Chapter 11

Reproduction and Embryonic Development

ASEXUAL AND SEXUAL REPRODUCTION

Asexual reproduction results in the generation of genetically identical offspring

- Asexual reproduction
 - One parent produces genetically identical offspring
 - Very rapid reproduction
 - Can proceed via
 - Budding
 - Fission
 - Fragmentation/
 regeneration

Asexual reproduction of an aggregating Sea anemone (*Anthopleura elegantissima*) by fission Sexual reproduction results in the generation of genetically unique offspring

- Some animals exhibit hermaphroditism
 - One individual with male and female reproductive systems
 - Easier to find a mate for animals less mobile or solitary

Hermaphroditic earthworms mating

Copyright © 2009 Pearson Education, Inc

Sexual reproduction results in the generation of genetically unique offspring

- Sperm may be transferred to the female by
 - External fertilization
 - -Many fish and amphibian species
 - -Eggs and sperm are discharged near each other
 - Internal fertilization
 - -Some fish and amphibian species
 - -Nearly all terrestrial animals
 - -Sperm is deposited in or near the female reproductive tract

Frogs in an embrace that triggers the release of eggs and sperm

Human Reproduction

Reproductive anatomy of the human female

- Both sexes in humans have
 - A set of gonads where gametes (sperms & ova) are produced
 - Ducts for gamete transport
 - Structures for copulation

Human Female Reproductive anatomy

- Ovaries contain follicles that Nurture eggs and Produce sex hormones
- Oviducts convey eggs to the uterus where embryos develop
- The uterus opens into the vagina through the cervix
- The vagina
 - Receives the penis during sexual intercourse
 - Forms the birth canal

Front view of female reproductive anatomy (upper portion)

8

Human Male Reproductive anatomy

- Testes (singular *testis*) produce Sperm and male hormones
- Epididymis stores sperm as they develop further
- Several glands contribute to semen
 - Seminal vesicles
 - Prostate
 - Bulbourethral

Sperm production (Spermatogenesis)

- Regulated by a negative feedback system of hormones
- Involves the hypothalamus, pituitary, and testes

Front view of male reproductive anatomy

Spermatogenesis (The formation of sperm)

Spermatogenesis

- Occurs in seminiferous tubules
- Primary spermatocytes
 - Formed by mitosis
 - Divide by meiosis I to produce secondary spermatocytes
- Secondary spermatocytes divide by meiosis II to produce spermatids
- Round spermatids differentiate into elongate sperm
- Mature sperm released into seminiferous tubule and stored in the epididymis

D

Oogenesis (The formation of egg)

Oogenesis

- Begins before birth: diploid cells start meiosis and stop
- Each month about one primary oocyte resumes meiosis
- A secondary oocyte arrested at metaphase of meiosis II is ovulated
- Meiosis of the ovum is completed after fertilization

Copyright © 2009 Pearson Education, Inc.

Oogenesis and the development of an ovarian follicle

Hormones synchronize cyclic changes in the ovary and uterus

• Ovarian and menstrual cycles

Occur about every 28 days

Hypothalamus signals the anterior pituitary to secrete follicle-stimulating hormone (FSH) and leuteinizing hormone (LH), which trigger

- Growth of a follicle

- Ovulation

Hormones synchronize cyclic changes in the ovary and uterus

- After ovulation, empty ovarian follicle becomes corpus luteum
- Corpus luteum secretes estrogen and progesterone hormones, which
 - 1) Stimulate the endometrium to thicken
 - 2) Prepare the uterus for implantation of the embryo
 - 3) Inhibit hypothalamus, reducing FSH and LH secretion

Hormones synchronize cyclic changes in the ovary and uterus

- If egg is fertilized
 - Embryo releases hormones that maintain the uterine lining
 - Menstruation does not occur
- If egg is not fertilized
 - Drop in LH shuts down corpus luteum and its hormones
 - Menstruation is triggered
 - Hypothalamus and pituitary stimulate development of a new follicle

Embryonic Development

- Embryonic development begins with fertilization

 Fertilization is the union of sperm and egg to form a diploid zygote

Resulted zygote triggers embryonic development

Fertilization

Sperm adaptation

Sperm are adapted to reach and fertilize an egg

Streamlined shape moves more easily through fluids

Many mitochondria provide ATP for tail movements

Head contains a haploid nucleus Tipped with an acrosome containing penetrating enzymes

The structure of a human sperm cell

Fertilization results in a zygote and triggers embryonic development

- Fertilization events
 - Sperm squeeze past follicle cells
 - Acrosomal enzymes pierce egg's coat
 - Sperm binds to vitelline layer
 - Sperm and egg plasma membranes fuse
 - Egg is stimulated to develop further
 - Egg and sperm nuclei fuse

Embryonic development 1. Cleavage

- Cleavage is a rapid series of cell divisions
- Cleavage produces a ball of cells from the zygote
 - More cells
 - Embryo does not get larger
 - Thus new cells are smaller in size
 - A ball of cells called blastula is formed at the end of cleavege

Copyright © 2009 Pearson Education, Inc.

28

2. Gastrulation produces a three-layered embryo

- Gastrulation
- The blastula (ball of similar cells) resulted from cleavage go to gastrulation
 - Cells migrate
 - The basic body plan of three layers is established
 - Ectoderm outside becomes skin and nervous systems
 - Endoderm inside becomes digestive tract
 - Mesoderm in middle becomes muscle and bone

Copyright © 2009 Pearson Education, Inc.