

Learning Outcomes

By the end of the chapter student should be able:

- to describe the kinetic energy and its relationship with velocity.
- to calculate the kinetic energy and its unit.
- to define work and its unit.
- to identify positive work and negative work.
- to evaluate the amount of work done by a constant force .
- to calculate the net work done by several constant forces by two different methods.
- to identify the work-kinetic energy theorem.
- to apply the work- kinetic energy theorem to find the relationship between the amount of energy transferred to a body and the net work.
- to calculate the amount of work done by gravitational force in both raising and falling object.

Learning Outcomes

By the end of the chapter student should be able:

- to define a spring force and its relationship with the displacement of a spring.
- to calculate the spring force from Hooke's law.
- to evaluate the amount of work done by spring force.
- to define the power and its unit.
- to calculate average power and instantaneous power.
- to calculate the power in terms of force exerted on a body and its velocity.

7-1 WHAT IS PHYSICS?

One of the fundamental goals of physics is to investigate something that everyone talks about: energy.

7-2 I What Is Energy?

energy is a scalar quantity associated with the state (or condition) of one or more objects.
Energy is a number that we
associate with a system of one or more objects. If a force changes one of the objects by, say, making it move, then the energy number changes.
Energy can be transformed from one type to another and transferred from one object to another, but the total amount is always the same (energy is conserved).

7-3 | Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object.

For an object of mass m whose speed v is well below the speed of light

$$
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). }
$$

For example, a 3.0 kg duck flying past us at $2.0 \mathrm{~m} / \mathrm{s}$

The SI unit of kinetic energy is the joule (J).

1 joule $=1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.

Sample Problem 7 -1

In 1896 in Waco, Texas, William Crush parked two locomotives at opposite ends of a $6.4-\mathrm{km}$-long track, fired them up, tied their throttles open, and then allowed them to crash head-on at full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of people were hurt by flying debris; several were killed. Assuming each locomotive weighed $1.2 \times 10^{6} \mathrm{~N}$ and its acceleration was a constant $0.26 \mathrm{~m} / \mathrm{s}^{2}$, what was the total kinetic energy of the two locomotives just before the collision?

7-4 | Work

قسم الفيزياء
فرع السليمانية

Work W is energy transferred to or from an object by means of a force acting on the object. Energy transferred to the object is positive work, and energy transferred from the object is negative work.

Work is a Scalar Quantity

+ ve Work

energy transferred to the object
-ve Work

energy transferred from the object
- Work has unit of energy (Joule J)

Work

Work Done
energy transferred to the object by the force

Is the act of transferring the energy

7-5 | Work and Kinetic Energy

Finding an Expression for Work
$F=$ const $\Rightarrow \vec{a}=$ const

قسم الفيزياء
فرع السليمانية

Finding an Expression for Work

$F=$ const $\Rightarrow \vec{a}=$ const

Work done by a constant force is

$$
W=F_{x} d .
$$

$W=(F \cos \phi) d$
where ϕ is the angle between \vec{d} and \vec{F}
$W=F d \cos \phi$
$W=\vec{F} \cdot \vec{d}$
A force does positive work when it has a vector component in the same direction as the displacement, and it does negative work when it has a vector component in the opposite direction. It does zero work when it has no such vector component.
when $\phi=90^{\circ} \Rightarrow \cos \phi=0 \Rightarrow W=0$
when $\phi<90^{\circ} \Rightarrow \cos \phi=+v e \Rightarrow W=+v e$
when $\phi>90^{\circ}\left(u p\right.$ to $\left.180^{\circ}\right) \Rightarrow \cos \phi=-v e \Rightarrow W=-v e$

قسم الفيزياء
فرع السليمانية

- Work has another unit

$$
W=\vec{F} \cdot \vec{d}
$$

$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m}$

How to find the net Work done by several forces?

Net work done by several forces.

Find the work done by each force and then sum those works

$$
\begin{aligned}
& W_{1}=F_{1} d \\
& W_{2}=F_{2} d \\
& W_{3}=F_{3} d
\end{aligned}
$$

$$
W_{n e t}=W_{1}+W_{2}+W_{3}+\cdots
$$

Find the net force $\vec{F}_{\text {net }}$ then

$$
W_{n e t}=\left(F_{n e t}\right) d \cos \phi
$$

where ϕ is the angle between $\vec{F}_{n e t}$ and \vec{d}

Finding another expression for Work

Work-Kinetic Energy Theorem

$$
\begin{gathered}
W=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2} \\
\nabla \\
\Delta K=K_{f}-K_{i}=W,
\end{gathered}
$$

which says that

$$
\binom{\text { change in the kinetic }}{\text { energy of a particle }}=\binom{\text { net work done on }}{\text { the particle }} .
$$

We can also write

$$
K_{f}=K_{i}+W,
$$

$$
K_{f}=K_{i}+W,
$$

which says that

$$
\binom{\text { kinetic energy after }}{\text { the net work is done }}=\binom{\text { kinetic energy }}{\text { before the net work }}+\binom{\text { the net }}{\text { work done }} .
$$

These statements are known traditionally as the work-kinetic energy theorem

For example, if the kinetic energy of a particle is initially 5 J and there is a net transfer of 2 J to the particle (positive net work), the final kinetic energy is 7 J . If, instead, there is a net transfer of 2 J from the particle (negative net work), the final kinetic energy is 3 J .

Sample Problem 7-2

Figure 7-4a shows two industrial spies sliding an initially stationary 225 kg floor safe a displacement \vec{d} of magnitude 8.50 m , straight toward their truck. The push \vec{F}_{1} of spy 001 is 12.0 N , directed at an angle of 30.0° downward from the horizontal; the pull \vec{F}_{2} of spy 002 is 10.0 N , directed at 40.0° above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor and safe make frictionless
 contact.
(a) What is the net work done on the safe by forces \vec{F}_{1} and \vec{F}_{2} during the displacement \vec{d} ?
(b) During the displacement, what is the work W_{g} done on the safe by the gravitational force \vec{F}_{g} and what is the work W_{N} done on the safe by the normal force \vec{F}_{N} from the floor?

(c) The safe is initially stationary. What is its speed v_{f} at the end of the 8.50 m displacement?

Sample Problem 7-3

During a storm, a crate of crepe is sliding across a slick, oily parking lot through a displacement $\vec{d}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}$ while a steady wind pushes against the crate with a force $\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}$. The situation and coordinate axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during the displacement?
(b) If the crate has a kinetic energy of 10 J at the beginning of displacement \vec{d}, what is its kinetic energy at the end of \vec{d} ?

7-6 | Work Done by the Gravitational Force

$$
W=F d \cos \phi
$$

$$
W_{\mathrm{g}}=\mathrm{F}_{\mathrm{g}} d \cos \phi
$$

$$
W_{g}=m g d \cos \phi \quad \text { (work done by gravitational force) }
$$

For a rising object, force \vec{F}_{g} is directed opposite the displacement \vec{d},

$$
W_{g}=m g d \cos 180^{\circ}=m g d(-1)=-m g d .
$$

For falling object,force \vec{F}_{g} is directed along the displacement \vec{d}

$$
W_{g}=m g d \cos 0^{\circ}=m g d(+1)=+m g d
$$

One of the lifts of Paul Anderson (Fig. 7-8) in the 1950s remains a record: Anderson stooped beneath a reinforced wood platform, placed his hands on a short stool to brace himself, and then pushed upward on the platform with his back, lifting the platform straight up by 1.0 cm . The platform held automobile parts and a safe filled with lead, with a total weight of $27900 \mathrm{~N}(6270 \mathrm{lb})$.
(a) As Anderson lifted the load, how much work was done on it by the gravitational force \vec{F}_{g} ?

7-7 I Work Done by a Spring Force

The Spring Force

Fig. a shows a spring in its relaxed state
In fig. b we pull one end of the spring and stretch it by an amount d. The spring resists by exerting a force F on our hand in the opposite direction.

In fig. \mathbf{c} we push one end of the spring and compress it by an amount d. Again the spring resists by exerting a force F on our hand in the opposite direction.

(a)

(b)

(c)

The spring force is given by

$$
\vec{F}_{s}=-k \vec{d} \quad \text { (Hooke's law) }
$$

$$
\vec{F}_{s}=-k \vec{d} \quad \text { (Hooke's law) }
$$

- The minus sign in Eq. 7-20 indicates that the direction of the spring force is always opposite the direction of the displacement of the spring;
${ }^{-}$The constant k is called the spring constant (or force constant)
The SI unit for k is the newton per meter.

$$
d=x_{2}-x_{1}, \text { Let } x_{1}=0 \text { and } x_{2}=x
$$

$$
F_{x}=-k x \quad \text { (Hooke's law) }
$$

The Work Done by a Spring Force

$$
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} \quad \text { (work by a spring force) }
$$

Work W_{s} is positive if the block ends up closer to the relaxed position $(x=0)$ than it was initially. It is negative if the block ends up farther away from $x=0$. It is zero if the block ends up at the same distance from $x=0$.

If $x_{i}>x_{f} \Rightarrow W_{s}=+v e$
If $x_{f}>x_{i} \Rightarrow W_{s}=-v e$
If $x_{i}=0$ and if we call the final position x,

$$
W_{s}=-\frac{1}{2} k x^{2}
$$

Sample Problem

A package of spicy Cajun pralines lies on a frictionless floor, attached to the free end of a spring in the arrange- ment of Fig. 7-11a. A rightward applied force of magnitude $F_{a}=4.9 \mathrm{~N}$ would be needed to hold the package at $x_{1}=12 \mathrm{~mm}$.
(a) How much work does the spring force do on the package if the package is pulled rightward from $x_{0}=0$ to $x_{2}=17 \mathrm{~mm}$?
(b) Next, the package is moved leftward to $x_{3}=$ -12 mm . How much work does the spring force do on the package during this displacement? Explain the sign of this work.

The time rate at which work is done by a force is said to be the power due to the force.

Power

Average Power

$$
P_{\mathrm{avg}}=\frac{W}{\Delta t}
$$

Instantaneous Power

$$
P=\frac{d W}{d t}
$$

The SI unit of power the joule per second. $\mathrm{J} / \mathrm{s}=$ watt

$$
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}
$$

$$
P=\frac{d W}{d t} \quad \text { but }
$$

$W=F d \cos \phi$

or $W=F x \cos \phi$
then

$$
\begin{aligned}
& P=\frac{F \cos \phi d x}{d t} \\
&=F \cos \phi\left(\frac{d x}{d t}\right) \Rightarrow P=F v \cos \phi \\
& \text { or } P=\vec{F} \cdot \vec{v}
\end{aligned}
$$

Sample Problem 7-11

Figure 7-16 shows constant forces \vec{F}_{1} and \vec{F}_{2} acting on a box as the box slides rightward across a frictionless floor. Force \vec{F}_{1} is horizontal, with magnitude 2.0 N ; force \vec{F}_{2} is angled upward by 60° to the floor and has magnitude 4.0 N . The speed v of the box at a certain instant is $3.0 \mathrm{~m} / \mathrm{s}$. What is the power due to each force acting on the box at that instant, and what is the net power? Is the net power changing at that instant?

KINETIC ENERGY AND WORK

Abstract

7_ WHAT IS PHYSICS? One of the fundamental goals of physics is to investigate something that everyone talks about: energy. The topic is obviously important. Indeed, our civilization is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy: Flying across the Pacific Ocean requires it. Lifting material to the top floor of an office building or to an orbiting space station requires it. Throwing a fastball requires it. We spend a tremendous amount of money to acquire and use energy. Wars have been started because of energy resources. Wars have been ended because of a sudden, overpowering use of energy by one side. Everyone knows many examples of energy and its use, but what does the term energy really mean?

7-2 What Is Energy?

The term energy is so broad that a clear definition is difficult to write. Technically, energy is a scalar quantity associated with the state (or condition) of one or more objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we associate with a system of one or more objects. If a force changes one of the objects by, say, making it move, then the energy number changes. After countless experiments, scientists and engineers realized that if the scheme by which we assign energy numbers is planned carefully, the numbers can be used to predict the outcomes of experiments and, even more important, to build machines, such as flying machines. This success is based on a wonderful property of our universe: Energy can be transformed from one type to another and transferred from one object to another, but the total amount is always the same (energy is conserved). No exception to this principle of energy conservation has ever been found.

Think of the many types of energy as being numbers representing money in many types of bank accounts. Rules have been made about what such money numbers mean and how they can be changed. You can transfer money numbers from one account to another or from one system to another, perhaps electronically with nothing material actually moving. However, the total amount (the total of all the money numbers) can always be accounted for: It is always conserved.

In this chapter we focus on only one type of energy (kinetic energy) and on only one way in which energy can be transferred (work). In the next chapter we examine a few other types of energy and how the principle of energy conservation can be written as equations to be solved.

7-3 Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object. The faster the object moves, the greater is its kinetic energy. When the object is stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy) } \tag{7-1}
\end{equation*}
$$

For example, a 3.0 kg duck flying past us at $2.0 \mathrm{~m} / \mathrm{s}$ has a kinetic energy of $6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$; that is, we associate that number with the duck's motion.

The SI unit of kinetic energy (and every other type of energy) is the joule (J), named for James Prescott Joule, an English scientist of the 1800s. It is defined directly from Eq. 7-1 in terms of the units for mass and velocity:

$$
\begin{equation*}
1 \text { joule }=1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{7-2}
\end{equation*}
$$

Thus, the flying duck has a kinetic energy of 6.0 J .

Sample Problem

Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomotives at opposite ends of a $6.4-\mathrm{km}$-long track, fired them up, tied their throttles open, and then allowed them to crash head-on at full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of people were hurt by flying debris; several were killed. Assuming each locomotive weighed $1.2 \times 10^{6} \mathrm{~N}$ and its acceleration was a constant $0.26 \mathrm{~m} / \mathrm{s}^{2}$, what was the total kinetic energy of the two locomotives just before the collision?

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive with Eq. 7-1, but that means we need each locomotive's speed just before the collision and its mass. (2) Because we can assume each locomotive had constant acceleration, we can use the equations in Table 2-1 to find its speed v just before the collision.

Calculations: We choose Eq. 2-16 because we know values for all the variables except v :

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

With $v_{0}=0$ and $x-x_{0}=3.2 \times 10^{3} \mathrm{~m}$ (half the initial separation), this yields

$$
\begin{gathered}
v^{2}=0+2\left(0.26 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3.2 \times 10^{3} \mathrm{~m}\right) \\
\text { or } \quad v=40.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(about $150 \mathrm{~km} / \mathrm{h}$).

Fig. 7-1 The aftermath of an 1896 crash of two locomotives. (Courtesy Library of Congress)

We can find the mass of each locomotive by dividing its given weight by g :

$$
m=\frac{1.2 \times 10^{6} \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.22 \times 10^{5} \mathrm{~kg}
$$

Now, using Eq. 7-1, we find the total kinetic energy of the two locomotives just before the collision as

$$
\begin{aligned}
K & =2\left(\frac{1}{2} m v^{2}\right)=\left(1.22 \times 10^{5} \mathrm{~kg}\right)(40.8 \mathrm{~m} / \mathrm{s})^{2} \\
& =2.0 \times 10^{8} \mathrm{~J}
\end{aligned}
$$

(Answer)
This collision was like an exploding bomb.

7-4 Work

If you accelerate an object to a greater speed by applying a force to the object, you increase the kinetic energy $K\left(=\frac{1}{2} m v^{2}\right)$ of the object. Similarly, if you decelerate the object to a lesser speed by applying a force, you decrease the kinetic energy of the object. We account for these changes in kinetic energy by saying that your force has transferred energy to the object from yourself or from the object to yourself. In such a transfer of energy via a force, work W is said to be done on the object by the force. More formally, we define work as follows:

Work W is energy transferred to or from an object by means of a force acting on the object. Energy transferred to the object is positive work, and energy transferred from the object is negative work.
"Work," then, is transferred energy; "doing work" is the act of transferring the energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material flows into or out of the object; that is, the transfer is not like a flow of water. Rather, it is like the electronic transfer of money between two bank accounts: The number in one account goes up while the number in the other account goes down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word "work," which implies that any physical or mental labor is work. For example, if you push hard against a wall, you tire because of the continuously repeated muscle contractions that are required, and you are, in the common sense, working. However, such effort does not cause an energy transfer to or from the wall and thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work and shall represent a weight with its equivalent $m g$.

7-5 Work and Kinetic Energy

Finding an Expression for Work

Let us find an expression for work by considering a bead that can slide along a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant force \vec{F}, directed at an angle ϕ to the wire, accelerates the bead along the wire. We can relate the force and the acceleration with Newton's second law, written for components along the x axis:

$$
\begin{equation*}
F_{x}=m a_{x} \tag{7-3}
\end{equation*}
$$

where m is the bead's mass. As the bead moves through a displacement \vec{d}, the force changes the bead's velocity from an initial value \vec{v}_{0} to some other value \vec{v}. Because the force is constant, we know that the acceleration is also constant. Thus, we can use Eq. 2-16 to write, for components along the x axis,

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a_{x} d \tag{7-4}
\end{equation*}
$$

Solving this equation for a_{x}, substituting into Eq. 7-3, and rearranging then give us

$$
\begin{equation*}
\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=F_{x} d \tag{7-5}
\end{equation*}
$$

The first term on the left side of the equation is the kinetic energy K_{f} of the bead at the end of the displacement d, and the second term is the kinetic energy K_{i} of the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and the right side tells us the change is equal to $F_{x} d$. Therefore, the work W done on the bead by the force
(the energy transfer due to the force) is

$$
\begin{equation*}
W=F_{x} d \tag{7-6}
\end{equation*}
$$

If we know values for F_{x} and d, we can use this equation to calculate the work W done on the bead by the force.

To calculate the work a force does on an object as the object moves through some displacement, we use only the force component along the object's displacement. The force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write F_{x} as $F \cos \phi$, where ϕ is the angle between the directions of the displacement \vec{d} and the force \vec{F}. Thus,

$$
\begin{equation*}
W=F d \cos \phi \quad(\text { work done by a constant force }) \tag{7-7}
\end{equation*}
$$

Because the right side of this equation is equivalent to the scalar (dot) product $\vec{F} \cdot \vec{d}$, we can also write

$$
\begin{equation*}
W=\vec{F} \cdot \vec{d} \quad(\text { work done by a constant force }), \tag{7-8}
\end{equation*}
$$

where F is the magnitude of \vec{F}. (You may wish to review the discussion of scalar products in Section 3-8.) Equation 7-8 is especially useful for calculating the work when \vec{F} and \vec{d} are given in unit-vector notation.

Fig. 7-2 A constant force \vec{F} directed at angle ϕ to the displacement \vec{d} of a bead on a wire accelerates the bead along the wire, changing the velocity of the bead from \vec{v}_{0} to \vec{v}. A "kinetic energy gauge" indicates the resulting change in the kinetic energy of the bead, from the value K_{i} to the value K_{f}.

$$
\text { Displacement } \vec{d}
$$

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate work done on an object by a force. First, the force must be a constant force; that is, it must not change in magnitude or direction as the object moves. (Later, we shall discuss what to do with a variable force that changes in magnitude.) Second, the object must be particle-like. This means that the object must be rigid; all parts of it must move together, in the same direction. In this chapter we consider only particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive work or negative work. For example, if angle ϕ in Eq. $7-7$ is less than 90°, then $\cos \phi$ is positive and thus so is the work. If ϕ is greater than 90° (up to 180°), then $\cos \phi$ is

Fig. 7-3 A contestant in a bed race. We can approximate the bed and its occupant as being a particle for the purpose of calculating the work done on them by the force applied by the student.
negative and thus so is the work. (Can you see that the work is zero when $\phi=90^{\circ}$?) These results lead to a simple rule. To find the sign of the work done by a force, consider the force vector component that is parallel to the displacement:

A force does positive work when it has a vector component in the same direction as the displacement, and it does negative work when it has a vector component in the opposite direction. It does zero work when it has no such vector component.

Units for work. Work has the SI unit of the joule, the same as kinetic energy. However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newtonmeter $(\mathrm{N} \cdot \mathrm{m})$. The corresponding unit in the British system is the foot-pound (ft $\cdot \mathrm{lb}$). Extending Eq. 7-2, we have

$$
\begin{equation*}
1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m}=0.738 \mathrm{ft} \cdot \mathrm{lb} \tag{7-9}
\end{equation*}
$$

Net work done by several forces. When two or more forces act on an object, the net work done on the object is the sum of the works done by the individual forces. We can calculate the net work in two ways. (1) We can find the work done by each force and then sum those works. (2) Alternatively, we can first find the net force $\vec{F}_{\text {net }}$ of those forces. Then we can use Eq. 7-7, substituting the magnitude $F_{\text {net }}$ for F and also the angle between the directions of $\vec{F}_{\text {net }}$ and \vec{d} for ϕ. Similarly, we can use Eq. 7-8 with $\vec{F}_{\text {net }}$ substituted for \vec{F}.

Work-Kinetic Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial $K_{i}=\frac{1}{2} m v_{0}^{2}$ to a later $\left.K_{f}=\frac{1}{2} m v^{2}\right)$ to the work $W\left(=F_{x} d\right)$ done on the bead. For such particle-like objects, we can generalize that equation. Let ΔK be the change in the kinetic energy of the object, and let W be the net work done on it. Then

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \tag{7-10}
\end{equation*}
$$

which says that

$$
\binom{\text { change in the kinetic }}{\text { energy of a particle }}=\binom{\text { net work done on }}{\text { the particle }} .
$$

We can also write

$$
\begin{equation*}
K_{f}=K_{i}+W \tag{7-11}
\end{equation*}
$$

which says that

$$
\binom{\text { kinetic energy after }}{\text { the net work is done }}=\binom{\text { kinetic energy }}{\text { before the net work }}+\binom{\text { the net }}{\text { work done }} .
$$

These statements are known traditionally as the work-kinetic energy theorem for particles. They hold for both positive and negative work: If the net work done on a particle is positive, then the particle's kinetic energy increases by the amount of the work. If the net work done is negative, then the particle's kinetic energy decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a net transfer of 2 J to the particle (positive net work), the final kinetic energy is 7 J . If, instead, there is a net transfer of 2 J from the particle (negative net work), the final kinetic energy is 3 J .

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, decrease, or remain the same if the particle's velocity changes (a) from $-3 \mathrm{~m} / \mathrm{s}$ to $-2 \mathrm{~m} / \mathrm{s}$ and (b) from $-2 \mathrm{~m} / \mathrm{s}$ to $2 \mathrm{~m} / \mathrm{s}$? (c) In each situation, is the work done on the particle positive, negative, or zero?

Sample Problem

Work done by two constant forces, industrial spies

Figure $7-4 a$ shows two industrial spies sliding an initially stationary 225 kg floor safe a displacement \vec{d} of magnitude 8.50 m , straight toward their truck. The push \vec{F}_{1} of spy 001 is 12.0 N , directed at an angle of 30.0° downward from the horizontal; the pull \vec{F}_{2} of spy 002 is 10.0 N , directed at 40.0° above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor and safe make frictionless contact.
(a) What is the net work done on the safe by forces \vec{F}_{1} and \vec{F}_{2} during the displacement \vec{d} ?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the sum of the works they do individually. (2) Because we can treat the safe as a particle and the forces are constant in both magnitude and direction, we can use either Eq. 7-7 ($W=F d \cos \phi$) or Eq. $7-8(W=\vec{F} \cdot \vec{d})$ to calculate those works. Since we know the magnitudes and directions of the forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for the safe in Fig. $7-4 b$, the work done by \vec{F}_{1} is

$$
\begin{aligned}
W_{1} & =F_{1} d \cos \phi_{1}=(12.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 30.0^{\circ}\right) \\
& =88.33 \mathrm{~J}
\end{aligned}
$$

and the work done by \vec{F}_{2} is

$$
\begin{aligned}
W_{2} & =F_{2} d \cos \phi_{2}=(10.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 40.0^{\circ}\right) \\
& =65.11 \mathrm{~J}
\end{aligned}
$$

Thus, the net work W is

$$
\begin{aligned}
W & =W_{1}+W_{2}=88.33 \mathrm{~J}+65.11 \mathrm{~J} \\
& =153.4 \mathrm{~J} \approx 153 \mathrm{~J} .
\end{aligned}
$$

(Answer)
During the 8.50 m displacement, therefore, the spies transfer 153 J of energy to the kinetic energy of the safe.
(b) During the displacement, what is the work W_{g} done on the safe by the gravitational force \vec{F}_{g} and what is the work W_{N} done on the safe by the normal force \vec{F}_{N} from the floor?

KEY IDEA

Because these forces are constant in both magnitude and direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with $m g$ as the magnitude of the gravitational force, we write

$$
\begin{aligned}
& W_{g}=m g d \cos 90^{\circ}=m g d(0)=0 \\
& W_{N}=F_{N} d \cos 90^{\circ}=F_{N} d(0)=0
\end{aligned}
$$

(Answer)
and
(Answer)
We should have known this result. Because these forces are perpendicular to the displacement of the safe, they do zero work on the safe and do not transfer any energy to or from it.
(c) The safe is initially stationary. What is its speed v_{f} at the end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is changed when energy is transferred to it by \vec{F}_{1} and \vec{F}_{2}.

Calculations: We relate the speed to the work done by combining Eqs. 7-10 and 7-1:

$$
W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

The initial speed v_{i} is zero, and we now know that the work done is 153.4 J . Solving for v_{f} and then substituting known data, we find that

$$
\begin{aligned}
v_{f} & =\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2(153.4 \mathrm{~J})}{225 \mathrm{~kg}}} \\
& =1.17 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(Answer)

Fig. 7-4 (a) Two spies move a floor safe through a displacement \vec{d}. (b) A free-body diagram for the safe.

(a)

Only force components parallel to the displacement do work.

(b)

Additional examples, video, and practice available at WileyPLUS

Sample Problem

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick, oily parking lot through a displacement $\vec{d}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}$ $\stackrel{\rightharpoonup}{\vec{F}}$ while a steady wind pushes against the crate with a force $\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}$. The situation and coordinate axes are shown in Fig. 7-5.
(a) How much work does this force do on the crate during the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the wind force is constant ("steady") in both magnitude and direction during the displacement, we can use either Eq. 7-7 ($W=$ $F d \cos \phi)$ or Eq. $7-8(W=\vec{F} \cdot \vec{d})$ to calculate the work. Since we know \vec{F} and \vec{d} in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

$$
W=\vec{F} \cdot \vec{d}=[(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}] \cdot[(-3.0 \mathrm{~m}) \hat{\mathrm{i}}] .
$$

Of the possible unit-vector dot products, only $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}, \hat{\mathrm{j}} \cdot \hat{\mathrm{j}}$, and $\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}$ are nonzero (see Appendix E). Here we obtain

$$
\begin{aligned}
W & =(2.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}+(-6.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{j}} \cdot \hat{\mathrm{i}} \\
& =(-6.0 \mathrm{~J})(1)+0=-6.0 \mathrm{~J} . \quad \text { (Answer) }
\end{aligned}
$$

The parallel force component does negative work, slowing the crate.

Fig. 7-5 Force \vec{F} slows a crate during displacement \vec{d}.

Thus, the force does a negative 6.0 J of work on the crate, transferring 6.0 J of energy from the kinetic energy of the crate.
(b) If the crate has a kinetic energy of 10 J at the beginning of displacement \vec{d}, what is its kinetic energy at the end of \vec{d} ?

KEY IDEA

Because the force does negative work on the crate, it reduces the crate's kinetic energy.

Calculation: Using the work-kinetic energy theorem in the form of Eq. 7-11, we have

$$
K_{f}=K_{i}+W=10 \mathrm{~J}+(-6.0 \mathrm{~J})=4.0 \mathrm{~J} . \quad \text { Answer) }
$$

Less kinetic energy means that the crate has been slowed.

Fig. 7-6 Because the gravitational force \vec{F}_{g} acts on it, a particle-like tomato of mass m thrown upward slows from velocity \vec{v}_{0} to velocity \vec{v} during displacement \vec{d}. A kinetic energy gauge indicates the resulting change in the kinetic energy of the tomato, from $K_{i}\left(=\frac{1}{2} m v_{0}^{2}\right)$ to $K_{f}\left(=\frac{1}{2} m v^{2}\right)$.

7-6 Work Done by the Gravitational Force

We next examine the work done on an object by the gravitational force acting on it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with initial speed v_{0} and thus with initial kinetic energy $K_{i}=\frac{1}{2} m v_{0}^{2}$. As the tomato rises, it is slowed by a gravitational force \vec{F}_{g}; that is, the tomato's kinetic energy decreases because \vec{F}_{g} does work on the tomato as it rises. Because we can treat the tomato as a particle, we can use Eq. 7-7 ($W=F d \cos \phi$) to express the work done during a displacement \vec{d}. For the force magnitude F, we use $m g$ as the magnitude of \vec{F}_{g}. Thus, the work W_{g} done by the gravitational force \vec{F}_{g} is

$$
\begin{equation*}
W_{g}=m g d \cos \phi \quad \text { (work done by gravitational force). } \tag{7-12}
\end{equation*}
$$

For a rising object, force \vec{F}_{g} is directed opposite the displacement \vec{d}, as indicated in Fig. 7-6. Thus, $\phi=180^{\circ}$ and

$$
\begin{equation*}
W_{g}=m g d \cos 180^{\circ}=m g d(-1)=-m g d . \tag{7-13}
\end{equation*}
$$

The minus sign tells us that during the object's rise, the gravitational force acting on the object transfers energy in the amount $m g d$ from the kinetic energy of the object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down, the angle ϕ between force \vec{F}_{g} and displacement \vec{d} is zero. Thus,

$$
\begin{equation*}
W_{g}=m g d \cos 0^{\circ}=m g d(+1)=+m g d . \tag{7-14}
\end{equation*}
$$

The plus sign tells us that the gravitational force now transfers energy in the amount $m g d$ to the kinetic energy of the object. This is consistent with the speeding up of the object as it falls. (Actually, as we shall see in Chapter 8, energy transfers associated with lifting and lowering an object involve the full object-Earth system.)

Work Done in Lifting and Lowering an Object

Now suppose we lift a particle-like object by applying a vertical force \vec{F} to it. During the upward displacement, our applied force does positive work W_{a} on the object while the gravitational force does negative work W_{g} on it. Our applied force tends to transfer energy to the object while the gravitational force tends to transfer energy from it. By Eq. 7-10, the change ΔK in the kinetic energy of the object due to these two energy transfers is

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} \tag{7-15}
\end{equation*}
$$

in which K_{f} is the kinetic energy at the end of the displacement and K_{i} is that at the start of the displacement. This equation also applies if we lower the object, but then the gravitational force tends to transfer energy to the object while our force tends to transfer energy from it.

In one common situation, the object is stationary before and after the liftfor example, when you lift a book from the floor to a shelf. Then K_{f} and K_{i} are both zero, and Eq. 7-15 reduces to
or

$$
\begin{gather*}
W_{a}+W_{g}=0 \\
W_{a}=-W_{g} \tag{7-16}
\end{gather*}
$$

Note that we get the same result if K_{f} and K_{i} are not zero but are still equal. Either way, the result means that the work done by the applied force is the negative of the work done by the gravitational force; that is, the applied force transfers the same amount of energy to the object as the gravitational force transfers from the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as

$$
\begin{equation*}
W_{a}=-m g d \cos \phi \quad\left(\text { work done in lifting and lowering; } K_{f}=K_{i}\right), \tag{7-17}
\end{equation*}
$$

with ϕ being the angle between \vec{F}_{g} and \vec{d}. If the displacement is vertically upward (Fig. 7-7a), then $\phi=180^{\circ}$ and the work done by the applied force equals $m g d$. If the displacement is vertically downward (Fig. 7-7b), then $\phi=0^{\circ}$ and the work done by the applied force equals $-m g d$.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or lowered, with the object stationary before and after the lift. They are independent of the magnitude of the force used. For example, if you lift a mug from the floor to over your head, your force on the mug varies considerably during the lift. Still, because the mug is stationary before and after the lift, the work your force does on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, $m g$ is the weight of the mug and d is the distance you lift it.

Fig. 7-7 (a) An applied force \vec{F} lifts an object. The object's displacement \vec{d} makes an angle $\phi=180^{\circ}$ with the gravitational force \vec{F}_{g} on the object. The applied force does positive work on the object. (b) An applied force \vec{F} lowers an object. The displacement \vec{d} of the object makes an angle $\phi=0^{\circ}$ with the gravitational force \vec{F}_{g}. The applied force does negative work on the object.

(b)

Sample Problem

Work done on an accelerating elevator cab

An elevator cab of mass $m=500 \mathrm{~kg}$ is descending with speed $v_{i}=4.0 \mathrm{~m} / \mathrm{s}$ when its supporting cable begins to slip, allowing it to fall with constant acceleration $\vec{a}=\vec{g} / 5$ (Fig. $7-8 a$).
(a) During the fall through a distance $d=12 \mathrm{~m}$, what is the work W_{g} done on the cab by the gravitational force \vec{F}_{g} ?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12 ($W_{g}=m g d \cos \phi$) to find the work W_{g}.

Calculation: From Fig. 7-8b, we see that the angle between the directions of \vec{F}_{g} and the cab's displacement \vec{d} is 0°. Then, from Eq. $7-12$, we find

$$
\begin{aligned}
W_{g} & =m g d \cos 0^{\circ}=(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})(1) \\
& =5.88 \times 10^{4} \mathrm{~J} \approx 59 \mathrm{~kJ} .
\end{aligned}
$$

(b) During the 12 m fall, what is the work W_{T} done on the cab by the upward pull \vec{T} of the elevator cable?

KEY IDEAS

(1) We can calculate work W_{T} with Eq. 7-7 $(W=F d \cos \phi)$ if we first find an expression for the magnitude T of the cable's pull. (2) We can find that expression by writing Newton's second law for components along the y axis in Fig. 7-8b $\left(F_{\text {net }, y}=m a_{y}\right)$.

Calculations: We get

$$
\begin{equation*}
T-F_{g}=m a \tag{7-18}
\end{equation*}
$$

Solving for T, substituting $m g$ for F_{g}, and then substituting the result in Eq. 7-7, we obtain

$$
\begin{equation*}
W_{T}=T d \cos \phi=m(a+g) d \cos \phi \tag{7-19}
\end{equation*}
$$

Next, substituting $-g / 5$ for the (downward) acceleration a and then 180° for the angle ϕ between the directions of forces \vec{T} and $m \vec{g}$, we find

$$
\begin{aligned}
W_{T} & =m\left(-\frac{g}{5}+g\right) d \cos \phi=\frac{4}{5} m g d \cos \phi \\
& =\frac{4}{5}(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m}) \cos 180^{\circ} \\
& =-4.70 \times 10^{4} \mathrm{~J} \approx-47 \mathrm{~kJ} .
\end{aligned}
$$

(Answer)
Caution: Note that W_{T} is not simply the negative of W_{g}. The reason is that, because the cab accelerates during the
fall, its speed changes during the fall, and thus its kinetic energy also changes. Therefore, Eq. 7-16 (which assumes that the initial and final kinetic energies are equal) does not apply here.
(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by the forces acting on the cab:

$$
\begin{aligned}
W & =W_{g}+W_{T}=5.88 \times 10^{4} \mathrm{~J}-4.70 \times 10^{4} \mathrm{~J} \\
& =1.18 \times 10^{4} \mathrm{~J} \approx 12 \mathrm{~kJ} .
\end{aligned}
$$

(d) What is the cab's kinetic energy at the end of the 12 m fall?

KEY IDEA

The kinetic energy changes because of the net work done on the cab, according to Eq. 7-11 $\left(K_{f}=K_{i}+W\right)$.

Calculation: From Eq. 7-1, we can write the kinetic energy at the start of the fall as $K_{i}=\frac{1}{2} m v_{i}^{2}$. We can then write Eq. $7-11$ as

$$
\begin{aligned}
K_{f} & =K_{i}+W=\frac{1}{2} m v_{i}^{2}+W \\
& =\frac{1}{2}(500 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})^{2}+1.18 \times 10^{4} \mathrm{~J} \\
& =1.58 \times 10^{4} \mathrm{~J} \approx 16 \mathrm{~kJ}
\end{aligned}
$$

(Answer)

Fig. 7-8 An elevator cab, descending with speed v_{i}, suddenly begins to accelerate downward. (a) It moves through a displacement \vec{d} with constant acceleration $\vec{a}=\vec{g} / 5$. (b) A free-body diagram for the cab, displacement included.

Additional examples, video, and practice available at WileyPLUS

7-7 Work Done by a Spring Force

We next want to examine the work done on a particle-like object by a particular type of variable force - namely, a spring force, the force from a spring. Many forces in nature have the same mathematical form as the spring force. Thus, by examining this one force, you can gain an understanding of many others.

The Spring Force

Figure $7-9 a$ shows a spring in its relaxed state - that is, neither compressed nor extended. One end is fixed, and a particle-like object - a block, say - is attached to the other, free end. If we stretch the spring by pulling the block to the right as in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring force acts to restore the relaxed state, it is sometimes said to be a restoring force.) If we compress the spring by pushing the block to the left as in Fig. 7-9c, the spring now pushes on the block toward the right.

To a good approximation for many springs, the force \vec{F}_{s} from a spring is proportional to the displacement \vec{d} of the free end from its position when the spring is in the relaxed state. The spring force is given by

$$
\begin{equation*}
\vec{F}_{s}=-k \vec{d} \quad \text { (Hooke's law) } \tag{7-20}
\end{equation*}
$$

which is known as Hooke's law after Robert Hooke, an English scientist of the late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring force is always opposite the direction of the displacement of the spring's free end. The constant k is called the spring constant (or force constant) and is a measure of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the larger k is, the stronger the spring's pull or push for a given displacement. The SI unit for k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with the origin $(x=0)$ at the position of the free end when the spring is in its relaxed state. For this common arrangement, we can write Eq. 7-20 as

$$
\begin{equation*}
F_{x}=-k x \quad \text { (Hooke's law), } \tag{7-21}
\end{equation*}
$$

where we have changed the subscript. If x is positive (the spring is stretched toward the right on the x axis), then F_{x} is negative (it is a pull toward the left). If x is negative (the spring is compressed toward the left), then F_{x} is positive (it is a push toward the right). Note that a spring force is a variable force because it is a function of x, the position of the free end. Thus F_{x} can be symbolized as $F(x)$. Also note that Hooke's law is a linear relationship between F_{x} and x.

The Work Done by a Spring Force

To find the work done by the spring force as the block in Fig. 7-9a moves, let us make two simplifying assumptions about the spring. (1) It is massless; that is, its mass is negligible relative to the block's mass. (2) It is an ideal spring; that is, it obeys Hooke's law exactly. Let us also assume that the contact between the block and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone. As the block moves rightward, the spring force F_{x} does work on the block, decreasing the kinetic energy and slowing the block. However, we cannot find this work by using Eq. 7-7 ($W=F d \cos \phi$) because that equation assumes a constant force. The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block's initial position be x_{i} and its later position x_{f}. Then divide the distance between those two

Fig. 7-9 (a) A spring in its relaxed state. The origin of an x axis has been placed at the end of the spring that is attached to a block. (b) The block is displaced by \vec{d}, and the spring is stretched by a positive amount x. Note the restoring force \vec{F}_{s} exerted by the spring. (c) The spring is compressed by a negative amount x. Again, note the restoring force.
positions into many segments, each of tiny length Δx. Label these segments, starting from x_{i}, as segments 1,2 , and so on. As the block moves through a segment, the spring force hardly varies because the segment is so short that x hardly varies. Thus, we can approximate the force magnitude as being constant within the segment. Label these magnitudes as $F_{x 1}$ in segment $1, F_{x 2}$ in segment 2 , and so on.

With the force now constant in each segment, we can find the work done within each segment by using Eq. 7-7. Here $\phi=180^{\circ}$, and so $\cos \phi=-1$. Then the work done is $-F_{x 1} \Delta x$ in segment $1,-F_{x 2} \Delta x$ in segment 2 , and so on. The net work W_{s} done by the spring, from x_{i} to x_{f}, is the sum of all these works:

$$
\begin{equation*}
W_{s}=\sum-F_{x j} \Delta x, \tag{7-22}
\end{equation*}
$$

where j labels the segments. In the limit as Δx goes to zero, Eq. 7-22 becomes

$$
\begin{equation*}
W_{s}=\int_{x_{i}}^{x_{f}}-F_{x} d x \tag{7-23}
\end{equation*}
$$

From Eq. 7-21, the force magnitude F_{x} is $k x$. Thus, substitution leads to

$$
\begin{align*}
W_{s} & =\int_{x_{i}}^{x_{f}}-k x d x=-k \int_{x_{i}}^{x_{f}} x d x \\
& =\left(-\frac{1}{2} k\right)\left[x^{2}\right]_{x_{i}}^{x_{f}}=\left(-\frac{1}{2} k\right)\left(x_{f}^{2}-x_{i}^{2}\right) . \tag{7-24}
\end{align*}
$$

Multiplied out, this yields

$$
\begin{equation*}
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} \quad(\text { work by a spring force }) \tag{7-25}
\end{equation*}
$$

This work W_{s} done by the spring force can have a positive or negative value, depending on whether the net transfer of energy is to or from the block as the block moves from x_{i} to x_{f}. Caution: The final position x_{f} appears in the second term on the right side of Eq. 7-25. Therefore, Eq. 7-25 tells us:

Work W_{s} is positive if the block ends up closer to the relaxed position $(x=0)$ than it was initially. It is negative if the block ends up farther away from $x=0$. It is zero if the block ends up at the same distance from $x=0$.

If $x_{i}=0$ and if we call the final position x, then Eq. $7-25$ becomes

$$
\begin{equation*}
W_{s}=-\frac{1}{2} k x^{2} \quad(\text { work by a spring force }) \tag{7-26}
\end{equation*}
$$

The Work Done by an Applied Force

Now suppose that we displace the block along the x axis while continuing to apply a force \vec{F}_{a} to it. During the displacement, our applied force does work W_{a} on the block while the spring force does work W_{s}. By Eq. 7-10, the change ΔK in the kinetic energy of the block due to these two energy transfers is

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{s}, \tag{7-27}
\end{equation*}
$$

in which K_{f} is the kinetic energy at the end of the displacement and K_{i} is that at the start of the displacement. If the block is stationary before and after the displacement, then K_{f} and K_{i} are both zero and Eq. 7-27 reduces to

$$
\begin{equation*}
W_{a}=-W_{s} \tag{7-28}
\end{equation*}
$$

If a block that is attached to a spring is stationary before and after a displacement, then the work done on it by the applied force displacing it is the negative of the work done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this statement is not true.

CHECKPOINT 2

For three situations, the initial and final positions, respectively, along the x axis for the block in Fig. 7-9 are (a) $-3 \mathrm{~cm}, 2 \mathrm{~cm}$; (b) $2 \mathrm{~cm}, 3 \mathrm{~cm}$; and (c) $-2 \mathrm{~cm}, 2 \mathrm{~cm}$. In each situation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem

Work done by spring to change kinetic energy

In Fig. 7-10, a cumin canister of mass $m=0.40 \mathrm{~kg}$ slides across a horizontal frictionless counter with speed $v=0.50$ m / s. It then runs into and compresses a spring of spring constant $k=750 \mathrm{~N} / \mathrm{m}$. When the canister is momentarily stopped by the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work W_{s} done on the canister by the spring force is related to the requested distance d by Eq. 7-26 ($W_{s}=$ $-\frac{1}{2} k x^{2}$), with d replacing x.
2. The work W_{s} is also related to the kinetic energy of the canister by Eq. 7-10 $\left(K_{f}-K_{i}=W\right)$.
3. The canister's kinetic energy has an initial value of $K=$ $\frac{1}{2} m v^{2}$ and a value of zero when the canister is momentarily at rest.

Calculations: Putting the first two of these ideas together, we write the work-kinetic energy theorem for the canister as
$K_{f}-K_{i}=-\frac{1}{2} k d^{2}$.
Additional examples, video, and practice available at WileyPLUS
Fig. 7-10 A canister of mass m moves at velocity \vec{v} toward a spring that has spring constant k.

Substituting according to the third key idea gives us this expression

$$
0-\frac{1}{2} m v^{2}=-\frac{1}{2} k d^{2}
$$

Simplifying, solving for d, and substituting known data then give us

$$
\begin{aligned}
d & =v \sqrt{\frac{m}{k}}=(0.50 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{0.40 \mathrm{~kg}}{750 \mathrm{~N} / \mathrm{m}}} \\
& =1.2 \times 10^{-2} \mathrm{~m}=1.2 \mathrm{~cm}
\end{aligned}
$$

PLUS
(Answer)

7-8 Work Done by a General Variable Force

One-Dimensional Analysis

Let us return to the situation of Fig. 7-2 but now consider the force to be in the positive direction of the x axis and the force magnitude to vary with position x. Thus, as the bead (particle) moves, the magnitude $F(x)$ of the force doing work on it changes. Only the magnitude of this variable force changes, not its direction, and the magnitude at any position does not change with time.

Figure 7-11a shows a plot of such a one-dimensional variable force. We want an expression for the work done on the particle by this force as the particle moves from an initial point x_{i} to a final point x_{f}. However, we cannot use Eq. 7-7 $(W=F d \cos \phi)$ because it applies only for a constant force \vec{F}. Here, again, we shall use calculus. We divide the area under the curve of Fig. 7-11 a into a number of narrow strips of width Δx (Fig. 7-11b). We choose Δx small enough to permit us to take the force $F(x)$ as being reasonably constant over that interval. We let $F_{j, \text { avg }}$ be the average value of $F(x)$ within the j th interval. Then in Fig. 7-11b, $F_{j, \text { avg }}$ is the height of the j th strip.

With $F_{j, \text { avg }}$ considered constant, the increment (small amount) of work ΔW_{j} done by the force in the j th interval is now approximately given by Eq. 7-7 and is

$$
\begin{equation*}
\Delta W_{j}=F_{j, \mathrm{avg}} \Delta x \tag{7-29}
\end{equation*}
$$

In Fig. 7-11 $b, \Delta W_{j}$ is then equal to the area of the j th rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves from x_{i} to x_{f}, we add the areas of all the strips between x_{i} and x_{f} in Fig. 7-11b:

$$
\begin{equation*}
W=\sum \Delta W_{j}=\sum F_{j, \text { avg }} \Delta x \tag{7-30}
\end{equation*}
$$

Equation 7-30 is an approximation because the broken "skyline" formed by the tops of the rectangular strips in Fig. 7-11b only approximates the actual curve of $F(x)$.

We can make the approximation better by reducing the strip width Δx and using more strips (Fig. 7-11c). In the limit, we let the strip width approach zero; the number of strips then becomes infinitely large and we have, as an exact result,

$$
\begin{equation*}
W=\lim _{\Delta x \rightarrow 0} \sum F_{j, \text { avg }} \Delta x \tag{7-31}
\end{equation*}
$$

This limit is exactly what we mean by the integral of the function $F(x)$ between the limits x_{i} and x_{f}. Thus, Eq. 7-31 becomes

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x \quad \text { (work: variable force). } \tag{7-32}
\end{equation*}
$$

If we know the function $F(x)$, we can substitute it into Eq. $7-32$, introduce the proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is equal to the area between the $F(x)$ curve and the x axis, between the limits x_{i} and x_{f} (shaded in Fig. 7-11d).

Three-Dimensional Analysis

Consider now a particle that is acted on by a three-dimensional force

$$
\begin{equation*}
\vec{F}=F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}+F_{z} \hat{\mathrm{k}} \tag{7-33}
\end{equation*}
$$

in which the components F_{x}, F_{y}, and F_{z} can depend on the position of the particle; that is, they can be functions of that position. However, we make three simplifications: F_{x} may depend on x but not on y or z, F_{y} may depend on y but not on x or z, and F_{z} may depend on z but not on x or y. Now let the particle move through an incremental displacement

$$
\begin{equation*}
d \vec{r}=d x \hat{\mathrm{i}}+d y \hat{\mathrm{j}}+d z \hat{\mathrm{k}} \tag{7-34}
\end{equation*}
$$

The increment of work $d W$ done on the particle by \vec{F} during the displacement $d \vec{r}$ is, by Eq. 7-8,

$$
\begin{equation*}
d W=\vec{F} \cdot d \vec{r}=F_{x} d x+F_{y} d y+F_{z} d z \tag{7-35}
\end{equation*}
$$

The work W done by \vec{F} while the particle moves from an initial position r_{i} having coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ to a final position r_{f} having coordinates $\left(x_{f}, y_{f}, z_{f}\right)$ is then

$$
\begin{equation*}
W=\int_{r_{i}}^{r_{f}} d W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z \tag{7-36}
\end{equation*}
$$

If \vec{F} has only an x component, then the y and z terms in Eq. 7-36 are zero and the equation reduces to Eq. 7-32.

Work-Kinetic Energy Theorem with a Variable Force

Equation 7-32 gives the work done by a variable force on a particle in a onedimensional situation. Let us now make certain that the work is equal to the change in kinetic energy, as the work - kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a net force $F(x)$ that is directed along that axis. The work done on the particle by this force as the particle moves from position x_{i} to position x_{f} is given by Eq. 7-32 as

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x=\int_{x_{i}}^{x_{f}} m a d x \tag{7-37}
\end{equation*}
$$

in which we use Newton's second law to replace $F(x)$ with $m a$. We can write the quantity $m a d x$ in Eq. 7-37 as

$$
\begin{equation*}
m a d x=m \frac{d v}{d t} d x \tag{7-38}
\end{equation*}
$$

From the chain rule of calculus, we have
and Eq. 7-38 becomes

$$
\begin{equation*}
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=\frac{d v}{d x} v \tag{7-39}
\end{equation*}
$$

$$
\begin{equation*}
m a d x=m \frac{d v}{d x} v d x=m v d v \tag{7-40}
\end{equation*}
$$

Substituting Eq. 7-40 into Eq. 7-37 yields

$$
\begin{align*}
W & =\int_{v_{i}}^{v_{f}} m v d v=m \int_{v_{i}}^{v_{f}} v d v \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \tag{7-41}
\end{align*}
$$

Note that when we change the variable from x to v we are required to express the limits on the integral in terms of the new variable. Note also that because the mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows us to write this equation as

$$
W=K_{f}-K_{i}=\Delta K
$$

which is the work-kinetic energy theorem.

Sample Problem

Work calculated by graphical integration

In an epidural procedure, as used in childbirth, a surgeon or an anesthetist must run a needle through the skin on the patient's back, through various tissue layers and into a narrow region called the epidural space that lies within the spinal canal surrounding the spinal cord. The needle is intended to deliver an anesthetic fluid. This tricky procedure requires much practice so that the doctor knows when the needle has reached the epidural space and not overshot it, a mistake that could result in serious complications.

The feel a doctor has for the needle's penetration is the variable force that must be applied to advance the needle through the tissues. Figure 7-12a is a graph of the force magnitude F versus displacement x of the needle tip in a typical epidural procedure. (The line segments have been straightened somewhat from the original data.) As x increases from 0 , the skin resists the needle, but at $x=8.0 \mathrm{~mm}$ the force is finally great enough to pierce the skin, and then the required force decreases. Similarly, the needle finally pierces the interspinous ligament at $x=18 \mathrm{~mm}$ and the relatively tough ligamentum flavum at $x=30 \mathrm{~mm}$. The needle then enters the epidural space (where it is to deliver the anesthetic fluid), and the force drops sharply. A new doctor must learn this pattern of force versus displacement to recognize when to stop pushing on the needle. (This is the pattern to be programmed into a virtual-reality simulation of an epidural procedure.) How much work W is done by the force exerted on the needle to get the needle to the epidural space at $x=30 \mathrm{~mm}$?

KEY IDEAS

(1) We can calculate the work W done by a variable force $F(x)$ by integrating the force versus position x. Equation 7-32 tells us that

$$
W=\int_{x_{i}}^{x_{f}} F(x) d x
$$

We want the work done by the force during the displacement from $x_{i}=0$ to $x_{f}=0.030 \mathrm{~m}$. (2) We can evaluate the integral by finding the area under the curve on the graph of Fig. 7-12a.

$$
W=\binom{\text { area between force curve }}{\text { and } x \text { axis, from } x_{i} \text { to } x_{f}}
$$

Calculations: Because our graph consists of straight-line segments, we can find the area by splitting the region below the curve into rectangular and triangular regions, as shown in Fig. 7-12b. For example, the area in triangular region A is

$$
\operatorname{area}_{A}=\frac{1}{2}(0.0080 \mathrm{~m})(12 \mathrm{~N})=0.048 \mathrm{~N} \cdot \mathrm{~m}=0.048 \mathrm{~J}
$$

Once we've calculated the areas for all the labeled regions in Fig. 7-12b, we find that the total work is

$$
\begin{aligned}
W= & (\text { sum of the areas of regions } A \text { through } K) \\
= & 0.048+0.024+0.012+0.036+0.009+0.001 \\
& +0.016+0.048+0.016+0.004+0.024 \\
= & 0.238 \mathrm{~J} .
\end{aligned}
$$

(Answer)

(b)

Fig. 7-12 (a) The force magnitude F versus the displacement x of the needle in an epidural procedure. (b) Breaking up the region between the plotted curve and the displacement axis to calculate the area.

Sample Problem

Work, two-dimensional integration

Force $\vec{F}=\left(3 x^{2} \mathrm{~N}\right) \hat{\mathrm{i}}+(4 \mathrm{~N}) \hat{\mathrm{j}}$, with x in meters, acts on a particle, changing only the kinetic energy of the particle. How much work is done on the particle as it moves from coordinates ($2 \mathrm{~m}, 3 \mathrm{~m}$) to ($3 \mathrm{~m}, 0 \mathrm{~m}$)? Does the speed of the particle increase, decrease, or remain the same?

KEY IDEA

The force is a variable force because its x component depends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8 to find the work done. Instead, we must use Eq. 7-36 to integrate the force.

Calculation: We set up two integrals, one along each axis:

$$
\begin{aligned}
W & =\int_{2}^{3} 3 x^{2} d x+\int_{3}^{0} 4 d y=3 \int_{2}^{3} x^{2} d x+4 \int_{3}^{0} d y \\
& =3\left[\frac{1}{3} x^{3}\right]^{3}+4[y]_{3}^{0}=\left[3^{3}-2^{3}\right]+4[0-3] \\
& =7.0 \mathrm{~J} .
\end{aligned}
$$

The positive result means that energy is transferred to the particle by force \vec{F}. Thus, the kinetic energy of the particle increases and, because $K=\frac{1}{2} m v^{2}$, its speed must also increase. If the work had come out negative, the kinetic energy and speed would have decreased.
PLUS
Additional examples, video, and practice available at WileyPLUS

7-9 Power

The time rate at which work is done by a force is said to be the power due to the force. If a force does an amount of work W in an amount of time Δt, the average power due to the force during that time interval is

$$
\begin{equation*}
P_{\text {avg }}=\frac{W}{\Delta t} \quad \text { (average power). } \tag{7-42}
\end{equation*}
$$

The instantaneous power P is the instantaneous time rate of doing work, which we can write as

$$
\begin{equation*}
P=\frac{d W}{d t} \quad \text { (instantaneous power). } \tag{7-43}
\end{equation*}
$$

Suppose we know the work $W(t)$ done by a force as a function of time. Then to get the instantaneous power P at, say, time $t=3.0 \mathrm{~s}$ during the work, we would first take the time derivative of $W(t)$ and then evaluate the result for $t=3.0 \mathrm{~s}$.

The SI unit of power is the joule per second. This unit is used so often that it has a special name, the watt (W), after James Watt, who greatly improved the rate at which steam engines could do work. In the British system, the unit of power is the footpound per second. Often the horsepower is used. These are related by

$$
\begin{equation*}
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=0.738 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} \tag{7-44}
\end{equation*}
$$

and $\quad 1$ horsepower $=1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}=746 \mathrm{~W}$.
Inspection of Eq. 7-42 shows that work can be expressed as power multiplied by time, as in the common unit kilowatt-hour. Thus,

$$
\begin{align*}
1 \text { kilowatt-hour } & =1 \mathrm{~kW} \cdot \mathrm{~h}=\left(10^{3} \mathrm{~W}\right)(3600 \mathrm{~s}) \\
& =3.60 \times 10^{6} \mathrm{~J}=3.60 \mathrm{MJ} \tag{7-46}
\end{align*}
$$

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour have become identified as electrical units. They can be used equally well as units for other examples of power and energy. Thus, if you pick up a book from the floor and put it on a tabletop, you are free to report the work that you have done as, say, $4 \times 10^{-6} \mathrm{~kW} \cdot \mathrm{~h}$ (or more conveniently as $4 \mathrm{~mW} \cdot \mathrm{~h}$).

Fig. 7-13 The power due to the truck's applied force on the trailing load is the rate at which that force does work on the load. (REGLAIN FREDERIC/GammaPresse, Inc.)

We can also express the rate at which a force does work on a particle (or particle-like object) in terms of that force and the particle's velocity. For a particle that is moving along a straight line (say, an x axis) and is acted on by a constant force \vec{F} directed at some angle ϕ to that line, Eq. $7-43$ becomes
or

$$
P=\frac{d W}{d t}=\frac{F \cos \phi d x}{d t}=F \cos \phi\left(\frac{d x}{d t}\right)
$$

$$
\begin{equation*}
P=F v \cos \phi \tag{7-47}
\end{equation*}
$$

Reorganizing the right side of Eq. 7-47 as the dot product $\vec{F} \cdot \vec{v}$, we may also write the equation as

$$
\begin{equation*}
P=\vec{F} \cdot \vec{v} \quad \text { (instantaneous power). } \tag{7-48}
\end{equation*}
$$

For example, the truck in Fig. 7-13 exerts a force \vec{F} on the trailing load, which has velocity \vec{v} at some instant. The instantaneous power due to \vec{F} is the rate at which \vec{F} does work on the load at that instant and is given by Eqs. 7-47 and 7-48. Saying that this power is "the power of the truck" is often acceptable, but keep in mind what is meant: Power is the rate at which the applied force does work.

CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is anchored at the center of a circle. Is the power due to the force on the block from the cord positive, negative, or zero?

Sample Problem

Power, force, and velocity

Figure 7-14 shows constant forces \vec{F}_{1} and \vec{F}_{2} acting on a box as the box slides rightward across a frictionless floor. Force \vec{F}_{1} is horizontal, with magnitude 2.0 N ; force \vec{F}_{2} is angled upward by 60° to the floor and has magnitude 4.0 N . The speed v of the box at a certain instant is $3.0 \mathrm{~m} / \mathrm{s}$. What is the power due to each force acting on the box at that instant, and what is the net power? Is the net power changing at that instant?

KEY IDEA

We want an instantaneous power, not an average power over a time period. Also, we know the box's velocity (rather than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force \vec{F}_{1}, at angle $\phi_{1}=180^{\circ}$ to velocity \vec{v}, we have

$$
\begin{aligned}
P_{1} & =F_{1} v \cos \phi_{1}=(2.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 180^{\circ} \\
& =-6.0 \mathrm{~W} .
\end{aligned}
$$

This negative result tells us that force \vec{F}_{1} is transferring energy from the box at the rate of $6.0 \mathrm{~J} / \mathrm{s}$.

For force \vec{F}_{2}, at angle $\phi_{2}=60^{\circ}$ to velocity \vec{v}, we have

$$
\begin{aligned}
P_{2} & =F_{2} v \cos \phi_{2}=(4.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ} \\
& =6.0 \mathrm{~W} .
\end{aligned}
$$

Fig. 7-14 Two forces \vec{F}_{1} and \vec{F}_{2} act on a box that slides rightward across a frictionless floor. The velocity of the box is \vec{v}.

This positive result tells us that force \vec{F}_{2} is transferring energy to the box at the rate of $6.0 \mathrm{~J} / \mathrm{s}$.

The net power is the sum of the individual powers:

$$
\begin{aligned}
P_{\mathrm{net}} & =P_{1}+P_{2} \\
& =-6.0 \mathrm{~W}+6.0 \mathrm{~W}=0
\end{aligned}
$$

(Answer)
which tells us that the net rate of transfer of energy to or from the box is zero. Thus, the kinetic energy $\left(K=\frac{1}{2} m v^{2}\right)$ of the box is not changing, and so the speed of the box will remain at $3.0 \mathrm{~m} / \mathrm{s}$. With neither the forces \vec{F}_{1} and \vec{F}_{2} nor the velocity \vec{v} changing, we see from Eq. 7-48 that P_{1} and P_{2} are constant and thus so is $P_{\text {net }}$.

Additional examples, video, and practice available at WileyPLUS

REVIEW \& SUMMARY

Kinetic Energy The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). } \tag{7-1}
\end{equation*}
$$

Work Work W is energy transferred to or from an object via a force acting on the object. Energy transferred to the object is positive work, and from the object, negative work.
Work Done by a Constant Force The work done on a particle by a constant force \vec{F} during displacement \vec{d} is

$$
\begin{equation*}
W=F d \cos \phi=\vec{F} \cdot \vec{d} \quad(\text { work , constant force }) \tag{7-7,7-8}
\end{equation*}
$$

in which ϕ is the constant angle between the directions of \vec{F} and \vec{d}. Only the component of \vec{F} that is along the displacement \vec{d} can do work on the object. When two or more forces act on an object, their net work is the sum of the individual works done by the forces, which is also equal to the work that would be done on the object by the net force $\vec{F}_{\text {net }}$ of those forces.
Work and Kinetic Energy For a particle, a change ΔK in the kinetic energy equals the net work W done on the particle:

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \quad(\text { work }- \text { kinetic energy theorem }), \tag{7-10}
\end{equation*}
$$

in which K_{i} is the initial kinetic energy of the particle and K_{f} is the kinetic energy after the work is done. Equation 7-10 rearranged gives us

$$
\begin{equation*}
K_{f}=K_{i}+W \tag{7-11}
\end{equation*}
$$

Work Done by the Gravitational Force The work W_{g} done by the gravitational force \vec{F}_{g} on a particle-like object of mass m as the object moves through a displacement \vec{d} is given by

$$
\begin{equation*}
W_{g}=m g d \cos \phi \tag{7-12}
\end{equation*}
$$

in which ϕ is the angle between \vec{F}_{g} and \vec{d}.
Work Done in Lifting and Lowering an Object The work W_{a} done by an applied force as a particle-like object is either lifted or lowered is related to the work W_{g} done by the gravitational force and the change ΔK in the object's kinetic energy by

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} \tag{7-15}
\end{equation*}
$$

If $K_{f}=K_{i}$, then Eq. 7-15 reduces to

$$
\begin{equation*}
W_{a}=-W_{g} \tag{7-16}
\end{equation*}
$$

which tells us that the applied force transfers as much energy to the object as the gravitational force transfers from it.

Spring Force The force \vec{F}_{s} from a spring is

$$
\begin{equation*}
\vec{F}_{s}=-k \vec{d} \quad(\text { Hooke's law), } \tag{7-20}
\end{equation*}
$$

where \vec{d} is the displacement of the spring's free end from its position when the spring is in its relaxed state (neither compressed nor extended), and k is the spring constant (a measure of the spring's stiffness). If an x axis lies along the spring, with the origin at the location of the spring's free end when the spring is in its relaxed state, Eq. 7-20 can be written as

$$
\begin{equation*}
F_{x}=-k x \quad(\text { Hooke's law). } \tag{7-21}
\end{equation*}
$$

A spring force is thus a variable force: It varies with the displacement of the spring's free end.
Work Done by a Spring Force If an object is attached to the spring's free end, the work W_{s} done on the object by the spring force when the object is moved from an initial position x_{i} to a final position x_{f} is

$$
\begin{equation*}
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} . \tag{7-25}
\end{equation*}
$$

If $x_{i}=0$ and $x_{f}=x$, then Eq. $7-25$ becomes

$$
\begin{equation*}
W_{s}=-\frac{1}{2} k x^{2} . \tag{7-26}
\end{equation*}
$$

Work Done by a Variable Force When the force \vec{F} on a parti-cle-like object depends on the position of the object, the work done by \vec{F} on the object while the object moves from an initial position r_{i} with coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ to a final position r_{f} with coordinates $\left(x_{f}, y_{f}, z_{f}\right)$ must be found by integrating the force. If we assume that component F_{x} may depend on x but not on y or z, component F_{y} may depend on y but not on x or z, and component F_{z} may depend on z but not on x or y, then the work is

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z \tag{7-36}
\end{equation*}
$$

If \vec{F} has only an x component, then Eq. 7-36 reduces to

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x \tag{7-32}
\end{equation*}
$$

Power The power due to a force is the rate at which that force does work on an object. If the force does work W during a time interval Δt, the average power due to the force over that time interval is

$$
\begin{equation*}
P_{\mathrm{avg}}=\frac{W}{\Delta t} \tag{7-42}
\end{equation*}
$$

Instantaneous power is the instantaneous rate of doing work:

$$
\begin{equation*}
P=\frac{d W}{d t} \tag{7-43}
\end{equation*}
$$

For a force \vec{F} at an angle ϕ to the direction of travel of the instantaneous velocity \vec{v}, the instantaneous power is

$$
\begin{equation*}
P=F v \cos \phi=\vec{F} \cdot \vec{v} \tag{7-47,7-48}
\end{equation*}
$$

1 Rank the following velocities according to the kinetic energy a particle will have with each velocity, greatest first: (a) $\vec{v}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$, (b) $\vec{v}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$, (c) $\vec{v}=-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$, (d) $\vec{v}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$, , (e) $\vec{v}=5 \hat{\mathrm{i}}$, and (f) $v=5 \mathrm{~m} / \mathrm{s}$ at 30° to the horizontal.
2 Figure 7-15a shows two horizontal forces that act on a block that is sliding to the right across a frictionless floor. Figure 7-15b shows three plots of the block's kinetic energy K versus time t.

Fig. 7-15
Question 2.

Which of the plots best corresponds to the following three situations: (a) $F_{1}=F_{2}$, (b) $F_{1}>F_{2}$, (c) $F_{1}<F_{2}$?
3 Is positive or negative work done by a constant force \vec{F} on a particle during a straight-line displacement \vec{d} if (a) the angle between \vec{F} and \vec{d} is 30°; (b) the angle is 100°; (c) $\vec{F}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$ and $\vec{d}=-4 \hat{\mathrm{i}}$?

4 In three situations, a briefly applied horizontal force changes the velocity of a hockey puck that slides over frictionless ice. The overhead views of Fig. 7-16 indicate, for each situation, the puck's initial speed v_{i}, its final speed v_{f}, and the directions of the corresponding velocity vectors. Rank the situations according to the work done on the puck by the applied force, most positive first and most negative last.

(a)

(b)

(c)

Fig. 7-16 Question 4.
5 Figure 7-17 shows four graphs (drawn to the same scale) of the x component F_{x} of a variable force (directed along an x axis) versus the position x of a particle on which the force acts. Rank the graphs according to the work done by the force on the particle from $x=0$ to $x=x_{1}$, from most positive work first to most negative work last.

Fig. 7-17 Question 5.
6 Figure 7-18 gives the x component F_{x} of a force that can act on a particle. If the particle begins at rest at $x=0$, what is its coordinate when it has (a) its greatest kinetic energy, (b) its greatest speed, and (c) zero speed? (d) What is the particle's direction of travel after it reaches $x=6 \mathrm{~m}$?

Fig. 7-18 Question 6.

7 In Fig. 7-19, a greased pig has a choice of three frictionless slides along which to slide to the ground. Rank the slides according to how much work the gravitational force does on the pig during the descent, greatest first.

Fig. 7-19 Question 7.
8 Figure 7-20a shows four situations in which a horizontal force acts on the same block, which is initially at rest. The force magnitudes are $F_{2}=F_{4}=2 F_{1}=2 F_{3}$. The horizontal component v_{x} of the block's velocity is shown in Fig. 7-20b for the four situations. (a) Which plot in Fig. 7-20b best corresponds to which force in Fig. 7-20a? (b) Which plot in Fig. 7-20c (for kinetic energy K versus time t) best corresponds to which plot in Fig. 7-20b?

Fig. 7-20 Question 8.
9 Spring A is stiffer than spring $B\left(k_{A}>k_{B}\right)$. The spring force of which spring does more work if the springs are compressed (a) the same distance and (b) by the same applied force?
10 A glob of slime is launched or dropped from the edge of a cliff. Which of the graphs in Fig. 7-21 could possibly show how the kinetic energy of the glob changes during its flight?

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7-21 Question 10.

sec. 7-3 Kinetic Energy

$\bullet 1$ SSM A proton (mass $m=1.67 \times 10^{-27} \mathrm{~kg}$) is being accelerated along a straight line at $3.6 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}$ in a machine. If the proton has an initial speed of $2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and travels 3.5 cm , what then is (a) its speed and (b) the increase in its kinetic energy?
-2 If a Saturn V rocket with an Apollo spacecraft attached had a combined mass of $2.9 \times 10^{5} \mathrm{~kg}$ and reached a speed of $11.2 \mathrm{~km} / \mathrm{s}$, how much kinetic energy would it then have?
-3 3 On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada, much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's mass was about $4 \times 10^{6} \mathrm{~kg}$; its speed was about $15 \mathrm{~km} / \mathrm{s}$. Had it entered the atmosphere vertically, it would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of kinetic energy (in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is $4.2 \times 10^{15} \mathrm{~J}$. (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent?
$\bullet 4$ A bead with mass $1.8 \times 10^{-2} \mathrm{~kg}$ is moving along a wire in the positive direction of an x axis. Beginning at time $t=0$, when the bead passes through $x=0$ with speed $12 \mathrm{~m} / \mathrm{s}$, a constant force acts on the bead. Figure 7-22 indicates the bead's position at these four times: $t_{0}=0, t_{1}=1.0 \mathrm{~s}, t_{2}=2.0 \mathrm{~s}$, and $t_{3}=3.0 \mathrm{~s}$. The bead momentarily stops at $t=3.0 \mathrm{~s}$. What is the kinetic energy of the bead at $t=10 \mathrm{~s}$?

Fig. 7-22 Problem 4.
-0 A father racing his son has half the kinetic energy of the son, who has half the mass of the father. The father speeds up by $1.0 \mathrm{~m} / \mathrm{s}$ and then has the same kinetic energy as the son. What are the original speeds of (a) the father and (b) the son?
-06 A force \vec{F}_{a} is applied to a bead as the bead is moved along a straight wire through displacement +5.0 cm . The magnitude of \vec{F}_{a} is set at a certain value, but the angle ϕ between \vec{F}_{a} and the bead's displacement can be chosen. Figure 7-23 gives the work W done by \vec{F}_{a} on the bead for a range of ϕ values; $W_{0}=$ 25 J. How much work is done by \vec{F}_{a} if ϕ is (a) 64° and (b) 147° ?

Fig. 7-23 Problem 6.

sec. 7-5 Work and Kinetic Energy

-7 A 3.0 kg body is at rest on a frictionless horizontal air track when a constant horizontal force \vec{F} acting in the positive direction of an x axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in Fig. 7-24. The force \vec{F} is applied to the body at $t=0$, and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force \vec{F} between $t=0$ and $t=2.0 \mathrm{~s}$?

Fig. 7-24 Problem 7.
-8 A ice block floating in a river is pushed through a displacement $\vec{d}=(15 \mathrm{~m}) \hat{\mathrm{i}}-(12 \mathrm{~m}) \hat{\mathrm{j}}$ along a straight embankment by rushing water, which exerts a force $\vec{F}=(210 \mathrm{~N}) \hat{\mathrm{i}}-(150 \mathrm{~N}) \hat{\mathrm{j}}$ on the block. How much work does the force do on the block during the displacement?
-9 The only force acting on a 2.0 kg canister that is moving in an $x y$ plane has a magnitude of 5.0 N . The canister initially has a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction and some time later has a velocity of $6.0 \mathrm{~m} / \mathrm{s}$ in the positive y direction. How much work is done on the canister by the 5.0 N force during this time?
-10 A coin slides over a frictionless plane and across an $x y$ coordinate system from the origin to a point with $x y$ coordinates ($3.0 \mathrm{~m}, 4.0 \mathrm{~m}$) while a constant force acts on it. The force has magnitude 2.0 N and is directed at a counterclockwise angle of 100° from the positive direction of the x axis. How much work is done by the force on the coin during the displacement?

- 11 A 12.0 N force with a fixed orientation does work on a particle as the particle moves through the three-dimensional displacement $\vec{d}=(2.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}) \mathrm{m}$. What is the angle between the force and the displacement if the change in the particle's kinetic energy is (a) +30.0 J and (b) -30.0 J ?
$\bullet 12$ A can of bolts and nuts is pushed 2.00 m along an x axis by a broom along the greasy (frictionless) floor of a car repair shop in a version of shuffleboard. Figure 7-25 gives the work W done on the

Fig. 7-25 Problem 12.
can by the constant horizontal force from the broom, versus the can's position x. The scale of the figure's vertical axis is set by $W_{s}=$ 6.0 J . (a) What is the magnitude of that force? (b) If the can had an initial kinetic energy of 3.00 J , moving in the positive direction of the x axis, what is its kinetic energy at the end of the 2.00 m ?
-•13 A luge and its rider, with a total mass of 85 kg , emerge from a downhill track onto a horizontal straight track with an initial speed of $37 \mathrm{~m} / \mathrm{s}$. If a force slows them to a stop at a constant rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$, (a) what magnitude F is required for the force, (b) what distance d do they travel while slowing, and (c) what work W is done on them by the force? What are (d) F, (e) d, and (f) W if they, instead, slow at $4.0 \mathrm{~m} / \mathrm{s}^{2}$?
$\bullet 14$ © Figure 7-26 shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but now moves across a frictionless floor. The force magnitudes are $F_{1}=3.00 \mathrm{~N}, F_{2}=4.00 \mathrm{~N}$, and $F_{3}=10.0 \mathrm{~N}$, and the indicated angles are $\theta_{2}=50.0^{\circ}$ and $\theta_{3}=35.0^{\circ}$. What is the net work done on the canister by the three forces during the first 4.00 m of displacement?

Fig. 7-26 Problem 14.
-•15 60 Figure 7-27 shows three forces applied to a trunk that moves leftward by 3.00 m over a frictionless floor. The force magnitudes are $F_{1}=5.00 \mathrm{~N}, F_{2}=9.00 \mathrm{~N}$, and $F_{3}=3.00 \mathrm{~N}$, and the indicated angle is $\theta=60.0^{\circ}$. During the displacement, (a) what is the net work done on the trunk by the three forces and (b) does the kinetic energy of the trunk increase or decrease?

Fig. 7-27 Problem 15.
$\bullet \bullet 16$ © An 8.0 kg object is moving in the positive direction of an x axis. When it passes through $x=0$, a constant force directed along the axis begins to act on it. Figure 7-28 gives its kinetic en-

Fig. 7-28 Problem 16.
ergy K versus position x as it moves from $x=0$ to $x=5.0 \mathrm{~m} ; K_{0}=$ 30.0 J . The force continues to act. What is v when the object moves back through $x=-3.0 \mathrm{~m}$?

sec. 7-6 Work Done by the Gravitational Force

-17 SSM Www A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of a cable. The acceleration of the astronaut is $g / 10$. How much work is done on the astronaut by (a) the force from the helicopter and (b) the gravitational force on her? Just before she reaches the helicopter, what are her (c) kinetic energy and (d) speed?
-18 (a) In 1975 the roof of Montreal's Velodrome, with a weight of 360 kN , was lifted by 10 cm so that it could be centered. How much work was done on the roof by the forces making the lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one end of a car that had fallen onto her son when a jack failed. If her panic lift effectively raised 4000 N (about $\frac{1}{4}$ of the car's weight) by 5.0 cm , how much work did her force do on the car?
-०19 ©0 In Fig. 7-29, a block of ice slides down a frictionless ramp at angle $\theta=50^{\circ}$ while an ice worker pulls on the block (via a rope) with a force \vec{F}_{r} that has a magnitude of 50 N and is directed up the ramp. As the block slides through distance $d=0.50 \mathrm{~m}$ along the ramp, its kinetic energy increases by 80 J . How much greater would its kinetic energy have been if the rope had not been attached to the block?

Fig. 7-29 Problem 19.
-०20 A block is sent up a frictionless ramp along which an x axis extends upward. Figure 7-30 gives the kinetic energy of the block as a function of position x; the scale of the figure's vertical axis is set by $K_{s}=40.0 \mathrm{~J}$. If the block's initial speed is $4.00 \mathrm{~m} / \mathrm{s}$, what is the normal force on the block?

Fig. 7-30 Problem 20.
-221 SSM A cord is used to vertically lower an initially stationary block of mass M at a constant downward acceleration of $g / 4$. When the block has fallen a distance d, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block.
-22 A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The
lift is performed in three stages, each requiring a vertical distance of 10.0 m : (a) the initially stationary spelunker is accelerated to a speed of $5.00 \mathrm{~m} / \mathrm{s}$; (b) he is then lifted at the constant speed of 5.00 m / s; (c) finally he is decelerated to zero speed. How much work is done on the 80.0 kg rescuee by the force lifting him during each stage?
-223 In Fig. 7-31, a constant force \vec{F}_{a} of magnitude 82.0 N is applied to a 3.00 kg shoe box at angle $\phi=53.0^{\circ}$, causing the box to move up a frictionless ramp at constant speed. How much work is done on the box by \vec{F}_{a} when the box has moved through vertical distance $h=$ 0.150 m ?

Fig. 7-31 Problem 23.
-•24 ©0 In Fig. 7-32, a horizontal force \vec{F}_{a} of magnitude 20.0 N is applied to a 3.00 kg psychology book as the book slides a distance $d=0.500 \mathrm{~m}$ up a frictionless ramp at angle $\theta=30.0^{\circ}$. (a) During the displacement, what is the net work done on the book by \vec{F}_{a}, the gravitational force on the book, and the normal force on the book? (b) If the book has zero kinetic energy at the start of the displacement, what is its speed at the end of the displacement?

Fig. 7-32 Problem 24.
©0025 ©0 In Fig. 7-33, a 0.250 kg block of cheese lies on the floor of a 900 kg elevator cab that is being pulled upward by a cable through distance $d_{1}=$ 2.40 m and then through distance $d_{2}=10.5 \mathrm{~m}$. (a) Through d_{1}, if the normal force on the block from the floor has constant magnitude $F_{N}=3.00 \mathrm{~N}$, how much work is done on the cab by the force from the cable? (b) Through d_{2}, if the work done on the cab by the (constant) force from the cable is 92.61 kJ ,

Fig. 7-33 Problem 25. what is the magnitude of F_{N} ?

sec. 7-7 Work Done by a Spring Force

-26 In Fig. 7-9, we must apply a force of magnitude 80 N to hold the block stationary at $x=-2.0 \mathrm{~cm}$. From that position, we then slowly move the block so that our force does +4.0 J of work on the spring-block system; the block is then again stationary. What is the block's position? (Hint:There are two answers.)
$\cdot 27$ A spring and block are in the arrangement of Fig. 7-9. When the block is pulled out to $x=+4.0 \mathrm{~cm}$, we must apply a force of magnitude 360 N to hold it there. We pull the block to $x=11 \mathrm{~cm}$ and then release
it. How much work does the spring do on the block as the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to (a) $x=+3.0 \mathrm{~cm}$, (b) $x=-3.0 \mathrm{~cm}$, (c) $x=$ -5.0 cm , and (d) $x=-9.0 \mathrm{~cm}$?
-28 During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law with a spring constant of $100 \mathrm{~N} / \mathrm{m}$. If the hose is stretched by 5.00 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length?
-029 In the arrangement of Fig. 7-9, we gradually pull the block from $x=0$ to $x=+3.0 \mathrm{~cm}$, where it is stationary. Figure $7-34$ gives the work that our force does on the block. The scale of the figure's vertical axis is set by $W_{s}=1.0 \mathrm{~J}$. We then pull the block out to $x=$ +5.0 cm and release it from rest. How much work does the spring do on the block when the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to (a) $x=+4.0 \mathrm{~cm}$, (b) $x=-2.0 \mathrm{~cm}$, and (c) $x=-5.0 \mathrm{~cm}$?

Fig. 7-34 Problem 29.
-•30 In Fig. 7-9a, a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched $(x=0)$ when a constant horizontal force \vec{F} in the positive direction of the x axis is applied to it. A plot of the resulting kinetic energy of the block versus its position x is shown in Fig. 7-35. The scale of the figure's vertical axis is set by $K_{s}=4.0 \mathrm{~J}$. (a) What is the magnitude of \vec{F} ? (b) What is the value of k ?

Fig. 7-35 Problem 30.
$\because 31$ SSM www The only force acting on a 2.0 kg body as it moves along a positive x axis has an x component $F_{x}=-6 x \mathrm{~N}$, with x in meters. The velocity at $x=3.0 \mathrm{~m}$ is $8.0 \mathrm{~m} / \mathrm{s}$. (a) What is the velocity of the body at $x=4.0 \mathrm{~m}$? (b) At what positive value of x will the body have a velocity of $5.0 \mathrm{~m} / \mathrm{s}$?
-•32 Figure 7-36 gives spring force F_{x} versus position x for the spring-block arrangement of Fig. 7-9. The scale is set by $F_{s}=160.0$ N . We release the block at $x=12 \mathrm{~cm}$. How much work does the spring do on the block when the block moves from $x_{i}=+8.0$ cm to (a) $x=+5.0 \mathrm{~cm}$, (b) $x=-5.0 \mathrm{~cm}$, (c) $x=-8.0 \mathrm{~cm}$, and (d) $x=-10.0 \mathrm{~cm}$?

Fig. 7-36 Problem 32.
-•033 The block in Fig. 7-9a lies on a horizontal frictionless surface, and the spring constant is $50 \mathrm{~N} / \mathrm{m}$. Initially, the spring is at its relaxed length and the block is stationary at position $x=0$. Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy?
sec. 7-8 Work Done by a General Variable Force
-34 ILW A 10 kg brick moves along an x axis. Its acceleration as a function of its position is shown in Fig. 7-37. The scale of the figure's vertical axis is set by $a_{s}=20.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the net work performed on the brick by the force causing the acceleration as the brick moves from $x=0$ to $x=8.0 \mathrm{~m}$?

Fig. 7-37 Problem 34.
-35 SSM Www The force on a particle is directed along an x axis and given by $F=F_{0}\left(x / x_{0}-1\right)$. Find the work done by the force in moving the particle from $x=0$ to $x=2 x_{0}$ by (a) plotting $F(x)$ and measuring the work from the graph and (b) integrating $F(x)$.
-36 A 5.0 kg block moves in a straight line on a horizontal frictionless surface under the influence of a force that varies with position as shown in Fig. 7-38.

Fig. 7-38 Problem 36.

The scale of the figure's vertical axis is set by $F_{s}=10.0 \mathrm{~N}$. How much work is done by the force as the block moves from the origin to $x=8.0 \mathrm{~m}$?
-037 Figure 7-39 gives the acceleration of a 2.00 kg particle as an applied force \vec{F}_{a} moves it from rest along an x axis from $x=0$ to $x=9.0 \mathrm{~m}$. The scale of the figure's vertical axis is set by $a_{s}=6.0$ $\mathrm{m} / \mathrm{s}^{2}$. How much work has the force done on the particle when the particle reaches (a) $x=4.0 \mathrm{~m}$, (b) $x=7.0 \mathrm{~m}$, and (c) $x=9.0 \mathrm{~m}$? What is the particle's speed and direction of travel when it reaches (d) $x=4.0 \mathrm{~m}$, (e) $x=7.0 \mathrm{~m}$, and (f) $x=9.0 \mathrm{~m}$?

Fig. 7-39 Problem 37.

- 38 A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by $\vec{F}(x)=\left(2.5-x^{2}\right) \hat{\mathrm{i}} \mathrm{N}$, where x is in meters and the initial position of the block is $x=0$. (a) What is the kinetic energy of the block as it passes through $x=2.0 \mathrm{~m}$? (b) What is the maximum kinetic energy of the block between $x=0$ and $x=2.0 \mathrm{~m}$?
-०39 (60 A force $\vec{F}=\left(c x-3.00 x^{2}\right) \hat{\mathrm{i}}$ acts on a particle as the particle moves along an x axis, with \vec{F} in newtons, x in meters, and c a constant. At $x=0$, the particle's kinetic energy is 20.0 J ; at $x=3.00$ m , it is 11.0 J . Find c.
-•40 A can of sardines is made to move along an x axis from $x=$ 0.25 m to $x=1.25 \mathrm{~m}$ by a force with a magnitude given by $F=$ $\exp \left(-4 x^{2}\right)$, with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the can by the force?
-०41 A single force acts on a 3.0 kg particle-like object whose position is given by $x=3.0 t-4.0 t^{2}+1.0 t^{3}$, with x in meters and t in seconds. Find the work done on the object by the force from $t=0$ to $t=4.0 \mathrm{~s}$.
-0042 Figure 7-40 shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an x axis. The left end of the cord is pulled over a pulley, of negligible mass and friction and at cord height $h=1.20 \mathrm{~m}$, so the cart slides from $x_{1}=3.00$ m to $x_{2}=1.00 \mathrm{~m}$. During the move, the tension in the cord is a constant 25.0 N . What is the change in the kinetic energy of the cart during the move?

Fig. 7-40 Problem 42.

** View All Solutions Here **

sec. 7-9 Power
-43 SSM A force of 5.0 N acts on a 15 kg body initially at rest. Compute the work done by the force in (a) the first, (b) the second, and (c) the third seconds and (d) the instantaneous power due to the force at the end of the third second.
-44 A skier is pulled by a towrope up a frictionless ski slope that makes an angle of 12° with the horizontal. The rope moves parallel to the slope with a constant speed of $1.0 \mathrm{~m} / \mathrm{s}$. The force of the rope does 900 J of work on the skier as the skier moves a distance of 8.0 m up the incline. (a) If the rope moved with a constant speed of 2.0 m / s, how much work would the force of the rope do on the skier as the skier moved a distance of 8.0 m up the incline? At what rate is the force of the rope doing work on the skier when the rope moves with a speed of (b) $1.0 \mathrm{~m} / \mathrm{s}$ and (c) $2.0 \mathrm{~m} / \mathrm{s}$?
-45 SSM ILW A 100 kg block is pulled at a constant speed of 5.0 m / s across a horizontal floor by an applied force of 122 N directed 37° above the horizontal. What is the rate at which the force does work on the block?
-46 The loaded cab of an elevator has a mass of $3.0 \times 10^{3} \mathrm{~kg}$ and moves 210 m up the shaft in 23 s at constant speed. At what average rate does the force from the cable do work on the cab?
-47 A machine carries a 4.0 kg package from an initial position of $\vec{d}_{i}=(0.50 \mathrm{~m}) \hat{\mathrm{i}}+(0.75 \mathrm{~m}) \hat{\mathrm{j}}+(0.20 \mathrm{~m}) \hat{\mathrm{k}}$ at $t=0$ to a final position of $\vec{d}_{f}=(7.50 \mathrm{~m}) \hat{\mathrm{i}}+(12.0 \mathrm{~m}) \hat{\mathrm{j}}+(7.20 \mathrm{~m}) \hat{\mathrm{k}}$ at $t=12 \mathrm{~s}$. The constant force applied by the machine on the package is $\vec{F}=(2.00 \mathrm{~N}) \hat{\mathrm{i}}+(4.00 \mathrm{~N}) \hat{\mathrm{j}}+(6.00 \mathrm{~N}) \hat{\mathrm{k}}$. For that displacement, find (a) the work done on the package by the machine's force and (b) the average power of the machine's force on the package.
-48 A 0.30 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring $(k=500 \mathrm{~N} / \mathrm{m})$ whose other end is fixed. The ladle has a kinetic energy of 10 J as it passes through its equilibrium position (the point at which the spring force is zero). (a) At what rate is the spring doing work on the ladle as the ladle passes through its equilibrium position? (b) At what rate is the spring doing work on the ladle when the spring is compressed 0.10 m and the ladle is moving away from the equilibrium position?
-•49 SSM A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg , which is required to travel upward 54 m in 3.0 min , starting and ending at rest. The elevator's counterweight has a mass of only 950 kg , and so the elevator motor must help. What average power is required of the force the motor exerts on the cab via the cable?
-•50 (a) At a certain instant, a particle-like object is acted on by a force $\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}-(2.0 \mathrm{~N}) \hat{\mathrm{j}}+(9.0 \mathrm{~N}) \hat{\mathrm{k}}$ while the object's velocity is $\vec{v}=-(2.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}$. What is the instantaneous rate at which the force does work on the object? (b) At some other time, the velocity consists of only a y component. If the force is unchanged and the instantaneous power is -12 W , what is the velocity of the object?
-.51 A force $\vec{F}=(3.00 \mathrm{~N}) \hat{\mathrm{i}}+(7.00 \mathrm{~N}) \hat{\mathrm{j}}+(7.00 \mathrm{~N}) \hat{\mathrm{k}}$ acts on a 2.00 kg mobile object that moves from an initial position of $\vec{d}_{i}=(3.00 \mathrm{~m}) \hat{\mathrm{i}}-(2.00 \mathrm{~m}) \hat{\mathrm{j}}+(5.00 \mathrm{~m}) \hat{\mathrm{k}}$ to a final position of $\vec{d}_{f}=-(5.00 \mathrm{~m}) \hat{\mathrm{i}}+(4.00 \mathrm{~m}) \hat{\mathrm{j}}+(7.00 \mathrm{~m}) \hat{\mathrm{k}}$ in 4.00 s . Find (a) the work done on the object by the force in the 4.00 s interval, (b) the average power due to the force during that interval, and (c) the angle between vectors \vec{d}_{i} and \vec{d}_{f}.
$\bullet 52$ A funny car accelerates from rest through a measured track distance in time T with the engine operating at a constant power P. If the track crew can increase the engine power by a differential amount $d P$, what is the change in the time required for the run?

Additional Problems

53 Figure 7-41 shows a cold package of hot dogs sliding rightward across a frictionless floor through a distance $d=20.0 \mathrm{~cm}$ while three forces act on the package. Two of them are horizontal and have the magnitudes $F_{1}=5.00 \mathrm{~N}$ and $F_{2}=1.00 \mathrm{~N}$; the third is angled down by $\theta=60.0^{\circ}$ and has the magnitude $F_{3}=4.00 \mathrm{~N}$. (a) For the 20.0 cm displacement, what is the net work done on the package by the three applied forces, the gravitational force on the package, and the normal force on the package? (b) If the package has a mass of 2.0 kg and an initial kinetic energy of 0 , what is its speed at the end of the displacement?

Fig. 7-41 Problem 53.

54 The only force acting on a 2.0 kg body as the body moves along an x axis varies as shown in Fig. 7-42. The scale of the figure's vertical axis is set by $F_{s}=4.0 \mathrm{~N}$. The velocity of the body at $x=0$ is $4.0 \mathrm{~m} / \mathrm{s}$. (a) What is the kinetic energy of the body at $x=$ 3.0 m ? (b) At what value of x will the

Fig. 7-42 Problem 54. body have a kinetic energy of 8.0 J ? (c) What is the maximum kinetic energy of the body between $x=0$ and $x=5.0 \mathrm{~m}$?
55 SSM A horse pulls a cart with a force of 40 lb at an angle of 30° above the horizontal and moves along at a speed of $6.0 \mathrm{mi} / \mathrm{h}$. (a) How much work does the force do in 10 min ? (b) What is the average power (in horsepower) of the force?
56 An initially stationary 2.0 kg object accelerates horizontally and uniformly to a speed of $10 \mathrm{~m} / \mathrm{s}$ in 3.0 s . (a) In that 3.0 s interval, how much work is done on the object by the force accelerating it? What is the instantaneous power due to that force (b) at the end of the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length $L=12.0 \mathrm{~m}$. You push horizontally on the crate with a varying force \vec{F} to move it distance $d=$ 4.00 m to the side (Fig. 7-43). (a) What is the magnitude of \vec{F} when the crate is in this final position? During the crate's displacement, what are (b) the total work done on it, (c) the work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your

Fig. 7-43 Problem 57.
force \vec{F} does on the crate. (f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?
58 To pull a 50 kg crate across a horizontal frictionless floor, a worker applies a force of 210 N , directed 20° above the horizontal. As the crate moves 3.0 m , what work is done on the crate by (a) the worker's force, (b) the gravitational force on the crate, and (c) the normal force on the crate from the floor? (d) What is the total work done on the crate?
59 An explosion at ground level leaves a crater with a diameter that is proportional to the energy of the explosion raised to the $\frac{1}{3}$ power; an explosion of 1 megaton of TNT leaves a crater with a 1 km diameter. Below Lake Huron in Michigan there appears to be an ancient impact crater with a 50 km diameter. What was the kinetic energy associated with that impact, in terms of (a) megatons of TNT (1 megaton yields $4.2 \times 10^{15} \mathrm{~J}$) and (b) Hiroshima bomb equivalents (13 kilotons of TNT each)? (Ancient meteorite or comet impacts may have significantly altered Earth's climate and contributed to the extinction of the dinosaurs and other life-forms.)

60 A frightened child is restrained by her mother as the child slides down a frictionless playground slide. If the force on the child from the mother is 100 N up the slide, the child's kinetic energy increases by 30 J as she moves down the slide a distance of 1.8 m . (a) How much work is done on the child by the gravitational force during the 1.8 m descent? (b) If the child is not restrained by her mother, how much will the child's kinetic energy increase as she comes down the slide that same distance of 1.8 m ?
61 How much work is done by a force $\vec{F}=(2 x \mathrm{~N}) \hat{\mathrm{i}}+(3 \mathrm{~N}) \hat{\mathrm{j}}$, with x in meters, that moves a particle from a position $\vec{r}_{i}=$ $(2 \mathrm{~m}) \hat{\mathrm{i}}+(3 \mathrm{~m}) \hat{\mathrm{j}}$ to a position $\vec{r}_{f}=-(4 \mathrm{~m}) \hat{\mathrm{i}}-(3 \mathrm{~m}) \hat{\mathrm{j}}$?
62 A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of $k=2.5$ N / cm (Fig. 7-44). The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume that friction is negligible.) (d) If the speed at impact is doubled, what is the maximum compression of the spring?
63 SSM To push a 25.0 kg crate up a frictionless incline, angled at 25.0° to the horizontal, a worker exerts a force of 209 N parallel to the incline. As the crate slides 1.50 m , how much work is done on the crate by (a) the worker's applied force, (b) the gravitational force on the crate, and (c) the normal force exerted by the incline on the crate? (d) What is the total work done on the crate?
64 Boxes are transported from one location to another in a warehouse by means of a conveyor belt that moves with a constant speed of $0.50 \mathrm{~m} / \mathrm{s}$. At a certain location the conveyor belt moves for 2.0 m up an incline that makes an angle of 10° with the horizontal, then for 2.0 m horizontally, and finally for 2.0 m down an incline that makes an angle of 10° with the horizontal. Assume that a 2.0 kg box rides on the belt without slipping. At what rate is the force of the conveyor belt doing work on the box as the box moves (a) up the 10° incline, (b) horizontally, and (c) down the 10° incline?

65 In Fig. 7-45, a cord runs around two massless, frictionless pulleys. A canister with mass $m=20 \mathrm{~kg}$ hangs from one pulley, and you exert a force \vec{F} on the free end of the cord. (a) What must be the magnitude of \vec{F} if you are to lift the canister at a constant speed? (b) To lift the canister by 2.0 cm , how far must you pull the free end of the cord? During that lift, what is the work done on the canister by (c) your force (via the cord) and (d) the gravitational force? (Hint: When a cord loops around a pulley as shown, it pulls on the pulley with a net force that is twice the tension in the cord.)

Fig. 7-45 Problem 65.
66 If a car of mass 1200 kg is moving along a highway at $120 \mathrm{~km} / \mathrm{h}$, what is the car's kinetic energy as determined by someone standing alongside the highway?
67 SSM A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different packages are hung from the spring, in turn, as shown in Fig. 7-46. (a) Which mark on the scale will the pointer indicate when no package is hung from the spring? (b) What is the weight W of the third package?

Fig. 7-46 Problem 67.
68 An iceboat is at rest on a frictionless frozen lake when a sudden wind exerts a constant force of 200 N , toward the east, on the boat. Due to the angle of the sail, the wind causes the boat to slide in a straight line for a distance of 8.0 m in a direction 20° north of east. What is the kinetic energy of the iceboat at the end of that 8.0 m ?
69 If a ski lift raises 100 passengers averaging 660 N in weight to a height of 150 m in 60.0 s , at constant speed, what average power is required of the force making the lift?

70 A force $\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}$ acts on a particle as the particle goes through displacement $\vec{d}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}-(2.0 \mathrm{~m}) \hat{\mathrm{j}}$. (Other forces also act on the particle.) What is c if the work done on the particle by force \vec{F} is (a) 0, (b) 17 J , and (c) -18 J ?
71 A constant force of magnitude 10 N makes an angle of 150° (measured counterclockwise) with the positive x direction as it acts on a 2.0 kg object moving in an $x y$ plane. How much work is done on the object by the force as the object moves from the origin to the point having position vector $(2.0 \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~m}) \hat{\mathrm{j}}$?
72 In Fig. 7-47a, a 2.0 N force is applied to a 4.0 kg block at a downward angle θ as the block moves rightward through 1.0 m across a frictionless floor. Find an expression for the speed v_{f} of the block at the end of that distance if the block's initial velocity is (a) 0 and (b) $1.0 \mathrm{~m} / \mathrm{s}$ to the right. (c) The situation in Fig. 7-47b is similar in that the block is initially moving at $1.0 \mathrm{~m} / \mathrm{s}$ to the right, but now the 2.0 N force is directed downward to the left. Find an expression for the speed v_{f} of the block at the end of the 1.0 m distance. (d) Graph all three expressions for v_{f} versus downward angle θ for $\theta=0^{\circ}$ to $\theta=90^{\circ}$. Interpret the graphs.

Fig. 7-47 Problem 72.

73 A force \vec{F} in the positive direction of an x axis acts on an object moving along the axis. If the magnitude of the force is $F=$ $10 e^{-x / 2.0} \mathrm{~N}$, with x in meters, find the work done by \vec{F} as the object moves from $x=0$ to $x=2.0 \mathrm{~m}$ by (a) plotting $F(x)$ and estimating the area under the curve and (b) integrating to find the work analytically.
74 A particle moves along a straight path through displacement $\vec{d}=(8 \mathrm{~m}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}$ while force $\vec{F}=(2 \mathrm{~N}) \hat{\mathrm{i}}-(4 \mathrm{~N}) \hat{\mathrm{j}}$ acts on it. (Other forces also act on the particle.) What is the value of c if the work done by \vec{F} on the particle is (a) zero, (b) positive, and (c) negative?
75 SSM An elevator cab has a mass of 4500 kg and can carry a maximum load of 1800 kg . If the cab is moving upward at full load at $3.80 \mathrm{~m} / \mathrm{s}$, what power is required of the force moving the cab to maintain that speed?
76 A 45 kg block of ice slides down a frictionless incline 1.5 m long and 0.91 m high. A worker pushes up against the ice, parallel to the incline, so that the block slides down at constant speed. (a) Find the magnitude of the worker's force. How much work is done on the block by (b) the worker's force, (c) the gravitational force on the block, (d) the normal force on the block from the surface of the incline, and (e) the net force on the block?
77 As a particle moves along an x axis, a force in the positive direction of the axis acts on it. Figure 7-48 shows the magnitude F of the
force versus position x of the particle. The curve is given by $F=a / x^{2}$, with $a=9.0 \mathrm{~N} \cdot \mathrm{~m}^{2}$. Find the work done on the particle by the force as the particle moves from $x=1.0 \mathrm{~m}$ to $x=3.0 \mathrm{~m}$ by (a) estimating the work from the graph and (b) integrating the force function.

Fig. 7-48 Problem 77.

78 A CD case slides along a floor in the positive direction of an x axis while an applied force \vec{F}_{a} acts on the case. The force is directed along the x axis and has the x component $F_{a x}=9 x-3 x^{2}$, with x in meters and $F_{a x}$ in newtons. The case starts at rest at the position $x=0$, and it moves until it is again at rest. (a) Plot the work \vec{F}_{a} does on the case as a function of x. (b) At what position is the work maximum, and (c) what is that maximum value? (d) At what position has the work decreased to zero? (e) At what position is the case again at rest?
79 SSM A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction of an x axis along the surface. Beginning at time $t=0$, a steady wind pushes on the lunchbox in the negative direction of the x axis. Figure 7-49 shows the position x of the lunchbox as a function of time t as the wind pushes on the lunchbox. From the graph, estimate the kinetic energy of the lunchbox at (a) $t=1.0 \mathrm{~s}$ and (b) $t=5.0 \mathrm{~s}$. (c) How much work does the force from the wind do on the lunchbox from $t=1.0 \mathrm{~s}$ to $t=5.0 \mathrm{~s}$?

Fig. 7-49 Problem 79.

80 Numerical integration. A breadbox is made to move along an x axis from $x=0.15 \mathrm{~m}$ to $x=1.20 \mathrm{~m}$ by a force with a magnitude given by $F=\exp \left(-2 x^{2}\right)$, with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the breadbox by the force?

