ_{s} of inclined plane depends on:
A) angle
B) mass
C) velocity
D) acceleration

Q19- A projectile is fired with a velocity of $80 \mathrm{~m} / \mathrm{s}$ at an angle of θ to the horizontal. If the vertical component of the initial velocity was $60 \mathrm{~m} / \mathrm{s}$, the angle θ is:
A) 48.6°
B) 54.5^{0}
C) 32.23^{0}
D) 20^{0}

Q20- A bullet is fired horizontally from the roof of a building with a velocity of $850 \mathrm{~m} / \mathrm{s}$. Its height in 3.0 s is:
A) 29.4 m
B) -44.1 m
C) -100 m
D) 19.60 m

Q21- Referring to Q21, If the building is 100 m height, the time for the bullet to reach the ground is:
A) 3.13 s
B) 81.32 s
C) 4.52 s
D) 20.41 s

Q22- A ball kicked with a velocity of $15 \mathrm{~m} / \mathrm{s}$ and with an angle of θ from the horizontal. The maximum range is:
A) 25.85 m
B) 40.82 m
C) 50.20 m
D) 22.96 m

Q23- A man weighing 800 N is standing in an elevator moving with a constant velocity. The force exerted by the man on the floor of the elevator is:
A) less than 80 N
B) 800 N
C)between 80 and 800 N
D) more than 800 N

Q24- A 25 kg box is pushed across a frictionless horizontal floor with a force of 30 N , directed 20° below the horizontal. The acceleration of the box is:
A) $1.13 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.82 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.75 \mathrm{~m} / \mathrm{s}^{2}$

Q25- Referring to Q24, the normal force acting on the ground by the box is:
A) 108.26 N
B) 25 N
C) 255.26 N
D) 125 N

Q26- A car moves in a circular road of radius 120 m . If $\mu_{\mathrm{s}}=0.5$, then the maximum speed of the car without sliding is:
A) $24.25 \mathrm{~m} / \mathrm{s}$
B) $22.1 \mathrm{~m} / \mathrm{s}$
C) $19.79 \mathrm{~m} / \mathrm{s}$
D) $17.15 \mathrm{~m} / \mathrm{s}$

Q27- A car of mass 1050 kg is traveling at $72 \mathrm{~km} / \mathrm{h}$ on a curved road with radius of 60 m . The force of friction needed to prevent the car from sliding is:
A) 6800 N
B) 5124.1 N
C) 7000 N
D) 6600 N

Q28- A block of mass 80 kg is moving along a rough horizontal surface with a coefficient of kinetic friction equal 0.2. If its initial speed is $14 \mathrm{~m} / \mathrm{s}$, the block will stop after covering a distance:
A) 57.39 m
B) 50.0 m
C) 106.3 m
D) 33.33 m

Q29- Two masses $m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=4 \mathrm{~kg}$ situated on a frictionless horizontal surface are connected by a string. A force $\mathrm{F}=12 \mathrm{~N}$ is exerted on m_{2} as shown in fig. (5). The acceleration of the system is
A) $4 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $2 \mathrm{~m} / \mathrm{s}^{2}$
D) $1 \mathrm{~m} / \mathrm{s}^{2}$

Q 30- A 25 kg block moves with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ on a frictionless surface. The block came to rest by the effect of an external force $\mathrm{F}=-235 \mathrm{i} \mathrm{N}$. The distance the block moved is:
A) 76.1 m
B) 266.66 m
C) 33.24 m
D) 14.6 m

Fig (1)

m_{1}

Fig. (3)

Fig. (4)

Fig. 2

Fig. 5

Referring	العودة الى	Tension	الثد	Ceiling	سقف
Skier	متزلج على الثنج	Launched	\|طّقت	Hang	معلق
Vertically	عامودي	Elevator	مصعد	Prevent	يمنع
Circumference	محيط الدائرة	Circular	دائري	Tangent	مماس
Crate	صندوق	Rough	خشن	Cliff	جرف بحري
Radius	نصف قطر	Coefficient	معامل	Friction	الاحتكاك
Sliding	ينزلق	Static	السكوني	causing	المسبب للحركة
Radial	دائري	Kinetic	الحركي	equilibrium	متزن
Support	يدعم	Rod	قضيب	Situated	موضو ع على

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180°
(d) 45^{0}

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m, is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass $(\mathrm{m}=20 \mathrm{~kg})$ at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley. If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(c) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 0.1
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قف̇	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	اللوزن الظاهرهي
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	معامل	Frictional	الاحنكاك
Sliding	بيزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	بق

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180^{0}
(d) 45°

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m , is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass ($\mathrm{m}=20 \mathrm{~kg}$) at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley.
If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- In the figure, two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(d) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 1.27
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قنف	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	الوزن الظاهري
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	م	Frictional	الاحنكاك
Sliding	ينزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	يق

Section:

CHOOSE THE CORRECT ANSWER

1. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $v_{y}=v_{o} \sin \theta+g t$
B) $v_{y}=v_{o} \sin \theta-g t$
C) $v_{y}=v_{o}(\cos \theta) t$
D) $v_{y}=v_{o}(\sin \theta) t$
2. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

B)

C)

D)

3. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
D) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
4. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
А) 2245.9 m
B) 1598.6 m
C) 3064.6 m
D) 8957.4 m
5. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
B) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
6. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating downward
C) stationary
B) moving up with constant velocity.
D) accelerating upward
7. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:
A) 45.8 N
B) 25.4 N
C) 10.3 N
D) 19.6 N
8. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $\frac{a_{1}}{a_{2}}=2$
B) $a_{1}=a_{2}$
C) $a_{1}=a_{2}=0$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
9. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
A) $-5.21 \hat{i}$
В) $-7.98 \hat{i}$
C) $8.52 \hat{i}$
D) $12.4 \hat{i}$
10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is in the direction of motion
C) is dimensionless
B) has a magnitude of exactly 1
D) is in the direction of the normal force
11. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 10 N
B) 7.14 N
C) 4.12 N
D) 13.2 N
12. The force that always perpendicular to the surface is called
A) Friction
B) Normal force
C) Tension
D) Gravitational force
13. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its initial height
B) the origin
C) the start point
D) its maximum height

Use the following to answer questions 14-15:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

14. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) $\mathrm{mg} \cos \theta$
B) mg
C) $m g \sin \theta$
D) $\mathrm{m} a$
15. The magnitude of the force that causes the block sliding down is
A) 150 N
B) 90.44 N
C) 311 N
D) 212.17 N

Use the following to answer questions 16-17:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
16. The velocity as a function of time is:
A) $t \hat{i}+6 t \hat{j}$
B) $10 t \hat{i}-3 t^{2} \hat{j}$
C) $10 \hat{i}-6 t^{2} \hat{j}$
D) $5 t \hat{i}-6 \hat{j}$
17. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $15 \hat{i}-5 \hat{j}$
В) $81 \hat{i}+3 \hat{j}$
C) $26 \hat{i}-7 \hat{j}$
D) $36 \hat{i}-3 \hat{j}$
18. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) π
B) $3 \pi^{3}$
C) 4π
D) 20
19. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 607.5 N
B) 323.9 N
C) 523.4 N
D) 700.5 N
20. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
B) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
C) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
D) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
21. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
D) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
22. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
А) $40 \mathrm{~m} / \mathrm{s}$
B) $80 \mathrm{~m} / \mathrm{s}$
C) $42.3 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$
23. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
B) $\vec{a}_{\text {avg }}=3 \hat{i}$
C) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
D) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
24. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
А) 6241.6 N
B) 3340.5 N
C) 4141.5 N
D) 1245.7 N
 velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 85°
B) 49°
C) 33°
D) 67°
26. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $5 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $12 \mathrm{~m} / \mathrm{s}$
D) $2 \mathrm{~m} / \mathrm{s}$

A block of mass $\mathbf{m}=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

27. The free body diagram representing the forces on m is:
A)

B)

C)

D)

28. The magnitude of weight (W) in Newtons is equal to:
A) -49 N
B) 9.8 N
C) 49 N
D) -9.8 N
29. From the figure, $F_{\text {net }, x}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
B) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
C) $-\mathrm{T}_{1} \cos 30+\mathrm{T}_{2} \cos 45=0$
D) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
30. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 40 N
B) 50 N
C) 60 N
D) 57 N
31. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.6
B) 0.4
C) 0.8
D) 0.3

Use the following to answer questions 32-33:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

32. The magnitude of force \vec{F} on the four blocks is
A) 20 N
B) 60 N
C) 30 N
D) 40 N
33. The total mass accelerated to the right by Cord 3 is
A) 20 kg
B) 13 kg
C) 18 kg
D) 10 kg

Answer Key

1. B
2. A
3. C
4. C
5. C
6. D
7. D
8. B
9. B
10. C
11. C
12. B
13. A
14. A
15. D
16. B
17. D
18. C
19. A
20. A
21. A
22. C
23. D
24. B
25. D
26. A
27. B
28. C
29. C
30. B
31. B
32. B
33. C

CHOOSE THE CORRECT ANSWER

1. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
A) 4141.5 N
B) 6241.6 N
C) 3340.5 N
D) 1245.7 N
2. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $2 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $5 \mathrm{~m} / \mathrm{s}$
D) $12 \mathrm{~m} / \mathrm{s}$
3. The force that always perpendicular to the surface is called
A) Normal force
B) Gravitational force
C) Tension
D) Friction
4. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلّ) is:
A) 25.4 N
B) 10.3 N
C) 45.8 N
D) 19.6 N
5. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $40 \mathrm{~m} / \mathrm{s}$
B) $80 \mathrm{~m} / \mathrm{s}$
C) $42.3 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$

Use the following to answer questions 6-7:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

6. The total mass accelerated to the right by Cord 3 is
A) 20 kg
B) 18 kg
C) 10 kg
D) 13 kg
7. The magnitude of force \vec{F} on the four blocks is
А) 60 N
B) 40 N
C) 30 N
D) 20 N
8. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $v_{y}=v_{o} \sin \theta+g t$
B) $v_{y}=v_{o} \sin \theta-g t$
C) $v_{y}=v_{o}(\cos \theta) t$
D) $v_{y}=v_{o}(\sin \theta) t$
9. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is in the direction of the normal force
C) is dimensionless
B) is in the direction of motion
D) has a magnitude of exactly 1

Use the following to answer questions $10-11$:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
10. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $81 \hat{i}+3 \hat{j}$
В) $36 \hat{i}-3 \hat{j}$
C) $26 \hat{i}-7 \hat{j}$
D) $15 \hat{i}-5 \hat{j}$
11. The velocity as a function of time is:
A) $t \hat{i}+6 t \hat{j}$
В) $10 t \hat{i}-3 t^{2} \hat{j}$
C) $10 \hat{i}-6 t^{2} \hat{j}$
D) $5 t \hat{i}-6 \hat{j}$

Use the following to answer questions 12-13:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

12. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) $\mathrm{mg} \cos \theta$
B) mg
C) $m g \sin \theta$
D) $m a$
13. The magnitude of the force that causes the block sliding down is
A) 311 N
B) 90.44 N
C) 212.17 N
D) 150 N
14. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

C)

B)

D)

15. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
B) $\vec{a}_{\text {avg }}=3 \hat{i}$
C) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
D) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
16. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 8957.4 m
B) 2245.9 m
C) 3064.6 m
D) 1598.6 m
17. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 523.4 N
B) 323.9 N
C) 700.5 N
D) 607.5 N
18. A bomb (${ }^{(}{ }^{4}$) is fired from a cannon and has initial horizontal and vertical components of velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
А) 67°
B) 49°
C) 85°
D) 33°
19. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
D) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
20. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 40 N
B) 50 N
C) 60 N
D) 57 N
21. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
C) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
D) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
22. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its initial height
B) the origin
C) the start point
D) its maximum height
23. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
А) 4.12 N
B) 10 N
C) 7.14 N
D) 13.2 N
24. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
D) $3 \mathrm{~m} / \mathrm{s}^{2}$

A block of mass $\mathbf{m}=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

25. The magnitude of weight (W) in Newtons is equal to:
A) 49 N
B) -49 N
C) 9.8 N
D) -9.8 N
26. From the figure, $F_{\text {net }, x}$ on the block is:
A) $-T_{1} \cos 30+T_{2} \cos 45=0$
B) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
C) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
D) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
27. The free body diagram representing the forces on m is:
А)

B)

C)

D)

28. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
А) $8.52 \hat{i}$
B) $12.4 \hat{i}$
C) $-5.21 \hat{i}$
D) $-7.98 \hat{i}$
29. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity $\left(\vec{v}_{\text {avg }}\right)$ in unit vector notation is
A) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
C) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
В) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
D) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
30. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.6
B) 0.8
C) 0.3
D) 0.4
31. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) π
B) $3 \pi^{3}$
C) 4π
D) 20
32. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $a_{1}=a_{2}=0$
B) $a_{1}=a_{2}$
C) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
D) $\frac{a_{1}}{a_{2}}=2$
33. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating downward
C) accelerating upward
B) stationary
D) moving up with constant velocity.

Answer Key

1. C
2. C
3. A
4. D
5. C
6. B
7. A
8. B
9. C
10. B
11. B
12. A
13. C
14. D
15. D
16. C
17. D
18. A
19. A
20. B
21. A
22. A
23. A
24. A
25. A
26. A
27. A
28. D
29. B
30. D
31. C
32. B
33. C

CHOOSE THE CORRECT ANSWER

1. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
C) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
D) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
2. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=3 \hat{i}$
B) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
C) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
D) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$

Use the following to answer questions 3-5:
A block of mass $m=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

3. The magnitude of weight (W) in Newtons is equal to:
A) -9.8 N
B) 9.8 N
C) 49 N
D) -49 N
4. The free body diagram representing the forces on m is:
A)

B)

C)

D)

5. From the figure, $\mathbf{F}_{\text {net, }, x}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
B) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
C) $-\mathrm{T}_{1} \cos 30+\mathrm{T}_{2} \cos 45=0$
D) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
6. A bomb (قَنبّة) is fired from a cannon and has initial horizontal and vertical components of velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 49°
B) 33°
C) 67°
D) 85°
7. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
B) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
C) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
D) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
8. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
А) 3340.5 N
B) 1245.7 N
C) 6241.6 N
D) 4141.5 N
9. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
А) 700.5 N
B) 523.4 N
C) 607.5 N
D) 323.9 N

Use the following to answer questions $10-11$:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

10. The magnitude of force \vec{F} on the four blocks is
А) 30 N
B) 60 N
C) 20 N
D) 40 N
11. The total mass accelerated to the right by Cord 3 is
A) 10 kg
B) 20 kg
C) 13 kg
D) 18 kg
12. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) 4π
В) 20
C) $3 \pi^{3}$
D) π
13. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 57 N
B) 40 N
C) 50 N
D) 60 N
14. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $42.3 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $80 \mathrm{~m} / \mathrm{s}$
D) $40 \mathrm{~m} / \mathrm{s}$
15. The force that always perpendicular to the surface is called
A) Friction
B) Normal force
C) Gravitational force
D) Tension
16. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
А) $-7.98 \hat{i}$
B) $-5.21 \hat{i}$
C) $8.52 \hat{i}$
D) $12.4 \hat{i}$
17. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $3 \mathrm{~m} / \mathrm{s}^{2}$
B) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
C) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
D) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
18. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

C)

B)

D)

19. A particle is projected with an initial velocity $\overrightarrow{v_{0}}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $5 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $7 \mathrm{~m} / \mathrm{s}$
D) $2 \mathrm{~m} / \mathrm{s}$
20. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is ($6 \mathrm{~m} / \mathrm{s}$) \hat{i}. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
D) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively

Use the following to answer questions 21-22:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

21. The magnitude of the force that causes the block sliding down is
A) 90.44 N
B) 212.17 N
C) 150 N
D) 311 N
22. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) mg
B) $\mathrm{m} a$
C) $\mathrm{mg} \cos \theta$
D) $m g \sin \theta$

Use the following to answer questions 23-24:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
23. The velocity as a function of time is:
A) $5 t \hat{i}-6 \hat{j}$
B) $t \hat{i}+6 t \hat{j}$
C) $10 t \hat{i}-3 t^{2} \hat{j}$
D) $10 \hat{i}-6 t^{2} \hat{j}$
24. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $15 \hat{i}-5 \hat{j}$
В) $81 \hat{i}+3 \hat{j}$
C) $36 \hat{i}-3 \hat{j}$
D) $26 \hat{i}-7 \hat{j}$
25. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.4
В) 0.3
C) 0.6
D) 0.8
26. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}}(\cos \theta) \mathrm{t}$
B) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}} \sin \theta+\mathrm{gt}$
C) $\mathrm{v}_{\mathrm{y}}=\mathrm{V}_{\mathrm{o}}(\sin \theta) \mathrm{t}$
D) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}} \sin \theta-\mathrm{gt}$
27. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 2245.9 m
B) 1598.6 m
C) 8957.4 m
D) 3064.6 m
28. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its maximum height
B) its initial height
C) the origin
D) the start point
29. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:
A) 10.3 N
B) 19.6 N
C) 25.4 N
D) 45.8 N
30. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating upward
C) moving up with constant velocity.
B) accelerating downward
D) stationary
31. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is dimensionless
C) has a magnitude of exactly 1
B) is in the direction of the normal force
D) is in the direction of motion
32. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
А) $a_{1}=a_{2}$
B) $\frac{a_{1}}{a_{2}}=2$
C) $a_{1}=a_{2}=0$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
33. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 13.2 N
B) 7.14 N
C) 4.12 N
D) 10 N

Answer Key

1. B
2. C
3. C
4. C
5. C
6. C
7. D
8. A
9. C
10. B
11. D
12. A
13. C
14. A
15. B
16. A
17. C
18. B
19. A
20. B
21. B
22. C
23. C
24. C
25. A
26. D
27. D
28. B
29. B
30. A
31. A
32. A
33. C

| Test \#2 | $22 / 1 / 1434 \mathrm{H}$ | Time:90 min. |
| :--- | :---: | :---: | :---: |
| Student Name: | Student no: | Section: |

Q. 1 The displacement of a particle moving from $\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$ to $\vec{r}_{2}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ is:
(A) $5 \hat{i}+4 \hat{j}-5 \hat{k}$
(B) $\hat{i}+5 \hat{j}+\hat{k}$
(C) 25
(D) $\hat{i}-5 \hat{j}+\hat{k}$
(E) $\hat{\mathrm{k}}$
Q. 2 A particle moves in $x-y$ plane in such a way that its x and y coordinates vary with time according to $x=t^{3}-5 t \mathrm{~m}$ and $\mathrm{y}=3 \mathrm{t}^{2}+6 \mathrm{~m}$. where t is measured in seconds. The velocity of the particle at $\mathrm{t}=2 \mathrm{~s}$ is:
(A) $7 \hat{i}-12 \hat{j} \mathrm{~m} / \mathrm{s}$
(B) $12 \hat{\mathrm{i}}+7 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$
(C) $14 \mathrm{~m} / \mathrm{s}$
(D) $7 \hat{i}+12 \hat{j} \mathrm{~m} / \mathrm{s}$
(E) $\hat{\mathrm{k}}$
Q. 3 If you drive west at $20 \mathrm{~km} / \mathrm{h}$ for one hour, then drive east at $15 \mathrm{~km} / \mathrm{h}$ for one hour, your net displacement is:
(A) 5 km east
(B) 35 km west
(C) 15 km west
(D) 35 km east
(E) 5 km west
Q. 4 If a ball is projected with velocity $20 \mathrm{~m} / \mathrm{s}$ at angle of 30° with the horizontal. The Y-component of the velocity of the ball after one second is:
(A) $5 \mathrm{~m} / \mathrm{s}$
(B) $20 \mathrm{~m} / \mathrm{s}$
(C) $0.2 \mathrm{~m} / \mathrm{s}$
(D) $10 \mathrm{~m} / \mathrm{s}$
(E) $12 \mathrm{~m} / \mathrm{s}$
Q. 5 Refer to question 4, the time taken by the ball to return to the ground is:
(A) 5 s
(B) 4 s
(C) 2.04 s
(D) 10 s
(E) 3 s
Q. 6 Refer to question 4, the range of the projectile is:
(A) 100 m
(B) 200 m
(C) 11.2 m
(D) 35.3 m
(E) 20 m
Q. 7 Refer to question 4, the maximum height attained by the projectile is:
(A) 5.1 m
(B) 20 m
(C) 100 m
(D) 10 m
(E) 25 m
Q. 8 A body of 800 N running in a circular path of $R=1 \mathrm{~m}$ at a velocity of $8 \mathrm{~m} / \mathrm{s}$. The centripetal force is:
(A) 64.5 N
(B) 5224.5 N
(C) 4096 N
(D) 408 N
(E) 81.5 N
Q. 9 An 800 kg elevator is moving down with an acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. The tension in the cable is:
(A) 8800 N
(B) 12800 N
(C) Zero
(D) 10400 N
(E) 6880 N
Q. 10 The diagram shows a 4 kg object accelerating at $10 \mathrm{~m} / \mathrm{s}^{2}$ on rough horizontal surface. The magnitude of the frictional force f_{k} acting on the object is:
(A) 20 N
(B) 40 N
(C) 10 N
(D) 50 N
(E) 25 N

Q. 11 You drive your car clockwise around a circular track of radius 30 m . you completes 10 revolutions around the track in 2 minutes. Your average speed is:
(A) $30 \mathrm{~m} / \mathrm{s}$
(B) $9.8 \mathrm{~m} / \mathrm{s}$
(C) $10 \mathrm{~m} / \mathrm{s}$
(D) $4.8 \mathrm{~m} / \mathrm{s}$
(E) $15.7 \mathrm{~m} / \mathrm{s}$
Q. 12 If the forces on an object are balanced, the object will
(A) Remain at rest if initially at rest.
(B) Continue moving in a straight line if initially moving in a straight line.
(C) Both A and B
(D) Neither A nor B
(E) None of these
Q. 13 Which of the following units is equivalent to a newton (N) ?
(A) $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$
(B) $\mathrm{g} . \mathrm{cm} / \mathrm{s}$
(C) $\mathrm{kg} . \mathrm{s}^{2} / \mathrm{m}$
(D) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
(E) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
Q. 14 At the highest point, the magnitude of the acceleration of a projectile is
(A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) Zero
(C) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(D) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(E) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
Q. 15 An object is pulled northward with a force of 10 N and southward with a force of 15 N . The magnitude of the net force on the object is:
(A) Zero
(B) 5 N
(C) 10 N
(D) 15 N
(E) 25 N
Q. 16 Describe the motion of the 2 kg mass in the horizontal frictionless plane, as shown in the figure:
(A) The object accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ (right)
(B) The object accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ (right)
(C) The object accelerates at $15 \mathrm{~m} / \mathrm{s}^{2}$ (right)
(D) The object accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$ (right)
${ }^{-}$) The object does not accelerate

Q. 17 A 10 kg brick and a 1 kg book are dropped in a vacuum. The force of gravity on the 10 kg brick is:
(A) The same as the force on the 1 kg book.
(B) 10 times as much as the force on the 1 kg book.
(C) Zero
(D) All of these
(E) None of these
Q. 18 The force that opposes the motion of an object is called
(A) Tension
(B) Friction
(C) Gravitational force
(D) Applied force
(E) Normal force
Q. 19 A ball is shot from the ground into the air. At a height of 12.5 m , its velocity is observed to be $\overline{\mathrm{v}}=5.8 \hat{\mathrm{i}}+9.7 \hat{\mathrm{j}}$ in m / s. The magnitude of the ball's initial velocity is:
(A) $18.41 \mathrm{~m} / \mathrm{s}$
(B) $5.8 \mathrm{~m} / \mathrm{s}$
(C) $19.3 \mathrm{~m} / \mathrm{s}$
(D) $9.7 \mathrm{~m} / \mathrm{s}$
(E) $33.6 \mathrm{~m} / \mathrm{s}$

20 Mr . Felix of 800 N opens his parachute and experiences an air resistance force of 500 N . The net force on the Felix is:
(A) 300 N downward
(B) 500 N downward
(C) 800 N downward
(D) 300 N upward
(E) 500 N upward
Q. 21 A 5 kg mass is held at rest on a frictionless 30° incline by force \vec{F}. The magnitude of \vec{F} is:
(A) 5 N
(B) 50 N
(C) 100 N
(D) 24.5 N
(E) Zero

Q. 22 A force of 24 N is applied to move a stationary body of mass 8 kg . The acceleration of the body is:
$\begin{array}{llll}\text { (A) } 3 \mathrm{~m} / \mathrm{s}^{2} & \text { (B) } 12 \mathrm{~m} / \mathrm{s}^{2} & \text { (C) } 16 \mathrm{~m} / \mathrm{s}^{2} & \text { (D) } 8 \mathrm{~m} / \mathrm{s}^{2}\end{array}$
(C) $16 \mathrm{~m} / \mathrm{s}^{2}$
(D) $8 \mathrm{~m} / \mathrm{s}^{2}$
(E) $4 \mathrm{~m} / \mathrm{s}^{2}$
Q. 23 In the figure $m_{1}=2 \mathrm{~kg}$ and $m_{2}=1 \mathrm{~kg}$ the coefficient of kinetic friction between m_{2} and the horizontal plane is 0.50 . The inclined plane is frictionless. The frictional force exerted on m_{2} by the plane is:
(A) Zero
(B) 9.8 N
(C) 19.6 N
(D) 2 N
(E) 4.9 N

Q. 24 A toolbox, of mass M, is resting on a flat board. One end of the board is lifted up until the toolbox just to slide. The angle θ that the board makes with horizontal for this to occur depends on the
(A) mass, M
(B) gravity is not acting on it
(C) normal force
(E) none of these

Q. 25 A block is initially sliding with acceleration of $-1 \mathrm{~m} / \mathrm{s}^{2}$ on a rough horizontal surface. The coefficient of friction between the block and the surface is:
(A) 0.3
(B) 0.2
(C) 0.1
(D) 0.4
(E) 0.15
Q. 26 An object moves left to right (right is positive) with speed decreasing at a constant rate,
(A) its acceleration is positive.
(B) the net force on it is decreasing
(D) its acceleration is negative.
(E) none of these
Q. 27 A ball was projected upward at angle θ_{0} with the horizontal at an initial speed $50 \mathrm{~m} / \mathrm{s}$. The ball reached a highest point after three seconds, the angle θ_{0} is:
(A) 5.7°
(B) 36°
(C) 60°
(D) 34.4°
(E) 11.3°
Q. 28 Two forces act on a particle of mass 2 kg . $\vec{F}_{1}(80 \hat{\mathrm{i}}+60 \hat{\mathrm{j}}) \mathrm{N}$ and $\overrightarrow{\mathrm{F}}_{2}(40 \hat{\mathrm{i}}+100 \hat{\mathrm{j}}) \mathrm{N}$. The magnitude of acceleration is:
(A) $10 \mathrm{~m} / \mathrm{s}^{2}$
(B) Zero
(C) $50 \mathrm{~m} / \mathrm{s}^{2}$
(D) $100 \mathrm{~m} / \mathrm{s}^{2}$
(E) $200 \mathrm{~m} / \mathrm{s}^{2}$
Q. 29 A particle of mass $m=2 \mathrm{~kg}$ is moving with velocity, $v(t)=\left[\left(5 t^{2}\right) \hat{i}-(2 t) \hat{j}\right] \mathrm{m} / \mathrm{s}$ where t is time. The net force on the particle in SI units is:
(A) $5 \hat{i}-4 \hat{j}$
(B) $14 \mathrm{t} \hat{\mathrm{j}}$
(C) 25
(D) $20 t \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$
(E) $16 \hat{i}$
Q. 30 In the figure $m_{1}=2 \mathrm{~kg}$ and $m_{2}=1 \mathrm{~kg}$ are connected by a light string that passes over a smooth pulley. The tension in the string is:
-) 23.52 N
(B) 9.8 N
(C) 39.20 N
(D) 13.07 N
(E) zero

$$
\begin{aligned}
& \text { نماذْ ج الاخثبار الاور ي (لثّاني }
\end{aligned}
$$

PHYS 110
CH.5,6 and 7

Test\#2

Student no.:

Time: 90 min .
Section:
Q. 1 A man of mass 6 kg . His weight is:
(A) 58.8 N
(B) 6.12 N
(C) 122 N
(D) 9.8 N
(E) 588 N
Q. 2 1Newton is equivalent to:
(A) $9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(B) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(C) $1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{3}$
(D) $1 \mathrm{~m}^{2} / \mathrm{s}^{2}$
(E) none of these
Q. 3 The displacement of a particle moving from $\vec{r}_{1}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ to $\vec{r}_{2}=+5 \hat{i}+6 \hat{j}+2 \hat{k}$ is:
(A) $-10 \hat{i}$
(B) $4 \overline{\mathrm{j}}+6 \stackrel{\rightharpoonup}{\mathrm{k}}$
(C) $12 \hat{\mathrm{j}}$
(D) $5 \hat{j}$
(E) $10 \hat{i}+5 \hat{j}$

The components of a car velocity as a function of time are given by $v_{x}=t^{2}+2$ and $v_{y}=t^{2}-2$, then its velocity \bar{v} at $(t=3 s)$ is :
(A) $\bar{v}=8 \hat{i}-10 \hat{j}$
(B) $\bar{v}=9 \hat{i}-3 \hat{j}$
(C) $\bar{v}=8 \hat{i}+10 \hat{j}$
(D) $\vec{v}=11 \hat{i}-7 j$
(E) $\bar{v}=10 \hat{i}-8 \hat{j}$
Q. 5 In the projectiles motion the acceleration in the horizontal direction is:
(A) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(B) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(C) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(D) $32 \mathrm{~m} / \mathrm{s}^{2}$
(E) Zero
Q. 6 A ball is shot from the top of a building of height 10 m , with initial velocity $\overrightarrow{\mathrm{v}}_{0}=5.8 \hat{\mathrm{i}}+8 \hat{j}$, in meters per second ($\hat{\mathrm{i}}$ horizontal, $\hat{\mathrm{j}}$ upward). What is the y-component of the ball's velocity just before it hits the ground?
(A) $5 \mathrm{~m} / \mathrm{s}$
(B) $18.41 \mathrm{~m} / \mathrm{s}$
(C) $19.3 \mathrm{~m} / \mathrm{s}$
(D) $16.12 \mathrm{~m} / \mathrm{s}$
(E) Zero
Q. 7 A projectile is fired from the ground. If it reaches the maximum range at 45 m from the starting point, the
initial velocity is:
(A) $21 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $196 \mathrm{~m} / \mathrm{s}$
(D) $24.25 \mathrm{~m} / \mathrm{s}$
(E) $22.14 \mathrm{~m} / \mathrm{s}$
. 8 Two forces are applied to a 13 kg object, one is 33 N to the north and the other is 56 N to the west. The
magnitude of the acceleration of the object is:
(A) $4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $3 \mathrm{~m} / \mathrm{s}^{2}$
(D) Zero
(E) $5 \mathrm{~m} / \mathrm{s}^{2}$
Q. 9 Three forces act on a particle that moves at a constant speed. If $\vec{F}_{1}=-5 \hat{i}-4 \hat{j} N$ and $\vec{F}_{2}=-5 \hat{i}+4 \hat{j} N, \vec{F}_{3}$ is:
(A) $10 \hat{i}$
(B) $8 \hat{\mathrm{j}}$
(C) $10 \hat{i}+8 \hat{j}$
(D) $-10 \hat{j}$
(E) $8 \hat{i}$
Q. 10 A plastic box of mass 0.7 kg slides down an inclined plane with an angle 40° with the horizontal. If
$\mu_{\mathrm{k}}=0.3$ the acceleration of the box in SI units is:
(A) 1.5 up
(B) 4.8 down
(C) 0.5 up
(D) 4.05 down
(E) 3.5 up
Q. 11 A body moves with constant speed in a circular orbit. Its acceleration is:
(A) equal zero
(D) in the direction of the velocity of the body
(B) opposite to the velocity of the body.
(E) toward the center
(C) outward, away from the center
Q. 12 A block slides down on a frictionless inclined plane at an angle of 25°. The acceleration of the block is:
(A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) $4.14 \mathrm{~m} / \mathrm{s}^{2}$
(C) Zero
(D) $3.35 \mathrm{~m} / \mathrm{s}^{2}$
(E) $1 \mathrm{~m} / \mathrm{s}^{2}$
Q. 13 The force and acceleration of a body in a uniform circular motion are:
(A) in the same direction
(B) differed by 135°
(C) perpendicular
(D) untiparallel
(E) none of these
Q. 14 A cable holds a ball of mass 30 kg in static equilibrium. The tension in the cord is:
A) 500 N
(B) 294 N
(C) 220 N
(D) zero
(E) 196 N
Q. 15 A 1200 kg box is moving with a constant speed. The net force on the box is:
(A) 9.8 N
(B) 1500 N
(C) 14700 N
(D) Zero
(E) 153 N
Q. 16 A forward horizontal force of 12 N is used to pull a 120 N crate at constant velocity across a
horizontal floor. The coefficient of friction is:
(A) 1
(B) 0.1
(C) 2.3
(D) 0.3
(E) 0.05
Q. 17 A block of mass m is pulled at constant velocity along a rough horizontal floor by an applied force F as shown. The magnitude of the frictional force is:
(A) $\mathrm{mg} \cos \theta$
(B) $T \sin \theta$
(C) $T \tan \theta$
(D) $T \cos \theta$
(E) zero

Q. 18 The horizontal range for the projectile is maximum when it launch angle is:
(A) 360°
(B) 60°
(C) 45°
(D) 90°
(E) 180°
Q.19 A block is initially at a speed of $9.8 \mathrm{~m} / \mathrm{s}$ on a rough horizontal surface. If it come to rest in a distance of
16.3 m , the coefficient of friction between the block and the surface is:
(A) 1
(B) 0.1
(C) 2.3
(D) 0.3
(E) 0.5
Q. 20 A particle moves at constant speed in a horizontal circle of radius 10 m , making a complete circle in
5 s . The acceleration is:
(A) $15 \mathrm{~m} / \mathrm{s}^{2}$
(B) $10 \mathrm{~m} / \mathrm{s}^{2}$
(C) $8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12.34 \mathrm{~m} / \mathrm{s}^{2}$
(E) $15.79 \mathrm{~m} / \mathrm{s}^{2}$
Q. 21 The x-and y-coordinates of a particle in motion, as functions of time t, are given by: $x=18 t-6$ and
$y=3 t^{2}-6 t$. The x - and y-components of the velocity at $t=0$ is:
4) $(-3,-12) \mathrm{m} / \mathrm{s}$
4) $(-3,-12) \mathrm{m} / \mathrm{s}$
(B) $(10,-6) \mathrm{m} / \mathrm{s}$
(C) $(18,-6) \mathrm{m} / \mathrm{s}$
(D) $(-6,-3) \mathrm{m} / \mathrm{s}$
(E) $(-6,10) \mathrm{m} / \mathrm{s}$
Q. 22 The formula for the centripetal acceleration is:
(A) $F=m \frac{v^{2}}{R}$
(B) $F=m a$
(C) $F=m g$
(D) $a=\frac{v^{2}}{R}$
(E) none of these
Q. 23 A boy kicks a ball at an angle of 30° to the horizontal with a speed of $28 \mathrm{~m} / \mathrm{s}$. The time it takes to reach
the horizontal range is:
(A) 0.92 s
(B) 2.86 s
(C) 0.15 s
(D) 1.43 s
(E) 0.38 s
Q. 24 boy kicks a ball at an angle of 30° to the horizontal with a speed of $28 \mathrm{~m} / \mathrm{s}$. The maximum height that
the ball can reach is:
(A) 10 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m
(E) 2.5 m
Q. 25 As shown in the figure (2), a box on frictionless inclined plane. The horizontal force, which prevents the box from slipping down the plane, then the magnitude of \vec{F} is:
(A) 2.45 N
(B) 9.8 N
(C) 3.65 N
(D) 2.83 N
(E)Zero
Q. 26 In the figure (2), if $\mathrm{F}=4 \mathrm{~N}$ then the value of box acceleration is:
(A) $1 \mathrm{~m} / \mathrm{s}^{2}$
(B) $6 \mathrm{~m} / \mathrm{s}^{2}$
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $0.50 \mathrm{~m} / \mathrm{s}^{2}$
(E) $2.03 \mathrm{~m} / \mathrm{s}^{2}$

Q. 27 In the figure (2), if $\mathrm{F}=4 \mathrm{~N}$ then the normal force on the box is:
(A) 7.31 N
(B) 3.1 N
(C) 2 N
(D) 5.94 N
(E) Zero
Q. 28 The formula for the friction force is:
(A) $F=2 f$
(B) $F=m a$
(C) $w=m g$
(D) $F=N$
(E) $f=\mu N$
Q. 29 In the figure, the block is about to slide when a force F is annlied. If the coefficient of static friction $\mu_{\mathrm{s}}=0.45$, then the applied th ee is:

(A) 13.23 N
(B) 30 N
(C) 26.46 N
(D) 22.05 N
(E) Zero
Q. 30 Refer to question 29 , the normal force on the box is:
(A) 26.4 N
(B) 84.87 N
(C) 49 N
(D) 58.8 N
(E) Zero

est\#2	Student no::	Time: 90 min.
tudent Name:	Section:	
2.1 A car of mass 1200 kg . Its weight is: (C) zero (D) 9.8 N (E) 1200 N 4) 122.45 N (B) 11760 N ()		

2.2 1 Newton is equivalent to:

(A) $9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(B) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(C) -1 kg of mass
(D) 1 kg of force
(E) norle of these
2.3 - particle moving from $\vec{r}_{1}=2 \hat{i}+5 \hat{j}+8 \hat{k}$ to $\vec{r}_{2}=2 \hat{i}+10 \hat{j}+8 \hat{k}$ then the displacement is:
(A) $10 \hat{i}-3 \hat{j}$
(B) $4 \overline{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}$
(C) $10 \hat{i}+5 \hat{j}$
(D) $5 \hat{\mathrm{j}}$
(E) 8
2.4 The x-and y-coordinates of a particle in motion, as functions of time t, are given by: $x=5 t^{2}-3 t+6 \mathrm{~m}$
$y=3 \mathrm{t}-3 \mathrm{~m}$. The magnitude of the acceleration is:
(A) Zero
(B) $10 \mathrm{~m} / \mathrm{s}^{2}$
(C) $5 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12 \mathrm{~m} / \mathrm{s}^{2}$
(E) $15 \mathrm{~m} / \mathrm{s}^{2}$
Q. 5 Two projectiles are in flight at the same time. The acceleration of one relative to the other:
(A) always $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) large then $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(C) can be horizontal
(D) zero
(E) none of these
Q. 6 A particle of mass 3 kg is moving with velocity $v(t)=\left(13 t^{2} \hat{i}+25 \hat{j}\right) \mathrm{m} / \mathrm{s}$ where t is time. The net force on
the particle in SI units is:
(A) $26 \hat{i}$
(B) $78 t \hat{\mathrm{i}}$
(C) 9.8
(D) $15 \hat{\mathrm{j}}$
(E) $25 \hat{j}$
Q. 7 A projectile is fired from the ground at 45° above the horizontal. If it reaches the ground at 60 m from the
を ting point, the initial velocity is:
(A) $34.3 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $196 \mathrm{~m} / \mathrm{s}$
(D) $24.25 \mathrm{~m} / \mathrm{s}$
(E) $12 \mathrm{~m} / \mathrm{s}$
Q. 8 A block is initially at a speed of $9.8 \mathrm{~m} / \mathrm{s}$ on a rough horizontal surface. If it come to rest in a distance of 49 m , the coefficient of friction between the block and the surface is:
(A) 1
(B) 0.1
(C) 2.3
(D) 0.3
(E) 0.5
Q. 9 A particle moves at constant speed in a horizontal circle of radius 5 m , making a complete circle in 4 s .
The acceleration is:
(A) $15 \mathrm{~m} / \mathrm{s}^{2}$
(B) $10 \mathrm{~m} / \mathrm{s}^{2}$
(C) $8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12.34 \mathrm{~m} / \mathrm{s}^{2}$
(E) Zero
Q. 10 The x-and y-coordinates of a particle in motion, as functions of time t, are given by: $x=5 t^{2}-3 t+6 \quad y=3 t^{3}-3 t^{2}-12 t-3$. The x - and y-components of the velocity at $t=0$ is:
(A) $(-3,-12) \mathrm{m} / \mathrm{s}$
(B) $(10,-6) \mathrm{m} / \mathrm{s}$
(C) $(18,-6) \mathrm{m} / \mathrm{s}$
(D) $(-6,-3) \mathrm{m} / \mathrm{s}$
(E) $(-6,10) \mathrm{m} / \mathrm{s}$
2.11 Ac
A) Zero
(B) $5 \mathrm{~m} / \mathrm{s}^{2}$
(C) $2 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4 \mathrm{~m} / \mathrm{s}^{2}$
(E) $6 \mathrm{~m} / \mathrm{s}^{2}$
2.12 The formula for the centripetal force is:
A) $a=\frac{v^{2}}{R}$
(B) $F=m a$
(C) $F=m g$
(D) $F=m \frac{v^{2}}{R}$
(E) none of these
2.13 As shown in the figure a box on frictionless inclined plane. The magnitude of \vec{F} Which prevents the box from slipping down the plane is: The magnitude of \vec{F} is:
(A) 2.83 N
(B) 9.8 N
(C) 4.9 N
(D) 8.3 N
(E) Zero
Q. 14 In the figure, if $F=4 \mathrm{~N}$ then the value of box acceleration is:
(A) m/s ${ }^{2}$
(B) $4 \mathrm{~m} / \mathrm{s}^{2}$
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $6 \mathrm{~m} / \mathrm{s}^{2}$
(E) $2.03 \mathrm{~m} / \mathrm{s}^{2}$

Q. 15 In the figure, if $\mathrm{F}=4 \mathrm{~N}$ then the normal force on the box is:
(A) 2 N
(B) 2.24 N
(C) 6.24 N
(D) 4.24 N
(E) Zero
Q.16 A boy kicks a ball at an angle of 30° to the horizontal with a speed of $14.0 \mathrm{~m} / \mathrm{s}$. The time it takes to
reach the horizontal range is:
(A) 0.92 s
(B) 0.71 s
(C) 0.15 s
(D) 1.43 s
(E) 0.38 s
Q. 17 boy kicks a ball at an angle of 30° to the horizontal with a speed of $14.0 \mathrm{~m} / \mathrm{s}$. The maximum height that
the ball can reach is:
(A) 9.87 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m
(E) 2.5 m
Q. 18 boy kicks a ball at an angle of 30° to the horizontal with a speed of $14.0 \mathrm{~m} / \mathrm{s}$. The horizontal range that
the ball can reach is:
(A) 17.32 m
(B) 19.7 m
(C) 15.33 m
(D) 12.68 m
(E) 14.0 m
(B) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(C) Zero
(D) $3.35 \mathrm{~m} / \mathrm{s}^{2}$
(E) $1 \mathrm{~m} / \mathrm{s}^{2}$

19 A block
(A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
Q. 20 The formula for the friction force is:
(A) $F=2 f$
(B) $F=m a$
(C) $w=m g$
(D) $F=N$
(E) $f=\mu \mathrm{N}$
Q. 21 The velocity and acceleration of a body in a uniform circular motion are:
(A) differed by 45°
(B) differed by 135°
(C) perpendicular
(D) parallel
(E) none of these
Q. 22 In the figure, the block is about to slide when a force F is applied. If the coefficient of static friction $\mu_{\mathrm{s}}=0.45$, then the applied force is:

(A) 6 N
(B) 30 N
(C) 26.46 N
(D) 13.23 N
(E) Zero
(A) 49 N
(B) 84.87 N
(C) Zero
(D) 58.8 N
(E) 26.4 N
2.24 A cable holds a ball of mass 20 kg in static equilibrium. The tension in the cord is:
t) 500 N
(B) 9.8 N
(C) 220 N
(D) zero
(E) 196 N
2.25 A 1500 kg car is moving with a constant speed. The net force on the box is:
A) Zero
(B) 1500 N
(C) 14700 N
(D) 9.8 N
(E) 153 N
Q.26 A car of mass 900 kg rounds a 25 m radius curve at $10 \mathrm{~m} / \mathrm{s}$. The centripetal of the force is:
(A) 900 N
(B) 1800 N
(C) Zero
(D) 3600 N
(E) 250 N
Q. 27 A 1200 kg elevator is moving up with acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$. The tension in the cable is:
(A) 9800 N
(B) 12800 N
(C) Zero
(D) 1000 N
(E) 15360 N
Q.28 A forward horizontal force of 12 N is used to pull a 240 N crate at constant velocity across a hori>ontal floor. The coefficient of friction is:
(r. 1
(B) 0.1
(C) 2.3
(D) 0.3
(E) 0.05
Q.29 A block of mass m is pulled at constant velocity along a rough horizontal floor by an applied force T as shown. The magnitude of the frictional force is:
(A) $T \cos \theta$
(B) $T \sin \theta$
(C) $T \tan \theta$
(D) $\mathrm{mg} \cos \theta$
(E) zero

Q. 30 A box is sliding down an incline that is 35° above the horizontal. If the coefficient of kinetic friction is 0.40 , the acceleration of the crate is:
(A) Zero
(B) $2.4 \mathrm{~m} / \mathrm{s}^{2}$
(C) $5.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $8.8 \mathrm{~m} / \mathrm{s}^{2}$
(E) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
\qquad

Q. 1

A 5 kg box is pushed up a rough surface $\mu_{k}=0.5$ inclined at 30° to the horizontal by a horizontal force of magnitude of 100 N .

a) The Normal force is:
(a) 42.4 N
(b) 92.4 N
(c) 86.6 N
(d) Zero
(e) 100 N
b) The frictional force is:
(a) 50 N
(b) 100 N
(c) Zero
(d) 109.87 N
(e) 46.2 N
c) The acceleration of the box is:
(a) $3.18 \mathrm{~m} / \mathrm{s}^{2}$
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.58 \mathrm{~m} / \mathrm{s}^{2}$
(d) Zero
(e) $8 \mathrm{~m} / \mathrm{s}^{2}$
d) If the acceleration is equal to zero, the pushing force is:
(a) 100 N
(b) 81.6 N
(c) Zero
(d) 50 N
(e) 86.6 N

Q. 2

In the figure (1), the mass m of the block is 3 kg rests on a frictionless surface, the force F is 10 N $\theta=30^{\circ}$ and $\Phi=15^{\circ}$. The magnitude of the acceleration of the block is:

Fig. (1)

(a) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.04 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.9 \mathrm{~m} / \mathrm{s}^{2}$
(e) $4.5 \mathrm{~m} / \mathrm{s}^{2}$
(f) $1.68 \mathrm{~m} / \mathrm{s}^{2}$

Q. 3

In the figure (1) the magnitude of the normal force exerted outward on the block by the plane on which on which it rests is:
(a) 9.7 N
(b) 3 N
(c) 22.87 N
(d) 25.5 N
(e) Zero
(f) 2.59 N
Q. 4

A 4 kg block is sliding on a frictionless plane inclined at $\theta=20^{\circ}$. The magnitude of the acceleration
of the block is:
(a) $3.35 \mathrm{~m} / \mathrm{s}^{2}$
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $16.76 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(e) $9.2 \mathrm{~m} / \mathrm{s}^{2}$
(f) Zero

Q. 5

In the figure (2) a crate of mass $m_{1}=12 \mathrm{~kg}$ moves along a plane that makes an angle of $\theta=30^{\circ}$ with the horizontal, That crate is connected to a crate of mass $\mathrm{m}_{2}=12 \mathrm{~kg}$ by a taut, massless cord. The hang crate descends with constant velocity. The magnitude of the frictional force exerted on m_{1} by the plane is:

Fig.(2)

(a) 24 N
(b) 12 N
(c) 29.7 N
(d) 117.6 N
(e) Zero
(f) 58.8 N
Q6
(a) 0.3
(b) 0.12
(c) 0.58
(d) 1.7
(e) Zero
(f) 0.08
In the previous question, the coefficient of kinetic friction μ_{k} is:
(c) 0.58
(d)

\qquad (ロ)

Q. 7

A ball shot up making an angle θ with the horizontal, with a speed of $30 \mathrm{~m} / \mathrm{s}$. The time that the object needs
to reach its maximum range is:
(a) 4.3 s
(b) 3.1 s
(c) 42.4 s
(d) 0.41 s
(e) 6.1 s
(f) 129.9 s
Q. 8

A stone is thrown up with a speed of $20 \mathrm{~m} / \mathrm{s}$ making an angle 45° with the horizontal. The height of the stone
at half the range is:
(a) 199.6 m
(b) 99.8 m
(c) 20.4 m
(d) 10.21 m
(e) 203.8 m
(f) 40 m
Q. 9

A ball was projected upward at angle θ_{0} with the horizontal and an initial speed of $50 \mathrm{~m} / \mathrm{s}$. The ball reached
the highest point after three seconds, the angle θ_{0} is:
(a) 11.3°
(b) 34.4°
(c) 36°
(d) 60°
(e) 5.7°
(f) 30°
Q. 10

Qn the figure two blocks are connected and bulled to the right on a horizontal frictionless table by
a magnitude of 84 N . If the mass $m_{1}=8 \mathrm{~kg}$ and $m_{2}=13 \mathrm{~kg}$, the acceleration of the system is:

(a) $3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $6 \mathrm{~m} / \mathrm{s}^{2}$
(e) $7 \mathrm{~m} / \mathrm{s}^{2}$
(f) $2 \mathrm{~m} / \mathrm{s}^{2}$
Q. 11 Two forces act on a particle of mass $2 \mathrm{~kg} \cdot \vec{F}_{1}=(80 \hat{i}+60 \hat{\mathrm{j}}) \mathrm{N}$ and $\vec{F}_{2}=(40 \hat{\mathrm{i}}+100 \hat{\mathrm{j}}) \mathrm{N}$ The magnitude of the acceleration is: magnitude of
(a) $25 \mathrm{~m} / \mathrm{s}^{2}$
(b) $50 \mathrm{~m} / \mathrm{s}^{2}$
(c) $100 \mathrm{~m} / \mathrm{s}^{2}$
(d) $200 \mathrm{~m} / \mathrm{s}^{2}$
(e) $400 \mathrm{~m} / \mathrm{s}^{2}$
(f) $10 \mathrm{~m} / \mathrm{s}^{2}$

Q. 12

In the figure, the normal force on the mass is:

(a) 39.2 N
(b) 4.2 N
(c) 42.4 N
(d) 46.7 N
(e) Zero
(f) 10 N

(a) 122.7 N
(b) 110.4 N
(c) 85.9 N
(d) 98.1 N
(e) 9.2 N
(f) Zero

Q. 15

A $5-\mathrm{kg}$ block slides down on a frictionless inclined plane at an angle of 25°. The magnitude of the net force
on it is:
(a) Zero
(b) 11 N
(c) 44.4 N
(d) 29 N
(e) 62.2 N
(f) 20.7 N
Q. 16

A $5-\mathrm{kg}$ block slides down on an inclined plane at an angle of 25°. The friction coefficient μ_{k} is 0.2 . The
(a) 65.4 N
(b) 16.6 N
(c) 40.3 N
(d) 11.8 N
(e) Zero
(f) 4 N
Q. 17

A force accelerates a 5 kg particle of mass from rest to a speed of $12 \mathrm{~m} / \mathrm{s}$ in 4 s . The magnitude of this
force is:
(b) Zero
(c) 20 N
(d) 25 N
(e) 15 N
(f) 30 N
(a) 10 N
Q. 18

A 900 kg car is traveling at constant speed $18 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=200 \mathrm{~m}$. What is the
magnitude of the frictional force on the car?
(a) 1645 N
(b) 1539 N
(c) 1458 N
(d) 1377 N
(e) 1296 N
(f) 729 N

Q. 19

A 3.2 kg box
(a) 245.1 N
(b) 190.2 N
(c) Zero
(d) 31.5 N
(e) 70.7 N
(f) 63 N
Q. 20

A boy shot a foot ball vertically up with an initial speed v_{0}. When the ball was 2 m above the ground, the
speed was 0.4 of the initial speed. The initial speed is:
(a) $11.7 \mathrm{~m} / \mathrm{s}$
(b) $3.4 \mathrm{~m} / \mathrm{s}$
(c) $6.8 \mathrm{~m} / \mathrm{s}$
(d) $4.8 \mathrm{~m} / \mathrm{s}$
(e) $19.6 \mathrm{~m} / \mathrm{s}$
(f) $5 \mathrm{~m} / \mathrm{s}$

Q. 21

(a) 0.1 s
(b) 8.7 s
(c) 1.5 s
time the ball takes to reach the
$\begin{array}{ll}\text { (d) } 0.75 \mathrm{~s} & \text { (e) } 11 \mathrm{~s}\end{array}$
(f) 1.04 s
Q. 22

A stone is thrown at a building of height h with initial speed $32 \mathrm{~m} / \mathrm{s}$ directed 60° above the horizontal. The
(a) 50 m
$\begin{array}{ll}\text { (b) } 32.45 \mathrm{~m} & \text { (c) } 16 \mathrm{~m}\end{array}$
(d) 8 m
(e) 100 m
(f) Zero

Q. 23

a target on
(a) 800 m
(b) 226 m
(c) 16 m
(d) 458.1 m
(e) 1600 m
(f) 72 m

Q. 24

In the prev
(a) 144 m
n the maximum height the
$\begin{array}{ll}\text { (b) } 66.1 \mathrm{~m} & \text { (c) } 98 \mathrm{~m}\end{array}$
(d) 33 m
(e) Zero (f) 18 m

- In the projectile motion, the y-component of the velocity at the maximum height is:
(a) Negative
(b) constant
(c) the maximum value
(d) Zero
- In the projectile motion, the x-component of the velocity at the initial is:
(a) $v_{11} \sin \theta$
(b) $-v_{01} \sin \theta$
(c) $\nu_{n} \cos \theta$
(d) $-v_{11} \sin \theta$
- In the projectile motion, the angle for the maximum range is:
(a) 45°
(b) 75°
(c) 180°
(d) 145°

4- At the projectile motion, the maximum range is:
(a) $\frac{U_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}$
$5-$ In the figure shown, $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$. A force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$ is:
(a) 60 N
(b) 500 N
(c) 50 N
(d) 0.05 N

6- . . ef force needed to keep the mass (mass $=30 \mathrm{~kg}$) at rest a shown in the figure is:
(a) 98 N
(b) 147 N
(c) 9.8 N
(d) 14.7 N
7- In question (6), the normal force on the m_{1} is:
(a) 2.54 N
(b) 2540 N
(c) 25.4 N
(d) 254.6 N

8 - A block of mass 11 kg , was pulled by a force 40 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The net friction force is:
(a) 34.64 N
(b) 3.464 N
(c) 346.4 N
(d) 0.3464 N

9- A space satellite in a circular orbit around the earth, at altitude of 530 km and with speed of $7.5 \mathrm{~km} / \mathrm{s}$. The acceleration of the
satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.815 \mathrm{~m} / \mathrm{s}^{2}$
(c) $8.15 \mathrm{~m} / \mathrm{s}^{2}$
(d) $81.5 \mathrm{~m} / \mathrm{s}^{2}$

10- As show in the figure two bodies are hung by a rope over a fractionaless pulley.
If $m_{1}=3 \mathrm{~kg}$ and $m_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

1-A boy stand on the ground level, if his mass is 40 kg , his weight is:
(a) 3.92 N
(b) 392 N
(c) 39.2 N
(d) 3920 N

12- A body of mass m, is hung by the ropes at equilibrium as shown in the figure.
The value of the mass is:
(a) 1.17 kg
(b) 11.7 kg
(c) 117 kg
(d) 0.117 kg

14- In the figure shown, if $m_{1}=6 \mathrm{~kg}$ and the system move with acceleration
of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 12 N . The value of m_{2} is:
(a) 0.15 kg
(b) 154 kg
(c) 1.54 kg
(d) 15.4 kg

15- in question (13). the normal force on the body is:

(a) 5880 N
(b) 0.588 N
(c) 5.88 N
(d) 58.8 N

16- A body moves with velocity $\bar{v}=\hat{i}-\hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\bar{a}=\hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\bar{v}=3 \hat{i}+\hat{j}$
(b) $\bar{v}=-\hat{i}-3 \hat{j}$
(c) $\bar{v}=6 \hat{i}-3 \hat{j}$
(d) $\bar{v}=+\hat{i}+\hat{j}$

17-A box stands on rough incline plane of 30°. When just about to move, the static coefficient of fraction is:
a) $\sin \theta$
b) 0.58
c) 1.00
d) zero
-A ball is thrown with a velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle of 45°. The y-component of the velocity is :
$) 17.7 \mathrm{~m} / \mathrm{s}$
(b) $1.77 \mathrm{~m} / \mathrm{s}$
(c) $177 \mathrm{~m} / \mathrm{s}$
(d) $0.177 \mathrm{~m} / \mathrm{s}$

7- In question (18), the x-component of the velocity is:

1) $1.77 \mathrm{~m} / \mathrm{s}$
(b) $17.7 \mathrm{~m} / \mathrm{s}$
(c) $177 \mathrm{~m} / \mathrm{s}$
(d) $0.177 \mathrm{~m} / \mathrm{s}$
$0-$ In question (18), the maximum height is :
д) 0.159 m
(b) 1.594 m
(c) 15.94 m
(d) 159.4 m
!1- In question (18), the range is:
a) 6.377 m
(b) 637.7 m
(c) 6377 m
(d) 63.77 m

22- In question (18), the time of flight is:
a) 3.6 s
(b) 0.36 s
(c) 36 s
(d) 0.36 s

23- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone with the horizontal circle with the
speed of $4 \mathrm{~m} / \mathrm{s}$, the acceleration of the stone is:
(a) $0053 \mathrm{~m} / \mathrm{s}^{2}$
(b) $53.3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5.33 \mathrm{~m} / \mathrm{s}^{2}$
(d) $0.533 \mathrm{~m} / \mathrm{s}^{2}$
(a) 79
(b) 7.9
(c) 0.79
(d) 790

25- A man of mass 60 kg stands in elevator, if the elevator going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the
man is.
(b) 7.08 N
(c) 70.8 N
(d) 708 N
26- A man of mass 60 kg stands in ele
a
(b) 5.88 N
(c) 58.8 N
(d) 5880 N

27- A racing car of mass 700 kg move, the driver stopped the car by using the brake,
if the car was going with a acceleration of $4.5 \mathrm{~m} / \mathrm{s}^{2}$. The frictional force is:
(a) 315 N
(b) 3150 N
(c) 3.150 N
(d) 31.50 N
28- A box of mass m sliding down on an incline plane of θ°, and the box moving with a constant velocity. The frictional force is:
a) mg
(b) $m g \tan \theta$
(c) $m g \sin \theta$
(d) $\mathrm{mg} \cos \theta$

29- A box of mass 8 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The
kinetic friction coefficient is:
-) 0.36
(b) 26.7
(c) 2.67
(d) 1.00

30- Two boxes $m_{1}=15 \mathrm{~kg}$ and $m_{2}=20 \mathrm{~kg}$, the gravitational force on m_{2} is:
(a) 25 N
(b) 343 N
(c) 2450 N
(d) 5 N
24- in Question 30, the gravitational force on m_{1} is:
(a) 0.96 N
(b) 9.6 N
(c) 196 N
(d) 147 N

Referring	الكودة اللى	Initial	ابتّانّانّ	Hitting	1010
Thrown	\% ${ }^{\text {in }}$	altitude \| برتّإع		Magnitude	التِّبة العدندية
Vertically	عاكمو	Elevator	Rent	Prevent	ينِ
Hangs	مإِّ	Circular	دانري	Apparent weight	1
Horizontal	أفقّق	Rough	خـّ	Gravitational	
Radius	نصف تُطر	Coefficient	م10	Frictional	
Sliding	بِّلقِ	Static	السكوني	Floor	صا
Upward	! !	Kinetic	الحركي	Stand	-

TEST \# 2

Q. 1 The velocity of a particle moving in the $x-y$ plane is $\vec{v}(t)=\left[\left(12 t-3 t^{2}\right) \hat{i}+5 \hat{j}\right] \mathrm{m} / \mathrm{s}$. The acceleration is zero when the time is:
(B) 2 s
(C) zero
(D) 14 s
(E) 5 s
(A) 12 s
Q. 2 A car is moving in x - y plane, has x-and y-coordinates
(A) $2 \hat{i} \mathrm{~m}$
(B) $2 \hat{i}+3 \hat{j} \mathrm{~m}$
(C) $25 \hat{\mathrm{k} m}$
(D) $9 \hat{j} \mathrm{~m}$
(E) $10 \hat{\mathrm{j}} \mathrm{m}$
Q. 3 Refer
(A) $1 \mathrm{~m} / \mathrm{s}$
(B) $3.3 \mathrm{~m} / \mathrm{s}$
(C) $1.64 \mathrm{~m} / \mathrm{s}$
(D) $4.5 \mathrm{~m} / \mathrm{s}$
(E) $25 \mathrm{~m} / \mathrm{s}$
Q. 4 A particle moves so that its position (in meters) as a function of time (in seconds) is $\vec{r}=4 t 2 \hat{i}+2 t \hat{j}$ Its velocity as functions of time is:
(A) $10 \hat{i}+3 \hat{j} \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{t} \hat{\mathrm{j}}+\hat{\mathrm{k}} \mathrm{m} / \mathrm{s}$
(C) $8 t \hat{i}+2 \hat{j} \mathrm{~m} / \mathrm{s}$
(D) $5 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$
(E) $4 \mathrm{~m} / \mathrm{s}$
Q. 5 A particle moves so that its position (in meters) as a function of time (in seconds) is $\bar{r}=4 t^{2} \hat{i}+2 t \hat{j}$
Its acceleration as functions of time is:
(A) $4 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
(B) $\hat{j}+\hat{k} \mathrm{~m} / \mathrm{s}^{2}$
(C) $8 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$
(D) $9 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
(E) $10 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
Q. 6 A truck is traveling with a constant speed of $16 \mathrm{~m} / \mathrm{s}$. When the truck follows a curve in the road, its
centripetal acceleration is $4.0 \mathrm{~m} / \mathrm{s}^{2}$. The radius of the curve is:
(A) 3.8 m
(B) 14 m
(C) 56 m
(D) 64 m
(E) 210 m
Q. 7 A stone thrown from the top of a tall building follows a path that is:
(A) parabolic
(B) two straight line
(C) hyperbolic
(D) circular
(E) a straight line
Q. 8 A football player kicks a ball off with an initial speed $6 \mathrm{~m} / \mathrm{s}$ and angle 40° with the horizontal. The
maximum height is:
(A) 1.38 m
(B) 0.76 m
(C) 1.5 m
(D) 1.23 m
(E) none of these
Q. 9 Referring
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $6 \mathrm{~m} / \mathrm{s}$
(C) $36 \mathrm{~m} / \mathrm{s}$
(D) $12 \mathrm{~m} / \mathrm{s}$
(E) zero
Q. 10 The period of a particle moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 12 m is:
(A) πs
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $6 \pi \mathrm{~s}$
(E) $8 \pi \mathrm{~s}$
Q. 11 The horizontal range for the projectile is maximum when it launch angle is:
(A) 120°
(B) 45°
(C) 30°
(D) 90°
(E) 180°
Q. 12 A car travels east at constant velocity. The net force on the car is:
(A) East
(B) West
(C) Zero
(D) Down
(E) up
Q. 13 A string from the ceiling suspends a mass of 3 kg . The tension in the string is:
(A) 29.4 N
(B) 12 N
(C) zero
(D) 19.6 N
(E) 10 N
Q. 14 A particle moving from $\vec{r}_{1}=2 \hat{i}+5 \hat{j}+2 \hat{k}$ to $\bar{r}_{2}=6 \hat{i}+5 \hat{j}+4 \hat{k}$ then the displacement in SI units is:
(A) $10 \hat{i}+3 \hat{j}$
(B) $2 \vec{j}+2 \vec{k}$
(C) $4 \hat{i}+2 \bar{k}$
(D) $5 \hat{\mathrm{j}}$
(E) 4
Q. 15 In which case will the magnitude of the normal force on the block be equal to $(M g-F \sin \theta)$?
(A) case 1 only
(B) case 2 only
(C) both cases 1 and 2
(D) both cases 2 and 3
(E) cases 1, 2, and 3

Case 2

Case 3
Q. 16 Referring to question (15), in which case will the y-component of the weight of the block be equal to $(M g \cos \theta)$?
(A) case 1 only
(B) case 2 only
(C) cases 1 and 2
(D) cases 2 and 3
(E) case 3 only
Q.17 A man weighing 700 N is in an elevator that is accelerating upward at $3 \mathrm{~m} / \mathrm{s}^{2}$. The magnitude of the force exerted on him by the elevator's floor is:
(A) 990 N
(B) 290 N
(C) Zero
(D) 914 N
(E) 71 N
Q. 18 The unit of force called the Newton is:
(A) $9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(B) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(C) 1 kg of mass
(D) 1 kg of force
(E) none of these
Q. 19 Two forces act on a particle in which it moves with constant velocity, if $\vec{F}_{1}=-6 \hat{i}-5 \hat{j}$ then \vec{F}_{2} is:
((A) $4 \hat{i}-5 \hat{j}$
(B) $2 \hat{i}+2 \hat{j}$
(C) $5 \hat{i}$
(D) $5 \hat{\mathrm{j}}$
(E) $6 \hat{i}+5 \hat{j}$
Q. 20 Two blocks (A and B) are in contact on a horizontal frictionless surface. A 40 N constant force is applied to A as shown. The acceleration of A is:

Fig.(3)

$$
m_{A}=5 \mathrm{~kg}, \mathrm{~m}_{\mathrm{B}}=20 \mathrm{~kg}
$$

(A) $1.1 \mathrm{~m} / \mathrm{s}^{2}$
(B) $6 \mathrm{~m} / \mathrm{s}^{2}$
(C) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
(D) $3 \mathrm{~m} / \mathrm{s}^{2}$
(E) $3.6 \mathrm{~m} / \mathrm{s}^{2}$
Q. 21 Acceleration is always in the direction of the:
(A) displacement
(B) initial velocity
(C) final velocity
(D) net force
(E) opposite to the frictional force
Q. 22 A 4 kg block is sliding on a frictionless plane inclined at $\theta=25^{\circ}$. The magnitude of the acceleration of the block is:
(A) $3.35 \mathrm{~m} / \mathrm{s}^{2}$
(B) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(C) $16.76 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4.1 \mathrm{~m} / \mathrm{s}^{2}$
(E) $9.2 \mathrm{~m} / \mathrm{s}^{2}$
Q. 23 A boy pulls a wooden box along a rough horizontal floor at constant speed. Which of the following must be true?
(A) $F=f_{k}$ and $N=F_{g}$
(B) $F=f_{k}$ and $N>F_{g}$
(C) $F>f_{k}$ and $N<F_{g}$
(D) $F>F_{k}$ and $N=F_{g}$
(E) none of these

Q. 24 Referring to question (23), if the force F makes an angle of 30° with the horizontal, which of the followinh
must be true?
(A) $F=f_{k}$ and $N=F_{g}$
(B) $F=f_{k}$ and $N>F g$
(C) $\mathrm{F}>\mathrm{F}_{\mathrm{k}}$ and $\mathrm{N}<\mathrm{F}_{\mathrm{g}}$
(D) $\mathrm{F}>\mathrm{F}_{\mathrm{k}}$ and $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$
(E) none of these
Q. 25 In the figure (5) a crate of mass $m_{1}=10 \mathrm{~kg}$ moves along the horizontal surface. That carte is connected to a carte of mass $m_{2}=5 \mathrm{~kg}$ by a massless cord. The hang carte descends with constant velocity. - \exists magnitude of the frictional force exerted on m_{1} by the plane is:
(A) 1.5 N
(B) 58.8 N
(C) 29.7 N
(D) 49 N
(E) zero

Q. 26 Referring to question (25), the Normal force between the surface and m_{1} is:
(A) 98 N
(B) 12 N
(C) zero
(D) 117.6 N
(E) 10 N
(E)
Q. 27 Referring to question (25), the tension in the cord is:
(A) 58.8 N
(B) 49 N
(C) zero
(D) 6 N
(E) none of these
Q. 28 In the figure (6) if $m_{1}=5 \mathrm{~kg}$ and $m_{2}=12 \mathrm{~kg}$. The acceleration is:
(A) $4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $12 \mathrm{~m} / \mathrm{s}^{2}$
(C) $9.17 \mathrm{~m} / \mathrm{s}^{2}$
(D) $3.33 \mathrm{~m} / \mathrm{s}^{2}$
(E) Zero
(D) 3.33 m
-
n
moving upward with
2. The
able is:
(A) 1224 N
(B) 650 N
(C) 15180 N
(D) 1100 N
(E) 6380 N
Q.30 An automobile moves on a circular road of radius 40 m . The coefficient of friction bat
is 0.50 . The maximum speed with which this car can round this curve without sliding is:
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $4.9 \mathrm{~m} / \mathrm{s}$
(C) $14 \mathrm{~m} / \mathrm{s}$
(D) $12.12 \mathrm{~m} / \mathrm{s}$
(E) $13 \mathrm{~m} / \mathrm{s}$

Radius	نصف المُكر	Parabolic	قاططع مكافِّ	Elevator	תصט	Aangle	زاوِّة
Referring to	بكلرجوع الىّ	Period	النزمن الدوري	Exerted	مبنّولة	Automobile	سبّارة
question	السؤاله السبابق				هـكّ	Block	جّ
truck	شُاحنه	Rough surface		Hang		Brake	فُزهِ
Upwards	لك1	Speed	سرع ¢ه	Hyperbolic	釈	Component	قركبّ
Vertically	عموديا	String	الشّبط	Magnitude	\%	Cord	حبّ
kick	ضربت	Tension	年	Massless	عديم الوزن	Carte	صنّائنِ
circular	مسار دائري	Thrown	Q	Massless	جا	Cubic	كع
		Traveling	تسير	Object	جسِّ	Cubic	ب

```
<ing Abdulaziz University
Faculty of Science
Physics Dept.
Physics }11
```


Test 2

Time: 90 min
Student Name
Student no.:
Section:
Q. 1 A man of weight 490 N . His mass is:
(A) 40 kg
(B) 980 kg
(C) zero
(D) 50 kg
(E) 490 kg
Q. 2 1Newton is equivalent to:
(A) $9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(B) 1 kg of force
(C) 1 kg of mass
(D) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(E) none of these
Q. 3 A particle moving from $\bar{r}_{1}=2 \hat{i}+5 \hat{j}+8 \hat{k}$ to $\bar{r}_{2}=2 \hat{i}+10 \hat{j}+18 \hat{k}$ then the displacement is:

1) $10 \hat{i}-3 \hat{j}$
(B) $5 \vec{j}+10 \vec{k}$
(C) $10 \hat{i}+5 \hat{j}$
(D) $5 \hat{j}$
(E) 8
Q. 4 Two forces are applied to an object of mass 18.25 kg . One force is 27.5 N to the north and the other is
24.0 N to the west. The magnitude of the acceleration of the object is:
(A) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
(B) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(C) $4.0 \mathrm{~m} / \mathrm{s}^{2}$
(D) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
(E) $5.0 \mathrm{~m} / \mathrm{s}^{2}$
Q. 5 A boy kicks a ball at an angle of 40° to the horizontal with a speed of $14.0 \mathrm{~m} / \mathrm{s}$. The time it takes to reach
the highest point is:
(A) 0.92 s
(B) 0.77 s
(C) 0.15 s
(D) 1.12 s
(E) 0.38 s
Q. 6 Referring to question 5, the maximum height that the ball can reach is:
(A) 9.87 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m
(E) 14.0 m
Q. 7 Referring to question 5 , the horizontal range that the ball can reach is:
(A) 9.87 m
(B) 19.7 m
(C) 15.33 m
(D) 12.68 m
(E) 14.0 m
(A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(C) Zero
(D) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(E) $1 \mathrm{~m} / \mathrm{s}^{2}$
Q. 9 A particle is thrown with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$. The time it takes to reach its maximum range is:
(A) 1.2 s
(B) 2.89 s
(C) 3 s
(D) 4.10 s
(E) 5.77 s
Q. 10 The initial velocity of a projectile is $150 \mathrm{~m} / \mathrm{s}$. The angle between the velocity vector and the trajectory at the projectile's maximum height is:
(A) 90°
(B) 45°
(C) Zero
(D) 63.1°
(E) 36.9°
Q.11 A 5 kg body is moving in a circular path of radius 0.5 m in radius with a constant speed makes five
revolutions per second. Then its speed is:
(A) $15.71 \mathrm{~m} / \mathrm{s}$
(B) $3.14 \mathrm{~m} / \mathrm{s}$
(C) $7.5 \mathrm{~m} / \mathrm{s}$
(D) $0.20 \mathrm{~m} / \mathrm{s}$
(E) Zero
Q. 12 At $t=0$, a car moves with velocity $\vec{v}_{0}=2 \hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$ and acceleration $\vec{a}=2 \hat{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$. The velocity of the car at $\mathrm{t}=2 \mathrm{~s}$ is:
(A) $6 \hat{i}+\hat{j}$
(B) $2 \hat{i}+5 \hat{j}$
(C) $2 \hat{i}+\hat{j}$
(D) $\hat{i}+5 \hat{j}$
(E) 1
Q. 13 A particle moves in $x y$ plane as $x(t)=2 t(m)$ and $y(t)=t^{2}-1(m)$. The velocity of the particle in vector notion at $\mathrm{t}=1 \mathrm{~s}$ is:
(A) $\hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$
(B) $2 \hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$
(C) $2 \hat{\imath}+2 \hat{j}(\mathrm{~m} / \mathrm{s})$
(D) $2 \hat{i} \hat{j}(\mathrm{~m} / \mathrm{s})$
(E) $10(\mathrm{~m} / \mathrm{s})$
Q. 14 A projectile is launched to achieve a maximum range of 140 m , the speed of the projectile must be:
(A) $17 \mathrm{~m} / \mathrm{s}$
(B) $27 \mathrm{~m} / \mathrm{s}$
(C) $37 \mathrm{~m} / \mathrm{s}$
(D) $45 \mathrm{~m} / \mathrm{s}$
(E) $10 \mathrm{~m} / \mathrm{s}$
Q. 15 The formula for the friction force is:
(A) $f=\mu \mathrm{N}$
(B) $F=m a$
(C) $w=m g$
(D) $F=N$
(E) $F=2 f$
Q. 16 A car travels east at constant velocity. The net force on the car is:
(A) greater than zero
(B) less than zero
(C) zero
(D) 9.8 N
(E) 4.9 N
(A) Zero
(B) $5 \mathrm{~m} / \mathrm{s}^{2}$
(C) $2 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4 \mathrm{~m} / \mathrm{s}^{2}$
(E) $6 \mathrm{~m} / \mathrm{s}^{2}$
Q. 18 As shown in the figure, if the two blocks are moving on frictionless surface and connected with a rope of negligible mass. The tension T in that rope is:

(A) 2.5 N
(B) 9.98 N
(C) 23 N
(D) Zero
(E) 24.57 N
Q. 19 Referring to question 18, the normal force on the block m_{1} is:
(A) 147 N
(B) 5 N
(C) Zero
(D) 15 N
(E) 49 N
Q. 20 A car is traveling at $20 \mathrm{~m} / \mathrm{s}$ on a horizontal highway. If the coefficient of friction between the road and tires
on rainy day is 0.1 , the distance in which the car will stop is:
(A) 408 m
(B) Zero
(C) 20 m
(D) 204.1 m
(E) 10.2 m
Q. 21 The velocity and acceleration of a body in a uniform circular motion are:
(A) differed by 45°
(B) perpendicular
(C) differed by 135°
(D) parallel
(E) none of these
Q. 22 A 60 kg person weighs 100 N on the moon. The acceleration of gravity on the moon is:
(A) zero
(B) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(C) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(D) $1.67 \mathrm{~m} / \mathrm{s}^{2}$
(E) $9.8 \mathrm{~m} / \mathrm{s}^{2}$

- \qquad
Q. 23 A block slides on a rough surface (see Figure). The block starts to s ,
when a parallel force of 30 N is applied. The coefficient of static friction μ_{s} is:

(A) 1
(B) $\underline{0.77}$
(C) 0.33
(D) 0.67
(E) Zero
(A) 500 N
(B) 9.8 N
(C) 250 N
(D) zero
(E) 350 N
Q. 25 The formula for the centripetal force is:
(A) $a=\frac{V^{2}}{R}$
(B) $F=m a$
(C) $F=m g$
(D) $F=m \frac{v^{2}}{R}$
(E) none of these
Q. 26 In the figure a 5 kg box is pushed at a constant speed up the frictionless ramp by a horizontal force \vec{F}. The magnitude of \vec{F} is:

(A) 44.5 N
(B) 98 N
(C) 49 N
(D) 24.5 N
(E) Zero
-27 Refer to question 26, the normal force on the box is:
(-1) 49 N
(B) 84.87 N
(C) Zero
(D) 98 N
(E) 42.44 N
Q. 28 Three forces act on a particle in which it moves with constant speed, if $\bar{F}_{1}=(-8 \hat{i}) \mathrm{N}$ and $\overline{F_{2}}=(10 \hat{j}) \mathrm{N}$. Then \bar{F}_{3} is:
(A) $-8 \hat{i}-10 \hat{j}$
(B) $8 \hat{i}$
(C) $8 \hat{i}-10 \hat{j}$
(D) $10 \hat{j}$
(E) $18 \hat{k}$
Q.29 A 3 kg box is moving with a constant speed. The net force on the box is:
(A) 245.10 N
(B) 190.20 N
(C) Zero
(D) 31.50 N
(E) 70.70 N
Q. 30 A 1000 kg elevator is moving up with acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$. The tension in the cable is:
(A) 9800 N
(B) 12800 N
(C) Zero
(D) 1000 N
(E) 6800 N

King Abdul-Aziz University
Faculty of Science
Physics Dept

PHYS $1102^{\text {nd }}$ EXAM

Time: 90 min .

Student Name:

Choose the correct answer:

1. Newton's second law is written as:
(a) $\vec{a}=\vec{F} m$
(b) $\vec{a}=\frac{\vec{F}}{m}$
(c) $m=\vec{F} \vec{a}$
(d) $\vec{F}=\frac{\vec{a}}{m}$
2. $10^{5} \mathrm{~g} . \mathrm{cm} / \mathrm{s}^{2}$ is equal:
(a) 10 N
(b) 1 N
(c) 100 N
(d) 1000 N
3. Acceleration is always in the direction of the :
(a) displacement
(b) initial velocity
(c) final velocity
(d) net force
4. The maximum range of a projectile is at launch angle
(a) $\theta=25^{\circ}$
(b) $\theta=35^{\circ}$
(c) $\theta=45^{\circ}$
(d) $\theta=55^{\circ}$
5. The force that opposes the motion is called
(a) Tension
(b) Friction
(c) Normal force
(d) gravitational force
6. In the projectile motion the acceleration in the horizontal direction is:
(a) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero
(c) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
7. If the x component of vector \bar{r} is 2.6 m and the y component is -2.3 m then \bar{r} in unit-vector
notation is:
(a) $2.6 \hat{i}-2.3 \hat{j}$
(b) $-2.3 \hat{i}+2.6 \hat{j}$
(c) $6.2 \hat{i}+3.2 \hat{j}$
(d) $3.2 \hat{i}-6.2 \hat{j}$
8. The displacement of a particle moving from $\vec{r}_{1}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ to $\vec{r}_{2}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$ is:
(a) $-7 \hat{i}+12 \hat{j}$
(b) $3 \hat{i}+4 \hat{k}$
(c) $7 \hat{i}-12 \hat{j}$
(d) $-3 \hat{i}-4 \hat{k}$
9. The components of a car's velocity as a function of time are given by : $\mathrm{v}_{\mathrm{x}}=2 \mathrm{t}+3$, and $\mathrm{v}_{\mathrm{y}}=4 \mathrm{t}-1$, its velocity \bar{V} at $(\mathrm{t}=1 \mathrm{~s})$ is:
(a) $\vec{V}=9 \hat{i}+11 \hat{j}$
(b) $\bar{V}=5 \hat{i}+3 \hat{j}$
(c) $\vec{V}=7 \hat{i}+7 \hat{j}$
(d) $\vec{V}=11 \hat{i}+15 \hat{j}$
10. A rope from the ceiling suspends a ball of weight 400 N . The tension in the rope is:
(a) 800 N
(b) 200 N
(c) 560 N
(d) 400 N
11. The components of a car's velocity as a function of time are given by $\mathbf{v}_{\mathrm{x}}=6 \mathrm{t}^{2}-5, \mathrm{v}_{\mathrm{y}}=-3 t^{3}$. The acceleration components are:
(a) $a_{x}=10 t$
(b) $a_{x}=4 t$
$a_{y}=-12 t^{2}$
$a_{y}=-6 t^{2}$
(c) $\begin{aligned} a_{x} & =6 t \\ a_{y} & =-15 t^{2}\end{aligned}$
(d) $\begin{aligned} a_{x} & =12 t \\ a_{y} & =-9 t^{2}\end{aligned}$
12. A particle moving with initial velocity $\vec{v}_{0}=-2 \hat{i}+4 \hat{j} \mathrm{~m} / \mathrm{s}$, and acceleration $\vec{a}=-5 \hat{i}+8 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$, the x-component v_{x} of the final velocity at $(t=1 s)$ is ?
(a) $-7 \mathrm{~m} / \mathrm{s}$
(b) $-17 \mathrm{~m} / \mathrm{s}$
(c) $-27 \mathrm{~m} / \mathrm{s}$
(d) $-37 \mathrm{~m} / \mathrm{s}$
13. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(a) 318.1 m
(b) 267.3 m
(c) 373.4 m
(d) 220.9 m
14. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(a) $\pi \mathrm{s}$
(b) $2 \pi \mathrm{~s}$
(c) $4 \pi \mathrm{~s}$
(d) $8 \pi \mathrm{~s}$
15. Referring to question 14, the acceleration of the object is:
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $8 \mathrm{~m} / \mathrm{s}^{2}$
16. A car travels east at constant velocity. The net force on the car is:
(a) east
(b) west
(c) zero
(d) up
17. Two forces act on a particle that moves with constant velocity, if $\vec{F}_{1}=2 \hat{i}-6 \hat{j}$, then \vec{F}_{2} equals:
(a) $\vec{F}_{2}=6 \hat{i}-2 \hat{k}$
(b) $\vec{F}_{2}=-2 \hat{i}+6 \hat{k}$
(c) $\vec{F}_{2}=-6 \hat{i}+2 \hat{j}$
(d) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
18. When a force of 8 N is applied to a body, its acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the body is:
(a) 4 kg
(b) 16 kg
(c) 8 kg
(d) $1 / 4$
19. From the figure the acceleration of the block of mass $\mathrm{m}=0.5 \mathrm{~kg}$ moving along the x -axis on a frictionless table is:
(a) $-2 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-4 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-8 \mathrm{~m} / \mathrm{s}^{2}$

20. From the figure the normal force F_{N} on a block sliding down a frictionless inclined plane is:
(a) 9.8 N
(b) 33.95
(c) 16.97 N
(d) 19.8 N

21. Referring to question 21 , if the block is sliding down with constant speed then the magnitude of F is:
(a) 19.6 N
(b) zero
(c) 9.8 N
(d) 4.9 N
22. Referring to question 21 , if the magnitude of F is zero then the acceleration of the block
$\begin{array}{llll}\text { (a) } 19.6 \mathrm{~m} / \mathrm{s}^{2} & \text { (b) zero } & \text { (c) } 9.8 \mathrm{~m} / \mathrm{s}^{2} & \text { (d) } 4.9 \mathrm{~m} / \mathrm{s}^{2}\end{array}$
23. A 1000 kg elevator is moving up with acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$. The tension in the cable is:
(a) 6800 N
(b) 1000 N
(c) 12800 N
(d) 9800 N
24. A horizontal force of 200 N is required to start moving a $800-\mathrm{N}$ crate initially at rest on a horizontal floor. The coefficient of static friction is:
(a) 4
(b) 0.25
(c) zero
(d) 0.5
25. A block of mass 100 kg slides on a horizontal surface with acceleration $\mathrm{a}=6 \mathrm{~m} / \mathrm{s}^{2}$, the force of friction between the block and the surface is:
(a) -360 N
(b) -480 N
(c) -600 N
(d) -720 N
26. A block of weight $5 \mathbb{N}$ moves with constant speed by a force of $3 \mathbb{N}$, the value of the coefficient of friction μ_{k} is:
(a) 0.3
(b) 0.4
(c) 0.5
(d) 0.6
27. A boy pulls a box of mass m on a horizontal surface by a horizontal force \vec{F} along the x-axis at constant
speed, then the magnitude of \vec{F} is:
(a) $\mu_{k} m g$
(b) mg
(c) $\mu_{k} g$
(d) \mathbb{F}_{N}
28. A particle of mass 5 kg at a point where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, its weight at a point where $\mathrm{g}=0$ is:
(a) 9.8 N
(b) 49 N
(c) 98 N
(d) zero
29. As shown in the figure, a block of mass m is pulled at constant velocity along a rough horizontal surface by a force F. The magnitude
 of the frictional force is:
(a) $F \sin \theta$
(b) zero
(c) $m g \cos \theta$
(d) $F \cos \theta$
30. Referring to question 29 , the normal force is:
(a) $m g-F \sin \theta$
(b) $m g+F \sin \theta$
(c) mg
(d) $F \sin \theta-m g$

launch	ق̋	opposes	يمانع	horizontal	约	rope	حبل
ceiling	سقف	suspends	يعلقو	initial	إبتدائ-	circuiar	دائري
path	مسار	applied	أثّ	frictionless	أمسا	table	طاولهـ
sliding	ينزلٌ	inclined	ماثّل	Referring to	باللرجوع	elevator	هصند
tension	شٌ	crate	406	pulls	يسحب	rough	خشن

King Abdulaziz University Faculty of Sciences
Physics Department

Second Term
1433-1434 H
Date : 13 / 6 / 1434 H
Second Exam-PHYS 110
Name: \qquad ID No: \qquad Section : \qquad
CHOOSE THE CORRECT ANSWER :

$$
V_{y}=0
$$

1. In the projectile motion, the y-component of the velocity at the maximum height is:
A) positive
C) negative
D) the maximum value
2. A man of mass m stands on a scale (مـبران) in an elevator, the general solution for the scale reading is :
A) $F_{N}=m\left(-a_{y}-g\right)$
B) $F_{N}=m a_{y}$
C) $F_{N}=m\left(a_{y}-g\right)$
(D) $F_{N}=m\left(a_{y}+g\right)$

$F_{N}-m g=m a g$
3. The coefficients μ_{s} and $\mu_{\mathrm{k}}: \mu_{\mathrm{s}}=\frac{f_{s}}{F-N}=\frac{X^{\prime}}{X}=1$
A) always parallel to the surface
B) both opposite to each other
(C) have no units
D) are vectors
4. In Newton's First law, If no net force act on a body
A) the body's velocity cannot change, that is, the body can accelerate
B) the body's velocity can change, that is, the body can accelerate
C) the body's velocity can change, that is, the body cannot accelerate
D) the body's velocity cannot change, that is, the body cannot accelerate
5. In the figure the net force on the block is:

$$
\begin{aligned}
& F_{\text {net, } x}=2-3=-1 \mathrm{~N}, \text { left } \\
& \text { net, } y=6-2-4=0^{\text {ne f }}
\end{aligned}
$$

(A)) 1 N - left
B) 6 N - down
C) 1 N -right
D) $4 \mathrm{~N}-\mathrm{up}$
6. In the figure the block will move on the floor if F equals

A) 15 N
B) 13 N
C) 14 N
(D)) 16 N
7. In the uniform circular motion, the centripetal force is: $F=m a=m\left(\frac{V^{2}}{R}\right)$
A) $m \frac{v}{R}$
B) $\frac{v^{2}}{R}$
(C) $m \frac{v^{2}}{R}$
D) $m \frac{v^{2}}{R^{2}}$
8. Two forces $\vec{F}_{1}=8 \hat{i}+6 \hat{j}$ and $\vec{F}_{2}=4 \hat{i}+10 \hat{j}$ act on a particle of mass 2 Kg . The $\alpha=\frac{F_{n c t}}{m}=\frac{F_{1}+f_{2}}{m}$
acceleration is: A) $4 \hat{i}+3 \hat{j}$
(C) $6 \hat{i}+8 \hat{j}$
D) $\begin{aligned} 2 \hat{i}+2 \hat{j} & =\frac{(8+4) \hat{c}+(6+10) \hat{\jmath}}{2 \hat{e}^{2}+8 U} \\ & =6\end{aligned}$
9.

Projectile is fried (${ }^{\text {(أطلق (}}$) from a ground at angle 45° above the horizontal. If it reaches the ground at 60 m from the starting point, the initial velocity $\left(\mathrm{v}_{0}\right)$ is: $R=V_{0}^{2} \mathrm{~s}$ in 2 Q
A) $9.8 \mathrm{~m} / \mathrm{s}$
(B) $24.2 \mathrm{~m} / \mathrm{s}$
C) $31.3 \mathrm{~m} / \mathrm{s}$
D) $50 \mathrm{~m} / \mathrm{s}$
$\sin 2(45)=1, V_{0}^{2}=R g \rightarrow V_{0}=\sqrt{ }$
Use the following to answer questions 10-11:

Three forces act horizontally on a tin (على) at the angles shown in the figure, the tin remains ($a=0$

$137-90=47^{\circ} \quad 118-90=28^{\circ}$
10. The free body diagram representing the forces on tin is :
A)

(B)

C)

D)

11. From Newton's $2^{\text {nd }}$ law
A) $\vec{F}_{1}-\vec{F}_{2}-\vec{F}_{3}=m \vec{a}$
B) $\vec{F}_{1}-\vec{F}_{2}-\vec{F}_{3}=0$
(C) $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=0$
D) $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=m \vec{a}$

$$
m \quad \text { Fret }=\text { ? 2, , Fut y }=0
$$

12. In the figure a 2 Kg mass slide over a horizontal frictional plane ,the object
$F_{\text {net, }, \text { g }}=0$
$F_{\text {net }, x}=m a$
$F_{x}-f_{k}=m a$
$F-\cos 60-22=2 a$
$a=\frac{50 \cos 60-22}{2}=\frac{3}{2}=1.5 \mathrm{~m} / \mathrm{s}$
(A)) accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ (right)
B) dose not accelerate
C) accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$ (right)
D) accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ (right)
13. If $m_{1}=227 \mathrm{~kg}$ and $m_{2}=454 \mathrm{~kg}$ and the same force is applied to both masses, then the ratio (النسس) of their accelerations is:
A) $\frac{a_{1}}{a_{2}}=2.4$
B) $\frac{a_{1}}{a_{2}}=\frac{1}{5}$
(C) $\frac{a_{1}}{a_{2}}=2$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
$\frac{a_{1}}{a_{2}}=\frac{m_{2}}{m_{1}}=\frac{454}{227}=2$
14. You are standing on the floor, the push on you from the floor is Nor ma L for Ce
(A) Normal force
B) Gravitational force
C) Friction
D) Tension
15. The centripetal force accelerates a body by changing the direction of the body's Velocity without changing the body's speed.
A) acceleration
B) displacement
(C) velocity
D) path

Use the following to answer questions 16-17:
A plane enters a horizontal circular turn with $\vec{v}_{i}=300 \hat{i} \mathrm{~m} / \mathrm{s}$ and 15 s later leaves the turn with $\vec{v}_{f}=-300 \hat{i} \mathrm{~m} / \mathrm{s}$:

16. If the radius of the circular path is 4890 m , then the centripetal acceleration is: $a=\frac{v^{2}}{R}=\frac{(300)^{2}}{4890}$
A) $9183.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $18.4 \mathrm{~m} / \mathrm{s}^{2}$
C) $30.6 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.06 \mathrm{~m} / \mathrm{s}$
$=18.4 \mathrm{~m} / \mathrm{s}^{2}$
17. The period of the plane is:
(A) 30 s
B) 45 s
C) 60 s
D) 15 s
$T=2(15)=30 \mathrm{~s}$
18. Two bodies A and B interact, the magnitude of the forces on the bodies from each other are :

A) $F_{A B}\left\langle F_{B A}\right.$
(B) $F_{A B}=F_{B A}$
C) $F_{A B}=F_{B A}=0$
D) $\left.F_{A B}\right\rangle F_{B A}$
19. A particle moved a displacement $\Delta \vec{r}=(18 m) \hat{i}+(22 m) \hat{j}+(22 m) \hat{k}$ in 2 s . Its average velocity is:
(A) $\vec{v}_{\text {arg }}=9 \hat{i}+11 \hat{j}+11 \hat{k}$
B) $\vec{v}_{\text {avg }}=8 \hat{i}+11 \hat{j}+11 \hat{k}$
C) $\vec{v}_{\text {avg }}=9 \hat{i}+11 \hat{k}$
D) $\vec{v}_{\text {arg }}=8 \hat{i}+11 \hat{k}$

m
20. A 0.15 kg particle moves along $\mathrm{an} x$-axis with acceleration $a(t)=2-12 t\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, the net force acting on the particle at $t=1 \mathrm{~s}$ is :

$$
\begin{aligned}
& F_{\text {net }}==\bar{a} \\
&=(0.15)(2-12(1))
\end{aligned}
$$

A) $(-1.8 N) \hat{i}$
(B) $(-1.5 \mathrm{~N}) \hat{i}$
C) $(0.3 \mathrm{~N}) \hat{i}$
D) $(2.1 N) \hat{i}$
21. The components of a car's position as a function of time are given by $r_{x}=2 t+3$, and $r_{y}=4 t-1$. The position vector at $t=2 \mathrm{~s}$ is: $r_{x}=(2)(2) \times 3=7, r_{y}=4(x)-1=7$

- (A) $\vec{r}=7 \hat{i}+7 \hat{j}$
B) $\vec{r}=11 \hat{i}+15 \hat{j}$
C) $\vec{r}=5 \hat{i}+3 \hat{j}$
D) $\vec{r}=9 \hat{i}+11 \hat{j}$
$\bar{r}=r_{x} \stackrel{i}{ } r_{y} \jmath$
$=7 \hat{C} \times 7 \hat{j}$ Sample C Page 4

Use the following to answer questions 22-24:
A ball is thrown with initial velocity $\mathrm{v}_{0}=95 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=30^{\circ}$ above the horizontal:
22. The maximum height that the ball can reach is:
A) 57.55 m
B) 460.4 m
(C) 115.1 m
D) 230.2 m

$$
h_{\max }=\frac{V_{0}^{2} \sin ^{2} \theta}{2 g}
$$

$=115.1 \mathrm{~m}$
23. The ball's initial velocity v_{0} in unit vector notation is
A) $\vec{v}_{0}=47.5 \hat{i}+47.5 \hat{j}$
B) $\vec{v}_{0}=82.3 \hat{i}$
$V_{0 \lambda}=V_{0} \cos \theta=95 \operatorname{Cos} 30=82.3$
C) $\vec{v}_{0}=47.5 \hat{j}$
(D)) $\vec{v}_{0}=82.3 \hat{i}+47.5 \hat{j}$
$v_{o g}=v_{0} \sin c=95 \sin 30=47.5$ $\bar{v}_{0}=82.3 \hat{\imath}+47.5 \hat{\jmath}$
24. The ball's acceleration in unit vector notation is:
A) $\bar{a}=0$
(B) $\vec{a}=-9.8 \hat{j}$
C) $\vec{a}=-9.8 \hat{i}$
D) $\vec{a}=9.8 \hat{i}+9.8 \hat{j}$
25. A block of m
25. A block of mass 3.5 Kg slides on horizontal surface the coefficient of kinetic friction \sim_{k}
is 0.47 , the kinetic friction force between the block and the surface is: $f_{K}=\mu \quad f_{\mathrm{K}} \mathrm{N}=\mu \mathrm{mg}$
$\begin{array}{llll}\text { A) } 11 \mathrm{~N} & \text { (B) } 16 \mathrm{~N} & \text { C) } 13 \mathrm{~N} & \text { D) } 15 \mathrm{~N}\end{array}$
26. A 22 kg mass is sliding horizontally on a frictionless surface, the normal force F_{N} is :
A) 204 N
B) 121 N
(C) 215.6 N
D) 334 N
$F_{N}=m g=(22)(9 \cdot 8)=21$
27. A force of 50 N is:

$$
50 \mathrm{~N}=50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

A) $50 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
(B) $50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
C) $50 \mathrm{~g} \cdot \mathrm{~m} / \mathrm{s}^{2}$
D) $50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

28 M
28. The coefficient of static friction between a 5 kg block and horizontal surface is
的 0 4. The maximum static frictional force is: $\begin{array}{llll}\text { (A) } 19.6 \mathrm{~N} & \text { B) } 49 \mathrm{~N} & \text { C) } 10 \mathrm{~N} & \text { D) } 5.5 \mathrm{~N}\end{array} f_{s / m}=\mu_{\mathrm{s}} F N=(0.4)(3)(9,8)$ $=19.6 \mathrm{~N}$
29. Three forces $\overrightarrow{\vec{F}_{1}=3 \hat{i}}, \overrightarrow{\vec{F}_{2}}=4 \vec{j}$ and \vec{F}_{3} act on velocity. \vec{F}_{3} is:
A) $\vec{F}_{3}=-3 \hat{i}+4 \hat{j}$
B) $\vec{F}_{3}=3 \hat{i}+4 \hat{j}$
(C) $\vec{F}_{3}=-3 \hat{i}-4 \hat{j}$
D) $\vec{F}_{3}=3 \hat{i}-4 \hat{j}$

Use the following to answer questions 30-31:
$m \quad a=0$
A 5 Kg box is held at rest on a frictionless inclined plane by a force \vec{F}

30. The normal force \vec{F}_{N} on the box is:
A) 0
B) $m g$
(C) $m g \cos 30^{\circ}$
D) $m g \sin 30^{\circ}$
31. The magnitude of \vec{F} is :
A) zero
B) 24.5 N
C) 50 N
D) 100 N

$$
\begin{aligned}
F=m g \sin 30 & =5(9.8) \sin 3 \\
& =24.5 \mathrm{~N}
\end{aligned}
$$

32. Two blocks are suspended (معلق) by a rope as shown, the tension in the top rope is:

$$
\begin{aligned}
T & =\left(m_{1}+m_{2}\right) g \\
& =-(9+11) 9 \cdot 8 \\
& =196 \mathrm{~N}
\end{aligned}
$$

(A) 196 N
B) 88.2 N
C) 19.6 N
D) 107.8 N
33. The SI unit of weight is :
A) Kilogram
B) pound
(C) Newton
D) gram

King Abdulaziz University
Faculty of Sciences Physics Department

Second Exam - Phys 110

Second Term
1432-1433 H
Date: 2 / 6 / 1433H
A
Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

1. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached $h=\frac{V_{0}^{2} \sin ^{2} Q}{2 g}$
A) $8957.4 \mathrm{~m} \quad \mathbf{B}) 3064.6 \mathrm{~m}$
C) 2245.9 m
D) $1598.6 \mathrm{~m} h=\frac{(283)^{2} 5 \sin ^{2} 60^{\circ}}{(2)(9.8)}=3064.63$
2. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j} \quad\left[\begin{array}{l}\text { B) } \\ a_{\text {avg }}\end{array}=0.2 \hat{i}+\hat{j}\right.$
C) $\vec{a}_{\text {avg }}=3 \hat{i}$
D) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}=\frac{a_{\text {vg }}=\frac{v_{2}-v_{1}}{\Delta t}+5=\frac{(3-2) \hat{c}+(9-4) \hat{j}}{5}}{5}=0.2 \hat{\imath}^{5}+\hat{j}$
3. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
$T=\frac{2 \pi r}{v}=\frac{2 \pi(10)}{5}=4 \pi$
A) $3 \pi^{3} \quad$ B) 4π
C) 20
D) π
4. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its maximum height B) its initial height
C) the origin
D) the start point

Use the following to answer questions 5-6:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
5. The velocity as a function of time is:
(A) $10 t^{\circ} \hat{i}-3 t^{2} \hat{j}$
B) $10 \hat{i}-6 t^{2} \hat{j}$
C) $5 t \hat{i}-6 \hat{j}$
D) $t \hat{i}+6 t \hat{j}$
$\vec{r}=\left(5 t^{2}+16\right) \hat{\imath}+\left(-t^{3}+5\right) \hat{\jmath}$
$\vec{v}=\frac{d \vec{r}}{d t}=(10 t) \hat{\imath}-\left(3 t^{2}\right) \hat{\jmath}$
6. The position vector \vec{r} at $t=2 \mathrm{~s}$ is

$$
\begin{aligned}
\vec{r}(2) & =(20+18) \hat{l} \\
& +(-8+5) \hat{\jmath} \\
\text { D) } 15 \hat{i}-5 \hat{j} & =36 \hat{c}-3 \hat{\jmath}
\end{aligned}
$$

A) $26 \hat{i}-7 \hat{j}$
(B) $36 \hat{i}-3 \hat{j}$
C) $81 \hat{i}+3 \hat{j}$

Use the following to answer questions 7-9:
A block of mass $m=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

7. From the figure, Fnet, x on the block is:
A) $T_{1} \cos 45-T_{2} \cos 30=0$
B) $-T_{1} \cos 30+T_{2} \cos 45=0$
C) $T_{1} \cos 45-T_{2} \cos 30=m a_{x}$
D) $T_{1} \cos 30-T_{2} \cos 45=m a_{x}$
8. The magnitude of weight (W) in Newtons is equal to: $W=m g=5(9.8)=49 \mathrm{~N}$
A) 9.8 N
B) -9.8 N
C) $-49 \mathrm{~N} \sqrt{\mathrm{D}]} 49 \mathrm{~N}$
9. The free body diagram representing the forces on m is:
A)

B)

C)

D)

10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) has a magnitude of exactly 1
C) is in the direction of the normal force
(B) is dimensionless
D) is in the direction of motion
11. In the projectile motion , the vertical component of the velocity at any time in the y-direction is equal to
A) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{0}(\cos \theta) \mathrm{t}$
B) $v_{y}=v_{0}(\sin \theta) t$
C) $v_{y}=v_{0} \sin \theta-g t$
D) $v_{y}=v_{0} \sin \theta+g t$
12. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is: $\quad \vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}=(7-3) \hat{c}+(-5+4) \hat{\jmath}$
A) 7.14 N - B) 4.12 N
C) 13.2 N
D) 10 N
$\left|F_{\text {net }}\right|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{16+1}=\sqrt{17}=4.12 \mathrm{~N}$
13. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is $\vec{F}_{\text {net }}=m \vec{a}$
(A) $-7.98 \hat{i}$
B) $12.4 \hat{i}$
C) $-5.21 \hat{i}$
D) $8.52 \hat{i} \vec{F}_{\text {net }}=\begin{aligned} & a(3.4)=8-18(3.4)=8.61 .2=-53.2 \\ & (0.15)(-53.2) \hat{c}=-(7.98) \hat{\imath} \mathrm{N}\end{aligned}$
14. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

$$
\begin{aligned}
& v=\sigma \mathrm{m} / \mathrm{s} \hat{\jmath} \\
& a=\frac{v^{2}}{v}=\frac{(\sigma)^{2}}{3}=\frac{36}{3}=12 \hat{\imath}
\end{aligned}
$$

$\sqrt{\mathrm{A})} \vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
B) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
D) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
15. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration
of: $\quad a=\frac{\text { Fret }}{m}=\frac{7}{12}=0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
(A) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
16. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
C) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
(B) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
D) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
avg $=\frac{r_{2}-n}{98-\hat{t}_{t}}=\frac{(-2 c+8 j-2 k)-(5 \hat{i}-6 \hat{\jmath}+2 k)}{\text { 17. A } 980 \mathrm{~kg} \text { car is traveling at constant speed } 28 \mathrm{~m} / \mathrm{s}}=\frac{-7 \hat{i}+14 \hat{\jmath}-4 k}{10}=-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
 The magnitude of the frictional force on the car is
A) 4141.5 N
B) 1245.7 N
C) 3340.5 N
D) 6241.6 N

$$
\begin{aligned}
F & =\frac{m v^{2}}{R}=\frac{(980)(28)^{2}}{230} \\
& =3340.5 \mathrm{~N}
\end{aligned}
$$

18. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

$$
\begin{aligned}
& \overrightarrow{F_{n e t}}=m \vec{a} \\
& 9-8 \cos 62^{\circ}=(3) a \\
& a=\frac{9-8 \cos 62^{\circ}}{3}=\frac{5.24}{3}=1.75 \mathrm{~m} / \mathrm{s}^{2} \xrightarrow{F} \xrightarrow{F} \quad \underset{F_{g}=m g}{ }
\end{aligned}
$$

A) $2.45 \mathrm{~m} / \mathrm{s}^{2}$ B) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
D) $3 \mathrm{~m} / \mathrm{s}^{2}$
19. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $7 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $2 \mathrm{~m} / \mathrm{s}$ D) $5 \mathrm{~m} / \mathrm{s}$
v_{x} atmaximumheight $=5 \mathrm{~m} / \mathrm{s}$
20. A bomb (${ }^{2}$) is fired from a cannon and has initial horizontal and vertical components of velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is

$$
v_{0 x}=23 \mathrm{~m} / \mathrm{s}, v_{o y}=54 \mathrm{~m} / \mathrm{s}
$$

A) $49^{\circ} \sqrt{\text { B) }} 67^{\circ}$
C) 85°
D) 33°

$$
\begin{aligned}
Q_{0}=\tan ^{-1}\left(\frac{v_{0 y}}{v_{0 x}}\right)=\tan ^{-1}\left(\frac{54}{23}\right) & =66.93^{\circ} \\
& \approx 67^{\circ}
\end{aligned}
$$

21. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

$$
\begin{aligned}
& \overrightarrow{F_{\text {net }}}=m \vec{a} \\
& \text { Constant ve locity } \Rightarrow \\
& \quad a=0 \\
& F_{\text {net }}=0 \\
& 4-f_{k}=0 \Rightarrow f_{k}=4
\end{aligned}
$$

A) 0.8
B) 0.6
C) $0.3 \quad 0.4$

$$
\begin{gathered}
M_{k} F_{N}=4 \\
M_{k}=\frac{4}{F_{N}}=\frac{4}{10}=0.4
\end{gathered}
$$

Use the following to answer questions 22-23:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$
22. The magnitude of force \vec{F} on the four blocks is

$$
F=M a=\left(m_{2}+m_{2}+m_{3}+m_{4}\right)(Q)
$$

A) 40 N
B) 30 N
C) $20 \mathrm{~N}[\mathrm{D})] 60 \mathrm{~N}$
23. The total mass accelerated to the right by Cord 3 is
(A) 18 kg
B) 20 kg
C) 10 kg
D) 13 kg
24. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
$F_{N}=m(g-a)$
A) 523.4 N
B) 700.5 N
C) 323.9 N D) 607.5 N
$=75(9.8-1.7)=607.5 \mathrm{~N}$

Use the following to answer questions 25-26:
In the figure, a block of mass $\mathrm{m}=\mathbf{2 5} \mathrm{kg}$ is sliding down on a frictionless plane inclined at $\theta=60^{\circ}$ E_{N}

25. The normal force $\left(\bar{F}_{N}\right)$ on the block is:
$F_{N}=m g \cos \theta$
A) mg
B) $m a$
C) $\mathrm{mg} \cos \theta$
D) $m g \sin \theta$
26. The magnitude of the force that causes the block sliding down is $F=-m g \sin \theta$.
A) 212.17 N
B) 150 N
C) 90.44 N
D) 311 N
27. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

28. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
A) accelerating upward
C) moving up with constant velocity.
B) accelerating downward
D) stationary
29. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?

$$
R=\frac{V_{0}^{2} \sin 26}{g}
$$

A) $80 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $40 \mathrm{~m} / \mathrm{s}$ D) $42.3 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \begin{aligned}
V_{0}=\sqrt{\frac{R g}{\sin 2 \theta}} & =\sqrt{140 \times 9.8} \\
\text { called } & =42.3 \mathrm{~m} / \mathrm{s} 50
\end{aligned} \\
&=4
\end{aligned}
$$

30. The force that always perpendicular to the surface is called
A) Gravitational force
B) Tension
C) Friction D) Normal force
31. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with v $=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:

$$
a=\frac{v^{2}}{v}=\frac{(v)^{2}}{1}=1 \mathrm{~m} / \mathrm{s}^{2}
$$

A) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
B) $\frac{a_{1}}{a_{2}}=2$ C) $a_{1}=a_{2}$
D) $a_{1}=a_{2}=0$ $a_{1}=a_{2}$
32. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis In which figure of the following the magnitude of the acceleration of the object is the least)?
A)

C)

$a=\frac{10+5 \cos \theta}{m}$
B)

D)

$a=\frac{10-5}{m}=\frac{5}{m}$
m M_{s}
33. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزّ () is:
$\begin{array}{lll}\text { A) } 25.4 \mathrm{~N} & \text { B) } 19.6 \mathrm{~N} & \text { C) } 45.8 \mathrm{~N} \\ \text { D) } 10.3 \mathrm{~N}\end{array}$

$$
\begin{aligned}
f_{s / \max }=\mu_{s}: F_{N} & =(0,4)(m g) \\
& =(0,4)(5)(9,8)=19,6 \mathrm{~N}
\end{aligned}
$$

Second Term

Date: 2 / 6 / 1433H

Name:
ID No:
Section:

CHOOSE THE CORRECT ANSWER

1. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 8957.4 m
B) 3064.6 m
C) 2245.9 m
D) 1598.6 m
2. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{a v g}=\hat{i}-6 \hat{j}$
B) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
C) $\vec{a}_{\text {avg }}=3 \hat{i}$
D) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
3. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) $3 \pi^{3}$
B) 4π
C) 20
D) π
4. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its maximum height
B) its initial height
C) the origin
D) the start point

Use the following to answer questions 5-6:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
5. The velocity as a function of time is:
A) $10 t \hat{i}-3 t^{2} \hat{j}$
В) $10 \hat{i}-6 t^{2} \hat{j}$
C) $5 t \hat{i}-6 \hat{j}$
D) $t \hat{i}+6 t \hat{j}$
6. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $26 \hat{i}-7 \hat{j}$
В) $36 \hat{i}-3 \hat{j}$
C) $81 \hat{i}+3 \hat{j}$
D) $15 \hat{i}-5 \hat{j}$

Use the following to answer questions 7-9:

A block of mass $m=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

7. From the figure, F $_{\text {net, }, \mathrm{x}}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
B) $-T_{1} \cos 30+T_{2} \cos 45=0$
C) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
D) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
8. The magnitude of weight (W) in Newtons is equal to:
A) 9.8 N
B) -9.8 N
C) -49 N
D) 49 N
9. The free body diagram representing the forces on m is:
A)

B)

C)

D)

10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) has a magnitude of exactly 1
C) is in the direction of the normal force
B) is dimensionless
D) is in the direction of motion
11. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}}(\cos \theta) \mathrm{t}$
B) $v_{y}=v_{o}(\sin \theta) t$
C) $v_{y}=v_{o} \sin \theta-g t$
D) $v_{y}=v_{o} \sin \theta+g t$
12. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 7.14 N
B) 4.12 N
C) 13.2 N
D) 10 N
13. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $\mathrm{t}=3.40 \mathrm{~s}$ is
A) $-7.98 \hat{i}$
B) $12.4 \hat{i}$
C) $-5.21 \hat{i}$
D) $8.52 \hat{i}$
14. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
C) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
D) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
15. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
16. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
B) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
C) $\quad 4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
D) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
17. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
A) 4141.5 N
B) 1245.7 N
C) 3340.5 N
D) 6241.6 N
18. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
D) $3 \mathrm{~m} / \mathrm{s}^{2}$
19. A particle is projected with an initial velocity ${\overrightarrow{v_{0}}}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $7 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $2 \mathrm{~m} / \mathrm{s}$
D) $5 \mathrm{~m} / \mathrm{s}$
 velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 49°
В) 67°
C) 85°
D) 33°
21. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.8
B) 0.6
C) 0.3
D) 0.4

Use the following to answer questions 22-23:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

22. The magnitude of force \vec{F} on the four blocks is
A) 40 N
B) 30 N
C) 20 N
D) 60 N
23. The total mass accelerated to the right by Cord 3 is
A) 18 kg
B) 20 kg
C) 10 kg
D) 13 kg
24. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 523.4 N
B) 700.5 N
C) 323.9 N
D) 607.5 N

Use the following to answer questions 25-26:
In the figure, a block of mass $\mathrm{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=60^{\circ}$

25. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) mg
B) $\mathrm{m} a$
C) $\mathrm{mg} \cos \theta$
D) $m g \sin \theta$
26. The magnitude of the force that causes the block sliding down is
A) 212.17 N
B) 150 N
C) 90.44 N
D) 311 N
27. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 50 N
B) 60 N
C) 57 N
D) 40 N
28. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
A) accelerating upward
C) moving up with constant velocity.
B) accelerating downward
D) stationary
29. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $80 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $40 \mathrm{~m} / \mathrm{s}$
D) $42.3 \mathrm{~m} / \mathrm{s}$
30. The force that always perpendicular to the surface is called
A) Gravitational force
B) Tension
C) Friction
D) Normal force
31. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with v $=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
B) $\frac{a_{1}}{a_{2}}=2$
C) $a_{1}=a_{2}$
D) $a_{1}=a_{2}=0$
32. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least ?
A)

C)

В)

D)

33. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلقَ) is:
A) 25.4 N
B) 19.6 N
C) 45.8 N
D) 10.3 N

Answer Key

1. B
2. B
3. B
4. B
5. A
6. B
7. B
8. D
9. A
10. B
11. C
12. B
13. A
14. A
15. A
16. B
17. C
18. B
19. D
20. B
21. D
22. D
23. A
24. D
25. C
26. A
27. A
28. A
29. D
30. D
31. C
32. D
33. B

King Abdulaziz University

Faculty of Sciences Physics Department

Second Exam - Phys 110

Name:

ID No:
Section:

CHOOSE THE CORRECT ANSWER

1. A particle initially has $v=4 \hat{i}-2 \hat{j}+3 \hat{k} \mathrm{~m} / \mathrm{s}$ and then 4 s later has $v=-2 \hat{i}-2 \hat{j}+5 \hat{k} \mathrm{~m} / \mathrm{s}$, the magnitude of the average acceleration $a_{\text {avg }}$ is
a) $2.25 \mathrm{~m} / \mathrm{s}^{2}$
(b) $1.58 \mathrm{~m} / \mathrm{s}^{2}$
c) $0.25 \mathrm{~m} / \mathrm{s}^{2}$
d) $1.85 \mathrm{~m} / \mathrm{s}^{2}$
$\bar{a}_{a v g}=\frac{v-v_{0}}{t}$

Use the following to answer questions 2-3:
A particle moves with initial velocity $\overline{\nu_{0}}=6 \hat{i}-2.6 \hat{j} \mathrm{~m} / \mathrm{s}$, and a constant acceleration $\bar{a}=-0.3 \hat{i}+\hat{j}$
$\mathrm{~m} / \mathrm{s}^{2}$

$$
\left|a_{a v g}\right|=\sqrt{(-1.5)^{2}+(0.5)^{2}}=1.58 \mathrm{~m} / \mathrm{s}^{2}
$$

 $=-1.5 \hat{c}+0.4 k$
2. How long does the particle take to reach its maximum x-coordinate
(a) 20 s
b) 2.6 s
c) 4.3 s
d) 22.6 s
$v_{0} x=6, \quad a_{x}=-0.3$
$t=\frac{\frac{v x-v_{0 x}}{a_{x}}=\frac{0-6}{0 \cdot 3}=\sqrt{205}}{v^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)}$
a) 7 m
b) 3.6 m
(c) 60 m
d) 36 m

$$
x-x_{0}=\frac{-36}{0.6}=60 \mathrm{~m}+2(-0.3)\left(x-x_{0}\right)
$$

Use the following to answer questions 4-6: $\quad x-k_{0}=\frac{-36}{-0.6}=60 \mathrm{~m}$
A ball is projected with initial velocity $v_{0}=82 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=60^{\circ}$ above the horizontal i-

$$
\bar{v}_{0}=v_{0 x} c^{n}+v_{0} y \hat{u}
$$

4. At the maximum height, the ball's velocity \vec{v} in unit vector notation is
a) $\bar{v}=41 \hat{i}$
b) $\vec{v}=82 \hat{i}+71 \hat{j}$
c) $\vec{v}=41 \hat{i}+71 \hat{j}$
d) $\vec{v}=71 \hat{j}$
5. The ball's velocity \bar{v}_{0} in unit vector notation is: $\bar{v}_{0}=4!\hat{\imath}+71 \hat{\jmath}$
a) $\bar{v}_{0}=30 \hat{i}$
b) $\vec{v}_{0}=24 \hat{i}+52 \hat{j}$
(c) $\vec{v}_{0}=41 \hat{i}+71 \hat{j}$
d) $\vec{v}_{0}=71 \hat{j}$
6. The maximum range $R_{\text {max }}$ is
a) 442 m
b) 820 m
c) 541 m
(d) 686 m

Sample A Page 1

$$
=658 \mathrm{~m}
$$

7. The position vector for moving particle as it moves in $x y$ plane is $\vec{r}=\left(-3 t^{3}-4 t\right) \hat{i}+\left(-5 t^{2}+6\right) \hat{j}$, the x and y acceleration components are:
$\frac{\vec{r}}{V}=\left(-3 t^{3}-4 t\right) \hat{i}+\left(-5 t^{2}+6\right) \hat{j}$, the x and y acceleration components are:
a) $a_{x}=$ constant, and $a_{y}=$ not constant
b) $a_{x}=$ constant, and $a_{y}=$ constant
(c) $a_{x}=$ not constant, and $a_{y}=$ constant
d) $a_{x}=$ not constant, and $a_{y}=$ not constant

Use the following to answer questions 8-10:
A ball is projected horizontally with a velocity v_{0} of magnitude $5 \mathrm{~m} / \mathrm{s}$ p rajected horizontally
8. The x-component of its position after 0.25 s is
a) $x=15 \mathrm{~m}$
b) $x=5 \mathrm{~m}$
c) $x=125 \mathrm{~m}$
(d) $x=1.25 \mathrm{~m}$
9. The vertical component of its position after 0.25 s is
a) $y=-0.613 \mathrm{~m}$
c) $y=-1.22 \mathrm{~m}$
(b)) $y=-0.306 m$
d) $y=-2.45 m$
10. The x-component of its velocity after 0.25 s is
a) $v_{x}=3 \mathrm{~m} / \mathrm{s}$
b) $v_{x}=2 \mathrm{~m} / \mathrm{s}$
c) $v_{x}=4 \mathrm{~m} / \mathrm{s}$
(d)) $v_{x}=5 \mathrm{~m} / \mathrm{s}$
10) $V_{x}=V_{0} \cos \theta=5^{-} \cos \left(0^{\circ}\right)$
11. The speed of a car moving in a circular path of radius 5 m making two complete circle in 8 s is
a) $1.25 \mathrm{~m} / \mathrm{s}$
b) $2.5 \mathrm{~m} / \mathrm{s}$
c) $3.925 \mathrm{~m} / \mathrm{s}$
(d) $7.85 \mathrm{~m} / \mathrm{s}$

$$
V=\frac{2 \pi r}{T}=\frac{2 \pi(5)}{4}=7.85 \mathrm{~m} / \mathrm{s}
$$

$$
r=5 \mathrm{~m} \cdot T=\frac{8}{2}=4 \mathrm{~s}
$$

Use the following to answer questions 12-13:
A particle is moving in circular path, at $y=5 \mathrm{~m}$ the particles velocity is $\vec{v}=(3 \mathrm{~m} / \mathrm{s}) \hat{i}$
12. At which point the velocity is $\bar{v}=-3 \hat{j}$
a) $y=-5 m$
(b) $x=+5 \mathrm{~m}$
c) $y=+5 m$
d) $x=-5 m$
13. The acceleration at $x=-5 \mathrm{~m}$ is

$\frac{(3)^{2}}{5}=1.8 \mathrm{~m} / \mathrm{s}^{2}$
a) $\bar{a}=\left(0.6 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}$
(b) $\vec{a}=\left(1.8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}$
$\bar{a}=\underset{c}{r} \cdot \mathrm{~s}) \mathrm{m} \overrightarrow{\mathrm{s}}=\left(-1.8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}$
d) $\bar{a}=\left(-0.6 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}$

$$
\begin{aligned}
a= & +2 \mathrm{~m} / \mathrm{s}^{2} \\
& u p \text { ward }
\end{aligned}
$$

14. A 5 kg block is supported (زبط) by a cord and pulled upward with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the tension in the cord is

$$
F_{\text {net }}=m a_{y}
$$

(a). $T=59 \mathrm{~N}$
b) $T=10 \mathrm{~N}$
c) $T=49 \mathrm{~N}$
d) $T=25 \mathrm{~N}$
$T-m g=m a y$.

Use the following to answer questions 15-16:

$$
\begin{aligned}
T & =m(g+a y) \\
& =5(9.8+2)=5 \times N
\end{aligned}
$$

A box of mass $m=100 \mathrm{~kg}$ is pushed at constant speed up the frictionless inclined plane of angle 30° by a force F as shown in the figure

$$
\begin{aligned}
& m=100 \mathrm{~kg} \\
& a=30^{\circ} \\
& \text { con stan+ speed } \\
& a=0
\end{aligned}
$$

15. Applying Newton's second law to the x-axis, the magnitude of F is
(a) $\mathrm{F}=565.8 \mathrm{~N}$
b) $\mathrm{F}=490.7 \mathrm{~N}$
c) $\mathrm{F}=980 \mathrm{~N}$
d) $F=577 \mathrm{~N}$
16. Applying Newton's second law to the y - axis, the normal force \mathbf{F}_{N} is:
a) $\mathrm{F}_{\mathrm{N}}=\mathrm{F} \sin \theta-\mathrm{mg} \cos \theta$
(c) $\mathrm{F}_{\mathrm{N}}=\mathrm{F} \sin \theta+m g \cos \theta$
b) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg} \sin \theta-\mathrm{mg}$
$F_{N}=F \sin \theta+m g \cos \theta$
$\begin{aligned} & a g=0 \\ & F_{N}-F_{\sin } a-m g c\end{aligned}$
17. Three forces $\vec{F}_{1}=27.7 \hat{i}+16 \hat{j}, \vec{F}_{2}=55 \hat{i}$ and $\vec{F}_{3}=20.5 \hat{i}-35.5 \hat{j}$ acting on a 120 kg ,
block that can slide over a frictionless floor, the acceleration of the block in unit vector notation is $F_{\text {net }}=m \bar{a} \Rightarrow \vec{F}_{1}+\vec{F}_{2}+F_{3}=m \vec{a} \Rightarrow a=\frac{F_{1}+F_{2}+F_{3}}{}$
a) $\vec{a}=\left(0.46 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}-\left(0.7 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}$
b) $\vec{a}=\left(0.86 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}-\left(0.16 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}$
c) $\vec{a}=\left(0.18 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}-\left(0.34 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}$
d) $\bar{a}=\left(0.54 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{i}-\left(0.12 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}$

Use the following to answer questions 18-20:

$$
w=3 \mathrm{~N}
$$

$a=0$
A ball with a weight of $3 \bar{N}$ is at rest on a horizontal surface. A tension force $T=1 \bar{N}$ is applied to the ball by an attached vertical rope but the ball is still at rest

$$
\begin{aligned}
& F_{n H E}=m a \\
& F_{N}+T-m g=0 \\
& F_{N}=m g-T=3 N-1 N=2 N
\end{aligned}
$$

18. The normal force F_{N} acting on the ball is
a) $\mathrm{F}_{\mathrm{N}}=1 \mathrm{~N}$
b) $\mathrm{F}_{\mathrm{N}}=4 \mathrm{~N}$
(c) $F_{N}=2 N$
d) $\mathrm{F}_{\mathrm{N}}=3 \mathrm{~N}$
19. The ball exerting a downward force on the surface. The reaction to this force is
a) The force of Earth on the ball
c) The force of the earth on the surface
b) The force of the surface on the ball
d) The force of the ball on Earth
20. The ball's mass is
a) 0.6 kg
(b) 0.31 kg
c) 0.11 kg
d) 0.5 kg

$$
m=3 \mathrm{~N}=\frac{3}{9}=\frac{3.8}{9}=0.31 \mathrm{~kg}
$$

21. Three forces $\vec{F}_{1}=-\hat{i}-\hat{j}, \vec{F}_{2}=-\hat{i}$ and $\vec{F}_{3}=\hat{i}+\hat{j}$ acting on a body, from the free body diagram the vectors that represent these forces are:

a) \vec{F}_{1} is vector $\mathbf{5}, \vec{F}_{2}$ is vector $\mathbf{2}, \vec{F}_{3}$ is vector $\mathbf{3}$
b) \bar{F}_{1} is vector $3, \bar{F}_{2}$ is vector $4, \vec{F}_{3}$ is vector 1
(C) \vec{F}_{1} is vector $\mathbf{4}, \vec{F}_{2}$ is vector $5, \vec{F}_{3}$ is vector 2
d) \vec{F}_{1} is vector 1, \vec{F}_{2} is vector $3, \vec{F}_{3}$ is vector 4
22. Which of the figures show the vector addition of forces F_{1} and F_{2} to give their net force $F_{\text {net }}$:

a)
b)

Use the following to answer questions 23-24:
A person pushes horizontally a 38 kg block with a force F to move it across a floor along the $+x$ axis
23. The coefficient of kinetic friction is 0.35 , the magnitude of friction force is
a) $f_{k}=13.3 \mathrm{~N}$
b) $f_{k}=12.25 \mathrm{~N}$
c) $f_{k}=3.43 \mathrm{~N}$
(d) $f_{k}=130.3 \mathrm{~N}$
$m=38 \mathrm{~kg}$
$\mu_{k}=0.35$
$f_{k}=\mu_{k}$
Sample A Page 4
$f_{k}=\mu_{k}(m g)=0.35(38)(9.8)=130.3 \mathrm{~N}$
24. The acceleration of the block is: $\begin{aligned} F_{n e t} & =m a \\ F-f_{k} & =m a \Rightarrow a=\frac{F-f_{k}}{m}\end{aligned}$
(a) $a=\frac{F-f_{k}}{m}$
b) $a=\frac{F}{m}$
c) $a=\frac{F_{N}-\mu_{k} f}{m}$
d) $a=\frac{f_{s}-F}{m}$
25. A block of mass 50 kg lies on a floor, the magnitude of the frictional force on it from the floor is:
a) 490 N
(b) 0
c) 50 N
d) 4.9 N $F=0$
be cause is No Force at sliding
26. A block of weight 45 N resting on a table in an elevator moving upward at increasing speed, + a the magnitude of the normal force F_{N} :

Fret $=m a$
a) $\mathrm{F}_{\mathrm{N}}<45 \mathrm{~N}$
b) $\mathrm{F}_{\mathrm{N}}=0$
(c) $\mathrm{F}_{\mathrm{N}}>45 \mathrm{~N}$
d) $\mathrm{F}_{\mathrm{N}}=45 \mathrm{~N}$
$F_{N-m}=m a$
$\therefore F_{N}=m a+m g=m a+45$
27. The physical quantities are measured in the same units are:
a) mass and weight
c) velocity and displacement
b) friction and acceleration
(d) weight and tension
28. In the figure, if the body does not move, then the static frictional force f_{s} and the component of F are:

a) $f_{s}=$ zero
b) $f_{s}>$ the component of F
(c) $f_{s}=$ and opposite of the component of F
d) $f_{s}<$ the component of F
29. A newton is the force:

$$
N=1 k g \cdot m / s^{2} \Leftarrow F=m a
$$

a) of gravity on a 1 kg body
b) of gravity on a 1 g body
c) that gives a 1 g body an acceleration of $1 \mathrm{~cm} / \mathrm{s}^{2}$
(d)) that gives a 1 kg body an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$
30. In a given figure, the weight exerted on Earth from the ball is

$$
w=700+50=750 \mathrm{~N}
$$

(a) 750 N
b) 50 N
c) 700 N
d) 490 N

$$
v_{x}=\text { const } \Rightarrow a_{x}=0
$$

31. In projectile motion, the acceleration of any projectile along the x-direction is:
a) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) 0
c) less than zero
d) great than zero
32. The position vector \vec{r} of a body is defined By equation $\vec{r}=\left(P t-Q t^{3}\right) \hat{i}+N \hat{j}$ where $P_{\text {, }}$ Q and N are constants. The velocity of the particle will be zero at time equal to:
a) $\frac{Q}{P}$
(b) $\sqrt{\frac{P}{3 Q}}$
c) $\sqrt{\frac{3 Q}{P}}$
d) $\sqrt{P Q}$
$V=0 \quad a t t=2$
$V=\frac{d V}{d t}=\left(P-3 Q t^{2}\right) \hat{C}$
$0=P-3 Q t^{2} \Rightarrow t=\sqrt{\frac{+P}{+3 Q}}$
33. The direction of the centripetal force acting on a body moving in uniform circular motion is always point tow ard \qquad of the circle
(a)

b)

c)

d)

