University of Jeddah Faculty of Science

MATH 101 General Revision on Chapter Preliminaries

Department of Mathematics		University of Jeddah	Chapter Preliminaries
Q1: The solution set of	the inequality $3x + \frac{1}{2}$	5 ≤ 8 is	
A) (-∞,1)	B) (-∞,1]	C) [1,∞)	D) (1, ∞)
, ,			
Q2: The solution set of	the inequality $5x -$	3 > 7 - 3x is	
A) $\left(-\infty,\frac{5}{4}\right)$	B) $\left[\frac{5}{4},\infty\right)$	$C)\left(\frac{5}{4},\infty\right)$	$D)\left(-\infty,\frac{5}{4}\right]$
Q3: The solution set of	the inequality 2 < 3	x -4 ≤ 5 is	,
A) (2,3]	B) [2,3)	C) (2,3)	D) [2,3]
Q4: The solution set of	Saha ina awalita a 2	O :-	
A) $(-\infty, -3) \cup (3, \infty)$	B) $[-3,3]$	C) (-∞,-3]	U[3,∞) D) (-3,3)
		~.	
Q5: The solution set of			[1][2) [D) (2 2)
A) $(-\infty, -3) \cup (3, \infty)$	B) [-3,3]	C) (-∞,-3]	$\bigcup[3,\infty)\qquad D) \ (-3,3)$
Q6: The solution set of	the inequality $x^2 - 1$	$2x \le 0$ is	
A) $(-\infty,0) \cup (2,\infty)$	B) (0,2)	C) (-∞,0]U	$[2,\infty)$ D) $[0,2]$
Q7: The solution set of	the inequality $x^2 - 8$	8x + 12 > 0 is	
A) $(-\infty,2) \cup (6,\infty)$	B) (2,6)	C) (-∞,3]U	[4,∞) D) [3,4]
Q8: The solution set of	the equality $ x-3 =$	-7 is	
A) {4,10}	B) {-4,10}	C) {-10,-4	D) {-10,4}
Q9: The solution set of	the inequality $ 2x +$	5 ≥7 is	
A) (-6,1)	B) (-∞,-6)U(·	U[1,∞) D) [-6,1]
O10. The solution set	f the inequality 2	7 . 2 :-	
Q10: The solution set o	1 (-)		
$A)\left(\frac{5}{3},3\right)$	B) $\left(-\infty, \frac{5}{3}\right)$ U (3	C) $\left(-\infty, \frac{5}{3}\right]$	$D) \left[\frac{5}{3}, 3 \right]$
Q11: The distance betw	een the two points (0,3) and (4,0) is	
A) $\sqrt{50}$	B) √10	C) 25	D) 5

Q12: The distance between the two points $(3,2)$ and $(-1,-2)$ is						
A) $\sqrt{32}$	B) √8	C) 4	D) $\sqrt{18}$			
Q13: Equation of the vertical line passing through the point (-2,5) is						
A) $x = 5$	B) $y = -2$	C) $y = 5$	D) $x = -2$			
Q14: Equation of the horizontal line passing through the point (-2,5) is						
A) $x = 5$	B) $y = -2$	C) $y = 5$	D) $x = -2$			
Q15: Slope of the following line $2y - 5x + 7 = 0$ is						
A) $\frac{5}{2}$	B) $-\frac{5}{2}$	C) $\frac{2}{5}$	D) $-\frac{2}{5}$			
2	2	5	5			
Q16: Equation of the line with slope -6 and y-intercept 5 is						
		-	D) $y = 6x - 5$			
A) y = -6x + 5	B) $y = 6x + 5$	C) $y = -6x - 5$	D) y = 6x - 3			
Q17: The y-intercept of the line $x + 2y = -4$ is						
A) 2	B) -2	C) 4	D) -4			
A) 2	B) =2		12)			
Q18: The x-intercept of	f the line $x + 2y = -4$ is					
A) 2	B) -2	C) 4	D) -4			
	that passes through the point		D) 0			
A) -3	B) 1/3	C) -1/3	D) 3			
Q20: Equation of the line that passes through the point (-1,1) with slope 1 is						
A) $y = -x + 2$	B) $y = x - 2$	(C) $y = x + 2$	D) $y = -x - 2$			
, ,						
Q21: Equation of the line passing through the point (1,2) with slope 5 is						
A) $y = -5x + 3$	B) $y = 5x + 3$	C) $y = -5x - 3$	D) $y = 5x - 3$			
Q22: Equation of the line passing through the points (4,1) and (-2,3) is						
A) $x + 3y + 7 = 0$	B) $x + 3y - 7 = 0$	C) $x - 3y - 7 = 0$	D) $x - 3y + 7 = 0$			
Q23: Equation of the line that passes through the point (2,1) and parallel to the line $y = x + 2$ is						
A) y = x + 1	B) $y = x - 1$	C) $y = -x + 3$	D) $y = x - 3$			
Q24: Equation of the line that passes through the point (2,1) and perpendicular to the line $y = x + 2$ is						
A) $y = x + 1$	B) $y = x - 1$	C) $y = -x + 3$	D) $y = x - 3$			
Q25: Equation of the line that passes through the point $(-2,2)$ and parallel to the line $2x + y = 4$ is						
A) $2x + y = -2$	B) 2x + y = 2	C) x - 2y = 6	D) $x - 2y = -6$			

Q26: The equation of the line passes through the point (-2,2) and perpendicular to the line 2x + y = 4 is D) x - 2y = -6A) 2x + y = -2B) 2x + y = 2C) x - 2y = 6Q27: If the graph of $y = 1 - x^2$ is shifting to the left 1 unit and then it is shifting downward 1 unit, thus the new graph can be represented by C) $y = -(x-1)^2$ D) $y = (x - 1)^2$ A) $y = (x + 1)^2$ B) $y = -(x+1)^2$ Q28: If the graph of $y = \sqrt{x}$ is shifting to the right 4 units and then it is shifting downward 2 units, thus the new graph can be represented by D) $y = \sqrt{x - 4} - 2$ B) $y = \sqrt{x-4} + 2$ C) $y = \sqrt{x+4} + 2$ A) $y = \sqrt{x+4} - 2$ Q29: If the graph of $y = \sqrt{x}$ is shifting to the left 4 units and then it is shifting upward 2 units, thus the new graph can be represented by C) $y = \sqrt{x+4} + 2$ D) $y = \sqrt{x - 4} - 2$ A) $y = \sqrt{x+4} - 2$ B) $y = \sqrt{x-4} + 2$ Q30: Domain of the function $f(x) = \sqrt{8-2x}$ is B) $(-\infty, 4]$ A) $(-\infty,4)$ C) $(4,\infty)$ D) $[4,\infty)$ Q31: Domain of the function $f(x) = \frac{1}{x-1}$ is A) R B) $\mathbb{R} - \{0\}$ C) $\mathbb{R} - \{-1\}$ D) $\mathbb{R}-\{1\}$ Q32: Domain of the function $g(t) = \frac{t}{\sqrt{2-t}}$ is A) $(2,\infty)$ B) $(-\infty, 2]$ C) $(-\infty,2)$ D) $[2,\infty)$ Q33: Domain of the function $f(x) = \frac{3x+5}{x^2-x-12}$ is A) $\mathbb{R} - \{3,4\}$ B) $\mathbb{R} - \{-4,3\}$ C) $\mathbb{R} - \{-3, 4\}$ D) $\mathbb{R} - \{-4, -3\}$ Q34: Domain of the function $f(x) = \sqrt{x^2 - 4}$ is A) $(-\infty, -2) \cup (2, \infty)$ C) (-2,2)D) $(-\infty, -2] \cup [2, \infty)$ Q35: The function $f(x) = x^2 + 1$ is A) an even function. B) an odd function. C) an even and odd D) neither even nor odd function. function Q36: The function $f(x) = x^3 + x$ is A) an even function. B) an odd function. C) an even and odd D) neither even nor odd function. function. Revision 1 **MATH 101** 1439-1440 Page 3 of 8

Q37: The function $f(x) = \frac{1}{x^2 - 1}$ is A) an even function. B) an odd function. D) neither even nor odd C) an even and odd function. function. Q38: The function $f(x) = x^3 - 2$ is A) an even function. B) an odd function. D) neither even nor odd C) an even and odd function. function. Q39: The function $f(x) = \frac{x}{x^2 - 1}$ is A) an even function. D) neither even nor odd B) an odd function. C) an even and odd function. function. Q40: The function $f(x) = x^2 - 6x$ is A) an even function. B) an odd function. D) neither even nor odd C) an even and odd function. function. Q41: If f(x) = x and $g(x) = \sqrt{x-1}$, then domain of the function (f+g)(x) is C) ℝ A) [1,∞) B) $(-\infty,1]$ D) $(1,\infty)$ Q42: If f(x) = x and $g(x) = \sqrt{x-1}$, then domain of the function (f-g)(x) is B) R A) $(-\infty,1]$ D) $[1,\infty)$ C) $(1,\infty)$ Q43: If f(x) = x and $g(x) = \sqrt{x-1}$, then domain of the function $(f \times g)(x)$ is A) R B) $(-\infty,1]$ C) [1,∞) D) $(1,\infty)$ Q44: If f(x) = x and $g(x) = \sqrt{x-1}$, then domain of the function (f/g)(x) is B) (-∞,1] C) R A) $[1,\infty)$ D) $(1,\infty)$ Q45: If f(x) = x + 5 and $g(x) = x^2 - 3$, then $(f \circ g)(x) =$ $C) -x^{2} + 2$ A) $x^2 + 2$ B) $x^2 - 2$ D) $-x^2 - 2$ Q46: If f(x) = x + 5 and $g(x) = x^2 - 3$, then $(g \circ f)(x) =$ A) $x^2 + 10x - 22$ B) $x^2 + 10x + 22$ C) $x^2 - 10x + 22$ D) $x^2 - 10x - 22$ Q47: If f(x) = x + 5, then $(f \circ f)(x) =$ B) x + 25A) $x^2 + 5$ C) x + 10D) $x^2 + 10$ Q48: If f(x) = x + 5 and $g(x) = x^2 - 3$, then $(f \circ g)(0) =$ B) -2A) 4 C) 3 D) 2 Revision 1 **MATH 101**

Scanned with CamScanner

Page 4 of 8

1439-1440

Q49: If f(x) = x + 5 and $g(x) = x^2 - 3$, then $(g \circ f)(0) =$ A) 20
B) -22
C) 22
D) 21

Q50: If $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$, then $(f \circ g)(x) = \frac{1}{1-x}$

- $A) \frac{-1}{1 \sqrt{x 1}}$
- $B) \frac{1}{\sqrt{x-1}}$
- C) $\frac{1}{1+\sqrt{x-1}}$
- $D) \frac{1}{1 \sqrt{x 1}}$

Q51: If $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$, then the domain of $(f \circ g)(x)$ is

- A) (1,∞)
- B) $[1,2) \cup (2,\infty)$
- C) [1,∞)

D) R

Q52: If $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$, then $(g \circ f)(x) = \frac{1}{1-x}$

- A) $\sqrt{\frac{x}{x-1}}$
- B) $\frac{x}{\sqrt{x-1}}$
- C) $\sqrt{\frac{x}{1-x}}$
- D) $\frac{x}{\sqrt{1-x}}$

Q53: If $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$, then the domain of $(g \circ f)(x)$ is

A) [0,1]

B) [0,1)

- C) (0,1)
- D) R

Q54: [-3.2]=

A) 3.2

B) -3.2

C) -3

D) -4

Q55: If a circle has radius 3 cm, what is the length of an arc subtended by a central angle of $\frac{2\pi}{3}$ rad?

- A) $\frac{2\pi}{9}$ cm
- B) $\frac{9}{2\pi}$ cm
- C) 2π cm
- D) $\frac{1}{2\pi}$ cm

Q56: $\frac{5\pi}{3}$ =

A) 120°

B) 270°

C) 300°

D) 150°

Q57: 150° =

A) $\frac{7\pi}{6}$

B) $\frac{5\pi}{6}$

C) $\frac{6\pi}{5}$

 $\mathbf{D})\,\frac{7\pi}{5}$

Q58: $\cos\left(\frac{3\pi}{4}\right) =$

A) $-\sqrt{2}$

B) $\sqrt{2}$

C) $\frac{1}{\sqrt{2}}$

D) $-\frac{1}{\sqrt{2}}$

Revision 1

MATH 101

1439-1440

Page 5 of 8

B) $-\frac{\sqrt{3}}{2}$

C) $\frac{\sqrt{3}}{2}$

D) $-\frac{1}{2}$

Q60: $\cos(\pi + x) =$

A) $-\cos x$

 $B) - \sin x$

 $C) \cos x$

D) $\sin x$

Q61: $\sin\left(\frac{3\pi}{2} - x\right) =$

A) $\cos x$

B) $-\sin x$

 $C) - \cos x$

 $D) \sin x$

Q62: The function $f(x) = \frac{\sin x}{x}$ is

A) an even function.

B) an odd function.

C) an even and odd function.

D) neither even nor odd function.

Q63: $\cos^4 x - \sin^4 x =$ A) $\cos^2 x$

B) 1

C) $\sin(2x)$

D) $\cos(2x)$

Q64: If $\sin \theta = \frac{3}{5}$, where $\frac{\pi}{2} < \theta < \pi$, then $\tan \theta =$

C) $-\frac{3}{4}$

D) $\frac{4}{3}$

Q65: If $\sin \theta = -\frac{1}{2}$, where $\pi < \theta < \frac{3\pi}{2}$, then $\cos \theta =$

B) $\frac{\sqrt{3}}{2}$

D) $\frac{2}{\sqrt{3}}$

Q66: If $\tan \theta = -\frac{4}{3}$, where $\frac{\pi}{2} < \theta < \pi$, then $\csc \theta = \frac{1}{3}$ A) $-\frac{5}{4}$ B) $-\frac{5}{3}$

C) $\frac{5}{4}$

D) $\frac{5}{3}$

Q67: If $\sec \theta = \frac{\sqrt{5}}{2}$, where $\frac{3\pi}{2} < \theta < 2\pi$, then $\tan \theta =$

C) $\frac{1}{2}$

D) 2

Q68: $\sec\left(\frac{4\pi}{3}\right) =$

B) 2

C) -2

Revision 1

MATH 101

1439-1440

Page 6 of 8

Q69: If $\sin \theta > 0$ and $\cos \theta < 0$, then the angle θ lies in the

A) first quadrant.

B) second quadrant.

C) third quadrant.

D) fourth quadrant.

Q70: $2\sin\left(\frac{\pi}{8}\right)\cos\left(\frac{\pi}{8}\right) =$

A) $\frac{1}{\sqrt{2}}$

B) $\frac{\sqrt{3}}{2}$

C) $\frac{1}{2}$

D) $-\frac{1}{\sqrt{2}}$

Q71: Choose the interval that describes the shaded region

A) $\left(-\infty,0\right)$

B) $(-\infty,0]$

C) $(0,\infty)$

 $D) [0,\infty)$

Q72: Choose the intervals that describe the shaded regions

A) $(-\infty,0)$ \cup [2,5]

B) $(-\infty,0] \cup (2,5)$

C) $(-\infty,0) \cup [2,5)$

D) $(-\infty, 0] \cup (2, 5]$

Q73: $|\cos(150^{\circ})| =$

A) $\sqrt{3}$

B) $\frac{1}{\sqrt{3}}$

C) $\frac{2}{\sqrt{3}}$

D) $\frac{\sqrt{3}}{2}$

Q74: $\sin(30^\circ) \times \tan(45^\circ) =$

A) $\frac{1}{2}$

B) $\frac{1}{\sqrt{2}}$

C) $\frac{1}{\sqrt{3}}$

D) $\frac{\sqrt{3}}{2}$

Q75: $2 \times \sin(40^\circ) \times \cos(40^\circ) =$

A) $\sin(40^\circ)$

B) cos (40°)

C) $\sin(80^\circ)$

D) $cos(80^\circ)$

Q76: $\frac{\sin^2(25^\circ) + \cos^2(25^\circ)}{\csc(70^\circ)} =$

A) sin(70°)

B) $\cos(70^\circ)$

C) csc(70°)

D) sec (70°)

Q77: If $f(x) = \frac{x-1}{x^3 + x^2 - 6x}$, then the domain of f(x) is given by

A) $\mathbb{R}\setminus\{-3,-2,0\}$

B) ℝ\{-3,0,2}

C) $\mathbb{R}\setminus\{-2,0,3\}$

D) R\{0,2,3}

Revision 1

MATH 101

1439-1440

Page 7 of 8

Q78: Domain of the following function $f(x) = \frac{\sqrt[4]{x}}{x^2 - 9}$ is

A) $(-\infty, 0] \setminus \{-3\}$ B) $[0, \infty) \setminus \{3\}$ C) $\mathbb{R} \setminus \{-3, 0, 3\}$ D) $\mathbb{R} \setminus \{-3, 3\}$

Q79: Domain of the following function $f(x) = \sqrt[3]{x^2 - 16}$ is

A) $(-\infty, -4] \cup [4, \infty)$ B) $\mathbb{R} \setminus \{-4, 4\}$ C) $\mathbb{R} \setminus \{16\}$ D) \mathbb{R}

Q80: Equation of the line that passes through the point (4,-1) and has no slope is

A) x = 4B) x = -1C) y = 4D) y = -1

Q81: Equation of the line that passes through the point (4,-1) with slope zero is

A) x = 4B) x = -1C) y = 4D) y = -1

Best Wishes

Revision 1 MATH 101 1439-1440 Page 8 of 8