Islamic University in Madinah, Faculty of Engineering, Civil Engineering Department CE271- Midterm Exam 1 - Fall Semester 2016-2017 Student ID #: _____

Question 1 (15 points)

- 1.1 Define surveying and taping
- 1.2 What are curvature and refraction errors for horizontal lines departing from the Earth's surface by 500 m, 5 km and 1000 ft.

Solution

1.1

<u>Surveying</u> is defined as art of measuring, recording and then drawing to scale, the size and shape of the natural or manmade objects on the surface of the earth.

<u>Taping</u> consists of applying the known length of a graduated tape directly to a line a number of times to determine its length.

(3 points)

1.2

For 500 m=0.5 km

Curvature errors $c = 0.0785 L^2 = 0.0785 * 0.5^2 = 0.019625 \text{ m}$ Refraction errors $r = \frac{1}{7} 0.0785 L^2 = \frac{1}{7} 0.0785 * 0.5^2 = 0.0028 \text{ m}$

For 5 km

Curvature errors $c = 0.0785 L^2 = 0.0785 * 5^2 = 1.9625 m$

Refraction errors $r = \frac{1}{7} 0.0785 L^2 = \frac{1}{7} 0.0785 * 5^2 = 0.2804 m$

For 1000 ft = 1000 * 30.48 / 100 * 1000 = 0.304 km

Curvature errors $c = 0.0785 L^2 = 0.0785 * 0.304^2 = 0.00725 m$

Refraction errors $r = \frac{1}{7} 0.0785 L^2 = \frac{1}{7} 0.0785 * 0.304^2 = 0.00104 m (12 points)$

Islamic University Faculty of Engineering Department of Civil Engineering

الجامعة الإسلامية كلية الهندسة قسم الهندسة المدنية

CE271-SURVEYING

Fall Semester 2016-2017

Midterm Exam 1

Exam Date: November 21, 2016; Exam Duration: 90 minutes

Student's Full Name:	
Student ID #:	Signature:
Instructions:	
 Write your student ID number on Write the solution in the space pro 	

• Show all the details of your analysis and calculations

Question No.	Points Assigned	Points Awarded
1.	15	
2.	25	
3.	30	
4.	30	
Total	100	

Instructor's Full Name	Dr. Abdelkader Ahmed
Signature	

Question 3 (30 points)

- 3.1 Define levelling and its objectives
- 3.2 The following figure shows four instrument setups required to determine a level of Oak tree root starting from a benchmark point at a mill on the hill top. What the type of this levelling. Calculate in a table the elevation of the tree root.

Solution

3.1

Levelling used to incorporate the height feature

Object of levelling:

Find the elevation of given points with respect to a given datum

To establish points at different elevation

(5 points)

Question 2 (25 points)

- 2.1 Explain the methods for measuring distances on uneven or sloping ground
- 2.2 The slope distance and vertical angle between points A and B were observed with a total station instrument as 100 m and 15° respectively. The device height and rod reading were 1.5 m and 1.74 m respectively. If the elevation of A is 40 m above the sea level, compute the elevation of B and the distance between A and B.

Solution

2.1 The methods for measuring distances on uneven or sloping ground

<u>Indirect measurement</u>: In taping on uneven or sloping ground, it is standard practice to hold the tape horizontally and use a plumb bob at one or perhaps both ends.

<u>Direct measurement</u>: In measuring the distance between two points on a steep slope, rather than break tape every few feet, it may be desirable to tape along the slope and compute the horizontal component.

(5 points)

2.2 Given: ($L_{AB} = 100 \text{ m}$, $\alpha = 15^{\circ}$, hI = 1.5 m, d = 1.74 m Elev A=40 m)

 $d/L = \sin \alpha$ $d = 100*\sin 15 = 25.88 m$

Elev B= 40+1.5+25.88-1.74 = 65.64 m

 $H = L\cos\alpha$

 H_{AB} = 100 cos 15= 96.59 m

(20 points)

Islamic University in Madinah, Faculty of Engineering, Civil Engineering Department CE271- Midterm Exam 1 - Fall Semester 2016-2017

Student ID #:

Question 4 (30 points)

- 4.1 What are the common methods for making linear measurements
- 4.2 What are the error sources in the linear measurements-give examples
- 4.3 A 50-m steel tape standardized at 25°C and supported throughout under a tension of 6 kg was found to be 49.9 m long. The tape had a cross-sectional area of 0.075 cm² and a weight of 0.04 kg/m. This tape was held horizontal, supported at the ends only, with a constant tension of 10 kg, to measure a line from A to B in three segments. Distances of these segments are 42m, 55m and 26m measured in temperatures of 22°, 25° and 27° respectively. Apply corrections for tape length, temperature, pull, and sag to determine the correct length of the line AB.

Solution

- 4.1 Linear measurements surveying most commonly use today: Taping, EDM, and Satellite systems (GPS). (3 points)
- 4.2 There are three fundamental sources of error in taping:
- 1. Instrumental errors. A tape may differ in actual length from its nominal graduated length because of a defect in manufacture or repair, or as a result of kinks.
- 2. Natural errors. The horizontal distance between end graduations of a tape varies because of the effects of temperature, wind, and weight of the tape itself.
- 3. Personal errors. Tape persons setting pins, reading the tape, or manipulating the equipment.

 Some types produce systematic errors others produce random errors. (9 points)

3.2 This typed called differential levelling

(25 points)

	DIFFERENTIAL LEVELS					
**	Sta.	в. 5 .	H.I.	F.S.	Elev.	Adj. Elev.
	BM Mil.	1.33			2053.18	2053.18
			2054.51		(-0.004)	
	TP1	0.22		8.37	2046.14	2046.14
			2046.36	7.91	(-0.008)	
	TP2	0.96		8.91	2038.45	2038.44
			2039.41		(-0.012)	
	TP3	0.46		11.72	2027.69	2027.68
			2028.15		(-0.016)	
	BM Oak	11.95		8.71	2019.44	2019.42

4

Islamic University Faculty of Engineering Department of Civil Engineering

الجامعة الإسلامية كلية الهندسة قسم الهندسة المدنية

CE271-SURVEYING

Fall Semester 2016-2017

Midterm Exam 2 (Answer model)

Exam Date: December 28, 2016; Exam Duration: 90 minutes

Student's Full Name:			
Student ID #:	Signature:		
Instructions:			
 Write your student ID number o Write the solution in the space process. 			

• Show all the details of your analysis and calculations

Question No.	Points Assigned	Points Awarded
1.	40	
2.	30	
3.	30	
Total	100	

Instructor's Full Name	Dr. Abdelkader Ahmed
Signature	

Islamic University in Madinah, Faculty of Engineering, Civil Engineering Department CE271- Midterm Exam 1 - Fall Semester 2016-2017

Student ID #:

4.3 (18 points)

(a) The tape length correction by the following equation is

$$C_L = \left(\frac{l - l'}{l'}\right) L$$

$$C_L = ((49.9-50)/50)*(42+55+26) = -0.246 \text{ m}$$

(b) Temperature corrections by the following equation

$$C_T = k(T_1 - T)L$$

Assume k=0.000011

$$CT3=0.000011(27-25)26=+0.000858$$

c) The pull correction by the following equation is

$$C_P = (P_1 - P) \frac{L}{AE}$$

Assume: E=2000000 kg/cm²

$$Cp = [(10-6)/(0.075*200000)]*(42+55+26) = +0.00328$$

d) The sag corrections by the following equation

$$C_S = -\frac{w^2 L_S^3}{24 P_1^2}$$

$$Cs1 = -0.04^2*42^3/24*10^2 = -0.049$$

$$Cs2 = -0.04^2*55^3/24*10^2 = -0.111$$

$$Cs3 = -0.04^2 * 26^3 / 24 * 10^2 = -0.012$$

Finally, corrected distance AB is obtained by adding all corrections to the measured distance = 42+55+26-0.246-0.001386+0.000858+0.00328-0.049-0.111-0.012= **122.5848 m**