Test bank chapter (5)

	Choose the most correct answer
	Vi Postilação
	1. A sample of oxygen occupies 47.2 liters under a pressure of 1240 ton at 25°C. What volume would it occupy at 25°C if
	the pressure were decreased to $\frac{730 \text{ torr?}}{\rho_2}$ a) 27.8 L $\frac{\rho_2}{\rho_2}$
	1) 2027
	b) $29.3 L$ c) $32.3 L$ $1240 \times 47.2 = 730 \%$ $V_2 = 80.2 L$
	c) 32.3 L d) 80.2 L $\frac{1240 \times 47.2}{730} = \frac{730}{120} $ $V_2 = 80.2$ L
	2. Under conditions of fixed temperature and amount of gas, Boyle's law requires that
	I. $P_1V_1 = P_2V_2$ II. $PV = constant$ $P_1V_2 = Constant$ $P_2V_3 = Constant$
	II. $PV = constant$ III. $P_1/P_2 = V_2/V_1$ $P_1 V_1 = Constant$
	a) I only b) II only c) III only
	c) III only
	d) I, II, and III
	d) I, II, and III 3. The volume of a sample of nitrogen is 6.00 liters at 35° C and 740 torr. What volume will it occupy at STP? a) 6.59 L b) 5.46 L $35+273.15=308.15\text{ K}$ $74.0 = 0.974\text{ K}$ $74.0 = 0.974\text{ K}$
	a) 6.59 L 264 772 16 200 1654 173 16 200 1600 1600 1600 1600 1600 1600 16
	b) 5.46 L 72-08-156 7 760 -0.974CM Tz=08C->273.15
	c) 6.95 L $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \left\langle \begin{array}{c} 0.9746 = \frac{1}{2} \times V_2 \\ 308.15 \end{array} \right\rangle = \frac{308.15V}{308.15} = \frac{1589.73}{308.15} = \frac{5.16 L}{308.15}$
21	d) 5.18 L T T2 308.15 273.15 \$ 308.19 = 1894.13 = 51/1
Uz	MU ([[] 308.15 273.16] 308.15 = 3.8.15 = 5.16 L
	4. The density of chlorine gas at STP, in grams per liter, is approximately:
	a) 6.2 b) latm, 237,16 K
	b) 3.2
	c) 3.9 $d = \frac{PMM}{RT} = \frac{1 \times 70.91}{0.0821 \times 273.15} = 3.2$
- 1	BT 0.0821x273.15 - 3.2
	Explanation: $d = \text{molar mass} \times p/RT = 70 \times 1/0.082 \times 273 = 3.17 \text{ g/L}$
	F2 V T 07 07 16 07 16 17
	5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37°C? -37+237.15 = 236.15 K
	a) 26 atm b) 4.1 atm
	c) 19,600 atm 1 cp 76 271 x 936/5 1.5P = 3879 > P-75 25 ~ 2 Calin
	c) 19,600 atm $1.5P = \frac{7.6}{(2x)6} \times 0.6821 \times 23615 \Rightarrow 1.5P = 38.78 \Rightarrow P = 25.85 \approx 2.6 atm$
	d NH3 P
	6. What is the density of ammonia gas at 2.00 atm pressure and a temperature of 25.0°C? 298.15K
	a) 0.720 g/L b) 0.980 g/L $d = 2 \times 17.031$
	b) 0.980 g/L c) 1.39 g/L $d = \frac{PMM}{RT} \implies d = \frac{2 \times 17.031}{0.0821 \times 298.15}$
	d) 16.6 g/L
	d) 16.6 g/L d=1.39 9/L
	7. Convert 2.0 atm to mmHg
	a) 150 mmHg
	b) 0.27 mmHg c) 150 mmHg
	b) 0.27 mmHg c) 150 mmHg d) 1520 mmHg 2 a-lm $\rightarrow \times$
	$\chi = 1520 \text{ mmHg}$

8. A container with volume 71.9 mL contains water vapor at a pressure of 10.4 atm and a temperature of 465°C. How many grams of the gas are in the container? ns of the gas are in the container?

a) 0.421 g $PV = \frac{m}{NN} RT$ b) 0.222 gc) 0.183 gd) 0.129 g $10.4 \times 0.0719 = \frac{m}{18.016} \times 0.082 \times 738.15$ 0.74776 = 3.36m 0.74776 = 3.36m 0.2229**Explanation:** $n = PV/RT = 0.0719 \times 10.4 = 0.0821 \times (465 + 273) = 0.012$ mole 9. What is the molar mass of a pure gaseous compound having a density of $\frac{4.95}{9}$ g/L at $\frac{2.58}{9}$ % and $\frac{2.49}{9}$ g/mole b) 11 g/mole $\frac{2.95}{8}$ $\frac{4.95}{8}$ $\frac{4.95}{9}$ \frac 10. A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of 10. A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of hydrogen. At CTP, 33.6 mL of the gas has a mass of 0.087 g. What is the molecular (true) formula for the compound?

a) CH₃
b) C₂H₆
c) C₂H₅
d) C₄H₁₀
c, O⁴0
c, O⁴ DE CAS c) 3.2 L $\frac{6}{310.15} = \frac{V_2}{620.3} \Rightarrow V_2 = \frac{6\times620.3}{310.15} = 12L$ d) 2L 12. A mixture of 90.0 grams of CH₄ and 10.0 grams of argon has a pressure of 250 torr under conditions of constant 12. A mixture of 90.0 grams of CH₄ and 10.0 grams of argon has a pressure of 250 torr under conditions of co temperature and volume. The partial pressure of CH₄ in torr is: $= \frac{m}{m} \text{ (a) } 143 \\ \text{ (b) } 100 \\ \text{ (c) } 10.7 \\ \text{ (d) } 239 \text{ NAT} = \frac{6}{\log n} = 0.25 \text{ mol}$ $= 0.96 \text{ (c) } 10.7 \\ \text{ (d) } 239 \text{ NAT} = \frac{6}{\log n} = 0.25 \text{ mol}$ Explanation: from Dalton law >>> P CH4 = X CH4 P total, n CH4 = 90/16 = 5.625 mole, n Ar = 10/39.95 = 0.250 mole $X_{CH4} = n_{CH4}/n_{CH4} + n_{Ar} = 5.625/5.625 + 0.250 = 0.96 >>>> P_{CH4} = 0.96 \times 250 = 239.3 \text{ torm}$ 13. What pressure (in atm) would be exerted by a mixture of $1.\overline{4}$ g of nitrogen gas and 4.8 g of oxygen gas in a 200 mL container at 57°C?

PV=V1-stal RT

330.15K b) 34
c) 47
d) 27

P = $(0.05+0.15) \times 0.082 \times 330.15$ $\Rightarrow P = 27.07 \times 270 + m$

Explanation: $P = n_{total} RT/V$, $n_{N2} = 1.4/2 \times 14 = 0.05$ mole, $n_{O2} = 4.8/2 \times 16 = 0.15$ mole

1 N2 = 1,4 = 0,05mol De alle

 $NO_2 = \frac{4.8}{16x^2} = 0.15 \text{ may}$

 $P = (0.05 + 0.15) 0.0821 \times (57 + 273) / 0.2 = 27 \text{ atm}$

Explanation: $\frac{V_A}{T_A} = \frac{V_B}{T_B} > > > \frac{V_A}{30+273} = \frac{V_B}{20+273} >> > > \frac{V_A}{303} = \frac{V_B}{293}$

18. The sample of argon occupies 50L at standard temperature. Assuming constant pressure, what volume with the gas occupy if the temperature is doubled.

علاقة طرية سن الحديم والحرارة

b) 50L

b) 50L c) 100L d) 100 mL بن مناكري ديل المناكري ديل المن

او الحل المطول:

$$\frac{50}{273.15} = \frac{V_2}{273.15X2} \Rightarrow V_2 = \frac{50X546.3}{273.15} = 100L$$

19. What total gas volume (in liters) at 520°C and 880 torr would result from the decomposition of 33 g of potassium
bicarbonate according to the equation: $2KHCO_3(s) \longrightarrow K_2CO_3(s) + CO_2(g) + H_2O(g) \qquad \text{MNof } KHCO_3 = 100 \text{ M}$
(a) 56 L PV = (n BT
(b) 37 L PV=11(1)
(c) 10L 1.16XV = 33 X 0.082 X 793.15 => V=21.44 = 18.5=19L
(d) 19 L 100 (14
20. Calculate the weight of KClO3 that would be required to produce 29.5 L of oxygen measured at 127°C and 760 torr.
2KClO ₃ (s) →2KCl(s) +3O ₂ (g) MM of 15ClO ₃ ⇒ 122,548
(a) 73.5 g (b) 122 g V V2 Valore / PV= MBT (m=2410.519)
(c) 14.6 g ni nz 1500 11 00 m m m m m m m m m m m m m m m m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
21. The ideal gas law predicts that the molar volume (volume of one mole) of gas equals: (a) mRT/PV
(a) mRITPY (b) (MM)P/RT molar volume (V)
(c) 1/2ms ⁻²
(d) RT/P $PV = NRT \implies \frac{V}{N} = \frac{RT}{S}$
22. For a gas, which pair of variables are inversely proportional to each other (if all other conditions remain constant)?
a) P, V → esc
b) V, T 4 000
c) n, V «- δ)μ ^D
d) n, P
23. Convert 562 mmHg to atm
a) 0.739 atm
b) 4.27×10^5 atm $\chi = \frac{562}{760} = 6.739$ atm
d) 0.562 atm 760
24 What is the values of are male of an ideal age at CTD2
24. What is the volume of one mole of an ideal gas at STP? a) 24.5 L
b) 22.4 L Φ. Γ
c) 1.0 L
d) 10.0 L
25. What are standard temperature and pressure (STP)? a) 0 C, 1 torr
a) 0 C, 1 torr 4
b) 25 C, 1 torr 0°C 1atin
c) 0 C, 1 atm d) 25 °C, 1 atm
a) 20 C, 1 aun
26. What is the unit of mole fraction a) mol
b) mol ⁻¹
c) unitless

ı
ı

a) High compressibility
 b) Relatively large distances between molecules
 c) Formation of homogeneous mixtures regardless of the nature of gases
 d) High compressibility, relatively large distances between molecules AND formation of homogeneous mixtures regardless of the nature of gases

