Chapter Three

Heat and properties of matter

Temperature:

- Basically temperature is a measure of hotness or coldness of an object
- Properly measured with instrumental thermometer. (not by hand which is not sensitive enough nor precise)

Thermometer example:

To measure temperature: We use the change in volume as temperature changes

Common

thermometer

Four basic temperature scales

Useful relationship

$$
\begin{array}{ll}
T_{K}=T_{C}+273 & T_{R}=T_{F}+460 \\
T_{C}=\frac{5}{9}\left(T_{F}-32\right) & T_{F}=\frac{9}{5} T_{F}+32
\end{array}
$$

Conversions between different scales

EXAMPLE 3.1

The human body average temperature is $98.6^{\circ} \mathrm{F}$. What is it in degrees Celsius?

Data:

$$
\begin{aligned}
T_{F} & =98.6^{\circ} \mathrm{F} \\
T_{\mathrm{C}} & =?
\end{aligned}
$$

Basic Equation:

$$
T_{C}=\frac{5}{9}\left(T_{F}-32^{\circ}\right)
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
T_{\mathrm{C}} & =\frac{5}{9}\left(98.6^{\circ}-32^{\circ}\right) \\
& =\frac{5}{9}\left(66.6^{\circ}\right) \\
& =37.0^{\circ} \mathrm{C}
\end{aligned}
$$

Change $18^{\circ} \mathrm{C}$ to Kelvin.

Data:

$$
\begin{aligned}
& T_{\mathrm{C}}=18^{\circ} \mathrm{C} \\
& T_{\mathrm{K}}=?
\end{aligned}
$$

Basic Equation:

$$
T_{\mathrm{K}}=T_{\mathrm{C}}+273
$$

Working Equation: Same
Substitution:

$$
\begin{aligned}
T_{\mathrm{K}} & =18+273 \\
& =291 \mathrm{~K}
\end{aligned}
$$

Change $535^{\circ} \mathrm{R}$ to degrees Fahrenheit.

Data:

$$
\begin{aligned}
& T_{\mathrm{R}}=535^{\circ} \mathrm{R} \\
& T_{\mathrm{F}}=?
\end{aligned}
$$

Basic Equation:

$$
T_{\mathrm{R}}=T_{\mathrm{F}}+46 \overline{0}^{\circ}
$$

Working Equation:

$$
T_{\mathrm{F}}=T_{\mathrm{R}}-46 \overline{0}^{\circ}
$$

Substitution:

$$
\begin{aligned}
T_{\mathrm{F}} & =535^{\circ}-46 \overline{0^{\circ}} \\
& =75^{\circ} \mathrm{F}
\end{aligned}
$$

Heat

is a form of internal kinetic and potential energy contained in an object associated with the motion of its atoms or molecules and may be transferred from an object at a higher temperature to one at a lower temperature.

Heat cannot be stored. Heat is a transformed energy (example: work by friction force transforms into heat)

Units:
SI system \rightarrow Joule (J)
U.S. system $\rightarrow \mathrm{ft} \mathrm{lb}$

Other units:
Metric/SI system \rightarrow kilocalorie (kcal)
British system \rightarrow Btu (British thermal unit)
Conversation factors:
$1 \mathrm{kcal}=4190 \mathrm{~J}$; $1 \mathrm{Btu}=778 \mathrm{ft} \mathrm{lb}$

Friction causes a rise in temperature of the drill and plate.

Conversion of heat into useful work

EXAMPLES:

In our bodies:

Food \rightarrow Heat \rightarrow muscular energy (~ 25 \% of the heat) \rightarrow work

By burning gases:
Heat \rightarrow gas expansion \rightarrow work
(example: internal combustion engine in cars)

By steam.:

Heat \rightarrow energetic steam \rightarrow work (example: steam turbine)

Internal combustion engine

Steam generator \& turbine

EXAMPLES

1. Find the amount of work (in J) that is equivalent to 4850 cal of heat.

$$
4850 \times 4.19=20,300 \mathrm{~J}=20.3 \mathrm{~kJ}
$$

2. How much work must a person do to offset eating a 775-calorie breakfast?

First, note that one food calorie equals one kilocalorie

$$
775 \times 4190=3.25 \times 10^{6} \mathrm{~J}=3.5 \mathrm{MJ}
$$

3. A given coal gives off $7150 \mathrm{kcal} / \mathrm{kg}$ of heat when burned. How many joules of work result from burning one metric ton, assuming that 65.0% of the heat is lost?
First, note that one metric ton equals 1000 kg .

$$
7150 \times 4190 \times 1000 \times 0.35=1.05 \times 10^{10} \mathrm{~J}=10.5 \mathrm{GJ}
$$

Specific Heat

The specific heat of a substance is the amount of heat necessary to change the temperature of 1 kg of it $1^{\circ} \mathrm{C}\left(1 \mathrm{lb}\right.$ of it $1^{\circ} \mathrm{F}$ in the U.S. system $)$. By formula,

$$
\begin{aligned}
& c=\frac{Q}{m \Delta T}(\text { metric system }) \\
& Q=c m \Delta T
\end{aligned}
$$

$c=$ specific heat
$Q=$ heat
$m=$ mass
$w=$ weight
$\Delta T=$ change in temperature

FIGURE $\mathbf{3 . 3 2}$
Apparatus for measuring the specific heat of a metal by the method of mixtures

EXAMPLE

How many kilocalories of heat must be added to 10.0 kg of steel to raise its temperature $15 \overline{0}^{\circ} \mathrm{C}$?

Data:

$$
\begin{aligned}
m & =10.0 \mathrm{~kg} \\
\Delta T & =15 \overline{0}^{\circ} \mathrm{C} \\
c & =0.115 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C} \quad \text { (from Table I } 5 \text { of Appendix C) } \\
Q & =?
\end{aligned}
$$

Basic Equation:

$$
Q=c m \Delta T
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
Q & =\left(0.115 \frac{\mathrm{kcal}}{\mathrm{ke}^{\circ} \ell}\right)(10.0 \mathrm{~kg})\left(15 \overline{0}^{\circ} \ell\right) \\
& =173 \mathrm{kcal}
\end{aligned}
$$

EXAMPLE

How many joules of heat must be absorbed to cool 5.00 kg of water from $75.0^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$?

Data:

$$
\begin{aligned}
m & =5.00 \mathrm{~kg} \\
\Delta T & =75.0^{\circ} \mathrm{C}-10.0^{\circ} \mathrm{C}=65.0^{\circ} \mathrm{C} \\
c & =41.90 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} \quad \text { (from Table I5 of Appendix C) } \\
Q & =?
\end{aligned}
$$

Basic Equation:

$$
Q=c m \Delta T
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
Q & =\left(4190 \frac{\mathrm{~J}}{\mathrm{kf}^{\circ} \ell}\right)(5.00 \mathrm{~kg})\left(65.0^{\circ} \ell\right) \\
& =1.36 \times 10^{6} \mathrm{~J} \quad \text { or } \quad 1.36 \mathrm{MJ}
\end{aligned}
$$

Change of Phase

- Many industries concerned with a change of phase in the materials they use.
- Sometimes called change of state.
- Solid \Rightarrow liquid \Rightarrow gas

Molten iron at about 2900F is poured from a bucket into an open mold by a person in protective clothes and gloves.

FUSION

The change of phase from solid to liquid is called melting or fusion. The change from liquid to solid is called freezing or solidification.

EXAMPLE

The amount of heat required to melt 1 g or 1 kg or 1 lb of a liquid is called its heat of fusion, designated L_{f}.
$L_{f}=\frac{Q}{m} \quad($ metric $) \quad L_{f}=\frac{Q}{w} \quad$ (U.S. $)$

$$
\begin{aligned}
L_{f} & =\text { heat of fusion (see Table } 15 \text { in Appendix C) } \\
Q & =\text { quantity of heat } \\
m & =\text { mass of substance (metric system) } \\
w & =\text { weight of substance (U.S. system) }
\end{aligned}
$$

No temperature change

 during change of phase
Notes

- Although there is no temperature change during change of phase, there is a transfer of heat.
- A melting solid absorbs heat and
- A solidifying liquid gives off heat.

If 1340 kJ of heat is required to melt 4.00 kg of ice at $0^{\circ} \mathrm{C}$ into water at $0^{\circ} \mathrm{C}$, what is the heat of fusion of water?

Data:

$$
\begin{aligned}
Q & =1340 \mathrm{~kJ} \\
m & =4.00 \mathrm{~kg} \\
L_{f} & =?
\end{aligned}
$$

Basic Equation:

$$
L_{f}=\frac{Q}{m}
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
L_{f} & =\frac{1340 \mathrm{kj}}{4.00 \mathrm{~kg}} \\
& =335 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

heat of fusion (water) $=8 \overline{0} \mathrm{cal} / \mathrm{g}$, or $8 \overline{0} \mathrm{kcal} / \mathrm{kg}$, or $335 \mathrm{~kJ} / \mathrm{kg}$, or $144 \mathrm{Btu} / \mathrm{l}$

VAPORIZATION

The change of phase from liquid to a gas or vapor is called vaporization. The reverse process is called condensation (liquid \leftarrow gas).

EXAMPLE

The amount of heat required to vaporize 1 g or 1 kg or 1 lb of a liquid is called its heat of vaporization, designated L_{v}.

$$
L_{v}=\frac{Q}{m} \quad(\text { metric }) \quad L_{v}=\frac{Q}{w} \quad \text { (U.S.) }
$$

$$
L_{v}=\text { heat of vaporization (see Table } 15 \text { in Appendix C) }
$$

$$
Q=\text { quantity of heat }
$$

$$
m=\text { mass of substance (metric system) }
$$

$$
w=\text { weight of substance (U.S. system) }
$$

No temperature change during change of phase

Notes:

- At the end of condensation, vapor becomes saturated.
- Example: relative humidity is the amount of vapor in atmosphere to that required to reach saturation (100\%).
- At saturation, temperature called dew point.

EXAMPLE

If $135,000 \mathrm{cal}$ of heat is required to vaporize $25 \overline{0} \mathrm{~g}$ of water at $10 \overline{0}^{\circ} \mathrm{C}$, what is the heat of vaporization of water?

Data:

$$
\begin{aligned}
Q & =135,000 \mathrm{cal} \\
m & =25 \overline{0} \mathrm{~g} \\
L_{v} & =?
\end{aligned}
$$

Basic Equation:

$$
L_{v}=\frac{Q}{m}
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
L_{v} & =\frac{135,000 \mathrm{cal}}{25 \overline{0} \mathrm{~g}} \\
& =54 \overline{0} \mathrm{cal} / \mathrm{g}
\end{aligned}
$$

heat of vaporization $($ water $)=54 \overline{0} \mathrm{cal} / \mathrm{g}$, or $54 \overline{0} \mathrm{kcal} / \mathrm{kg}$, or $2.26 \mathrm{MJ} / \mathrm{kg}$, or $97 \overline{0} \mathrm{Btu} / \mathrm{lb}$

EXAMPLE

If 15.8 MJ of heat is required to vaporize 18.5 kg of ethyl alcohol at $78.5^{\circ} \mathrm{C}$ (its boiling point), what is the heat of vaporization of ethyl alcohol?

Data:

$$
\begin{aligned}
Q & =15.8 \mathrm{MJ} \\
m & =18.5 \mathrm{~kg} \\
L_{v} & =?
\end{aligned}
$$

Basic Equation:

$$
L_{v}=\frac{Q}{m}
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
L_{v} & =\frac{15.8 \mathrm{MJ}}{18.5 \mathrm{~kg}} \\
& =0.854 \mathrm{MJ} / \mathrm{kg} \text { or } 854 \mathrm{~kJ} / \mathrm{kg} \text { or } 8.54 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

EXAMPLE

Heat gained by one kilogram of ice at $-20^{\circ} \mathrm{C}$ as it is converted to steam at $120^{\circ} \mathrm{C}$

EXAMPLE How many Btu of heat are released when 4.00 lb of steam at $222^{\circ} \mathrm{F}$ is cooled to water at $82^{\circ} \mathrm{F}$?

To find the amount of heat released when steam at a temperature above its vaporization point is cooled to water below its boiling point, we need to consider three amounts (see Fig. 3.12):

$$
\begin{aligned}
& Q_{5}=c_{\text {steam }} w \Delta T \\
& Q_{4}=w L_{v} \\
& Q_{3}=c_{\text {water }} w \Delta T
\end{aligned}
$$

(amount of heat released as the steam changes temperature from $222^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$) (amount of heat released as the steam changes to water)
(amount of heat released as the water changes temperature from $212^{\circ} \mathrm{F}$ to $82^{\circ} \mathrm{F}$)
So the total amount of heat released is $Q=Q_{5}+Q_{4}+Q_{3}$
Data: $w=4.00 \mathrm{lb} \quad T_{i}$ of steam $=222^{\circ} \mathrm{F} \quad T_{f}$ of water $=82^{\circ} \mathrm{F} \quad Q=?$
Basic Equation: $\quad Q=Q_{5}+Q_{4}+Q_{3}$
Working Equation: $Q=c_{\text {steam }} w \Delta T+w L_{v}+c_{\text {water }} w \Delta T$

Substitution:

$$
\begin{aligned}
Q & =\left(0.48 \frac{\mathrm{Btu}}{\not{ }^{\circ} \mathrm{P}}\right)(4.00 \mathrm{~W})\left(1 \overline{0}^{\circ} \mathrm{F}\right)+(4.00 \mathrm{~W})\left(97 \overline{0} \frac{\mathrm{Btu}}{\nvdash}\right) \\
& +\left(1.00 \frac{\mathrm{Btu}}{\mathfrak{b}^{\circ} \mathrm{Y}}\right)(4.00 \mathrm{~W})\left(13 \overline{0}^{\circ} \mathrm{X}\right)=4420 \mathrm{Btu}
\end{aligned}
$$

EXAMPLE

How many joules of heat are needed to change 3.50 kg of ice at $-15.0^{\circ} \mathrm{C}$ to steam at $120.0^{\circ} \mathrm{C}$?

Data: $m=3.50 \mathrm{~kg} \quad T_{i}$ of ice $=-15.0^{\circ} \mathrm{C}$ T_{f} of steam $=120.0^{\circ} \mathrm{C}$

$$
Q=?
$$

Basic Equation:

$Q=Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}$

Working Equation:

$Q=c_{\text {ice }} m \Delta T+m L_{f}+c_{\text {water }} m \Delta T+m L_{v}+c_{\text {steam }} m \Delta T$

Substitution:

$$
\begin{aligned}
Q= & \left(2100 \frac{\mathrm{~J}}{\mathrm{~kg}{ }^{\circ} \ell}\right)(3.50 \mathrm{~kg})\left(15.0^{\circ} \ell\right)+(3.50 \mathrm{~kg})\left(335 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \times \frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}(\text { Change to joules. }) \\
& +\left(4190 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \ell}\right)(3.50 \mathrm{~kg})\left(100.0^{\circ} \ell\right)+(3.50 \mathrm{~kg})\left(2.26 \frac{\mathrm{MJ}}{\mathrm{~kg}}\right) \times \frac{10^{6} \mathrm{~J}}{1 \mathrm{MJ}} \\
& +\left(2 \overline{0} 00 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \ell}\right)(3.50 \mathrm{~kg})\left(20.0^{\circ} \ell\right) \\
= & 1.080 \times 10^{7} \mathrm{~J} \quad \text { or } \quad 10.80 \mathrm{MJ}
\end{aligned}
$$

Properties of Matter

Solids

Elasticity

is a measure of a deformed object's ability to return to its original size and shape once the outside forces are removed.

EXAMPLE: Elasticity in a rubber ball

The elastic limit

(a) Spring before stretching

(c) Spring stretched beyond its elastic limit

(b) Spring stretched near its elastic limit

(d) Spring stretched much beyond its elastic limit ... break occurs!

The elastic limit of a solid is the point beyond which a deformed object cannot return to its original shape.

Stress

Stress is the ratio of the outside applied force, which tends to cause a distortion, to the area over which the force acts. In other words,

$$
\text { stress } \left.=\frac{\text { applied force }}{\text { area over which the force acts }} \right\rvert\, \text { Or } \quad S=\frac{F}{A}
$$

$$
\begin{aligned}
S & =\text { stress, usually in } \mathrm{N} / \mathrm{m}^{2}(\mathrm{~Pa}) \text { or } 1 \mathrm{bb} / \mathrm{in}^{2}(\mathrm{psi}) \\
& \Rightarrow \mathrm{Pa} \equiv \text { Pascal (SI pressure unit) } \Rightarrow \mathbf{1} \mathbf{P a}=\mathbf{1} / \mathbf{N} / \mathrm{m}^{2}
\end{aligned}
$$

$F=$ force applied, N or lb , perpendicular to the surface to which it is applied
$A=$ area, m^{2} or in ${ }^{2}$

EXAMPLE:

Case I

$$
\begin{aligned}
F & =12.0 \mathrm{~N} \\
A & =8.00 \mathrm{~cm} \times 16.0 \mathrm{~cm}=128 \mathrm{~cm}^{2} \\
S & =\frac{F}{A}=\frac{12.0 \mathrm{~N}}{128 \mathrm{sm}^{2}} \times\left(\frac{100 \mathrm{sm}}{1 \mathrm{~m}}\right)^{2} \\
& =938 \mathrm{~N} / \mathrm{m}^{2}=938 \mathrm{~Pa}
\end{aligned}
$$

Case 2

$$
\begin{aligned}
F & =12.0 \mathrm{~N} \\
A & =6.00 \mathrm{~cm} \times 8.00 \mathrm{~cm}=48.0 \mathrm{~cm}^{2} \\
S & =\frac{F}{A}=\frac{12.0 \mathrm{~N}}{48.0 \mathrm{sm}^{2}} \times\left(\frac{100 \mathrm{sm}}{1 \mathrm{~m}}\right)^{2} \\
& =25 \overline{0} 0 \mathrm{~N} / \mathrm{m}^{2}=25 \overline{0} 0 \mathrm{~Pa}
\end{aligned}
$$

The weight of the brick is constant, but the stress on the table in part (b) is greater.

Stress, basic types:

$$
\begin{array}{ll}
\text { 1. } & \text { Tension } \\
\text { 2. } & \text { Compression } \\
\text { 3. } & \text { Shear } \\
\text { 4. } & \text { Torsion } \\
\text { 5. } & \text { bending }
\end{array}
$$

1. Tension

The rope in a tug-of-war competition is in constant tension.

2. Compression

A column under the New Clark Bridge crossing the Mississippi River is in compression.
3. Shear

A book being pushed in this way is undergoing shear.

4. Torsion

The twisting of the bolt in one direction is counteracted by the force of the wood resisting the turning motion.

Applied Torque (e.g. from hand)

5. Bending

A beam that is bending

Bending \equiv Compression \oplus Tension compression

Important for thin \& light but strong aircraft body. (See documentary by Richard Hammond, engineering connection, Airbus A380)

Stress causes strain

Strain:

is the deformation of an object due to an applied force.
Strain $\left.\equiv \frac{\text { change in length }}{\text { Original length }} \begin{array}{l}\text { (i.e., change in } \\ \text { length } \\ \text { length) }\end{array}\right)$
Or Strain $\equiv \frac{\text { change in volume }}{\text { Original volume }}$

EXAMPLE:

A steel column in a building has a cross-sectional area of $25 \overline{0} 0 \mathrm{~cm}^{2}$ and supports a weight of $1.50 \times 10^{5} \mathrm{~N}$. Find the stress on the column.

Data:

$$
\begin{aligned}
& A=25 \overline{0} 0 \mathrm{~cm}^{2} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}=0.250 \mathrm{~m}^{2} \\
& F=1.50 \times 10^{5} \mathrm{~N} \\
& S=?
\end{aligned}
$$

Basic Equation:

$$
S=\frac{F}{A}
$$

Working Equation: Same

Substitution:

$$
\begin{aligned}
S & =\frac{1.50 \times 10^{5} \mathrm{~N}}{0.250 \mathrm{~m}^{2}} \\
& =6.00 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& =6.00 \times 10^{5} \mathrm{~Pa} \text { or } 60 \overline{0} \mathrm{kPa}
\end{aligned}
$$

Hook's Law

Hooke's Law
The ratio of the force applied to an object to its change in length (resulting in its being stretched or compressed by the applied force) is constant as long as the elastic limit has not been exceeded.

$\frac{F}{\Delta l}=k$

$F=$ applied force
$k=$ elastic constant
$\Delta l=$ change in length
Δ (the Greek letere deta) $=$ "change in."
Elastic limit

A force of 5.00 N is applied to a spring whose elastic constant is $0.250 \mathrm{~N} / \mathrm{cm}$. Find its change in length.

Data: $\quad F=5.00 \mathrm{~N}$

$$
\begin{aligned}
k & =0.250 \mathrm{~N} / \mathrm{cm} \\
\Delta l & =?
\end{aligned}
$$

Basic Equation:

$$
\frac{F}{\Delta l}=k
$$

Working Equation:

$$
\Delta l=\frac{F}{k}
$$

Substitution:

$$
\begin{aligned}
\Delta l & =\frac{5.00 \mathrm{~N}}{0.250 \mathrm{~N} / \mathrm{cm}} \\
& =20.0 \mathrm{~cm}
\end{aligned}
$$

$$
\frac{\mathrm{N}}{\mathrm{~N} / \mathrm{cm}}=\mathrm{N} \div \frac{\mathrm{N}}{\mathrm{~cm}}=\mathrm{X} \cdot \frac{\mathrm{~cm}}{\mathrm{~A}}=\mathrm{cm}
$$

A force of 3.00 lb stretches a spring 12.0 in . What force is required to stretch the spring 15.0 in .?

Data:

$$
\begin{aligned}
F_{1} & =3.00 \mathrm{lb} \\
l_{1} & =12.0 \mathrm{in} . \\
l_{2} & =15.0 \mathrm{in} . \\
F_{2} & =?
\end{aligned}
$$

Basic Equation:

$$
\frac{F}{\Delta l}=k
$$

Working Equations:

$$
\frac{F}{\Delta l}=k \quad \text { and } \quad F=k(
$$

Substitution: There are two substitutions, one to find k and one to find the second force F_{2} :

$$
\begin{aligned}
& \frac{3.00 \mathrm{lb}}{12.0 \mathrm{in.}}=k \\
& 0.250 \mathrm{lb} / \mathrm{in.}=k
\end{aligned} \quad \begin{aligned}
& \\
& \begin{aligned}
F_{2} & =(0.250 \mathrm{lb} / \text { ǐr. })(15.0 \mathrm{irr}) \\
& =3.75 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

EXAMPLE

A support column is compressed $3.46 \times 10^{-4} \mathrm{~m}$ under a weight of $6.42 \times 10^{5} \mathrm{~N}$. How much is the column compressed under a weight of $5.80 \times 10^{6} \mathrm{~N}$?

First find k :

Data:
$F_{2}=6.42 \times 10^{5} \mathrm{~N} \quad \Delta l_{2}=3.46 \times 10^{-4} \mathrm{~m} \quad k=?$

Basic Equation:

$$
\frac{F_{2}}{\Delta l_{2}}=k
$$

Working Equation: Same
Substitution:

$$
k=\frac{6.42 \times 10^{5} \mathrm{~N}}{3.46 \times 10^{-4} \mathrm{~m}}=1.86 \times 10^{9} \mathrm{~N} / \mathrm{m}
$$

Then:
Data:

$$
k=1.86 \times 10^{9} \mathrm{~N} / \mathrm{m} \quad F_{1}=5.80 \times 10^{6} \mathrm{~N}
$$

Basic Equation:

$$
\frac{F_{1}}{\Delta l_{1}}=k
$$

Working Equation:

Substitution:

$$
\Delta l_{1}=\frac{F_{1}}{k}
$$

$$
\Delta l_{1}=\frac{5.80 \times 10^{6} \mathrm{X}}{1.86 \times 10^{9} \mathrm{X} / \mathrm{m}}=3.12 \times 10^{-3} \mathrm{~m} \text { or } 3.12 \mathrm{~mm}
$$

Density

Density is a property of all three states of matter. Mass density, D_{m}, is defined as mass per unit volume. Weight density, D_{w}, is defined as weight per unit volume, or

$$
D_{m}=\frac{m}{V} \quad D_{w}=\frac{F_{w}}{V}
$$

where

$$
\begin{aligned}
D_{m} & =\text { mass density } \\
m & =\text { mass } \\
V & =\text { volume }
\end{aligned}
$$

$$
\begin{aligned}
D_{w} & =\text { weight density } \\
F_{w} & =\text { weight } \\
V & =\text { volume }
\end{aligned}
$$

Densities for Various Substances

Substance	Mass Density (kg/m ${ }^{3}$)	Weight Density (lb/ft ${ }^{3}$)	
Solids			
Aluminum	2,700	169	
Brass	8,700	540	
Concrete	2,300	140	
Liquids			
Oil	870	54.2	
Seawater	I,025	64.0	
Water ${ }^{\text {d }}$	1,0̄0	62.4	
Gases*	At $0^{\circ} \mathrm{C}$ and I atm pressure	At $32^{\circ} \mathrm{F}$ and I atm pressure	$\left(1 \mathrm{~atm} \sim 10^{5} \mathrm{~Pa}\right)$
Air	1.29	0.081	
Helium	0.178	0.011	
Hydrogen	0.0899	0.0056	

Note:
Generally, density increases with decreasing temperature. Exception is water for which ice is less dense than liquid water)

EXAMPLE 3.18

Find the weight density of a block of wood 3.00 in . $\times 4.00 \mathrm{in}$. $\times 5.00 \mathrm{in}$. with weight 0.700 lb .

Data:

$l=4.00 \mathrm{in} . \quad w=3.00 \mathrm{in} . \quad h=5.00 \mathrm{in} . \quad F_{w}=0.700 \mathrm{lb} \quad D_{w}=?$

Basic Equations:

$$
V=l w h \quad \text { and } \quad D_{w}=\frac{F_{w}}{V}
$$

Working Equations: Same

Substitutions:

$$
\begin{aligned}
& V=(4.00 \mathrm{in} .)(3.00 \mathrm{in} .)(5.00 \mathrm{in} .) \\
& =60.0 \mathrm{in}^{3} \\
& \qquad \begin{aligned}
D_{w} & =\frac{0.700 \mathrm{lb}}{60.0 \mathrm{in}^{3}} \\
& =0.0117 \frac{\mathrm{lb}}{\mathrm{ir}^{3}} \times\left(\frac{12 \mathrm{ir} .}{1 \mathrm{ft}}\right)^{3} \\
& =20.2 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
\end{aligned}
$$

EXAMPLE 3.19

Find the mass density of a ball bearing with mass 22.0 g and radius 0.875 cm .

Data:

$$
\begin{aligned}
r & =0.875 \mathrm{~cm} \\
m & =22.0 \mathrm{~g} \\
D_{m} & =?
\end{aligned}
$$

Basic Equations:

$$
V=\frac{4}{3} \pi r^{3} \quad \text { and } \quad D_{m}=\frac{m}{V}
$$

Working Equations: Same
Substitutions:

$$
\begin{aligned}
V & =\frac{4}{3} \pi(0.875 \mathrm{~cm})^{3} \\
& =2.81 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
D_{m} & =\frac{22.0 \mathrm{~g}}{2.81 \mathrm{~cm}^{3}} \\
& =7.83 \mathrm{~g} / \mathrm{cm}^{3} \\
& =7.83 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=7830 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

EXAMPLE 3.20

Find the weight density of a gallon of water weighing 8.34 lb .

Data:

$$
\begin{aligned}
F_{w} & =8.34 \mathrm{lb} \\
V & =1 \mathrm{gal}=231 \mathrm{in}^{3} \\
D_{w} & =?
\end{aligned}
$$

Basic Equation:

$$
D_{w}=\frac{F_{w}}{V}
$$

Working Equation: Same
Substitution:

$$
\begin{aligned}
D_{w} & =\frac{8.34 \mathrm{lb}}{231 \mathrm{in}^{3}} \\
& =0.0361 \frac{\mathrm{lb}}{\mathrm{in}^{3}} \times\left(\frac{12 \mathrm{ifr}}{1 \mathrm{ft}}\right)^{3} \\
& =62.4 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

