

$$\frac{1}{1}$$

In this section:
To calculate limits we use the following properties
of limits called " The limits Laws "

Limits Laws:
suppose that : $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = m$
and c is constant.
1 $\lim_{x\to a} [f(x) \pm g(x)] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x) = L \pm M$
 $\sum_{x \ge x} \lim_{x \ge x} \lim_{x \to a} \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \pm M$
(2) $\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) = L \cdot M$
 $\sum_{x \ge x} \lim_{x \to a} \lim_{x \to a} \lim_{x \to a} \frac{f(x)}{\lim_{x \to a} g(x)} = \frac{1}{M} (lf. \lim_{x \to a} g(x) \pm O)$
 $\sum_{x \ge x} \lim_{x \to a} \lim_{x \to a}$

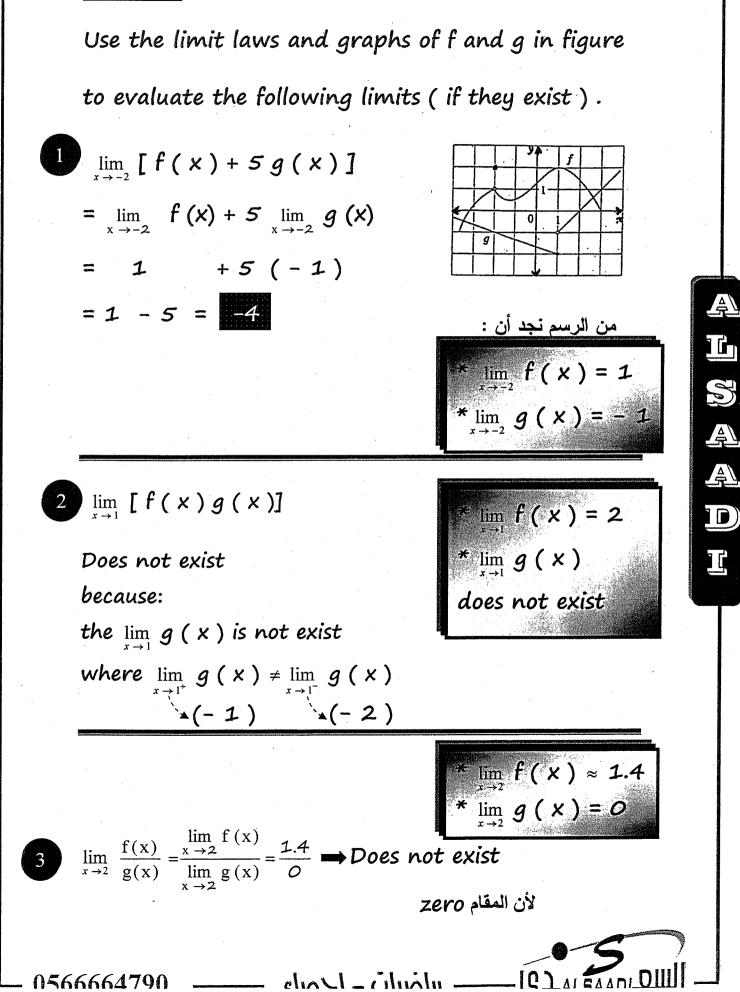
$$\frac{2}{2}$$

$$\frac{4}{2} \lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x) = c \cdot L$$

$$\frac{3}{2} \lim_{x \to a} c = c$$

$$\frac{1}{2} \lim_{x \to a} x = a$$

$$\frac{1}{2} \lim_{x \to a} x^{2} = a^{2}$$


$$\frac{1}{2} \lim_{x \to a} \sqrt{1} x = \sqrt{1}$$

$$\frac{1}{2} \lim_{x \to a} \sqrt{1} (1f; n \text{ is even a must be positive})$$

$$\frac{1}{2} \lim_{x \to a} \sqrt{1} (1f; n \text{ is even L must be positive})$$

{	
Example:	
Evaluate the fo	ollowing limits
$\lim_{x \to 5} (2x^2 - 3x + 4) [by]$	direct substitution] بالتعويض المباشر
$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + 3$	* ممكن عدم كتابه هذه الخطوه ــــــه 4 lim 4 × → 5
= 2 $(5)^2 - 3(5) + 4$	
= 50 - 15 + 4	
= 39	
2 $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$ $= \frac{\lim_{x \to -2} x^3 + 2\lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3\lim_{x \to -2} x}$	چ بهمکن عدم کتابه هذه الخطوه م
$=\frac{(-2)^{3} + 2(-2)^{2} - 1}{5 - 3(-2)}$ $=\frac{-8 + 8 - 1}{5 + 6} = \frac{-1}{11}$	
حصاء — 0566664790	- الللك المحمد المات - ا

Example:

النهايه في حاله الدوال المعرفه بأكثر من قاعده (فرعين أو أكثر)

وجود العلامات > ، <

JP)

D

I

- نوجد النهايه اليمنى بالتعويض فى الفرع الذى يحتوى على علامه أكبر من
- نوجد النهایه الیسری بالتعویض فی الفرع الذی یحتوی علی علامه أصغر من
 اذا کانت : النهایه الیمنی = النهایه الیسری تکون النهایه موجوده.
 - ↓ اذا كانت : النهايه اليمنى ≠ النهايه اليسرى تكون النهايه غير موجوده .

(Does not exit) ,

Example:

If:
$$f(x) = \begin{cases} \sqrt{x-4} & , x > 4 \\ 8-2x & , x < 4 \end{cases}$$

Find the $\lim_{x\to 4} f(x)$?

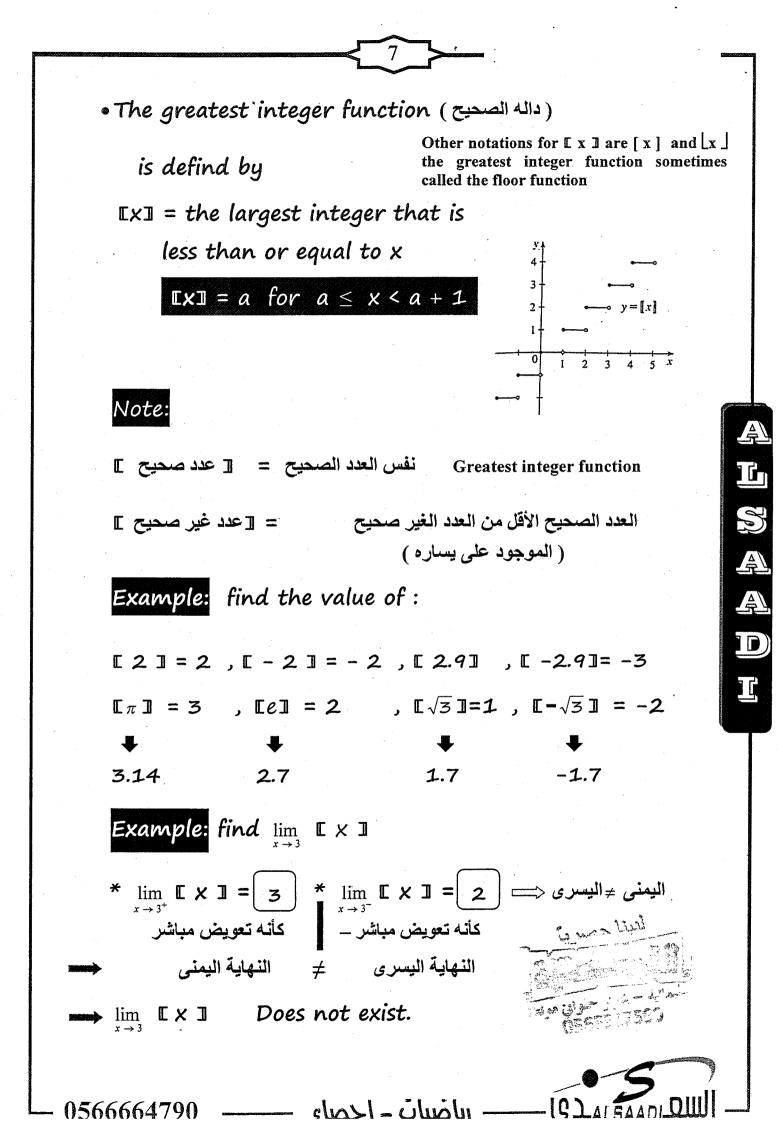
- نوجد النهایه الیمنی من الفرع الذی یحتوی علی أكبر من
- $\lim_{x \to 4^+} \sqrt{x-4} = \sqrt{4-4} = \sqrt{0} = 0$ iee the second second
- $\lim_{x \to 4^{-}} (8 2x) = 8 2(4) = 8 8 = 0$
 - ·· النهايه اليمنى = النهايه اليسرى = Zero

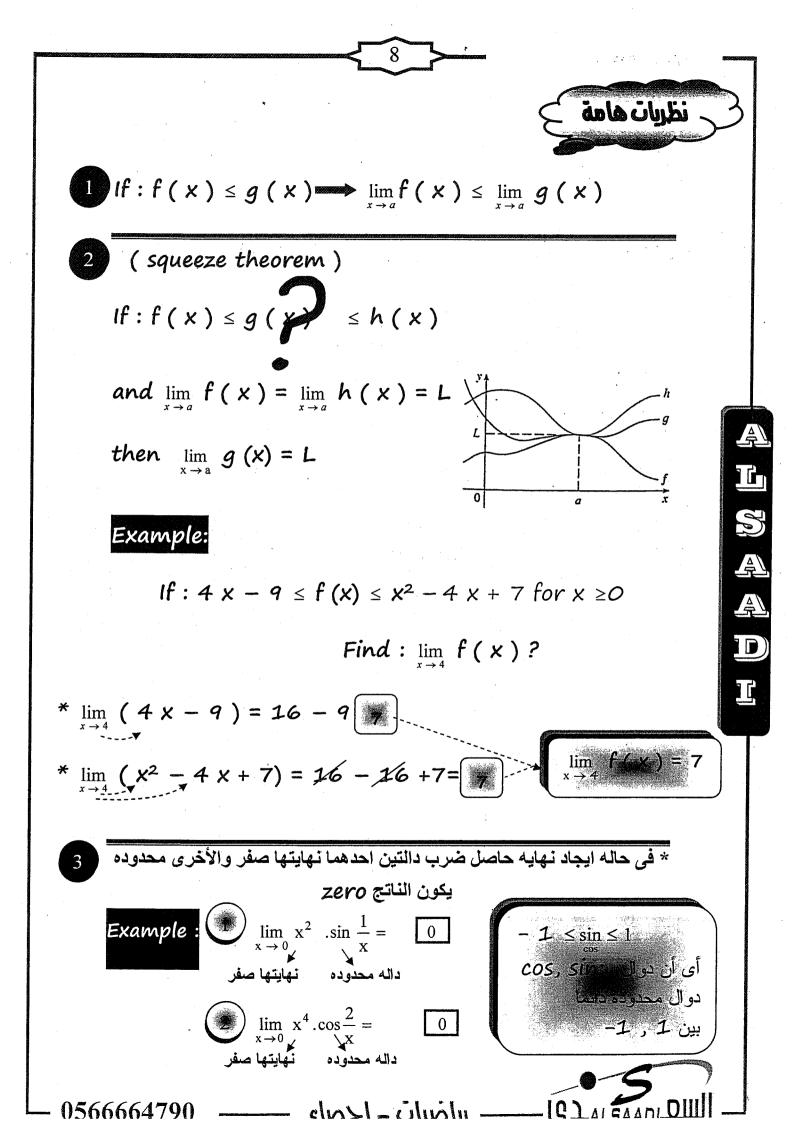
الحاله الثانيه : وجود علامه ≠ ، =

:. $\lim_{x \to 4} f(x) = 0$ Zero Zero Exist exist \therefore

Example:

$$f(x) = \begin{cases} 2x+1, & x \neq 3 \\ x+5, & x=3 \end{cases} \text{ find: } \lim_{x \to 3} f(x)?$$


clink - cilinili.


$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x+1) = 2 (3) + 1 = 7$$


$$= 7$$
improve the second s

$$\frac{1}{2}$$

$$\frac{1}$$

$$\frac{10}{10}$$
Exercises
$$\lim_{x \to 4} \lim_{x \to 4} (2 \times + 1) = 2(2) + 1 = 5$$

$$\lim_{x \to 4} \sup_{x \to 4} (2 \times + 1) = 2(2) + 1 = 5$$

$$\lim_{x \to 4} \sup_{x \to 4} (2 \times + 1) = 2(2) + 1 = 5$$

$$\lim_{x \to 4} \sup_{x \to 4} (2 \times + 1) = 2(2) + 1 = 5$$

$$\lim_{x \to 4} \frac{y^2}{5 - 5} = \frac{25}{5 - 5} = \frac{25}{0} = 0$$

$$\lim_{x \to 4} (2 \times + 3) = 2 + 3 = 5$$

$$\lim_{x \to 4} \frac{(x + 3)}{(x - 2)} = \lim_{x \to 4} (2 \times + 3) = 2 + 3 = 5$$

$$\lim_{x \to 4} \frac{(x + 3)}{(x - 2)} = \lim_{x \to 4} (2 \times + 3) = 2 + 3 = 5$$

$$\lim_{x \to 4} \frac{(x + 3)}{(x - 2)} = \lim_{x \to 4} (2 \times + 3) = 2 + 3 = 5$$

$$\lim_{x \to 4} \frac{(x + 3)}{(x - 2)} = \lim_{x \to 4} \frac{2x + 3}{1} = 2(2) + 1 = 5$$

$$\lim_{x \to 4} \frac{x^2 + x - 6}{x^2 + 3x - 4} = \frac{16 - 20 + 4}{16 - 12 - 4} = \frac{0}{16} (1 \cdot f \cdot 1)$$

$$\lim_{x \to 4} \frac{x^2 + 5 \times + 4}{(x + A)(x - 1)} = \lim_{x \to 4} \frac{x + 1}{x - 1} = \frac{-4}{2 - 1} = \frac{-3}{-5} = \frac{13}{5}$$

$$\lim_{x \to 4} \frac{x^2 + 5 \times + 4}{(x + A)(x - 1)} = \lim_{x \to 4} \frac{2x + 5}{x - 1} = \frac{-8 + 5}{-4 - 1} = \frac{-3}{-5} = \frac{3}{5}$$

$$\lim_{x \to 4} \frac{x^2 + 5 \times + 4}{x^2 + 3x - 4} = \frac{2x + 5}{x + 2x + 3} = \frac{-8 + 5}{-8 + 3} = \frac{-3}{-5} = \frac{3}{5}$$

$$\lim_{x \to 4} \frac{x^2 + 5 \times + 4}{x^2 + 3x - 4} = \lim_{x \to 4} \frac{2x + 5}{x + 2x + 3} = \frac{-8 + 5}{-8 + 3} = \frac{-3}{-5} = \frac{3}{5}$$

 \Box

$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4} = \frac{16 - 16}{16 - 12 - 4} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$\lim_{x \to 4} \frac{2x - 4}{2x - 3} = \frac{8 - 4}{8 - 3} = \frac{4}{5}$$

$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3} = \frac{9 - 9}{18 - 21 + 3} = \frac{0}{0} (1 \cdot f) (by L \cdot H \cdot R)$$
$$= \lim_{t \to -3} \frac{2t}{4t + 7} = \frac{-6}{-12 + 7} = \frac{-6}{-12 + 7} = \frac{-6}{-5} \left[\frac{6}{5}\right]$$

$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right) = \frac{1}{0} - \frac{1}{0} = \infty - \infty \quad (I \cdot f)$$

 $\lim_{x \to 4}$

و في حاله الكسور توحيد مقامات أولاً

$$= \lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t(t+1)} \right) = \lim_{t \to 0} \left(\frac{t+1}{t(t+1)} - \frac{1}{t(t+1)} \right)$$

$$= \lim_{t \to 0} \left(\frac{t+t-t}{t(t+1)} \right) = \lim_{t \to 0} \frac{t}{t(t+1)}$$

$$= \lim_{t \to 0} \frac{1}{t+1}$$
$$= \frac{1}{0+1} = \frac{1}{1} =$$
1

dust - ülinli

λ

I

$$12$$

$$\lim_{h \to 0} \frac{(4+h)^2 - 16}{h} = \frac{(4+0)^2 - 16}{0} = \frac{16 - 16}{0} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{b \to 0} \frac{2(4+h)^4 \cdot 1}{1} = \lim_{h \to 0} 2 (4+h) = 2(4+0) = \qquad 8$$

$$9 \lim_{x \to 1} \frac{x^2 - 1}{x^2 - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 1} \frac{3x^2}{2x^2} = \lim_{x \to 1} \frac{3x}{2} = \frac{3(1)}{2} = \begin{bmatrix} \frac{5}{2} \end{bmatrix}$$

$$1 \lim_{x \to -2} \frac{x + 2}{3 - \sqrt{t}} = \frac{1}{3(-2)^2} = \frac{1}{3(4)} = \begin{bmatrix} \frac{1}{12} \end{bmatrix}$$

$$1 \lim_{x \to -2} \frac{9 - 4}{3 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2 - \sqrt{t}} = \frac{9 - 9}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$\frac{13}{12}$$

$$\lim_{x \to 7} \frac{\sqrt{x+2}-3}{x-7} = \frac{\sqrt{9}-3}{7-7} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$= \lim_{x \to 7} \frac{1}{2\sqrt{x+2}} = \lim_{x \to 7} \frac{1}{2\sqrt{x+2}} = \frac{1}{2\sqrt{9}} = \left(\frac{1}{6}\right)$$

$$\frac{13}{12} \lim_{x \to 0} \frac{\sqrt{1+h}-1}{h} = \frac{\sqrt{1+0}-1}{0} = \frac{1-1}{0} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$= \lim_{x \to 0} \frac{1}{2\sqrt{1+h}} = \lim_{x \to 0} \frac{1}{2\sqrt{1+h}} = \frac{1}{2\sqrt{1+h}} = \frac{1}{2}$$

$$\frac{14}{12} \lim_{x \to 1^{2}} \frac{x^{4}-16}{x-2} = \frac{16-16}{2-2} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$= \lim_{x \to 1^{2}} \frac{4x^{3}}{1} = 4(2)^{3} = 4(8) = \frac{32}{2}$$

$$\frac{15}{12} \lim_{x \to 4} \frac{4+x}{4+x} = \frac{1}{4} + \frac{1}{-4} = \frac{1}{4} - \frac{1}{4} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$= \lim_{x \to 4} \frac{0}{4+x} = \frac{1}{4} + \frac{1}{-4} = \frac{1}{4} - \frac{1}{4} = \frac{0}{0} (1 \cdot f \cdot) (by L \cdot H \cdot R)$$

$$= \lim_{x \to 4} \frac{0}{4+x} = \frac{1}{4} + \frac{1}{-4} = \frac{1}{4} - \frac{1}{4} = \frac{1}{2} = -\frac{1}{16}$$

$$14$$

$$16 \lim_{x\to 0} \frac{x^2 - 81}{\sqrt{x - 3}} = \frac{81 - 81}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x\to 0} \frac{2x}{1} = \lim_{x\to 0} 2x \cdot 2\sqrt{x}$$

$$= \lim_{x\to 0} 4x\sqrt{x} = 4(9)\sqrt{9} = 36(3) \quad 108$$

$$17 \lim_{x\to 0} \frac{(3 + h)^{-1} - 3^{-1}}{h} = \frac{3^{-1} - 3^{-1}}{0} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{h\to 0} \frac{-4(3 + h)^{-2} - 4}{1} = \lim_{h\to 0} \frac{-4}{(3 + h)^{-2}}$$

$$= \frac{-1}{(3 + 0)^{2}} = \frac{-1}{(3)^{2}} = \frac{-1}{9}$$

$$18 \lim_{x\to 4} \frac{\sqrt{x^{2} + 9} - 5}{x + 4} = \frac{\sqrt{16 + 9} - 5}{-4 + 4} = \frac{0}{0} (1 \cdot f \cdot) (by \ L \cdot H \cdot R)$$

$$= \lim_{x\to 4} \frac{2x}{2\sqrt{x^{2} + 9}} = \lim_{x\to 4} \frac{x}{\sqrt{x^{2} + 9}}$$

$$= \frac{-4}{\sqrt{16 + 9}} = \frac{-4}{\sqrt{25}} = \left[\frac{-4}{5}\right]$$

a L S A A D I

$$15$$

$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right) = \frac{1}{0} - \frac{1}{0} = \infty - \infty (1 \cdot f \cdot)$$

$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{\sqrt{1+t}}{t\sqrt{1+t}} \right) = \lim_{t \to 0} \left(\frac{1-\sqrt{1+t}}{t\sqrt{1+t}} \right) = \frac{0}{0} (1 \cdot f \cdot)$$

$$\lim_{t \to 0} \left(\frac{1-\sqrt{1+t}}{t\sqrt{1+t}} - \frac{1+\sqrt{1+t}}{1+\sqrt{1+t}} \right) = \frac{1}{0} \frac{1-\sqrt{1+t}}{t\sqrt{1+t}} = \lim_{t \to 0} \frac{1-\sqrt{1+t}}{t\sqrt{1+t}}$$

$$\lim_{t \to 0} \frac{1-(1+t)}{t\sqrt{1+t}} = \lim_{t \to 0} \frac{1-\sqrt{t-t}}{t\sqrt{1+t}(1+\sqrt{1+t})}$$

$$\lim_{t \to 0} \frac{-\frac{t}{t\sqrt{1+t}} - \frac{1}{1+\sqrt{1+t}}}{t\sqrt{1+t}(1+\sqrt{1+t})} = \lim_{t \to 0} \frac{1-\sqrt{1+t}}{\sqrt{1+t}(1+\sqrt{1+t})}$$

$$\lim_{t \to 0} \frac{-\frac{t}{t\sqrt{1+t}(1+\sqrt{1+t})}}{t\sqrt{1+t}(1+\sqrt{1+t})} = \lim_{t \to 0} \frac{-1}{\sqrt{1+t}(1+\sqrt{1+t})}$$

$$= \frac{-1}{\sqrt{1+0}(1+\sqrt{1+0})} = \frac{-1}{1(1+1)} = \left(\frac{-1}{2} \right)$$

$$1 = \int_{t \to 0} \frac{1}{\sqrt{1+t}} \int_{t \to 0} \frac{1}{t\sqrt{1+t}} \int_{t \to 0}$$

A L S A A D L

$$16$$
21
$$\lim_{x \to 3} (2x + |x - 3|)$$

$$\lim_{x \to 3^{n}} (2x + |x - 3|)$$

$$\lim_{x \to 3^{n}} (2x + x - 3)$$

$$\lim_{x \to 3^{n}} (3x - 3) = 9 - 3 = 6$$

$$\lim_{x \to 3^{n}} (3x - 3) = 9 - 3 = 6$$

$$\lim_{x \to 3^{n}} (2x - x + 3)$$

$$\lim_{x \to 3^{n}} (2x - x + 3)$$

$$\lim_{x \to 3^{n}} (2x - x + 3)$$

$$\lim_{x \to 3^{n}} (2x - x + 3) = 3 + 3 = 6$$

$$\lim_{x \to 3^{n}} (x + 3) = 3 + 3 = 6$$

$$\lim_{x \to 3^{n}} (2x + |x - 3|) = 6$$
22
$$\lim_{x \to 3^{n}} \lim_{x \to 3^{n}} = 6 \rightarrow \lim_{x \to 3^{n}} (2x + |x - 3|) = 6$$

$$\lim_{x \to 3^{n}} \lim_{x \to 3^{n}} = 6 \rightarrow \lim_{x \to 3^{n}} (2x + |x - 3|) = 6$$

$$\lim_{x \to 3^{n}} \lim_{x \to 3^{n}} = 6 \rightarrow \lim_{x \to 3^{n}} (2x + |x - 3|) = 6$$

$$\lim_{x \to 3^{n}} \lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 6)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$\lim_{x \to -6^{n}} \frac{2(x + 12)}{(x + 6)} = 2$$

$$17$$

$$(2) \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{-x}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{1}{x} + \frac{1}{x}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{2}{x}\right) = \frac{2}{0} = \infty$$

$$(2) \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$= \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$dose not exist$$

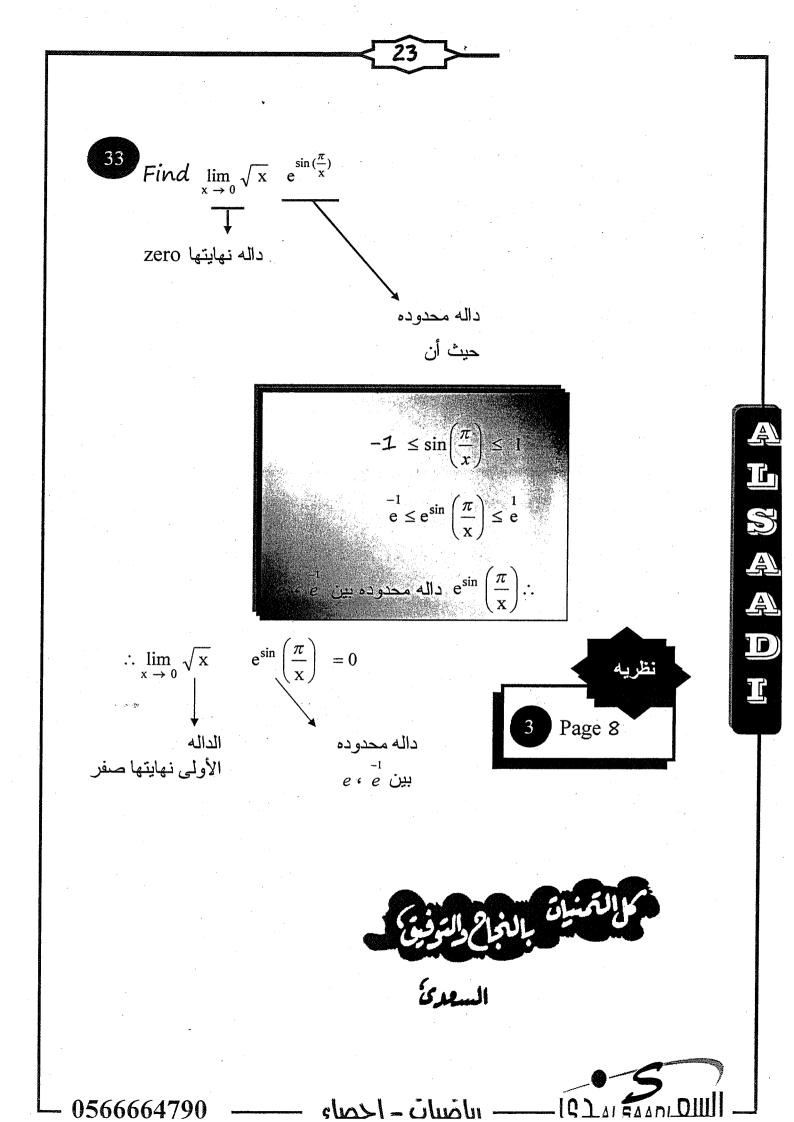
$$(3) \lim_{x \to 0^{n}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

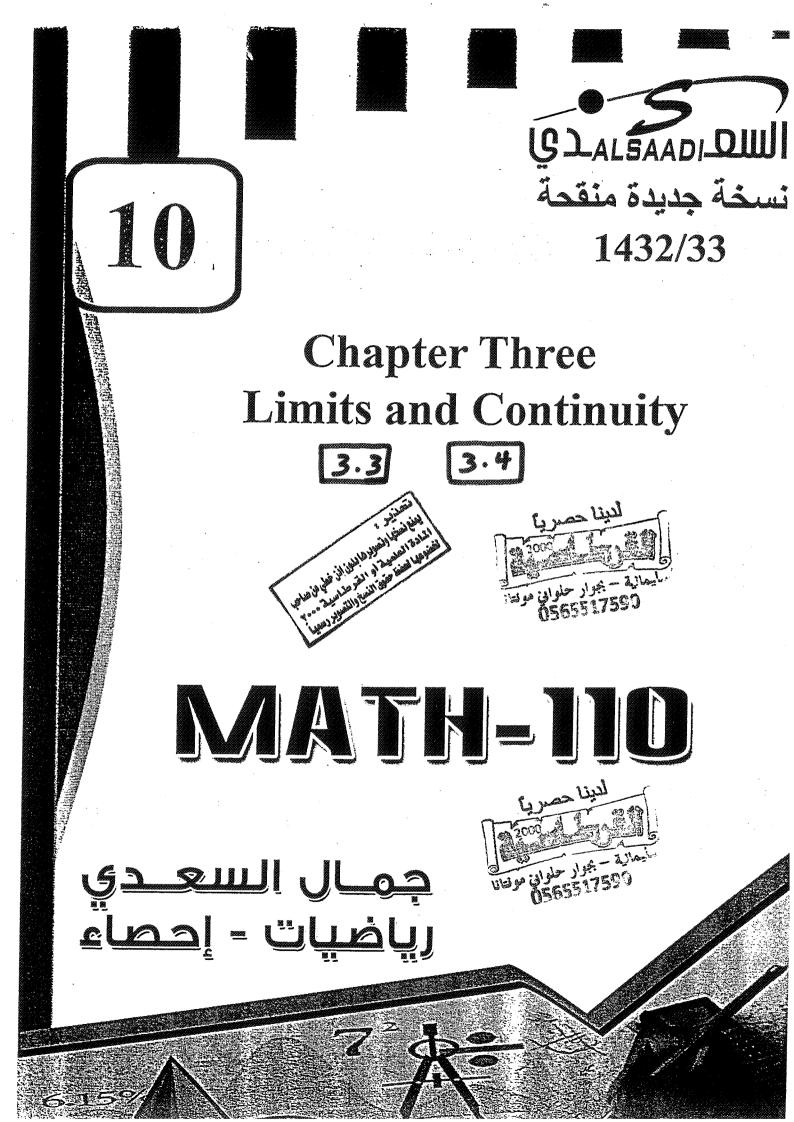
$$dose not exist$$

$$(5) \operatorname{Highler Hypelong)$$

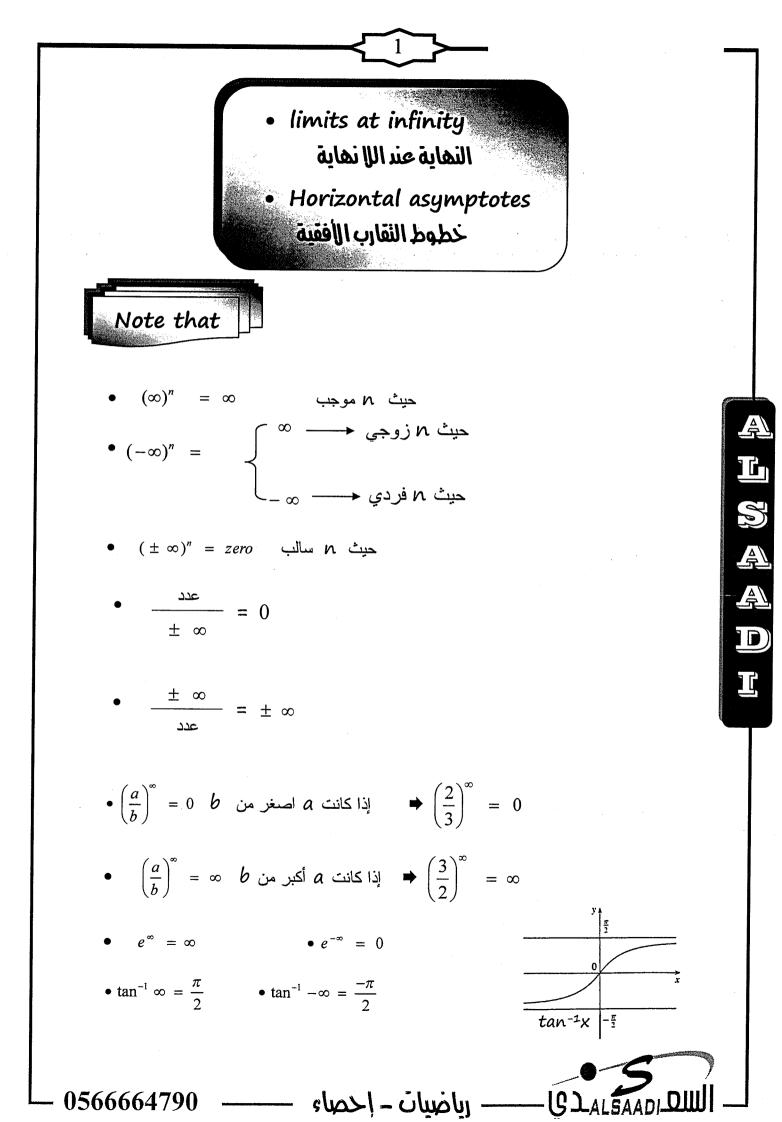
$$(5) \operatorname{Geoded}(790) = (4) \operatorname{Geoded}(790)$$

الأضات - احصاء


	.0	-4)	
G	LA	LSAAI	للللعام		,


20
29 If:
$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$$

Find $\lim_{x \to 1} f(x)$?
 $\therefore \lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$
 $\Rightarrow \lim_{x \to 1} \frac{f(x) - 10}{x - 1} = 10$
 $\Rightarrow \lim_{x \to 1} f(x) - \lim_{x \to 1} 8 = 10 (\lim_{x \to 1} x - \lim_{x \to 1} 1)$
 $\Rightarrow \lim_{x \to 1} f(x) - 8 = 10 (1 - 1)$
 $\Rightarrow \lim_{x \to 1} f(x) = 10 (0) + 8$
 $\therefore \lim_{x \to 1} f(x) = 8$


32 If there a number a such that :

$$\lim_{x \to -2} \frac{3 x^{2} + a x + a + 3}{x^{2} + x - 2} \text{ exist } a_{3,3,3,4}$$
1 Find the value of a.
2 Find the value of the limit.
3 (-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a + 3
(-2)² + a(-2) + a(-2) + a + 3
(-2)² + a(-2) + a(-2) + a + 3
(-2)² + a(-2) + a(-2) + a + 3
(-2)² + a(-2) +

ľ

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

$$\frac{3}{2}$$
Find the limits:

$$\lim_{x \to \infty} \left(\frac{2}{3}\right)^{x} = \left(\frac{2}{3}\right)^{\infty} = 0$$

$$\lim_{x \to \infty} \left(\frac{2}{3}\right)^{x} = \left(\frac{2}{3}\right)^{\infty} = 0$$

$$\lim_{x \to \infty} \left(\frac{3}{2}\right)^{x} = \left(\frac{2}{3}\right)^{\infty} = \infty$$

$$\lim_{x \to \infty} \left(\frac{3}{2}\right)^{x} = \left(\frac{2}{3}\right)^{\infty} = \left(\frac{3}{2}\right)^{\infty} = \infty$$

$$\lim_{x \to \infty} \left(\frac{2}{3}\right)^{x} = \left(\frac{2}{3}\right)^{\infty} = \left(\frac{3}{2}\right)^{\infty} = 0$$

$$\lim_{x \to \infty} \left(\frac{\pi}{e}\right)^{x} = \left(\frac{\pi}{e}\right)^{\infty} = \left(\frac{e}{\pi}\right)^{\infty} = 0$$

$$\lim_{x \to \infty} \left(\frac{\pi}{e}\right)^{x} = \left(\frac{\pi}{e}\right)^{\infty} = \left(\frac{e}{\pi}\right)^{\infty} = 0$$

$$\lim_{x \to \infty} \left(\frac{\pi}{e}\right)^{x} = \frac{1}{2} + \frac{1}{2$$

ļ,

$$\frac{4}{2}$$

$$\lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x}) = \infty - \infty (I \cdot F \cdot)$$

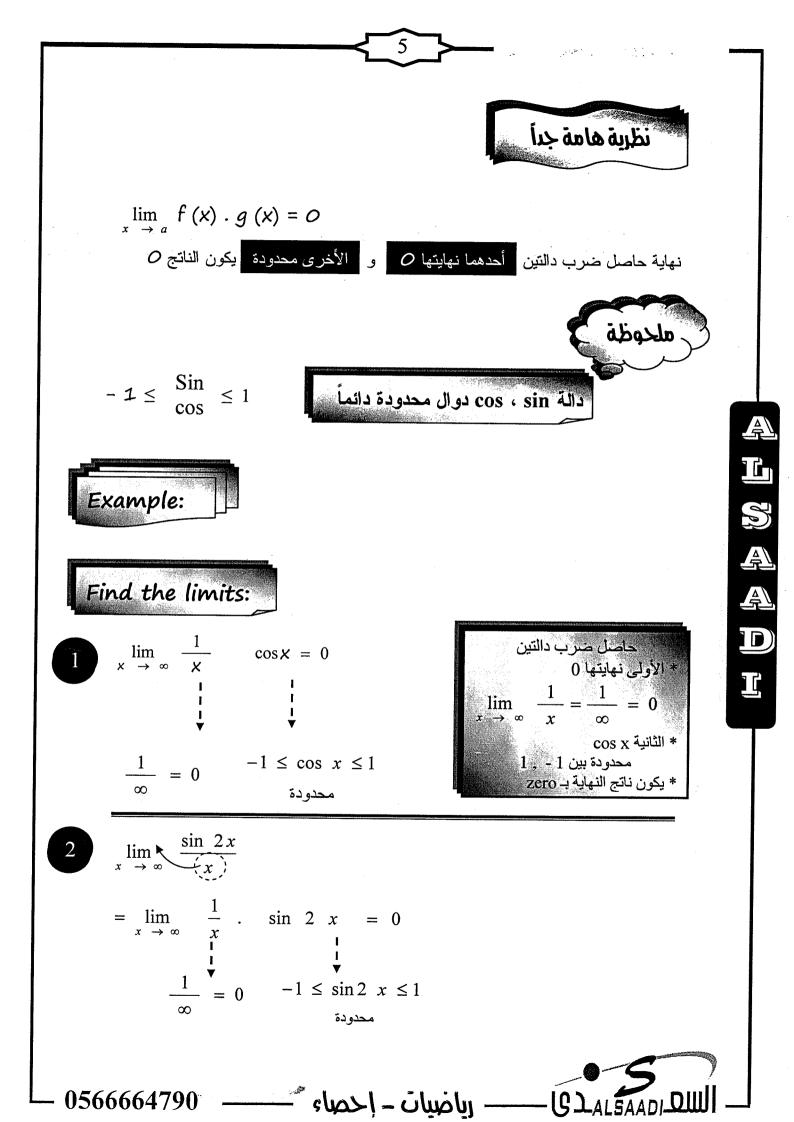
$$= \lim_{x \to \infty} \sqrt{x+2} - \sqrt{x} \cdot \frac{\sqrt{x+2} + \sqrt{x}}{\sqrt{x+2} + \sqrt{x}}$$

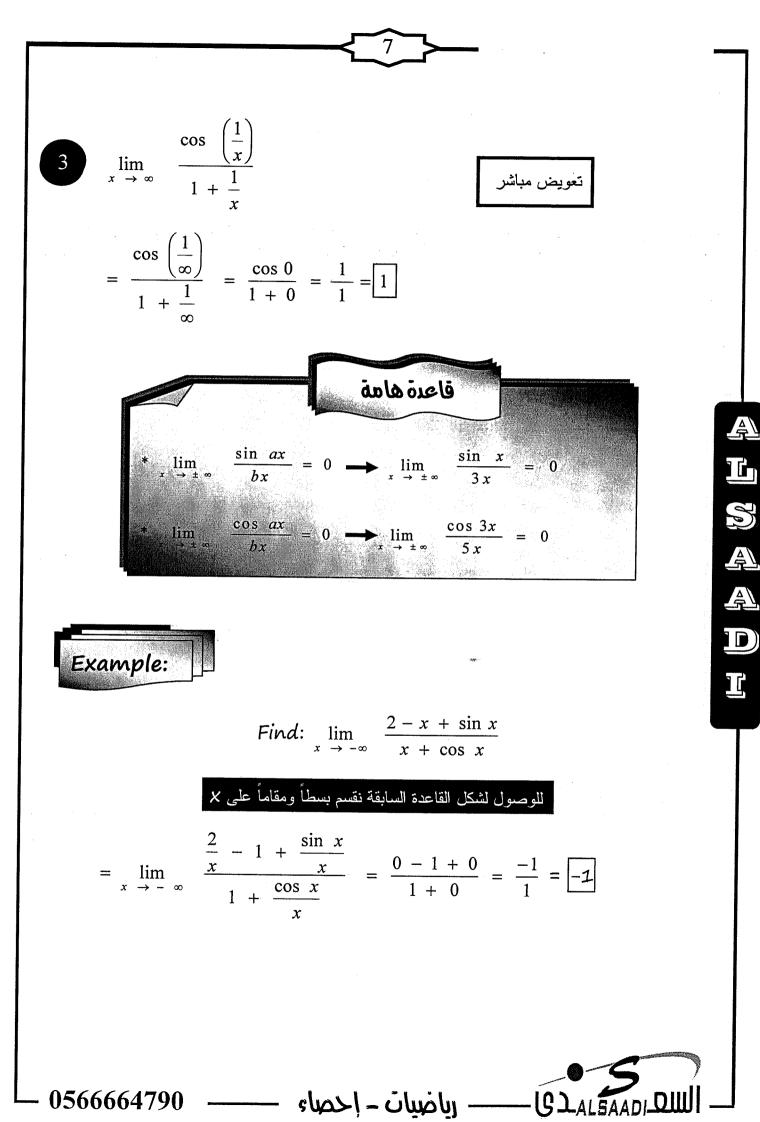
$$= \lim_{x \to \infty} \sqrt{x+2} - \sqrt{x} \cdot \frac{\sqrt{x+2} + \sqrt{x}}{\sqrt{x+2} + \sqrt{x}}$$

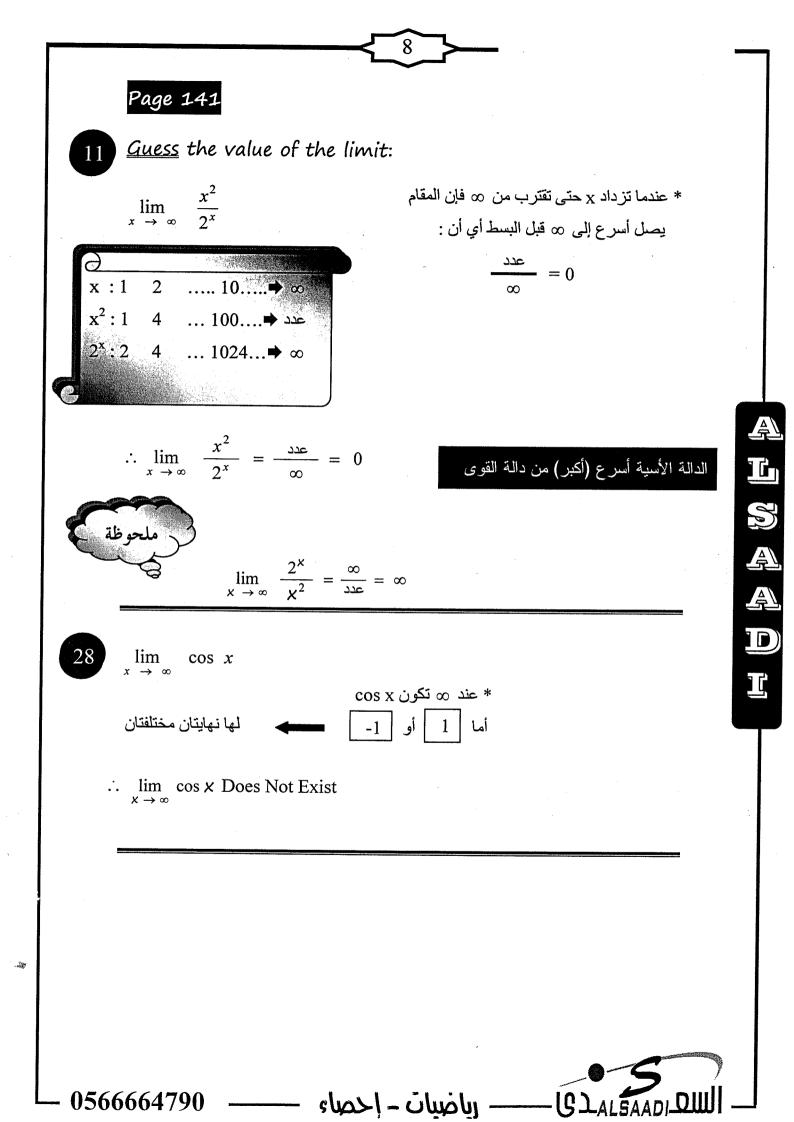
$$= \frac{\lim_{x \to \infty} \frac{A + 2 - P}{\sqrt{x+2} + \sqrt{x}} = \lim_{x \to \infty} \frac{2}{\sqrt{x+2} + \sqrt{x}} = \frac{2}{\infty} = 0$$

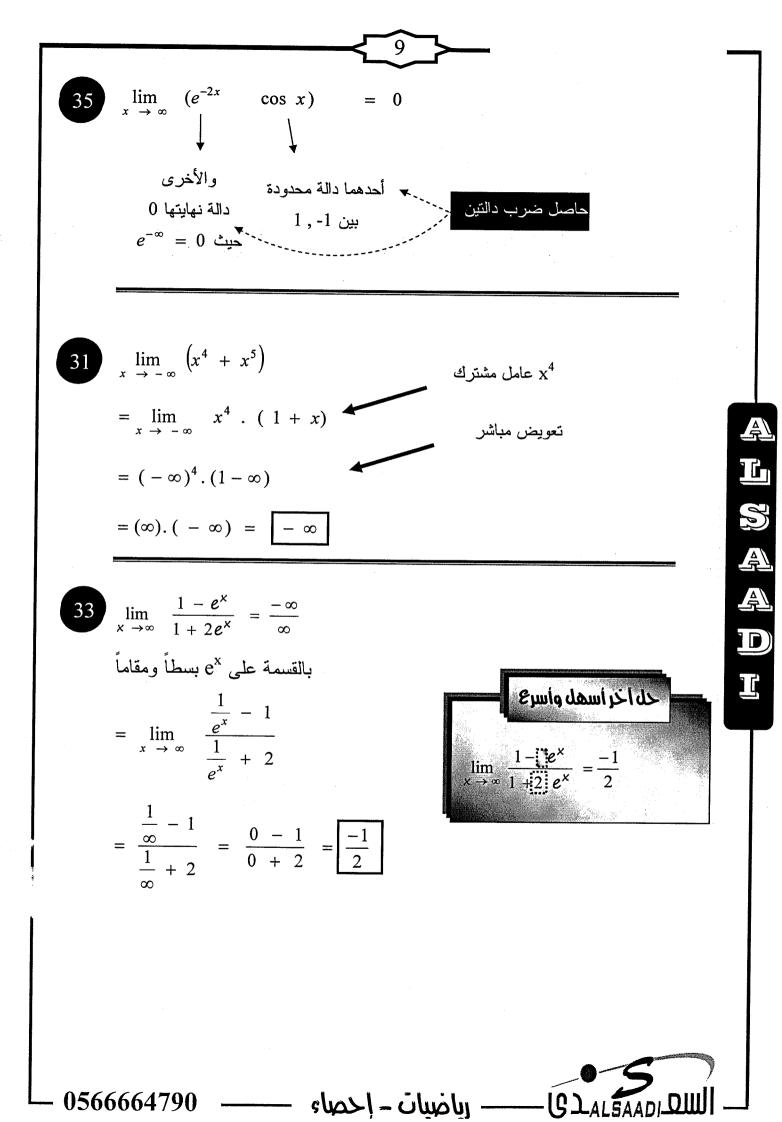
$$\lim_{x \to \infty} \frac{\sqrt{1 + (\frac{4}{3}x^2)}}{4 + x} = \frac{2x}{x} = 2$$

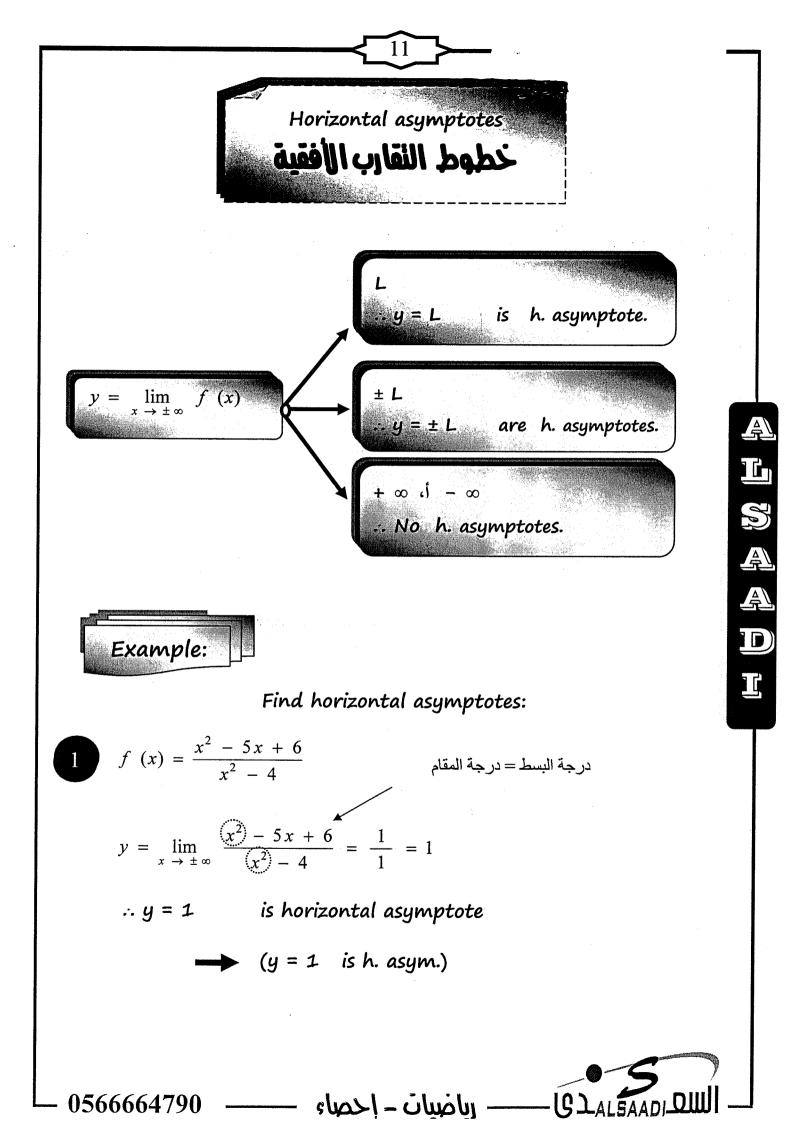
$$\frac{x + \infty}{\sqrt{4x^2} = 2|x| = 2x}$$

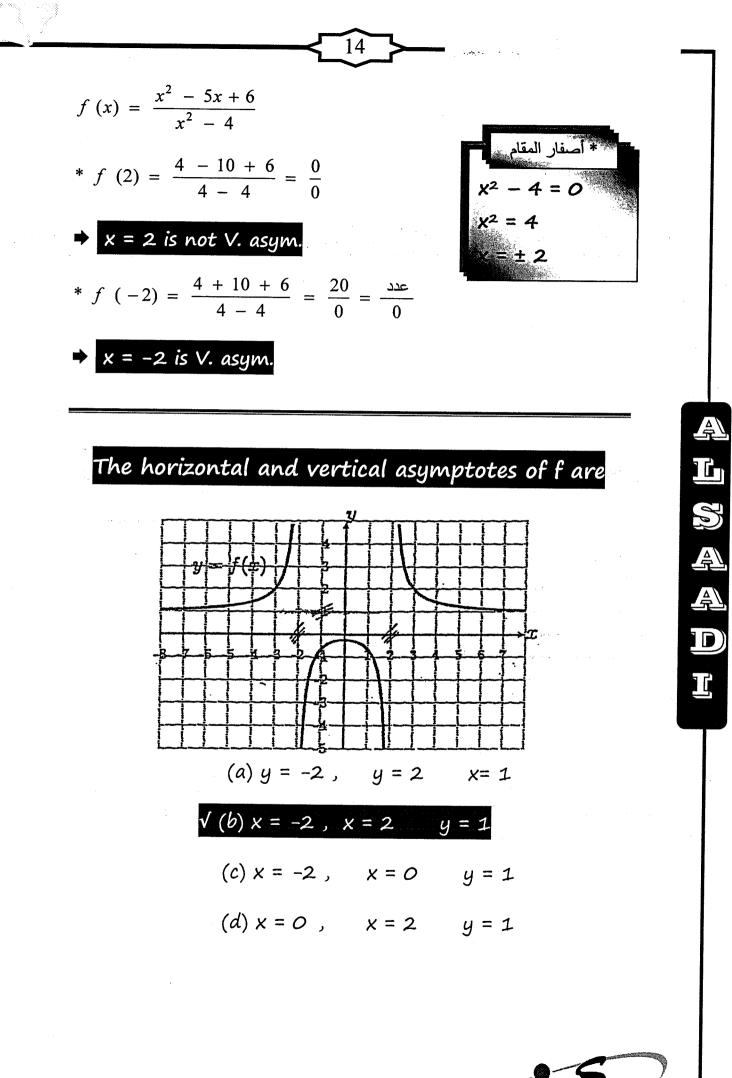

$$\lim_{x \to \infty} \frac{\sqrt{1 + (\frac{4}{3}x^2)}}{4 + x} = \frac{-2x}{x} = -2$$


$$\lim_{x \to \infty} \frac{x - \infty}{\sqrt{4x^2} = 2|x| = -2x}$$


$$\lim_{x \to \infty} \frac{\cos\left(\frac{1}{x}\right)}{1 + \frac{1}{x}} = \frac{\cos\left(\frac{1}{\infty}\right)}{1 + \frac{1}{\infty}} = \frac{\cos 0}{1 + 0} = \frac{1}{1} = 1$$


$$0566664790$$


$$-0566664790$$

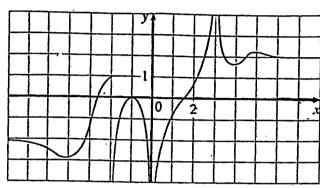


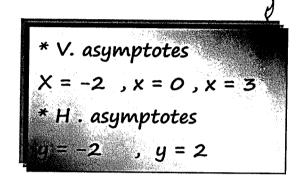
ຼັງ

$$f(x) = \frac{2}{2-2} = \frac{3}{0} = \frac{3x}{0}$$

$$f(x) = \frac{2}{2-2} = \frac{3}{0} = \frac{3x}{0}$$

$$f(x) = \frac{2}{2-2} = \frac{3}{2-2} = \frac{3}{2-2} = \frac{3}{2-2} = \frac{3}{2} = \frac{3x}{0}$$


0566664790


للعرامهدي مستعمل العراقيات - إحصاء

For the function (g) whose graph is given, state the following

- (a) $\lim_{x \to \infty} g(x) = 2$ (b) $\lim_{x \to -\infty} g(x) = -2$
- (c) $\lim_{x \to 3} g(x) = \infty$ (d) $\lim_{x \to 0} g(x) = -\infty$

(e) $\lim_{x \to -2^+} g(x) = -\infty$ (f) the equations of the asymptotes

Ą

L S A A

D

ľ

For the function (f) whose graph is given, state the following

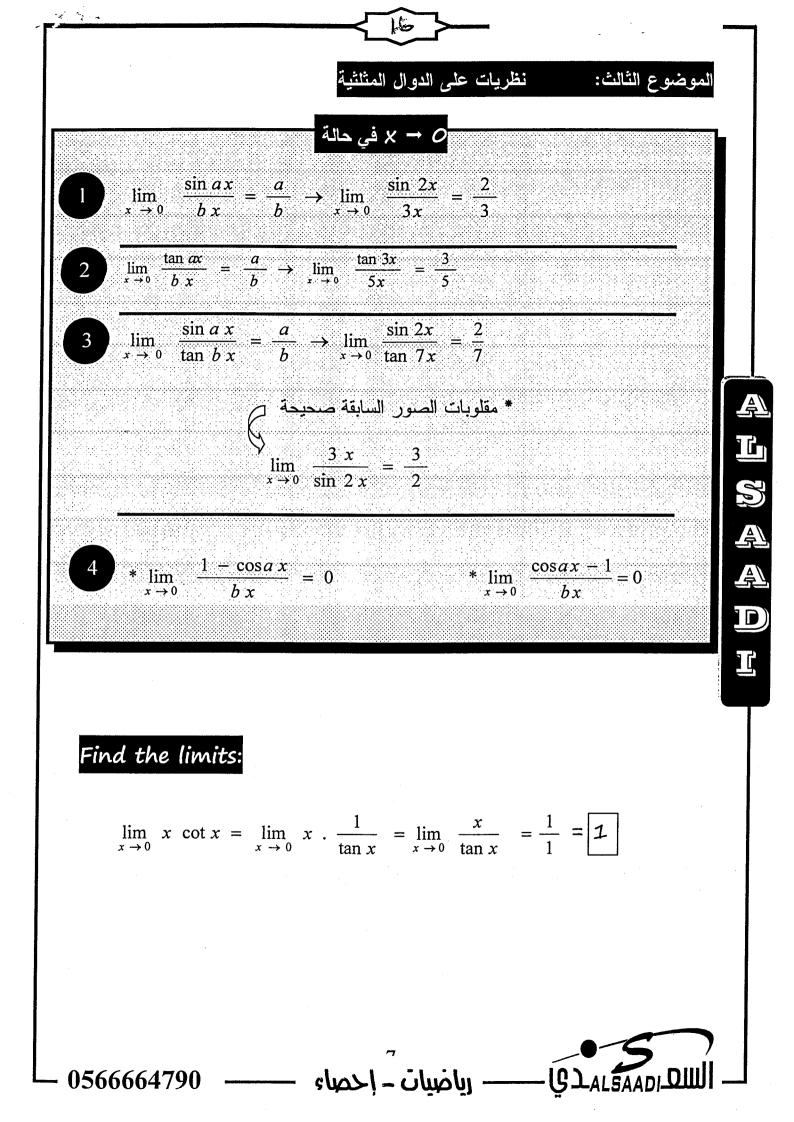
- (a) $\lim_{x \to 2^{-}} f(x) = \infty$ (b) $\lim_{x \to -1^{-}} f(x) = \infty$
- (c) $\lim_{x \to -1^{+}} f(x) = -\infty$ (d) $\lim_{x \to \infty} f(x) = 1$

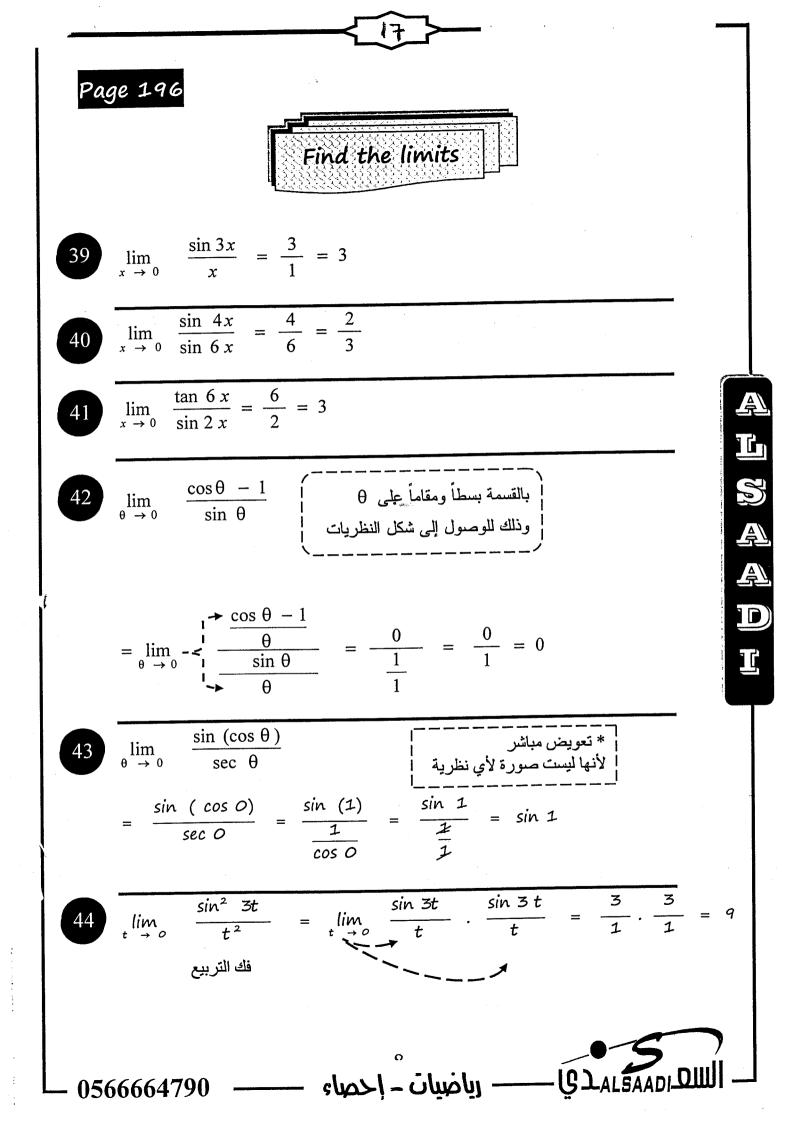
0566664790

(e) $\lim_{x \to -\infty} f(x) = 2$ (f) the equations of the asymptotes

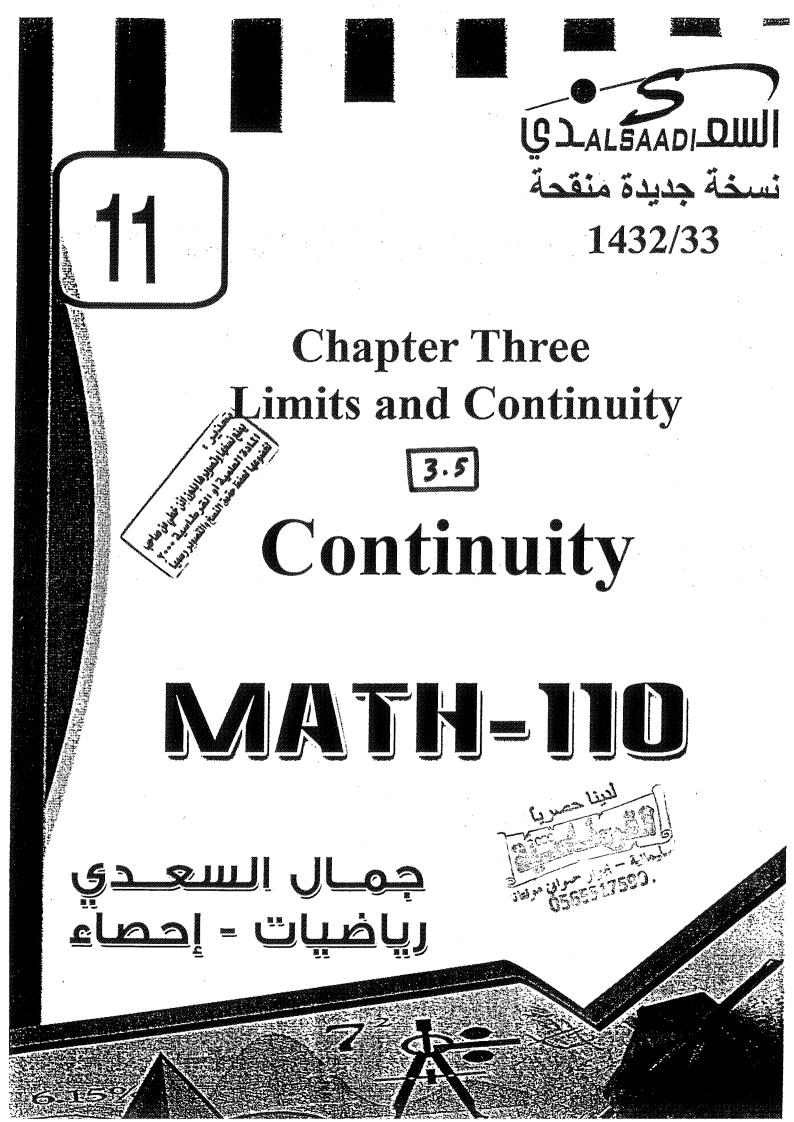
* V. asymptotes

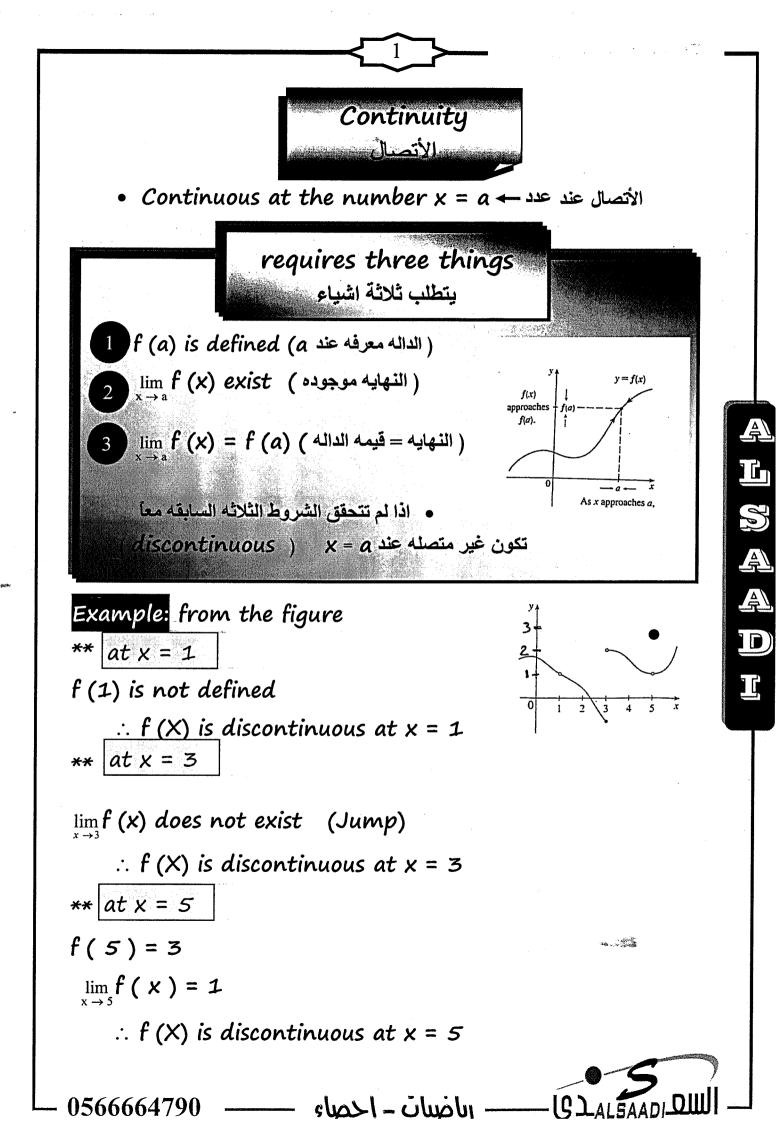
X = -1 , X = 2


* H . asymptotes


y = 1 , y = 2

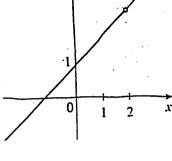
- ULALSAADI DI

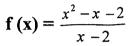

السبعرئ


- رياضيات - إحصاء

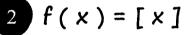
Ź

Example:

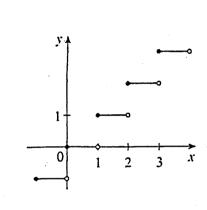

where are each of the following functions discontinuous?


1
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

F (2) is not defined So f (x) is discontinuous at x = 2


Or f (x) is continuous on R – { 2 }

does not exist (where n is integer)


f (x) is continuous on (-∞, 2) U (2, ∞) بشكل آخر

f (x) is discontinuous

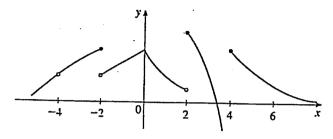
at all of the integers

where the $\lim_{x \to n} [x]$

 $f(x) = \llbracket x \rrbracket$

3 $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} \text{ does not exist}$ $\int f(x) = \lim_{x \to 0} \frac{1}{x^2} \text{ does not exist}$ $\int f(x) \text{ is discontinuous at } x = 0$ $\int f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ $\int f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$

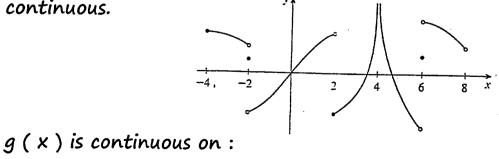
$$\frac{3}{1}$$


$$Pefinition$$
If: $\lim_{x \to a^{n}} f(x) = f(a) \longrightarrow f$ is continuous from the right a
 a is continuous from the left a
 a is continuous from the left a
 a is continuous from the left a
 a is continuous from the right a
 $f(x)$ is continuous from the right a
 a is $f(x) = \lim_{x \to a^{n}} [x] = a + f(a) = a$
 $f(x)$ is discontinuous from the left a
 $f(x)$ is discontinuous from the left a

3

From the graph of f, state the numbers at which f is discontinuous and explain why.

For each of the numbers stated in part (a), determine whether f is continuous form right or from the left or neither.

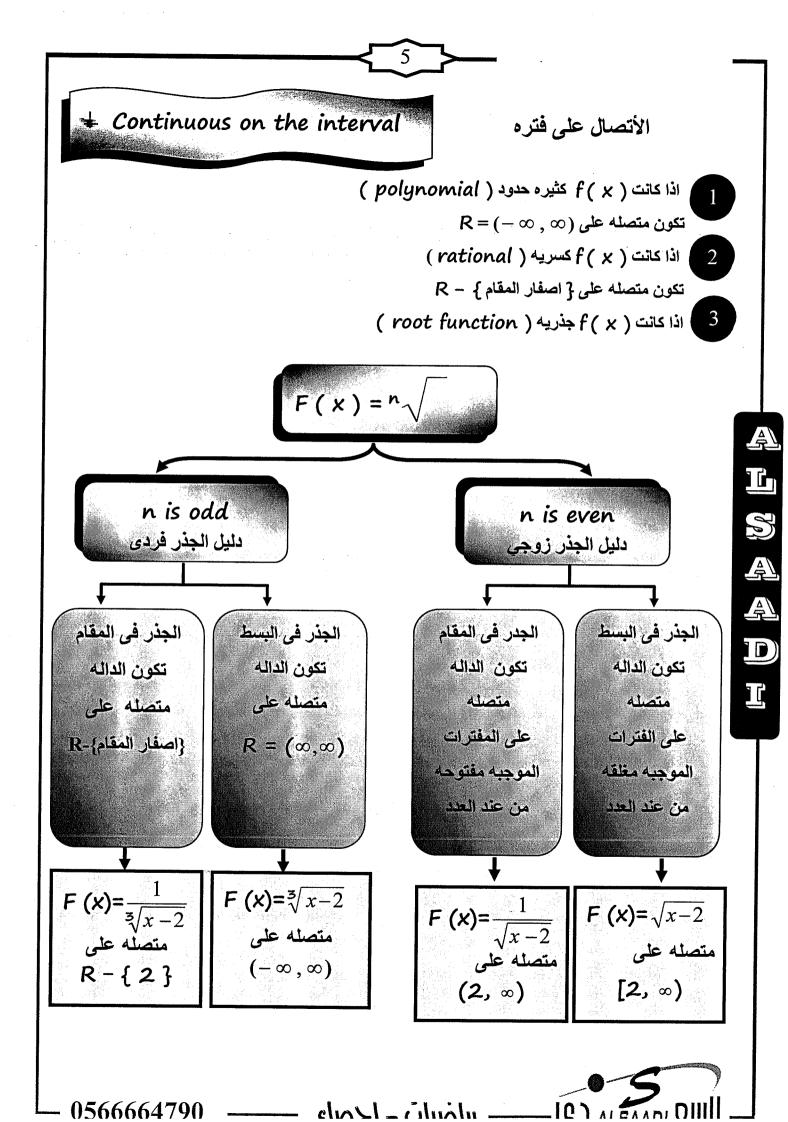


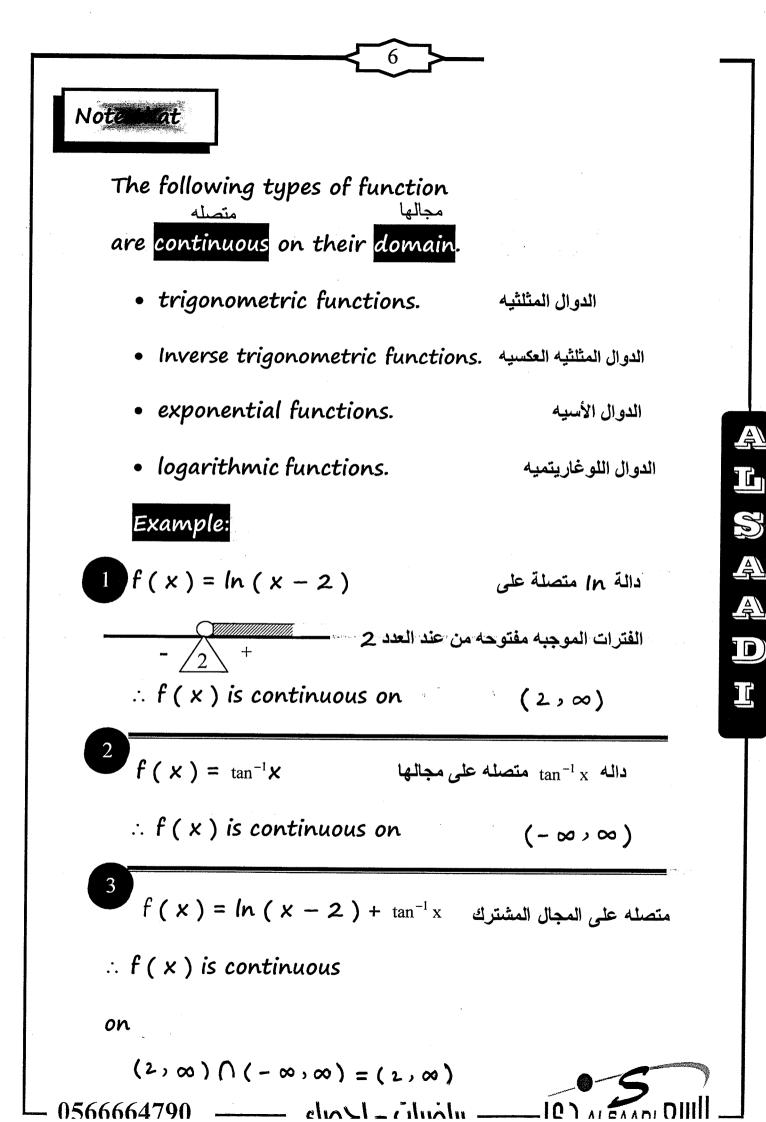
l S A A

D

I

- at x = -4 f (x) is discontinuous
 where f (-4) undefined
 f (x) neither continuous from right nor from left. * at x = -4
- at x = -2 f (x) is discontinuous (Jump) f (x) is continuous from the left ($\lim_{x \to -2^{-}} f(x) = f(-2)$)
- at x = 2 f (x) is discontinuous (Jump)
 f (x) is continuous from the right (lim f (x)=f (2))
- at x = 4 f (x) is discontinuous (Jump) f (x) is continuous from the right ($\lim_{x \to 4^+} f(x) = f(4)$)
- From the graph of g, state the intervals on which g is continuous.



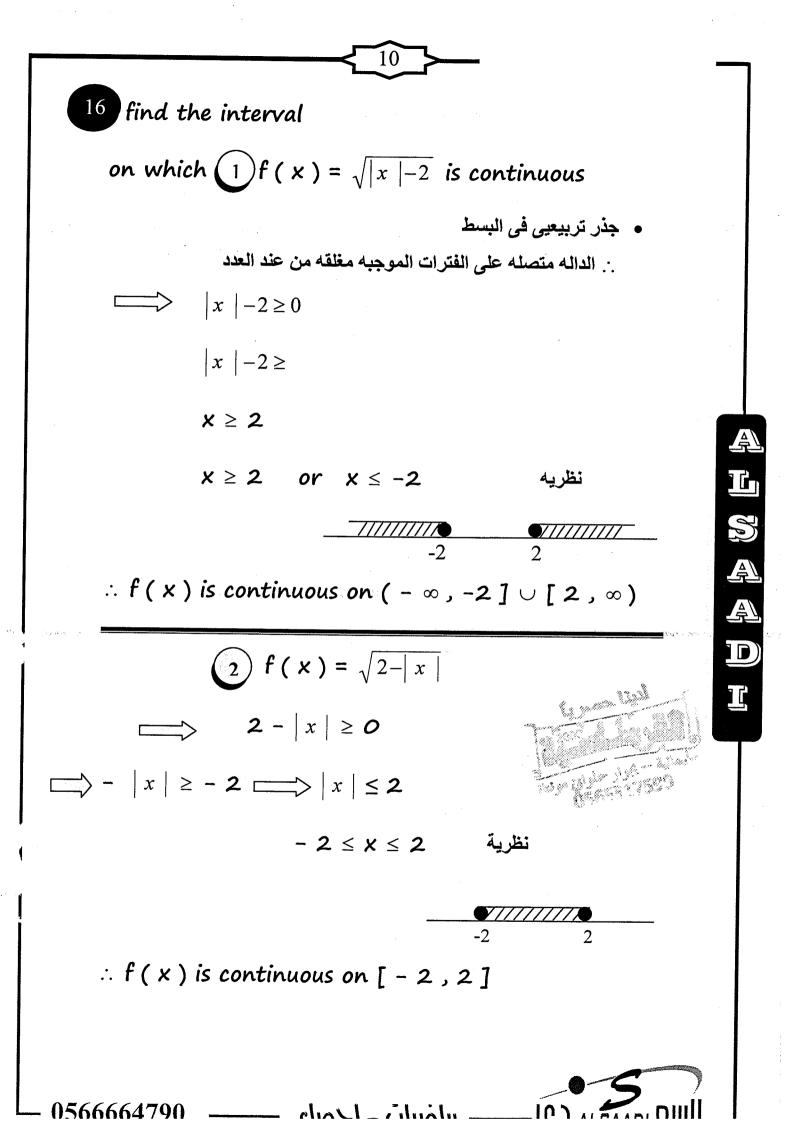

*[-4,-2) *(-2,2) *[2,4) *(4,6) *(6,8)

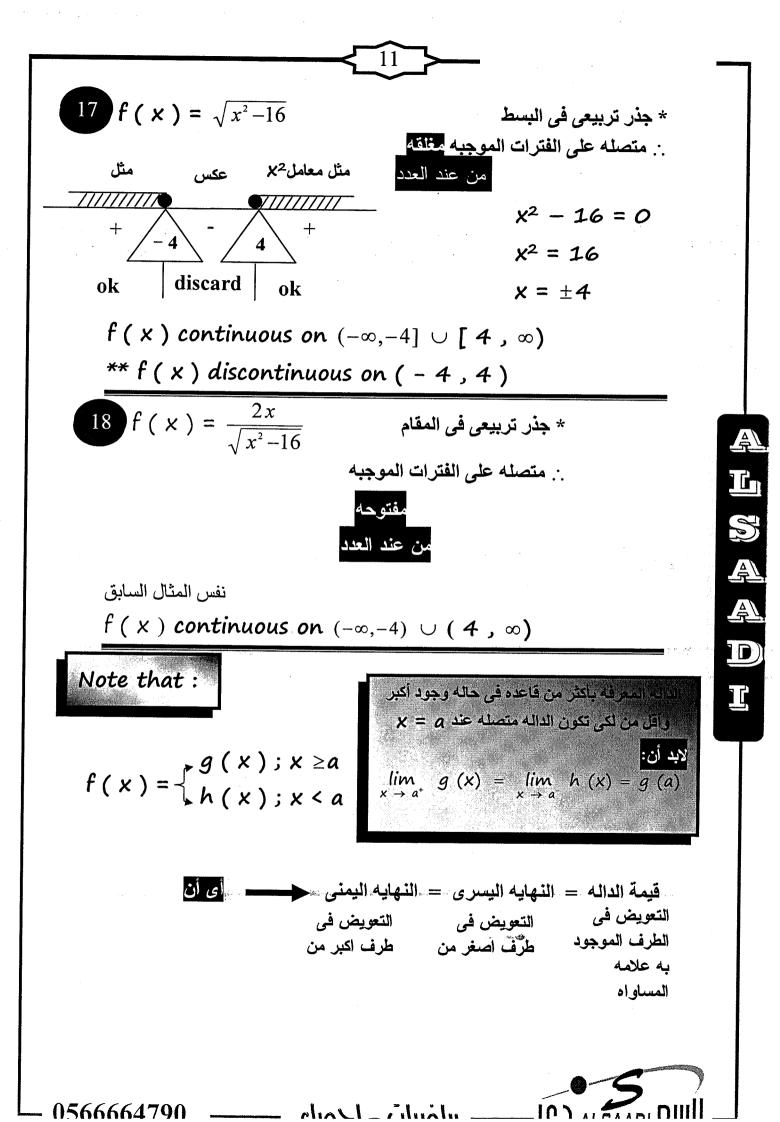
0566664790

dinst - ciliali -

101

Example: Where is the function f(x) continuous? 1 $f(x) = \frac{\ln x + \tan^{-1} x}{x^2 - 1}$ باستبعاد اصفار المقام $x^2 - 1 = 0$ $(-\infty,\infty)$ $(0,\infty)$ $x^2 = 1$ $X = \pm 1$: f(x) is continuous on $(-\infty,\infty) \cap (O,\infty) - \{-1,1\}$ $= (0,\infty) - \{-1,1\}$ On On Some > 00 D $=(0,1)\cup(1,\infty)$ $f(x) = 2 x^3 - x^2 + 1 \rightarrow polynomial$ کثیرہ حدود 2 f(x) is continuous on $(-\infty,\infty) = R$ 3 * f(x) = 2 * $f(x) = \sqrt{5}$ * $f(x) = -\frac{2}{3}$ * f(x) = 0Are continuous on $(-\infty,\infty) = R$ f (x) = |x-3| continuous on $(-\infty,\infty)$ 0566664790 elinst - cilinitin ----


$$f(x) = \frac{1}{|x-3|}$$


$$R - \{hail(luaid) = \frac{1}{|x-3|}$$

$$R - \{hail(luaid)$$

2
$$f(x) = \sqrt[5]{x^2-x}$$
 (etablic relations of the set o

.....

$$f(x) = \begin{cases} x^3 - 4; x \ge 2\\ x^2 ; x < 2 \end{cases}$$

$$f(x) = \begin{cases} x^3 - 4; x \ge 2\\ x^2 ; x < 2 \end{cases}$$

$$x^2 \xrightarrow{2} x^3 - 4$$

$$f(x) is continuous on (-\infty, 2) and (2, \infty)$$

$$f(x) is continuous on (-\infty, 2) and (2, \infty)$$

$$f(x) is continuous on (-\infty, 2) and (2, \infty)$$

$$f(x) is continuous on (-\infty, 2) and (2, \infty)$$

$$f(x) is continuous on (-\infty, \infty)$$

Example:

Find the value of c

which makes

$$f(x) = \begin{cases} cx + 5; x < 2 \\ cx^2 + 1; x \ge 2 \end{cases}$$

13

$$\lim_{x \to 2^+} (c x^2 + 1) = \lim_{x \to 2^-} (c x + 5)$$

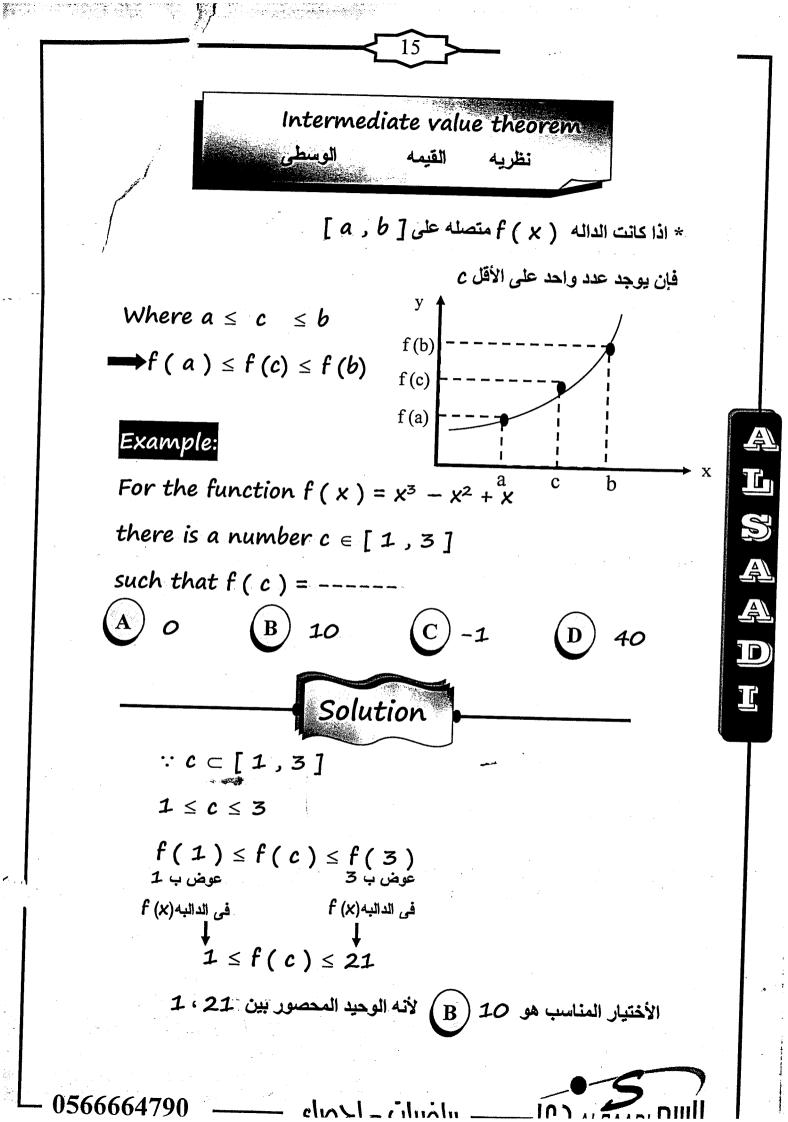
D

][

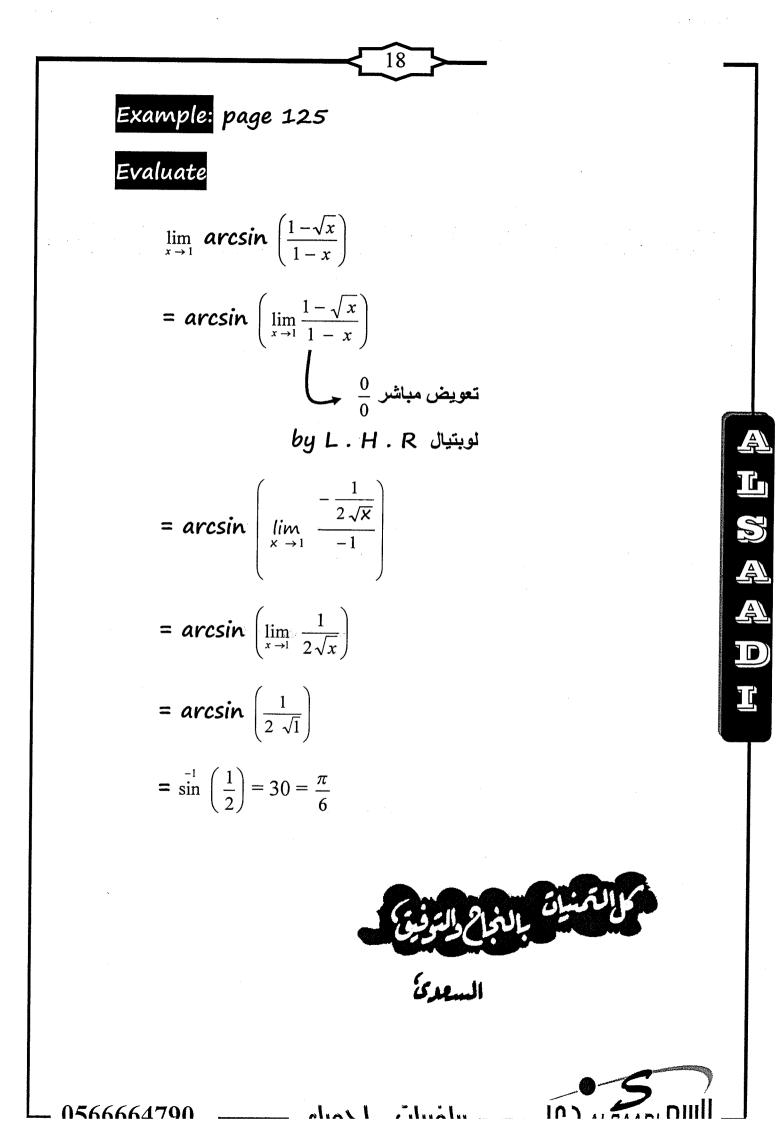
$$c(2^2) + 1 = c(2) + 5$$

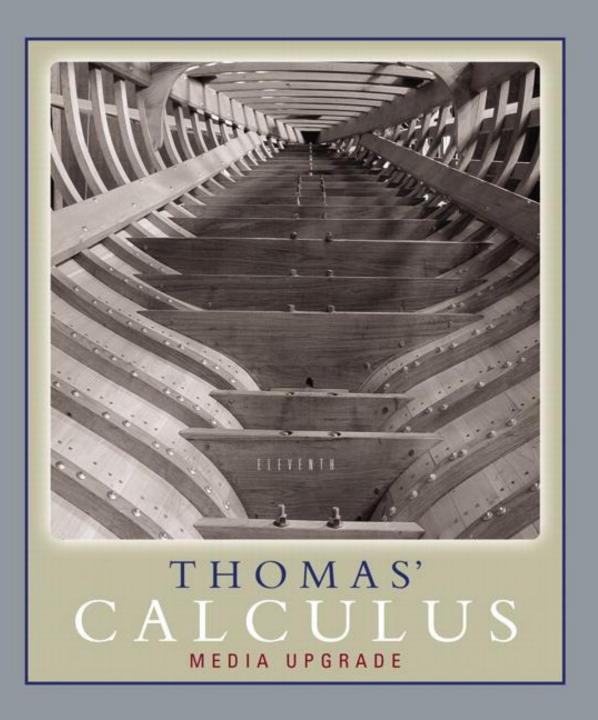
$$4c+1 = 2c+5$$

4c - 2c = 5 - 1


2c=4 _____ c=2

0566664790


elust_cilinili -


IC) ALEAAT

$$f(4) = \begin{bmatrix} \frac{14}{2} \end{bmatrix}$$

Note that

 i_{a} all like like i_{b} is discontinuous at $x = 4$

 i_{a} all i_{b} is discontinuous at $x = 4$

 i_{b} all i_{b} is discontinuous at $x = 4$?

 i_{b} all i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i_{b} is discontinuous at $x = 4$?

 i_{b} i i

2 $f(x) = \frac{x^4 - 1}{x^4 - 1}$ داله کسر په ب غير متصله عند اصفار المقام f(x) is discontinuous at x = 1 $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0} |(1 \cdot f)|^2$ we can removable discontinuity $(by L. H. R) \lim_{x \to 1} \frac{4x^3}{1} = 4(1^3) = 4$ <u>ج</u> l Saa Di $\Rightarrow g(x) \begin{cases} \frac{x^4 - 1}{x - 1} & \text{fallen is } x \neq 1 \\ 4 & \text{fallen is } x = 1 \end{cases}$ a page 128 If : f and g are continuous function With f(3) = 5 and $\lim_{x \to \infty} [2f(x) - g(x)] = 4$ Find g (3) ? $\lim_{x \to 3} [2f(x) - g(x)] = 4$ 2f(3) - g(3) = 4 $2(5) - g(3) = 4 \implies g(3) = 10 - 4 = 6$ 0566664790 - dial - cilialu ----

Chapter 3

Differentiation

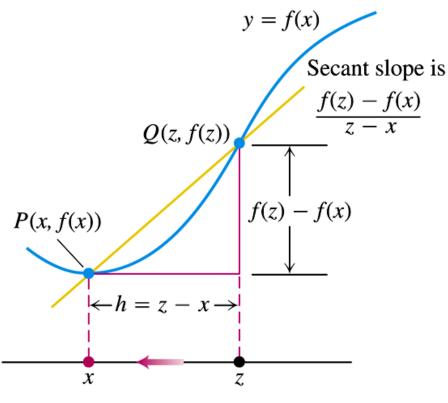
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3.1

The Derivative as a Function

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

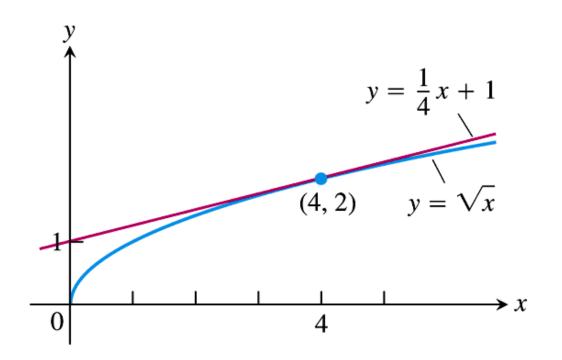
DEFINITION Derivative Function

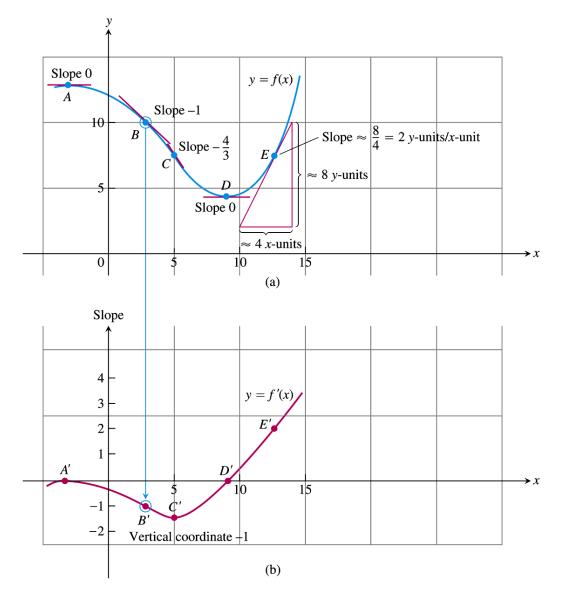

The **derivative** of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

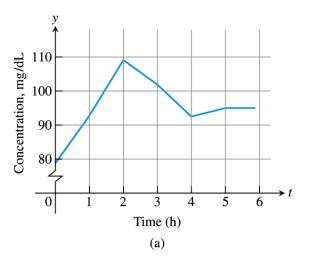
Alternative Formula for the Derivative


$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$


Derivative of f at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$$= \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

FIGURE 3.1 The way we write the difference quotient for the derivative of a function f depends on how we label the points involved.


FIGURE 3.2 The curve $y = \sqrt{x}$ and its tangent at (4, 2). The tangent's slope is found by evaluating the derivative at x = 4 (Example 2).

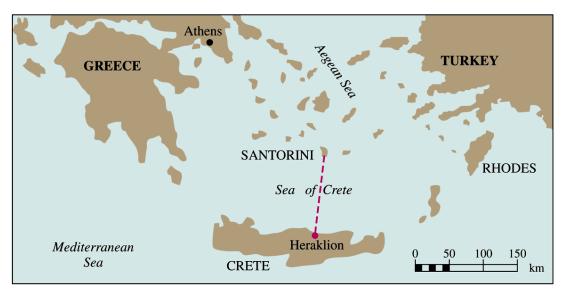
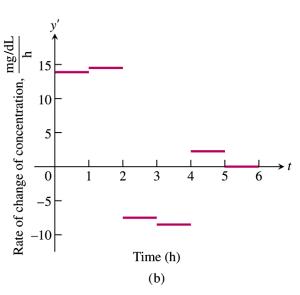
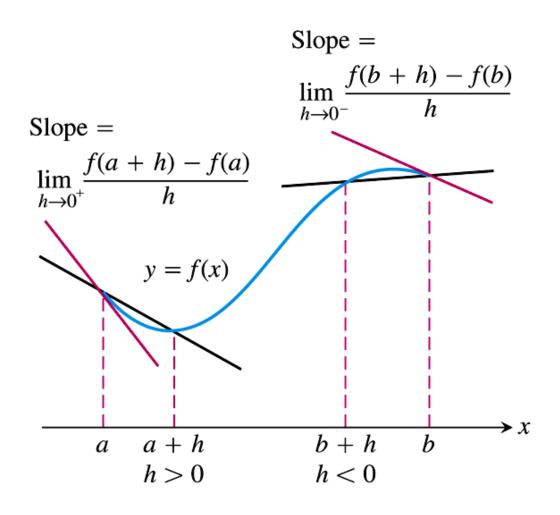


FIGURE 3.3 We made the graph of y = f'(x) in (b) by plotting slopes from the graph of y = f(x) in (a). The vertical coordinate of B' is the slope at B and so on. The graph of f' is a visual record of how the slope of f changes with x.

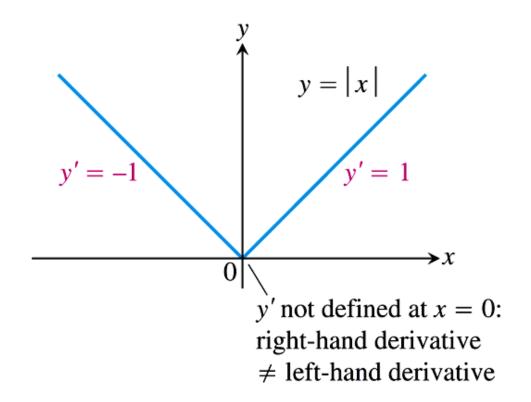
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 3 - 8

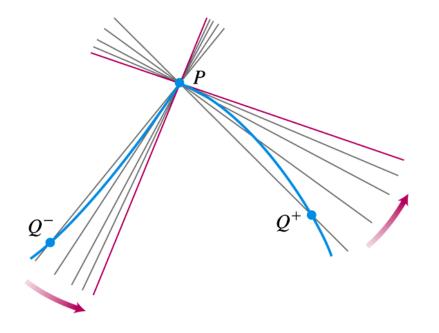


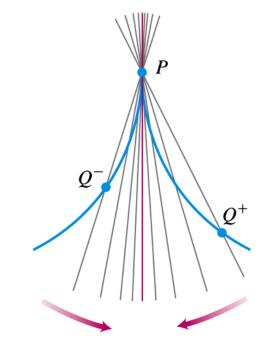


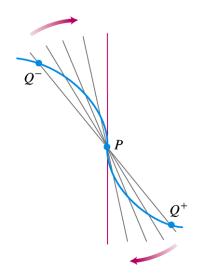
Daedalus's flight path on April 23, 1988

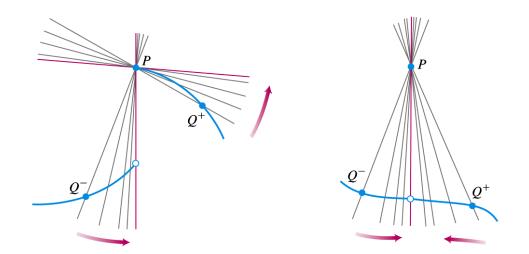

FIGURE 3.4 (a) Graph of the sugar concentration in the blood of a *Daedalus* pilot during a 6-hour preflight endurance test. (b) The derivative of the pilot's blood-sugar concentration shows how rapidly the concentration rose and fell during various portions of the test.

ι

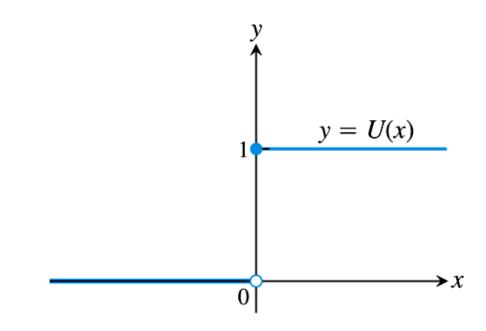



FIGURE 3.5 Derivatives at endpoints are one-sided limits.


FIGURE 3.6 The function y = |x| is not differentiable at the origin where the graph has a "corner." 1. a *corner*, where the one-sided derivatives differ.


2. a *cusp*, where the slope of PQ approaches ∞ from one side and $-\infty$ from the other.

3. a *vertical tangent*, where the slope of PQ approaches ∞ from both sides or approaches $-\infty$ from both sides (here, $-\infty$).



4. a *discontinuity*.

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at x = c, then f is continuous at x = c.

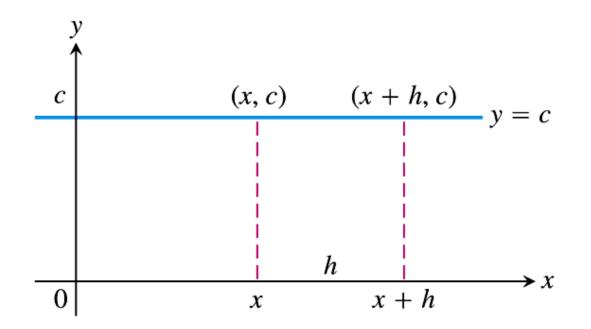
FIGURE 3.7 The unit step function does not have the Intermediate Value Property and cannot be the derivative of a function on the real line.

THEOREM 2 Darboux's Theorem

If a and b are any two points in an interval on which f is differentiable, then f' takes on every value between f'(a) and f'(b).

3.2

Differentiation Rules



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

RULE 1 Derivative of a Constant Function

If *f* has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

FIGURE 3.8 The rule (d/dx)(c) = 0 is another way to say that the values of constant functions never change and that the slope of a horizontal line is zero at every point.

RULE 2 Power Rule for Positive Integers

If n is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}.$$

RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$

y
y
y
y =
$$3x^2$$

y
y = $3(2x)$
= $6x$
= $6(1) = 6$
y = x^2
y
= $2(1) = 2$
y
y = $3x^2$. Tripling the y-coordinates triples

the slope (Example 3).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

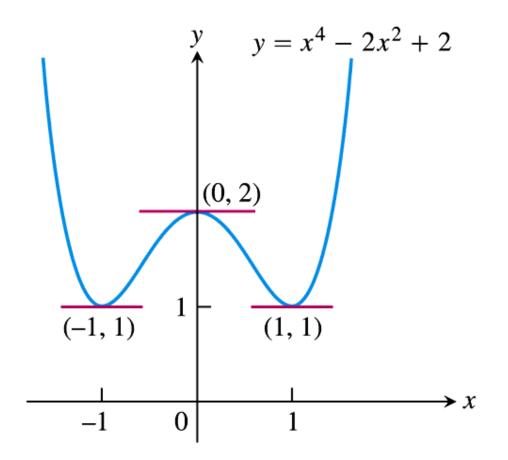


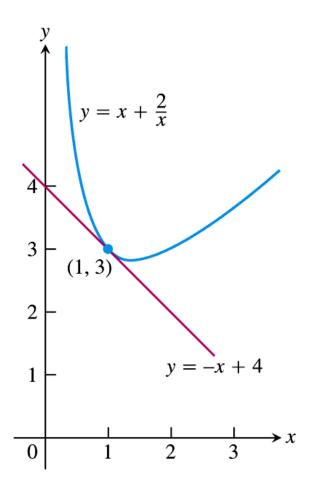
FIGURE 3.10 The curve $y = x^4 - 2x^2 + 2$ and its horizontal tangents (Example 6).

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

RULE 6 Derivative Quotient Rule


If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

RULE 7 Power Rule for Negative Integers

If *n* is a negative integer and $x \neq 0$, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

FIGURE 3.11 The tangent to the curve y = x + (2/x) at (1, 3) in Example 12. The curve has a third-quadrant portion not shown here. We see how to graph functions like this one in Chapter 4.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3.3

The Derivative as a Rate of Change

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Instantaneous Rate of Change

The instantaneous rate of change of f with respect to x at x_0 is the derivative

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

provided the limit exists.

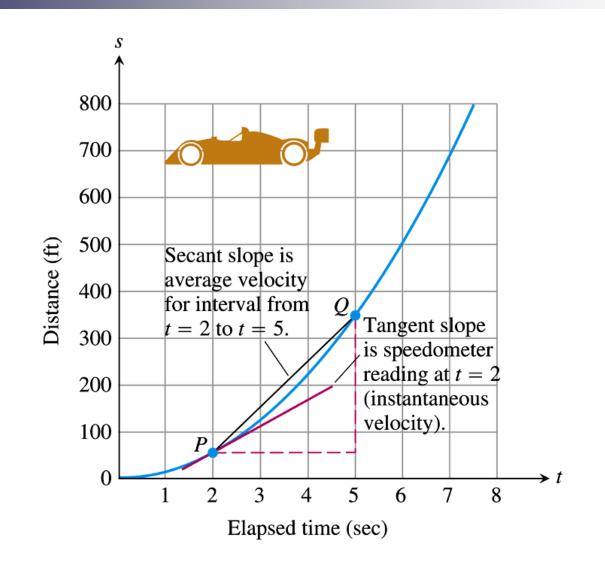
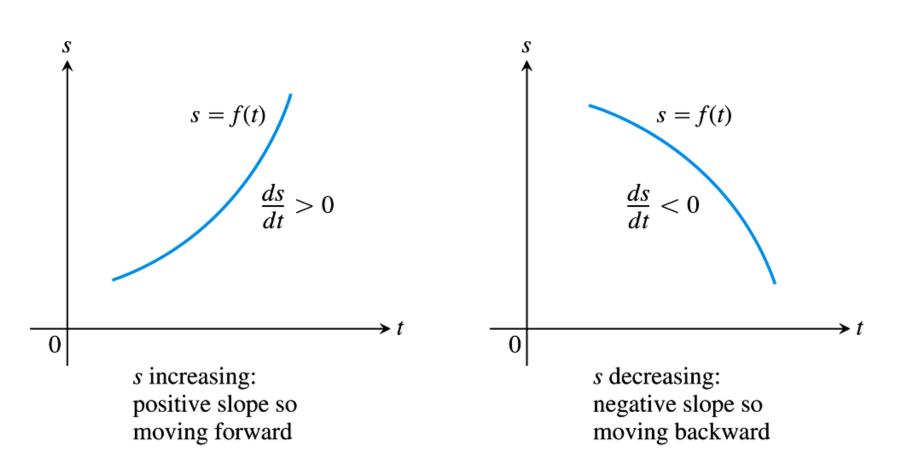


FIGURE 3.12 The positions of a body moving along a coordinate line at time t and shortly later at time $t + \Delta t$.


DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to time. If a body's position at time t is s = f(t), then the body's velocity at time t is

$$v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

FIGURE 3.13 The time-to-distance graph for Example 2. The slope of the tangent line at P is the instantaneous velocity at t = 2 sec.

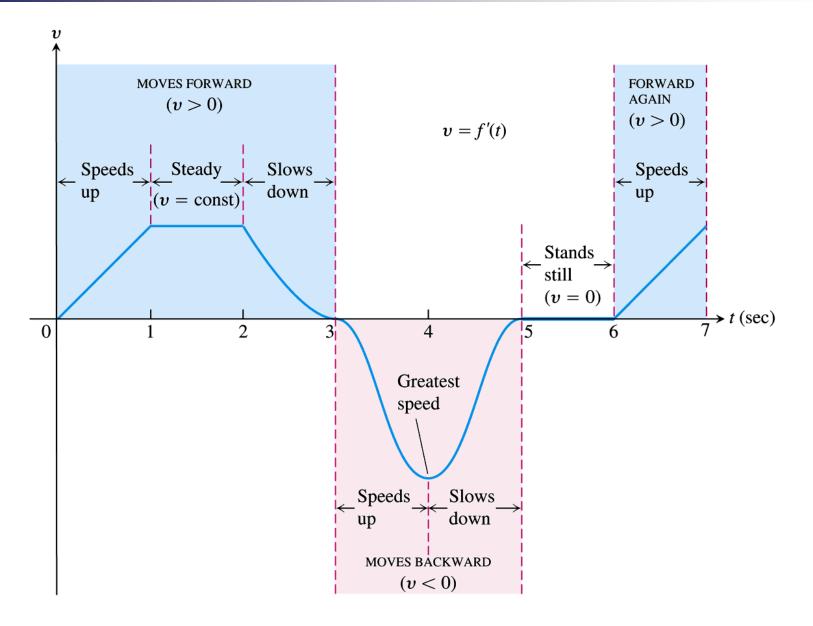


FIGURE 3.14 For motion s = f(t) along a straight line, v = ds/dt is positive when s increases and negative when s decreases.

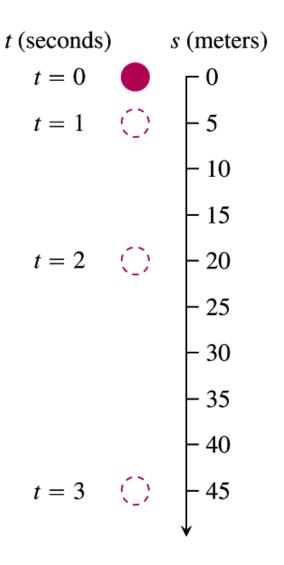
DEFINITION Speed

Speed is the absolute value of velocity.

Speed =
$$|v(t)| = \left|\frac{ds}{dt}\right|$$

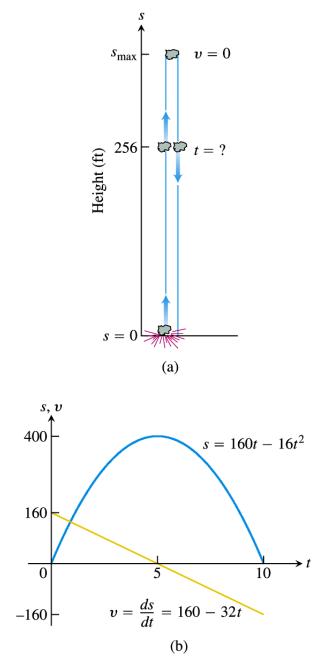
FIGURE 3.15 The velocity graph for Example 3.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

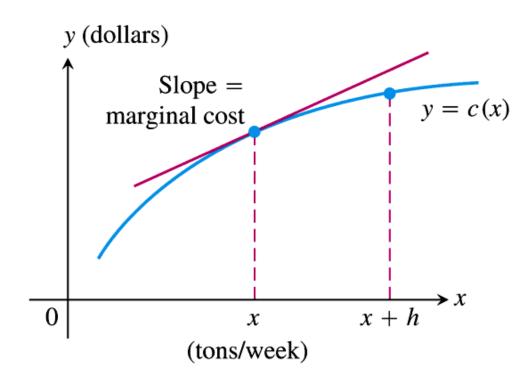

DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body's position at time t is s = f(t), then the body's acceleration at time t is

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}.$$


Jerk is the derivative of acceleration with respect to time:

$$j(t) = \frac{da}{dt} = \frac{d^3s}{dt^3}.$$


FIGURE 3.16 A ball bearing falling from rest (Example 4).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

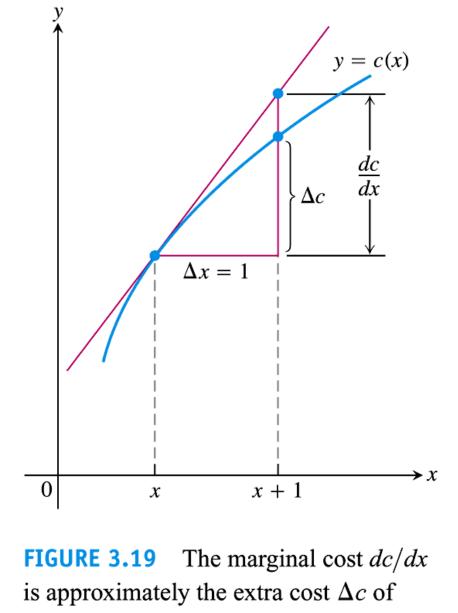


FIGURE 3.17 (a) The rock in Example 5. (b) The graphs of *s* and *v* as functions of time; *s* is largest when v = ds/dt = 0. The graph of *s* is *not* the path of the rock: It is a plot of height versus time. The slope of the plot is the rock's velocity, graphed here as a straight line.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

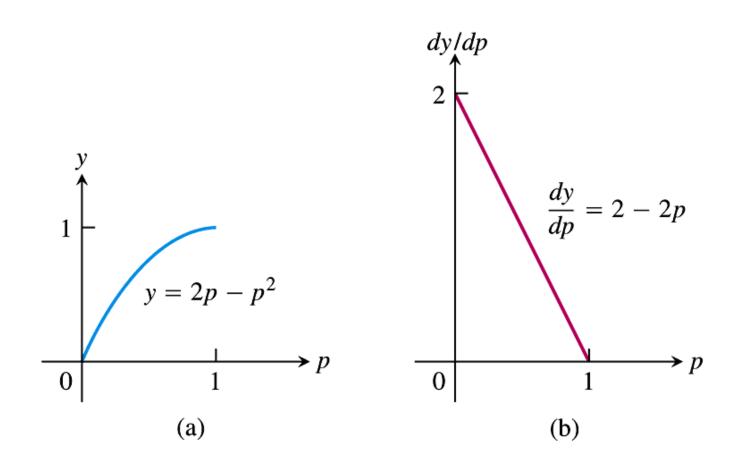
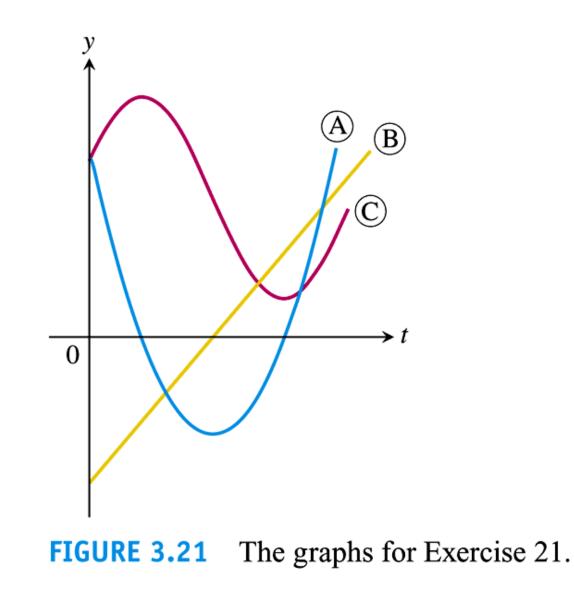
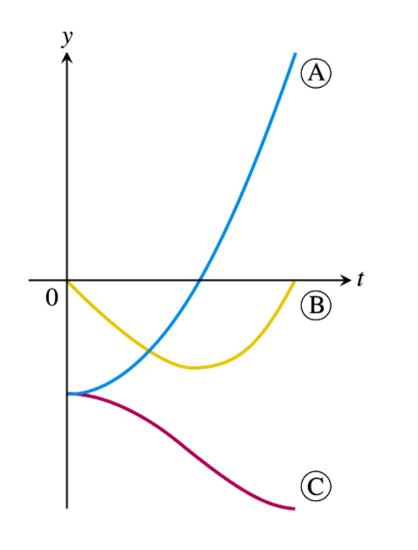


FIGURE 3.18 Weekly steel production: c(x) is the cost of producing x tons per week. The cost of producing an additional h tons is c(x + h) - c(x).




producing $\Delta x = 1$ more unit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

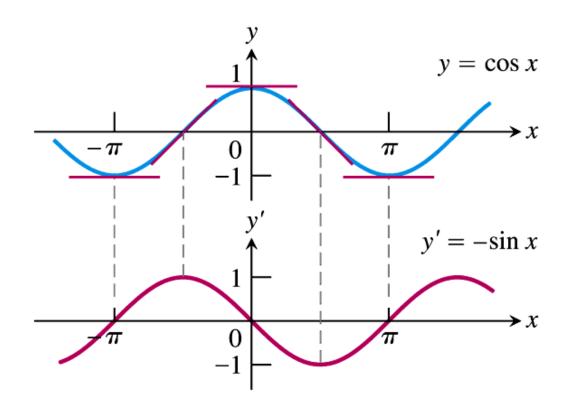
FIGURE 3.20 (a) The graph of $y = 2p - p^2$, describing the proportion of smooth-skinned peas. (b) The graph of dy/dp (Example 8).

FIGURE 3.22 The graphs for Exercise 22.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3.4

Derivatives of Trigonometric Functions


Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The derivative of the sine function is the cosine function:

$$\frac{d}{dx}(\sin x) = \cos x.$$

The derivative of the cosine function is the negative of the sine function:

$$\frac{d}{dx}(\cos x) = -\sin x$$

FIGURE 3.23 The curve $y' = -\sin x$ as the graph of the slopes of the tangents to the curve $y = \cos x$.

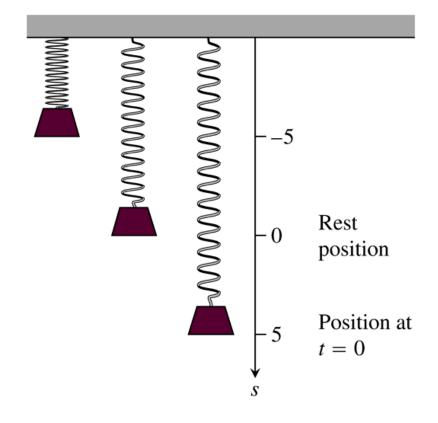
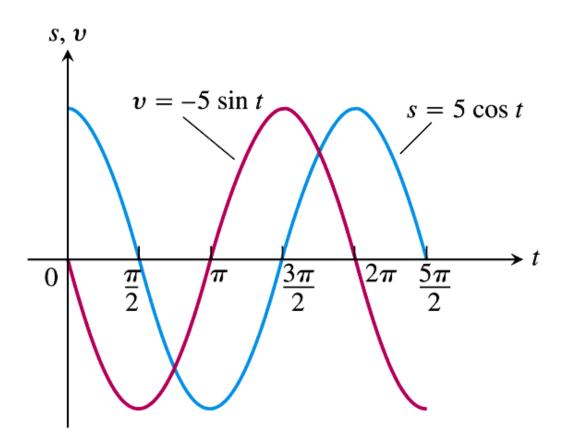
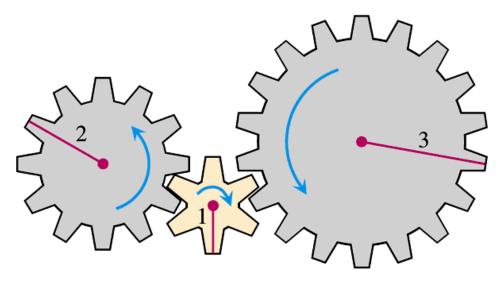



FIGURE 3.24 A body hanging from a vertical spring and then displaced oscillates above and below its rest position. Its motion is described by trigonometric functions (Example 3).

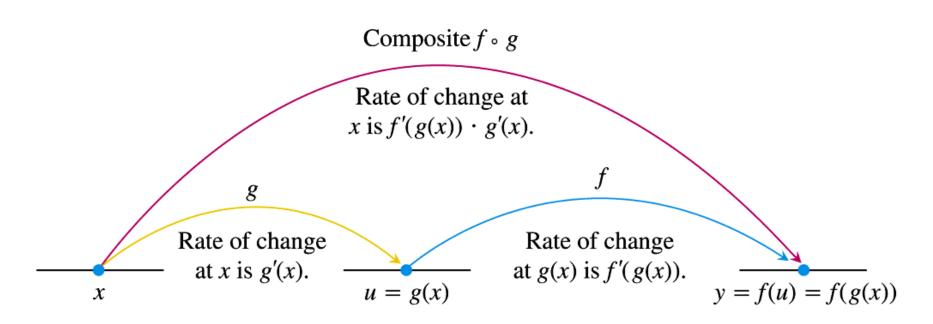
FIGURE 3.25 The graphs of the position and velocity of the body in Example 3.

Derivatives of the Other Trigonometric Functions


$$\frac{d}{dx}(\tan x) = \sec^2 x$$
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

3.5

The Chain Rule and Parametric Equations



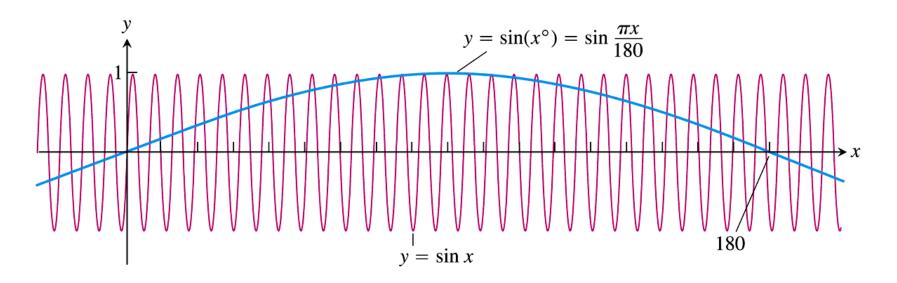
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C: y turns B: u turns A: x turns

FIGURE 3.26 When gear A makes x turns, gear B makes u turns and gear C makes y turns. By comparing circumferences or counting teeth, we see that y = u/2(C turns one-half turn for each B turn) and u = 3x (B turns three times for A's one), so y = 3x/2. Thus, dy/dx = 3/2 =(1/2)(3) = (dy/du)(du/dx).

FIGURE 3.27 Rates of change multiply: The derivative of $f \circ g$ at x is the derivative of f at g(x) times the derivative of g at x.

THEOREM 3 The Chain Rule

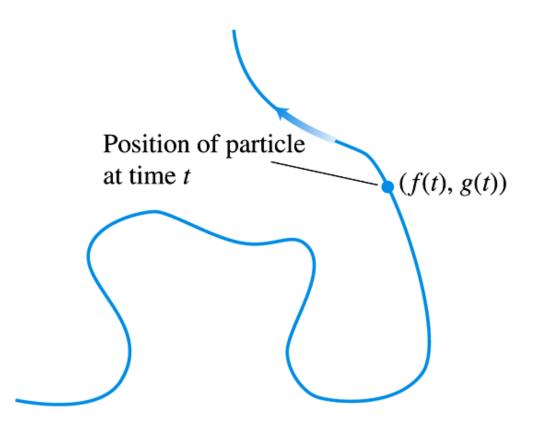

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).


FIGURE 3.28 Sin (x°) oscillates only $\pi/180$ times as often as sin x oscillates. Its maximum slope is $\pi/180$ at x = 0 (Example 8).

DEFINITION Parametric Curve

If x and y are given as functions

$$x = f(t), \qquad y = g(t)$$

over an interval of *t*-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

FIGURE 3.29 The path traced by a particle moving in the *xy*-plane is not always the graph of a function of x or a function of y.

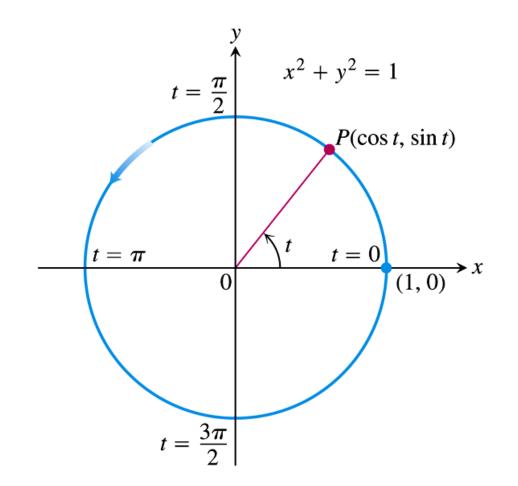
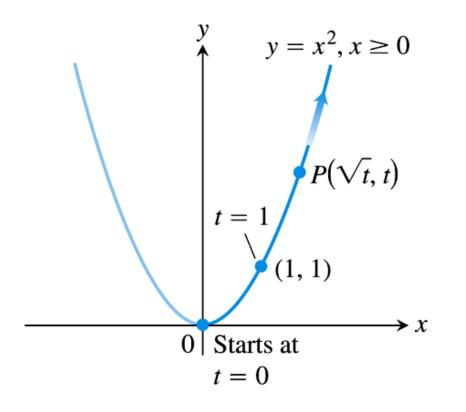
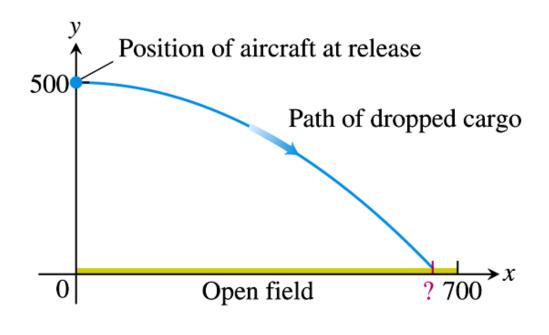



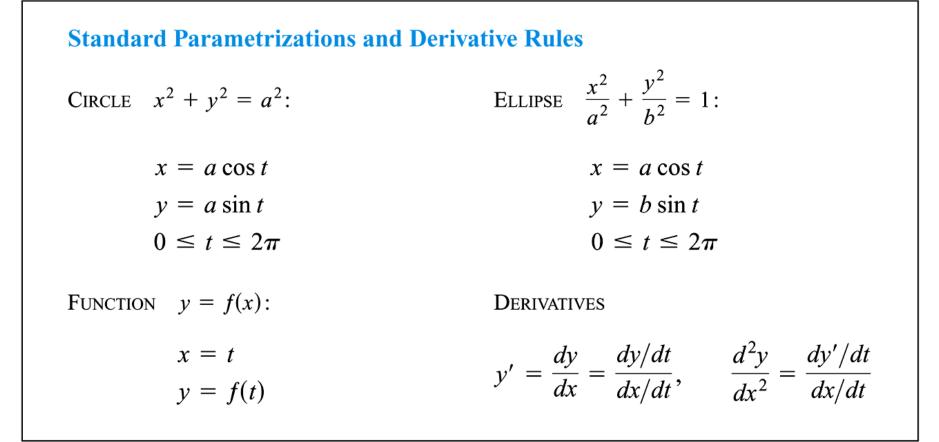
FIGURE 3.30 The equations $x = \cos t$ and $y = \sin t$ describe motion on the circle $x^2 + y^2 = 1$. The arrow shows the direction of increasing t (Example 9).

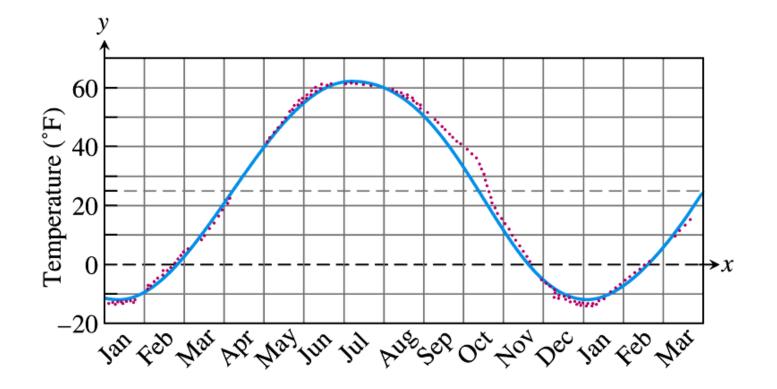
FIGURE 3.31 The equations $x = \sqrt{t}$ and y = t and the interval $t \ge 0$ describe the motion of a particle that traces the right-hand half of the parabola $y = x^2$ (Example 10).

Parametric Formula for dy/dx


If all three derivatives exist and $dx/dt \neq 0$,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \,. \tag{2}$$


Parametric Formula for d^2y/dx^2


If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where $dx/dt \neq 0$,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}.$$
(3)

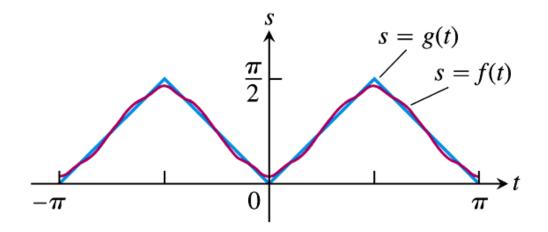


FIGURE 3.32 The path of the dropped cargo of supplies in Example 15.

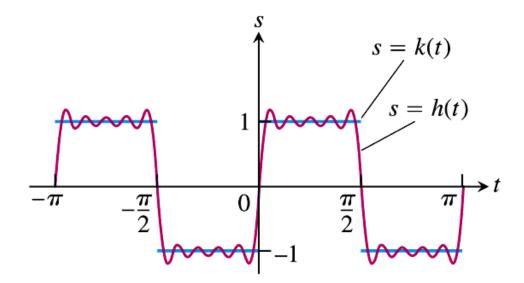
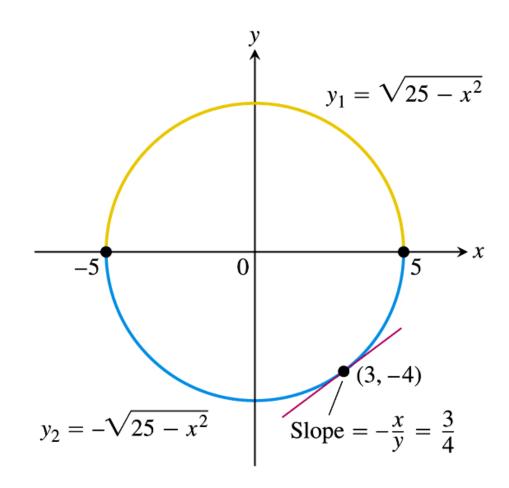


FIGURE 3.33 Normal mean air temperatures at Fairbanks, Alaska, plotted as data points, and the approximating sine function (Exercise 96).

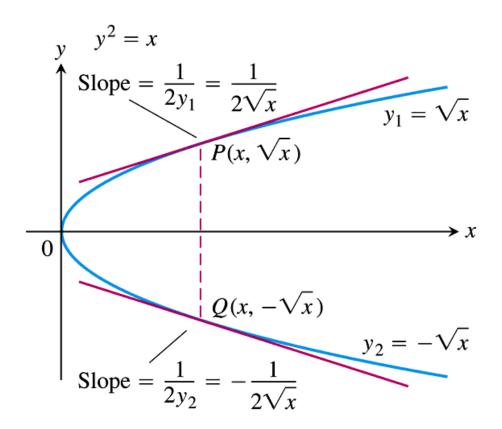
FIGURE 3.34 The approximation of a sawtooth function by a trigonometric "polynomial" (Exercise 111).

FIGURE 3.35 The approximation of a step function by a trigonometric "polynomial" (Exercise 112).

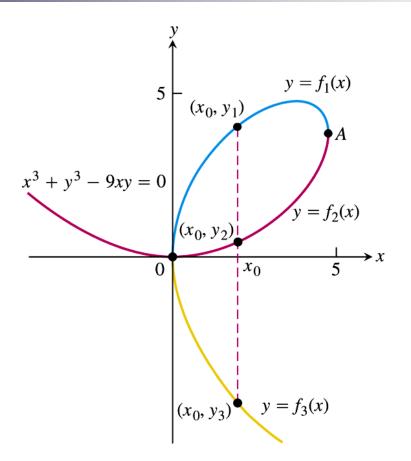
3.6


Implicit Differentiation

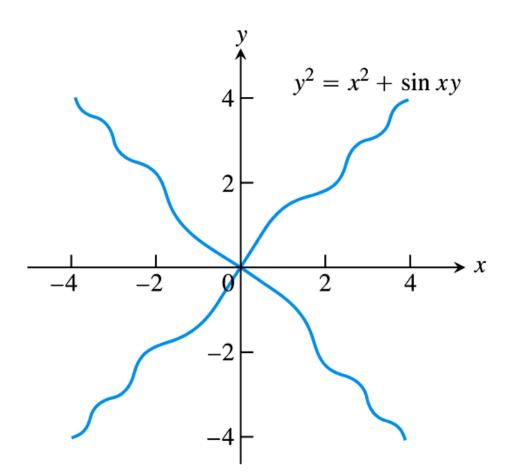
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


Implicit Differentiation

- 1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
- 2. Collect the terms with dy/dx on one side of the equation.
- **3.** Solve for dy/dx.


FIGURE 3.36 The circle combines the graphs of two functions. The graph of y_2 is the lower semicircle and passes through (3, -4).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


FIGURE 3.37 The equation $y^2 - x = 0$, or $y^2 = x$ as it is usually written, defines two differentiable functions of x on the interval $x \ge 0$. Example 1 shows how to find the derivatives of these functions without solving the equation $y^2 = x$ for y.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.38 The curve $x^3 + y^3 - 9xy = 0$ is not the graph of any one function of x. The curve can, however, be divided into separate arcs that *are* the graphs of functions of x. This particular curve, called a *folium*, dates to Descartes in 1638.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.39 The graph of $y^2 = x^2 + \sin xy$ in Example 3. The example shows how to find slopes on this implicitly defined curve.

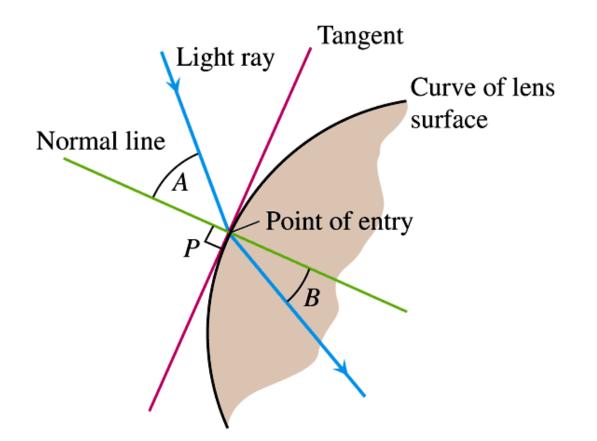
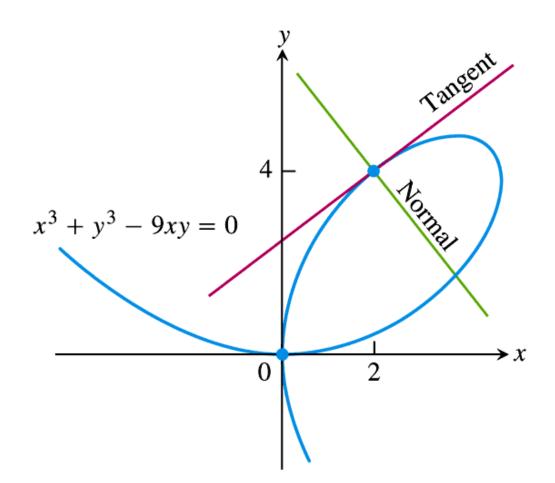
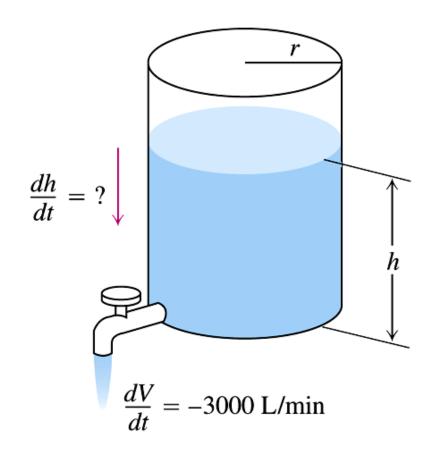



FIGURE 3.40 The profile of a lens, showing the bending (refraction) of a ray of light as it passes through the lens surface.

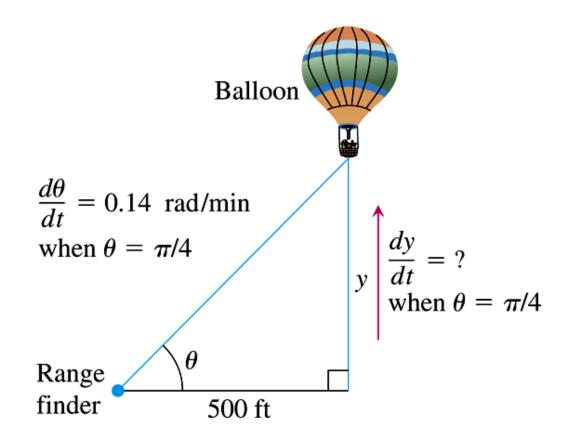
FIGURE 3.41 Example 4 shows how to find equations for the tangent and normal to the folium of Descartes at (2, 4).

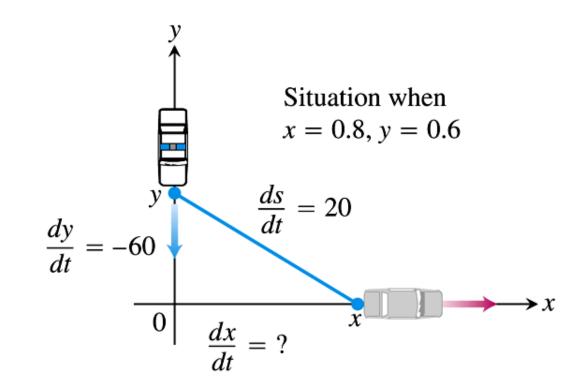
THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then $x^{p/q}$ is differentiable at every interior point of the domain of $x^{(p/q)-1}$, and


$$\frac{d}{dx}x^{p/q} = \frac{p}{q}x^{(p/q)-1}$$

3.7


Related Rates


Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

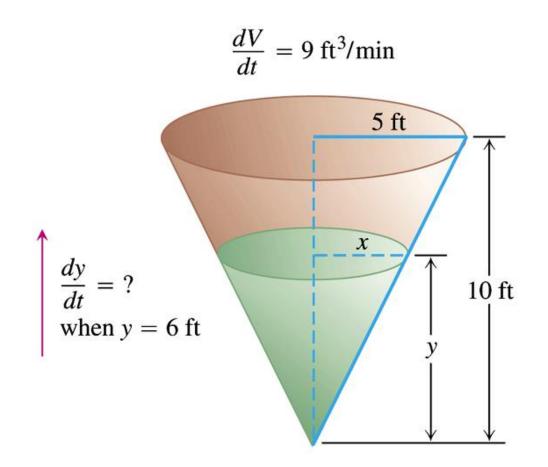
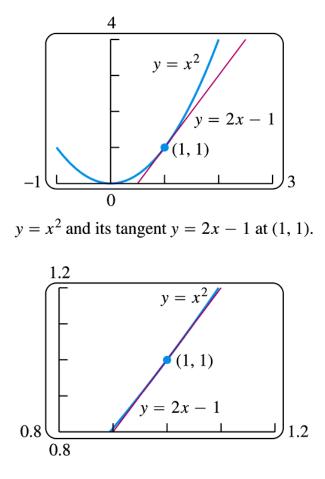
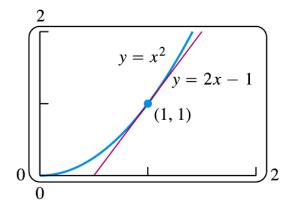

FIGURE 3.42 The rate of change of fluid volume in a cylindrical tank is related to the rate of change of fluid level in the tank (Example 1).

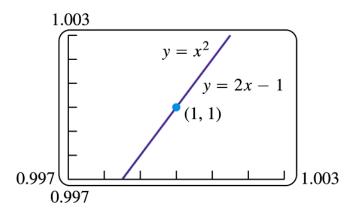
FIGURE 3.43 The rate of change of the balloon's height is related to the rate of change of the angle the range finder makes with the ground (Example 2).

FIGURE 3.44 The speed of the car is related to the speed of the police cruiser and the rate of change of the distance between them (Example 3).


FIGURE 3.45 The geometry of the conical tank and the rate at which water fills the tank determine how fast the water level rises (Example 4).

3.8


Linearization and Differentials


Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Tangent and curve very close throughout entire *x*-interval shown.

Tangent and curve very close near (1, 1).

Tangent and curve closer still. Computer screen cannot distinguish tangent from curve on this *x*-interval.

FIGURE 3.46 The more we magnify the graph of a function near a point where the function is differentiable, the flatter the graph becomes and the more it resembles its tangent.

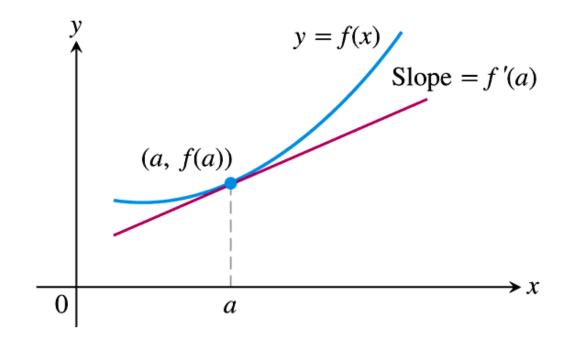
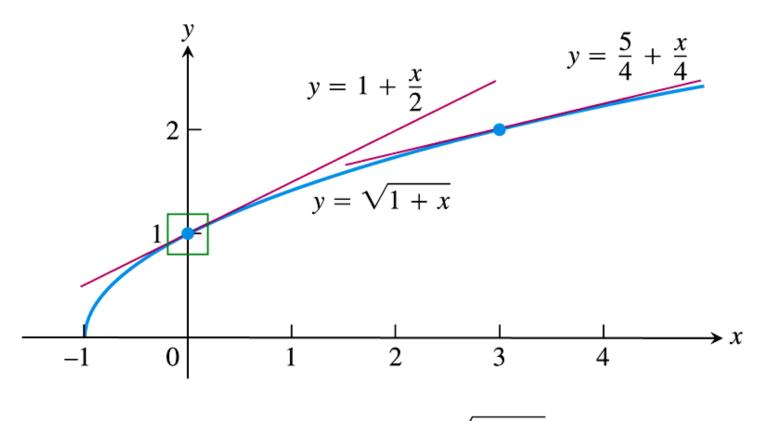
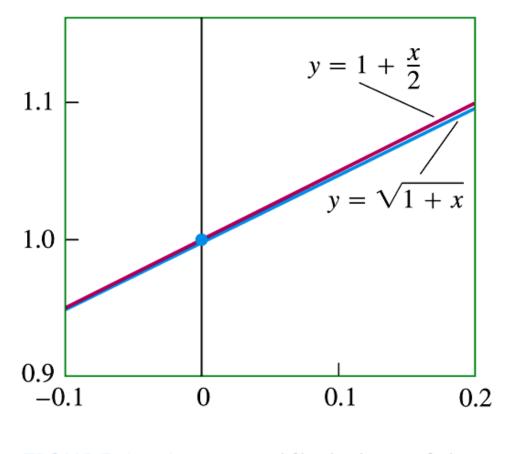


FIGURE 3.47 The tangent to the curve y = f(x) at x = a is the line L(x) = f(a) + f'(a)(x - a).

DEFINITIONS Linearization, Standard Linear Approximation


If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$


is the **linearization** of f at a. The approximation

 $f(x) \approx L(x)$

of f by L is the standard linear approximation of f at a. The point x = a is the center of the approximation.

FIGURE 3.48 The graph of $y = \sqrt{1 + x}$ and its linearizations at x = 0 and x = 3. Figure 3.49 shows a magnified view of the small window about 1 on the *y*-axis.

FIGURE 3.49 Magnified view of the window in Figure 3.48.

Approximation	True value	True value – approximation
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	$< 10^{-2}$
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	$< 10^{-3}$
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	$< 10^{-5}$

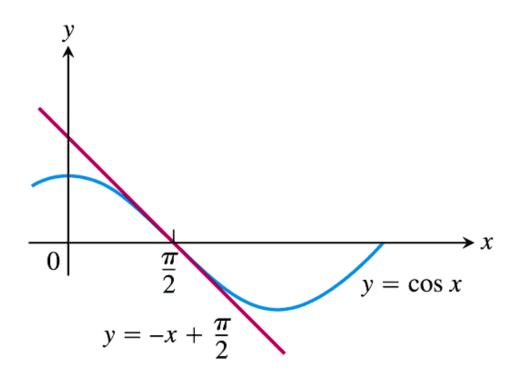
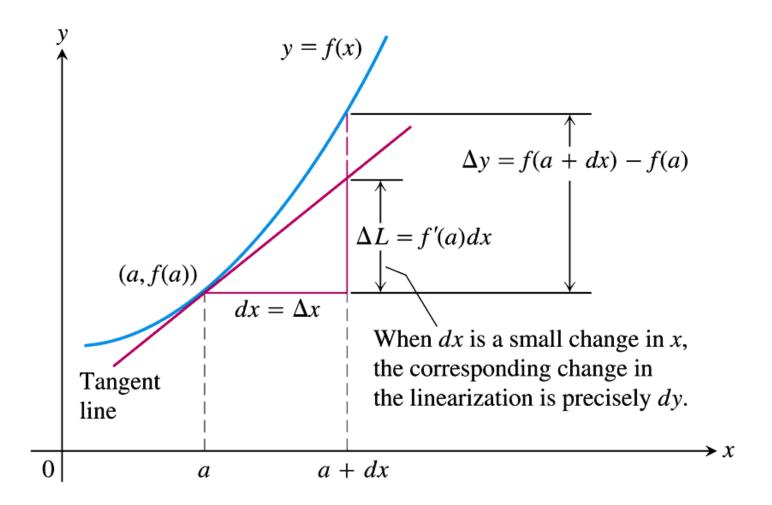
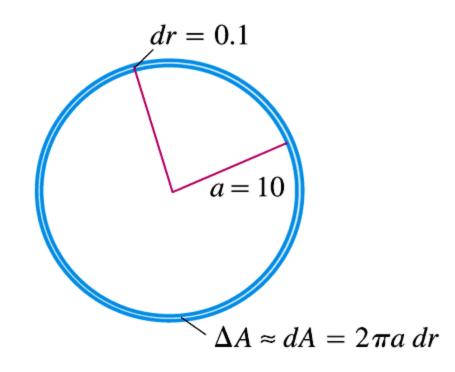



FIGURE 3.50 The graph of $f(x) = \cos x$ and its linearization at $x = \pi/2$. Near $x = \pi/2$, $\cos x \approx -x + (\pi/2)$ (Example 3).

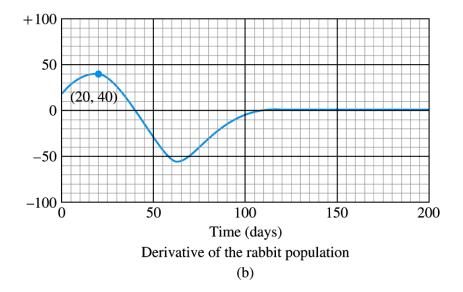

DEFINITION Differential

Let y = f(x) be a differentiable function. The **differential** dx is an independent variable. The **differential** dy is

 $dy = f'(x) \, dx.$

FIGURE 3.51 Geometrically, the differential dy is the change ΔL in the linearization of f when x = a changes by an amount $dx = \Delta x$.

FIGURE 3.52 When dr is small compared with a, as it is when dr = 0.1 and a = 10, the differential $dA = 2\pi a dr$ gives a way to estimate the area of the circle with radius r = a + dr(Example 6). Change in y = f(x) near x = a


If y = f(x) is differentiable at x = a and x changes from a to $a + \Delta x$, the change Δy in f is given by an equation of the form

$$\Delta y = f'(a) \,\Delta x + \epsilon \,\Delta x \tag{1}$$

in which $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.

	True	Estimated
Absolute change	$\Delta f = f(a + dx) - f(a)$	df = f'(a) dx
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{df}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100$	$\frac{df}{f(a)} \times 100$

FIGURE 3.53 Rabbits and foxes in an arctic predator-prey food chain.

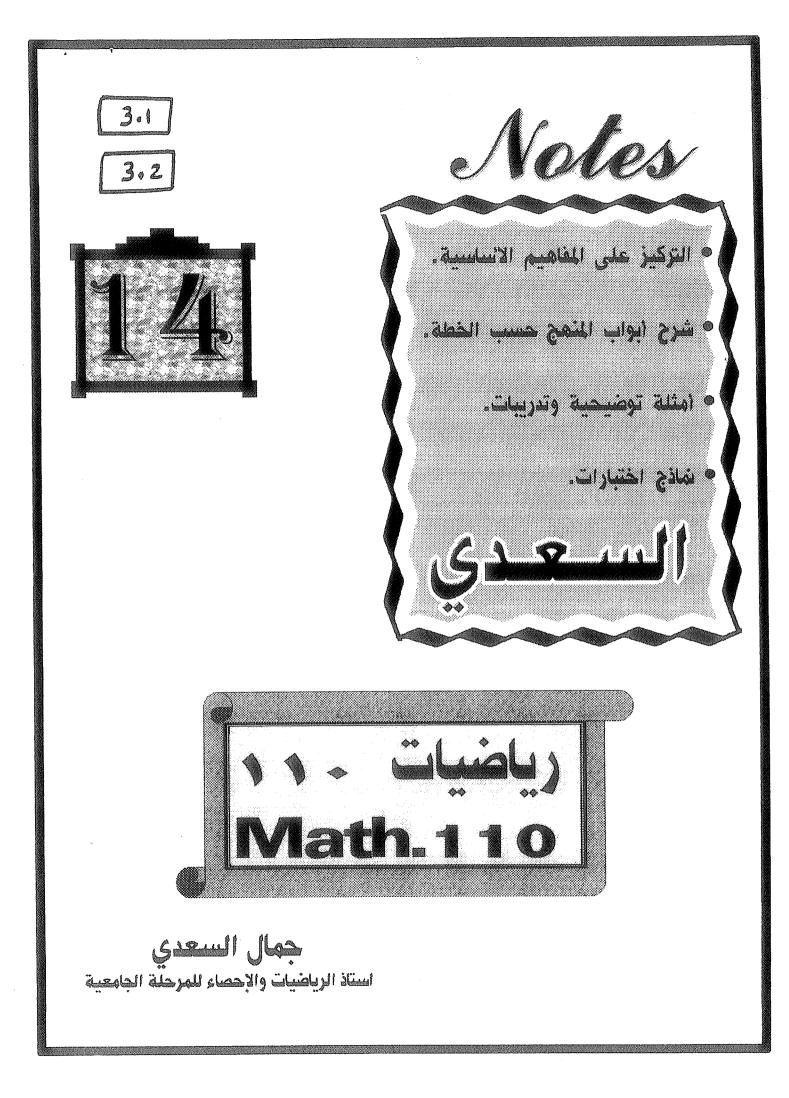
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Workshop Solutions to Chapter 4

1) If $f(x)$ is a differentiable function, then $f'(x) =$	2) If $f(x) = 4x^2$, then $f'(x) =$
Solution:	Solution:
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{4(x+h)^2 - 4x^2}{h}$
$\int (x) - \lim_{h \to 0} \frac{1}{h}$	$\int (x) = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} \frac{1}{h}$
3) If $f(x) = x^2 - 3$, then $f'(x) =$	4) If $f(x) = \sqrt{x}$, $x \ge 0$, then $f'(x) =$
Solution:	Solution:
$ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ = \lim_{h \to 0} \frac{[(x+h)^2 - 3] - [x^2 - 3]}{h} $	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$
$[(x+h)^2 - 3] - [x^2 - 3]$	$h \rightarrow 0$ h $h \rightarrow 0$ h
$=\lim_{k \to 0} \frac{1}{k} \frac$	
$n \to 0$ n	
5) If f is a differentiable function at a , then f is	6) If f is a continuous function at a, then f is
a continuous function at <i>a</i> .	a differentiable function at <i>a</i> .
	Solution:
	False
7) If $y = x^4 + 5x^2 + 3$, then $y' =$	8) If $y = x^4 - 5x^2 + 3$, then $y' =$
Solution:	Solution:
9) If $y = x^{-5/2}$, then $y' = x^{-5/2}$	$y' = 4x^3 - 10x$
9) If $y = x^{-5/2}$, then $y' =$	$y' = 4x^3 - 10x$ 10) If $y = \frac{1}{2x^3} + 2\sqrt{x} = \frac{1}{2}x^{-3} + 2x^{1/2}$, then $y' = \frac{1}{2x^3} + \frac{1}{2}x^{-3} + \frac{1}{2}$
Solution:	Solution:
$y' = -\frac{5}{2}x^{-\frac{5}{2}-1} = -\frac{5}{2}x^{-\frac{7}{2}}$	$y' = (-3)\left(\frac{1}{2}\right)x^{-3-1} + \left(\frac{1}{2}\right)(2)x^{\frac{1}{2}-1}$
	$= -x^{-4} + x^{-1/2} = -\frac{1}{x^4} + \frac{1}{x^{1/2}} = -\frac{1}{x^4} + \frac{1}{\sqrt{x}}$
11) If $y = (x - 3)(x - 2)$, then $y' =$	12) If $y = (x^3 + 3)(x^2 - 1)$, then $y' =$
Solution:	$\frac{\text{Solution:}}{(3+2)(2+1)} = 5 + 3 + 2 + 2$
$y = (x - 3)(x - 2) = x^2 - 5x + 6$	$y = (x^{3} + 3)(x^{2} - 1) = x^{5} - x^{3} + 3x^{2} - 3$
$y' = 2x - 5$ 13) If $y = \sqrt{x}(2x + 1)$, then $y' =$	$y' = 5x^4 - 3x^2 + 6x$ 14) If $y = \frac{x+3}{x-2}$, then $y' =$
	14) If $y = \frac{x+3}{x-2}$, then $y' =$
Solution:	Solution:
$y = \sqrt{x}(2x+1) = 2x\sqrt{x} + \sqrt{x} = 2x^{\frac{3}{2}} + x^{\frac{1}{2}}$	Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
	Use the rule $\left(\frac{1}{g}\right) = \frac{1}{g^2}$
$y' = \left(\frac{3}{2}\right)(2)x^{\frac{3}{2}-1} + \left(\frac{1}{2}\right)x^{\frac{1}{2}-1} = 3x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$	
	(1)(x-2) - (x+3)(1) - x - 2 - x - 3 - 5
$=3\sqrt{x}+\frac{1}{2\sqrt{x}}$	$y = \frac{1}{(x-2)^2} = \frac{1}{(x-2)^2} = \frac{1}{(x-2)^2} = \frac{1}{(x-2)^2}$
$\Delta \sqrt{\lambda}$	$y' = \frac{(1)(x-2) - (x+3)(1)}{5} = \frac{x-2-x-3}{(x-2)^2} = \frac{-5}{(x-2)^2}$
OR	$=-\frac{1}{(x-2)^2}$
Use the rule $(f.g)' = f'g + fg'$	
$y' = (2)(\sqrt{x}) + \left(\frac{1}{2\sqrt{x}}\right)(2x+1) = 2\sqrt{x} + \frac{2x+1}{2\sqrt{x}}$	
15) If $y = \frac{x+3}{x-2}$, then $y' _{x=4} =$	16) If $y = \frac{x-1}{x+2}$, then $y' =$
Solution:	Solution:
$y' = \frac{(x - 2)^2}{(x - 2)^2} = \frac{x - 2}{(x - 2)^2}$	Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$y' = \frac{(1)(x-2) - (x+3)(1)}{(x-2)^2} = \frac{x-2-x-3}{(x-2)^2}$	-
$=\frac{3}{(n-2)^2}=-\frac{3}{(n-2)^2}$	$(1)(x+2) - (x-1)(1) x+2-x+1 \qquad 3$
$=\frac{1}{(x-2)^2} = -\frac{1}{(x-2)^2}$	$y' = \frac{(1)(x+2) - (x-1)(1)}{(x+2)^2} = \frac{x+2-x+1}{(x+2)^2} = \frac{3}{(x+2)^2}$
$y' _{x=4} = -\frac{3}{(4-2)^2} = -\frac{3}{4}$	
$(4-2)^2$ 4	

17) If $y = \sqrt{3x^2 + 6x}$, then $y' =$	18) If $y = \sqrt{3x^2 + 6x}$, then $y' _{x=1} =$
Solution:	Solution:
Use the rule $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$	$y' = \frac{6x+6}{2\sqrt{3x^2+6x}} = \frac{6(x+1)}{2\sqrt{3x^2+6x}} = \frac{3(x+1)}{\sqrt{3x^2+6x}}$
$y' = \frac{6x+6}{2\sqrt{3x^2+6x}} = \frac{6(x+1)}{2\sqrt{3x^2+6x}} = \frac{3(x+1)}{\sqrt{3x^2+6x}}$	3((1)+1) 6 6
$\begin{array}{c} y \\ 2\sqrt{3x^2 + 6x} \\ 2\sqrt{3x^2 + 6x} \\ \sqrt{3x^2 + 6x} \\ \sqrt{3x^2 + 6x} \end{array}$	$y' _{x=1} = \frac{3((1)+1)}{\sqrt{3(1)^2 + 6(1)}} = \frac{6}{\sqrt{9}} = \frac{6}{3} = 2$
19) The tangent line equation to the curve $y = x^2 + 2$	20) The tangent line equation to the curve $y = \frac{2x}{x+1}$
at the point (1,3) is	at the point (0,0) is
Solution: First, we have to find the slope of the curve which is	Solution:
y' = 2x	First, we have to find the slope of the curve which is $(2)(u + 1) = (2u)(1) = 2u + 2 = 2u$
Thus, the slope at $x = 1$ is	$y' = \frac{(2)(x+1) - (2x)(1)}{(x+1)^2} = \frac{2x+2-2x}{(x+1)^2} = \frac{2}{(x+1)^2}$
$y' _{x=1} = 2(1) = 2$	$(x + 1)^2$ $(x + 1)^2$ $(x + 1)^2$ Thus, the slope at $x = 0$ is
Hence, the tangent line equation passing through the	2
point (1,3) with slope $m = 2$ is	$y' _{x=0} = \frac{2}{(0+1)^2} = 2$
y - 3 = 2(x - 1) y - 3 = 2x - 2	Hence, the tangent line equation passing through the point
y - 3 = 2x - 2 y = 2x - 2 + 3	(0,0) with slope $m = 2$ is
y = 2x + 2 + 3 $y = 2x + 1$	y - 0 = (2)(x - 0)
	y = 2x
21) The tangent line equation to the curve $y = 3x^2 - 13$	22) The tangent line equation to the curve 2^{2}
at the point $(2, -1)$ is	$y = 3x^2 + 2x + 5$ at the point (0,5) is
Solution: First, we have to find the slope of the curve which is	<u>Solution:</u> First, we have to find the slope of the curve which is
y' = 6x	y' = 6x + 2
Thus, the slope at $x = 2$ is	Thus, the slope at $x = 2$ is
$y' _{x=2} = 6(2) = 12$	$y' _{x=0} = 6(0) + 2 = 2$
Hence, the tangent line equation passing through the	Hence, the tangent line equation passing through the point
point $(2, -1)$ with slope $m = 12$ is	(0,5) with slope $m = 2$ is
y - (-1) = 12(x - 2)	y - 5 = 2(x - 0)
y + 1 = 12x - 24 y = 12x - 24 - 1	y - 5 = 2x $y = 2x + 5$
y = 12x = 21 = 1 y = 12x - 25 23) If $y = xe^x$, then $y' =$ Solution:	
23) If $y = xe^x$, then $y' =$	24) If $y = x - e^x$, then $y'' =$
Solution: Use the rules $(f.g)' = f'g + fg'$ and $(e^u) = e^u.u'$	Solution: Use the rules $(f - g)' = f' - g'$ and $(e^u) = e^u \cdot u'$
$y' = (1)(e^x) + (x)(e^x) = e^x + xe^x = e^x(1+x)$	$y' = 1 - e^x$ $y'' = -e^x$
25) If $x^2 - y^2 = 4$, then $y' = $ <u>Solution:</u>	$y'' = -e^x$ 26) If $x^2 + y^2 = 4$, then $y' =$ <u>Solution:</u>
2x - 2yy' = 0	2x + 2yy' = 0
-2yy' = -2y	2yy' = -2x
$y' = \frac{-2x}{-2y}$	$y' = \frac{-2x}{x}$
y' = -2y	y = 2y
$y' = \frac{x}{y}$	$y' = \frac{-2x}{2y}$ $y' = -\frac{x}{y}$
27) If $y = \frac{x+1}{x+2}$, then $y' =$	28) If $y = \frac{1}{2/x^5} + \sec x$, then $y' =$
Solution:	V A
	<u>Solution:</u> Use the rules
Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$	$(f+g)' = f' + g'$ and $(\sec u)' = \sec u \tan u \cdot u'$
(1)(x+2) - (x+1)(1) $x+2-x-1$	1 5
$y' = \frac{(1)(x+2) - (x+1)(1)}{(x+2)^2} = \frac{x+2-x-1}{(x+2)^2}$ $= \frac{1}{(x+2)^2}$	$y = \frac{1}{\sqrt[2]{x^5}} + \sec x = x^{-\frac{5}{2}} + \sec x$
$=$ $\frac{1}{1}$	
$(x+2)^2$	$y' = \left(-\frac{5}{2}\right)x^{-\frac{5}{2}-1} + \sec x \tan x = -\frac{5}{2}x^{-7/2} + \sec x \tan x$

20 if $x = t_{20} = 1(x^3)$ is $x = 1$	20 If $y = top y$ $y = the y$
29) If $y = \tan^{-1}(x^3)$, then $y' =$	30) If $y = \tan x - x$, then $y' =$
Solution:	Solution:
Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Use the rules
$1 \qquad 1 \qquad 3r^2$	$(f - g)' = f' - g'$ and $(\tan u)' = \sec^2 u . u'$
$y' = \frac{1}{1 + (x^3)^2} \cdot (3x^2) = \frac{3x^2}{1 + x^6}$	
$1 + (x^3)^2$ $1 + x^3$	$y' = \sec^2 x - 1$
31) If $y = \sec^2 x - 1$, then $y' =$	32) If $y = x^{\sin x}$, then $y' =$
Solution:	Solution:
Use the rules $(f - g)' = f' - g'$, $(u)^n = n(u)^{n-1} \cdot u'$	Use the rule $(\sin u)' = \cos u \cdot u'$
and $(\sec u)' = \sec u \tan u \cdot u'$	
	$y = x^{\sin x}$
$y' = 2 \sec x \cdot \sec x \tan x = 2 \sec^2 x \tan x$	$\ln y = \ln x^{\sin x}$
	$\ln y = \sin x \cdot \ln x$
	$\frac{y'}{y} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} = \cos x \cdot \ln x + \frac{\sin x}{x}$
	$y' = y\left(\cos x \cdot \ln x + \frac{\sin x}{x}\right) = x^{\sin x}\left(\cos x \cdot \ln x + \frac{\sin x}{x}\right)$
33) If $y = x^{\cos x}$, then $y' =$	$y' = y\left(\cos x \cdot \ln x + \frac{\sin x}{x}\right) = x^{\sin x}\left(\cos x \cdot \ln x + \frac{\sin x}{x}\right)$ 34) If $y = (2x^2 + \csc x)^9$, then $y' =$
Solution:	Solution:
Use the rule $(\cos u)' = -\sin u \cdot u'$	Use the rules
	$(u)^n = n(u)^{n-1} \cdot u'$ and $(\csc u)' = -\csc u \cot u \cdot u'$
$y = x^{\cos x}$	(u) = n(u) u and $(cscu) = -cscucocu.u$
$\int y = x$ $\ln y = \ln x^{\cos x}$	$y' = 9(2x^2 + \csc x)^8 \cdot (4x - \csc x \cot x)$
$\ln y = \ln x$ $\ln y = \cos x \cdot \ln x$	$y = f(2x + cscx) \cdot (4x - cscx cocx)$
$\frac{y'}{y} = -\sin x \cdot \ln x + \cos x \cdot \frac{1}{x} = -\sin x \cdot \ln x + \frac{\cos x}{x}$	
y x x	
$y' = y\left(-\sin x \cdot \ln x + \frac{\cos x}{x}\right)$	
λ	
$= x^{\cos x} \left(\frac{\cos x}{x} - \sin x \cdot \ln x \right)$ 35) If $y = \frac{5^x}{\cot x}$, then $y' =$	
35) If $y = \frac{5^x}{10^{-10}}$, then $y' = 10^{-10}$	36) If $y = e^{2x}$, then $y^{(6)} =$
	Solution:
Solution:	Use the rule $(e^u)' = e^u \cdot u'$
Use the rules	
$\left(\frac{f}{a}\right)' = \frac{f'g - fg'}{a^2}, (a^u)' = a^u.\ln a . u'$	$y' = 2e^{2x}$
	$v'' = 4e^{2x}$
and $(\csc u)' = -\csc u \cot u \cdot u'$	$y'' = 4e^{2x}$ $y''' = 8e^{2x}$
	$v^{(4)} = 16e^{2x}$
$y' = \frac{(5^x \ln 5)(\cot x) - (5^x)(-\csc^2 x)}{2}$	$y^{(5)} = 32e^{2x}$
$y' = \frac{(5^x \ln 5)(\cot x) - (5^x)(-\csc^2 x)}{(\cot x)^2}$	$y^{(6)} = 52e^{2x}$
$5^{x}(\ln 5 \cot x + \csc^{2} x)$	y — 010
= $$	
$= \frac{5^{x}(\ln 5 \cot x + \csc^{2} x)}{\cot^{2} x}$ 37) If $y = x^{-2}e^{\sin x}$, then $y' =$	38) If $y = 5^{\tan x}$, then $y' =$
Solution:	Solution:
Use the rules $(f.g)' = f'g + fg'$, $(e^u) = e^u.u'$	Use the rules
and $(\sin u)' = \cos u \cdot u'$	$(a^{u})' = a^{u} . \ln a . u'$ and $(\tan u)' = \sec^{2} u . u'$
$y' = (-2x^{-3})(e^{\sin x}) + (x^{-2})(e^{\sin x}.\cos x)$	$y' = 5^{\tan x} \cdot \ln 5 \cdot \sec^2 x$
$= -2x^{-3}e^{\sin x} + x^{-2}\cos x e^{\sin x}$	
$= x^{-3}e^{\sin x}(-2 + x\cos x)$	
$= x^{-3}e^{\sin x}(x\cos x - 2)$	
39) If $x^2 + y^2 = 3xy + 7$, then $y' =$	40) If $y = \sin^3(4x)$, then $y^{(6)} =$
Solution: $y = 3xy + 7$, then $y = 3xy + 7$	
2x + 2yy' = 3y + 3xy'	Solution:
2x + 2yy = 3y + 3xy $2yy' - 3xy' = 3y - 2x$	Use the rules $(u)^n = n(u)^{n-1} u'$ and $(cinu)' = conv.u'$
2yy - 3xy = 3y - 2x y'(2y - 3x) = 3y - 2x	$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$
	-1 - 2(A - b) - (A - b) (A)
$y' = \frac{3y - 2x}{2y - 3x}$	$y' = 3\sin^2(4x).\cos(4x).(4)$
2y - 3x	$= 12\sin^2(4x).\cos(4x)$


(44) If $x = 2^{\chi}$ and $x = 1$	(2) (2)
41) If $y = 3^x \cot x$, then $y' =$	42) If $y = (2x^2 + \sec x)^7$, then $y' =$
Solution:	Solution:
Use the rules $(f.g)' = f'g + fg'$, $(a^u)' = a^u \cdot \ln a \cdot u'$	Use the rules
and $(\cot u)' = -\csc^2 u \cdot u'$	$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sec u)' = \sec u \tan u \cdot u'$
$y' = (3^{x} . \ln 3)(\cot x) + (3^{x})(-\csc^{2} x)$	$y' = 7(2x^2 + \sec x)^6 \cdot (4x + \sec x \tan x)$
$= 3^x \ln 3 \cot x - 3^x \csc^2 x$	
$= 3^x (\ln 3 \cot x - \csc^2 x)$	
43) If $f(x) = \cos x$, then $f^{(45)}(x) =$	44) If $D^{47}(\sin x) =$
Solution:	Solution:
$f'(x) = -\sin x$	$D(\sin x) = \cos x$
$f''(x) = -\cos x$	$D^2(\sin x) = -\sin x$
$f^{\prime\prime\prime}(x) = \sin x$	$D^3(\sin x) = -\cos x$
$f^{(4)}(x) = \cos x$	$D^4(\sin x) = \sin x$
Note: $f^{(n)}(x) = \cos x$ whenever <i>n</i> is a multiple of 4.	Note: $D^n(\sin x) = \sin x$ whenever <i>n</i> is a multiple of 4.
	Hence,
Hence, $f(44)(x) = x + x^{2}$	$D^{44}(\sin x) = \sin x$
$f^{(44)}(x) = \cos x$	$D^{-1}(\sin x) = \sin x$ $D^{45}(\sin x) = \cos x$
$f^{(45)}(x) = -\sin x$	
	$D^{46}(\sin x) = -\sin x$
	$D^{47}(\sin x) = -\cos x$
45) If $y = x^x$, then $y' =$	46) If $f(x) = \frac{\ln x}{x^2}$, then $f'(1) =$
Solution:	Solution:
Use the rule $(\ln u)' = \frac{u'}{u}$	
u u	Use the rules $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ and $(\ln u)' = \frac{u'}{u}$
$y = x^x$	
$\int \frac{y - x}{\ln y} = \ln x^{x}$	$\binom{1}{(r^2)} - (\ln r)(2r)$
$\ln y = \ln x$ $\ln y = x \ln x$	$f'(x) = \frac{(\overline{x})(x) - (\ln x)(2x)}{(1 - 1)(1 - 1)(2x)} = \frac{x - 2x \ln x}{1 - 1}$
	$f'(x) = \frac{\left(\frac{1}{x}\right)(x^2) - (\ln x)(2x)}{(x^2)^2} = \frac{x - 2x\ln x}{x^4}$
$\frac{y'}{y} = (1)(\ln x) + (x)\left(\frac{1}{x}\right)$	$=\frac{x(1-2\ln x)}{x^4}=\frac{1-2\ln x}{x^3}$
	$- x^4 - x^3$
$\frac{y'}{y} = \ln x + 1$	
<u> </u>	$\therefore f'(1) = \frac{1 - 2\ln(1)}{(1)^3} = \frac{1 - 2(0)}{1} = 1$
$y' = y(1 + \ln x) = x^{x}(1 + \ln x)$	
47) If $y = \cot^{-1}(e^x)$, then $y' =$	48) If $y = \tan^{-1}(e^x)$, then $y' =$
Solution:	Solution:
Use the rules $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ and $(e^u) = e^u \cdot u'$	Use the rules $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ and $(e^u) = e^u \cdot u'$
$\int \frac{du}{dt} = $	Use the fulles $(un u) = \frac{1}{1+u^2}$ and $(e^{-1}) = e^{-1}u^{-1}$
1	1
$y' = -\frac{1}{(1-x)^2}, e^x = -\frac{e^x}{(1-x)^2}$	$y' = \frac{1}{1} e^x = \frac{e^x}{1}$
$y' = -\frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ 49) If $y = \sin^{-1}(e^{x})$, then $y' =$	$y' = \frac{1}{1 + (e^x)^2} \cdot e^x = \frac{e^x}{1 + e^{2x}}$ 50) If $y = \cos^{-1}(e^x)$, then $y' =$
Solution:	Solution:
Use the rules $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u \cdot u'$	Use the rules $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u . u'$
$\sqrt{1-u^2}$	$\sqrt{1-u^2}$
1 a ^x	1
$y' = \frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1 - e^{2x}}}$	$y' = -\frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$
	$\sqrt{1 - (e^x)^2} \qquad \sqrt{1 - e^{2x}}$
51) If $y = \cos(2x^3)$, then $y' =$	52) If $y = \csc x \cot x$, then $y' =$
Solution:	Solution:
Use the rule $(\cos u)' = -\sin u \cdot u'$	Use the rules $(f.g)' = f'g + fg'$,
	$(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$
$y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$	
	$y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$
	$= -\csc x \cot^2 x - \csc^3 x = -\csc x (\cot^2 x + \csc^2 x)$

53) If $y = \sqrt{x^2 - 2 \sec x}$, then $y' =$	54) If $y = (3x^2 + 1)^6$, then $y' =$
Solution: Use the rules	Solution: Use the rule $(u)^n = n(u)^{n-1} \cdot u'$
$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ and $(\sec u)' = \sec u \tan u \cdot u'$	$y' = 6(3x^2 + 1)^5 \cdot (6x) = 36x(3x^2 + 1)^5$
$y' = \frac{2x - 2\sec x \tan x}{2\sqrt{x^2 - 2\sec x}} = \frac{2(x - \sec x \tan x)}{2\sqrt{x^2 - 2\sec x}}$	
$\int_{x}^{y} - \frac{2\sqrt{x^2 - 2\sec x}}{2\sqrt{x^2 - 2\sec x}} = 2\sqrt{x^2 - 2\sec x}$	
$=\frac{x - \sec x \tan x}{\sqrt{x^2 - 2 \sec x}}$	
55) If $xy + \tan x = 2x^3 + \sin y$, then $y' =$	56) If $y = x^{-1} \sec x$, then $y' =$
$\frac{\text{Solution:}}{[(1)(y) + (x)(y')] + \sec^2 x} = 6x^2 + \cos y \cdot y'$	<u>Solution:</u> Use the rules
$y + xy' + \sec^2 x = 6x^2 + y' \cos y$	$(f.g)' = f'g + fg'$ and $(\sec u)' = \sec u \tan u \cdot u'$
$xy' - y'\cos y = 6x^2 - y - \sec^2 x$	
$y'(x - \cos y) = 6x^2 - y - \sec^2 x$	$y' = (-x^{-2})(\sec x) + (x^{-1})(\sec x \tan x)$
$y' = \frac{6x^2 - y - \sec^2 x}{x - \cos y}$	$= x^{-1} \sec x \tan x - x^{-2} \sec x = x^{-2} \sec x (x \tan x - 1)$
$x - \cos y$	-x set x (x tan x - 1)
57) If $y = \sin^{-1}(x^3)$, then $y' = $ <u>Solution:</u>	58) If $y = \cos^{-1}(x^3)$, then $y' = $ <u>Solution:</u>
Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
$y' = \frac{1}{\sqrt{1 - (x^3)^2}} \cdot 3x^2 = \frac{3x^2}{\sqrt{1 - x^6}}$	
$y' = \sqrt{1 - (x^3)^2} \cdot 5x = \sqrt{1 - x^6}$	$y' = -\frac{1}{\sqrt{1 - (x^3)^2}} \cdot 3x^2 = -\frac{3x^2}{\sqrt{1 - x^6}}$ 60) If $y = \csc^{-1}(x^3)$, then $y' =$
59) If $y = \sec^{-1}(x^3)$, then $y' =$	60) If $y = \csc^{-1}(x^3)$, then $y' =$
Solution:	Solution:
Use the rule $(\sec^{-1} u)' = \frac{u'}{ u \sqrt{u^2 - 1}}$	Use the rule $(\csc^{-1} u)' = -\frac{u'}{ u \sqrt{u^2-1}}$
$y' = \frac{1}{\sqrt{(-3)^2 - 1}} \cdot 3x^2 = \frac{3x^2}{\sqrt{(-5)^2 - 1}} = \frac{3}{\sqrt{(-5)^2 - 1}}$	$y' = -\frac{1}{x^3 \sqrt{(x^3)^2 - 1}} \cdot 3x^2 = -\frac{3x^2}{x^3 \sqrt{x^6 - 1}} = -\frac{3}{x\sqrt{x^6 - 1}}$ 62) If $y = \ln(\cos x)$, then $y' =$
$\frac{x^{3}\sqrt{(x^{3})^{2}-1}}{x^{5}\sqrt{x^{5}-1}}$	$\frac{x^{3}\sqrt{(x^{3})^{2}-1}}{x^{5}\sqrt{x^{5}-1}} x^{5}\sqrt{x^{5}-1} x^{5}\sqrt{x^{5}-1}$
Solution:	Solution:
Use the rules	Use the rules
$(\ln u)' = \frac{u'}{u}$ and $(\sec u)' = \sec u \tan u \cdot u'$	$(\ln u)' = \frac{u'}{u}$ and $(\cos u)' = -\sin u \cdot u'$
	$1 \qquad \sin x$
$y' = \frac{1}{x^3 - 2\sec x} \cdot (3x^2 - 2\sec x \tan x)$	$y' = \frac{1}{\cos x} \cdot (-\sin x) = -\frac{\sin x}{\cos x} = -\tan x$
$=\frac{3x^2-2\sec x\tan x}{x^3-2\sec x}$	
$x^3 - 2 \sec x$	
63) If $y = \ln(\sin x)$, then $y' =$	64) If $y = \ln \sqrt{3x^2 + 5x}$, then $y' =$
Solution:	Solution:
Use the rules u'	Use the rules $(\ln u)' = \frac{u'}{u}$ and $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$
$(\ln u)' = \frac{u'}{u}$ and $(\sin u)' = \cos u \cdot u'$	
	$y' = \frac{1}{\sqrt{3x^2 + 5x}} \cdot \left(\frac{6x + 5}{2\sqrt{3x^2 + 5x}}\right) = \frac{6x + 5}{2(3x^2 + 5x)}$
$y' = \frac{1}{\sin x} \cdot (\cos x) = \frac{\cos x}{\sin x} = \cot x$	$\sqrt{3x^2 + 5x} \sqrt{2\sqrt{3x^2 + 5x'}} 2(3x^2 + 5x)$

$$\begin{aligned} \begin{aligned} & \left[5 \right] \text{ if } y = \log_{x}(x^{3} - 2 \csc x) \text{ , then } y' = \\ & \left[\frac{5 }{3 \text{ output}} \right] \\ & \left[\frac{1}{2 \operatorname{with}} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{(x^{3} - 2 \csc x)(\ln 5)} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x \cot x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \csc x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \cos x^{2} + \frac{3 x^{2} + 2 \cos x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \cos x^{2} + \frac{3 x^{2} + 2 \cos x}{y^{2} - \cos x} \right] \\ & \left[\frac{3 x^{2} + 2 \cos x^{2} + \frac{3 x^{2} + 2 \cos x}{y^{2} - \frac{3 x^{2} + 2 \cos x}{y^{$$

73) If $y = \sec x \tan x$, then $y' =$	74) If $D^{99}(\cos x) =$
Solution:	Solution:
$(f.g)' = f'g + fg'$, $(\sec u)' = \sec u \tan u \cdot u'$ and	$D(\cos x) = -\sin x$
$(\tan u)' = \sec^2 u \cdot u'$	$D^{2}(\cos x) = -\cos x$
$(\tan u) = \sec u \cdot u$	
	$D^3(\cos x) = \sin x$
	$D^4(\cos x) = \cos x$
$y' = (\sec x \tan x)(\tan x) + (\sec x)(\sec^2 x)$	Note: $D^n(\cos x) = \cos x$ whenever <i>n</i> is a multiple of 4.
$= \sec x \tan^2 x + \sec^3 x = \sec x (\tan^2 x + \sec^2 x)$	Hence,
	$D^{96}(\cos x) = \cos x$
	$D^{97}(\cos x) = -\sin x$
	$D^{98}(\cos x) = -\cos x$
	$D^{99}(\cos x) = \sin x$
75) If $y = (x + \sec x)^3$, then $y' =$	76) If $x^2 = 5y^2 + \sin y$, then $y' =$
Solution:	Solution:
Use the rules	$2x = 10yy' + \cos y \cdot y'$
$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sec u)' = \sec u \tan u \cdot u'$	$y'(10y + \cos y) = 2x$
(u) = n(u) u and $(see u) = see u tan u u$	
	$y' = \frac{2x}{10y + \cos y}$
$y' = 3(x + \sec x)^2 \cdot (1 + \sec x \tan x)$	$10y + \cos y$
77) If $x^2 - 5y^2 + \sin y = 0$, then $y' =$	78) If $y = \sin x \sec x$, then $y' =$
Solution:	Solution:
$2x - 10yy' + \cos y \cdot y' = 0$	$(f.g)' = f'g + fg'$, $(\sin u)' = \cos u \cdot u'$ and
$y'(-10y + \cos y) = -2x$	$(\sec u)' = \sec u \tan u \cdot u'$
$y' = \frac{-2x}{-10y + \cos y} = \frac{2x}{10y - \cos y}$	
$-10y + \cos y 10y - \cos y$	$y' = (\cos x)(\sec x) + (\sin x)(\sec x \tan x)$
	$= 1 + \sin x \cdot \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = 1 + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x$
	$= 1 + \sin x \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos x} = 1 + \frac{1}{\cos^2 x} = 1 + \tan^2 x$
	$= \sec^2 x$
79) If $f(x) = \sin^2(x^3 + 1)$, then $f'(x) =$	80) If $y = (x + \cot x)^3$, then $y' =$
$(x) = \sin(x + 1)$, then $f(x) =$	$\int 00 \int 11 y = (\lambda + 00 \lambda) f = 0$
Solution:	Solution:
<u>Solution:</u> Use the rules	<u>Solution:</u> Use the rules
Solution:	Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$
<u>Solution:</u> Use the rules	<u>Solution:</u> Use the rules
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution:	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution:	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1)\cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1)\cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2 \sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2 \sin(x^3 + 1) \cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{1}{2\left(\frac{4+x^2}{4}\right)} = \frac{2}{4+x^2}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = 3(x + \cot x)^2 \cdot (1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$ Solution: Use the rule $(\cot^{-1} u)' = -\frac{u'}{1+u^2}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^2}{4}\right)} = -\frac{1}{2\left(\frac{4+x^2}{4}\right)}$ $= -\frac{2}{4+x^2}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' =$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$

85) If $D^{99}(\sin x) =$
Solution:
$D(\sin x) = \cos x$
$D^2(\sin x) = -\sin x$
$D^3(\sin x) = -\cos x$
$D^4(\sin x) = \sin x$
Note: $D^n(\sin x) = \sin x$ whenever <i>n</i> is a multiple of 4.
Hence,
$D^{96}(\sin x) = \sin x$
$D^{97}(\sin x) = \cos x$
$D^{98}(\sin x) = -\sin x$
$D^{99}(\sin x) = -\cos x$

3.11 and 3.2 3. Derivatives of polynomials and exponential Fun. 3.2) The product and quotient Rules. Differentiation Rules (1) F(x) = C where c is constant. (zero - iniliai) F'(x) = 0where a is constant. (2) F(x) = ax(.) خذ المعامل فقل) $\mathbf{E}(\mathbf{x}) = \mathbf{a}$ (3) $F(x) = a x^{n}$ (نضرب الأسمان المعامل و نقص من الأسما) F(x) = n. a xⁿ⁻¹ (نضرب الأسمان المعامل و نقص من الأسما) * قاعده مشتقة مامهم فرب والتين (4) $F(x) = g(x) \cdot h(x)$ الذران مستقدانات الثانية . مستقداندوا $F'(x) = g'(x) \cdot h(x) + h'(x) \cdot g'(x)$ (5) $F(x) = \frac{(x)}{h(x)}$ * قاعده مشتقه خارج متمه دالتمن $F'(x) = \frac{9' \cdot h - h' \cdot 9}{(h)^2} = \frac{4}{2} \frac{h}{1 - h'} \frac{h}{1 - h'}$ ال_____

$$(6) F(x) = ()^{n}$$

$$F(x) = n ()^{n-1} \cdot \operatorname{trained}(x) = \frac{1}{2}$$

$$(1) F(x) = \sqrt{ ((x_{1}, y_{1}) - y_{2})}$$

$$(1) F(x) = \sqrt{ ((x_{1}, y_{2}) - y_{2})}$$

$$(1) F(x) = \sqrt{ ((x_{1}, y_{2}) - y_{2})}$$

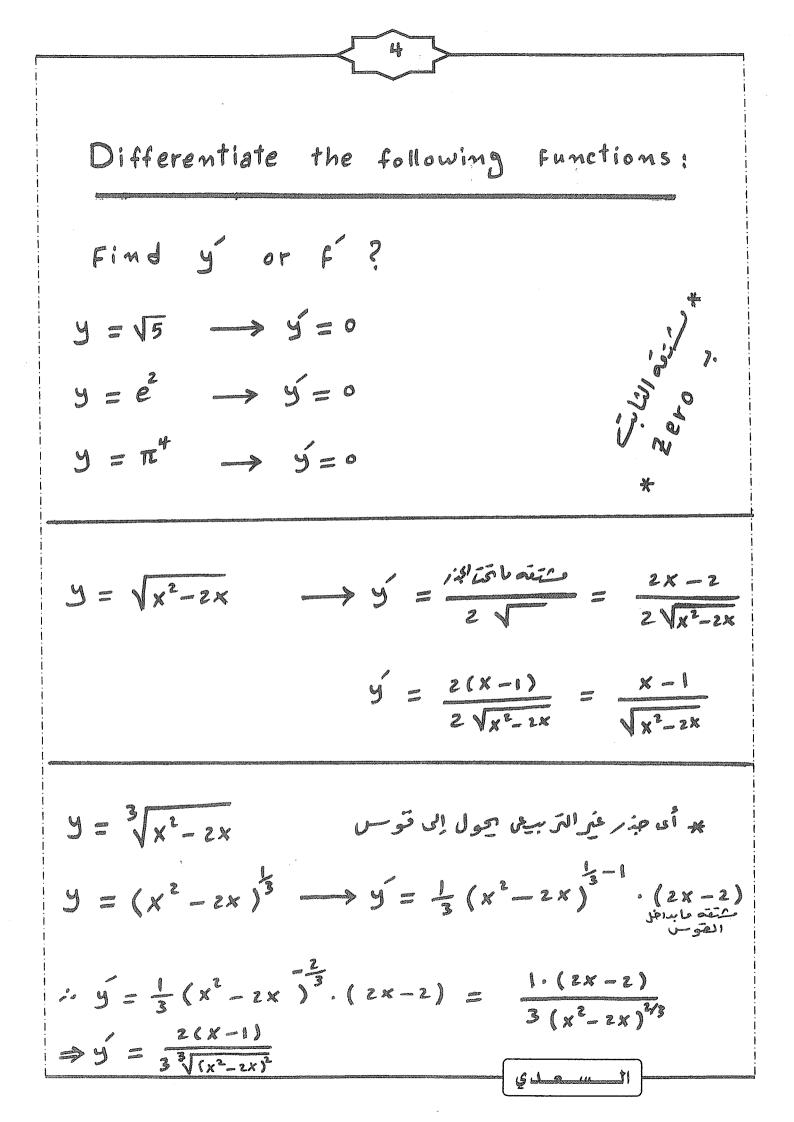
$$(1) F(x) = \frac{1}{2} \sqrt{ ((x_{1}, y_{2}) - y_{2})}$$

$$(1) F(x) = \frac{1}{x} \longrightarrow F(x) = \frac{1}{x^{n}}$$

$$(1) F(x) = \frac{1}{x} \longrightarrow F(x) = \frac{1}{x}$$

$$F(x) = \frac{-1}{x^{2}} \qquad F(x) = \frac{-1}{x^{2}}$$

$$(1) F(x) = \frac{1}{x^{2}} \qquad F(x) = \frac{-1}{x^{2}}$$


$$(1) F(x) = \frac{1}{x} \longrightarrow F(x) = \frac{1}{x^{2}}$$

$$(1) F(x) = \frac{1}{x} \longrightarrow F(x) = \frac{-1}{x^{2}}$$

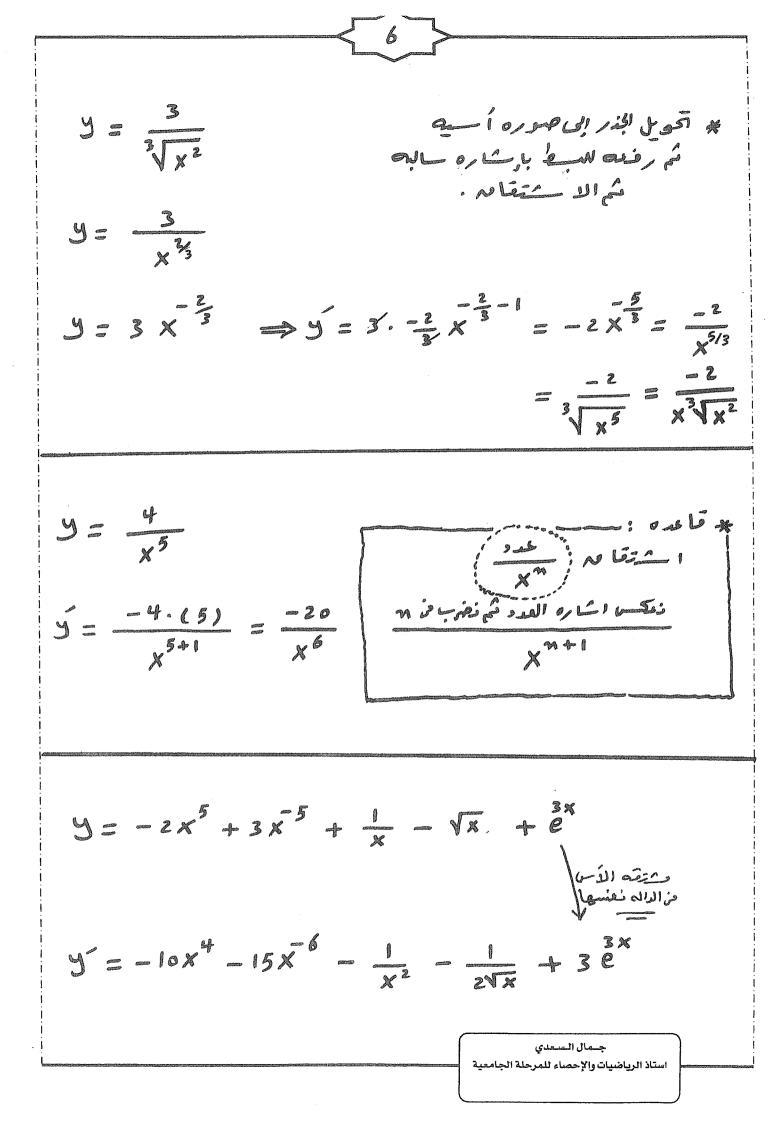
$$(1) F(x) = \frac{1}{x} \longrightarrow F(x) = \frac{-1}{x^{2}}$$

$$(1) F(x) = \frac{1}{x^{2}} \qquad F(x) = \frac{-1}{x^{2}}$$

$$(1) F(x) = \frac{-1}{x^{2}} \qquad F(x) = \frac{-1}$$

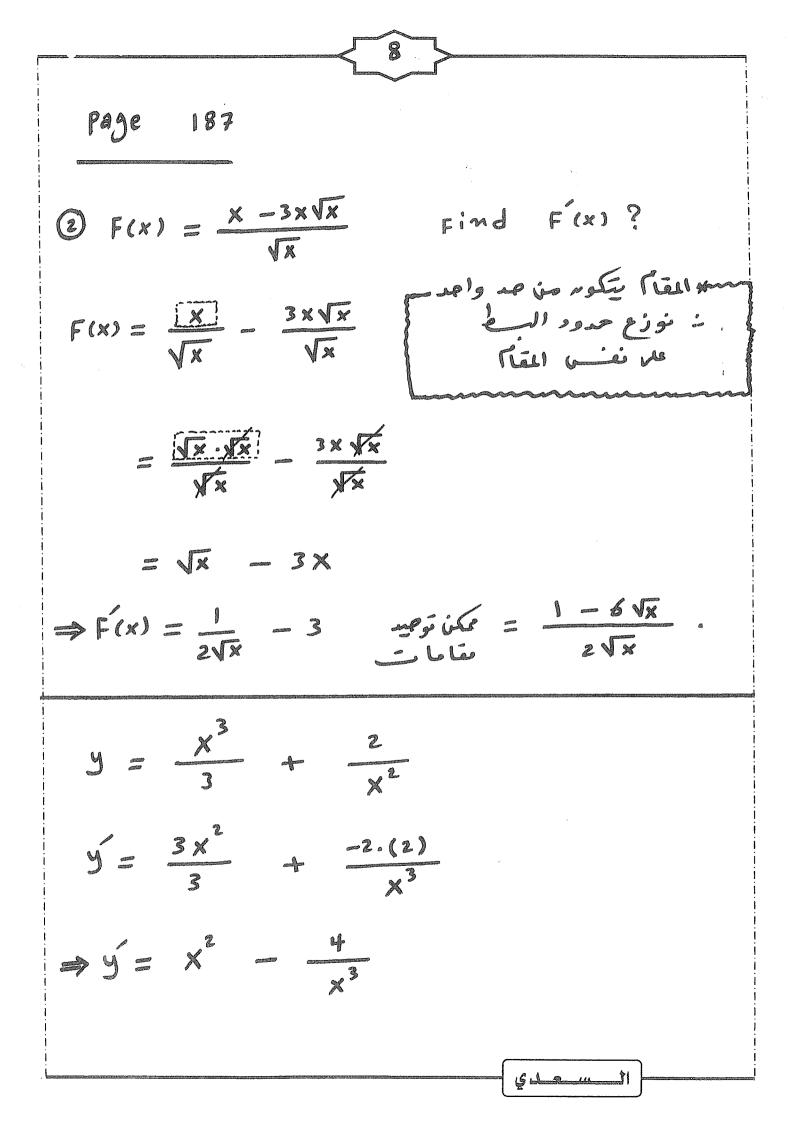
$$y = \frac{2x^{3} - 6x^{4}}{2x^{2}}$$

$$y = \frac{2x^{3}}{2x^{2}} - \frac{6x^{4}}{2x^{2}}$$


$$y = \frac{2x^{3}}{2x^{2}} - \frac{6x^{4}}{2x^{2}}$$

$$y = \frac{6x^{4}}{2x^{2}}$$

$$(x = \frac{6x^{4}}{2x^{2}})$$


$$(x = \frac{6x^{4}}{2x^{4}})$$

$$(x = \frac{6x^{4}$$

$$\frac{Page 187}{(3)} = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{ find } G'(x) ?$$

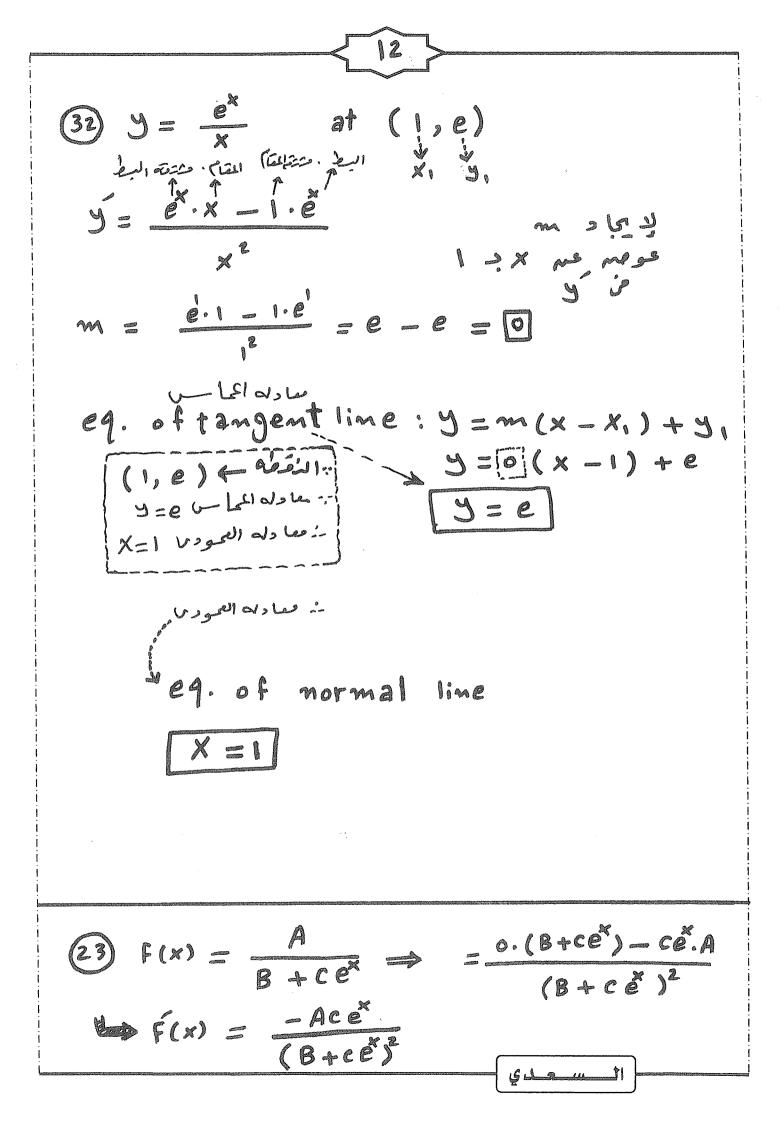
$$g'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \qquad \text{ outilities of the set o$$

9
•
$$F(x) = x \cdot (\sqrt{x} + 3)$$
 Find $F(x)$? User
• $f(x) = x\sqrt{x} + 3x$
 $F(x) = x\sqrt{x} + 3x$
 $F(x) = x\sqrt{x} + 3x$
 $F(x) = \frac{3}{2}x + 3x$
 $\Rightarrow F(x) = \frac{3}{2}x^{\frac{1}{2}} + 3 = \frac{3}{2}\sqrt{x} + 3$
• $y = \frac{5}{(5x-1)^3} \Rightarrow y = 5(5x-1)^3$
 $\Rightarrow y = -15(5x-1)^4 \cdot \frac{5}{(5x-1)^4} = \frac{-25}{(5x-1)^4}$
 $ey = x\sqrt{x}$
 $y = x \cdot x^{\frac{1}{2}} \Rightarrow y = x^{\frac{3}{2}} \Rightarrow y = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x}$
 $y = \sqrt{x} - 2e^{x}$
 $y = \sqrt{x} - 2e^{x}$
 $y = \frac{1}{2\sqrt{x}} - 2e^{x}$
 $y = \frac{1}{2\sqrt{x}} - 2e^{x}$

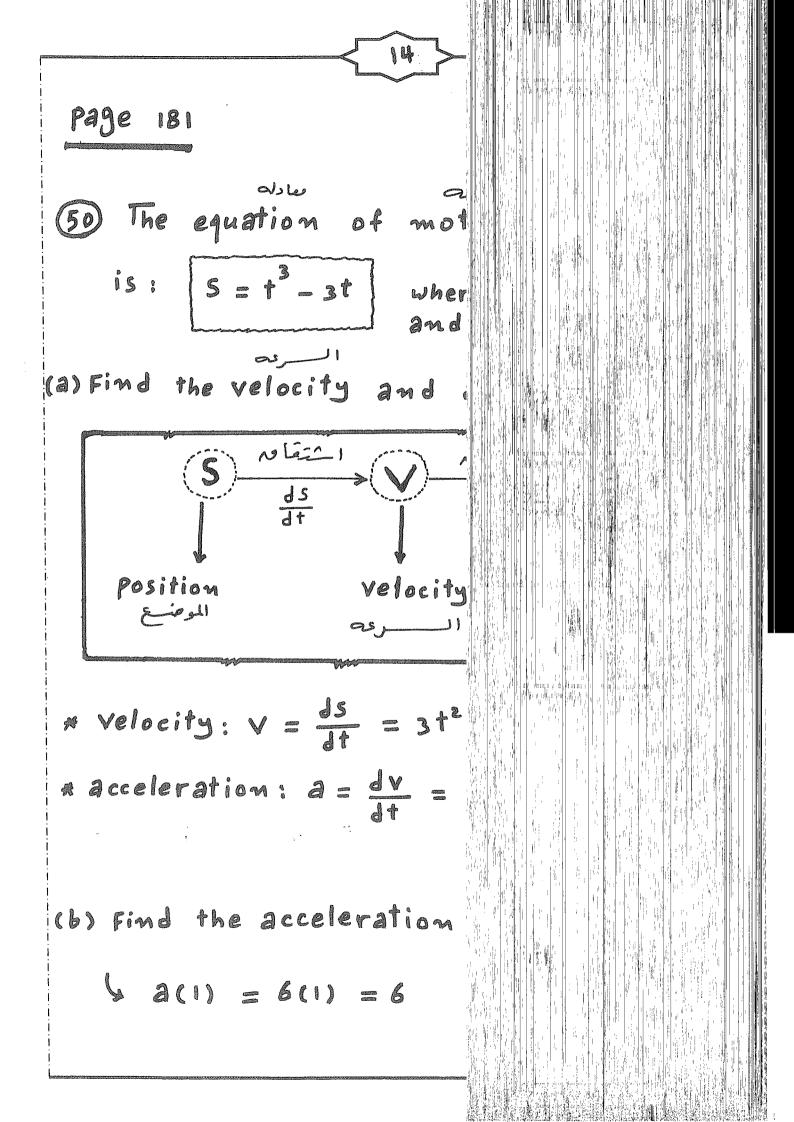
$$Page 181$$

$$Page 181$$

$$Page 5 × 1 + 0 = 15 \times 7$$


$$Page 5 × 1 + 0 = 15 \times 7$$

$$Page 5 × 1 + 0 = 15 \times 7$$


$$Page 6 × 1 + 0 = -74500 = -745000 = -74500 = -745000 = -74500 = -74500 = -74500 =$$

$$\begin{array}{c} 10 \\ \hline 10$$


(3)
$$\vec{z} = \frac{A}{y^{10}} + Be^{3}$$

 $\vec{z}' = \frac{-10A}{y^{11}} + Be^{3}$
(3) $\vec{y} = e^{x+1} + 1$
 $\vec{y} = e^{x+1} + 1$
 $\vec{y} = e^{x+1} = e^{x+1}$
 $\vec{y} = e^{x+1}$
 $\vec{y} = e^{x+1} = e^{x+1}$
 $\vec{y} = e^{x+1} = e^{x+1}$
 $\vec{y} = e^{x+1} = e^{x+1}$
 $\vec{y} = 2x e^{x} = 3t (e \cdot e)$
 $\vec{x} = 3,$
 $\vec{y} = 2 \cdot e^{x} + e^{x} \cdot 2x$
 $m = 2e^{0} + e^$

13 Page 181 (51) Find the points on the curve $y = 2x^{3} + 3x^{2} - 12x + 1$ where the tangent is horizontal. أوور $\frac{1}{2} = 0$ Þ 6x2+6x-12=0 (:-6) July X + X - 2 = 0 (x + 2)(x - 1) = 0x -1 =0 X+2 = 0 لإ يراد و ندومم مم x ب ا <u>لا = = 2</u> لا ال ال ال ال ال ف الدامه الأجليه مرالداله الأجليه $y = 2(1)^{3} + 3(1)^{2} - 12(1) + 1$ Y = 2(-2) + 3(-2) - 12(-2) + 1= 2 + 3 - 12 + 1 = -16 + 12 + 24 + 1= (-6) = [21] : The tangent is horizontal at the points: (-2,21) and (1,-6)

15X
$$\sqrt{x} = x \cdot x^{\frac{1}{2}} = x^{\frac{3}{2}}$$
A \sqrt{x} Page 181X \sqrt{x} X \sqrt{x} X \sqrt{x} X \sqrt{x} X \sqrt{x} X \sqrt{x} That is parallel to the line $y = 1 + 3x$ $y = x \sqrt{x}$ $x = \frac{2}{x} \cdot \frac{x}{x}$ $x = \frac{2}{x} \cdot \frac{x}{x}$ $y = \frac{2}{x} \sqrt{x}$ $x = \frac{2}{x} \cdot \frac{x}{x}$ $x = \frac{2}{x} \cdot \frac{x}{x}$ <

$$17$$

$$M = 51$$

$$Suppose u and v$$

$$are differentiable functions where:$$

$$U(1) = 2 \quad (u'(1) = 0$$

$$V(1) = 5 \quad (v'(1) = -1$$
Find:
$$\begin{array}{l} 0 \quad \frac{d}{dx} (uv) = u' \cdot v + v' \cdot u \\ at (x = 1) = 0 \cdot (5) + (-1) \cdot (2) = -2 \end{array}$$

$$\begin{array}{l} 2 \quad \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{u' \cdot v - v' \cdot u}{v^2} \\ at (x = 1) = \frac{(0)(5) - (-1)(2)}{(5)^2} = \frac{2}{25} \\ \end{array}$$

$$\begin{array}{l} 3 \quad \frac{d}{dx} (7v - 2u^2) = 7v' - 4uu' \\ at (x = 1) = 7(-1) - 4(2)(0) \\ = -7 - 0 = -7 \\ \end{array}$$

$$\begin{array}{l} yu = 1 \\ yu = 1 \\ yu = 1 \\ \end{array}$$

Find 4⁽⁵⁾ ? • y = e^x - 3x^t (4 = degree) in paper * (5 = order) ailai, Zero SI inda Bila and :-و اما في في الما الم مل کان عدد مرا تالا شیقا م (5) $\begin{array}{c} (\mathbf{r}) & \mathbf{x} \\ \mathbf{y} & = \mathbf{e} - \mathbf{o} = \mathbf{e} \\ \end{array}$ <u>e + e</u> 2× Find y? * المقاً سَكون من حد و'جد فقط - توزيع حدود السب عما نعن المقا) شمالا ختصار شالا شتعافه $y = \frac{\frac{3x}{e^x}}{\frac{2x}{e^x}} + \frac{\frac{2x}{e^x}}{\frac{e^x}{e^x}}$ y = ex Ą $\Rightarrow y' = e^x$ Y=e + o 9 ? Find y = x + - $\frac{1}{x} = \frac{1}{x^2} \frac{1}{x^2}$ منيك بالم الترفيق السعدى

Chapter (3)

(3.1) Differentiation Rules: Find the first and higher derivative • Find the point on the Curve where The tongent is horizontal Example (6 in 178) Julie into inter and 12 and 12 in (7 (3.2) The product and Quotient Rule: -O Find the first and higher directive site in the first of the first of the site of the first of the site of Find y'(a) if $y = f \cdot g \cdot r$ $y = f \pm g$ (where f(a), f(a), g(a), g'(a) are exist) 0 Example: _ If f(x)= [x g(x), g(4)=2, g'(4)=3 . Find f'(4) ?? · USI W C. P(2)= 反 g(1)+ 夜 g(2) => f(4)= (4 g'(4) + 1 g(4) $= 2(3) + \frac{1}{4}(2) = 6 + \frac{1}{2} = \frac{12+1}{2} = \frac{13}{2}$ (a) Find the equation of the tangent line. Example $y = \frac{e^2}{1+x^2}$ at $(1, \frac{1}{2}e)$ $= \frac{1}{1+x^2}$ الحل: the egation of the tangen is $y-y_1 = m(x-x_1)$

(2) $m_{z} y' = \frac{(1+z^{L})e^{z} - e^{z}(1+z)}{(1+z^{L})^{L}} = \frac{e^{z}(z^{L}-2z+1)}{(1+z^{L})^{L}}$ $\implies m = y'_1 = \frac{e(1-2+1)}{(1+1)^2} = \frac{e(2-2)}{4} = 0$ · y- ze = 0 (x-1) y-je=0 y= ze Tind the dirusteve at the point Sail in 4(3) in Find the directive $=f = x\sqrt{x}$ at x=1 $y = x\sqrt{x} = xx^{h} = x^{2+1} = x^{2-1}$ fins or Ex. -: الحل:-مسالق بالع 7=150 $\therefore y' = \frac{3}{2}x' = \frac{3}{2}x^{2} = \frac{3}{2}\sqrt{x}$ m= IVVE 1 = V++ == y'(1) = = = = = = = Y H Y (3.3) Derivative of trigonometric functions: 5= 3 @ Find the derivative of trigonometric function $EX : [a] If f(x) = Sin(2x) \implies y' = 3(sin(2x))(Cos(2x)). 2^{1-3}$ = 6 Cos(22) Sirie2) 4 3. $If f(x) = 3^{x} Cat x \implies f(x) = 3^{x} (-Cx^{2}x) + 3^{2} \ln 3 Cat x$ = 3" In 3 cot 2 - 3" csc x

- ailinai (3) 3 Find the second derivative of trigonometric functions. allell 27 and , 3) find the nth derivative of trigonometric functions. (27) is a cuil in EX: Find 27" derivative of Cosx f(2) = Cos2 Sim I from 1 the f'(x) = - sin x f (2) = Cox p*(2) = sin2 p^m(x) = Cosx - milistor glaimi f(z) = casz where n is a multiple of 4 is users (sin . F p"(z) = Cosz $f^{(i)}(x) = -\sin x$ 447= 27) p⁽¹⁴⁾ (2) = - Cosz $p^{(aF)}(x) = \sin x$ (B) Find the equation of the tangent line.
Example: f(x) = secor at (5.2) m= = - y-y,= m(x-x,) m = sect tout m=y'= secx tanx ~ m= sec 1/3, tan 1/3 m sec 1/3 $(= (z) ((5) = 2\sqrt{3})$: y-2=213 (x-1/3) y= sec I tan; -> y = 2/3x - 2/31 + 2 soc intan; 50060 Scanned by CamScanner

(43) (3.4) The chain rule = - Unelulit 5 -> 6 Tind the derivative. 1241 $\begin{bmatrix} b \end{bmatrix} y = \sin(z^{2}) \implies y^{2} = \cos(z^{2}) \cdot 2z$ = 22 (05(2) صالح أمثله تحثيره في اللتاب وغارين الرامي الاستقة المتالمة وحرك 2 Find y" Example: y = Cos(x') $y' = - \sin(x') \cdot 2x = -2x \sin(x')$ $y'' = -2x(\cos(x^{2}), 2x) + (-2) \sin(x^{2})$ = - H x Cos(x') - 2 sin (x') (3.5) Implicit differentation: _ visio Distance (1) Find y' or y" 2) Find the equation of the tangent line? Example (2) in page 211 ؟ المالة المتلذية معلوس مشتقة المرجدي 3 Find the derivative of inverse trigonometric function.

(3.6) Derivative of logarithmic function. 1) Find y' or y" 2 Find the derivative by using Logarithmic differentation. نستخدم صنه الطريقة في حالتين : -() عندما تكون الدال معقده كما في مثال (7) في الصغه 221 () إذا أعطاني داله مرضوعه لداله كما في مثال (8) في الصغعه 221

5

(6) + -1 - 482 حل مثال (في مرفعه 295 (٢) ٢) - (م ١١ ny = x4-4x3 f(x) = 423-122 De = IR
 E F(x) = 4x² - 12x² OD Drink @ f'(2) = 12 2 - 242 3 / " f' not defined 3 1=0 f=0 122-242=0 X 42-12x=0 122 (2-2)=0 daur 4x'(x-3) = 0 2=0], [2=2] x=0, x=3 7 3 7. -42)75 00-00 (0 ta ++ 122 7 + 42 -+ 2-2 2-3 ----デョン + Pali decroning increasing deresing concurre up (inflection (inflection in f is decreasing in (-00,3) + f is concare up in (-00,0)U(2,00) and dass increasing in (3.00) and Concave down in (0,2) ala + f has an inflection points + f has a bcul minimum at (3, f()) at (0, f(0)), (2, f(2))