## CHAPTER 7: Using Sample Statistics To Test Hypotheses About Population Parameters:

In this chapter, we are interested in testing some hypotheses about the unknown population parameters.

## 7.1 Introduction:

Consider a population with some unknown parameter  $\theta$ . We are interested in testing (confirming or denying) some conjectures about  $\theta$ . For example, we might be interested in testing the conjecture that  $\theta > \theta_0$ , where  $\theta_0$  is a given value.

- A hypothesis is a statement about one or more populations.
- A research hypothesis is the conjecture or supposition that motivates the research.
- A statistical hypothesis is a conjecture (or a statement) concerning the population which can be evaluated by appropriate statistical technique.
- For example, if  $\theta$  is an unknown parameter of the population, we might be interested in testing the conjecture sating that  $\theta \ge \theta_0$  against  $\theta < \theta_0$  (for some specific value  $\theta_0$ ).
- We usually test the null hypothesis  $(H_o)$  against the alternative (or the research) hypothesis  $(H_1 \text{ or } H_A)$  by choosing one of the following situations:
  - (i)  $H_o: \theta = \theta_o$  against  $H_A: \theta \neq \theta_o$
  - (ii)  $H_o: \theta \ge \theta_o$  against  $H_A: \theta < \theta_o$
  - (iii)  $H_0: \theta \le \theta_0$  against  $H_A: \theta > \theta_0$
- Equality sign must appear in the null hypothesis.
- $H_o$  is the null hypothesis and  $H_A$  is the alternative hypothesis. ( $H_o$  and  $H_A$  are complement of each other)
- The null hypothesis (H<sub>o</sub>) is also called "the hypothesis of no difference".
- The alternative hypothesis  $(H_A)$  is also called the research hypothesis.

Simpor BRDE and Split Unrepistered Hereionatishttp://www.simpordf.com 1431/1432

• There are 4 possible situations in testing a statistical hypothesis:

Condition of Null Hypothesis H<sub>o</sub> (Nature/reality)

|                                  |                          | (I tatal of loanty)    |                         |  |
|----------------------------------|--------------------------|------------------------|-------------------------|--|
|                                  |                          | H <sub>o</sub> is true | H <sub>o</sub> is false |  |
| Possible<br>Action<br>(Decision) | Accepting $H_o$          | Correct Decision       | Type II error<br>(β)    |  |
|                                  | Rejecting H <sub>o</sub> | Type I error<br>(α)    | Correct Decision        |  |

- There are two types of Errors:
  - Type I error = Rejecting  $H_o$  when  $H_o$  is true P(Type I error) = P(Rejecting Ho | Ho is true) =  $\alpha$
  - Type II error = Accepting Ho when Ho is false
     P(Type II error) = P(Accepting Ho | Ho is false) = β
- The level of significance of the test is the probability of rejecting true  $H_o$ :

 $\alpha = P(\text{Rejecting H}_o | H_o \text{ is true}) = P(\text{Type I error})$ 

- There are 2 types of alternative hypothesis:
  - o One-sided alternative hypothesis:

| -   | $H_0: \theta \ge \theta_o$  | against     | $H_A: \theta < \theta_o$ |
|-----|-----------------------------|-------------|--------------------------|
| -   | $H_0: \theta \leq \theta_o$ | against     | $H_A: \theta > \theta_o$ |
| -si | ded alternative             | e hypothesi | 5.                       |

- $\circ \text{ Two-sided alternative hypothesis:} \\ H_0: \theta = \theta_o \quad \text{against} \quad H_A: \theta \neq \theta_o$
- We will use the terms "accepting" and "not rejecting" interchangeably. Also, we will use the terms "acceptance" and "nonrejection" interchangeably.
- We will use the terms "accept" and "fail to reject" interchangeably

## The Procedure of Testing H<sub>0</sub> (against H<sub>A</sub>):

The test procedure for rejecting  $H_o$  (accepting  $H_A$ ) or accepting  $H_o$  (rejecting  $H_A$ ) involves the following steps:

1. Determining a test statistic (T.S.)

We choose the appropriate test statistic based on the point estimator of the parameter.

The test statistic has the following form:

Test statistic =  $\frac{Estimate - hypothesized parameter}{Sta.ndard Error of the Estimate}$ 

2. Determining the level of significance ( $\alpha$ ):

 $\alpha = 0.01, 0.025, 0.05, 0.10$ 

3. Determining the rejection region of  $H_o$  (R.R.) and the acceptance region of  $H_o$  (A.R.).

The R.R. of  $H_o$  depends on  $H_A$  and  $\alpha$ :

- H<sub>A</sub> determines the direction of the R.R. of H<sub>o</sub>
- α determines the size of the R.R. of H<sub>o</sub>
  - $(\alpha = \text{the size of the R.R. of } H_o = \text{shaded area})$



4. Decision:

We reject  $H_o$  (and accept  $H_A$ ) if the value of the test statistic (T.S.) belongs to the R.R. of  $H_o$ , and vice versa.

Notes:

1. The rejection region of  $H_o$  (R.R.) is sometimes called "the critical region".

2. The values which separate the rejection region (R.R.) and the acceptance region (A.R.) are called "the critical values".

## 7.2 Hypothesis Testing: A Single Population Mean (µ):

Suppose that  $X_1, X_2, ..., X_n$  is a random sample of size *n* from a distribution (or population) with mean  $\mu$  and variance  $\sigma^2$ .

We need to test some hypotheses (make some statistical inference) about the mean  $(\mu)$ .

127

| Hypothesis                                                 | $H_0:\mu=\mu_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>0</sub> :µ ≤µ <sub>0</sub>                                                                                                                        | $H_0:\mu \ge \mu_0$                                                                                  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| First Case                                                 | $H_{A}:\mu \neq \mu_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $H_{A}:\mu >\mu_{0}$                                                                                                                                     | $H_A:\mu < \mu_0$                                                                                    |  |  |
| Test Statistic                                             | σ is known; Normal or [Non-normal Distribution(n >30)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                      |  |  |
| (T.S.)                                                     | $Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                      |  |  |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R) | $\frac{1-\alpha}{\alpha/2}$ R.R. of $H_0$ $\frac{\alpha/2}{\alpha/2}$ R.R. of $H_0$ $\frac{\alpha/2}{\alpha/2}$ R.R. of $H_0$ $\frac{\alpha/2}{\alpha/2}$ R.R. of $H_0$ $\frac{\alpha/2}{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1-\alpha \\ A.R. \text{ of } H_0 \\ \hline Z_{1-\alpha} \\ \end{array} \begin{array}{c} \alpha \\ R.R. \\ \text{ of } H_0 \end{array}$ | $\begin{array}{c} \alpha \\ 1 - \alpha \\ A.R. \text{ of } H_0 \\ of H_0 - Z_{1-\alpha} \end{array}$ |  |  |
| Reliability Coefficient                                    | -Z <sub>1-<math>\alpha/2</math></sub> or Z <sub>1-<math>\alpha/2</math></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ζ <sub>1-α</sub>                                                                                                                                         | -Ζ <sub>1-α</sub>                                                                                    |  |  |
| Decision :<br>Reject H <sub>0</sub> if the                 | Reject $H_0$ (Accept $H_A$ ) at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the significant level $\boldsymbol{\alpha}$ if :                                                                                                         | L                                                                                                    |  |  |
| following condition satisfies                              | $Z > Z_{1-\alpha/2}$<br>or Z < - Z <sub>1-\alpha/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Z > Z_{1-\alpha}$<br>(one – Sided Test)                                                                                                                 | $Z < - Z_{1-\alpha}$<br>(one – Sided Test)                                                           |  |  |
| Second Case                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s unknown; Normal ,n ≤30 (sr                                                                                                                             |                                                                                                      |  |  |
| Test Statistic<br>(T.S.)                                   | $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}},  df = n - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                      |  |  |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R) | $\frac{1-\alpha}{\alpha/2}$ R.R. of H <sub>0</sub> $\alpha/2$ R.R. of H <sub>0</sub> $\alpha/2$ $R.R. of H_{0}$ $\alpha/2$ $R.R. of H_{0}$ $\alpha/2$ $R.R. of H_{0}$ $\alpha/2$ $R.R. of H_{0}$ $R.R. o$ | $1 - \alpha$ A.R. of $H_0$ $t_{1-\alpha}$ R.R. of $H_0$                                                                                                  | $a = \frac{1 - \alpha}{A.R. \text{ of } H_0}$                                                        |  |  |
| Reliability Coefficient                                    | $-t_{1-\alpha/2}$ or $t_{1-\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>1-a</sub>                                                                                                                                         | -t <sub>1-α</sub>                                                                                    |  |  |
| Decision :<br>Reject H₀ if the                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the significant level $\alpha$ if :                                                                                                                      | 1 *1-0                                                                                               |  |  |
| Following condition<br>satisfies                           | $T > t_{1-\alpha/2}$<br>or T < - $t_{1-\alpha/2}$<br>(Two - Sided Test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $T > t_{1-\alpha}$<br>(one – Sided Test)                                                                                                                 | $T < -t_{1-\alpha}$<br>(one – Sided Test)                                                            |  |  |
| Special Case                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Non-Normal, n >30 (Large)                                                                                                                                | (ene eneuros)                                                                                        |  |  |
| Test Statistic<br>(T.S.)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}},$                                                                                                                |                                                                                                      |  |  |
| Rejection Region                                           | Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the same R.R & A.R as in First Case(Z                                                                                                                    | ( Case)                                                                                              |  |  |

# Chapter 7 : Testing Hypothesis about population mean(µ):

## Example: (first case: variance $\sigma^2$ is known)

A random sample of 100 recorded deaths in the United States during the past year showed an average of 71.8 years. Assuming a population standard deviation of 8.9 year, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.

#### Solution:

n=100 (large),  $\sigma = 8.9$  ( $\sigma$  known)  $\bar{X} = 71.8$ ,  $\sigma = 8.9$  ( $\sigma$  is known)  $\mu$  =average (mean) life span  $\mu_{o} = 70$  $\alpha = 0.05$ 

1) Hypotheses:

Ho:  $\mu \leq 70$  ( $\mu = 70$ ) HA:  $\mu > 70$  (research hypothesis) Simpor Polat Marge and Split Unrepistared Marsinalishttp://www.mimpordf.caref 1431/1432

H<sub>o</sub>:  $\mu \le 70$  ( $\mu_0=70$ ) H<sub>A</sub>:  $\mu > 70$  (research hypothesis) Test statistics (T.S.) :  $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{71.8 - 70}{8.9 / \sqrt{100}} = 2.02$ Level of significance:  $\alpha = 0.05$ Rejection Region of H<sub>o</sub> (R.R.): (critical region)  $- Z_{\alpha} = -Z_{0.05} = 1.645$  (critical value) We should reject H<sub>o</sub> if:  $Z > -Z_{\alpha} = -Z_{0.05} = 1.645$  0.95 0.05  $A.R. of H_o$  1.645  $_{of H_o}^{R.R.}$  $- Z_{\alpha} = -Z_{0.05} = 1.645$ 

Decision:

Since Z=2.02  $\in$  R.R., i.e., Z=2.02>-Z<sub>0.05</sub>, we reject H<sub>o</sub>: $\mu \leq 70$  at  $\alpha = 0.05$  and accept H<sub>A</sub>: $\mu > 70$ . Therefore, we conclude that the mean life span today is greater than 70 years.

## Note: Using P- Value as a decision tool:

P-value is the smallest value of  $\alpha$  for which we can reject the null hypothesis H<sub>o</sub>.

Calculating P-value:

- \* Calculating P-value depends on the alternative hypothesis  $H_A$ .
- \* Suppose that  $Z_c = \frac{\overline{X} \mu_o}{\sigma / \sqrt{n}}$  is the computed value of the test Statistic.
- \* The following table illustrates how to compute P-value, and how to use P-value for testing the null hypothesis:

130

King Saud University

| Alternative Hypothesis: | HA: μ ≠μο                            | HA: μ> μο    | HA: μ < μο                               |
|-------------------------|--------------------------------------|--------------|------------------------------------------|
| P - Value               | $2 \times P(Z >  Z_C )$              | $P(Z > Z_C)$ | $P(Z > -Z_C)$                            |
| Significance Level =    | α                                    |              | an a |
| Decision                | Reject Ho if P-value $\leq \alpha$ . |              |                                          |

#### **Example:**

For the previous example, we have found that:

$$Z_C = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = 2.02$$

The alternative hypothesis was HA:  $\mu > 70$ .  $P-Value = P (Z > Z_C)$  = P(Z > 2.02) = 1 - P(Z < 2.02) = 1 - 0.9783 = 0.0217The level of significance was  $\alpha = 0.05$ .

Since P-value  $\leq \alpha$ , we reject H<sub>o</sub>.

#### Example: (second case: variance is unknown)

The manager of a private clinic claims that the mean time of the patient-doctor visit in his clinic is 8 minutes. Test the hypothesis that  $\mu = 8$  minutes against the alternative that  $\mu \neq 8$  minutes if a random sample of 25 patient-doctor visits yielded a mean time of 7.8 minutes with a standard deviation of 0.5 minutes. It is assumed that the distribution of the time of this type of visits is normal. Use a 0.01 level of significance.

#### Solution:

The distribution is normal.

n = 25 (small)

 $\bar{X} = 7.8$ 

S=0.5 (sample standard deviation):  $\sigma$  is unknown

 $\mu$  = mean time of the visit,  $\alpha$  =0.01

Hypotheses:

H<sub>o</sub>:  $\mu = 8$  ( $\mu_{o}=8$ ) H<sub>A</sub>:  $\mu \neq 8$  (research hypothesis)

-131-

Test statistics (T.S.):

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{7.8 - 8}{0.5/\sqrt{25}} = -2$$
  
df =  $\nu$  = n-1 = 25 -1 = 24

Level of significance:

 $\alpha = 0.01$ ,  $\alpha/2=0.005$ ,  $1-\alpha/2=0.995$ Rejection Region of Ho (R.R.): (critical region)  $t_{1-\alpha/2} = t_{0.995} = 2.797$ We should reject Ho if:  $T < t_{1-\alpha/2}$  or  $T > -t_{1-\alpha/2}$ 

Decision:

Since  $T = -2 \in A.R.$ , we accept H<sub>0</sub>:  $\mu = 8$  at  $\alpha = 0.01$  and reject H<sub>A</sub>:  $\mu \neq 8$ . Therefore, we conclude that the claim is correct.



#### Note:

For the case of non-normal population with unknown variance, and when the sample size is large ( $n \ge 30$ ), we may use the following test statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}},$$

That is, we replace the population standard deviation  $(\sigma)$  by the sample standard deviation (S), and we conduct the test as described for the first case.

Simport Render and Split Unredistared Mersionautshttp://www.inimport.com 1431/1432

## 7.3 Hypothesis Testing: The Difference Between Two Population Means: (Independent Populations)

Suppose that we have two (independent) populations:

- 1-st population with mean  $\mu_1$  and variance  $\sigma_1^2$
- 2-nd population with mean  $\mu_2$  and variance  ${\sigma_2}^2$
- We are interested in comparing  $\mu_1$  and  $\mu_2$ , or equivalently, making inferences about the difference between the means  $(\mu_1 \mu_2)$ .
- We <u>independently</u> select a random sample of size  $n_1$  from the 1-st population and another random sample of size  $n_2$  from the 2-nd population:
- Let  $\overline{X}_1$  and  $S_1^2$  be the sample mean and the sample variance of the 1-st sample.
- Let  $\overline{X}_2$  and  $S_2^2$  be the sample mean and the sample variance of the 2-nd sample.
- The sampling distribution of  $\overline{X}_1 \overline{X}_2$  is used to make inferences about  $\mu_1 \mu_2$ .

We wish to test some hypotheses comparing the population means.

## Hypotheses:

We choose one of the following situations:

(i)  $H_0: \mu_1 = \mu_2$  against  $H_A: \mu_1 \neq \mu_2$ 

(ii)  $H_o: \mu_1 \ge \mu_2$  against  $H_A: \mu_1 < \mu_2$ 

(iii)  $H_0: \mu_1 \le \mu_2$  against  $H_A: \mu_1 > \mu_2$ or equivalently,

- (i)  $H_0: \mu_1 \mu_2 = 0$  against  $H_A: \mu_1 \mu_2 \neq 0$
- (ii)  $H_0: \mu_1 \mu_2 \ge 0$  against  $H_A: \mu_1 \mu_2 < 0$
- (iii)  $H_0: \mu_1 \mu_2 \le 0$  against  $H_A: \mu_1 \mu_2 > 0$

## Test Statistic:

## (1) First Case:

For normal populations (or non-normal populations with large sample sizes), and if  $\sigma_1^2$  and  $\sigma_2^2$  are known, then the test statistic is:

134

King Saud University

Simpostat Merge and Split Unrepistered Kerpisautshttp://www.simpopdf.com 1431/1432

$$Z = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1)$$

## (2) Second Case:

For normal populations, and if  $\sigma_1^2$  and  $\sigma_2^2$  are unknown but equal ( $\sigma_1^2 = \sigma_2^2 = \sigma^2$ ), then the test statistic is:

$$T = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{S_{p}^{2}}{n_{1}} + \frac{S_{p}^{2}}{n_{2}}}} \sim t(n_{1} + n_{2} - 2)$$

where the pooled estimate of  $\sigma^2$  is

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

134

and the degrees of freedom of  $S_p^2$  is df=  $v=n_1+n_2-2$ .

|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | about difference between two<br>$\mu_2$ ) : (Independent populati                                                                              |                                                                                                                  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Hypothesis                                                   | H <sub>0</sub> :µ <sub>1</sub> -µ <sub>2</sub> =0<br>H <sub>A</sub> :µ <sub>1</sub> -µ <sub>2</sub> ≠0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $H_0:\mu_1 - \mu_2 \le 0$<br>$H_A:\mu_1 - \mu_2 > 0$                                                                                           | $\begin{array}{c c} H_{0}:\mu_{1}-\mu_{2}\geq 0\\ H_{A}:\mu_{1}-\mu_{2}<0 \end{array}$                           |
| First Case                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma_1^2$ , $\sigma_2^2$ are known                                                                                                          |                                                                                                                  |
| Test Statistic (T.S.)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$                                        |                                                                                                                  |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R)   | $\alpha/2 \qquad 1 - \alpha \qquad \alpha/2 \\ A.R. of H_0 \qquad \alpha/2 \\ R.R \\ of H_0 - Z_{1-\frac{\alpha}{2}} \qquad Z_{1-\frac{\alpha}{2}} \\ \sigma f H_0 \qquad \alpha/2 \\ R.R \\ A.R. of H_0 \qquad \alpha/2 \\ R.R \\ A.R. \\ $ | $1 - \alpha$ A.R. of $H_0$ $Z_{1-\alpha}$ R.R. of $H_0$                                                                                        | $\begin{array}{c} 1 - \alpha \\ 1 - \alpha \\ A.R. \text{ of } H_0 \\ 0 \\ -Z_{1-\alpha} \end{array}$            |
| Reliability Coefficient                                      | $-Z_{1-\alpha/2}$ or $Z_{1-\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ζ <sub>1-α</sub>                                                                                                                               | -Z <sub>1-α</sub>                                                                                                |
| $\frac{\text{Decision :}}{\text{Reject }H_0 \text{ if the}}$ | Reject $H_0$ (Accept $H_A$ ) at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the significant level $\boldsymbol{\alpha}$ if :                                                                                               |                                                                                                                  |
| following condition<br>satisfies                             | $Z > Z_{1-\alpha/2}$<br>or $Z < -Z_{1-\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Z > Z_{1-\alpha}$<br>(one - Sided Test)                                                                                                       | $Z < - Z_{1-\alpha}$<br>(one - Sided Test)                                                                       |
| Second Case                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unknown but equal ( $\sigma_1^2 = \sigma_2^2 = \sigma^2$ )                                                                                     |                                                                                                                  |
| Test Statistic (T.S.)                                        | $T = \frac{\overline{X}_1 - \overline{X}_1}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_1} + S$                     | $\frac{\overline{X}_2}{\frac{S_P^2}{n_2}}$ , $S_P^2 = \frac{(n_1 - 1)S_1^2}{n_1 + 2}$                                                          | $+ (n_2 - 1)S_2^2$<br>$n_2 - 2$                                                                                  |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R)   | $\begin{array}{c c} & 1 - \alpha \\ \hline & \alpha/2 \\ R.R. \\ of H_0 - t_{1 - \frac{\alpha}{2}} \\ t_{1 - \frac{\alpha}{2}} \\ t_{1 - \frac{\alpha}{2}} \\ \end{array} \\ \begin{array}{c} \alpha/2 \\ R.R. \\ \alpha/2 \\ R.R. \\ \sigma f H_0 \\ r $                                                                                                                                                                                                                                                              | $ \begin{array}{c} 1 - \alpha \\ A.R. \text{ of } H_0 \\ t_{1-\alpha} \\ \end{array} \\ \begin{array}{c} R.R. \\ \text{ of } H_0 \end{array} $ | $\begin{array}{c} 1 - \alpha \\ 1 - \alpha \\ A.R. \text{ of } H_0 \\ \text{of } H_0 - t_{1-\alpha} \end{array}$ |
| Reliability Coefficient                                      | $-t_{1-\alpha/2}$ or $t_{1-\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>1-a</sub>                                                                                                                               | -t <sub>1-α</sub>                                                                                                |
| $\frac{\text{Decision :}}{\text{Reject H}_0 \text{ if the}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the significant level $\alpha$ if :                                                                                                            |                                                                                                                  |
| Following condition satisfies                                | $T > t_{1-\alpha/2}$<br>Or T < - $t_{1-\alpha/2}$<br>(Two -sided test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T > t_{1-\alpha}$<br>(one – Sided Test)                                                                                                       | T < - <b>t</b> <sub>1-α</sub><br>(one - Sided Test)                                                              |

## Example: $(\sigma_1^2, \sigma_2^2 \text{ are known})$

Researchers wish to know if the data they have collected provide sufficient evidence to indicate the difference in mean serum uric acid levels between individuals with Down's syndrome and normal individuals. The data consist of serum uric acid on 12 individuals with Down's syndrome and 15 normal individuals. The sample means are

 $\bar{X}_1 = 4.5 \text{ mg/100ml}$  $\bar{X}_2 = 3.4 \text{ mg/100ml}$ 

Assume the populations are normal with variances -2

$$\sigma_1^2 = 1$$
  
 $\sigma_2^2 = 1.5$ 

. Use significance level  $\alpha = 0.05$ .

### Solution:

 $\mu_1$  = mean serum uric acid levels for the individuals with Down's syndrome.

 $\mu_2$  = mean serum uric acid levels for the normal individuals.

 $n_1 = 12$   $\overline{X}_1 = 4.5$   $\sigma_1^2 = 1$  $n_2 = 15$   $\overline{X}_2 = 3.4$   $\sigma_2^2 = 1.5$ .

Hypotheses:

H<sub>o</sub>:  $\mu_1 = \mu_2$  against H<sub>A</sub>:  $\mu_1 \neq \mu_2$ or H<sub>o</sub>:  $\mu_1 - \mu_2 = 0$  against H<sub>A</sub>:  $\mu_1 - \mu_2 \neq 0$ Calculation:  $\alpha = 0.05$  $Z_{0.75} = 1.96$  (1<sup>st</sup> critical value)  $-Z_{0.75} = -1.96$  (2<sup>nd</sup> critical value) Test Statistic (T.S.):  $Z = \frac{\overline{X_1 - \overline{X_2}}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{4.5 - 3.4}{\sqrt{\frac{1}{12} + \frac{1.5}{15}}} = 2.569$  $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \frac{4.5 - 3.4}{\sqrt{\frac{1}{12} + \frac{1.5}{15}}} = 2.569$ 0.025 $R.R. of H_o Z_{\alpha/2} A.R. of H_o Z_{\alpha/2} of H_o Z_{\alpha/2}$ 

Decision:

Since Z=2.569  $\in$  R.R. we reject H<sub>o</sub>:  $\mu_1 = \mu_2$  and we accept (do not reject) H<sub>A</sub>:  $\mu_1 \neq \mu_2$  at  $\alpha = 0.05$ . Therefore, we conclude that the two population means are not equal. Notes:

1. We can easily show that a 95% confidence interval for  $(\mu_1 - \mu_2)$  is (0.26, 1.94), that is:

$$0.26 < \mu_1 - \mu_2 < 1.94$$

| King Saud University | 137 | Dr. Abdullah Al-Shiha |
|----------------------|-----|-----------------------|
|                      | L_F |                       |

Since this interval does not include 0, we say that 0 is not a candidate for the difference between the population means ( $\mu_1 - \mu_2$ ), and we conclude that  $\mu_1 - \mu_2 \neq 0$ , i.e.,  $\mu_1 \neq \mu_2$ . Thus we arrive at the same conclusion by means of a confidence interval.

2.  $P - Value = 2 \times P(Z > |Z_C|)$ 

= 2P(Z > 2.57) = 2[1 - P(Z < 2.57)] = 2(1 - 0.9949) = 0.0102The level of significance was  $\alpha = 0.05$ . Since P-value <  $\alpha$ , we reject H<sub>o</sub>.

**Example:** ( $\sigma_1^2 = \sigma_2^2 = \sigma^2$  is unknown)

An experiment was performed to compare the abrasive wear of two different materials used in making artificial teeth. 12 pieces of material 1 were tested by exposing each piece to a machine measuring wear. 10 pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average wear of 85 units with a sample standard deviation of 4, while the samples of materials 2 gave an average wear of 81 and a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the mean abrasive wear of material 1 is greater than that of material 2? Assume normal populations with equal variances.

| Sol | 11 | <b>f</b> i | 0 | ** | ٠ |
|-----|----|------------|---|----|---|
| 201 | u  | LI         | U | 11 |   |

| Material 1            | material 2         |
|-----------------------|--------------------|
| $n_1 = 12$            | $n_2 = 10$         |
| $\overline{X}_1 = 85$ | $\bar{X}_{2} = 81$ |
| $S_1 = 4$             | $S_{2}=5$          |



$$S_{P}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$
$$= \frac{(12 - 1)4^{2} + (10 - 1)5^{2}}{12 + 10 - 2} = 20.05$$

**Reliability Coefficient:** 

$$df = v = 12 + 10 - 2 = 20$$

 $\alpha = 0.05$  ----- 1-  $\alpha = 0.95$  -----  $t_{1-\alpha} = t_{0.95} = 1.725$ 

Test Statistic (T.S.):

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_P^2}{n_1} + \frac{S_P^2}{n_2}}} = \frac{85 - 81}{\sqrt{\frac{20.05}{12} + \frac{20.05}{10}}} = 2.09$$

,

#### **Decision:**

Since T= 2.09  $\in$  R.R. (T= 2.09 > t 0.95 = 1.725), we reject H<sub>0</sub> and we accept **H**<sub>A</sub>:  $\mu_1 - \mu_2 > 0$  (**H**<sub>A</sub>:  $\mu_1 > \mu_2$ ) at  $\alpha = 0.05$ . Therefore, we conclude that the mean abrasive wear of material 1 is greater than that of material 2.

## 7.4 Paired Comparisons:

## **Paired T-Test :**

- In this section, we are interested in comparing the means of two related (non-independent/dependent) normal populations.

In other words, we wish to make statistical inference for the difference between the means of two related normal populations.
Paired t-Test concerns about testing the equality of the means of two related normal populations.

#### Examples of related populations are:

1. Height of the father and height of his son.

2. Mark of the student in MATH and his mark in STAT.

3. Pulse rate of the patient before and after the medical treatment.

4. Hemoglobin level of the patient before and after the medical treatment.

#### Test procedure:

#### Let

X: Values of the first population

Y: Values of the Second population

D: Values of X – Values of Y

#### Means :

 $\mu_1$  = Mean of the first population

 $\mu_2$  = Mean of the Second population

 $\mu_D$  =Mean of X – Mean of Y ( $\mu_D = \mu_1 - \mu_2$ )

# <u>Confident Interval and Testing Hypothesis about difference between</u> two population means ( $\mu_D = \mu_1 - \mu_2$ ): (Dependent/Related population)

| Calculate the following Quantities                           | <ul> <li>The difference (D-observa</li> <li>Sample mean of the D-Ob</li> <li>Sample Variance S<sup>2</sup><sub>D</sub> = Σ<sup>T</sup><sub>L</sub></li> <li>Sample Standard Deviatio</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{n-1} n^{2}$                                                                     | n                                                                                                            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                              | Confident I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nterval for $\mu_D = \mu_1 - \mu_2$                                                       |                                                                                                              |
| 100(1-α)%<br>Confident Interval<br>for μ <sub>D</sub>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{D} \pm t_{1-\frac{\alpha}{2}} \frac{S_D}{\sqrt{n}}  , \ df = n-1$              |                                                                                                              |
|                                                              | Testing Hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | othesis for $\mu_D = \mu_1 - \mu_2$                                                       |                                                                                                              |
| Hypothesis                                                   | $H_0: \mu_1 - \mu_2 = 0$<br>$H_A: \mu_1 - \mu_2 ≠ 0$<br>Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} H_{0}:\mu_{1}-\mu_{2}\leq 0\\ H_{A}:\mu_{1}-\mu_{2}>0\\ Or \end{array}$ | H₀:µ₁ - µ₂≥0<br>H <sub>A</sub> :µ₁ - µ₂< 0<br>Or                                                             |
| Test Statistic                                               | $H_0:\mu_D=0 \text{ vs } H_A:\mu_D\neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{H_0:\mu_D \le 0 \text{ vs } H_A:\mu_D > 0}{\overline{D}}$                          |                                                                                                              |
| (T.S.)                                                       | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $=\frac{D}{S_D/\sqrt{n}}, \qquad , df=v=n-$                                               | 1                                                                                                            |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R)   | $\frac{\alpha/2}{\operatorname{RR}} \xrightarrow{A.R. \text{ of } H_0} \frac{\alpha/2}{\alpha/2} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\alpha} \frac{\alpha/2}{\operatorname{RR}} \frac{\alpha/2}{\alpha} \alpha/$ | $1 - \alpha$ A.R. of $H_0$ $\alpha$ $t_{1-\alpha}$ R.R. of $H_0$                          | $\begin{array}{c} \alpha \\ 1 - \alpha \\ A.R. \text{ of } H_0 \\ \text{of } H_0 - t_{1-\alpha} \end{array}$ |
| Reliability Coefficient                                      | $-t_{1-\alpha/2}$ or $t_{1-\alpha/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <sub>1-α</sub>                                                                          | -t <sub>1-α</sub>                                                                                            |
| $\frac{\text{Decision :}}{\text{Reject H}_0 \text{ if the}}$ | Reject $H_0$ (Accept $H_A$ ) at the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne significant level $\alpha$ if :                                                        |                                                                                                              |
| Following condition satisfies                                | $T > t_{1-\alpha/2}$<br>Or T < - $t_{1-\alpha/2}$<br>(Two -sided test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T > t_{1-\alpha}$<br>(one – Sided Test)                                                  | T < - t <sub>1-α</sub><br>(one – Sided Test)                                                                 |

#### Example:

Suppose that we are interested in studying the effectiveness of a certain diet program on ten individual. Let the random variables X and Y given as following table :

| Individual(i)                   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|---------------------------------|------|------|------|------|------|------|------|------|------|------|
| Weight before (X <sub>i</sub> ) | 86.6 | 80.2 | 91.5 | 80.6 | 82.3 | 81.9 | 88.4 | 85.3 | 83.1 | 82.1 |
| Weight After (Y <sub>i</sub> )  | 79.7 | 85.9 | 81.7 | 82.5 | 77.9 | 85.8 | 81.3 | 74.7 | 68.3 | 69.7 |

 A 95% Confident Interval for the difference between the mean of weights before the diet program (μ<sub>1</sub>) and the mean of weights after the diet program (μ<sub>2</sub>).

 $[\mu_D = \mu_1 - \mu_2]$ 

2) Does the data provide sufficient evidence to allow us to conclude that the diet is good? Use  $\alpha = 0.05$  and assume population is normal.

#### Solution :

1-st population (X) = the weight of the individual before the diet program. 2-nd population (Y)= the weight of the same individual after the diet program.

We assume that the distributions of these random variables are normal with means  $\mu_1$  and  $\mu_2$ , respectively.

These two variables are related (dependent/non-independent) because they are measured on the same individual.

| i   | Xi               | Yi                       | $D_i = Xi - Y_i$        |
|-----|------------------|--------------------------|-------------------------|
| 1   | 86.6             | 79.7                     | 6.9                     |
| 2   | 80.2             | 85.9                     | -5.7                    |
| 3   | 91.5             | 81.7                     | 9.8                     |
| 4   | 80.6             | 82.5                     | - 1.9                   |
| 5   | 82.3             | 77.9                     | 4.4                     |
| 6   | 81.9             | 85.8                     | -3.9                    |
| 7   | 88.4             | 81.3                     | 7.1                     |
| 8   | 85.3             | 74.7                     | 10.6                    |
| 9   | 83.1             | 68.3                     | 14.8                    |
| 10  | 82.1             | 69.7                     | 12.4                    |
| sum | $\Sigma x = 842$ | $\Sigma_{\rm Y} = 787.5$ | $\Sigma_{\rm D} = 54.5$ |

#### First, we need to calculate :

Sample Mean:

$$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n} = \frac{54.5}{10} = 5.45$$

Sample Variance :

$$S_D^2 = \frac{\sum_{i=1}^n (D_i - \overline{D})^2}{n-1} = \frac{(6.9 - 5.45)^2 + (-5.7 - 5.45)^2 + \dots + (12.4 - 5.45)^2}{10 - 1} = 50.33$$

Sample Standard Deviation :  $S_D = \sqrt{S_D^2} = \sqrt{50.33} = 7.09$ Reliability Coefficient :  $t_{1-\alpha/2}$  :

$$\alpha = 0.05 - 1 - 0.05/2 = 1 - 0.025 = 0.975$$
 (df = 10 - 1 = 9)

$$t_{1-\alpha/2} = t_{0.975} = 2.262$$

Then 95% Confident Interval for  $\mu_D = \mu_1 - \mu_2$ 

$$\overline{D} \pm t_{1-\frac{\alpha}{2}} \frac{S_D}{\sqrt{n}}$$
$$5.45 \pm 2.262 \frac{7.09}{\sqrt{10}}$$

 $5.45 \pm 5.0715$ 

(5.45 - 5.0715, 5.45 + 5.0715)

(0.38, 10.52)

 $0.38 < \,\mu_D < 10.52$ 

# 2)Does the data provide sufficient evidence to allow us to conclude that the diet is good? Use $\alpha = 0.05$ and assume population is normal.

Diet is good means --- weight after will be less than weight befor.

#### Solution:

 $\mu_1$ = Mean of the first population  $\mu_2$ = Mean of the second population  $\mu_D$  =Mean of X – Mean of Y ( $\mu_D$ =  $\mu_1 - \mu_2$ ) Hypothesis :

|    | $\Pi_0: \mu_1 \ge \mu_2$                  | VS | $n_{A}: \mu_{1} > \mu_{2}$ |
|----|-------------------------------------------|----|----------------------------|
| or | H <sub>0</sub> : $\mu_1$ - $\mu_2 \leq 0$ | VS | $H_A: \mu_1 - \mu_2 > 0$   |
| or | $H_0: \mu_D \le 0$                        | VS | $H_A: \mu_D > 0$           |

Test Statistic:

 $\overline{D} = 5.45, S_D = 7.09, n = 10$  $T = \frac{\overline{D}}{\frac{S_D}{\sqrt{n}}} = \frac{5.45}{\frac{7.09}{\sqrt{10}}} = 2.43$ 

Rejection Region(R.R):

 $\alpha = 0.05$  -----  $1 - \alpha = 0.95$  -----  $t_{1-\alpha} = t_{0.95} = 1.833$  (df = n-1 = 9)

Reject  $H_0$  if  $T > t_{1-\alpha}$ 

2.45 > 1.833 (condition satisfied)

Then reject  $H_0$  and accept  $H_A$ :  $\mu_1 > \mu_2$ 

So, we have a good diet program.

Simpor Patis Merge and Split Unrepistered Kereislatishttp://www.simpordf.com 1431/1432

## 7.5 Hypothesis Testing: A Single Population Proportion (p):

In this section, we are interested in testing some hypotheses about the population proportion (p).



Recall:

• *p* = Population proportion of elements of Type *A* in the population

$$p = \frac{no. of elements of type A in the population}{Total no. of elements in the population}$$

$$p = \frac{A}{N}$$
 (N = population size)

• .*n* = sample size

- X = no. of elements of type A in the sample of size n.
- $\hat{p}$  = Sample proportion elements of Type *A* in the sample  $\hat{p} = \frac{no. of elements of type A in the sample}{no. of elements in the sample}$

 $\hat{p} = \frac{X}{n}$  (n=sample size=no. of elements in the sample)

- $\hat{p}$  is a "good" point estimate for p.
- For large n,  $(n \ge 30, np > 5)$ , we have

King Saud University

| Hypothesis                                                 | $H_0:P = P_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H₀:P ≤P₀                                                                                                | $H_0:P \ge P_0$                            |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                            | H <sub>A</sub> :P ≠P <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $H_A:P > P_0$                                                                                           | $H_A:P < P_0$                              |
| Test Statistic<br>(T.S.)                                   | Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $=rac{\hat{p}-p_{0}}{\sqrt{rac{p_{0}q_{0}}{n}}}$ , $q_{0}=1-rac{1}{2}$                               | $p_0$                                      |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R) | $\frac{1-\alpha}{\alpha/2}$ R.R. of $H_0$ $\alpha/2$ R.R. of $H_0$ R.R. of | A.R. of $H_0$ $\alpha/2$<br>A.R. of $H_0$ $\alpha$<br>R.R. A.R. of $H_0$ $\alpha$<br>R.R. A.R. of $H_0$ |                                            |
| Reliability Coefficient                                    | -Z <sub>1-<math>\alpha/2</math></sub> or Z <sub>1-<math>\alpha/2</math></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζ <sub>1-α</sub>                                                                                        | -Ζ <sub>1-α</sub>                          |
| Decision :<br>Reject H <sub>o</sub> if the                 | Reject H <sub>0</sub> (Accept H <sub>A</sub> ) at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                            |
| following condition<br>satisfies                           | $Z > Z_{1-\alpha/2}$<br>or Z < - Z_{1-\alpha/2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z > Z_{1-\alpha}$<br>(one – Sided Test)                                                                | $Z < - Z_{1-\alpha}$<br>(one – Sided Test) |

## Test Procedure: (P<sub>0</sub> is known number)

## **Example:**

A researcher was interested in the proportion of females in the population of all patients visiting a certain clinic. The researcher claims that 70% of all patients in this population are females. Would you agree with this claim if a random survey shows that 24 out of 45 patients are females? Use a 0.10 level of significance.

## Solution:

p = Proportion of female in the population.

.*n*=45 (large)

X = no. of female in the sample = 24

 $\hat{P}$  = proportion of females in the sample

-146-

Simpos Rate and Split Unrepistered Mereistatishttp://www.simposcheseep1431/1432

$$\hat{p} = \frac{X}{n} = \frac{24}{45} = 0.5333$$

$$p_{0} = \frac{70}{100} = 0.7$$

$$\alpha = 0.10$$
Hypotheses:  
H\_{0}:  $p = 0.7$  ( $p_{0}=0.7$ )  
H\_{A}:  $p \neq 0.7$   
Level of significance:  
 $\alpha = 0.10$   
Test Statistic (T.S.):  

$$Z = \frac{\hat{p} - p_{0}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n}}} = -2.44$$

$$\frac{0.5333 - 0.70}{\sqrt{\frac{(0.7)(0.3)}{45}}} = -2.44$$
Rejection Region of H<sub>0</sub> (R.R.):  
Critical values:  

$$Z_{\alpha/2} = Z_{0.05} = -1.645$$
We reject H<sub>0</sub> if:  

$$Z < Z_{\alpha/2} = -Z_{0.05} = -1.645$$
We reject H<sub>0</sub> if:  

$$Z < Z_{\alpha/2} = -Z_{0.05} = -1.645$$
We reject H<sub>0</sub> if:  

$$Z < Z_{\alpha/2} = -Z_{0.05} = -1.645$$
Decision:  
Since  $Z = -2.44$  c Paigotien Parime 6

Since  $Z = -2.44 \in \text{Rejection Region of H}_o$  (R.R), we reject

| King Saud University | < 14 <del>8</del> > | Dr. Abdullah Al-Shiha |
|----------------------|---------------------|-----------------------|
|                      |                     |                       |

Simpor Broget Merge and Split Unrepistered Kersistatishttp://www.simpordf.carp 1431/1432

 $H_0:p=0.7$  and accept  $H_A:p \neq 0.7$  at  $\alpha=0.1$ . Therefore, we do not agree with the claim stating that 70% of the patients in this population are females.

## **Example:**

In a study on the fear of dental care in a certain city, a survey showed that 60 out of 200 adults said that they would hesitate to take a dental appointment due to fear. Test whether the proportion of adults in this city who hesitate to take dental appointment is less than 0.25. Use a level of significance of 0.025.

## Solution:

p = Proportion of adults in the city who hesitate to take a dental appointment. n = 200 (large) X= no. of adults who hesitate in the sample = 60  $\hat{p}$  = proportion of adults who hesitate in the sample  $\hat{p} = \frac{X}{n} = \frac{60}{200} = 0.3$  $p_0 = 0.25$  $\alpha = 0.025$ Hypotheses:  $H_0: p \ge 0.25$  ( $p_0=0.25$ )  $H_A: p < 0.25$  (research hypothesis) Level of significance:  $\alpha = 0.025$ Test Statistic (T.S.):  $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{p_0}}} = \frac{0.3 - 0.25}{\sqrt{\frac{(0.25)(0.75)}{200}}} = 1.633$ Rejection Region of H<sub>o</sub> (R.R.): Critical value:  $Z_{\alpha} = Z_{0.025} = -1.96$ Critical Region:

We reject H<sub>o</sub> if:  $Z < Z_{\alpha} = Z_{0.025} = -1.96$ 

148

King Saud University

Simpor BRDE there and Split Unrepistered Merrislatishttp://www.simpordf.com 1431/1432



Decision:

Since Z=1.633  $\in$  Acceptance Region of H<sub>o</sub> (A.R.), we accept (do not reject) H<sub>o</sub>:  $p \ge 0.25$  and we reject H<sub>A</sub>: p < 0.25 at  $\alpha$ =0.025. Therefore, we do not agree with claim stating that the proportion of adults in this city who hesitate to take dental appointment is less than 0.25.

## 7.6 Hypothesis Testing: The Difference Between Two Population Proportions (p<sub>1</sub>-p<sub>2</sub>):

In this section, we are interested in testing some hypotheses about the difference between two population proportions  $(p_1-p_2)$ .



Suppose that we have two populations:

- $.p_1$  = population proportion of the 1-st population.
- $p_2 = population proportion of the 2-nd population.$
- We are interested in comparing p<sub>1</sub> and p<sub>2</sub>, or equivalently, making inferences about p<sub>1</sub>-p<sub>2</sub>.
- We independently select a random sample of size  $n_1$  from

190

King Saud University

Dr. Abdullah Al-Shiha

Simportal Marge and Split Unrepistered Nersignatishttp://www.simpordf.com 1431/1432

the 1-st population and another random sample of size  $n_2$  from the 2-nd population:

- Let  $X_1 = no.$  of elements of type A in the 1-st sample.
- Let  $X_2 = no$ . of elements of type A in the 2-nd sample.
- $\hat{p}_1 = \frac{X_1}{n_1}$  = the sample proportion of the 1-st sample
- $\hat{p}_2 = \frac{X_2}{n_2}$  = the sample proportion of the 2-nd sample
- The sampling distribution of  $\hat{p}_1 \hat{p}_2$  is used to make inferences about  $p_1 p_2$ .
- For large  $n_1$  and  $n_2$ , we have

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0, 1) \quad (Approximately)$$
  
•  $q = 1 - p$ 

## **Hypotheses:**

We choose one of the following situations:

or equivalently,

- (i)  $H_0: p_1-p_2 = 0$  against  $H_A: p_1 p_2 \neq 0$
- (ii)  $H_0: p_1-p_2 \ge 0$  against  $H_A: p_1 p_2 < 0$
- (iii)  $H_0: p_1 p_2 \le 0$  against  $H_A: p_1 p_2 > 0$

Note, under the assumption of the equality of the two population proportions (H<sub>0</sub>:  $p_1 = p_2 = p$ ), the pooled estimate of the common proportion p is:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} \qquad (\overline{q} = 1 - \overline{p})$$

150

The test statistic (T.S.) is

King Saud University

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\frac{\overline{p} \ \overline{q}}{n_1} + \frac{\overline{p} \ \overline{q}}{n_2}}} \sim N(0, 1)$$

## **Test Procedure:**

| Hypothesis                                                 | $H_0:P_1 - P_2 = 0$                                                                                                                                                                                                                               | $H_0: P_1 - P_2 \le 0$                                                       | $H_0: P_1 - P_2 \ge 0$                                                   |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|                                                            | $H_A: P_1 - P_2 \neq 0$                                                                                                                                                                                                                           | $H_{A}: P_{1} - P_{2} > 0$                                                   | $H_{A}: P_{1} - P_{2} < 0$                                               |  |
| Test Statistic<br>(T.S.)                                   | $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\overline{p} \ \overline{q}}{n_1} + \frac{\overline{p}}{n_1}}}$                                                                                                                                     | , Pooled proportion<br>where $\overline{q} = 1 - \overline{p}$               | $n_1 + n_2$                                                              |  |
| Rejection<br>Region(R.R)<br>&<br>Acceptance<br>Region(A.R) | $\begin{array}{c c} & 1-\alpha \\ & \alpha/2 \\ R.R \\ of H_0 - Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R \\ Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R \\ R.R \\ Of H_0 \\ \end{array}$ | $1 - \alpha$ A.R. of $H_0$ $Z_{1-\alpha} \xrightarrow{R.R.}{\text{of } H_0}$ | $\begin{array}{c} \alpha \\ R.R. \\ of H_0 \\ -Z_{1-\alpha} \end{array}$ |  |
| Reliability Coefficient                                    | -Z <sub>1-<math>\alpha/2</math></sub> or Z <sub>1-<math>\alpha/2</math></sub>                                                                                                                                                                     | Ζ <sub>1-α</sub>                                                             | -Ζ <sub>1-α</sub>                                                        |  |
| Decision :<br>Reject H <sub>0</sub> if the                 | Reject $H_0$ (Accept $H_A$ ) at the significant level $\alpha$ if :                                                                                                                                                                               |                                                                              |                                                                          |  |
| following condition<br>satisfies                           | $Z > Z_{1-\alpha/2}$<br>or Z < - Z_{1-\alpha/2}                                                                                                                                                                                                   | $Z > Z_{1-\alpha}$<br>(one - Sided Test)                                     | $Z < - Z_{1-\alpha}$ (one – Sided Test)                                  |  |

#### Example:

In a study about the obesity (overweight), a researcher was interested in comparing the proportion of obesity between males and females. The researcher has obtained a random sample of 150 males and another independent random sample of 200 females. The following results were obtained from this study.

|         | n   | Number of obese people(X) |
|---------|-----|---------------------------|
| Males   | 150 | 21                        |
| Females | 200 | 48                        |

Can we conclude from these data that there is a difference between the proportion of obese males and proportion of obese females?

Use  $\alpha = 0.05$ .

## Solution

Simpor Polati Marge and Split Unrepistered Nersionatishttp://www.simpordf.ener 1431/1432

 $p_1 = population proportion of obese males$ 

 $p_2 =$  population proportion of obese females

 $\hat{p}_1$  = sample proportion of obese males

 $\hat{p}_2$  = sample proportion of obese females

Males  
$$n_1 = 150$$
Females  
 $n_2 = 200$  $X_1 = 21$  $X_2 = 48$  $\hat{p}_1 = \frac{X_1}{n_1} = \frac{21}{150} = 0.14$  $\hat{p}_2 = \frac{X_2}{n_2} = \frac{48}{200} = 0.24$ 

The pooled estimate of the common proportion *p* is:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{21 + 48}{150 + 200} = 0.197$$

Hypotheses:

H<sub>o</sub>: 
$$p_1 = p_2$$
  
H<sub>A</sub>:  $p_1 \neq p_2$   
or  
H<sub>o</sub>:  $p_1 - p_2 = 0$   
H<sub>A</sub>:  $p_1 - p_2 \neq 0$   
Level of significance:  $\alpha = 0.05$   
Test Statistic (T.S.):  

$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\frac{\overline{p}(1 - \overline{p})}{n_1} + \frac{\overline{p}(1 - \overline{p})}{n_2}}} = \frac{(0.14 - 0.24)}{\sqrt{\frac{0.197 \times 0.803}{150} + \frac{0.197 \times 0.803}{200}}} = -2.328$$

Rejection Region (R.R.) of H<sub>o</sub>: Critical values:  $Z_{\alpha/2} = Z_{0.025} = -1.96$   $Z_{1-\alpha/2} = Z_{0975} = 1.96$ Critical region: Reject H<sub>o</sub> if: Z < -1.96 or Z > 1.96

151

King Saud University

Simpor Patt Merge and Split Unregistered Nersiantshittp://www.simpordf.care 1431/1432



Decision:

Since  $Z = -2.328 \in R.R.$ , we reject  $H_0$ :  $p_1 = p_2$  and accept  $H_A$ :  $p_1 \neq p_2$  at  $\alpha = 0.05$ . Therefore, we conclude that there is a difference between the proportion of obese males and the proportion of obese females. Additionally, since,  $\hat{p}_1 = 0.14 < \hat{p}_2 = 0.24$ , we may conclude that the proportion of obesity for females is larger than that for males.

154

Simport BREat Marge and Split Unrepistered Nersiantshillp://www.simpordf.com 1431/1432

| Subject                                                           | Page |
|-------------------------------------------------------------------|------|
| Outline of the course                                             |      |
| Marks Distribution and Schedule of Assessment Tasks               |      |
| CHAPTER 1: Organizing and Displaying Data                         |      |
| Introduction                                                      |      |
| Statistics                                                        |      |
| Biostatistics                                                     |      |
| Populations                                                       |      |
| Population Size                                                   |      |
| Samples                                                           |      |
| Sample Size                                                       |      |
| Variables                                                         |      |
| Types of Variables                                                |      |
| Types of Quantitative Variables                                   |      |
| Organizing the Data                                               |      |
| Simple frequency distribution or ungrouped frequency distribution |      |
| Grouped Frequency Distributions                                   |      |
| Width of a class interval                                         |      |
| Displaying Grouped Frequency Distributions                        |      |
| CHAPTER 2: Basic Summary Statistics                               |      |
| Introduction                                                      |      |
| Measures of Central Tendency                                      |      |
| Mean                                                              |      |
| Population Mean                                                   |      |
| Sample Mean                                                       |      |
| Advantages and Disadvantages of the Mean                          |      |
| Median                                                            |      |
| Advantages and Disadvantages of the Median                        |      |
| Mode                                                              |      |
| Advantages and Disadvantages of the Mode                          |      |
| Measures of Dispersion (Variation)                                |      |
| Range                                                             |      |
| Variance                                                          |      |
| Deviations of Sample Values from the Sample Mean                  |      |
| Population Variance                                               |      |
| Sample Variance                                                   |      |
| Calculating Formula for the Sample Variance                       |      |
| Standard Deviation                                                |      |
| Coefficient of Variation                                          |      |

## TABLE OF CONTENTS

| King Saud University | < 15¥ | Dr. Abdullah Al-Shiha |
|----------------------|-------|-----------------------|
|                      | · (   |                       |

Simpor Patat Merge and Split Unrepistered Nersiantshttp://www.simpordf.com 1431/1432

| TABLE OF CONTENTS                                             |  |
|---------------------------------------------------------------|--|
| Some Properties of the Mean, Standard Deviation, and Variance |  |
| Calculating Measures from Simple Frequency Table              |  |
| Approximating Measures From Grouped Data                      |  |
| CHPTER 3: Basic Probability Concepts                          |  |
| General Definitions and Concepts                              |  |
| Probability                                                   |  |
| An Experiment                                                 |  |
| Sample Space                                                  |  |
| Events                                                        |  |
| Equally Likely Outcomes                                       |  |
| Probability of an Event                                       |  |
| Some Operations on Events                                     |  |
| Union of Two events                                           |  |
| Intersection of Two Events                                    |  |
| Complement of an Event                                        |  |
| General Probability Rules                                     |  |
| Applications                                                  |  |
| Conditional Probability                                       |  |
| Independent Events                                            |  |
| Bayes' Theorem                                                |  |
| Combinations:                                                 |  |
| CHAPTER 4: Probability Distributions                          |  |
| Introduction                                                  |  |
| Probability Distributions of Discrete R.V.'s                  |  |
| Graphical Presentation                                        |  |
| Population Mean of a Discrete Random Variable                 |  |
| Cumulative Distributions                                      |  |
| Binomial Distribution                                         |  |
| Poisson Distribution                                          |  |
| Probability Distributions of Continuous R.V.                  |  |
| Normal Distribution                                           |  |
| Standard Normal Distribution                                  |  |
| Calculating Probabilities of Standard Normal Distribution     |  |
| Calculating Probabilities of Normal Distribution              |  |
| Sampling Distribution of the Sample Mean                      |  |
| Results about Sampling Distribution of the Sample Mean        |  |
| t-distribution                                                |  |
| CAPTER 5: Statistical Inferences                              |  |
| Estimation and Hypotheses Testing                             |  |

155

### TABLE OF CONTENTS

King Saud University

SimposPatat Marge and Split Unrepistared Kerpistatishttp://www.simposchesam 1431/1432

## TABLE OF CONTENTS

| Estimation                                        |                     |
|---------------------------------------------------|---------------------|
| Estimation of the Population Mean                 |                     |
| Point Estimation of the population mean           |                     |
| Interval Estimation of the population mean        |                     |
| Estimation for the Population Proportion          | Contrast Contrastor |
| Point Estimate for the Population Proportion      |                     |
| Interval Estimation for the Population Proportion |                     |
| Tests of Hypotheses                               |                     |
| Single Sample: Tests Concerning a Single Mean     |                     |
| Single Sample: Tests on a Single Proportion:      |                     |
| Two-sample: Paired t-test                         |                     |

156

Dr. Abdullah Al-Shiha