المعادلات في الاعداد العقدية

الشكل الخامس

عقدية a, b, c حيث $az^2 + bz + c = 0$ توجد الجذرين التربيعين للعدد العقدي △ ونلاحظ ان المعادلة لها

 $\frac{-b \pm \sqrt{\Delta}}{2a}$: جذرین عقدیین غیر مترافقین

P: 66 نوطة

عيث a, b, c حيث $az^2 + bz + c = 0$

: ونميز الحالات $\Delta=b^2-4(a)(c)$

$$\frac{-b\pm\sqrt{\Delta}}{2a}$$
 للمعادلة جذرين حقيقين $\Delta>0$ (١ $\Delta>0$ للمعادلة جذر مضاعف $\Delta=0$ (٢

$$\frac{-b}{2a}$$
 للمعادلة جذر مضاعف $\Delta = 0$ (

$$\frac{-b \pm i\sqrt{-\Delta}}{2a}$$
 للمعادلة جذرين عقديين $\Delta < 0$ (٣

الشكل الثاني

الشكل الأول

جملة معادلتين خطيتين

P:118

الشكل الثالث

المعادلة المكتوبة بدلالة \overline{Z} نأخذ المرافق دائماً

P: 107

الشكل الرابع

$$Z = \omega^2$$

w = a + bi نوجد الجذرين التربيعين للعدد

ايصم للسرعة المعادلات:

$$x^2 - y^2 = a$$

$$x^2 + y^2 = \sqrt{a^2 + b^2}$$

$$2x. y = b$$

نوطة p: 65

الشكل السادس

 $Z^3 = \omega$

نوجد الجذور التكعيبية للعدد العقدي ω نكتب طرفي المعادلة بالشكل الاسي ونساوي بينهما

نوطة P:57

المدرس : محمود قسام سانحد

0933004590