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Review of Basic Concepts

Positive and negative numbers, used
to represent gains and losses on a
board such as this one, are examples
of real numbers encountered in
applications of mathematics.

11 Sets

ﬂ@ ' Real Numbers and Their
Properties

Polynomials
Factoring Polynomials
Rational Expressions

o TER

F oo .
el A | . _Emm

Chapter objectives
Define the concept of sets

Distinguish between different
type of numbers

* |dentify different factoring
methods for polynomials

o Name the basic rational and
radical expressions
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2 Introduction to Mathematics

BT g i o B v 4 . 2 . o _;,,T.—Ta
m Sets L e

m Basic Definitions
u Operations on Sets

Basic Definitions Y Aset isa collection of objects. The oll)S]ectts ht:z;:;l:;g g;
;1 set are called the elements, or members, of the_ set. In 'alge ra;; -l { } e
a set are usually numbers. Sets are commonly written using s?et ra fol,lows'
example, the set containing the elements 1,2, 3, and 4 is written as :

{1,2,3,4}

Since the order in which the elements are listed is not important, t?i; sz;me
set can also be written as {4, 3,2, 1} or with any other arrangement oI the four

numbers.
To show that 4 is an element of the set {1,2,3,4}, we use the symbol €.

4e{1,2,3,4}
Since 5 is not an element of this set, we place a slash through the symbol €.

5¢{1,2,3,4}

It is customary to name sets with capital letters. If S is used to name the s¢
above, then we write it as follows.

s=1{1,2,3,4}
Set § was written by listing its elements. Set S might also be described as
“the set containing the first four counting numbers.”

In this example, the notation {1,2,3,4}, with the elements listed between s
braces, is briefer than the verbal description.

The set F, consisting of all fractions between 0 and 1, is an example of :
infinite set, one that has an unending list of distinct elements. A finite set
one that has a limited number of elements. The process of counting its elemen
comes to an end. Some infinite sets can be described by listing. For example, th

set of numbers N used for counting, called the natural numbers, or the coun
ing numbers, can be written as follows.

N = {1, 2,3,4,.. } Natural (counting) numbers

The three dots (ellipsis points) show that the list of elements of the set continu
according to the established pattern.

Sets are often written using a variable to re

present an arbitrary element
the set. For example,

{x|x is a natural number between 2 and 7}  Set-builder notation

(which is read “the set of all elements x such that x is
2 and 77) uses set-builder notation to re
2 and 7 are not between 2 and 7.

a natural number betwee:
present the set {3,4, 5, 6}. The number

SOUTEN Using Set Notation and Terimology

EEEE——
Identify each set as finite or infinife. Then determine whether 10 is an elen
of the set.

@ {7,8,9,...,14}

(©) {x|x is afraction between 1 and 2}

(d) {x|x is a natural number between 9 and | 1}
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Review of Basic Concepts 3

SOLUTION

(a) The set is finite, because the process of counting its elements 7, 8,9, 10, 11
12, T3, and 14 comes to an end. The number 10 does belong to the set ,anci
this is written as follows. |

10 € {7,8,9,...,14}

(b) The set is infinite, because the ellipsis points indicate that the pattern con-
tinues forever. In this case,

10€ {15,680 }-

(c) Between any two distinct natural numbers there are infinitely many frac-
tions, so this set is infinite. The number 10 is not an element.

(d) There is only one natural number between 9 and 11, namely 10. So the set is
finite, and 10 is an element.

R Listing the Eloments ofaSet |

Use set notation, and write the elements belonging to each <t

(a) {x|xisa natural number less than 5}

(b) {x|x is a natural number greater than 7 and less than 14}
\

When we are discussing a particular situation or problem, the universal set
(whether expressed or implied) contains all the elements included in the discus-

sion. The letter U is used to represent the universal set. null set ty set,

is the set containing no elements. We write the null set by either using the special

symbol @, or else writing set braces enclosing no elements, { }.
-—:‘_/ .

— — —
——

CAUTION Do not combine these symbols(-._\{ﬂ } is not the null set. .~

e

Every element of the set § = {1,2, 3,4} is a natural-number. S is an ex-
ample of a subset of the set N of natural numbers, and this is written

SCN.

By definition, set A is a subset of set B if every element of set A is also an ele-
ment of set B. For example, if A= {2,5,9} and B={2,3,5,6,9, 10}, then
A C B. However, there are some elements of B that are not in A, so B is not a

subset of A, which is written

BZ A.
By the definition, every set is a subset of itself. Also, by definition, @ is a subset
of every set.

If A is any set, then §/ C A.

shows a set A that is a subset of set B. The rectangle in the drawing

@ £ Figure 1 .
represents the universal set U. Such diagrams are called Venn d:agralps.
Two sets A and B are equal whenever AC B and BC A. Equivalently,

ACB A = B if the two sets contain exactly the same elements. For example,
Figure'1 {1,2,3} = {3,1,2}
is true, since both sets contain exactly the same elements. However.
{1,2,3} = {0,1,2,3

sl ' 3r.
since the set {0, 1, 2, 3} contains the element0, which is not an element of {1,2, }
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4 Introduction to Mathematics

Examining Subset Relationships R :

Let U={1,3,5,7,9,11,13}, A={1.3,5.7.9, 11}, B= {1,3,7,9},
..C= {3,9, 11‘}, and D= {1,9}. Determine whether each statement is true

or false.

@ DCB () BCD (©@CZA (@U=A4 )

SOLUTION

(a) All elements of D, namely 1 and 9, are also elements of B, so D is a(subset
of B,and D C B is true.

—~—

(b) There is at least one element of B (for example, 3) that is not an element of
D, so B is not a subset of D. Thus, B C D is false.

(¢) Cis asubset of A, because every element of C is also an element of A. Thus,
C C A is true, and as a result, C ¢ A is false.

(d) U contains the element 13, but A does not. Therefore, U = A is false.

| Operations n,n_Setsjj; Given a set A and a universal set U, the set of all ele-
ments of U that do not belong to set A is called the complement of set A. For
example, if set A is the set of all students in your class 30 years old or older, and
B set U is the set of all students in the class, then the complement of A would be the
set of all the students in the class younger than age 30. The complement of set A

is written A’ (read “A-prime”). The Venn diagram in Figure 2 shows a set B. Its
Figure 2 complement, B’, is in color.

B

m Finding the Complement of a Set |

Let U={1,2,3,4,5,6,7}, A= {1,3,5,7},and B = {3, 4, 6}. Find cach set.
(@) A (b) B (© ¢ @ v

Give‘n two sets A- and B, Cttt}.se‘t of all elements belonging both to set A and
to set B is called the intersecfion of the two sets, written A M B. For example

if A= {1,2,4,5,7} and B = {2,4,5,7,9, 11}, then we have the following. ,
ANB={1,2,4,57}N{2,4,5,7,9,11} = {2,4,5,7}

The Venn diagram in Fi
n Fi S <o .
. AN B, is in color, gure 3 shows two sets A and B. Their intersection,

Two sets that h :
i ave no elements in common are called disjoint sets. If A and

€ any two disjoint sets, th =
ANB common to both {50, 51, den o {55 5 = R e

ol and {52, 53, 55,56}, so these two sets are dis-

Figure 3 :
{50,51,54} n {52,53,55,56) = g
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Review of Basic Concepts -~

XAMPUESS Fiding the intersection of Two Sets i

Find each of the following,

@) {9,15,25,36} N {15,20,25,30,35}  (b) {2,3.4,5,6} N {1,2,3,4}
© {1.3,5}n{2,4,6}

SOLUTION

(@) {9,15,25,36} N {15,20,25,30,35} = {15, 25}
The elements 15 and 25 are the only ones belonging to both sets.

(b) {2,3,4,5,6} N {1,2,3,4} = {2,3,4)
© {1.3,5}N{2,4,6} = § Gisjointsets

The set of all elements belonging to set A or to set B (or to both) is called

[th.e_lmion of the two sets, written A U B. For example, if A = {1,3,5} and
B ={3,5,7,9} then we have the following.
AUB={1,3,5} U {3,5,7,9} = {1,3,5,7,9}
o The Venn diagram in Figure 4 shows two sets A and B. Their union, A U B, is
Figure 4 in color.

WELIEETEN Finding the Union of TwoSets. y

Find each of the following. :
@ {1,2,5,9,14} U {1,3,4,8} () {1,3,5,7} U {2,4,6}
) {1,3,5,7,..} U {2.4.6,...}

The set operations are summarized below.

o e - — —

(Set Operations

e e T S RS e S |

* Let A and B be sets, with universal set [J.

The complement of set A is the set A’ of all elements in the universal set that
do not belong to set A.

A'={x|xevu, xe¢A}

The intersection of sets A and B, written A M B, is made up of all the elements
belonging to both set A and set B.

ANB = {x|xEAandx € B}

The union of sets A and B, written A U B, is made up of all the elements
belonging to set A or to set B.

AUB = {x|[x€EAorxEB}
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6 Introduction to Mathematics

Exercises

Identify each set as finite or infinite. Then determine whether 10 is an element of the set
See Example 1.

P4 11,29, 4.5, 00:75} 2. {4,5,6,...}

;./ {x]x is a natural number greater than or equal to 10}

A. {x|x is an even natural number}

Use set notation, and list all the elements of each set. See Example 2.

5. {88, 1017} 6. {3,927 729} 7. {74,68,62,...,38}

}’.’ {x|xis a natural number not greater than 4}

Insert € or & in each blank to make the resulting statement true. See Example 1 and

Homework 1.

9.9__ {3,2,5,9,8} 10. —12 — {3,5,12,14}
1.0 {0,5.6,7,8,10} 12 B5F— . 134,567}

13. {2} — {2,4,6,8} 14. ¢ '}

Determine whether each statement is true or false. See Examples 1-2 and Homework 1,
15. 6 € {-2,5,8,9} 16. 12 € {18,17,15,13,12}

17. 3¢ {7,6,5,4} 18. {3,0,9,6,2} = {2,9,0,3,6}

19. {3,7,12,14} = {3,7,12,14,0}
}6. {x|x is a natural number greater than 10} = {11, 12,13,...}

Let A={2,4,6,8,10,12}, B={2,4,8,10}, C={4,10,12}, D= {2,10}, and
U=1{2,4,6,8,10,12,14}.

Determine whether each statement is true or false. See Example 2.

2. CCU 22. DCA 23. BCC

24. gC@ 25. {02} c D 26. ACC

Insert C or I in each blank to make the resulting statement true. See Example 2.

37, {1,5) - 00.~1.2,3, 1,5} 28. {5,6,7,8} —__ {1,2,3,4,5,6,7}
2.9 .9

Determine whether each statement is true or false. See Homework 2-3 and Exa

307 {8,11,15) N {8,11,19,20} = {8, 11}
31. {6.12,14,16} U {6,14,19} = {6, 14}
R {8.9.60U {86} = {89} 3273,59,10) Ug={3,5,9.10)
4. {1.2,4}N{1,2,4} =¢ B.ANGg=¢g
Le.rU={0.1,2,3,4,5,6,7,8,9.10,11,12,13},M={0,2,4,6,8},

N=AL, 3,5,9,9,11,13}, 18 =0,2,4.68; 10,12}, @i R={0,1,2,3,4}.

Use these sets to find each of the following. Identify any disioi
T ify any disjoint sets. See Homework

mple 3.

36. MNU 37. MUR 38. UNN

39. MU Q 40. O’ 41. ONR'
2.9N0 43. RU P 4. (NUR)NM
45. (RUN)NM 46. 0N (MU N)

7. (UNPFYUR
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eal Numbers and Thélr Properues‘

m. - A .

m Sets of Numbers and the
Number Line

m Exponents
m Order of Operations

m Properties of Real
Numbers

m Order on the Number
Line

m Absolute Value

Origin

|

1001019
5-4-3-2-1 01 2 3 45

Graph of the Set {-3,-1,0,1,3,5)
Figure 5

-5-4-3-2-1 01 2 3 4 5
Graph of the Set of Real Numbers

Figure 6

- B #

-1 0 1 2 3 4

\/5. \/5 and 7 are irrational. Since

2 is approximately equal to 1.41,

+it is located between 1 and 2, slightly
closerto 1.

Figure 7

B S U

R A Lo e ek

.__Sets of Numbers and the Number Lin Lme _, As mentioned in the previous section,
the set of natural numbers is written in set notation as follows.

{1,2,3,4,...} Natural numbers (Section 1.1)

Including O with the set of natural numbers gives the set of whole numbers.
{0,1,2,3,4,...} Whole numbers

Including the negatives of the natural numbers with the set of whole numbers
gives the set of integers.

{...,=3,-2,-1,0,1,2,3,...}

Integers

Integers can be graphed on a number line. See Figure 5. Every number
corresponds to one and only one point on the number line, and each point cor-
responds to one and only one number. The number associated with a given point
is called the coordinate of the point. This correspondence forms a coordinate
system.

The result of dividing two integers (with a nonzero divisor) is called a
rational number, or fraction. A rational number is an element of the set defined

as follows.
{,_,
q

The set of rational numbers includes the natural numbers, the whole numbers,
and the integers. For example, the integer —3 is a rational number because it
can be written as 1 . Numbers that can be written as repeating or terminating
decimals are also rational numbers. For example, 0.6 = 0.66666 ... represents a
rational number that can be expressed as the fraction g .

The set of all numbers that correspond to points on a number line is the
real numbers, shown in Figure 6. Real numbers can be represented by decimals.
Since every fraction has a decimal form—for example, = 0.25—real numbers
include rational numbers. i

Some real numbers cannot be represented by quotients of integers. These

numbers are irrational numbers. The set of irrational numbers includes \/5
and /5. Another irrational number is 7, which is approximately equal to
3.14159. The numbers in the set { — %, 0, \/2_’ \/5, T, 4} can be located on a

p and q are integers and g # 0} Rational numbers

" number line, as shown in Figure 7,

The sets of numbers discussed so far are summarized as follows.

f P e T T — -x—w-vv—v“-’m"’-—"‘*""‘w
| Sets of Numbers - - :
, Set Description

~ Natural numbers ~ {1,2,3,4,...}

' Whole numbers 0,1,2,3,4,...}

/ Integers {....=3,-2,-1,0,1,2,3,...}

Rational numbers ( i—ﬂ\b and g are integers and g # N}

“ Irrational numbers  {x|x is real but not rational }

Real numbers {x|x corresponds to a point on a number line}
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Introduction to Mathematics

3NN Identifying Sets of Numbers b 2 i i

Let A= {—8, — —d2 _%,0‘%,%, 1, \/2_ \/5, 6}. List the elements from A
that belong to each set.

(a) Natural numbers (b) Whole numbers (c) Integers

(d) Rational numbers (e) Irrational numbers (f) Real numbers
SOLUTION

(a) Natural numbers: 1 and 6 (b) Whole numbers: 0, 1, and 6

(c) Integers: —8, —6, —17% (or —3),0,1,and 6

(d) Rational numbers: —8, —6, —143 (or —3), —%, 0, % % 1,and 6

(e) Irrational numbers: \/E and \/g

(fy All elements of A are real numbers.
Figure 8 shows the relationships among the subsets of the real numbers,

Real Numbers

Rational numbers Irrational numbers
LY o V2
PR

:  Integers V15

-lL—6,3,-2,-1
Whole numbers -V&

0

T

Natural numbers
1,2,3,4,5,37,40 =

Figure 8

s
- Exponents = The product 2 « 2 + 2 can be written as 23, where the 3 shows
that three factors of 2 appear in the product.

¢ Exponential Notation R ey )

;f nis any p(_)sitive integer and a is any real number, then the nth power of
Is written using exponential notation as follows.

N o . 5
a’ =aqa-q a oo e 0.0

n factors of g

Z"mtt :ls, S" meands tl:le.product of n factors of a. The integer n is the exponent,
18 the base, and a” is a power or an exponenti i 2
i ial ex m n
exponential). Read 4" as “q to the nth Power,” or just D T

“a to the nth.”
m. Evaluating Exponential Expressions

("Evaluate each i i I
e each exponential expressionjand identify the base and e
@ 4 ® (-6 () -6 (@) 4.3

ponent.

© (4-3)
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Review of Basic Concepts 9

- 5 e .
i Order of Operations . When a problem involves more than one operation
symbol, we use the following order of operations.

" Order of Operat-ions

If grouping symbols such as parentheses, square brackets, absolute value

bars, or fraction bars are present, begin as follows.

Step 1 Work separately above and below each fraction bar.

Step 2 Use the rules below within each set of parentheses or square
brackets. Start with the innermost set and work outward.

If no grouping symbols are present, follow these steps.

Step 1 Simplify all powers and roots. Work from left to right.
Step 2 Do any multiplications or divisions in order. Work from left to right.

Step 3 Do any negations, additions, or subtractions in order. Work from
left to right.

EZIETEA Using Order of Operations —

Evaluate each expression.

@ 6+3+28-5 B 8+6)+7-3—6

44 32 {3 o [=5)
€ 5—5.3 @ S8 =50
SOLUTION

(@) 6+3+2°+5=6+3+8+5 Evaluate the exponcntial.

=2+8-5 Divide.
T Multiply or divide in
=72+ 40 Multiply. order fram left to right.

=42 Add.

(b) (8+6)+7-3—-6=14+7+3—6 Work inside parentheses.

Be careful to divide Byt o 1 o .
(befor& multiplying herE!-)/2 3-6 Divide.

=60—06 Multiply.

=0 Subtract.
4+ 32 _ 449

(c) B o Evaluate the exponential and multiply.
_ 13
= ___9‘, or —‘9— Add and subtract; 25 = — ¢,

ey, —0) TlmS) 27+ (-5)
2(—8) —5(3) 2(-8) — 5(3) Evaluate the exponential.

_ 27 + (—5)

T -16—15 Multiply.

L2 22 -
= 37 or —3—1 Add and subtract: % = —p.
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"HOMEWORK 2" Using Order of Operations _ _ i
Evaluate ench expression for x = —2, v =35, and z = —3.
X y
2(%=5 )4y 2 5
(a) —4x?—Ty+4z (b) —:."_+4-_— (C)(, ;’i :Bl
9 5

. Properties of Real Numbers i

The following basic properties can be general-

ized to apply to expressions with variables.

Let @, b, and ¢ represent real numbers.

Property
, Closure Properties
a + b is a real number.
ab is a real number.

, Commutative Properties
/) a+b=b+a
ab = ba
- Associative Properties
! @+b)+c=a+(b+c)
(ab)e = a(bc)

, Identity Properties
* There exists a unique real number 0
such that
a+0=a and 0+ a=a.

There exists a unique real number 1

such that

a1=a and 1:a=aq.
Inverse Properties
There exists a unique real number —g
such that

a+(—a)=0and —qg + g = ¢,

If a # 0, there exists a unique real
number } such that
1 1
a*—=1 and —+g=1,
a a

Distributive Properties
H/&/ a(b + ¢) = ab + ac
a(b — c) = ab - ac

The multiplication property of zero sa

real numbers a.

Description

The sum or product of two real
numbers is a real number,

The sum or product of two real
numbers is the same regardless of
their order.

The sum or product of three real
numbers is the same no matter

which two are added or multiplied
first.

The sum of a real number and 0 is
that real number, and the product

of a real number and 1 is that real
number.

The sum of any real number and
Its negative is 0, and the product

of any nonzero real number and
1ts reciprocal is 1.

The product of a real number and
the sum (or difference) of two
real numbers equals the sum (or
difference) of the products of the

first number and each of the other
numbers,

ysthatﬁ-a:a-ﬂ:Oforall
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5 3
Geometric Model of the
Distributive Property

Figure 9

Review of Basic Concepts 11

AU [I( )N Wlth the commutative properties, the order changes, but with
the associative properties, the grouping changes.

AT g e o e
1
i

Associativel’roper!iu %
(x+4)+9=x+(4+9)
7:(5°2)=(7+5)+2

!"""' s e e 2 g

Commutative Propertim

(x+4)+9=(4+x)+9
NS5 2) 550 2) T

RGNS simplifying Expressions A2

Use the commutative and associative properties to simplify each expression.
| eXpressior

@ 6+ (9+x) ® 2(16) © _mp@)
SOLUTION
(@ 6+ (9+x)=(6+9)+x Associative property
=15+x Add.
(b) %(16}’) = (g e 16)}‘ Associative property

= IOy Multiply.

Commutative property

Associative property

=-=12p Multiply.
Figure 9 helps to explain the distributive property. The area of the entire re-
gion shown can be found in two ways, as follows.
4(5+3)=4(8) =32

or 4(5) +4(3) =20+ 12 =32

The result is the same. This means that
45+3)~= 4(5) +4(3).

W Using the Dis DlstnbutweProperty L TR L I Lo

Rewrite each expression using the distributive property and 51mp]1fy, if possible.

4 3
(@ 3(x+y) ® —(m—4n) (¢ —( m—-2-n—27> (d 7p+21

" Order on the Number Line * If the real number a is to the left of the real num-

ber b on a ‘number line, ‘then
ais less than b, written a < b.

The inequality

is to the right of b, then §ymbul must
e . point toward the
ais greater than b, written a > b, lesser number,
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12 Introduction to Mathematics

-_‘_.1

wn}

1% =

v 39 7 20
——t—t-ete—-o-e—p+o-

~5.4-3-2-1 01 2 3 45
=5 is to the left of -17'- on the num-
ber line, so —V3 < —-%, and V20
is to the right of =, indicating that

V20 > 7.

R

Figure 10
Distance Distance
Is 5. is 5.
8 i o . %,
-5 -0 5
Figure 11

Figure 10 illustrates this with several pairs of numbers. Statements involv_ing
these symbols, as well as the symbols less than or equal to, =, and greater thap
or equal to, =, are called inequalities. The inequality a << b < ¢ says that b jg
between a and ¢ since ¢ < b and b < c.

T Absolute Value | The distance on the number line from a number to 0 is
Zalled the absolute value of that number. The absolute value of the number g
is written |a|. For example, the distance on the number line from 5 to 0 is 5,
as is the distance from —5 to 0. See Figure 11. Therefore. both of the following
are true.

|3}=5"Fand  }=5]| =5

NOTE Since distance cannot be negative, the absolute value of a num-
ber is always positive or 0.

The algebraic definition of absolute value follows.

e S S B M T T Sy YIRS DA

2T
i Absolute Value

gy s P A T = AN

TR AL e pee m—‘%
. % 1

&ttt DA e SRS A R T A AT e A S S e S N T ]

. Let a represent a real number. : :
o { a ifa=0
|“|— —-a ifa<0

That is, the absolute value of a positive number or 0 equals that number, while
the absolute value of a negative number equals its negative (or opposite).

12 GV LW Evaluating Absolute Values

Evaluate each expression.

5
@ =31 ® -8 @ —|-2] (@ |2x]forx=1n
SOLUTION

5| 5
@ |-3 Tig (b) —[8|=—(8)=-¢

© —|-2[=-(2)=-2 @ [27| =27

Absolute value is useful in a

pplications where only the s; i )
not the sign, of the difference be e e

tween two numbers is important.

NOTE As seen in Homework 4(b),

symbols of inclusion. Remember this
operations.

absolute valye bars can also act as
when applying the rules for order of

WLELIIEN  Evaluating Absolute Value Expressions

. gt .. e \ o S j
Tet x=—6 and y = 10. Evalnate each expression

(@) |2x— 3y’ ®) 2—|’i||:_l§zl

xy|
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Review of Basic Concepts 13

: ,qi_,St_Q"cle between Points on a Number Line

If P and Q are points on a numbe

: r line with coordinates a and br I -
tively, then the distance d( o

P, Q) between them is given by the following.
d(P,0) = |b - al or d(P,Q) = |a - b|

P Q
-—-—-1:___v___J= R
b r - -
a dPO That s, _ﬂle distance between Iwo points on a number line is the absolute value
Figure 12 of the difference between their coordinates in either order. See Figure 12.

EXAMPLE 5 _ Finding the Distance between Two Points

Find the distance between —65C andVS.

SOLUTION  Use the first formula above, with @ = —5 and b = 8.
]b-—a|=|8—(—5)|=|8+5]=|l3]= 13
Alternatively, for a = 8 and b = —5 , we obtain the same result.

b —al=|(-5)-8]=]-13| =13

Exercises

1. Concept Check Match each number from Column I with the letter or letters of the
sets of numbers from Column II to which the number belongs. There may be more
than one choice, so give all choices.

I II
(a) O (b) 34 A. Natural numbers B. Whole numbers
(c) —% (d)y V36 C. Integers D. Rational numbers
(e) V13 ) 2.16 E. Irrational numbers  F. Real numbers

@ 2. Explain why no answer in Exercise 1 can contain both D and E as choices.

Concept Check Decide whether each statement is true or false. If it is faise, tell why.
3. Every integer is a whole number. 4. Every natural number is an integer.
5. Every irrational number is an integer. 6. Every integer is a rational number.

7. Every natural number is a whole number. 8. Some rational numbers are irrational.

9. Some rational numbers are whole 10. Some real numbers are integers.
numbers.
Letset A={ ~6)~2,~3,-V/3,0,4,1,2,3, V12 }. List all the elements of A
that belong to each set. See Example 1.~
11. Natural numbers 12. Whole numbers 13. Integers
14. Rational numbers 13, Irrational numbers 16. Real numbers

Evaluate each expre.gsion. See Homework 1.

17. -2¢ 18, —3° 19, (-2)* 20. (-2)°
. 83
2L (-3) 22. (-2)° 23. -2 -3 24, —4+5

Scanned with CamScanner



14 Introduction to Mathematics

Evaluate each expression. See Example 2.

25, -2+:5+12+3 26. 9:-3—-16+4
27. —4(9 — 8) + (-7)(2)° 28. 6(—5) — (—3)(2)*
29. (4 - 23)(-2 + V/25) 30. (5 -32)(V16 - 23)

w (3D =030
58 (A6 £ 12 g o ovn Msres

-34.
= 4 = (-3) ' —-6—(-5)-8=+2
Evaluate each expression for p = —4, g = 8, and r = —10, See Homework 2.
qtr ptr
-p? = - . —pP=2g947r .37 38.

3. —p'=Tqg+r* 36. —p*-29 1 F g e
3¢ 5 Br. D Sr 3q
i = A 42,

39. = ~ 40. T g/zp_3r 2
1.7 a_r
2 '3 =(p+2)? —3r

43. Al 44, S 45, _(_)__
?ﬁ.;_i 1_’+2 2-q
4 8 2 2
—(g—6)2~2 3p +3(4 + p)? S5q +2(1 + p)3

46, —9— -2 47, 3P t3@ 1 p) ap, 215201 +p)

4-p - r+8

r+3

Identify the property illustrated in each statement. Assume all variables represent real
numbers. See Example 3 and Homework 3.

49. 612+ 6+ 15=6(12 + 15) 50. 8(m +4) = 8m + 32

1 . + <
51. (:—6)-(m)=1,1f:—6;&0 52.%_—:;--%:1-=1,ifm9&20r—2

53. (75-y) +0="75~y

5. 1+ (3x—7)=3x—7
55, 5(143)=(t+3)+5

56. ~7+ (x+3) = (x + 3) + (=7)

57, (sx)e) = S(x . i) 58. (38+99) +1 =38+ (99 4 1)

59. 5+ \/5 is a real number. 60. 57 is a real number,
[)61. Is there a commutative

property for subtraction? That is,in general, is a —
to b — a? Support your

b equal
answer with examples,
@ 62. Is there an associative

property for subtraction? That is, does (a —
a = (b - c¢) in general

b) — ¢ equal
? Support your answer with examples.

Simplify each expression. See Example 3 and Homework 3.
L. 10

i — A 3
63, 7(222) 64. (Zr)(—IZ) 65. (m+5)+6
3016 32 4 1 -
66. 8 + (a +7) 67 8(‘53’4‘52‘?) 68. — 4 (20m + 8y — 32)

Use the distributive property to rewrite su

ms as products and . See
i and products as sums
69. 8p — 14p 70. 15z — 10x IL ~4(z - y) 72. —3(m +n)
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Review of Basic Concepts 15

Concept Check Use the distributive property to calculate each value mentally.

13.72-17+28 - 17 74. 32+ 80 + 32 - 20
5 3 5 1 Z 3

o[ L A T | 2 iR el o0
oot 1p T 175 147 - 17543

Concept Check Decide whether each statement is true or false. If false, correct the
Statement so it is true.

77. |16 -8[=16|— 8] 78. [(=3)}| = -39

[-14] |-14
79. |=5]-16]=]-5 - —=|==
9. |=5]+ 6] =] =5 - 6| 0. 1 2]

8L la—-b|= la| = |bl,if b>a>0 82, If a is negative, then |a| = —a.

Evaluate each expression. See Example 4,

- 83, |10 84. |-15] 85. ~’%|
7
86. _Ifl 87. —|-8| 88. —|-12|

Polynomials

ol s Tor Exponsats  Rules for Exponents ~  From Section 1.2, the notation a” (where m is a posi-

® Polynomials tive integer and a is a real number) means that a appears as a factor m times. In
® Addition and Subtraction the same way, a" (where n is a positive integer) means that a appears as a factor
® Multiplication n times. In the product @™ + a”, the base a would appear m + n times, so the
w Division product rule states the following.

a”+a" = a™" Product rule
Also consider the expression (2°)%, which can be written as follows
QIP= P - Definition of exponent
=25%3*3" or 2  Generalization of the product rule

~ The exponent 15 could have been obtained by multiplying 5 and 3. This example
suggests the first of the power rules below. The others are found in a similar way.

~7 N
1. (am@”" 2 (ab)@’" ;3. (%) = %ﬂ- (b # 0)

Power rules for positive integers m and n
and real numbers a and b

' Rules for Exponents

For all positive integers m and n and all real numbers a and &, the following

rules hold.

Rule Description

Product Rule When multiplying powers of like bases,

a"+a" = a"*" keep the base and add the exponents.

Power Rule 1 To raise a power to a power, multiply ‘
(am) = g™ the exponents.
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Power Rule 2 To raise a product to a power, raise eac},
(ab)™ = a™b™ factor to that power.

Power Rule 3 To raise a quotient to a power, raise the
a\" a" numerator and the denominator to thy

(};) == (0% 0) power.

ALV Usingthe ProductRule . =

Find each product.

@ -y (b) (62°)(9z%)(2z?)
SOLUTION

(a) y“ syl = yHT =yl ProducT’rule: Keep the base and add the exponents.

3)(2z2) = (6+9+2) * (z°z’z?) Commutative and associative
(b {6208 HZ) = o e properties (Section 1.2)

= ]08z3*t3+2 Multiply. Apply the product rule,
= 108z!° Add.

CEEETIIEN Usingthe Power Rules

Simplify. Assume all variables represent nonzero real numbers

5 3 2m
@@ (5% (b (3%?)? (c) (BE) (d) ( )

SRR ol

CAUTION  The expressions mn® and (mn)? are not equivalent. The sec-
ond power Tule ¢an be used only with the second expression:

(mn)* = m2n2.

A zero exponent is defined as follows.

SPU—,.

( Zero Expunent :

For any nonzero real numbera, 4° = 1.

That is, any nonzero number with q zero exponent equals 1
To illustrate why a° is defined to equal 1, consider'the product

a'-a% for q 0.

We want the definition of ° to be consistent so that the product rule applies.
Now apply this rule.

a' - g = a0 — a
The product of a" and a® must be ", and thus g0 ;

Is acting like the identity ele-
ment 1. So for c0n51stency,we define a to €qual 1. (00 lsgurlldeefilfe!d J d
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- Review of Basic Concepts 17

EZIEER using the Detinitionata® o

Evaluate each power.

(a) 4° (b) (—4)° (c) —4° @ —(-4)° (e (1)
SOLUTION

(@) 4°=1 Bascisd4. (b) (—4)°=1 Baseis —4.

(C) —4% = —(40) = —1 Baseis4. (d) ""(—4)0 = —(l) = —] Baseis —4,
€ (7r)°=1,r#0 Base is 7r.

.. Polynomials | Any collection of numbers or variables joined by the basic
operations of addition, subtraction, multiplication, or division (except by 0), or
~ the operations of raising to powers or taking roots, formed according to the rules
of algebra, is an algebraic expression.

15y
2y—3°

. The product of a real number and one or more variables raised to powers is
a term. The real number is the numerical %‘Eﬂ:fi—en—tlm just the coefficient,

D2 - 0p. m*—64. (3a+ b)* Algebraic expressions

of the variables. The coefficient of the variable in]—3m* is —3, while the coef-
ficient in —p? is —1. Like terms are terms with fhe same variables each raised

to the =ame powers.
—13x3, 4.(62“‘“—.1:3 Like terms 6y, 6y%, 4y* Unlike terms

) A polynomial is defined as a term or a finite sum of terms, with only posi-
tive or zero integer exponents permitted on the variablej If the terms of a poly-
‘nomial contain only the variable x, then the polynomial is a polynomial in x.

B8 D L 4, 9p°—3, 8r?, 6 Polynomials

The terms of a polynomial cannot have variables in a denominator.
2 6 :
Ox* — 4x + = Not a polynomial

The degree of a term with one variable is the exponent on the variable. For
example, the degree of 2x* is 3, and the degree of 17x (that is, 17x!) is 1. The
greatest degree of any term in a polynomial is the degree of the polynomial.
For example,

4x3 —2x2—3x+ 7

has degree 3, because the greatest degree of any term is 3. A nonzero constant
such as —6, equivalent to —6x°, has degree 0. (The polynomial 0 has no degree.)

A polynomial can have more than one variable. A term containing more
than one variable has degree equal to the sum of all the exponents appearing on
the variables in the term. For example, —3x*y%;> has degree 4 + 3 + 5 = 12.
The degree of a polynomial in more than one variable is equal to the greatest de-
gree of any term appearing in the polynomial. By this definition, the polynomial

2x*y — 3xSy + xby?

has degree 8, because the xy? term has the greatest degree, 8.
A pqunomial containing exactly three terms is a trinomial. A two-term
polynomial is a binomial. A single-term polynomial is 2 monomial.

Scanned with CamScanner



18 introduction to Mathematics

EIETE®A Classitying Polynomials

The table classifies several polynomials. B
e e
9p7 — 4p* + 8p? 7 Trinomial
29x!! + Bx!3 15 Binomial
—10r6s8 14 Monomial
5a%b” = 3a°b® + 4a’b® — a'® 11 None of these

. Addition and Subtraction | Since the variables used in polynomials represep
real numbers, a polynomial represents a real number. This means that al] th,
properties of the real numbers mentioned in Section 1.2 hold for polynomials, y,
particular, the distributive property holds.

3m’ —Tm’ = (3 — 7)m’ = —4m’ Distributive property

Thus, polynomials are added by adding coefficients of like terms, and they ar,
subtracted by subtracting coefficients of like terms.

\EIEEN Adding and Subtracting Polynomials . |
Add or Subtract? as indicated. |
@ (2* =3y +y) + (4* + 7y* + 6y)

(b) (=3m = 8m +4) — (w + Tm2 - 3)

© (8m'p® = In'pd) + (11m*p® + 15m%p%)

(d) 4(x? —3x+7) — 5(2x2 — 8x — 4)

SOLUTION

@ (' =32 +y)+ (dy* + 7y + 6y)

=Q2+ap (=347 + (1 + 6)y  Add coefficients of like terms.
— gyd

=6yt +4y2 + 7y Work inside parentheses.
(B) (—3m* —8m? +4) — (m® + Tm2 — 3)

=(-3-1)m®+ (-8 - T)m? + [4 _ (__3)] Subtract coefficients of
= s " like terms.

= —am’ = 15m* +7 Simplify.
405 — QpydpS

(© (8m*p® — 9m’p®) + (11m*p5 + 15m°p%) = 19m*p5 + 6mipS

@) 4(x* = 3x+7) - 5(2x2 - 8x — 4)

= 4x? = 4(3x) + 4(7) - 5(2x2) — 5(—8x) — 5(-4)

Distributive property (Section 1.2)

= 4x2 — 12x + 28 — 10x2 + 40x + 20 Multiply.

= £
6x% + 28x + 48 Add like terms.

As shown in Examples 3(a), (b), and (d), pol g 8 ;
- . % ! ’ €
often written with their terms in descending Cellan s O JAREL G

order (or descending degree)

Thus, the term of greatest degree is first, the ; g degret,

: : » the one with ¢ j¢
next, and so on, he next greatest degree
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: Mﬁhi;ﬂibatimi ' One way to find the
3x —4 and 2x? — 3x + 5, is to treat Ix —
distributive property.

(3x —4)(2x? = 3x + 5)
= (3x = 4)(2%%) = (3x — 4)(3x) + (3x — 4)(5)
= 3x(2x?) — 4(2x?) — 3x(3x) — (- 4)(3x) + 3x(5) - 4(5)
= 6x* — 8x2 — 9x2 + 12x + 15x — 20
=6x>—17x2+27x - 20

product of two polynomials, such as
4 as a single expression and use the

Another method is to write such a product vertically, similar to the method used
in arithmetic for multiplying whole numbers.

2x2— 3x+ 5
Place like terms in 3x— 4
the same column.
—8x%2 + 12x — 20 <— —4(2x? ~ 3x + 5)
6x3 — 9x2 + 15x <— 3x(2x? = 3x + 5)
6x3 — 17x2 + 27x — 20 Add in columns.

WCLIETITEN) Muttplying Polyrominls

Multiply (3p® — 4p + 1)(p® + 2p — 8).

The FOIL method is a convenient way to find the product of two binomi-
als. The memory aid FOIL (for First, Qutside, Inside, Last) gives the pairs of
terms to be multiplied to find the product, as shown in the next example.

EXAMPLE4 BUVLT| the FOIL Method to Muluply Two Blnomlais :

Find each prod‘L;;:t_. ‘
(@ (6m+1)(4m—3) () 2x+7)2x—7) () r*(3r+2)(3r—2)
SOLUTION

F 0] I L
(@) (6m + 1)(4m —3) = 6m(4m) + 6m(—3) + 1(4m) + 1(—3)
= 24m? — 14m — 3 —18m + 4m = —14m

(b) (2x+7)(2x—7) =4x2— 14x + 14x — 49 FOIL

=4x% — 49 Combine like terms.

(©) r}(3r+2)(3r—2)=r*9r*—6r+6r—4) FOIL
=r}9r?—4) Combine like terms.
=Or* — 4r2 Distributive property

In Example 4(a), the product of two binomials is a trinomial, while in Ex-
amples 4(b) and (c), the product of two binomials is a binomial. The product
of two binomials of the forms x + y and x — y is always a binomial. The
squares of binomials, (x + y)? and (x — y)?, are also special products.

Speclal Products :

T Y

- Product of the Sum and Dlﬂ'erence (x+y)(x=y)=x- y?
of Two Terms

Square of a Binomial (x +y)2 =22+ 20+
: (x—yP=x2—2xy + )
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VIR 0L Using the Special Products i

d each product. 3
(3p + 11)(3p — 11) (®) (5m® = 3)(5m° + 3)
(9 — 11r3) (9 + 11r%) (d (2m+ 5)?

(@) (Bx—-T)?

CAUTION See Homework 4(d) and (e). The square of a .!n'nmm\al2 has
three terms. Do not give x2 + y? as the result of expanding (x + ¥)?, or
x2 — y? as the result of expanding (x — )2

(x+y)2=x2+2xy +y?

Remember to include the middle term.
(x — y)2 =x2—2xy + y?

WEEZIIEIER Mutiping e Complcaed Binomials_
Find each product.

@ [(3p-2)+5¢][(3p—2)—-5¢] () (x+y) (¢) (2a+b)*
SOLUTION

@ [(3p —2) +59][(3p — 2) — 5¢]

=(3p —2)2—(5¢)* Product of the sum and difference of two terms
P

=92 —12p+4 — 25g®  Square both quantitics.
() (x+y) = (x+y)(x+y)

Thisdoes not | = (47 + 2xy +3?) (x + y) Square x + y.
equal x3 + y3.

=3+ 2x% + xy? + x%y + 202 + ¥ Multiply.
=x7 + 3x%y + 3xy? + y3 Combine like terms.
© (2a+0b)*=(2a+ b)*(2a + b)?
= (4a® + 4ab + b?)(4a? + 4ab + b?)
= 16a* + 16a% + 4422 + 164% + 16a%h2
+dab’ + 4a2b? + 4gp3 + p¢

Square each 2a + b.
Distributive property

b 4 3
16a* + 3243 + 24a42p2 + 8ab’ 4 p4 Combine like terms.

»-Hj-"‘-',!s—'g'-'- - The quotient of two polynomials can be found with an algorithm
(that is, a step-by-step procedure) for long division similar to that used for divid-
F

D t be i

QRETETEN  vividing Polynomiats

Divide 4nf® — Bm? + Sm+ 6 by 2m — 1,

When a polynomial has a missing term
; ; » We allow f, i i
a term with a 0 coefficient for it. SEfhatizmn by imening
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- IR oividng Polynoniats with Wissing Terns
Divide 3x* — 2x2 — 150 by x2 — 4.

SOLUTION  Both polynomials have missing first-degree terms. Insert each miss-
ing term with a 0 coefficient:

S F—-—-—Missing term
x4+ 0x — 4)3x3 — 2x2 +. Ox — 150

. 3x3 + 0x2 — 12x Insert placeholders
_ for missing terms.
Missing term —2x2+ 12x — 150

—2x2+ Ox+ 8

12x — 158 <«— Remainder

The division process ends when the remainder is 0 or the degree of the remainder
is less than that of the divisor. Since 12x — 158 has lesser degree than the divi-
sor x2 — 4, it is the remainder. Thus, the entire quotient is written as follows.

3_ 9,2 A
3x° —2x 150=3x_2+12x 158

x+=4 x* =4l

Exercises LR R s T By

2 ' ¢
A Tt it o L2 4 e G i 18 et . 2 s S o o ot St 4 e e e e B e N e et ok el S igt e e b s S

Simplify each expressinn. See Example 1,

L (—4x%)(4x?) 2. (3y")(-6y%) 3.n%n*n
4, a®+a’-a 5995 6. 42 - 43
?_.(/f-3m4.)-(6m2)(—47115) 8. (—83)(25)(—51%) 9. (5x%y)(—3x3}y%

10.. Concept Check Decide whether each expression has been simplified correctly. If
not, correct it. Assume all variables represent nonzero real numbers.

; k 3 k3
(@) (mn)2=mn*  (b) y*+y =37 (0 (g) S < i 3%y =0
@#-4=16 (@ (®)P=d" (g cd’=1 (h) (2b)* =8p*

Simplify each expression. Assume variables represent nonzero real numbers. See Exam-
ples 1-2 and Homework 1.

11. (22)° 12. (6°) 13. (-6x2)°
14 (—2x°) 152 —(4mPn)? 16. —(2x094)3

8\3 A\ 2 —Am2\¢
17. (%) e (%) 1. ( tpT)
- S5
I Ao R
- 2 - " -
-

z P

Match each expression in Column I with its equivalent in Column 1. See Example 2.

I 1I I I
23. (a) 6° A. 0 24. (a) 3p° A.0
(b) —6° B. 1 (b) —3p° B. 1

() (—6)° C. ~1 (© (3p)° c. -1
(@) —(-6)° D. 6 @) (-3p)° D. 3

E. -6 E. -3
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25. Explain why x? + x? is not equivalent to x*.
E] 26. Explain why (x + y)? is not equivalent to x* + y2.

Identify each expression as a polynomial or not a polynomial. For each poly

. ) : 5 ; . ﬂOIm'm
give the degree and identify it as a monomial, binomial, trinomial, or none of th

ese. Se!
Homework 2.
27. —5xl! 28. -4y’
29, 6x + 3¢ 30. —9y + 5y°
31, —725-223+ 1 32, -9+ 837
33. 15a%° + 12a3b® — 13b° + 12b5 34. —16X°y7 + 12x%8 — 49 4 13,10
3, 1 2,3
2x5—— 36. S5+ =+ 1
Begra” & c N L
37.5 38.9

Find each sum or difference. See Example 3.

39. (5x2—4x+7) + (—4x?+3x—5)

40, (3m® = 3m? + 4) + (—2m> — m* + 6)

41. 2(12y? — 8y + 6) — 4(3y? — 4y +2)

42. 3(8p* — 5p) — 5(3p — 2p + 4)

43, (6m* = 3m? + m) — (2m® + 5m? + 4m) + (m? — m)
44, —(8x +x—3) + (2x3 +x2) — (4x2 +3x — 1)

Find each product. See Homework 3—4 and Example 4.

457 (4r— 1)(Tr+2) 46. (5m —6)(3m + 4)

2 1 1
47, x2(3x = E)(Sx + g) 48. m? (Zm - -4-) (Sm + l)

2

49. 4x%(303 + 232 — 5x + 1) 50. 2b3(b? ~ 4b + 3)

SL (22— 1)(~z*+3z - 4) 52. (3w +2)(—w? + 4w — 3)
33, (m—n+k)(m+2n—3k)
55. (2x +3)(2x - 3)(4x2 - 9)

57, (x+ 1)(x+ 1)(x~ D(x-1)

4. (r=3s+02r-s+1)
56. (3y — 5)(3y + 5)(9y2 — 25)
58. (t+4)(r+4)(r—4)(1—4)
Find each product. See Homework 4 and Example 5,

39. (2m +3)(2m - 3)
61. (4x* — 5y)(4x2 + 5y)
63. (4m + 2n)?

65, (5r— 322

67..[(2p - 3) + 4]2

60. (8s ~ 3r)(8s + 3¢)
62. (2m® + n)(2m® — n)
64. (a - 6b)2

66. (2% — 3y)2

68. [(4y~ 1) + (]2
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89. (3¢ +5)-p][(3g +5) +p] 70. [(9r=s5) +2][(9r - 5) —2]

L. [(3a+b)—1]2 72. [(2m+7) —n]?

73. (y+2) 74. (z - 3)*

5. (g —2)* 76. (r + 3)*

Perform the indicated operations. See Examples 3-5 and Homework 3-4,

17. (PP - 4p* +p) - (3p2 + 2p + 7) 78, (x* —3x2+2) — (—2x% + 22— 3)
79. (Tm + 2n)(Tm — 2n) 80. (3p +5)2

81. —3(4g° —3g+2) +2(—q2+q—4) 82. 2(3r2+4r+ 2) = 3(~r¥+ 4r —5)
83. p(4p — 6) +2(3p - 8) 84. m(Sm—2) + 9(5 — m)

85, —y(y* —4) + 6y*(2y — 3) 86. —z3(9 —z) +4z(2 + 3z)

Perform each division. See Homework 5 and Example 6.

oo —4x7 — 14x5 + 10x* — 14x2 —8r3s — 12r2s2 + 20rs3
87. 88.
e —2x? —d4rs
5 2 + 3 - +
89, 4x3 — 3x 1 9. x*—=2x+5
o Xi—.2 x—3
& 6m* + Tm? —dm + 2 9%0,\73+11x2—2x+3
= 3m+2 ) 5x+3
at + 5x2 + 5x + 27 =4k +2k+5

93/ 9,

x2+3 : k+1

Relating Concepts

* Forindividual or collaborative investigation (Exercises 95-98) .
The special products can be used to perform selected multiplications. On the left, ,
we use (x +y)(x —y) =x* —y2.On the right, (x —y)2 = x2 — 2xy + y2.

51X 49 = (50 + 1)(50 - 1), 472 = (50 — 3)2
: =502 — 12 : = 50% — 2(50)(3).+ 32
=2500 — 1 = 2500 — 300 + 9
7. = 2499 = 2209

Use special products to evaluate each expression.

" 95. 99 % 101 96, 63 X 57 97. 1022 98. 712
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= Fgctnring'ﬁm the
Greatest Common Factor

8 Factoring by Grouping

m Factoring Trinomials -

m Factoring Binomials

u Factoring by Substitution

14 § 'Facfl:q;fing Polynomials ' | ‘

The process of finding polynomials whose product equa'ls a giver} polynomig|
is called factoring. Unless otherwise specified, we _consu:{er only integer coef.
ficients when factoring polynomials. For examp]e, since

4x+12=4(x+3)

both 4 and x + 3 are factors of 4x + 12 and 4(x + 3) is a factored form of

4x + 12. .

A polynomial with variable terms that cannot be written as a product of tyy
polynomials of lower degree is a prime polynqmial. A poly_nomial is factoreq
completely when it is written as a product of prime polynomials.

Vs
_ Factoring Out the freatest Common Facior” To factor 6x°y’ + 9xy* + 18y5
ok Tor & oo, : atest common factor (GCF) of the three term;,

6xly® + Oxy* + 18y° = 3y(2x%) + 3y’(3xy) + 3y*(6y")  GCF =3y°

= 3y%(24* + 3xy + 6y°) Distributive property
(Section 1.2)

m Factoring Out the Greatest Common Factor . i

Factor out the greatest common factor from each polynomial.

(@) 9y° +y? (b) 6x2t+ 8xr+ 12t
© 14(m+ 1) =280m+ 12— T(m + 1)
SALHTINN

(@) 9y°+y>=y?(9%) + ¥ (1) GCF=+2

=y + 1) Distributive property
(' Remember to include the 1. y

Original polynomial
. '

CHECK Multiply out the factored form: y2(9y® + 1) = 9y5 + y2. v
(b) 6x% + 8xt+ 12r=2t(3x2+ 4x+ 6) GCF=2

CHECK 2t(3x* + 4x + 6) = 6x% + 8xr + 12t 7

(© 14(m+1)—28(m+1)2=7(m+1)

:7(m+1)[2(m+1)2—4(m+1)—1] GCF = 7(m + 1)

N Square m + 1
=Tm+1)[2m+2m+ 1) —dm — 4 - 1] (sqectior:"l.z);

(Rememberthe middle term.Y distributive property
=Tm+ 1)2m> +4m+2 — 4 — 4 — 1)
=7(m + 1)(2m® — 3)

Distributive property

Combine like terms.

CAUTION  In Example 1(a), the 1 is essential in the answer, since

YH9Y) # 95 + 42,
Factoring can always be checked by multiplying
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= ! 7 = B e IR
actoring by Grouping When a polynomial has more than three terms, it can
sometimes be factored using factoring by grouping. Consider this example.
Terms with - Terms with

common common

factor a factor 6
—— e N,

ax +ay + 6x + 6y = (ax + ay) + (6x + 6y)  Group the terms so that each
group has a common factor.

=a(x+y)+6(x+y) Factor each group.
=(x+y)(a+6) Factor out x + y.

It is not always obvious which terms should be grouped. In cases like the one
above, group in pairs. Experience and repeated trials are the most reliable tools.

CETTEN Factoringby Grovping

Factor each polynomial by grouping.
(@) mp*+ Tm + 3p* + 21 (b) 2y?+ az — 2z — ay?
(¢) 4x3 +2x2—2x—1

Factoring Trinomials = As shown here, factoring is the opposite of multiplication.
ﬁi;ficaﬁﬁ
(2% +1)(3k—4)= B>~ 55— 4

One strategy in factoring trinomials requires using the FOIL method in reverse.

EEIEEA Fectoring@jhomials —>

Factor each trinomial, if possible.

(@ 42— 1ly+6 (b) 6p2—Tp—5
() 2x2+13x—18 td) 16y° + 24y — 16y
SOLUTION :

(a) To factor this polynomial, we must find integers a, b, ¢, and d such that
4y2— 11y + 6 = (ay + b)(cy + d). FOIL

Using FOIL, we see that ac = 4 and bd = 6. The positive factors of 4 are
4 and 1 or 2 and 2. Since the middle term has a negative coefficient, we
consider only negative factors of 6. The possibilities are —2 and —3 or

—1 and —6.
Now we try various arrangements of these factors until we find one that
gives the correct coefficient of y.

(2y=1)(2y—6) =4y2 — 14y + 6  Incorrect
(2y=2)(2y—3) =4y~ 10y + 6  Incorrect
(y—2)(4y—3)=4y2— lly+6 Correct
Therefore, 4y2— 11y +6 factorsas (y —2)(4y —3).
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26 Introduction to Mathematics

CHECK. (y = 2)(4y=3) =4 =3y~ 8 +6 FOL
= 4)-2 —1ly+6 v  Original polynomia]
arious possibilities to factor 6p® — Tp — 5. The positve

Again,we try v
(b) Again, we try 2 and 3 or 1 and 6. As factors of —5 we have only —;

tors of 6 could be
and Sor =5 and 1.

[2p~S) 3P 1)=6p*— 13p—=35 Incorreat
(3p — 5)(2p + 1) = 6p* —7p—5  Correct
Thus, 6p?—7p—35 factorsas (3p—5)(2p + 1).

If we try to factor 2x? + 13x — 18 as above, we find that none of the Pais
of factors gives the correct coefficient of x.

(©)
(2x+9)(x— 2) =2x2+5x— 18  Incorrect
(2% 3)(x+6)= 2x2 4+ 9y — 18  Incorrect
(2x— 1)(x+ 18) = 2x2 + 35x — 18  Incorrect
Additional trials are also unsuccessful. Thus, this trinomial cannot be fy,.
tored with integer coefficients and is prime.
(d) 16y® +24y2 — 16y = 8y(2y? + 3y — 2)  Factor out the GCF, 8y.
= 8y(2y — 1)(y + 2) Factor the trinomial.

Remember to include the common
factor in the final form.
NOTE In Example 2, we chose positive factors of the positive first term.

We could have used two negative factors, but the work is easier if positive
factors are used.

Each of the special patterns for multiplication given in Section 1.3 can be
used in reverse to get a pattern for factoring. Perfect square trinomials can be
factored as follows.

o
Fac!orinkgmua_\r‘q Trinomials

2+ 2xy + y2 = (x + y)?
x?=2xy +y* = (x — y)?

WCIZIEIIEA Factoring Periect Square Trinomials

Factor each trinomial.

(a) 16p® — 40pq + 2542 (b) 36x%y? + 84xy + 49

- - o ™\ i
Factoring Binomials = Check first to see whether the terms of a binomial have

a common factor. If so, factor it out. The binomial may also fit one of the follow-
ing patterns.

| Factoring Binomials
Difference of Squares %2

Difference of Cubes
Sum of Cubes

3-y2=(x+y)(x_.y)
xs—y3=(x_y)(x2+xy+y2)
X +J’3=(x+y)(x2—xy+y2)
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here re : :
There is no factoring pattern Jor a sum of squares in the

CAUTION

e []! ?:!.’f”lll‘ .'J:r'\f':‘ M. In Cl]:ltl!'. . .\: v dOQS n()t fElCtO ﬂS (t I )‘) 101
[ r T i' 1 4 ] I o ]
l’cll[ nun]b'\:lb X tII!fi Y.

] "'J'i(l,-"m Factoriag Dilferences of Squares

Factor each polynomial.

(a) 4m* -9 () 256k* — 625m* (©) (a+2b)?— 4c?
(d) xP=6x+9-y"  (e) Y —x2+6x—09

SOLUTION

(a) 4m> —9 = (2m)? - 32 Write as a difference of squares.

= (2m+ 3)(2m — 3) Factor.
Check by multiplying.
(b) 256k* — 625m* = (16k?)* — (25m?)*  Write as a difference of squares.

= (16k% + 25m?)(16k> — 25m*) Factor.

= (16k* + 25m?)(4k + 5m)(4k — 5m) Factor
16k* — 25m°.

CHECK (16k* + 25m?)(4k + 5m)(4k — 5m)
= (16k? + 25m?)(16k> — 25m*)  Multiply the last two factors.
= 256k* — 625m* v Original polynomial
(c) (a+ 2b)2 — 4c? = (a + 2b)* — (2c)? Write as a difference of squares.
= [(a+2b) +2c][(a +2b) —2c] Factor.
= (a+ 2b+ 2c)(a + 2b — 2c)

Check by multiplying.
d x2—6x+9—y*=(x>—6x+9)—»* Group terms.
= {x =32 — 3 Factor the trinomial.
= {x —3P— (¥°)* Write as a difference

of squares.
=[(x-3) +3%][(z=3) —y2]  Factor.
- (x=3+))(x =3

Check by multiplying.
(& y2—x2+6x—9= ¥ ¥ —6r+9) Factor out the negative
T AT sign and group the last
Be careful with signs. Thisis a " g ——
perfect square trinomial. ree erms.
= y2 - (-1' - 3)2 Write. as a difference
of squares.
= {3 ~=3)] [y +x—3}] Factor.
= [yt )k~ 3) Distributive property
Check by multiplying.
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—_—

CAUTION When factoring as in Example 3(e), be careful with signs.
Inserting an open parenthesis following the minus sign requires changing
the signs of all of the following terms.

WIS Factoring Sums or Differences of Cubes

Factor each polynomial.
(@) x*+27 (b) m® — 64n® (e) 8¢% + 125p°

Factoring by Substitution " We introduce a new technique for factoring.

m Factoring by Substitution |

_ Factor each polynomial.
(@) 10(2a —1)*—19(2a — 1)=15 (b) (2a—1)*+38
(c) 6z¢—13z2-5

SOLUTION

(@) ]0(2(1 - 1)2 - 19(2” = 1) = 3 Replace 2a — | with u so that
= 10u?— 19u — 15 (2a — 1)* becomes u>.

= (51 + 3)(2u — 35) Factor.
(Repﬂocr:tus:\?ighh;;e:— ‘I.)/ =[5(2a—1)+3][2(2a—-1) = 5] Replace u with 2a — 1.
=(10a—5+3)(4a —2—5) Distributive property
= (10a —2)(4a —17) Simplify.
=2(5a—1)(4a—17) Factor out the common factor.
) a—1P*+8=u>+8 Replace 2¢ — 1 with u.
=ud+23 Write as a sum of cubes.

= (u+2)(1* — 2u + 4) Factor.
=[(2a—=1)+2][(2a=1)2-2(2a — 1) + 4]
Replace u with 2a — 1.

=(2a+1)(4a> —4a+1—4a+2+4)
Add, and then multiply.

=(2a + 1)(4a®> — 8a+7) Combine like terms.

{€) -Ge*— 137 —5= 6u>—13u—5 Replace zZ with u.

Remember to make the _
(eﬁnalsubstitutiﬂn. )k = (2u—=35)(3u +1) Use FOIL to factor.
= (232 = 835 % 1, Replace i with z2.
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III Exercises I

Factor out the greatest conumon factor from each polynomial. See Example 1 and
Homework 1. '

. 15r—27 2. 924+ 81z
.« Sh3 + hj 4. —3z5w2 — 1823
. 28ris? + 7r3s — 350443 6. 6x(a +b) —dy(a + b)

A (4:-*5)(3:.-2)—(3;—9)( Zz=2) 8 5((1+3)3—2((1+3)+((1+3)2

o N W e

- Concept Check Saad factored 164> — 40a — 6a + 15 by grouping and obtained
(8a = 3)(2a — 5). Kamal factored the same polynomial and gave an answer of
(3 = 8a)(5 — 2a). Which answer is correct?

Factor each polynomial by grouping. See Homework 1,
10. 10ab — 6b + 35q — 21 11. 15 = 5m* = 3r* + m*r?
12. 20z% — 8x + 5pz2 — 2px

Factor each trinomial, if possible. See Example 2 and Homework 2.

13. 8h% — 2h - 21 14. 952 — 18y + 8
15, 9x2 +4x -2 16. 36x* + 18x% — 4x
17. 14m? + 1lmr — 1512 18. 1252 + 1152 — 512
19. 30a% + am — m? 20. 18x% + 15x%z — 75x3z2
21. 16p* — 40p + 25 22. 20p? — 100pg + 125¢2
23. 9m’n® + 12mn + 4 24. (2p +4g)*—10(2p + q) + 25
25. Concept Check Match each polynomial in Column I with its factored form in Column I1.
I II
(a) 8x—27 A. (3—2x)(9 +6x + 4x?)
(b) 8x3 + 27 B. (2x —3)(4x? + 6x + 9)
(c) 27 — 8x? C. (2x+3)(4x2—6x+9)
Factor each polynomial. See Example 3 and Homework 3.
26. 16> — 25 27. y* -8l 28. 36z% — 81y*
29. (p —2q)*— 100 30. m* — 1296 3. 27— ¢
32, 8m® — 273 33. 277° + 64y1? 34, (b+3)3—27

35. 125 — (4a — b)?

36. Concept Check Which of the following is the correct factorization of x* + 87
A, Lo+ 2P B. (x+2)(x>+2x+4)
C. (x+2}(x2=2x+4) D. (x+2)(x2—4x +4)

Relating Concepts

| Forindividual or collaborative investigation (Exercises 37-39)

The polynomial x8 — 1 can be considered either a difference of squares or a.dff—
ference of cubes. Work Exercises 37-39 in order, to connect the results obtained
when two different methods of factoring are used. :

37. Factor x6 — | by first factoring as a difference of cubes, and then factor R
by using the pattern for a difference of squares.
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38. The polynomial x* + x? + 1 cannot be factored using the methods described i,
this section. However, there is a technique that enables us to factor it, as showp |
here. Supply the reason why each step is valid.

A2t l=xt 21—

= (x4+2x2+ 1) —x2

= (x2+ 12—zl
=@2+1-x)>+1+x)
=(x2—x+l)(x2+x+l)

39. Factor x8 + x* + 1 using the technique outlined in Exercise 38.

Factor each polynomial by substitution. See Example 4.
40, 6(4z—3)2+7(4z—3)—3 41. ;4(5x+ 72 +12(52 +7) +9

42, a* —2a*— 48

Factor by any method. See Examples 1-4 and Homework 1-3.

43. (y—1)*—4(2y—1)+4 44. 8r? — 3rs + 10s?
45. 36a% + 60a + 25 46. 6p* +Tp* =3
47. b*+ 8b + 16 — a® 48, g>+ 6+ 9 —p?
49. 216p° + 125¢° 50. 10072 — 16952
51. (3a+5)2 — 18(3a + 5) + 81 52. 4z% — 722 — 15

% 53. Geometric Modeling Explain how the figures give geometric interpretation to the
formula x2 + 2xy + 2 = (x + y)*.

-{ [ )
' y{ly:j

A =

Factor each polynomial over the set of rational number coefficients.

1
54, 81y* — E 55, .]525_1),4 — 49y2

Concept Check Find all values of b or ¢ that will mq
trinomial,

56. 9p2 + bp + 25

ke the polynomial a perfect square

57, 49x% + 70x + ¢
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e

Rational Expressions

m Rational Expressions B Yo E;':bﬂ e - -~ &
m LowestTerms of a 0 #"8‘1‘:1.5 "’;.3*"“,':"'. - The quotient of two polynomials P and Q, with
Rational Expression » Iy a rational expression.
m Multiplication and x+6 (x + 6)(x + 4) 2 + s o
LEai i s Rational expressions
x+2 x+2)(x+4 5p* + 2 p
'm Addition and ( )( ) D Op
Subtraction

) The_ domain of a rational expression is the set of real numbers for which the
m Complex Fractions expression is defined. Because the denominator of a fraction cannot be 0, the

domain consists of all real numbers except those that make the denominator 0.
We find these numbers by setting the denominator equal to 0 and solving the
resulting equation. For example, in the rational expression

x+6
x+2’

the solution to the equation x + 2 = s excluded from the domain. Since this
solution is —2, the domain is the set of all real numbers x not equal to —2, or

{x|x # =2}, Set-builder notation (Section 1.1)

If the denominator of a rational expression contains a product, we determine

the domain with the zero-factor property, which states that ab = 0 if and only if
a=0orb=0.

m Finding the Domain

Find the domain of the rational expression.

(x +6)(x + 4)
(x +2)(x + 4)

SOLUTION
(x+2)(x+4)=0  Set the denominator equal to zero.
x+2=0 or x+4=0  Zero-factor properny
x=-=2 or X = —4 Solve each equation.
The domain is the set of real numbers not equal to —2 or —4, written

{x]x # =2, -4}

ms of a Rational E!tprgsgipn_z A rational expression is written in
when the greatest common factor of its numerator and its denomi-
nator is 1. We use the following fundamental principle of fractions.

e e

1 Fundamental_ Princip!e of Fr;ctions

e e
N s e o e

tr”

| S

(b # 0,c #0)

g8
a8
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LOOKING AHEAD TO CALCULUS
A standard problem in calculus is

investigating what value an expres-
xi-1
ek

x approaches 1. We cannot do this

by simply substituting 1 for x in the
expression since the result is the inde-
When we factor the

sion such as approaches as

terminate form g.
numerator and write the expression
in lowest terms, it becomes X +1.
Then by substituting 1 for x, we get
1 + 1 = 2, which is called the limit of

F st |

——j asx approaches 1.

Introduction to Mathematics

B :/‘ e |

Write each rational expression in Jowest terms-

6 — 3x
@) 2x2+7x— 4 ® > Z
5x2 + 20x A

T 2 T R ol g
CAUTION The fundamental principle requires a pair of common factors,
'~ the denominator. Only after a rational ex-

one in the numerator and one in er
on has been factored can any common factors be divided out.

pressi
2x + 4 20x+2) _x+2 .
o T T ey, H tor first, and then divi

For example, 5 5.3 3 ac nd then divide,

/

Multiplication and Division > We now multiply and divide fractions.

" Multiplication and Division
For fractions & and § (b # 0.d 7 0), the following hold.

(c #0)

That is, to find the product of two fractions, multiply their numerators to find
the numerator of the product. Then multiply their denominators to find the
denominator of the product. To divide two fractions, multiply the dividend
(the first fraction) by the reciprocal of the divisor (the second fraction).

(EZEEEA Muitiplying or ividing Rational Expressions
Multiply or divide, as indicated. SE

2
()_Qy_.2_7_ - 3m2—2m—8 3m+2
a) 553 ®) 73 ¢
y ] 3m*+ 14m+8 3m+4
© 3p°+1lp—4 9p+36
24p3 — 8p*  24p* — 36p°
@ -y 2x+2ytaztye
gh— 32 Zx? 42754 mE gyt
SOLUTION
o 2.2 2
9 8y5 = W Multiply fractions.
L 2= 3% ya
_9 = ,4.}- ')’3 Factor.
- Do
= '4‘;3" Fundamental principle

ilthough we L‘lsual]y factor first and then multiply the fractions (see par$
(b)—(d)), we did the opposite here. Either order is acceptable.
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) Im —2m—8 3Im+2
3+ 14m +8 3m+ 4

= (m=2)3Bm+4) 3m+2
(m+4)3m+2) 3m+ 4 Coctor

i (m—2)(3m + 4) 3 + 2)

= - = Multipl i

e 4)\_““ n;(3m T4 ultiply fractions.
_m -2

A Fundamental principle

PP 1p~4  9p+36
© — G+
24p* — 8¢ 24p* — 367
_+)Gr-1) 9p+4)
7 2 33 ) 3 Factor.
8p*(3p — 1) 12p%(2p - 3)
(p+4)(3p—1) 12p%(2p - 3)

s Multiply by the reciprocal
8p2(3p . 9p + 4) of the divisor.

= ____1 2p 3(2p = 3) Divide out common factors.
9 - 8p? Multiply fractions.

_3:4-pp(2p-3)
3_3.4'2.[)2 Factor.

p(2p —3) .
= _"6‘— Fundamental principle

=y 2x+2y+axztyz
x2—y? 2x2+2y2 + zx?2 + 72

_ oy 4y 2(x+y) +2(x+y)

(d)

Factor. Group

(x + y)(x — y) 2(x2 + y?') + z(xz +- yz) terms and factor.
_ (x —y)(x* +xy +y?) . (2+2)(x+y) Factor by grouping.
(x+y)x-y) 2+ +y?) (Bection 4]
2 ey o Iyp2 Multiply fractions;
= ic__z_xy_z_y_ fundamental
x*t+y principle

. Addition and tSub_tractinq? We now add and subtract fractions.

- -

{ Additio'n*a/nd Subtraction

B fractions 5 and § (b # 0,d # 0), the following hold.

g_+£_ad+bc A ¢ _ad— bc
el A e A e g T

That is, to add (or subtract) two fractions in practice, find their least commoz
denominator (LCD) and change each fraction to one with the LCD as defwzl;l
nator. The sum (or difference) of their numerators is the numerator of fh"; z
(or difference), and the LCD is the denominator of their sum (or difference/:
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" Finding the Least Common Denominator (LCD)

Step 1 Write each denominator as 2 product of prime factors.

Step 2 Form a product of all the different prime factors. Each factor shoulq
have as exponent the greatest exponent that appears on that factor,

I Addingor Subtacting Rational EXPressons .

Add onsubtract, as indicated.

S TR ¥ g S 1
0 ErE O 7257 © G NeT) E=aeg

When subtracting fractions where the second fraction hqy
¢ term in the numerator, as in Homework 2(c), be sure ¢
term. Use parentheses as in the secong

CAUTION
more than on
distribute the negative sign to each
step to avoid an error.

Complex Fractions ) The quotient of two rational expressions is a complex
fraction. There are two methods for simplifying a complex fraction.

ECEEE] Simplifying Complex Fractions ..

Simplify each complex fraction. In part (b), use two methods.

5 Y
°"7 +1 i
: "
() 5 (b) 7
1 + i _.
Tk a w1
SOLUTION

(a) Metl}od 1 for simplifying uses the identity property for multiplication. We
multiply both numerator and denominator by the LCD of all the fractions, k.

m Distribute k to
6 2 o6 - 2 6k — & 5 allterms within
k _ k _ k ; 6k — 5 the parentheses.

5 5 =
e k(1+-) w2 k+5
T % k+k p

a 1 ( a_ . l) a1 For Method 1, multiply
atl a e N +1 & ) both numerator and
l " 1 1 1 denominator by the
a " ekl g; + i 1)a(a #+i1) I;((Zanflz;]l the fractions
(Method 1) a I '
T (a)(a +1) +—(a)(a+1)
1 1 Distributive property
a(a)(a 1 -y (@)(a +1)
_@+(a+l)
T (a+1) +e Multiply.
EraEr
H{ \2(1 + 1 Combine like terms.

Scanned with CamScanner



Review of Basic Concepts 35

a 1 (12 + l(a + 1)
a1 + ;‘ ala + 1) For Method 2, find the LCD, and add
= terms in the numerator and denominator
1 . 1 Ha+ 1)+ l_(i} of the complex fraction.
a a+1 a(a+ 1)

(Method 2) at+a+ 1

ala+1 ; i
- ( ) Combine terms in the numerator
2a + 1 and denominator.

ala+1)

__a2+a+1 ala+1) N _
a(a + 1) 2a + 1 Definition of division

The result is
the same as in

at+a+1 ; ; .
Method 1. L e b Multiply fractions, and write in

2a + 1 lowest terms,

l!l Exercises l

Find the domain of each rational expression. See Example 1.

2x—=4 9x + 12
T x+7 ‘ T (2x+3)(x—5)
3 x2—125
i xt— Sx= 6 & x—5

5. Concept Check Use specific values for x and y to show that in general, 1y % is not

equivalent to ; _lk 3

Write each rational expression in lowest terms. See Homework 1.

p 36y + 72y —8(4 — ) g 20r+10
’ 9y2 Ty+2)(y-4) " 30r + 15

g g fy 6y + 11y + 4 - y3 =27
‘r4r-12 T3yt + Ty +4 T y-3

Find each product or quotient. See Example 2.

12.1—';3+g 13. 5’":;25+6"’1230 14. yaJ;yz-;;%
6r — 18 4r—12 xX2+2x—15 x2+4+2x-24
15 02+ 6r—24  12r— 16 - X2+ 1x+30 x2—8x+ 15
y2+y'-2_:_y2+3y+2 o xz—yz'xz—xy+y2+x3+y3
TV 43y—4 P Hdy+3 Vg B 2 -2t -9
19. ac + ad + bc + bd a’— b}

a — b2 " 24 + 2ab + 262

@ 20. Explain how to find the least common denominator of several fractions.

Perform each addition or subtraction. See Homework 2.

1
oL A3, -5 e L 2. 2+%
5p 4p 3p 4 p Z 1z
+1 m-1
2 _L___Z_ 25. 7x+8_ﬂ.4_'. 26,m__1+’—"—;_—1-
" 18a%h%  9ab 3x+2 3x+2 m
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4 2 S ‘1 SHI

27, ——= 28, —-——
P=q q-p =4 4-3p,

5 2 60 P 2

29, + - 30, — ——u - P
x+2 x-2x+4 +8 2p'-9p -5 60 —p =3
Simplify each expression. See Example 3.
1
2- 2 —JL—'3“ = ; 2+ ey i
31, —2 32, T = 38, s SHE
2 1 B
2+ - ¥ T .
1 " 1 6
Yoy PF g _g5tx
3. — 3s5. T 36. T
r2—y? y+3 x—5
x+4 3 -2 =2 2
T = ¢ x+h2+16 2
37 X X ) 38. x+h X 39 ( ) 6 X° o+ 1(
x 1 h h
+ s
r—2 "X

Negative Exponents and
the Quotient Rule

Rational Exponents

Complex Fractions
Revisited

Radical Notation
Simplified Radicals
Operations with
Radicals
Rationalizing
Denominators

-

L

~_p

* Negative Exponents and the Quotient Rule = In Section 1.3, we justified the
definition a® = 1 for a # 0 using the product rule for exponents. Suppose thyt
n is a positive integer, and we wish to define a™ to be consistent with the ap-
plication of the product rule. Consider the product a" » ¢, and apply the rule,

s o + -
a"*a"=a""  Pproduct rule
— 0 s S
=a nand —n are additive inverses.
=1 Definition of a°

Y A ; G n
The expression a™" acts as the reciprocal of a", which is written 2+ Thus, these
two expressions must be equivalent,

- Negative Exponent ' o
Suppose that 4 is a nonzero real number and n is any integer.

a™"=—
an

m_ysin the Definition of a Negative Exponent o

“Evalu :
_aﬁjat‘_"ﬁa—chmn' In parts (d) and (e), write the expression without neg
© exponents. Assume all variables represent nonzero real numbers.

42 —4- 2\7
(a) (b) —42 (¢ (J @ (xy)-2 © 1~
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SOLUTION
1 1
(a) 4"=—;=—-—- (b 4‘2=*—1-““"-L
4 16 ) 42 16
23\ 1 1 125
213
5 (3P & | 15 8 | 8
Multiply by the reciprocal of the divisor.
. 1 1 x
@ (xy)7°= spi0F; == ) = 5 =i
r (xy)? x%y’ ) J% YTy
Base is xy. Base is y.

CAUTION A negative exponent indicates a reciprocal, not a sign change
of the expression.

Example 1(c) showed the following.
6 mar =)
5 8 2

We can generalize this result. If @ # 0 and b # 0, then for any integer n, the

following is true.
a\™" b\"
()= C)

The quotient rule for exponents follows from the definition of exponents.

,,,,,,

{ Quotient Rule ; _ T
Suppose that m and n are integers and a is a nonzero real number.

am

—_— m-=n
a® ‘

That is, when dividing powers of like bases, keep the same base and subtract
the exponent of the denominator from the exponent of the numerator.

CAUTION When applying the quotient rule, be sure to subtract the ex-
ponents in the correct order. Be careful especially when the exponent in the

denominator is negative, and avoid sign errors.

mﬁsjn_g  the Quotient Rule i

Simplify each expression. Assume all variables fepresent nonzero real numbers,
R Y.
(b) e (©" 121 10797

(a) 1z
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i tion 1.3 were stated for positive inte
This ez for Sxpanert oy hose rules continue to apply i Ber expo,.
“ents and for zero as an exponent. Thos g PPLY I eXpressjop,
involving negative exponents, a8 seen in the D ple.

nents SRR
e |

Using the Rules for EXpo —
s ers without negative exponents, Assu
3

on. Write answ

: o]ify each expresst
Simplify onzero real numbers.

iables represent It
all variables 1P 12p3q-—l © (3x2)_|(3x5)—2
(a) 3x2(47x7)’ ®) g5 (3772

SOLUTION

2 41x5)? =3 x—2(4—2x-10) Power rules (Section 1.3)

(a) 3x
=342 _x~2+(—10) Rearrange factors; product rule (Section | 3)
_3.42.x712 Simplify the exponent on x.
=344 x phity
3 Write with positive exponents,
16x'?

3 i
=Zpig? Simplify the exponents.
= Write with positive exponents.

o (3x2)"1(3x5)‘2 e 3-1,—23-2,—10
(3-—1x—2)2 3724
3-1+(=2)=24(=10) 33,12
N -1 5 T 3
= 373-(=2)x"12-(-4) = 3-1x=8  Quotient rule
( Be careful with signs. yl

T3t

Power rules

Product rule

Write with positive exponens.

CAUTION  Notice the use of the power rule (ab)" = a"b" in Example 2(c):
(3x2)71 = 371(x2)~! = 3712,

Remember to apply the exponent to the numerical coefficient 3.

I .
i Rational Ex T s
¢ nationalExponents | The definition of a" can be extended to rational values

of n by defining a' to be th
e nth root of a. B b
nents (extended to a rational exponent) B R il
(al.'u)n = g(ln)n — al = a

which suggests that gl
gg at a™™ is a number whose nth power is a
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i _ The_Expression aln —

1]” - .. . . V
a', n Even Ifn is an even positive Integer,and if @ > 0, then a'" is the posi-
tive real number whose nth power is a. That is,(a'™)" = g, (In
this case, a'™ is the principal nth root of a.)

!In - .. .
a'", n 0dd If n is an odd positive Integer, and «a is any nonzero real num-

ber, then a' is the positive or negative real number whose
nth power is a. That is, (a'")" = g,

For all positive integers n, 0V = (.

m | Using the Definition of a'

Evaluate each expression.
(@) 36" - ® —100: ' (© —(@25) (@) 625"
() (—-1296)"*  (F) —1296" . (g) (—27)'" (h) —325

The notation a”™ must be defined in such a way that all the previous rules
for exponents still hold. For the power rule to hold, (a!")" must equal a™".
Therefore, a™" is defined as follows.

{ The Expression a™" ¢

Let m be any integer, n be any positive integer, and a be any real number for
which @' is a real number.

amln _ (alln)m

Using the Definition of a™/»

! Evaluate each expression.
(@ 125%* () 327° (o) —8132  (d) (=27)22 (o) 167 () (—4)"

SOLUTION
(@) 125%% = (125'7) (b) 3275 = (32157
=52, or 25 =27 or 128
(C) _813/2 s _(811!2)3 (d) (_27)2.'3 - [(_27)1.'3]2
=-9, or —729 =(—3)%, or 9
(e) 1673 = L (f) (—4)°? is not a real number. This is
16% because (—4)!2 is not a real number.
1
=% (1614)3
-1
= -2'5, or 3
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S —

LOOKING AHEAD TO CALCULUS
The technique of Example 4(c) is used
often in calculus.

R IR i i

NOTE For all real numbers a, integers 7, and positive integers

: nf
which @' is a real number, a™" can be interpreted as follows. ths
amn = (al.’n)m or a"n = (am)ln’u

So a™" can be evaluated either as (a')" or as (a™)!,
43 — 113y4 = 34 = §]
21 (27 ) The result is the same.
or 2743 = (274)"3 = 5314412 = 81
—

The earlier results for integer exponents also apply to rational €Xponeng

Definitions and Rules for Exponents
Suppose that r and s represent rational numbers. The results here are va)iq d
for all positive numbers a and b.

Product rule a-a=ats Power rules  (a’)’ = g
a.f'
Quotient rule 2 = q'* (ab) = oy
Negati t -r 1 a\'_«a
egative exponen N -] ==
g p pr p =

WTEETLIEN Using the Rules for Exponents

Simplify each expression. Assume all variables represent positive real numbers

2713 . 2753

i) —————
20

3Imi\2 8y3 213
(d) (y3,4 ) (;g_> (e) m2a'3(m7f3 + 2m1I3)

(b) 8154 - 42 (c) 6y*? -2yl

SALERN Factoring Expressions with Negative or Rational Exponents

Fac‘tor out the least power of the variable or variable expression. Assume al
variables represent positive real numbers.

(@) 12x72—g8x3 (b) 4ml2 + 3,32 € (y—2)yB+(y-2)*
SOLUTION

(a) The least exponent on 1252 — §x~3

is —3. Since 4 is a common numenc
factor, factor out 4x-3,

1267 — 827 = 433229 25-())  Byetor

s
4x7(3x ~ 2) Simplify the exponents

Check by multiplying on the right,

(b) 4m'2 + 332 — 112
3m m"2(4 4 3m)  Factor out mn,

To check, multiply m12 by 4 + 3m

(02505 % 9 = 2= (ppria] g r~2)]
= (y ik 2)_”3()’ = 1)
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' [_:umplex Fractions Revisited | Negative exponents are sometimes used to
Write complex fractions. Recall that complex fractions are simplified either by
first multiplying the numerator and denominator by the LCD of all the denomi-
nators, or by performing any indicated operations in the numerator and the
denominator and then using the definition of division for fractions.

(4" ’ S_implifyi_qg a F_r_art_:_tioqr with Negative Exponents
x+y) .
Simplify ;“+—y‘f . Write the result with only positive exponents.

CAUTION Remember that if r # 1, then (x + Y)Y # x" +y". In par-
ticular, this means that (x 4 y)™' # x~! 4+ y~1,

. Radical Notation | In this section we used rational exponents to express
roots. An alternative notation for roots is radical notation.

" Radical Notation for a'/”

B

Suppose that a is a real number, n is a positive integer, and a!* is a real

number.
n
\/; = gln

. Radical Notation for a™/
Suppose that « is a real number, m is an integer, » is a positive integer, and Va

is a real number.
it = (‘\%_l)'" = Vam

In the radical %, the symbol vV isa radical symbol, the number a is the

radicand, and r is the index. We use the familiar notation \/c_z instead of \2/; for
the square root.

For even values of n (square roots, fourth roots, and so on), when a is posi-
tive, there are two nth roots, one positive and one negative. In such cases, the

notation V a represents the positive root, the principal nth root. We write the
negative root as —Va.

mmuating Roots . -

o
Write each root using exponents and evaluate.

(@) V16 ®) -V16 © V-32
64
d) V1000 () === ) V-16

729
SOLUTION
@ V16 = 16" (b) —V16 = —16"

Scanned with CamScanner



42 Introduction to Mathematics

LODKING AHEAD TO CALCULUS
In calculus, the “power rule” for
derivatives requires converting
radicals to rational exponents.

(©) V/-32=(-32)" (d) V1000 = 100013
W g =10
64 64\ Y V16 i
© e =25 (f) V —16 is not a real number.

m Converting from Rational Exponents to Radicals

Write in radical form and simplify. Assume all variable expressions represen

positive real numbers. _
(a) g3 (b) (__32)415 () — 1634 () x5

(e) 3x%° ) 2r'"? (@ (3a+ b)"

CAUTION It is not possible to “distribute” exponents OVer a sum, so ip
Homework 5(g), (3a + b)"* cannot be written as (3a)1® + 5%,

m is not equivalentto x + y.

(For example, let n =2, x = 3, and y = 4 to see this.)

BT Converting from Radicals to Rational Exponents

Write in exponential form. Assume all variable expressions represent positive
real numbers.

@ Vx ) V3y © 10(¥z)
@ 5V/(2x%) e Vpi+g

SOLUTION
@ Vad=x¥ ) V3y=(3y)"2 © 10(v7)"= 10

@ 5V/(2x%)7 = 5(2x*)7 e Vpr+gq=(@p*+q"

=5 . 273,283

We cannot simply write \/; = x for all real numbers x. For example: i
x = =35, then
Vxi=V(=5)2=V25=5 = 1.

"I‘vc; take ai:)are of the fact that a negative value of x can produce a positive result
use absolute value. For any real number a, the following holds.

\/L?=|a|
F?rexample, V(-9)=|-9|=9 and \/1?*2=|13|=13,

We can generalize this result to any even nth root
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Evaluating V/a"

L]
p g h = /\/— ¥

HOMEWORK'6S
Simplify each expression.

@ Vp' Vr* \4

a) Vp (b) Vp* © V16mer
d) V(-2) (e) m €) V(2K +3)?
(8 Vx2—4x+4

Using Absolute Value to Simplify Roots

NOTE When working with variable radicands, we will usually assume
that all variables in radicands represent only nonnegative real numbers.

The following rules for working with radicals are simply the power rules for
exponents written in radical notation.

" Rules for Radicals
Suppose that a and b represent real numbers, and m and n represent positive
integers for which the indicated roots are real numbers.

Rule Description

Product rule The product of two roots is the root of the
Vg - Vb = Vab product.

Quotient rule The root of a quotient is the quotient of the

{/E : % roots.
b s

Power rule The index of the root of a root is the product of

W o % their indexes.

EXAMPLE 7. Slmplllymg Radical Expressions

Simplify. Assume all variable expressions represent posmve real numbers

W VeV o VaVE  @r

@ {73 © V2 ® V3

SOLUTION

(a) \/E\/5_4= V6 54  Product rule (b)%\ﬁ:%
324, or 18 =m
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- & _ & Va
— = ——  Quotient rule d == w8
O Nt ™ Ve b Ve
VI _Ya
8 b
© W: % Power rule ) \‘V“\/§= 4\'2/§=

V3
NOTE Converting to rational exponents shows why them

N (218)177 = 201N = 21721 = V2 Example 7(e)
—_

" Simplified Radicals ' In working with numbers, we prefer to write a nypy,
. " e R 10 - . v T
in its simplest form. For example, 5 is written as 5, and ~% 1S written ag -3

Similarly, expressions with radicals can be written in their simplest forms_

* E— . et —————— e

—

P e
. Simplified Radicals \
An expression with radicals is simplified when all of the following condj.
tions are satisfied.

1. The radicand has no factor raised to a power greater than or equal to the index,
2. The radicand has no fractions.

3. No denominator contains a radical.

4. Exponents in the radicand and the index of the radical have greatest com-
mon factor 1.

5. All indicated operations have been performed (if possible).

OO @M Simplifying Radicals

Simplify each radical.

@ V175 ®} =332 © V8lry':

| Operations with Badi_t;al_s? Radicals with the same radicand and the same it

dex, such as 3V/11pg and —7V/11pg, are like radicals. On the other hand
examples of unlike radicals are as follows.

2\/3 and 2\/5 Radicands are different.
2\/5 and 2 % Indexes are different.

We add or subtract like radicals by using the distributive property. Only Ik

_radtcals can be combined. Sometimes we need to simplify radicals before add-
Ing or subtracting.

EXAMPLE 8 _Adding and Subtracting Radicals %

e L

Add or subtract, as indicated. Assume all variables represent positive real number>

3V —7% 1100 ;
(a) 1pg + (-7 11pq) (b) \/98x%y + 3x\/52/f}‘
(€) V6dm*n’ — N/ —2Tmiopt4
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SOLUTION

(a) 3V1 lpg + (~?\4/ lipq) = ‘*flw_r)_q

(b) V98x%y + 3A\/:'5—21:} =V49 -2 -,2. X+y+3xV16+2+x+y Factor.
=TxV2xy + 3x(4)V2xy Removeall perfect squares

from the radicals.
=TxV2xy +12xV2xy  Multiply.

= (Tx+ 12x) V2xy Distributive property
(Section 1.2)

= 19xV2xy Add.
© Vo6tm'n® — V= 2Tmi0p1t = V/ (64m3n™)( mn2) — V(=27m°n'2) (mn?)
= 4mn"/mn? — =3)m3n* N/ mn?
= 4mn/mn? + 3m3n4m

= (4mn + 3mn*) Vmn?
(_ This cannot be simplified further.y( mi + 3m’n*) N mn

If the index of the radical and an exponent in the radicand have a common
factor, we can simplify the radical by first writing it in exponential form.
We simplify the rational exponent, and then write the result as a radical again. as.»
shown in Homework 8 on the next page.

IOTEWOLIEM . Simplifying Radicals .

Simplify each radical. Assume all variables répresent i:ositive ;@almpngbeﬁ.

(a) V3 b) Vx2y3 (c)\/ N

In Homework 8(a), we simplified V32 as V3. However, to simplify
(\6/_) the variable x must represent a nonnegative number. For example, con-

sider the statement
(—8)%6 = [(_g)ue]z_

This result is not a real number, since (—8)Y6 is not a real number. On the other hand,

(—8)\8 = —2,

2 .
Here, even though z = 3,

(V)2 = V.
If a is nonnegative, then it is always true that @™ = g"7/("?), Simplifying
rational exponents on negative bases should be considered case by case.

m Multiplying Radical Expressions i

Find each product.

@ (V7-V10)(V7+ Vo) B\(V2 +3)(VE - 5)
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SOLUTION Product of the sum and

(a) (\/— = \/ﬁ) (\/'—] + \/R)-) = (\/’5)2 — (\/ia)z difference of two terms

(Section 1.3)
=7-10 (Va)=a
= =3 Subtract.

® (V2 +3)(VB - 5)= V2(VB8) - V2(5) + 3V8 - 3(5)

FOIL (Section 1.3)

=V16 - 5\/2_ + 3(2\/5) — 15 Multiply;

Ve =2V2.
=4 - 5\/5 + 6\/5 - 15 Simplify.
= N2 Combine like terms.

Rationalizing Denominators | The third condition for a simplified radical re-
quires that no denominator contain a radical. We achieve this by rationalizing
the denominator—that is, multiplying by a form of 1.

HOMEWORK 9 Bgtiqpq_li;iqg _D_e_nominaturs

Rationalize each denominator. __~

4
] — 5

v ®) {5

EXAMPLE 10 S__implity'!ng_rﬂadrircal _E)gprgssions with Fractions

Simplify each expression. Assume all variables represent positive real numbers.

Y 3
(a) 4 = ) \3/5_ \3/2
Vxdy X" x°

8]

SOLUTION
Y 3 3
(a) ; = x3y = Quotient rule
x3y2 X7y
5o .
= o2 Simplify the radicand.
T
o, Y.
= = Quotient rule
X
_ \f'/; v x2 .
\‘V; 1 = Rationalize the denominator,
4 xzy
= x \'.1/.\_3 = \J/F e .\-V_F =y
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e E— 5 [4 V5 Va

b) '3l 3 = :
LOOKING AHEAD TO CALCULUS (b) 6 38 3 7 3 = Quotient rule
Another standard problem in calculus
is investigating the value that an 3 5 %
Vii+9-3 S 4 W Si ) .
expression such as -z x2 —x3 implify the denominators.
aches as x approaches 0, This
approaches PP‘ i \3/_ ,
cannot be done by simply substituting _E 5 B 4 - ' - -
0 for x, since the result is 8. However, - 3 _”—x3 rite with a common denominator. (Section 1.5)
by rationalizing the numerator, we
can show that for x # (l) the expression x% an % .
=T = ubtract the numerators.
is equivalent to —————_ Then, 3
= Vxi+9+3 x
by substituting O for x, we find that the
- . 1
original expression approaches & as x In Example 9(3)’ we saw that the product
approaches 0.
(\/_ -V 10) (\/’? +V 10) equals —3, arational number.

This suggests a way to rationalize a denominator that is a binomial in which
one or both terms is a square root radical. The expressions @ — b and @ + b are
conjugates.

HOMEWORK 10 _Rationalizing a Binomial Denominator sini

1
Rationalize the denominator of ———.
1-V2

ll:l Exercises

Concept Check In Exercise 1, match each expression in Column I with its equivalent
expression in Column II. Choices may be used once, more than once, or not at all.

| I
1. (@) 573 A. 125
(b) =53 B. —125
1
—8§\-3 a
1
o s Bl

Write each expression with only positive exponents and evaluate if possible. Assume all
variables represent nonzero real numbers. See Example 1.

-3
2. (—5)72 3. 72 4 (g)
5. (5173 6. 5¢73 7. —p

Perform the indicated operations. Write each answer using only positive expo-

nents.
Assume all variables represent nonzero real numbers. See Homework 1 and Example 2.
59 y i i
8. g-_',—_ 9. ym 10, J_,E 11. 773
15s~* 1507541 =
13, —— —2m7(m*)? 15, (3p7H)(pY)
e 3 2502 14. —2m~'(m’) (3p7)(p
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(m*)° 7. (80 OO L L G g
16 O3 T4yt " ok’ " (87342
Evaluate each expression. See Homework 2.
8 \13
L 4 21 Gosw 22. (~ ;) 23.. [=6a)ve
S 4

Concept Check In Exercise 24, match each expression Jrom Column I with its equiva-
lent expression from Column I1. Choices meay be used once, more than once, or not at all,

I I
8 2/3 9 9
P . — B. Ed
24. (a) (27) A 4 q
8 =213 4 4
i C..== D. —
(®) (27 9 9
27\%3 - 27
(c) —(‘8') E. > F. 2
27\ 23 27 8
ok & H. ——
@ (%) s :

Perform the indicated operations. Write each answer using only positive exponents.
Assume all variables represent positive real numbers. See Example 3 and Homework 3.

25, 2743 26. 64372 27, (—32)™s
121 732 12573
28. (%) 29, 643 . 623 30. 1—2;—,3
—ao 1750 Z3,'4 (rUSSZ.’S)IS
3. r S 32. 274.? 33. —rz—
3144 25443 \ 8/ 4215\ 114 113,203,116
3, P 35, [ 22 : gy B G
(p5)? b2 a2 (z7V6)3

Find each product. Assume all variables represent positive real numbers. See Homework
3(e) in this section and Example 4 in Section 1.3.
37. pllS(3p¥s + 9p19s) 38, —5y(3yY10 + 4y30

40. (p\2 — 5 12\ (12 4 p-1n
9. (2712 +2)(z'2 - 2) (p P p p'?)

Factor, using the given common factor, Assume all variables represent positive real
numbers. See Example 4.

dl, y P =3y 9 42. 5r=¢ — 10r8; 5,78

43, 3m2B — 4r1B; 1B 44, 67723 — 5;=5B; -5
45. ~3p¥ = 30p7TH;  —3pT

461, {3r-1 LY %54 (Bp- 1) @p 11 Bl R

47. 7(St+ 3)7 + 14(5t + 3)725 = 21(51 4+ 38 (51 + 3)58

48. 6y (4y — 1)77 — 8y2(4y — 1)¥7 + 16y(4y — 1)117; 2y(4y — 1)37
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exrtcrmall fﬂ(ficafed opera”'ons an

d write each answer wi itive i
2 Hemework 4, er with positive integer exponents.

L2 5o, Tt x4y . a~ 16b™)
gyt O B n
) X y2 x—y (a+4b—l)(a__4b_1)

Strplify eact ] 1 ]
v ;_‘,’ “ a n r-ammal expr'esston. Use factoring, and refer to Section 1.5 as needed
ansimme al variable expressions represent positive real numbers.

52, M,ZBLB};);M 53 10(4x? —9)2 - 25x(4x% - 9)°

e 2) g 15(4x2  9)6
” TG+ DM — (1= 1)(3r + 1)
' (3t+ 1)
Concept Check Answer the question.
55. If the radius of a circle is doubled, by what
factor will the area change? @
Concept Check Calculate each value mentally.
w2

56. 0.132 . gp312 57. 20

5312

Write each root using exponents and evaluate. See Example 5.

58. V216 59, V256 60. V—343
61. V' —-256 62. V128 63. —V/ =343

Concept Check In Exercise 64, match the rational exponent expression in Column I with the
equivalent radical expression in Column I, Assume that x is not 0. See Homework 5.

I I
3 3
64. (a) —3x? A. 7 B. —3Vx
(b) —3x713 G = D. _3—3
7 3x \/;
(© 3x1° E. 3Vx F. V-3«
1
113 G. Vax H.
(d) 3x T

If the expression is in exponential form, write it in radical form. If it is in radical form,
write it in exponential form. Assume all variables represent positive real numbers. See

Homework 5 and Example 6.
5
65. p* 66. (5r+31)*7 61 V7 68. —mV2y

Concept Check Answer each question.

is Va'= ays a true
69. For what positive integers n greater than or equal to 2 is Va" = a alway

statement?

v . & H i rm.
70. Which of the following expressions is not simplified? Give the simplified fo

5 2
A V2 g,\—zf— C. Vi D.\ﬁ

Simplify each expression. See H omework 6.
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71. Vx¢ 72. V/81p'3g* 73. V(5 + 2m)
Simplify each expression. Assume all variables represent positive real numbers. See
Examples 5,7, 9, and 10, and Homework 6-9.
74. V250 75. — V243 76. V7 - \/5u
16
77. Vox - Vay 78. == 7, il
49 16
L 3 _\V\
80. ,6}36 81. 5V —343 82. 25(-3)(5)

83. \V24mbn’ 84. V27 + a3 85.

[g*h’ 9 32x5
86. T 87. 3@ 88. ¢

¥y

89. V/53 90. V25 - 91. /%

g &

Simplify each expression. Assume all variables represent positive real humbers. See

Examples 8,9, and 10.
92. 4\ 18k — V/72k + V50K 93. V32— 54 + 2V 108
94. V/256x5y5 + V6255552 95. 3V11 - 5V13

96. (V5 + V2)(\/5 - V2) 97. (V7 +3) (V7 - 3¥/7 +9)
98. (/5 + V10 ) 99. (4V/5 + V2)(3V2 - V5)

100 / 8mind « V2m? . [7 \/E
% oA — 4 4]
N/ 32m*n’ t12 i

2 1 S

1

102. = — 103_i__2_+
Viz V21 Vag V2 Vie Vs

Rationalize the denominator of each radical expression. Assume all variables represent
nonnegative numbers and that no denominators are 0. See Homework 10.

= s s

104. 105.
V3-V1 3V5 +2V3
9 —r

106. 107. £
3_\/; Va+b—1

108. Concept Check What should the numerator and denominator of
SR N
V3- V5

be multiplied by in order to rationalize the denominator? Write this fraction with a
rationalized denominator,

Concept Check Simplify each expression mentally.

/54

109. 7= 110. V0.1 - V40 111 V2 - /3.3
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B T T e

Glossary

olute value The absolute value of
a real number is the distance between 0
and the number on the number line.
i >4 ¢ Tallall a2l a2l 23l
" sl L Jo sl jheall o BL
algebraic expression Any collection
of numbers or variables joined by the
basic operations of addition, subtraction,
multiplication, or division (except by 0),
or by the operations of raising to powers
or taking roots, formed according to
the rules of algebra, is an algebraic
expression.
MO‘}?J‘D‘&I&%@‘@&‘MI
el o b o5 Loy (5 18] L Lpnd
o pally Al LY R
cllas G b o8 ol (iall e L) Zendlly
ERTCTYSTAE L E W [PEF-FS
et g
base of an exponential The base is
the number that is a repeated factor in
exponential notation. In the expression
a",a is the base.
Falo 52 sl sdall g 5ol ol 308
005554 ol 3 o (I 50 A1 315 S
adeldll a
binomial A binomial is a polynomial
containing exactly two terms.
S 5f 35 sdaze pa dm S sl A S
dgdoetls Gl oy i J#
coefficient (numerical coefficient)
The real number factor in a term of an

algebraic expression is the coefficient
of the other factors.

AR sl Lol (goadl Julall) Jalald
W&1&u|ﬁ§g¢ﬁéiwﬁ&ér
N I

complement of a set The set of all

elements in the universal set U that do

not belong to set A4 is the complement of
A, written A’

abs

if’“"‘l'dﬁt*ﬂ@i:lsy; i past oSS
S 2 Ao yog ) ez ¥ A Ul
complex fract; A
I8 2 quotient f)t;(t):ro rf:ti?mplex LB
nal expressions.

O Jeol g2 55 S TS b

conj Uydar
njgga?ft:e:mj'{;i; t?;l_)resmns a— band

a3
“¥ba=b . Sl ol R
RLEH

coordinate (on a number line) A
nu'mbcr that corresponds to a particular
point on a number line is the coordinate
of the point.
ihai (551 5 34s 6l (gade b L) oyl
bl las] g gade b Jedsas
coordinate system (on a number line)
The correspondence between points on a
number line and the real numbers is a
coordinate system.
S el (gae s fo) -1 ol
gode L ,_gTL}.o Ll g g5l ) 40
Jiaadl sl
degree of a polynomial The greatest
degree of any term in a polynomial
is the degree of the polynomial.
&nﬂ;s(__gy ;-Q-JJJ:Si‘?ﬁJ_’JJ‘"JMJ-”:Jé
EYREENPLY ‘__;i role
degree of a term  The degree of a term

is the sum of the exponents on the
variable factors in the term.

éwwl&ﬁ@fﬂhjliﬁﬂ)éﬂ;ﬂjliﬁ_')}
il A6 e Jalge
disjoint sets Two sets that have no
zlements in common are disjoint sets.

domain of a rational expression The
domain of a rational expression is the
set of real numbers for which the
expression is defined.

u@ﬁﬂ&)l@bl”‘)lyiﬁﬁ
L !

elements (members) The objects that
belong to a set are the elements
(members) of the set.
PP | POV S CN [ (slas¥) _oball
e yarddl (slasl) polis JS23 40 sut
empty set (null set) The e_rnpty set
or null set, written g or { },18 the
set containing no elements.
12, de pamndd (i dp o) 32 L 0 4o F
ie pandl o o },iﬁ_',:s:‘:,_sw.\aa,.,m,i
ke gl e g2 Y A
exponent Inthe expression a”, the
exponent n indicates the number of times
that the base a is used as a factor.
ST s 1 o1 0 "o !
Jabas ol e @gasldll L ped Al

l&exrﬁ‘u&wﬁk_dm;o%k

factored completely A polynomial is
factored completely when it is written
as a product of prime polynomials.
Ly 0 0555 3 gk ez (6] JulsIl oy naa
3 9o lsad s il Lo 2K o oS
gl
factored form A polynomial is in
factored form when it is written as a
product of polynomials.
o (i 3 gubom B3:0ne (61 g ikl Al
23 gkl sl b el e oo o iy e
factoring The process of finding
polynomials whose product equals a
given polynomial is called factoring.
q-J'l 392kt iladxna ol A lens Aiady Lol
FEt Y RE S RE Le__éUL‘;JL.__»
factoring by grouping Factoring by
grouping is a method of grouping the
terms of a polynomial in such a way that

the polynomial can be factored even
though the greatest common factor of its

terms is 1.

Gy b g gl ool gresndly ol
Lgi:;baﬁu:—_?qa_’bjm‘_giﬂt&@qd
Jile STOIS I oo 5 gl sdaze o 2 S
o polial 8 R2a

“finite set ) A finite set is a set that has

a limited number of elements.

iojag ol o aly de a1 il 2o gared)
.J.pl.‘aﬂ o HEYEES :'l.\;i Lﬁ.lj

index of a radical In a radical of the

formV a, n is the index.

s 34l Xy ) _,S?
inequality An inequality says that one
expression is greater than, greater than
or equal to, less than, or less than or
equal to, another.

o S OT ) e g0 o gl o bl A
L}Ei£mJ§TtMJL..._|J]m_;'\SiLJ"-<J|OAJ)Si
= Ty W pE
A—’\\ . - .
infinite set ’(:l}us is an informal
efinition;) Am infinite set is a set that
has an unending list of distinct elements.
il W sl LW e yagt gl o 23l Y 26 patt
Lyl J..ﬂu'l 9
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integers The set of integers is
{....,-3,-2,-1,0,1,2,3,...}.

o el SN i yatt Soenall slaeY)

Co{-3-2.-1,01,2.3,.0 )
intersection The intersection of sets A
and B, written A N B, is the set of
elements that belong o both A and B.

.B;Awdﬁﬁqﬁlﬂhdlisﬁys
irrational numbers Real numbers

that cannot be represented as quotients
of integers arc irrational numbers,

Leh® s Y A Aiad e N el all shae)
leallse W oemall el ol i de

like radicals Radicals with the same
radicand and the same index are like

radicals.
Al ol dd ae e oyl
M ey S B Ll A ek
like terms Terms with the s’ame
variables each raised to the same powers

are like terms,
oLl gr Bl bl dplad) bl
Bl e S s i ol s el
sed)
lowest terms A rational expression is

in lowest terms when the greatest
common factor of its numerator and its

denominator is 1.

2050 GOSN ol i TG ol
,;‘\Jnﬂjz_:ud,.w;,,g,_&?g;ﬂu
.l}th_SquJnJ..SEJ‘,.a.l
monomial A monomial is a polynomial

containing exactly one term.
330 sdae (_';i s ad ;_gal:-'l NEE] ,:5:\:»-'1
ety e o g e

natural numbers (counting numbers)
The natural numbers, or counting
numbers, form the set of numbers
24, ... ).

31 Lol 0o N (R 31T kel 1Y
eVl e past O 3 oS Sl sl

AL 203850

polynomial A polynomial is a term or

a finite sum of terms, with only positive

or zero integer exponents present on the
variables.

gt s paie o5 sadlssame (gl 5 50t staze
gee e pladde Y bl e Sl
.;;l_,:.i:ll(_}ajnlié(__u;}i.aj%y
power (exponential expre:ssion,
exponential) An expression of the

form a" is called a power, an exponential
expression, or an exponential.

a’ i 2_J~;-!3g_§i (:3}“;;;-5“ _j:r‘-ﬂl)wyl
.:gﬁ_;_w';" ol ade Gl

prime polynomial A polynomial with
variable terms that cannot be written
as a product of two polynomials of
lesser degree is a prime polynomial.
P EPR BN T I RYRER v
:»;J:—é;.l.a:lc':l.;dut; S S Vs s
.:_L,‘;_,J;—:.Lx:»},adiii.z-_p&.a;n;ﬁl
principal nth root For even values of
n (square roots, fourth roots, and so on}),

when a is positive, there are two real nth
Toots, one positive and one negative.

In such cases, the notation Va represents
the positive root, or principal nth root.
23N n 3 aam g A Ly s A
O (05 72 3 Loy sy 1 k) im0
OGRS Slode ol o dor gy ix o 0 3455
oda e cdle 2Y1) Com e Lpus
PEEA AL 1339-,.%;._.4;&&:.4_‘9311;1
(GAll gt I
radicand The number or expression
under a radical symbol is the radicand.
&yl Ldle gl e el 1 sl sadadl
gdaxkl ga
rational expression The quotient of
two polynomials P and Q, with 0#0,
is a rational expression.
O30 Ggadana U oddl sl
.Hs_).u‘-‘_,::;“.JLHQ #* OCAQJP
rationalizing the denominator

Rationalizing a denominator is the

process of writing a radical expression
50 that there are no radicals in the
denominator.

@J_sfu,aqi;.rﬁlru.u_,_,.‘u_-..jb-
D3dar dor 5N oy (650 ) S Alas
S plas

rational numbers The rational numbers

are the set of numbers {—; s where p and ¢
are integers and ¢ # 0.

L gat o G0kl SlaeYI 40 slaelt
S 1;\.197. 3P OsS Lo {-; siaeY
g #0

real numbers The set of all numbers

that correspond to points on a number
line is the real numbers.

oo G AN i o 1ad slasYS
ad 5le N s (e L e LU
set A setis a collection of objects.
S de ez o de panl
set-builder notation  Set-builder
notation uses the form {x | x has a certain

property } to describe a set without having
to list all of its elements,

by ;):J.Ef&;.ia\ﬁﬂm ;L‘..I'L',;J.AJ
Lol B X & x| 4} Bl e pandl
B s W a0 ie gest e o {2302
e gardleds ols

set operations  The processes of
finding the complement of a set, the
intersection of two sets, and the union
of two sets are set operations.

A-l.a.f—-_ i&du..g‘l] \:JL.LQ_-U_ s deazs Z;MM QLJ.&.B_

AP e st Wbl e pandl e sl
subset  If every element of set A is also
an element of set B, then A is a subset of

B, written A C B.
Adepanll a pais JS OIS 13) 355 2o gl
oJ&:;gslgBapH‘uﬂqusﬁy
Bie sl o ki i pot A ke yonl)
ACB s iy
term  The product of a real I;um'oer
and one or more variables raised to
powers 1s a term.
)‘STJIbIJ(__égE._.E:-:J.:g._JJJ‘_}..aBﬂ;.JI
Ali g e ol e
trinomial A trinomial js a polynomial
containing exactly three terms.
U%&gjéa;b:mﬁuﬁlgﬂi

pole
union  The union of sets A and B,
written A U B, is the set of all elements
that belong to set A or set B (or both).
L_JL-L-SL?':‘K-'} B 5 A Joe sanll sl 41 012Y)
FPLe B GeiSie g AU B
.(L.ﬁlsJT)B;;,,.Jt,iAhﬁ;u
universal set The universal set, written
U, contains all the elements under
discussion in a particular situation.

B ais U 1S o5 aalall i ool

RE Y Al J= g‘.“f.nL'JJ\
Venn diagram A Venn diagram is a
diagram used to illustrate relationships
among sets or probability concepts.

R et S VRt
AV alill Sl e ol
whole numbers The set of whole
numbers {0, 1,2,3,4,. ..} is the union
of the set of natural numbers and {0}.
Lol SlieY e g Goeme al slasY)
eVl ot s} 2 {0,1,2,3.4, .. }
(0} 5 Ladall

zero-factor property The zero-factor
property states that if the product of two

(or more) complex numbers is 0, then at
least one of the numbers must be 0.

Jobdldenls a3 5 hal Laladl isls
e o 8 Lol 08 3] e (5 il
&Id}@bi%ailnpﬁ(ﬁi 3 S
Ao slaeNl eda
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Equations and Inequalities

Balance, as seen in this natural
setting, is a critical component of
life and provides the key to solving
mathematical equations.

cises on Solving

'Chapter objectives

* Recall methods for solving linear
and quadratic equations and
inequalities

Determine solutions of absolute
value equations and inequalities

Define and analyze the concept
of complex numbers

Determine solution sets of linear
and quadratic inequalities
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Linea

& Basic Terminology of
Equations

® Solving Linear Equations

8 ldentities, Conditional
Equations, and
Contradictions

® Solving for a Specified
Variable (Literal
Equations)

A=C = ‘O_C’

Equ

ations —7 - o )

Basic Terminology of Equations  An equation is a statement that two eXpres.
sions are equal.

x+2=9,

To solve an equation means to find all numbers that make the eguation a true
statement. These numbers are the solutions, or roots, of the equation. A number
that is a solution of an equation is said to satisfy the.equation, and thg solutions
of an equation make up its solution set. Equations with the same solution set are
equivalent equations. For example,

llx=5x+6x, x2—2x—1=0 Equations

x=dpepetals=s5 and GX"F3I=27" afe equivalent equations
because they have the same solution set, {4}. However, the equations
x2=9 and x=3 arenotequivalent,

X= 3 . . ) )
since the first has solution set { —3, 3} while the solution set of the second is {3}.
One way to solve an equation is to rewrite it as a series of simpler equiva-
lent equations using the addition and multiplication properties of equality.

Addition and Multiplication Properties of Equality

Let a, b, and ¢ represent real numbers.
If a = b,thena + c=5b + c.

That is, the same number may be added to each side of an equation without
changing the solution set.

Ifa = band ¢ # 0, then ac = bc.

That is, each side of an equation may be multiplied by the same nonzero’

number without changing the solution set. (Multiplying each side by zero
leadsto 0 =0.)

These properties can be extended: The same number may be subtracted
from each side of an equation, and each side may be divided by the same non-
zero number, without changing the solution set.

w_Sol\ving Linear AEAq;;li—OI_IS—\

We use the properties of equality to solve linear
equations.

Linear Equation in o‘no Variable

A linear equation in one variable is an equation that can be written in the
form

ax + b =0,

where a and b are real numbers with q 0.




Equations and Inequalities 55

A linear equation is a first-degree equation since the greatest degree of the
variable is |:

x+V2=0,
Vx+2=5,

x=12, 05(x+3)=2x—6 Lincarequations

= |- bW

= -8, x2+3x+02=0 Nonlinear equations

m Solving a Linear Equation

Solve 3(2x —4) =7 — (x +5).
— 3(2x - 4) =l = (x T 5) Be careful with signs.)
6x—12=7-x-95 Distributive property (Section 1.2)

6x=12=2=x Combine like terms. (Section 1.3)

6x—12+x=2—x+x Add x to each side.

Ix—12=2 Combine like terms.
Ix—12+12=2+ 12 Add 12 to each side.
Tx =14 Combine like terms.
Ix 14
gt s Divide each side by 7.
7 7
x=2

Since replacing x with 2 results in a true statement, 2 is a solution of the given
equation. The solution set is {2} .

\/e((j 'IMKHK“Q il m Solving a Linear Equation with Fractions

Solve 2x+4+lx=lx——7—. .
Q) 5w &Q,}.‘e)\ N\_S\\Jl 2 4 3
e aF, Eale\de Je 3 55
d,.r/ s 7 > (2! ¥ jl> o2 Identities, Conditional Equations, and Contradictions  An equation satisfied by
'Wj‘ —:) L . uJQP every number that is a meaningful replacement for the variable is an identity:
i 3(x+1)=3x+3 Identity ——‘rﬂl}i ,Wf\)%)}h st

~———" " An equation that is satisfied by some numbers but not others is a conditional

Howework-V g, - equation.
Q)( +Y4 2x =4  Conditional equation
+dx-Lx. T ,%.2."’( . - :
3 2z Y '3— he equations in Example 1 and Homework 1 are conditional equations. An

9 éﬁ (2x+4) equation that has no solution is a contradiction.
= AR + :
-‘—{z‘s“ e 2‘3}()( -—2_"/.8_/'1'_1 x=x+1 Contradiction _—x ¢}f— &‘ ar %
3

=

"

&

2
4 (2K+‘1)4 12X & Ex —56

I6x +32 4+ 2% = Lr-5S6

23 % +37—— :GK -SC

2% = %5

=~ Y
oy GC78 |
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- ifyi es of Equations e—
Veoy oot N Mentifying Types of Equations . —

Determine whether each equation is an identity, a conditional equatiop, ora
contradiction. Give the solution set.
@@ —2(x+4)+3x=x—8 (b) 5x—4=11 (¢) 33x—1) =9y 4,
SOLUTION
(@ —2(x+4)+3x=x—-38

—2x — 8 + 3x =x — 8 Distributive property

x— 8 =x—8 Combine like terms.
0=0 Subtract x. Add 8.

When a rrue statement such as 0 = 0 results. the equation is an identity, ang
the solution set is {all real numbers}.

(b) 5x—4=11
Sx =15 Add 4 to each side.
X =3 Divide each side by 5.
| This is a conditional equation, and its solution set is {3}.
| (€ 3B3x—1)=9%+7
9x —3=9x+7 Distributive property
—~3=7 Subtract 9x.

When a false statement such as —3 = 7 results, the equation is a contradic-
tion, and the solution set is the empty set, or null set, symbolized §.

Identifying Types of Linear Equations - > [2e.d i+

1. If solving a linear equation leads to a true statement such as 0=0,
the equation is an identity. Its solution set is {all real numbers}. (See
Example 2(a).)

2. If solving a linear equation leads to a single solution such as x = 3, the

equation is conditional. Its solution set consists of a single element. (See
Example 2(b).)

o If sol\_'ing. a linear equation leads to a false Statement such as —3 = 7, the
€quation is a contradiction. Its solution setis #. (See Example 2(c).)

4

| Solving for a Specified Variable (Literal Equations)

. is an example
of a literal equation ( Slosmanl s gn J

an equation involving letters).

oy gt~ \CTETITETERN  Soving for  Spacifiad arinie

CX 15a Hb= TP Solve for the specified variable,

BK o Sa-4b -2 ‘ @) I=Prt, fory Zt :;_ (b) A—P=pr, forP
Xz £ -2b (6} 3ex=3a) # dmdr Y, fora A= 0Pk

[ - e e B T S R O S St
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m Applying the Simple Interest'Formula.

Atif borrowed $5240 for new furniture. He will pay it off in 11 months at an annual
simple interest rate of 4.5%. How much interest will he pay?

SOLUTION  Use the simple interest formula / = Prt.

P = 5240,r = 0.045,

and 1 = ]l_l (year)

11
I=Prt= 5240(0045)(5) = $216.15

He will pay $216.15 interest on his purchase.

El Exercises

Concept Check In Exercises 1-4, decide whether each statement is true or false.
1. The solution set of 2x + 5 = x — 3 is {—8}.
2. The equation 5(x — 8) = 5x — 40 is an example of an identity.
3. The equations x> = 4 and x + 2 = 4 are equivalent equations.
4. Itis possible for a linear equation to have exactly two solutions.
@ 5. Explain the difference between an identity and a conditional equation.

@ 6. Make a complete list of the steps needed to solve a linear equation. (Some equations
will not require every step.)

7. Concept Check Which one is not a linear equation?
A. 5x+7(x—1)=-3x B. x> —4x+3=0
C. 7x+8x=13x D. 0.04x — 0.08x = 0.40

@ 8. In solving the equation 3(2x — 8) = 6x — 24, a student obtains the result 0 = () -
and gives the solution set {0}. Is this correct? Explain.

Solve each equation. See Example 1 and Homework 1.

9. 5x+4=3x—-4 10. 9x+ 11 =7x + 1
11. 6(3x — 1) =8 — (10x — 14) 12. 4(-2x+1) =6 — (2x — 4)
5] 4 5 7 3 4
Lx—2xto=C 4, —+—x—Z=—x
Bty =y 475" 275"
15. 3x+5—5(x+ 1) = 6x + 7 16. 5(x +3) +4x—3=—(2x—4) +2
17. 2[x— (4 +2x) + 3] =2x +2 18. 4[2x— (3—x) +5] = —6x— 28
1 x+ 10 | X2
. —(Bx—-2)= 0. —(2x+5) =
19 14( x—2) 0 2 15(2r 5)
21. 02x = 05=0.1x+7 22. 001x+ 3.1 =2.03x—296
23, —4(2x—6) +8x=5x+24 +x 24. —8(3x+4) + 6x = 4(x — 8) + 4x
4 2
25. 0.5x + §x=x+ 10 26. ;.\‘ +025x=x+2
27. 0.08x +0.06(x + 12) = 7.72 28. 0.04(x — 12) + 0.06x = 1.52
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Complex Numbers

m Basic Concepts of Complex
Numbers

m Operations on Complex
Numbers

B o s T 1 §
Basic Concepts of Complex Numbers The set of real numbers does not incJyg,
all the numbers needed in algebra. For example, there is no real number solutiop

of the equation

ves —1. To extend the real number sy

since no real number, when squared, gi : e
this type, the number i is defined to B

tem to include solutions of equations of
the following property.

The Imaginary Unit i
i =V—1, andtherefore, i*= —1.

(Note that —i is also a square rootof —1.)

Square roots of negative numbers were not incorporated into an integrated
number system until the 16th century. They were then used as solutions of equa-
tions and later (in the 18th century) in surveying. Today, such numbers are used

extensively in science and engineering.
Complex numbers are formed by adding real numbers and multiples of i.

Complex Number

If @ and b are real numbers, then any number of the form a + bi is a
complex number. In the complex number a + bi, a is the real part and b
is the imaginary part.*

Two complex numbers @ + bi and ¢ + di are equal provided that their real
parts are equal and their imaginary parts are equal; that is, they are equal if and
only if a =cand b = d.

For a complex number a + bi, if b= 0, then a + bi = a, which is a real
number. Thus, the set of real numbers is a subset of the set of complex numbers.
If @ =0 and b # 0, the complex number is said to be a pure imaginary num-
ber. For example, 3i is a pure imaginary number. A pure imaginary number, ord
number such as 7 + 2i with a # 0 and b # 0, is a nonreal complex number:
A complex number written in the form a + bi (or a + ib) is in standard

form. (The form a + ib is used to write expressions such as iV5, since 2
could be mistaken for \/5i.)
The relationships among the subsets of the complex numbers are shown "

Figure 1.

- . e » e i1 1
In some texts, the term bi is defined to be the imaginary part.
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Complex Numbers a + bi, for a and b Real

Real numbers
a+bi, b=0

Rational numbers

——

Pure imaginary numbers
a+bi, a=0andb#0

3i, —i, —%i. iVvs

‘Whole numbers
0
Natural numbers
1,2:3,4,5,37,40

Figure 1

For a positive real number a, the expression V —a is defined as follows.

 The Expression V=3

If @ > 0, then V-a=iVa.

,_Wriﬁng_v.. = a,.a,s,i\/;,% SR e :

Write as the product of a real number and i, using the definition of \/—a.
(@) V-16 (b) V=70 () V—48

SOLUTION

@ V-16=iVI16=4i (b) V=70=iV70

(© V-48=iV48=iV16+-3=4i\V/3 Product rule for radicals (Section 1.6)

s

‘Operations on Complex Numbers ' Products or quotients with negative radi-

cands are simplified by first rewriting \/—a as i \Va for a positive number a.
Then the properties of real numbers and the fact that i = —1 are applied.

CAUTION  When working with negative radicands, use the definition
V-a=iVa before using any of the other rules for radicals. In par-

ticular, the rule Ve Vd= Ved is valid only when ¢ and d are not both
negative. For example,

V=4+V-9=2i+3i=6i>=—6 is correct,
while V-4:-V-9=V(-4)(-9)=V36=6 isincorrect.
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m Finding Products and Quotients Involving V' — a

Multiply or divide, as indicated. Simplify each answer.

V=20 oV
@ V=1-V=1 ® V-6-V-10 © ¥ (d)?24

m Simplifying a Quotient Involving V-—-a
-8+ V-—128

Write ————————— in standard form a + bi.
SOLUTION g
—8+V-128 -8+ V-64-2
4 3 4
-8 +8iV2
S e V—-64 = 8i
4
e
Delore ShnbilYOI: = 3 Factor. (Section 1.4)
=-2+2iV2 Lowest terms (Section 1.5)

With the definitions i> = —1 and \/:—l; =iV for a > 0. all properties
of real numbers are extended to complex numbers. As a result, complex num-
bers are added, subtracted, multiplied, and divided using real number properties
and the definitions on the following pages.

Addition and Subtraction of Complex Numbers
For complex numbers a + bi and ¢ + di,

(a + bi) + (c +di) = (a+c)+ (b+ d)i
and (a + bi) = (¢ + di) = (a = ¢) + (b — d)i.

That is, to add or subtract complex numbers, add or subtract the real parts
and add or subtract the imaginary parts.

WLIEITETEA Adding and Subtracting Complex Numbers

Find each sum or difference.

@ (3-4i)+ (-2 +6i) (b) (=4 + 3i) — (6 — 7i)

The product of two complex numbers is found by multiplying as though the

numbers were binomials and using the fact that i> = —1, as follows.

(a + bi)(c + di) = ac + adi + bic + bidi FOIL (Section 1.3)
ac + adi + bei + bdi? Associative property
=ac+ (ad + be)i + bd(—1)  Distributive property: i° :

= (ac - bd) + (ad + be)i Group like terms

4
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Multiplication of Complex Numbers

For complex numbers a + bi and ¢ + di,

(a + bi)(c + di) = (ac — bd) + (ad + bc)i.

This definition is not practical in routine calculations. To find a given product,
it is easier just to multiply as with binomials.

2GRS Multiplying Complex Numbers
Find each product.

@ (2-3)(3+4i)) () (4+3i) () (6+5i)(6—5i)

SOLUTION
@) (2 - 3i)(3 + 4i) = 2(3) + 2(4i) — 3i(3) — 3i(4i) FOIL
=6+ 8 —9i — 12i2 Multiply.
=6-—i—12(-1) Combine like terms;
i?=-1
=18—1i

Standard form

(b) (4+ 3i)2 =42 + 2(4)(3i) + (31')?' Square of a binomial (Section 1.3)
Remember to add 5
twice the productof ~ = 16 + 24i + 9i~ Multiply.
the two t b
e =16+24i +9(=1)  it=-1

=7+ 24i Standard form

(©) (6+5i)(6 - 5i) = 6> — (5i)

Product of the sum and difference of
two terms (Section 1.3)

=36 —25(-1) Square 6and 5; i? = —1.
=36+ 25 Multiply.

=61, or 61 +0i _ Standard form

Example 3(c) showed that (6 + 5i)(6 — 5i) = 61. The numbers 6 + 5i and
6 — 5i differ only in the sign of their imaginary parts and are called complex
conjugates. The product of a complex number and its conjugate is always a real
number. This product is the sum of the squares of the real and imaginary parts.

Property of Complex Conjugates
For real numbers a and b,

(a + bi)(a = bi) = a* + b2,

To find the quotient of two complex numbers in standard form, we multi-

ply both the numerator and the denominator by the complex conjugate of the
denominator.
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WIIETTZEN Dividing Complex Numbers

Write each quotient in standard form a + bi.

i 3
3+ 2i (b) —
S =i !

(a)

Powers of i can be simplified using the facts
i2=-1 and i*=(i?)*=(-1)=1

Consider the following powers of i.

i'= S=itei=1i=|
i?=—] if=i*-i2=1(-1)=—|
id=itei=(=1)i=—i iT=it-i¥=1-(=i)=—i
if=i2-i2=(-1)(-1)=1 i#=jt-i¥=1-1=1 andsoon.

Powers of i cycle through the same four outcomes (i, —1, —i, and 1) since
i* has the same multiplicative property as 1. Also, any power of i with an
exponent that is a multiple of 4 has value 1. As with real numbers, i = 1,

WEZTTEN simplifying Powers of i

‘ Simplify each power of i.
@ i's ) i~
SOLUTION

(a) Since i* = 1, write the given power as a product involving i*.

|

I B = iR 3= (PP = 1} (~i) =i

| (b) Multiply i by 1 in the form of i* to create the least positive exponent
\ for .

| iB=i3.1=i3.4= 1

E’ Exercises |

Concept Check Determine whether each statement is true or false. If it is false, tell why.

1. Every real number is a complex number.

2. No real number is a pure imaginary number.

3. Every pure imaginary number is a complex number.

4. A number can be both real and complex.
5. There is no real number that is a complex number

. A comple er mi e ¢ > imagi
6 plex number might not be a pure Imaginary number.

Identify each numllm: as real, complex, pure imaginary, or nonreal complex. (More than
one of these descriptions will apply.)

ey 8. 13i 9.5+ 10. 7 1. V=25

Write each number as the product of a real number and i See Example 1

12. V=25 13. V-0 14. \V-288 15. —\/f:l?SV

e ————————————— il
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Multiply or divide, as indicated. Simplify each answer. See Homework 1.

V=30
16. V-13-V-13 17. V-3- V-8 18.

= = Vo
. Von VAT L V-V
=" Voo e

Write each number in standard form a + bi. See Example 2.

. k. 23, 10+ V=200 -3+ V-18
e o 4

o 2

Find each sum or difference. Write the answer in standard form. See Homework 2.
25. (3+2i)+(9-3i) 26. (=2 +4i) — (-4 +4i)
27. (2-5i)—(3+4i)—(-2+i)

28. —-iV2-2-(6-4iV2)-(5-iV2)

Find each product. Write the answer in standard form. See Example 3.

29. (2 +i)(3 — 2i) 30. (2 + 4i)(—1 + 3i) 31. (3 - 2i)
32. 3+i)3-i) 3. (-2-30)(-2+3i) 34 (Ve+i)(Ve—i)
35. i(3 — 4i)(3 + 4i) 36. 3i(2 — i)? 37. (2+i)(2 - i)(4 + 3i)

Find each quotient. Write the answer in standard form a + bi.See Homework 3.

6+2i Fieij =i
A 39,2 — 3
T 2+i T
41._—_5 P PR
i e 3i

(Modeling) Alternating Current Complex numbers are used to describe current I, volt-
age E, and impedance Z (the opposition to current). These three quantities are related
by the equation

E =17, whichis known as Ohm’s Law.
Thus, if any two of these quantities are known, the third can be found. In each exercise,
solve the equation E = IZ for the remaining value.

4_4:I=5+7i,Z=6+4i 45. 1=10+4i,E =88 + 128i

Simplify each power of i. See Example 4.
46. i* 47. i 48. i3

49.i% 50. i~ - ey

B 52. Suppose that your friend tells you that she has discovered a method of simplify-

a ing a positive power of i. “Just divide the exponent by 2. Your answer is then
the simplified form of i* raised to the quotient times i raised to the remainder.”
Explain why her method works.

2 ;
53. Show that — + i is asquare root of .

54. Show that —2 + i is a solution of the equation x* + 4x + 5 = 0.
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Quadratic Equations

sl ws.
m Solving a Quadratic A quadratic equation 1s defined as follo

Equation
® Completing the Square
® The Quadratic Formula

®m Solving for a Specified
Variable

Quadratic Equation in One Variable

An equation that can be written in the form

® The Discriminant
ax?+ bx + ¢ = 0,

where a, b, and c are real numbers with a # 0, is a quadratic equatiop,
The given form is called standard form.

A quadratic equation is a second-degree equation—that is, an equatjo,
with a squared variable term and no terms of greater degree.

2=25 4x2+4x-5=0, 3x2=4x—8 Quadratic equations

Solving a Quadratic Equation  The factoring method of solving a quadratic
equation depends on the zero-factor property.

Zero-Factor Property

If a and b are complex numbers with ab = 0, then @ = 0 or b = 0 or both
equal zero.

EXAMPLE 1 Usingr the Zero-Factor Property

Solve 6x2 + 7x = 3,

SOLUTION
( Don't factor outxher(}- 6x2+7x=3

6x2+7x—3=0

Standard form
(B3x=1)(2x+3)=0 Factor. (Section 1.4)
3x—1=0 or, 2x+3.=0 Zero-factor property
3x=1 or 2x= -3  Solve each equation. (Section 2.1)
1 3
x= 3 or x'= —':
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CHECK 612+ 7x =3 Original equation
15 1\ - >y 3\ »
6 3 + 7 3 =3 Letx=} 6 2 +7 5 = 3 Let
6.7 4o 21,
9 3 4 2
3 =3V Twe 3 =3/ Twe

. . . (1 3
Both values check, since true statements result. The solution set is {:, =g } ,

A quadratic equation of the form x? = k can also be solved by factoring.
xt =
x2—k=0 Subtract A
(.\‘ = \/k)(x + \/k) =0 Factor
x=Vk =0 or x+ Vk
x= \/I; or x=-Vk Solve each equation

This proves the square root property.

Il

0 Zero-factor property

Square Root Property
Ifx>=+k, then x=Vk or x= -Vk

That is, the solution set of x* = k is

{\/“, —\/I;}, which may be abbreviated { i\/l:}

Both solutions Vk and — Vk are real if k > 0, and both are pure imaginary if
k < 0. If kK < 0, then we write the solution set as

{£iVIkT}

If k = 0, then there is only one distinct solution, 0, sometimes called a double
solution.

m Using the Square Root Property

Solve each quadratic equation.

(a) x2=17 (b) x2=-25 (© (x—4)2=12

Completing the Square  Any quadratic equation can be solved by the method
of completing the square, summarized as follows.
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Solving a Quadratic Equation by Completing the Square

To solve ax? + bx + ¢ =0, where a # 0, by completing the S
sy Use

these steps.

Step 1 1f a # 1, divide both sides of the equation by a.

Step 2 Rewrite the equation so that the constant term is alone ¢

of the equality symbol.

Step 3 Square half the coefficient of x, and add this square o each i

the equation.

Step 4 Factor the resulting trinomial as a perfect square and comb

terms on the other side.

N One Side
de of

ine like

Step 5 Use the square root property to complete the solution.

m Using Completing the Square (a = 1)

Solve x2 —4x—14=0.
SOLUTION x?2—4x—14=0

Step 1 This step is not necessary since a = 1.

Step 2 x2—4x=14
Step 3 xX2—4x+4=14+4
Step 4 (x—2)2 =18
Step 5 x-2=+V18

(s = 5 + /i
x=21+3V2

The solution set is {2 1 3\/5

[

Add 14 to each side.

\'\ —4) ]2 = 4; Add 4 10 each side
Factor. (Section 1.4) Combine like terms
Square root property

Add 2 to each side.

Simplify the radical

m Using Completing the Square (a # 1)

Solve 9x? — 12x + 9 =0.

The Quadratic Formula | If we start with the equation, ax® + bx + ¢ =0, for

a > 0, and complete the square to solve for x in terms of the constants a,b,and
¢, the result is a general formula for solving any quadratic equation.

ax*+bx+c=0

., b c
xX*h ==
a a

I
=

,.
;

-+
=
Il

, . i I
Square half the coefficient of x: [; (
/ ? y :
02+~ 4 A } .
a ’lll a -‘41

a

Divide each side by a. (Step 1)

. o
Subtract 5 from each side. (Step =)

RO
= 2a 41["

Add :' to each side (Step )
a

_‘_‘



4a 4a?
2 2o
(x o b ) b* — dac
2a 4q?
2 __
S 4 nlfl b* — 4dac
2a 4a?
2 B
5 bl g 2 b* — 4dac
a 2a
x = - & 2
2a 2a
Quadratic Formula . 2 _
This result is also = b b
true for a < 0. 2a

Quadratic Formula
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Factor. Use the commutative
property. (Step 4)

Write fractions with a common
denominator. (Section 1.5)

Add fractions. (Section 1.5)

Square root property (Step 5)

Since a > 0, \V4a® = 2a. (Section 1.6)
Subtract 5’}, from each side.

Combine terms on the right.

The solutions of the quadratic equation ax? + bx + ¢ = 0, where a # 0,

are given by the quadratic formula.

m=b Vbl Sidac

2a

EXAMPLE 3 RUNTT] the Oyafirg_tic Formula (Real Solutions)

Solve x%2 — 4x = —2.

Write in standard form. Here a = |,

SOLUTION —4x+2=0 N

b=—-4,and c = 2.

x__—bi b? — 4dac .

2a Quadratic formula

= _(_4) s (—4)2 = 4( I )(2) Substitute a = 1, b = —4,

: =2
o o
extends under —b.
4 + 16 — 8
x= Simplify.
2 )
x_4i2\f2 Vie-8=V8=V4.2=2V2
2 (Section 1.6)
- 2(2 s \/5) Factor out 2 in the numerator.

Factor first, then divide. y

\/_
2+ V2

2+
The solution set is {

(Section 1.5)

Lowest terms

CAUTION Remember to extend the fraction bar in the quadratic formula

under the —b term in the numerator.
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Throughout this text, unless otherwise specified, we use the S

. €t of
i ing ions of deg ¢
numbers as the domain when solving equatio degree 2 or gre

ater,

m Using the Quadratic Formula (Nonreal Complex Solutiong)

Solve 2x2=x —4.
The equation x* + 8 = 0 is a cubic equation because the greatest e

omplex

£re
the terms is 3. b

m Solving a Cubic Equation

Solve x3 + 8 = 0 using factoring and the quadratic formula.

SOLUTION x4+ §=90
(x+2)(x2—2x+4)=0

Factor as 3 sum
of cubes. (Section 4)

x+2=0 or x2—-2x+4=0 Zero-factor propen,
P = :
- —(—2) o \/( 2) 4( 1 )(4) Quadratic formulg With
X==2 or x= 2(1) u=l,h=-2.(.=4
2 & N=12
x= = Simplify.
2 + 21V3 _
= —2—— Simplify the radical.
= M Factor out 2 in the
X = 5 numerator.
x=1= i\/g Lowest terms

The solution set is { -2,1 + i\/g }

Solving for a Specified Variable = To solve a quadratic equation for a speci-
fied variable, we usually apply the square root property or the quadratic formula.

S0 AR Solving for a Quadratic Variable in a Formula

Solve for the specified variable. Use & when taking square roots.

e

12
@) o= %. for d (b) rt>—st=k (r #0), fort

NOTE  In Homework 4, we took both positive and negative square roots.
However, if the variable represents time or length in an application, we con-
sider only the positive square root.

Tt s R . oal i .
The Discriminant  The quantity under the radical in the quadratic formul
b* = 4ac, is called the discriminant.

b \/b: — 4a¢ <— Discriminant

i ©
2a
ise), the
. > SCy
When the numbers a, b, and ¢ are integers (but not necessarily olhc.r\\:'l )ofﬂ
hor o e { A x ns
value of the discriminant can be used to determine whether the 50]11:;0“
. v 10 > v 1 . . M - 4 <] c 2
quadratic equation are rational, irrational, or nonreal complex num
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number and type of solutions based on the value of the discriminant are shown
in the following table.

’ 2 e — . —

 Discriminant Number of Solutions Type of Solutions
Positive, perfect square | Two Rational
Positive, but not Two Irrational < Asseen in
a perfect square Example 3

Zero One (a double solution) Rational

Negative Two Nonreal complex <— Asseen in
Homework
3

CAUTION The restriction on a, b, and c is important. For example,
>—=\V5x—1=0 hasdiscriminant b?—4dac=5+4=9,
which would indicate two rational solutions if the coefficients were integers.

E . /5 + 3 @ 2 i
By the quadratic formula, the two solutions Y === are irrational numbers.

m Using the Discriminant

Determine the number of distinct solutions, and tell whether they are rational,
irrational, or nonreal complex numbers.

(@) 5x2+2x—4=0 M) x2—10x=-25 ) 2x2—x+1=0
SOLUTION
(a) For5x>+2x—4=0,usea=35,b=2,and c = —4.

b? — dac = 22 — 4(5)(~4)

The discriminant 84 is positive and not a perfect square, so there are two
distinct irrational solutions.

I

84 < Discriminant

(b) First, write the equation in standard form as x> — 10x + 25 = 0. Thus,a = 1,
b= —10, and ¢ = 25.

b% — 4ac = (—10)* — 4(1)(25) = 0 < Discriminant
There is one distinct rational solution, a double solution.
(¢) For2x2—x+1=0,usea=2,b=—1,andc=1.
b? —dac = (—1)*> — 4(2)(1) = —7 < Discriminant

There are two distinct nonreal complex solutions. (They are complex
conjugates.)

Exercises

Concept Check Match the equation in Column I with its solution(s) in Column 11,

I 1
1. x3=25 A. t5i B. £2V5
2. x2+5=0 Ci:EIVE . DB
3 2=-2 E. V5 F -5
4. x-5=0 G. 5 H. *2iV5
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Concept Check Use Choices A—D to answer each question in Exercises 5,
0 {

A 3x2—17x—6=0 B. (2x+5)2=7

C. x2+x=12 D; Bx=1)(x-7)=0

5. Which equation is set up for direct use of the zero-factor property? Sojve ji.
6.

Only one of the equations does not require Ste.p 1 of th.e method for co pleting s
square described in this section. Which one is it? Solve it.

Solve each equation by the zero-factor property. See Example 1.

7. x2=5x+6=0 8. 5x2—-3x—2=0 9. —4x2+x=—3
10. x> —=100=0 11. 4x2 —4x+1=0 12. 25x2+30x +9 =
Solve each equation by the square root property. See Homework 1.

13. x> =16 14. 27 -x2=0 15. x2 = -8l

16. (3x—1)2=12 17. (x+5)2=-3 18. (5x—3)2 = -
Solve each equation by completing the square. See Example 2 and Homework 2,
19. x> —4x+3=0 20. 2x> —x—28=0 2l. x2-2x—-2=0
22. 2x2+x=10 23, —2x2+4x+3=0 24. —4x*+8x=17

25. Concept Check Faisal claimed that the equation x? — 8x = 0 cannot be solved by
the quadratic formula since there is no value for c. Is he correct?

Solve each equation using the quadratic formula. See Example 3 and Homework 3.

26. x2—x—1=0 27. x> —6x=—7
28. x2=2x-5 29. —4x?=—12x+ 11
L a0
30. 232+ 2x=3=0 31. 024 +04x— 03 =0
32, (4x—1)(x+2) =4x 33. (x=9)(x—1)=—16

Solve each cubic equation using Jactoring and the quadratic formula. See Example 4.
4. *-8=0 35. x3+27=0

Solve each equation for the indicated variable. Assume no denominators are 0. See
Homework 4.

kMv?

1 2
36. s = Egt-. for ¢ 3. F= forv

38. r= S
38. r=ro+zar, fort 39. h=—161>+ vyt + 59, fort
For each equation, (a) solve

Jor x in terms of y, and (b) solve for y in terms of x- S€¢
Homework 4. ) jory

40 4x* —2xy +3y2 =2 41. 2x> + 4xy — 3y2 =2

Evaluate the discriminant
solutions, and whether th
equation. See Example 5

- each e : : 5 . istinct
Jor each equation. Then use it 1o predict the number of d““"I[
¢y are rational, irrational, or nonreal complex. Do not solve In

2. 2 -8x+16=0 43. 3x2 +5x+2=0 44, 4x2 = —6x+3

45. 9% + llx+4 =0 46. 8x? — 72 =
i:‘j 47. Is it possible for the solution set of &

S it possible a quadratic equation with integer coefficie
consist of a single irrational number

7 Explain.,
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Find the values of a, b, and ¢ Jor which the quadratic equation
ax?+bx+c=0

has i : .
as the given numbers as solutions. (Hint: Use the zero-factor property in reverse.)

o 4,5 9. 1+V2,1-V2

T e SR

Summary Exercnses on Solvmg Equatlons i

|
&
2]
&

This se.cnorf of miscellaneous equations provides practice in solving all the types intro-
duced in this chapter so far. Solve each equation.

1. 4x—-3=2x+3 2. 5—(6x+3)=2(2—2x)
3. x(x+6)=9 4. x2=8x—12
5. Vx+2+5=Vx+15 6. 2 = e e
x+3 x—2 x*+x-—6
3x+4 2x ¢
7. = ” 1P O
3 3 X 8.2+3x—r+5
2 1
9.5——+—-—= s sy
=40 10. (2x+1)2=9
11. x5 —2x"5-15=0 12. Vx+2+1=V2x+6
13. x*—=3x2—4=0 14. 12x+03=0.7x—0.9
15. V2x+1=V9 16. 3x2—2x=—1
17. 3[2x — (6 — 2x) + 1] = 5x 18. Vx+1=V11 - Vx
19. (14 -2x)% =4 20. 2x 1 —x2=1
3 3
21'x—3=x—3 22. a>+b2=¢2, fora

Inequalities

Linear Inequalities
Three-Part Inequalities
Quadratic Inequalities
Rational Inequalities

An inequality says that one expression is greater than, greater than or equal
to, less than, or less than or equal to another (Section 1.2). As with equations,
a value of the variable for which the inequality is true is a solution of the in-
equality, and the set of all solutions is the solution set of the inequality. Two

inequalities with the same solution set are equivalent.
Inequalities are solved with the properties of inequality, which are similar to

the properties of equality in Section 2.1.

Properties of Inequality

Let a, b, and ¢ represent real numbers.

1.Ifa < b,thena + ¢ < b + c.
2.Ifa<bandifc>0,thenac<bc.
3.lfa<bandifc<0,thenac>bc.
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Figure 2

or = results in imilar properties. (Restrictj
Replacing < with >, =, 0T results in similar (Restrictions o .
ep g ;
remain the same.)

S o by division in Properties 2 and 3
tion may be replaced : . i
I rse the direction of the inequality symbol whep,

a negative number.

NOTE
Always remember 10 reve
multiplying or dividing by

Linear Inequalities  The definition of a linear inequality is similar to the

definition of a linear equation.

Linear Inequality in One Variable
A linear inequality in one variable is an inequality that can be written in
the form

ax + b >0,

where a and b are real numbers, with a # 0. (Any of the symbols =, <,
and = may also be used.)

m Solving a Linear Inequality

Solve =3x+ 5 > —7.
SOLUTION =3x+5>=7

—3x+5—-5> —=7—5 Subtract 5.

—3x'> —12 Combine like terms.
Don't forget o =
e -3x _ -12 Divide by —3. Reverse the direction of the
inaquality symbol = 3‘ < 3 inequality symbol when multiplying or dividing
here! by a negative number.
x<4

Thus, the original inequality —3x+5 > —7 is satisfied by any real number
lcss. than 4. T.he solution set can be written {xl.\' < 4}. A graph of the solution
set is shown in Figure 2, where the parenthesis is used to shi)w that 4 itself does
not belong to the solution set. Note that testing values from the solution set in

the original i ality wi
i Ilcll.]dl |f1ecllxal|1y \Vl]! produce true Statements, while testing values outside
¢ solution set produces false statements

The solution set of the inequality
xX|x < ¢ et bui

{ | X 4}. Set builder notation (Section 1.1)

is an example of an interval. We yse

3 S a simplifi : S C -
tion, to write intervals. With this not mpulicd Ao, cal e indetial g

ation, we write the interval as
(—,4),
The symbol — = qoes notrepresent ;
!hul the interval includes P
IS an example of ap ope

Interval notation

all actual number. Rather it is used to show
nLi real numbers less than 4. The interval (—3"‘~4)
nterval, since the endpoint, 4, is not part of the
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interval. A closed interval includes both endpoints. A square bracket is used
to show that a number is part of the graph, and a parenthesis is used to indicate
that a number is not part of the graph.

In the table that follows, we assume that a < b.

Type of Interval
Interval Set Notation Graph
7
(| {x]x > a} (a, =) T
a
& N
Open interval {xla < x < b} (a,b) b %
Y
(sl < 1) (~=.b) >
2
=
(| {x|x = a} [a, =) =
a
|
xla<x = 3 \ T T
Otbes {xla < x = b} (a.b] h g
intervals -
{x|a = x < b} [a,b) E 4
a
9
{x|x = b} (=,b] 3
b
L -
Closed interval | {x|a = x = b} [a,b] L =]
a
Disjoint interval | {x|x < a orx > b} |(==,a)U (b, )| B bé
a
All real numbers | {x|x is a real number} | (=, o) o

m Solving a Linear Inequality

Solve 4 — 3x = 7 + 2x. Give the solution set in interval notation.

A product will break even, or begin to produce a profit, only if the revenue
from selling the product at least equals the cost of producing it. If R represents
revenue and C is cost, then the break-even point is the point where R = C.

m Finding the ABreak-Even Point

If the revenue and cost of a certain product are given by
R=4x and C=2x+ 1000,

where x is the number of units produced and sold, at what production level does
R at least equal C?

SOLUTION Set R = C and solve for x.
ReC

dx = 2x + 1000  Substitute,

At least equal
to translates
as =,

2x = 1000 Subtract 2.
x = 500 Divide by 2.

The break-even point is at x = 500. This product will at least break even if the
number of units produced and sold is in the interval [ 500, «).
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e —m——TE = . o

Three-Part Inequalities = The inequality 2 < 5+ 3x < 20 saysthat § + 3
is between —2 and 20. This inequality is solved_ using an extension of the prop
érties of inequality given carlier, working with all three expressions o the
same time.

m Solving a Thrge-Pan Ineq_uality

Solve —2 < 5 + 3x < 20.

I AT > g olving quadratic inequalities is more complicated
than solving linear inequalities and depends on finding solutions of quadratic
equations.

Quadratic Inequality

A quadratic inequality is an inequality that can be written in the form
ax? + bx + ¢ <0,

for real numbers a, b, and ¢, with a # 0. (The symbol < can be replaced
with >, =, or =.)

One method of solving a quadratic inequality involves finding the solutions

of the corresponding quadratic equation and then testing values in the intervals
on a number line determined by those solutions.

Solving a Quadratic Inequality

Step 1 Solve the corresponding quadratic equation.
Step 2 Identify the intervals determined by the solutions of the equation.

Step 3 Use a test value from each interval to determine which intervals
form the solution set.

m Solving a Quadratic Inequality

Solve x2—x — 12 < 0.

SOLUTION

Step 1 Find the values of x that satisfy x2 — x — 12 = 0.

XT—x—=12=0 Corresponding quadratic equation
(x +3)(x — 4) =0 Factor. (Section 1.4)
x+3= ' — 4 = y i
0 or x—=4=0 Zero-factor property (Section 2.3)
X=-=3 ‘or x=4

Solve each equation
Step 2 The two numbers —3

zero and can be use
shown in Figure 3, T

. al
and 4 cause the expression x* — X — 2.9 equas
d'to divide the number line into three il\lef"ah[‘hm
he expression x2 — x — 12 will take on a valu

e e e T j
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is either less than zero or greater than zero on each of these intervals.
Since we are looking for x-values that make the expression less than
zero, use open circles at —3 and 4 to indicate that they are not included

in the solution set.

eyt | Interval B I Interval C Use open circles since the in-
eyl : =3:4) |' (4, ) equality symbol does not in-
+————0——+— ——0——+——+— clude equality. —3 and 4 do not
satisfy the inequality.

G iGN
frpmteneefnfen}
-3 0 4

Figure 4

-3 0 4
|
I

Figure 3

Step 3 Choose a test value in each interval to see whether it satisfies the original
inequality, x> — x — 12 < 0. If the test value makes the statement true,
then the entire interval belongs to the solution set.

[ Interval | Test Value | 552 = £ = 12 < 0 True or False?
A: (-, -3) ~4 (-4 -(-4)-12 &0
8 < 0 False
B: (-3,4) 0 0?-0-12 <0
-12 <0 True
C: (4, ) 5 SPis 13 & @
8 < 0 False

Since the values in Interval B make the inequality true, the solution set is
(—3.4). See Figure 4.

m Solving a Quadratic Inequality

Solve 2x2+ 5x — 12 = 0.

NOTE Inequalities that use the symbols < and > are strict inequalities,
while = and = are used in nonstrict inequalities. The solutions of the
equation in Example 3 were not included in the solution set since the
inequality was a strict inequality. In Homework 3, the solutions of the equa-
tion were included in the solution set because of the nonstrict inequality.

200182 Finding Proiep@ile Height

If a projectile is launched from ground level with an initial velocity of 96 ft
per sec, its height s in feet r seconds after launching is given by the following
equation.

s = —161* + 96t

When will the projectile be greater than 80 ft above ground level?

SOLUTION
—16t% + 96t > 80 Set s greater than 80,
—16¢2+ 96t — 80 > 0  Subtract 80.
"&2":::;::;:;’:;::;’& 12— 6t+5<0 Divide by —16.
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|

Now solve the corresponding equation.
p2—-6t+5=0
(t= B (= 5)=0 Factor.

t—1=0 or t—5=0 Zero-factor property

t=1 or =5 Solve each equation,
i ¢ intervals —,1),(1,5), and (5 .
Use these values 0 determine .th \ E)f s BN o0, (s, s o
we are solving a strict inequality, solutions q 645~ s
not included. See Figure 5.
Interval A | Interval B : Interval C
(=ea 1) } (1.5) L G
0 1 5
| |
I |
Figure 5

Choose a test value from each interval and use the procedure of Example 3 apq
Homework 3 to determine that values in Interval B, (1,5), satisfy the inequal-
ity. The projectile is greater than 80 ft above ground level between 1 and 5 g,
after it is launched.

Rational Inequalities Inequalities involving one or more rational expres-
sions are rational inequalities.
) D= |

. d
Al WY

< 5 Rational inequalities

Solving a Rational Inequality

Step 1 Rewrite the inequality. if necessary, so that 0 is on one side and there
is a single fraction on the other side.

Step 2 Determine the values that will cause either the numerator or the
denominator of the rational expression to equal 0. These values
determine the intervals on the number line to consider.

Step 3 Use a test value from each interval to determine which intervals
form the solution set.

A value causing a denominator to equal zero will never be included in the
solution set. If the inequality is strict, any value causing the numerator 0

equal zero will be excluded. If the inequality is nonstrict, any such value
will be included.

CAUTION Solving a rational inequality such as

D
=1
x+4

by multiplying each side by x + 4 to obtain 5 = x + 4 requires consider
ing two cases, since the sign of x + 4 depends on the value of x. 1 xF°
is n_cguli\u. then the inequality symbol must be reversed. The procedu.ﬂ‘ d‘
scribed in the preceding box and used in the next two examples elimin?(€

the need for considering separate N\ff‘—_//

|
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5

Solve

= 1.

x+

74

CAUTION  Be careful with the endpoints of the intervals when solving
rational inequalities.

m Solving a Rational Inequality

2% — 1
Solve X —— < 5.
3x+4
2 — 1
SOLUTION L __ 520 Shsis
3x+4
2x—1 5(3x+4) " 4 ‘ ) i
A a P < 3 + 4.
3x + 4 3'r + 4 ommon denominator 1s X

2x—1 —5(3x+4)

Write as a single fraction.
3x+4
Be careful with signs. 2x—1 = 15%= 20 .
L @ < 0 Distributive property (Section 1.2)
3x + 4
—~]9x —21

< 0 Combine like terms in the numerator.

3x'+ 4

Set the numerator and denominator equal to 0 and solve the resulting equations
to find the values of x where sign changes may occur.

—13x—-21=0 or 3x+4=0

v==-2 or =-2
’ 13 ) 3

Use these values to form intervals on the number line, as seen in Figure 5.

Interval A | Interval B | Interval C ; 3|
21 | 2 4 | 4 Use an open circle at — {3 because
(—°°, -ﬁ) | (‘ﬁ' "3“) | ("?‘ °°) of the strict inequality, and use an
= i open circle at ~j{ since it causes
i 7 i the denominator to equal 0.
| |
Figure 5

Now choose test values from the intervals in Figure 5. Verify that
—2  from Interval A makes the inequality true.
—1.5 from Interval B makes the inequality false.
0 from Interval C makes the inequality true.

Because of the <= symbol, neither endpoint satisfies the inequality, so the solu-

tion set is
( T 21>U( 4
-—00 o= — -——_ 0
T3 3" '
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Exercises
C Check Match the inequality in each exercise in Column I with its equivq -
‘oncept Check ;
interval notation in Column 1.
11
I
A. (-2,6]
| O
<) B. [-2,6)
2. 2<x=<6 C. (—%,—6]
D. [6,%)
3..\'2—6 E. (—OC.—3)U(3,oc)
F. (—%,—6)
4. { | -l lg'_\l X gy
A s G. (0.8)
H. (—, )
s I. [-6, )
-3 0 3
J. (—=.6]

6. Explain how to determine whether to use a parenthesis or a square bracket when
graphing the solution set of a linear inequality.

Solve each inequality. Write each solution set in interval notation. See Example 1 and
Homework 1.

7. =2x+8 =16 8. =%x—-2=s1+x

9. 3(x+5) +1=:5+3x 10. 8x—3x+2 <2(x+7)

4x +7 1 2 1 1
11. S 2X%5 12: =xt=x——(x+3) = —
= A A A T

Break-Even Interval Find all intervals where each product will at least break even. See
Example 2.

13. The cost to produce x units of picture frames is C = 50x + 5000, while the revenue
is R = 60x.

14. The cost to produce x units of coffee cups is C = 105x + 900, while the revenue is
R = 85x.

Solve each inequality. Write each solution set in interval notation. See Homework 2.

15. 5<5+2x<1l 16. 10 < 2x+4 < 16

17. =11 > =3x + 1 > =17 gy =2t ]
pad)

IA
W

x—4
19, 3= ——<




Equations and Inequalities 79

Solve each quadratic inequality. Write each solution set in interval notation. See
Example 3 and Homework 3.

20. x2—x—-6>0 21. 2x2—9x = 18
22. —x?-4x-6= -3 23. x(x—=1) =<6
24. 22 =9 25. XX +5%+7<0

()

26.. x2=2x = |

27. Concept Check Which one of the following inequalities has solution set (—%, ®©)?
A (x=3)2=0 B. (5x—6)> <0
C. (6x+4)2>0 D. (8x+7)*<0

Relating Concepts

For individual or collaborative investigation (Exercises 28-29)
Inequalities that involve more than two factors, such as
(Bx—4)(x+2)(x+6) =0,

can be solved using an extension of the method shown in Example 3 and Home-
work 3. Work Exercises 28-29 in order, to see how the method is extended.

28. Use the zero-factor property to solve (3x —4)(x + 2)(x + 6) = 0.

29. Plot the three solutions from Exercise 28 on a number line, using closed circles
because of the nonstrict inequality, = . The number line should show four in-
tervals formed by the three points. For each interval, choose a number from the
interval and decide whether it satisfies the original inequality.

Use the technique described in Relating Concepts Exercises 28-29 to solve each
inequality. Write each solution set in interval notation.

30. (2x—3)(x+2)(x—3)=0 3. 4x—-x3=0
32 (x+ 1P x—3)<0 33. P+ 42— 9x = 36

34. }(x+4)2=0

Solve each rational inequality. Write each solution set in interval notation. See
Homework 4 and Example 5.

. o

38. ]—_4X<5 39.3102"_55 ﬂ.‘_zzz‘iz
41'2x3—1>_T4 ﬁZix—li.\‘ ‘&figs'

Solve each rational inequality. Write each solution set in interval notation.

44, ?‘;: =0 45. —8‘__};;, >0 46. o 1\_31(:;‘+ 8 a0
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Absolute Value Equations and Inequalities

= Basic Concepts Basic Concepts " Recall from Section 1.2 that the absolute valye

® Absolute Value number a, written | a|, gives the distance fromato 0 On a number lipe, g Of-
Equations definition, the equation |x| = 3 can be solved by finding all rea] numberz thig

W Absolute Value distance of 3 units from 0. As shown in Figure 6, two numbers satisfy thjg equ;llf‘t a
Inequalities 3 and —3. so the solution set is {—3, 3}- 10n,

® Special Cases
m Absolute Value Models

e Distance Distance
Tole iy . e
rance —— is3 Distance is Distance is 1 Distance is
greater than 3. l less than 3. less than 3. greater than 3,
-3 0 3 S
- Figure 6

LOOKING AHEAD TO CALCULUS

P < 3 is satisfied by all real numbers whose distance
The precise definition of a limit in e IX| g i

) —that is, the interval
calculus requires writing absolute are less than 3—th

value inequalities. 3 <G 38 Motk (=353).

A standard problem in calculus is to . . 5
. See Figure 6. Finally, | x| > 3 is satisfied by all real numbers whose distances

find the “interval of convergence” of
from O are greater than 3. These numbers are less than —3 or greater than 3. 5o

something called a power series, by o :
solving an inequality of the form the solution set is

|x—al<r. (—OC_—3)U(3.3C).

This inequality says that x can be Notice in Figure 6 that the union of the solution sets of |x| =3, |x| < 3, and

|x| > 3 is the set of real numbers.

These observations support the cases for solving absolute value equations
and inequalities summarized in the table below. If the equation or inequality
fits the form of Case 1, 2, or 3, change it to its equivalent form and solve. The
solution set and its graph will look similar to those shown.

any number within r units of @ on
the number line, so its solution set
is indeed an interval—namely the

interval (a —r,a +r).

For each equation or inequality in Cases 1-3 in the table, assume that
k> 0.

Solving Absolute Value Equations and Inequalities

Absolute Value Graph of the e |
Equation or Inequality |  Equivaient Form Solution Set Solution Set
Casel: |x| =k x=k or x=—k s - {—k.k}

S -k k
Case2: |x| <k k<x<k - - (=k.k)
o e o S -k
Case3: |x| > k x<-k or x>k —— — (—=.—k) u (k)
2 % —k k | S et

onstrict for™

In Cases 2 and 3, the strict inequality may be replaced by its n= || then a

Additionally, if an absolute value equation takes the form |al
and b must be equal in value or opposite in value.

- ; = —b.
Thus, the equivalent form of la| = |blis a=b or @~

el
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Absolute Value Equations " Because absolute value represents distance from
0 on a number line, solving an absolute value equation requires solving two pos-
sibilities, as shown in the examples that follow.

Solving Absolute Value Equations (Case 1 and the Special Case

la| = |b])
Solve each equation.
@ |5-3x|=12 (b) |4x—3]|=|x+6|
SOLUTION

(a) For the given expression 5 — 3x to have absolute value 12, it must repre-
sent either 12 or —12. This equation fits the form of Case 1.

5=3x =12
5-3x=12 or 5—3x=—12 Casel
=3x=17 or —3x = —17 Subtract 5.
7 17

xX=—— or x=

Divide by —3.
3 3

Check the solution —% and % by substituting them in the original absolute

value equation. The solution set is { &= % s %} 5

(b) If the absolute values of two expressions are equal, then those expressions
are either equal in value or opposite in value.

|4x = 3| =|x+ 6]

4x—3=x+6 or 4x—3=—(x+6) Consider both possibilities.

3x=9 or 4x—3=—x—6 Solve each linear equation.
Section 2.1
x=3 or Sx’==3 ( )
3
x=—=
5

Absolute Value Inequalities i

m Solving Absolute Value Inequalities (Cases 2 and 3)

Solve each inequality.

@ |[2x+1]|<7 M®) |[2x+1]|>7

Cases 1,2, and 3 require that the absolute value expression be isolated on
one side of the equation or inequality.
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m Solving an Absolute Value Inequality (Case 3)

Solve |2 — 7x| — 1 > 4.

SOLUTION |2-7x| —1>4
|2 . 7X| a5 Add 1 to each side.

2—-Tx< -5 or 2=-Tx>5 Case 3

~Tx<—7] ©ofF =7x >3 Subtract 2.
Divide by —7. Reverse the
x > 1 or Sag ~5 direction of each inequality.

(Section 2.4)

The solution set is (—%, —3) U (1, ®).

Special Cases ~ The three cases given in this section require the constant £ 1
be positive. When k < 0, use the fact that the absolute value of any expressiop
must be nonnegative, and consider the truth of the statement.

m Solving Special Cases "

Solve each equation or inequality.

@ [2-5x|=-4 (b) [4x - 7] < -3 (© |5x+15|=0.

Absolute Value Models for Distance and Tolerance  If ¢ and b represent two
real numbers, then the absolute value of their difference,

cither |a—b| or |b-al (Section 1.2)

represents the distance between them.

2 CV U Using Absolute Value Inequalities to Describe Distances

Write each statement using an absolute value inequality.

(a) kis no less than 5 units from §. (b) nis within 0.001 unit of 6.
SOLUTION
(a) Since the distance from £ to 8, written |k — 8] or |8 — k|, is no less than 5,
the distance is greater than or equal to 5. This can be written as
[k—8| =5, or, equivalently, |8 — k| =5, Pikectunia acceptable.

(b) This statement indicates that the distance between n and 6 is less than 0.001.

ln=6] <0001, o equivalently, |6 — n| < 0.001

WS LTTER  Using Absolute Value to Model Tolerance il

In quality control and other applications, we often wish to keep the difference
between two quantities within some predetermined amount, called the toler-

ance, .Su‘ppos‘c Y=2x+1 and we Want y to be within 0.01 unit of 4. For what
values of x will this be true?
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Concept Check Match each equation or inequality in Column [ with the graph of its
solution set in Column I1.
I I
S i | i | Y
L |x|=7 A. - f | —
=7 0 7
2, |x|=-7 B. } } t 9
=7 0 7
A ' = R i
3. |x| > -7 G — .
=7 0 7
4. |x| >7 D. y ;
L9 0 7
' Vs
i |Y| < T E. % t =
i | 0 7
6. |x| =7 F. ® = *
=7 0 7
7. =g G. - : —
-7 0 7
8. |x| %7 H. X : X%
7N g 7N
-7 0 7
Solve each equation. See Example 1.
9. |3x—1]|=2 10. |5 — 3x| = 3 n. | = }=5
5 6x + 1
12. ‘_‘=]0 13. ‘=3 14. |2x — 3| =|5x + 4|
x—3 = | x=i =
15. [4 —3x|=|2-3x|] 16.|5x—2|=|2 - 5x|
[2)17. The equation |7x + 3| = —5x cannot have a positive solution. Why?

Solve each inequality. Give the solution set using interval notation. See Homework 1.

l§:|2x+5|<3 19. [2x+5|=3 20. %—.\' <)
2_1_:4l.r—3|>12 22.|5-3x|>7 23. |5-3x|=7

1
24 ‘§x+—‘s€ 25. [0.01x + 1| < 001
Solve each equation or inequality. See Example 2 and Homework 2.
Eq_,|4x+3|—2=—l 27. |6 —2x|+1=3 28. |3+ 1l=1<2

29.

Solve each equation or inequality. See Homework 2.

3_2_.]]()—41[2—4 .13_.|()—3.\'|<——l| &|8-\'+5|=0
35, [43x+98[ <0 g0} |2x+1| =0 37. |3x+2| >0

1
5,\'+5|—2<5 30. [10:=4x| + 125 L 3x-7|+1 < -2
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Relating Concepts
For individual or collaborative investigation (Exercises 38-39)

1 involves the abso .
To see how to solve an equation that involy es the ;911.4!e value of q quadraz,
polynomial, such as | x> — x| = 6, work Exercises 38-39 in order.

38. For x> — x to have an absolute value equal to 6, what are the twq POSSible v
" ues that it may be? (Hint: One is positive and the other is negative )

39. Write an equation stating that x> — x is equal to the negative valye You foung
" in Exercise 38, and solve it using the quadratic formula. (Hin;- The solutiong
are not real numbers.)

Use the method described in Relating Concepts Exercises 38-39, f/‘l[)/lli('(l[7/e, and
properties of absolute value to solve each equation or inequality. (Hint: Exercise 43 can
be solved by inspection.)

40. |3x2+ x| =14 41. [4x2 —23x— 6| =0

X
—_— >
3x+1| 2

X*+2x2+1| <0 44.

x2+1|-|2x|=0 43.

42.

45. Concept Check Write an equation involving absolute value that says the distance
between p and ¢ is 2 units.

Write each statement as an absolute value equation or inequality. See Example 3.

46. m is no more than 2 units from 7.

47. pis within 0.0001 unit of 9.

48. ris no less than 1 unit from 29.

49. Tolerance Suppose that y = 5x + | and we want ¥ to be within 0.002 unit of 6. For
what values of x will this be true?

(Modeling) Solve each problem. See Homework 3.

50. Weights of Babies Dr. Aziz has found that. over the years, 95% of the babies he has
delivered weighed x pounds, where
|x—82| = 15.

What range of weights corresponds to this inequality?

S1. Conversion of Methanol to Gasoline The industrial process that is used to convert
methanol to gasoline is carried out at a temperature range of 680°F to 780°F. Using
F as the variable, write an absolute value inequality that corresponds to this range.

(Modeling) Carbon Dioxide Emissions When humans breathe, carbon dioxide 18
emitted. In one study, the emission rate e
measured during both lectures
hour) during a lecture ¢l

s of carbon dioxide by college studen 3
) . . . o i A  pe
and exams. The average individual rate R, (in grams |
ass satisfied the inequality

[R.—2675| < 142,
whereas during an exam the rate Ry satisfied the incquzllily
|Re — 38.75| < 2.17.

(Source: Wang, T, C.. ASHRAE Trans., 8) (Part 1),32))
Use this information in Exercise 52

52. Find the range of values for R, and R
E.
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Glossary

absolute value The absolute value of
a real number is the distance between 0
and the number on the number line.
A A 30e Y dallall o2 dalkl) 20
sl bl Lo saadly aall o L
break-even point The break-even
point is the point where the revenue
from selling a product is equal to the
cost of producing it.
SN s sl q"h daadl s doladl dhais
ob!mcﬂc’u@w))\}“
closed interval A closed interval is an
interval that includes both of its endpoints.
PRI L ) éi A aakdls 2l
Londd|
completing the square The process of
adding to a binomial the expression that
makes it a perfect square trinomial is
called completing the square.
S o BL) s o 3l g M1 IS
Qxcﬁb‘duyéﬂlﬁxﬂﬁjbju
A IS ke sl SN LG
complex number A complex number
is a number of the form a + bi, where a
and b are real numbers and i = V —1.
a + bi tzy S M 508 g1 S M)
i= V=1 4 iai- 5l b 4 a0 Lo
conditional equation An equation

that is satisfied by some numbers but
not by others is a conditional equation.

SN any S5 Uslas sl b 2 Dol
b 2 sl a1 # L o oS
contradiction An equation that has
no solution is a contradiction.
aslas as B Y dslas ‘__;i aslall
discriminant  The quantity under the
radical in the quadratic formula,
b? — 4ac, is the discriminant of the
expression ax® + bx + c.
o A Gl i S5 2aSUl i el
2o @I 3 jen p b — dac
.ax?+ bx +c
empty set (null set) The empty set
or null set, written ¢ or { }.is the
set containing no elements.
3 i g ) (A 6 gug) 2,6 46 ot
ap,‘ﬂdh{},w\,:&:@u-u;red\,‘
oo gl Jo 52N A

equation An equation is a statement that
two expressions are equal.
ot Salen A Ol o Dol \éi sl
Ol
equivalent equations Equations with
the same solution set are equivalent
equations.
J il de gaz o3 YLl 281K OV slee
L@l oY slae s g
identity An equation satisfied by every
number that is a meaningful replacement
for the variable is an identity.
Vi) Jras se S G Uslas (5 dasllacll
Agllane e ey el (g
imaginary part In the complex number
a + bi, b is the imaginary part.
@+ bi K2 aS LolusNI G dsdl o3
Al e A b
inequality An inequality says that one
expression is greater than, greater than
or equal to, less than, or less than or
equal to, another.
225 Oty gl o 2 on el Al
ot cazs 3l cas gy o wn ST 2V o s
.Aa__,\..a_ _,i <
interval An interval is a portion of the
real number line, which may or may not
include its endpoint(s).
(A N T e 16 5 s 3 5 g1 3 AN
Nl Lkt (b)) ki e ozt 6 )
interval notation Interval notation is
a simplified notation for writing intervals.
It uses parentheses and brackets to show
whether the endpoints are included.
LLSIN n 15n 5 dng 3 A o0 58 AR a5
oy ad) Sl e Ll AN
sy & patie a1 5 ud 1 OF by
linear equation (first-degree equation)
in n unknowns Any equation of the
form ajx, + axx, + -+ - + a,x, = b, for
real numbers a,, as, . . . ,a, (not all of
which are 0) and b, is a linear equation,
or a first-degree equation, in n unknowns.
11 3 (G 0 e Dslae) k) Dol
ax) + @ + o+ A%, = bis e sl
WS D ay, ay, -, @, iaid 5lae™N
1).-_).,\.“ Na Uolas )‘ d._.lai Uslas dns b K] (\;4..4:
J‘”a.“ n é J,\h

linear equation (first-degree equation)
in one variable A linear equation in
one variable is an equation that can be
written in the form ax + b = 0, where a
and b are real numbers with a # 0.
e 3 (LY a0l e Uslas) Lhas Dol
Uslas a5 Ay iz § Lo Uslas \__;‘l d>ly
0| ax + b =0 e S5 O Sy
a # 0 iii> 131aef 0, by
linear inequality in one variable
A linear inequality in one variable is an
inequality that can be written in the form
ax + b > 0, where a and b are real
numbers with a # 0. (Any of the symbols
<, =,and = may also be used.)
& e 2lza g oy i 3 el 2L
G Ll S las Aty e
Lai- el byao Seovwax+b >0
Sams el Lasl oS g .a # 0 s

A= o=

A

literal equation A literal equation is
an equation that relates two or more
variables (letters).
O a5 Aslas a3 A1 sl 23 21 sl
.(J;‘;—) ;‘Si _,-i CRaRca
nonreal complex number A complex
number @ + bi in which b # O isa
nonreal complex number.
J:-J_S)b.u\sidi,&l)}&.;‘dl:.xd|
s 2 < e
q:S‘J).U-HJh #* ()4,5;)_,&3\.‘—-_0\5(1 + bi
nonstrict inequality  An inequality in
which the symbol is either = or = is a
nonstrict inequality.
Ll e 30 01050 Zulza sl il 2l
Bl sl =or =
open interval An open interval is an
interval that does not include its
endpoint(s).
M"'YSJ&éixbﬂiﬁéibpiﬁ
G (bls) Wb Lo
pure imaginary number A complex
number a + bi in which @ = 0 and
b # 0 is a pure imaginary number.
S @+ bi S sl dlall Ll saa)
GlodZote ab #0,a=0030,5



86 Introduction to Mathematics

quadratic equation (second-degree
equation)  An equation that can be
written in the form ax? + by + ¢ = 0
where @, b, and ¢ are real numbers
with a # 0, is a quadratic equation.
ST (B a1 o Dslas) a5 Uslas
ax’* + bx + ¢ = 0 Gz Lmlss <o Uslaa
@ # 0 pa Lad> 13l CybyaoSse -
o F sl g
quadratic inequality A quadratic
inequality is an inequality that can be
written in the form ax? + px + ¢ < 0,

for real numbers . b. and c,witha # 0.

(The symbol < can be replaced with >,
=,and =)

O Llan o dony 5 Unlan 6 om0 Ll
SNy ax? + by + ¢ < 0 Tauay Lnles
SSa) .a # Ocac,b,aij.._..ajl..lfx,s._.zu
(= y=>_< 5 ldy

rational inequality A rational

inequality is an inequality in which one
or both sides contain rational expressions.

055 Tbte gf a4, 2Ll 2,0 L
Sl e 520U Sl L g e i
RIS

real numbers The set of all numbers
that correspond to points on a number
line is the real numbers.

e dls A sV is yag L22H 1Y
RESITRIRN NP

real part In the complex number
a + bi, ais the real part.

e aa + bi 5_.5;“ R L_j &EJ-I o;J_-I
' g T
solution (root) A solution or root of

an equation is a number that makes the
equation a true statement.

Sl sael ga sl o ol Jo (AN
e 3)le Dbl ag
solution set The solution set of an

equation is the set of all numbers that
satisfy the equation.

Eyet AW o o gagz J bl do paz
Al e 3315 sl s
standard form of a complex number

A complex number written in the form
a + bi (or a + ib) is in standard form.

gzjfa.u&;'..f)lh-lauwliirdl
Aa+ib 5) a + bi aall i oS

standard form of a linear equation
form Ax + By = C is the standarg form
of a linear equation.
Gonall Ll Usleal) 1oy | L))
Ysleall Lhaadl all <& Ax + By = C

RWTY
strict inequality An inequality in
which the symbol is either < or > j5 5

strict inequality.
Ll 5 M 05 Sle s iy
<>
zero-factor property The zero-factor
property states that if the product of two
(or more) complex numbers is 0, thep at
least one of the numbers must be ().
J.pla.!l Lol v.a_;é ) |_‘L.L.JI Lol
e o 25 Jol- 08 3]l e g 4 )
S04 o g 03] ¢ i 4a (sl ) I
A io slaeYlaia
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Relations and Functions ~ Recall that we can describe one Quantity i,

ey e

Functions

Relations and Functions ‘
€
® Domain and Range of another. Tmg ‘
= Determining Whether ive in a mathematics cours ':
X r grade you recel rse depend«
Relations Are Functions e The letter g y Pends on Your

numerical scores. |
® Increasing, Decreasing, o The amount you pay (in dollars) for gas at the gas station depends i

and Constant Functions number of gallons pumped. 1
The dollars spent on household expenses depends on the category.

m Function Notation

We used ordered pairs to represent these corresponding quantities. Fop examp)

(3.$10.50) indicates that you pay $10.50 for 3 gallons of gas. Since the amoi;’
you pay depends on the number of gallons pumped, the amount (in dollars) i
called the dependent variable, and the number of gallons pumped is calleq the

|
1 |
independent variable. .
Generalizing, if the value of the second component y depends on the value b

i

|

1

of the first component x, then y is the dependent variable and x s the indepen.
dent variable.

Independent variable —¢ r Dependent variable
(x.y)

A set of ordered pairs such as {(3, 10.50), (8, 28.00), (10,35.00)} is called
arelation. A special kind of relation called a function is very important in math-
ematics and its applications.

Relation and Function

A relation is a set of ordered pairs. A function is a relation in which, for
each distinct value of the first component of the ordered pairs, there is
exactly one value of the second component.

NOTI  The relation from the beginning of this section representing the
number of gallons of gasoline and the corresponding cost is a function since
each x-value is paired with exactly one y-value.

—

Deciding Whether Relations Define Functions
Decide whether each relation defines a function.
F={(1,2),(~2,4),(3,4)}
G =11 1):41,2).01.3),2. D)}
H={(-4,1),(~2,1),(-2,0)}

SOLUTION Relation F is a function, because for each different x-value th
exactly one y-value. We can show this correspondence as follows.

{ 2 3} v-values of F

ere 1S

|
4, 4} y-values of F

e ——————————_— 4_4
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s the corresp
pondence below shows, relation G is not

e First o ) a functi
{1ist component corresponds to more ; o DA

than one second component.

{1, 2} x-values of G

(8]

{ 152 3} y-values of G

Il] relati ac -
- dm‘zklml? H the last t\.vo ordered pairs have the same x-value paired with
) mndionu;l _\r-values.( —2 is paired with both | and 0), so H is a relation but not
e =2 Ina Junction, no two ordered pairs can have the same first compo-
ent and different second components. :

Different y-values

H.= {(*41 1)s(=2.19; (=2,0)} Not a function

‘\/Z‘f’ ( )A u’rf&" C)s 2 _ Same x-value

\ flﬂ—/ f : 3
| P J Re]a_uons and functions can also be expressed as a correspondence
: or mapping from one set to another. as shown in Figure 1 for function F and

x-values y-values
relation H from Example 1. The arrow

= from 1 to 2 indicates that the ordered pair i
(1,2) belongs to F—each first component
is paired with exactly one second compo- . 2.4)0 ® (3,4
Fis a function. nent. In the mapping for relation #, which ! | 2 °(1.2)
H is not a function, the first component —2 _§ j 0 5
x-values y-values is paired with two different second compo-
’< nents, | and 0. P
‘ Since relations and functions are sets‘fLP: w3 S
of ordered pairs, we can represent them &2 ) x Graph of F s\
; ; using tables and graphs. A table and graph™ - Figure 2 ’ y gt
H is not a function. for function F are shown in Figure 2. ; o j’i‘y“
Figure 1 Finally, we can describe a relation or function using a rule that tells howTo

determine the dependent variable for a specific value of the independent vari-
able. The rule may be given in words: for instance, “the dependent variable is
twice the independent variable.” Usually the rule is an equation, such as the one

below.
Dependent variable —> y = 2.x <— Independent variable

NOTE Another way to think of a func- 4
tion relationship is to think of the in-
dependent variable as an input and. th.e
dependent variable as an output. This is
illustrated by the input-output (function)
machine for the function defined by

8
(Output y)

y = 2x.

Function machine

is exactly one value of the dependent variable, the sec-

ction, there A
Inafun te of the independent variable, the first component.

ond component, for each vali

[~ ,____—
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THIS SALE $

GALLONS

PRICE PER GALLON S

On this particular day, an input of
pumping 7.870 gallons of gasoline
led to an output of $29.58 from
the purchaser’s wallet. This is

an example of a function whose
domain consists of numbers of
gallons pumped. and whose range
consists of amounts from the
purchaser’s wallet. Dividing the
dollar amount by the number of
gallons pumped gives the exact
price of gasoline that day. Was
this pump fair? (Later we will see
that this price is an example of the
slope m of a linear function of the
form y = mx.)

3 1 are .
Domain and Range = For every relation there are two impo -
Sete

elements called the domain and range. -

Domain and Range

In a relation consisting of ordered pairs (x,y), the set of all valyeg
independent variable (x) is the domain. The set of all valyeg o d(;f the
dent variable (y) is the range. Pen.

m Finding Domains and Ranges of Relations

Give the domain and range of each relation. Tell whether the relation define
function. D= {3/"‘/‘6§ S a
@ {(3.-1).(4.2),(4.5).(6.8)} >R ={-1,2,553

) ~ DN, ©

200 |R. {loo, 2c0,360) ‘(5)
300 ;

m Finding Domains and Ranges from Graphs

Give the domain and range of each relation.

e | <5}
R = {Z-s

NN |«

(a) y (b)
i
%
(-1, 1) -oh?
all
0 .
0,-nf !
Ry
@,-3)
(c) y (d) )
0 ¥ 0 .
-3
SOLUTION

. the set of
(a) The domain is the set of x-values, {-1,0,1,4}. The range IS the s€

y-values, {3, -1, 1, 2}. d
4 an

.]“_\-i\'t’-

n

(b) The x-values of the points on the graph include all numbers bel\vccim

4.inclusive. The y-values include all numbers between —6 and .

The domainis [~4,4]. e interval notation.

The range is [~6,6]. (Section 2.4) ht, 89
. o I : o ialy left and 12

(¢) The arrowheads indjcate that the line extends indefinitely left ary deall

qu
> > p ange nc
well as up and down. Therefore, both the domain and the rans

real numbers, which is written (=0, ),
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(d) The arrowheads indicate that the graph extends indefinitely left and right, as
well as upward. The domain is (o, % ). Because there is a least y-value,

[—33the)range includes all numbers greater than or equal to —3, written
e

Since relations are often defined by equations, such as y = 2x + 3 and
y% = x, we must sometimes determine the domain of a relation from its equation.
[n this book, we assume the following agreement on the domain of a relation.

Agreement on Domain Eg::s}:gr 4,2 r‘;‘)'

Unless specified otherwise, the domain of a relation is assumed to be all
real numbers that produce real numbers when substituted for the indepen-
dent variable.

To illustrate this agreement, since any real number can be used as a replace-
ment for x in y = 2x + 3, the domain of this function is the set of all real num-
bers. As another example, the function defined by y = 1 has all real numbers
except 0 as domain, since y is undefined if x = 0.

In general, the domain of a function defined by an algebraic expression is
all real numbers, except those numbers that lead to division by 0 or to an
even root of a negative number.

(There are also exceptions for logarithmic and trigonometric functions.
They are covered in further treatment of precalculus mathematics.)

Determining Whether Relations Are Functions " Since each value of x leads to
only one value of y in a function, any vertical line must intersect the graph in at
most one point. This is the vertical line test for a function.

Vertical Line Test ~— \/era Smportonk

If every vertical line intersects the graph of a relation in no more than one
point, then the relation is a function.

The graph in Figure 3(a) represents a function because each vertical line
intersects the graph in no more than one point. The graph in Figure 3(b) is not
the graph of a function since a vertical line intersects the graph in more than one

point.

| = —— (~\'|._\'|)

X3

This is not the graph of a function.
Each x-value corresponds The same x-value corresponds to
to only one y-value, two different y-values,

(a) (b)
Figure 3

This is the graph of a function.
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m Using the Vertical Line Test

Use the vertical line test to determine whether each relation ¢raphed in Example
is a function.

The vertical line test is a simple method for identifying a function defineg
by a graph. Deciding whether a relation defined by an equation or an ianuali[y
is a function. as well as determining the domain and range. is more difficylt, The
next example gives some hints that may help.

\/“j ""‘?“"N‘— 54:\,[4ha} Identifying Functions, Domains, and Ranges

Decide whether each relation defines a function and give the domain and range.

(@ y=x+4 () y=V2x—-1 © y>=x

5
@ y=x-—1 O o=
v lae SV % gouumon

Vet \:?““‘CH"'“ (a) In the defining equation (or rule), y = x + 4, y is always found by adding 4
to x. Thus, each value of x corresponds to just one value of y, and the rela-
tion defines a function. The variable x can represent any real number, so the
domain is

{x|xis areal number}, or (—o, ).

Since y is always 4 more than x, y also may be any real number, and so the
range is (—o, ).

(b) For any choice of x in the domain of y = V2x — 1, there is exactly one

corresponding value for y (the radical is a nonnegative number), so this

/ ' ‘equation defines a function. Since the equation involves a square root, the
quantity under the radical sign cannot be negative.

2x — 1 = 0 Solve the inequality. (Section 2.4)

1 2x =1 Addl.

1
Xi= E Divide by 2.

¥ The domain of the function is [% ). Because the radical must represent a
nonnegative number, as x takes values greater than or equal to 1 the range
is {y|y = 0}, or [0, =). See Figure 4.

Figure 4

(¢) The ordered pairs (16,4) and (16, —4) both satisfy the equation y* = x.
Since one value of x, 16, corresponds to two values of y, 4 and —4, this
equation does not define a function.

Because x is equal to the square of y, the values of x must always be
nonnegative. The domain of the relation is [0, ©). Any real number can b
Domain squared, so the range of the relation is (—2, % ). See Figure 5.

V=x

(d) By definition, y is a function of x if every value of x leads to exactly one
value of y. Substituting a particular value of x, say 1,into y = x — 1 cor
responds to many values of y. The ordered pairs

Figure 5 (1,0), (=1, (1,=2), (1,-3), and soon

——4
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all satisfy the inequality, so y is not a function of x here. Any number can be
used for x or for y, so the domain and the range of this relation are both the
set of real numbers, (—o, o ).

(e) Given any value of x in the domain of

we find y by subtracting 1 from x, and then dividing the result into 5. This
process produces exactly one value of y for each value in the domain, so this
equation defines a function.

The domain of y = = 3 7 includes all real numbers except those that
make the denominator 0. We find these numbers by setting the denominator
equal to 0 and solving for x.

x—1=0
x =1 Add 1. (Section 2.1)

|
|

|

|
D
i

r

|

|

|

Thus, the domain includes all real numbers except 1, written as the interval
(=, 1) U (1, ). Values of y can be positive or negative, but never 0,
because a fraction cannot equal 0 unless its numerator is 0. Therefore, the
range is the interval (—o,0) U (0, ), as shown in Figure 6.

Figure 6

Variations of the Definition of Function

component of the ordered pairs, there is exactly one value of the second

1. A function is a relation in which, for each distinct value of the first ]
component. ’

2. A function is a set of ordered pairs in which no first component is
repeated.

3. A function is a rule or correspondence that assigns exactly one range

value to each distinct domain value.

Function Notation = When a function f is defined with a rule or an equation

LOOKING AHEAD TO CALCULUS using x and y for the independent and dependent variables, we say, “y is a func-

One of the most important concepts in tion of x” to emphasize that y (1(’[)8"(/3‘ on x. We use the notation

caleulus, that of the limit of a function,
y = f(x),

Is defined using function notation:

lim f(x) = L called function notation, to express this and read f(x) as “f of x.” The letter f

i is the name given to this function.

(read “the limit of f(x) as x ap- H i i
f(x) as x ap For example, if y = 3x — 5, we can name the function f and write

Proaches a is equal to 1) means that

the values of f(x) become as close as f(‘) =3x -3,
Wewish to L when we choose values
of x sufficiently close to a. Note that f(x) is just another name Jor the dependent variable y. For example,

if y= f(x) =3x—5and x =2, then we find y, or f(2), by replacing x with 2.
f(2)=3+2—-5 Letx=2,
f(2) =1 Multiply, and then subtract.

The statement “In the function f,if x = 2, then y = 1" represents the ordered
pair (2, 1 ) and is abbreviated with function notation as follows.

f2)=1

; _—_‘
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The symbol f(2) is read f of 2" or “fat2."
These ideas can be illustrated as follows.

Name of the function
Defining expressi

Y et N,
y = = 3x—395
y f(x) 3
A R
L~ NG
Name of the independent vanable

Value of the function

CAUTION  The symbol f(x) does not indicate “f times x,” but repre.
sents the y-value for the indicated x-value. As just shown, f(2) is the
y-value that corresponds to the x-value 2.

m Using Function Notation

Cl) 4 {/x\) ==Y+ = Let f(x) = —x?+ 5x — 3 and g(x) = 2x + 3. Find and simplify each of the

©T2=2 following.
b) H z @ f(2) ® f(q) © gla+1)
?) H9) -9+ 593
Functions can be evaluated in a variety of ways. as shown in Example 4,
@)= 42 (an)s3
= 2a+2 4% m Using Function Notation
£ 991%< For each function, find f(3).
@ f(x)=3%x-7:947=7 ® f={(=3,5).(0,3).(3.1).(6,~1)}
(C) Domain ! R;m:_-c (d) »

SOLUTION
@ f(x)=3x—-7

Domain f Range

6
- 5 f(3)=3(3) -7 Replace x with 3,
12
f(3)=2 Simplify,
phif
(a) (b) For f={(-3,5),(0,3), (3, 1), (6, —1)}, we want f(3), the y-value of
; the ordered pair where x = 3. As indicated by the ordered pair (3, 1), when
p x=3,y=1,s0 f(3) = 1.
2 £ ) (c) ln.lhc mapping, repeated in Figure 7(a), the domain element 3 is paired with
o 5 in the range, so f(3) = 5.
2 s
) (d) Toevaluate f(3) using the graph, find 3 on the x-axis. See Figure 7(b). Then
> A . n e N
0 234 move up until the graph of f is reached. Moving horizontally to the y-axis
gives 4 for the corresponding y-value. Thus, f(3) = 4.
b s ~ bl e ol . . M ) \
(b) I'l atunction fis defined by an equation with x and v (and not with function
Figure 7 notation), use the following steps to find f(x).
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Finding an Expression for f(x)

8 Qnudcr an equation involving x and y. Assume that y can be expressed as
a function f of x. To find an expression for f(x), use the following steps.

Step 1 Solve the equation for y.
Step 2 Replace y with f(x).

——
A LSS Writing Equations Using Function Notation

Assume that y is a function f of x. Rewrite each equation using function nota-
tion. Then find f(—2) and f(a).

@ y=x2+1 (b) x—4y=5

Increasing, Decreasing, and Constant Functions " Informally speaking, a func-

4 tion increases on an interval of its domain if its uraptulse\sirom left to right on

the interval. It _decreases on an interval of its domain if nmh f‘llls;rom left

_to right on the interval. It is constant on an interval of its domain if its graph_is
horl/onlal on the interval. r— —

For example, consider Figure 8. The function increases on the interval

[—2. | ] because the y-values continue to get larger for x-values in that interval.

o = i =t Similarly, the function is constant on the interval [ 1,4 ] because the y-values
fisee ot ! are always 5 for all x-values there. Finally, the function decreases on the interval
s A= e [4. 6] because there the y-values continuously get smaller. The intervals refer
increasing. yjs decreasing. / - : &
ey to the x-values where the y-values either increase, decrease, or are constant.
Hgura 8 The formal definitions of these concepts follow.
Neru ¢— Increasing, Decreasing, and Constant Functions
o
m Porm. Suppose that a function f is defined over an interval / and x; and x; are in /.
/ (a) f increases on / if, whenever x; < x5, f(x1) < f(x2).
(b) f decreases on [ if, whenever x; < xa, f(x;) > f(x2).

/",._ﬁg a-

L
| (¢) fis constant on / if, for every x; and x3, f(x1) = f(x2). |
Yhe exam
aus 1A ‘H«C i
{ Figure 9 illustrates these ideas.
of oﬂr
Clﬂo;ces . g )
Co——— y=fx) y=fx)
) f(x) = f(xy)
i e
| | |
f(x) = | | ‘
X 1 X 1 L x |
o5 X2 0 x5 X |

Whenever x; < x,, and f(x}) < f(x;), Whenever x| < x,, and f(x) > f(x;),  Forevery.xjand xp, if f(x}) = f(xy),

fis increasing. f is decreasing. then fis constant.
(a) (b) (c)
Figure 9

NOTE  To decide whether a function is increasing, decreasing, or con-
stant on an interval, ask yourself, “What does y do as x goes from left to

right?”
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L Aello
SRS T There can be confusion regarding whether endpoi an interyy G
N be included when determining intervals over \\'t}ich a on is increa;inonuld
decreasing. For example. consider the graph of y X244 Sho\v: or
Figure 10. Is it increasing on [(). %) or just on (0,2)? In
3 The definition of increasing and decreasing allow: v include ) g4 "
it of the interval / over which this function is incrcasin;- bocause if we Jet X, :p::)n
I then f(0) < f(xz) whenever 0 < Xx. Thus, f(x) + 4 s i"CmaSing e
85 T g o (0. ). A similar discussion can be used to show that th:: n!xction is decreasino
R & S LR on (—=.0]. Do not confuse these concepts by saying that f both increageg an;
yeidi jlmmm o decreases at the point (0.0).
[0. =) and decreases on (==, 0). The concepts of increasing and decreasing functions apply to interyqjq of
Figure 10 the domain, not to individual points.

It is not incorrect to say that f(x) = x* + 4 is increasing on (0, &) ihere
are infinitely many intervals over which it increases. However, we generally
give the largest possible interval when determining where a function increggeg
or decreases. (Source: Stewart J., Calculus, Fourth Edition, Brooks/Cole
Publishing Company, p. 21.)

Determining Intervals over Which a Function Is Increasing,
Decreasing, or Constant
y Figure 11 shows the graph of a function. Determine the intervals over which the

function is increasing, decreasing, or constant.

SOLUTION We should ask, “What is happening to the y-values as the x-values
are getting larger?” Moving from left to right on the graph, we see the following:

e On the interval (—, 1), the y-values are decreasing.

e On the interval [ 1,3 ], the y-values are increasing.

e Onthe interval [3, =), the y-values are constant (and equal to 6).

Figure 11

Therefore, the function is decreasing on (—2, 1), increasing on [ 1,3 ], and
constant on [ 3, ).

Exercises

Decide whether each relation defines a function. See Example 1.
1. {(8,0),(5,7),(9.3).(3.8)} 4.
2. {(9,-2),(-3,5),(9,1)}

3. {(-12,5),(-10,3),(8.3)}

Decide whether each relation defines a function and give the domain and range. See
Examples 1-2 and Homework 1-2.

5. {(2,5).(3,7),(3,9),(5,11)} 6.
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7. gy y 8. Attendance at NCAA Women’s
0 0 College Basketball Games
1 -1
2 -2
- Season* Attendance
(x) v ()
9. :
A 2006 10,878,322
2007 11,120,822
4
2008 11,160,293
2009 11,134,738
l -3 l 0 ! Source: NCAA.
*Each season overlaps the starting
year (given) with the following year.
10. 11 ¥

.}.
£ T

~y

Decide whether each relation defines y as a function of x. Give the domain and range.
See Example 3.

12. y=x3 13. x=y* 14. y=—6x+4 15. x—y <4
16. y= -V 17. xy = —6 18. y=V7-2x l9.y=——75
s
20. Concept Check Give an example of a function from everyday life. (Hint: Fill in the
blanks: depends on . S0 is a function of )

Let f(x) = =3x + 4 and g(x) = —x* + 4x + 1. Find and simplify each of the following.
See Homework 3.

21. f(-3) 22. ¢(10) 23. f(—%) 2. g(_%>
25. g(k) 26. g(—x) 27. f(a+4) 28. f(3t—2)

For each function, find (a) f(2) and (b) f(—1). See Example 4.
29. f=1{(2,5).(3,9),(—1,11),(5,3)}

30. 31

f
E ¥ Y =f(x)

Y

An equation that defines y as a function of x is given. (a) Solve for y in terms of x and
replace y with the function notation f(x). (b) Find f (3). See Homework 4.

32, x—4y=8 3. y-3t=2+x 34, —2x+5v=9
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Concept Check Answer each question.

35. The figure shows a portion of the graph of f(x) = )
x2 + 3x 4 | and a rectangle with its base on the x-axis e
and a vertex on the graph. What is the area of the rect y=Jk)
angle? (Hint: f(0.2) is the height.)
1
“ 0203 x
36. The graph of Y; = f(X) is shown with a display 10

at the bottom. What is f(—2)?

-10

-10

In Exercises 37-38, use the graph of y = f(x) to find each function value: (a) £(=2),
(b) f(0),(c) f(1),and (d) f(4).See Example 4(d).

37 y 38. y

Determine the intervals of the domain for which each function is (a) increasing,
(b) decreasing, and (c) constant. See Example 5.

40. ) 41. ¥

(3,3)

(3, 1)

TR
B L I )

Equations of Lines and Linear Models
Cf

Point-Slope Form " The graph of a linear function is a straight line. We now
develop various forms for the equation of a line.

Figure 12 shows the line passing through the fixed point (x,y;) having
slope m. (Assuming that the line has a slope guarantees that it is not vertical.) Let
(x,y) be any other point on the line. Since the line is not vertical, x = X 7 0.
Now use the definition of slope.

= Point-Slope Form
= Slope-Intercept Form

® Vertical and Horizontal
Lines

Perpendicular Lines

\
‘ i ® Parallel and
‘ #® Modeling Data

® Solving Linear Equations - . -
in One Variable by m = Yo Slope formula
Graphing

mx—x)=y—y Multiply each side by x — xi.

___.4




tvesi e

Slope = m

Any other
point on
the line ) (xg, ¥y
(. Fixed point
= .

Figure 12

LOOKING AHEAD TO CALCULUS

A standard problem in calculus is to
find the equation of the line tangent to
acurve at a given point. The derivative
is used to find the slope of the desired
line, and then the slope and the given
point are used in the point-slope form
to solve the problem.

NG5 4+ WD 3 r

4/”.:¢ slopg o‘g
\ertic\e \wme

[E3 uuw\:_i\veA ‘

x

\"“— c—\C>\>e, o7
kohudd \.'me

¢quats O

Yo @ O~ ".,;\ are \"-if“, "“":—" Ly PT >
Q)
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il Y=Y =m(x—x;) Interchange sides.

This result is the point-slope form of the equation of a line.

Point-Slope Form

The point-slope form of the equation of the-line with slope m passing:
through the point (x,, y,) is

Voysmayp= m(x — xl).

EXAMPLE 1 BISTTIRI TS Point-Slope Form (Given a Point and the Slope)
Write an equation of the line through (—4, 1) having slope —3.
SOLUTION Here x; = —4,y, = 1,and m = —3.

Y= r=ilx —%i) Point-slope form

y—l=—3[x—(—4)] x=—4,y=1l.m=-3

y—1= —3(x ot 4) Be careful with signs.)

y=1 ==3x—=12 Distributive property (Section 1.2)
y=-3x—-11 Add 1. (Section 2.1)

m : Using the Point-Slope Form (Given Two Points)

Write an equation of the line through (—3,2) and (2, —4). Write the result in
standard form Ax + By = C.

NOTE The lines in Example 1 and Homework 1 both have negative
slopes. Keep in mind that a slope of the form —% may be interpreted as

either ' or 2.

G
Slope-Intercept Form ' As a special case of the point-slope form of the equa-
tion of a line, suppose that a line passes through the point (0, b), so the line has
y-intercept b. If the line has slope m, then using the point-slope form with x, = 0

and y; = b gives the following.

Y= 3= m(x = .\‘|) Point-slope form
y—b=m(x—0)

y=mx+b

x=0,y,=b
Solve for y.
Slope y-intercept

Since this result shows the slope of the line and the y-intercept, it is called the
slope-intercept form of the equation of the line.
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Slope-Intercept Form

The slope-intercept form of the equation of the line with slope and
y-intercept b is

'y = mx + b.

3¢\|44% 8 Finding the Slope and y-Intercept from an Equation of a Line

Find the slope and y-intercept of the line with equation 4x + Sy = —]0,
H SOLUTION Write the equation in slope-intercept form.
| i
- 4x + S5y =—10
v Y _
= =3 a0 5y = —4x — 10 Subtract 4x.
7 ik Bt
S y=——x —2 Divide by 5.
= : 5
y -
j “ zln b
u ) Q‘—i\) &‘ ‘3 The slope is — 3 and the y-intercept is —2
=1
= N
of 3 ¢ o \) \:s7/NOTE  Generalizing from Example 2, the slope m of the graph of
J=\ g

ol Toavend Ac+By=C
\j = 3% Q is —%,and the‘y-interceptbis%. 5 WX -intercept 3s T\’

L:] = my S 1:) m Using the Slope-Intercept Form (Given Two Points)

h j 2y g 1 Write an equation of the line through (1.1) and (2,4). Then graph the line
= X =2 { using the slope-intercept form.
—
\/em e <— W3 GRS Finding an Equation from a Graph /

Use the graph of the linear function f shown in Figure 13 to c.omplnte the
following.

(a) Find the slope, y-intercept, and x-intercept.

¥l (b) Write the equation that defines f.
0,
-3 3
=il ) SOLUTION
4+ y=Jflx)
I por (a) The line falls | unit each time the x-value increases by 3 units. Therefore,
) the slope is '—' = . The graph lntersects the y-axis at the point (0, —1)
Figure 13 and lnICI‘SLLl\ the x- axns at the point (—3,0). Therefore, the y-intercept is
—1 and the x-intercept is —3.
(b) The slope is m = — l; and the y-interceptis b = —1.
y=f(x)=mx+b Slope-intercept form

[
flx) = —3%=1 m=-Lb=-1
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‘t Veﬂical and Horizontal Lines = We have seen graphs of vertical and horizon-
r d tal lines elsewhere. The vertical line through the point (a, b) passes through all
T points of the form (a. y), for any value of y. Consequently, the equation of a ver-
i tical line through (a, b) is x = a. For example, the vertical line through (=3. 1)
- x has equation x = —3. See Figure 14(a). Since each point on the y-axis has x-
1 coordinate 0, the equation of the y-axis is x = 0.
L The horizontal line through the point (a, b) passes through all points of the
| B form (A b), for any value of x. Therefore, the equation of a horizontal line through
(a) (a.b)is y = b. For example, the horizontal line through (1, —3) has equation
y = —3. See Figure 14(b). Since each point on the x-axis has y-coordinate 0,

y the equation of the x-axis is y = 0.

Vertical
line (3. 1)

A i e © Equations of Vertical and Horizontal Lines
Horizontal
y==3 7T line A 5 7 - s
An equation of the vertical line through the point (a, b) is x = a.

[ (1,-3)
j An equation of the horizontal line through the point (a,b) is y = b.

(b)
Figure 14

Parallel and Perpendicular Lines = Since two parallel lines are equally “steep,”
- they should have the same slope. Also, two distinct lines with the same “steepness”
M= m, H— are parallel. The following result summarizes this discussion. ( The statement “p if
and only if ¢” means “if p then ¢ and if g then p.”)

)\ -
* ml = TY\_- ol MlM'L &=l Perpew,\[qp\n(
A

Parallel Lines
Two distinct nonvertical lines are parallel if and only if they have the same

slope.

When two lines have slopes with a product of —1, the lines are perpendicular.

Perpendicular Lines

Two lines, neither of which is vertical, are perpendicular if and only if their
slopes have a product of —1. Thus, the slopes of perpendicular lines, nei-

ther of which is vertical, are negative reciprocals.

For example, if the slope of a line is — 3. the slope of any line perpendicular
1(") = —1. (Numbers like —% and % are negative recip-

R _3(4
to it is 3, since —1(3 ‘ , ‘
rocals of each other.) A proof of this result is outlined in Exercises 28-34.

NOTE Because a vertical line has undefined slope, it does not follow
the mathematical rules for parallel and perpendicular lines. We intuitively
know that all vertical lines are parallel and that a vertical line and a horizon-

tal line are perpendicular.

e T
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O\Bmti‘n_

0) T
kﬁ—j\zh'\ K‘\Xs)
j—S:—z '

\/p \\) e L(l;é a—— Wila LN Finding Equations of Parallel and Perpendicular Lines

Write the equation in both slope-intercept and standard form of the line that
passes through the point (3, 5) and satisfies the given condition.
(a) parallel to the line 2x + Sy = 4

(b) perpendicular to the line 2x + 5y=4

= (ro3) (P eemisepass @ .
Ej < g - A summary of the various forms of linear equations follows.
- - - &
e — 2 ¢
-4 i 5 Equation Description When to Use
* j & e " +3) y=mx+b Slope-Intercept Form The slf)pc. and .y-imercepl can
< _— -_173\\3?% Yol Yo Slope is m. be easily identified and used
‘« 5 hoei® y-intercept is b. to quickly graph the equation.
—g— , & Al j _ 3 This form can also be used to
—_— find the equation of a line given
Q > a point and the slope.

n. 6j = 3\ > Stawdard fore==

Y — 1 = m(x — x,) | Point-Slope Form This form is ideal for finding the
Slope is m. equation of a line if the slope
Line passes through (x;,y1)- and a point on the line or two
points on the line are known.

T _6_ Ax + By =C Standard Form The x- and y-intercepts can
2 (If the coefficients and be found quickly and used to
\"] L constant are rational, then graph the equation. The slope
\j 1= m ( A, B, and C are expressed must be calculated.
X~x ‘) as relatively prime integers,
. L ( with A = 0.)
Z Ne= 5) Slopeis —5 (B #0).
Y = LD € = 15 x-interceptis § (A # 0).
Ej L s y-intercept is % (B #0).
o A
T XK =5 <l \ = Horizontal Line If the graph intersects only the
2 = Slope -lut .0Z Slope is 0. y-axis, then y is the only vari-
(j '~ y-intercept is b. able in the equation.
T—=—X = =S .
p = Ix=a Vertical Line If the graph intersects only the
14 _ 5 ~ Slope is undefined. x-axis, then x is the only vari-
e N == x<intercept is a. able in the equation.

-
"+ 1Y . -5, S dard Rurue-
7l «—  ModelingData = We can write equations of lines that mathematically
¥ describe, or model, real data if the data change at a fairly constant rate. In this
case, the data fit a linear pattern, and the rate of change is the slope of the line.

Guidelines for Modeling

Step 1 Make a scatter diagram of the data.

Step 2 Find an equation that models the data. For a line, this involves select-
ing two data points and finding the equation of the line through them.
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Concept Check Match each equation in Exercises 1-2 to the correct graph in A-D.

i 4 3
L_\'—I.\ + 2 Z:_\‘—(—])=5(.l‘—])

A.

T

—
(0, 4)

B i ¢

s
e
T
y

In Exercises 3—13, write an equation for the line described. Give answers in standard
Jorm for Exercises 3-7 and in slope-intercept form (if possible) for Exercises 3—1 3. See
Examples 1-2 and Homework 1-2.

3. through (1,3), m = =2 4. through (=5.4),m = -3

5. through (—8.4), undefined slope 6. through (5, —8),m =0
7. through (—1,3) and (3.4) 8. x-intercept 3, y-intercept —2

9. vertical, through (—6,4) 10. horizontal, through (=7,4)

11. m=5,b=15 12. through (—2,5) having slope —4

13. slope 0, y-intercept %

14. Concept Check Fill in each blank with the appropriate response: The line x +2 =0

Lt have a y-intercept.
(does/does not)
. The line 4y = 2 has y-intercept

has x-intercept

The slope of this line is
(0/undefined)

It have an x-intercept. The slope of
(does/does not)

this line is

(0/undefined)

Give the slope and y-intercept of each line, and graph it. See Example 2.

15. y=3x— | 16. 4x -y =1 17. 4y = =3x
3
18. x + 2y = —4 19; i~ o =120

Connecting Graphs with Equations The graph of a linear function [is shown. (a) Identify
the slope, y-intercept, and x-intercept. (b) Write the equation that defines f. See

Example 3.

-
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In Exercises 23-26, write an equation (a) in standard form and (b) in slope- ”"(”t‘(pt
form for the line described. See Homework 3.

23. through (—1.4), parallel to x + 3y =5

24. through (1.,6), perpendicular to 3x + 5y = |
e 2

(1.
25. through (41 i parallcllo y=-5 = 3=
Jecu Yasd 4_{ ¥ X '
\NtJ (ot 26: through (=5 (6),. perpendicularto x = =2 — M =(
27. Find & so that the line through (4, —1) and (k,2) is
(a) parallel to 3y + 2x = 6; (b) perpendicular to 2y — Sx = 1.

Relating Concepts

For individual or collaborative investigation (Exercises 28-34)

In this section we state that two lines, neither of y
which is vertical, are perpendicular if and only if
their slopes have a product of —1. In Exercises
28-34, we outline a partial proof of this for the case
where the two lines intersect at the origin. Work
these exercises in order, and refer to the figure as
needed.

By the converse of the Pythagorean theorem, if
[d(0.P)]* + [d(0.0)]* = [d(P. ) ]2,
then triangle POQ is a right triangle with right angle at O.
28. Find an expression for the distance d(0, P).
29. Find an expression for the distance d(0, Q).
30. Find an expression for the distance d(P, Q).

31. Use your results from Exercises 28-30, and substitute into the equation from
the Pythagorean theorem. Simplify to show that this leads to the equation

=2mimax1x2 = 2xx = 0.

32. Factor —2x,x; from the final form of the equation in Exercise 31.

: 33. Use the property that if ab =0 then @ =0 or b = 0 to solve the equation in
5 Exercise 32, showing that mym, = —1,

34, State your conclusion based on Exercises 28-33,
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Function Operations and Composition

Dollars (in thousands)

g Avithmetic g Arithmetic Operations on Functions Figure 15 shows the situation for a
Functions e company that manufactures DVDs. The two lines are the graphs of the linear

g The Difference Quotien functions for revenue R(x) = 168x and cost C(x) = 118x + 800, where x is

s mg”";:’: of fumsSons the number of DVDs produced and sold, and x. R(x), and C(x) are given in
and Dom

thousands. When 30.000 (that is, 30 thousand) DVDs are produced and sold,
profit is found as follows.

P(x) =R(x) — C(x)  Peofit function
P(30) = R(30) — C(30) Let x = 30.
T(x) = 5040 — 4340 R(30) = 168(30); C(30) = 118(30) + 800
P(30) =700 Subtract.

Thus, the profit from the sale of 30,000 DVDs is $700,000.
The profit function is found by subtracting the cost function from the revenue
> function. New functions can be formed by using other operations as well.

10 2I0 30 40
DVDs (in thousands)

Figure 15 Operations on Functions and Domains

Given two functions f and g, then for all values of x for which both f(x) and
g(x) are defined, the functions f + g, f — g, fg,and g are defined as follows.

§ (f + g)(x) = f(x) + g(x) Sum
Dﬁ n T% (f g g)(x) = f(x) S g(x) Difference
(fg)(x) = f(x) : g(x) Product
ey TAVROE i 6)) b
D‘é m[p_\)q —-{ r/\\f—; T <—" (g)(x) = g(x) ’ g(X) #F0 Quotient
- The domains of f + g, f — g, and fg include all real numbers in the

intersection of the domains of fand g, while the domain of é includes
those real numbers in the intersection of the domains of f and g for which
g(x) # 0.

NOTE The condition g(x) # 0 in the definition of the quotient means

that the domain of (g)(x) is restricted to all values of x for which g(x) is
not 0. The condition does not mean that g(x) is a function that is never 0.

SIS Using Operations on Functions R C—

Let f(x) = x>+ 1 and g(x) = 3x + 5. Find each of the following.

@ (F+g)(1) M (f—-8)(-3) @ (fo)(5) @ (Z{)(O)
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SOLUTION

(a) First determine f(1) = 2 and g(1) = 8. Then use the definition.

(f+g)(l):f(l)"'g’(l) (f+g2)x) f(x) + g(x

= 10 Add.
®) (F=g)(=3)=f(-3) —g(-3) (F- )W = f(x) - g(x
=10 — (—4) f(=3) = (=3 + ;g 3(=3) 4 «
=14 Subtract.
J f(0) ;
© (£2)(5) = £(5) - &(5) @ (;)“” “g0) (@=L
= [5%+F 1)3%5 +5) C+1  f)= e
e AN X<+
=26 20 3(0) +5 g(x)=3c+s
=520 1
. 5’ Simplify

m Using Operations on Functions and Determining Domains

Let f(x) =8x —9 and g(x) = V2x — 1. Find each function in (a)—(d).

NeEM

Dl
@ (400 ® (90 © 6@ @ (D
(e) Give the domains of the functions in parts (a)—(d). ‘

Ne ™M (mporHanta— m Evaluating Combinations of Functions
NV |

If possible, use the given representations of functions f and g to evaluate \

(F+8)@). (F-g)(-2). (fo)(1), and (f)(m

(@) v ® x| 50| s
9 / -2 -3 undefined

0 1 0

= 1 3 1

2 4 9 2

y=g(x)

© f(x)=2x+1, gx)="Vx

y SOLUTION
(a) From the figure, repeated in the margin, f(4) = 9 and g(4) = 2.

(F+g)(4)=f(4)+g(4) (f+g)(x)=flx)+gl)

=0 + 2 Substitute

= || Add.
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For (f = ¢)(-2), although f(=2) = =3, g(—2) is undefined because

—2 is not in the domain of g. Thus (f — &)(—2) is undefined.
The domains of f and g include 1.

(£&)(1) = £(1) - 8(1) (fo)(x) = f(x) - 8(x)
=3 ] Substitute.
=3 Multiply.
The graph of g includes the origin, so g(0) = 0. Thus (ﬁ)(o) is undefined.
(b) From the table, repeated in the margin, f(4) =9 and g(4) = 2.
(F+8)(4) = f(4) +(4) (S +8)x) = f(x) + 8(x)
=9+2 Substitute,

=11 Add.
In the table, g(—2) is undefined, and thus (f — g)(—2) is also undefined.
(Fe)(1) = f(1) - g(1)  ()(x) = f(x) - 8(x)
=3-1 f(1)=3and g(1) =1
=3 Multiply.

The quotient function value (f)(O) is undefined since the denominator,
£(0), equals 0.

(c) Using f(x) =2x+ 1and g(x) = Vx, we can find (f+g)(4)and (fg)(1).
Since —2 is not in the domain of g, (f — g)(—2) is not defined.

(f+8)(4) = f(4) + g(4) (f8)(1) = f(1) - g(1)
=(2-4+1)+Va =2-1+1)-V1
=9+2 =3(1)
=11 =3

({)(0) is undefined since g(0) = 0.

-~

The Difference Quotient = Suppose the point P lies on the graph of y = f(x)
as in Figure 16, and suppose / is a positive number. If we let (x, f(x)) denote the
| coordinates of P and let (x + A, f(x + h)) denote the coordinates of Q, then the

line joining P and Q has slope as follows.

m= Slope formula

(x+h) —~x
+ h) - f(x
- A J) s ), h # 0 Difference quotient
h
Figure 16 This boldface expression is called the difference quotient.

Figure 16 shows the graph of the line PO (called a secant line). As 4
approaches 0, the slope of this secant line approaches the slope of the line tangent
to the curve at P, Important applications of this idea are developed in calculus.
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HWO  ae— m Finding the Difference Quotient
Let f(x) = 2x* — 3x. Find and simplify the expression for the difference qQuotien;
{(.\‘ +h) - f(_ﬁ
h '

— {
CAUTION In Home Work 2, notice that the expression f(x + h) is not
equivalent to f(x) + f(h).

: =2(x+ h)?2 — 3(x + h) = 2x* + 4xh + 2h% — 3x -
LOOKING AHEAD TO CALCULUS flx+h) =2(x+h) (x+ h) = 2x ‘ X+ 2h® = 3x - 34
The difference quotient is essential in f(\) + f(h) = (2.\‘: " 3.\') + (2/12 = 3/1) =2x*—3x+2h% - 3h

the defimition of the derivative of a . 0 i
© o These expressions differ by 4.x/1. In general, for a function f, f(x + h) is

not equivalent to f(x) + f(h).

function in calculus. The derivative

provides a formula, in function form,

for finding the slope of the tangent line

to the graph of the function at a given

" ” P . p =
point. Composition of Functions and Domain = The diagram in Figure 17 shows a
Toillustrate. itis shown in caleulus £y petion f that assigns to each x in its domain a value f(x). Then another func-
.y M tion g assigns to each f(x) in its domain a value g(f(x)). This two-step process

i o st "(x) = 2x ;
is given by the function f'(x) = 2. takes an element x and produces a corresponding element g(f(x)).

Now, f'(0) = 2(0) = 0, meaning that
the slope of the tangent line to f(x) = b
‘ x?+ 3 at x =0 is 0, which implies i

that the tangent line is horizontal. If _
you draw this tangent line, you will Z Funcuon\ Z S(x) Fu"ﬂlo"\ j
see that it is the line y = 3, which is Input x f 3 -4 Output g( f(x))

&

indeed a horizontal line.

Figure 17

The function with y-values g(f(x)) is called the composition of functions g |
and f, which is written g o f and read “g of f.” ‘

Composition of Functions and Domain

If f and g are functions, then the composite function, or composition, of g
and f is defined by

(=N = (). D, =T
The domain of g o f is the set of all numbers x in the domain of f such that
f(x) is in the domain of g. (< e

& \k\ flea) 7 TR D,

)

As a real-life example of how composite functions occur, consider the
following retail situation:

A $40 pair of blue jeans is on sale for 25% off. If you purchase the jeans before

noon, the retailer offers an additional 10% off. What is the final sale price of the {
blue jeans? 1
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You might be tem

ted to say t i
$40(0.35) p ay that the jeans are 35% off and calculate

= $14, giving a final sale price of
$40 — $14 = $26

for lh§ Jeans. Thi.? is not correct. To find the final sale price. we must first find
the price after taking 25% off and then take an additional 10% off tha price. See

Figure 18.
f(x) =x-0.25x g(x)=x-0.10x
Function f Function g
Input original takes 25% takes an Output sale
price off. additional pricc
$30 10% off.

$40 wm— — > => — 527
[(40) 8(30)
=40-0.25(40) =30-0.10(30)
=40-10 =30-3
= =27

(8 ° f)(40) = g(f(40)) = g(30) = 27
Figure 18

Evaluating Composite Functions
Letf(x)=2x—landg(x)=x‘_‘,. '
(@ Find (f°g)(2).

SOLUTION

(b) Find (g° f)(—3).

(a) First find g(2):

Now find (f° g)(2).
o (fee)(2) = £(5(2)

S
H

Definition of composition

= j(4)
=2(4) — 1

See above.

Definition of f

“”P:( Lc‘.kw-

=7
() (g f)(—3) =g(f(-3))
=g[2(-3)-1]
=g(-7)

=7 =1
I
2

Simplify.
Definition of composition

f(=3)=2(-3) -1

4 4
=-—8, or —— Simplify.

Given that f(x) = Vx and g(x) =
(a) (feg)(x) and its domain

WTITTEITEN etermining Composite Functions and Their Domains

]

4x + 2, find each of the following.
(b) (ge f)(x) and its domain
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m Determining Composite Functions and Their Domains

Given that f(x) = ; 6 5 and g(x) = '; find each of the following.

(@) (fe g)(x) and its domain ® (g° f)(x) and its domajp
SOLUTION
1

@ (Fo0)) = fa) =7(L) s -1

6

; =—— fi5)=z2 1
1-3
6x Multiply the numerator and denominator

1 —3x Dby x. (Section 1.5)

The domain of g is all real numbers except 0, which makes g(x) undefined.
The domain of f is all real numbers except 3. The expression for g(x),
therefore, cannot equal 3. We determine the value that makes g(x) = 3 and
exclude it from the domain of f o g.

-=3 The solution must be excluded
X

1 =3x Multiply by x.

1
X = 5 Divide by 3.

Therefore, the domain of f ° g is the set of all real numbers except 0 and ';

|
written in interval notation as i

LOOKING AHEAD TO CALCULUS 4
|

|

Finding the derivative of a function (_ &, 0) U <0‘ l> U (l~ 8 )

in calculus is called differentiation. 3 2]

Il

such as h(x) = (3x + 2)*, we (b) (g " f)(\) = g(f(r))

interpret h(x) as (f° g)(x), where X=3
g(x) =3x+ 2 and f(x) = x*. The | i
chain rule allows us to differentiate r3 Note that this is meaningless if x = 3.

To differentiate a composite function
6
8

composite functions. Notice the use of v

3
the composition symbol and function x—3 l

notation in the following, which comes 6 a b a= a

from the chain rule.
The domain of f is all real numbers except 3, and the domain of g is all

real numbers except 0. The expression for f(x), which is ';"93-, is never
zero, since the numerator is the nonzero number 6. Therefore, the domain of
g © f is the set of all real numbers excepr 3, written

(—,3) U (3, »).

If h(x) = (f°g)(x), then
h'(x) = f'(g(x)) - g'(x).

| NOTE  In a situation like Example 4(b), it often helps to consider
| the unsimplified form of the composition expression when determining the
domain.
|

Showing That (g © f)(x) Is Not Equivalent to (£ g)(x) r‘

Lc‘.f('-") =4x+ 1 and g(x) = 2x* + Sx. Show that (g f)(x) # (f° g)(x):
(This is sufficient to prove that this inequality is true in general.)

44
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As Home Work 4 shows, it is not always true that f o g = g ° f. In fact,

the composi ions .
functionf ite functions fo g and go f are equal only for a special class of

In calculus it is imes $ e
W e $ 1L 1s sometimes necessary to treat a function as a composition of
nctions. The next example shows how this can be done.

EXAMPLE 5 Findigng» Functions That Form a Given Composite
Find functions f and g such that | |

(fo8)(x) = (x> — 5)3 — 4(x2 = 5) + 3.

SOLUTION‘ Note the repeated quantity x2 — 5. If we choose g(x) =x*—5 and
f(x) = x* = 4x + 3, then we have the following.

(fe g)(x) = f(g(x)) By definition
= f(x>—35) g(x) =x2-5
=(x2=53-4(x2=5)+3 Usethe rule for f.

There are other pairs of functions f and g that also satisfy these conditions. Here
is another such pair.

fx)=(x—=5)%-4(x-5)+3 and g(x)=x2

l!l Exercises l

Let f(x) = x>+ 3 and g(x) = =2x + 6. Find each of the following. See Example 1.

L(F+00) 20-91) 3 (o)) s (Den
: For the pair of functions defined, find (f + g)(x). (f — g)(x), (fg)(x), and (é)(\)

Give the domain of each. See Homework 1.

5. f(x) =3x+4, g(x)=2x—5 6. f(x)=2x2-13x, g(x) =x2—x+3

7. f(x) = Vax—1, g(x) =%

Associate’s Degrees Earned The graph shows Associate’s Degrees Earned
the number of associate’s degrees earned (in y
thousands) in the United States from 2000
: : 800
through 2008. M(x) gives the number of degrees Tx)
earned by males, F(x)gives the number earned g,l Z 600
by females, and T(x) gives b/lw‘mlulv number for 2 é o Flo)
both groups. Use the graph in Exercises 8-9. E -
M(x)
> g Gl
8. Estimate M(2004) and F(2004), and use  § = 20
: o Z
your results to estimate 7(2004).
£ 2000 2002 2004 2006 2008
9. Use the slopes of the line segments to Vi
decide in which period (2000-2004 or Source: U.S. National Center for

2004-2008) the total number of associate’s Education Statistics.

degrees earned increased more rapidly.
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Polynomial and Rational
Functions

Polynomial functions are used as
models in many practical applications
including the height of a thrown ball,
the volume of a box, and, as seen

in the photo here, the trajectories of
water spouts.

Quadratic Functions and
Models

Synthetic Division

Zeros of Polynomial Functions

Chapter objectives

* Formulate and analyze different
forms of Quadratic Functions

Calculate Synthetic Division

Express the Zeros of Polynomial
Functions

Use theorems to find the value
of the remainder of polynomials
division
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l!l Quadratic Functions and Models ‘

® Quadratic Functions A polynomial function is defined as follows.
® Graphing Techniques ’

® Completing the Square

® The Vertex Formula Polynomial Function
s Maliele A polynomial function f of degree 7. where n is a nonnegative integer, i
given by

F(2) = " + Guyx™™l + oo+ aux + a,

where a,, @p-1, ..., a1, and ao are real numbers, with a, # 0.
LOOKING AHEAD TO CALCULUS

In calculus, polynomial functions are

used to approximate more complicated When we are analyzing a polynomial function, the degree n and the leading
functions. For example, the trigono- coefficient a, play an important role. These are both given in the leading term
metric function sin x is approximated a,x". The table provides examples.

by the polynomial

et 5 seip | mperted = Polynomial Kanction: |/ Function Name | Degree n | eading Coetmicent a,
fx)=2 Constant 0 2
JG =Ry Linear 1 5
& (x) o= Quadratic 2 4
f(x)=2x>=4x+5 Cubic 3 2
£(x) = x* + V2xd = 3x2 Quartic 4 1

The function f(x) = 0 is the zero polynomial and has no degree.

Quadratic Functions = Earlier we discussed constant and linear polynomial
functions. Polynomial functions of degree 2 are quadratic functions.

‘ Quadratic Function /

A function f is a quadratic function if

-f(x) = ax? + bx + Cs-—‘?@\e\%rcuq

where a, b, and ¢ are real numbers, with a # 0. 40“‘** -

The simplest quadratic function is

f(x) — x2, Squaring function

as shown in Figure 1. This graph is a
parabola. Every quadratic function
defined over the real numbers has a
graph that is a parabola,

The domain of f(x) =42 is
(==, %), and the range is [0, ). The
lowest point on the graph occurs at the S
origin (0,0). Thus, the function decreases on the interval (—2,0 ] and inerences
on the interval [0, ). (Remember that these intervals indicate x-values.)

0,00
domain (=ee, ©) +

Figure 1
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[ (){:;;m X !’arabolas are symmetric with respect to a line (the y-axis in Figure 1). This
\‘cr’tt‘\ Axis !me is the axis of Symmetry, or axis, of the parabola. The point where the axis
| Intersects the parabola is the vertex of the parabola. As Figure 2 shows, the vertex

of a parabola that opens down is the highest point of the graph, and the vertex of a

parabola that opens up is the lowest point of the graph.

| |
| I
| |
| [

e e Graphing Techniques ' The graphing techniques may be applied to the graph

Opens >
df\“r; ' O'f f(x) = x? to give the graph of any quadratic function. Compared to the ba-
sic graph of f(x) = x2, the graph of F(x) = a(x — h)> + k has the following

characteristics.
"W(x) = a(x =P +k Shedas)
7 Cfor Vo

A e, A

® Opensupifa >0 Horizontal shift: Vertical shift:

Figure 2

® Opens down if @ < 0 ® hunits right if 4 > 0 ® kunitsupif k > 0

® Vertically stretched * |h| units leftif 2 < 0 e |k| units down if £ <0
(narrower) if |a| > 1
¢ Vertically shrunk

(wider) if 0 < [a| < 1

: E _ e | e VP
2 GVIHISE ] Graphing Quadratic Functions Mt
Graph each function. Give the domain and range. Yo
- Sac (O
@ f(x)=x2—4x-2
(b) g(x) = —4x?(and compare to y = x> and y = 1x2)
t%,,/gkab;—,—r%‘—é/ﬁ 4-(¢) F(x)=—3(x—4)?+ 3 (and compare to the graph in part (b))

v\ )
e SOLUTION

(a) See the table with Figure 3. The domain of f(x) = x* — 4x — 2is (—,®),
the range is [ —6, ), the vertex is (2,—6), and the axis has equation x = 2.

X f(x) ) flx) =x"=-4x -2 c - aL—q k"\f*
3 + >

-2 34
_5 -+

P ows] g

|
)

Lo RO

_6 -+ .
Js P WL SRR ol &5,\»—&)‘*’
—g -2\ M‘Eﬂkﬁ L
(’ (}5) qﬁ/‘}
_(,‘*— '(2. o8 A ,\9‘:‘23 rZ\/ \d)-—‘v ;_),.2)

Figure 3

LI ROV S Y )
————— Nt ———

2 (b) Think of g(x) = —3x2as g(x) = ~(5x?). The graph of y = 1x2 is a wider

P ¢ § L o) . '
: version of the graph of y = x?, and the graph of g(x) = — ( 5,\--) is a reflection
of the graph of y = %.\'3 across the x-axis. See Figure 4.The vertex is
(0,0), and the axis of the parabola is the line x =0 (the y-axis). The
domain is (—,%), and the range is (—,0].

Figure 4
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(¢) Notice that F(x) = — 5 (x—4)*+3is related to g(x) = B %"‘: from part (b).
The graph of F(x) is the graph of g(x) translated 4 units to the right and
3 units up. See Figure 5. The vertex is (4, 3) and the axis of the parabola is
the line x = 4. The domain is (—2,%), and the range is (—=,3 .

Figure 5

In general, the graph of the quadratic function
f(x) =a(x—h)* +k

is a parabola with vertex (h, k) and axis x = h. The parabola opens up if a is
positive and down if a is negative. With these facts in mind, we complete the

4 square to graph the general quadratic function

Completing the Square

> T, Vv S\ a5 \=\s "
( 42 sy \\, AP QB \ i,,’:\),z\- » f(x) = ax®+ bx +c.
RGN e T . > e L:M /L N\ o My ﬂ“_f:I" Q) “:5\
= (x* ,(“' a y Graphing a Parabola bﬁ.’Comﬁl‘etmg the Square (a = 1)
= \X -eX +_"‘_\ —%U4 T ' il
5 7 Graph f(x) =x*—6x+7b leting the square and locating the verte
v{'/ 7z ¥ 7 ,Graph f(x) =x X y completing the square ¢ cating ertex.
(4) - ( « ~'$\ -2 /f) /)" Find the intervals over which the function is increasing or decreasing. (3,-%)
Netlew s (3 o) " Ye h- - & )@ e 2 pixYed . Ao st o8 08, 83
- 2, \, ~
Gxis of < NOTE In Homiework 1 we added and subtracted 9 on the same side of the 2 R
3 "1"\ * Xed equation to complete the square. This differs from adding the same numberto =™’ Feo)
L \/l each side of the equation, as when we completed the square in Section 1.3.
’ Since we want f(x) (ory) alone on one side of the equation, we adjusted
g that step in the process of completing the square.

30\ [JE&8 Graphing a Parahola by Completing the Square (a # 1)

Graph f(x) = =3x? — 2x + | by completing the square and locating the vertex.
Identify the intercepts of the graph.

SOLUTION To complete the square, the coefficient of x2 must be 1.

f(\) = _3<"-2 B 3\ ) 44 Factor =3 from the first

two terms

)

Zee 1) ) = (1) =4.somd
3 and subtract ',

f(\) = —3(.(2 + z‘, e l = g l o Distributive property
379 9 (Section 1.2)

I )3 i Be careful here.

= Factor and simplify.

The vertex ic [ —L 4) - : s : 5
[he vertex is ( 343 ) Ihe intercepts are good additional points to find. The

y-intercept is found by evaluating f(0)

J(0) = -3(0)? - 2000+ 1 =1 <«—They intercept is 1.
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The x-intercepts are found by setting f(x)

O="=gx2 rruy

equal to 0 and solving for x.

Set f(x) = 0.
0=3x2+2y—1 Multiply by —1.
0=(3x- 1)(x+ 1) Factor.
A= % of. =] Zero-factor property

(Section 2.3)

Therefore, the X-intercepts are '; and —1. The graph is shown in Figure 6.

v

I J The y-intercept is 1.
» The x-intercepts

1
are —1 and 3.

S(x)=-3x2-2¢ +1

fx) = —J(x ¥ %)Z .

Figure 6

NOTE It is possible to reverse the process of Example 2 and write the
quadratic function from its graph if the vertex and any other point on the
graph are known. Since quadratic functions take the form

f(x) =a(x— h)? +k,

substitute the x- and y-values of the vertex, ( —~ % i) for 4 and k, respectively.

= fe-(-]4

12N25 -4 _
f(x)=al x+ 5 + 3 Simplify.

Let /I:—;ilnd/\':;.

Now find the value of a by substituting the x- and y-coordinates of any other
point on the graph, say (0, 1), into this equation and solving for a.

- 1\ 4
e I =(1<0+—> + = Letx=0andy=1.
A 3 3
“olle s
. | 4 )
l=a 5 & 5 Square.
== l = %u Subtract :
3
a=-3 Multiply by 9. Interchange sides.

Verify in Example 2 that the vertex form of the function is

2 4
f(x) = —3(,\' + %) + 3

In the Exercise set, problems of this type are labeled Connecting Graphs with

Equations.
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The Vertex Formula | We can generalize the earlier work to obtain a formy],
LOOKING AHEAD TO CALCULUS for the vertex of a parabola.

An important concept in calculus is the yener: atic fi
f(.\') =axt+ bx+c General quadratic form

definite integral. If the graph of f lies

above the x-axis, the symbol b : =
. . =al x2+ =x +c Factor a from the first two terms.
/. a ri(b\12 b
[ flx)dx ! < Add L:(',; )| = 35 inside the pa-
- s eth b? b* >ntheses. Subtract a( ;
represents the area of the region above = (,<,l;> +—x+—)t+c—a :1 > rentheses. : ctaliz)
- 7/ 1 N » - » 2P
the x-axis and below the graph of f a da-, outside the parentheses.
from x = a to x = b. For example, in b jz b? d lif
: - (T +c—— Factor and simplify.
Figure 6 with = a\x S :
g 2a / da
f(x)=-3x2—2x+1, y
b 2 4dac — b* Vertex form of
a=—1,and b =1, calculus provides x)=a|l x—\|—— SRR f(x) = a(x — h)> + k
3 p f( ) 2a, 4a flx (

the tools for determining that the area -

enclosed by the parabola and the x-axis h k

is _, (square units). : .
Thus, the vertex (/. k) can be expressed in terms of a, b, and c. It is not neces-

. . . ariE =L b
sary to memorize the expression for k, since it is equalto f(h) = f ( - z—a),
The following statements summarize this discussion.

Graph of a Quadratic Function
The quadratic function defined by f(x) = ax? + bx + ¢ can be written as
y=f(x)=a(x—h?+k a#0,

b
where h=— ?_ and k= f(ll). Vertex formula
za

The graph of f has the following characteristics.

1. It is a parabola with vertex (/. k) and the vertical line x = h as axis.

2. Itopens up if @ > 0 and down if a < 0.

3. It is wider than the graph of y = x2 if |a| < 1 and narrower if |a| > 1.
4. The y-intercept is f(0) = c.

5. The x-intercepts are found by solving the equation ax* + bx + ¢ = 0.

~=2p + /b2 — dac

o “If b> — 4ac > 0, the x-intercepts are T
o “If b> =4dac = 0, the x-intercept i —2%. =\
e e If b%> =4ac < 0, there are no x-intercepts. = &
o 2(2) .

Ke {2.(1\1 AW v
. W Using the Vertex Formula
1S
= Find the axis and vertex of the parabola having equation f(x) = 2x* + 4x + 5.
\}e(\&/\. (\/ \\) ———
(7= 4~ Quadratic Models ~ Since the vertex of a vertical parabola is the highest or

QNS = yzlh - : ;
g d | vzl lowest point on the graph, equations of the form
y=ax2+ bx + ¢

are important in certain problems where we must find the maximum or mini-
mum value of some quantity.

w > » . . . 3
When a < 0, the y-coordinate of the vertex gives the maximum value of y.

L > G . . i el
When a = 0, the y-coordinate of the vertex gives the minimum value of y.
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The x-coordinate of the vertex t

€0 . ells where the maximum or minimum value occurs.
If air resistance is

neglected, the height s (in feet) of an object projected

dlrcctlyl upward from an initjal height s, feet with initial velocity v, feet per
second is

S() = =162 + vyt + 5,

\V!lcre 1is l.hc number of seconds after the object is projected. The coefficient
of (lhi}l 1S, —16) is a constant based on the gravitational force of Earth. This
constant is different on other surfaces, such as the moon and the other planets.

m Solving a Problem Involving Projectile Motion

A ball is projected directly upward from an initial height of 100 ft with an initial
velocity of 80 ft per sec.

(a) Give the function that describes the height of the ball in terms of time 7.

(b) After how many seconds does the ball reach its maximum height? What is
this maximum height?

(¢) For what interval of time is the height of the ball greater than 160 ft?

(d) After how many seconds will the ball hit the ground?

SOLUTION

(a) Use the projectile height function with vy = 80 and so = 100.
s(1) = =162 + vyt + 5,
s(r) = —161> + 80t + 100

(b) Since the coefficient of 12 is —16, the graph of the projectile function is a
parabola that opens downward. Find the coordinates of the vertex to determine

the maximum height and when it occurs. Let ¢ = —16 and b = 80 in the vertex
formula.

et D & 2

~2a  2(-16) ‘-

s(f) = —16¢% + 80¢ + 100
5(2.5) = —16(2.5)* + 80(2.5) + 100
5(2.5) =200
Therefore, after 2.5 sec the ball reaches its maximum height of 200 ft.
(¢) We must solve the quadratic inequality
—16¢2 + 80r + 100 > 160.
—161> + 80t — 60 > 0 Subtract 160.

412 —-20t+ 15 <0 (Section 2.4)
Divide by —4; reverse the inequality symbol.

Use the quadratic formula to find the solutions of 4/% — 207 + 15 = 0.

_ —(-20) * V(-20)* - 4(4)(15)

: 2(4) (Section 2.3)

s ¢ 002 i0p = 4.08

~5+V10
R

R




e LA N ot T 0 i o PO T N TN i *
122 Introduction to Mathematics

These numbers divide the number line into three intervals: (—x_()_()z).
(0.92,4.08). and (408, *). Using a test value from each interval shows
that (0.92,4.08) satisfies the inequality. The ball is more than 160 ft aboye

the eround between 0.92 sec and 4.08 sec.

(d) The height is 0 when the ball hits the ground. We use the quadratic formula

to find the positive solution of

—16¢2 + 80t + 100 = 0.

Here.a = —16,b = 80,and ¢ = 100.

80 + /807 — 4(—16)(100)
t~ =B84 or 1= 604
l\‘ﬂ'\‘(l

The ball hits the ground after about 6.04 sec.

Exercises

In Exercises 14, you are given an equation and the graph of a quadratic function. Do
each of the following. See Examples 1-2 and Homework 1-2.

(a) Give the domain and range. (b) Give the coordinates of the vertex.
(¢) Give the equation of the axis. (d) Find the y-intercept.
(e) Find the x-intercepts.

3. Graph the following on the same coordinate system.

(@) y=x? (b) y=3x? (¢) y= l.\'3
-..3
(d) How does the coefficient of x? affect the shape of the graph?

4. Graph the following on the same coordinate system.

(@ y=(x—-2)? () y=(x+1)® (¢) y=(x+3)?
(d) How do these graphs differ from the graph of y = x2?

({/'(1/)/1 each quadratic function, Give the (a) vertex, (b) axis, (¢) domain, and (d) range.
I/l«'fi (/4‘/4‘/1:1(1::‘ (e) the interval of the domain for which the function is increasing and (f)
the interval for which the function is decreasing. See Examples 1-2 and Homework 1-2-
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3. fx) = (x-2)2 6. f(x)=(x+3)2—4
I
l-f(x)=—§(x+1)2—3 8. f(x)=x2—2x+3
9. f(x) =x?~10x + 21 10. f(x)=—2x%—12x—16

|
11. f(x) = —§x2—3,r—%

Concept Check The figure shows the graph of a quadratic function y = f(x). Use it to
work Exercises 12-13.

12. What is the minimum value of f(x)?

13. How many real solutions are there to the equation f(x) =1?

Concept Check Several possible graphs of the quadratic function
f(x)=ax®+ bx+¢

are shown below. For the restrictions on a, b, and ¢ given in Exercises 14-16, select the
corresponding graph from choices A~F. (Hint: Use the discriminant. See Section 2.3 if
necessary.)

14. a < 0; b2 —4ac=0 15. a < 0; b> —4dac <0

16. a > 0; b2 —4ac > 0

A \
D: .Y B ) F y
I /

Connecting Graphs with Equations In Exercises 17-18, find a quadratic function f
whose graph matches the one in the figure. (Hint: See the Note following Example 2.)

18. Y

(1,4

3 0,2)
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Synthetic Division -

m Synthetic Division

m Evaluating Polynomial
Functions Using the
Remainder Theorem

m Testing Potential Zeros

1 can be written using multiplication, even when the division

A division probler : :
division algorithm illustrates this.

involves polynomials. The

Division Algorithm
be polynomials with g(x) of lesser degree than f(x)

Let f(x) and g(x) Y !
xist unique polynomials g(x)-and

and g(x) of degree 1 or more. There e

r(x) such that
F(x) = g(x) - g(x) + r(x),

where either r(x) = 0 or the degree of r(x) is less than the degree of g(x).

For instance, we saw in Example 6 of Section 1.3 that

12x — 158

35t — 267 = 150 _
_ x2—4

- = = 2.+ (Section 1.3)

xt—4

We can express this result using the division algorithm.

363 — 2x2 — 150 = (x2 —4)(3x — 2) + 12x — 158
r(x)

+ Remainder

f(x) e(x)  q(x)
Dividend = Divisor *+ Quotient
(original polynomial)

Synthetic Division " When a given polynomial inx is divided by a first-degree
binomial of the form x — k, a shortcut method called synthetic division may be
used. The example on the left below is simplified by omitting all variables and
writing only coefficients, with 0 used to represent the coefficient of any missing
terms. Since the coefficient of x in the divisor is always 1 in these divisions, it
too can be omitted. These omissions simplify the problem, as shown on the right.

3x2 4 10x + 40 3 10 40
x—4)3x3 - 2x2+ Ox— 150 -4)3 =2 0 —150
3x3 — 12x2 3—-12
10x2 + Ox 10 0
10x2 — 40x 10 — 40
40x — 150 40 —150
40x — 160 40 —160
10 10

The numbers in color that are repetitions of the numbers directly above them
can also be omitted, as shown on the left below.

3 10 40 3 10 40
-4)3 -2 0 —150 -4)3 =2 0 —150
-2 -12
0 10
——i0 —40
40 —150 T 40
47_*'77[(}(] ~ 160
10 AN T
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The numbers in color are again repetitions of those directly above them. They
may be omitted, as shown on the right above.

The entire process can now be condensed vertically. The top row of num-
bers can be omitted since it duplicates the bottom row if the 3 is brought down.

-4)3 =2 0 —150
—12 —40 -160
3 10 40 10

The rest of the bottom row is obtained by subtracting —12, —40, and —160
from the corresponding terms above them.

To simplify the arithmetic, we replace subtraction in the second row by addi-
tion and compensate by changing the —4 at the upper left to its additive inverse, 4.

Additive

inverse

—>4)3 -2 0 —150
12 40 160 <— Signs changed
3 10 40 10

R B S

) N 10 <— Remainder
Quotient —> 3x* + 10x + 40 + —Z
X =

Synthetic division provides an efficient process for dividing a polynomial
by a binomial of the form x — k. Begin by writing the coefficients of the poly-
nomial in decreasing powers of the variable, using 0 as the coefficient of any
missing powers. The number £ is written to the left in the same row. In the
example above, x — k is x — 4, so k is 4. The answer is found on the bottom
row with the remainder farthest to the right and the coefficients of the quotient
on the left when written in order of decreasing degree.

CAUTION To avoid errors, use 0 as the coefficient for any missing
terms, including a missing constant, when setting up the division.

311|JIR 8 Using Synthetic Division e i ‘

Use synthetic division to divide.
S =16 = 28X —2
Xik2

SOLUTION Express x + 2 in the form x — k by writing it as x — (—2).
—2)5 —6 =28 —2 <— Coefficients of the polynomial

Bring down the 5, and multiply: —2(5) = —10.

—2)5 -6 —28 -2
-10

S5
Add —6 and —10 to obtain —16. Multiply: —2(—16) = 32,

-2)5 -6 -28 -2
=10 32
5 -16

<—‘
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Add —28 and 32, obtaining 4. Finally, -2(4) = -8.

= = = =7 Add columns.
R -8
5 —16 -

Add —2 and —8 to obtain —10.

-2)5 -6 -28 —2
-10 32 -8
5 —16 4 —10 <— Remainder

-—
Quotient

Since the divisor x — k has degree 1, the degree of the quotient will always be
one less than the degree of the polynomial to be divided.

3 —6x2—28x—2 ) —-10 Remember to
——‘5'\ —  — —=5x°- 16x + 4 + add remam;er
x+2 x+2 dvisor

The result of the division in Example 1 can be written as
523 — 6x2 — 28x — 2 = (x + 2)(5x — 16x + 4) + (—10)

by multiplying each side by the denominator x + 2. The theorem that follows is
a generalization of this product form.

Special Case of the Division Algorithm

For any polynomial f(x) and any complex number k, there exists a unique
polynomial g(x) and number r such that the following holds.

f(x) = (x = K)g(x) + r

The mathematical statement
5¢3 — 6x2 — 28x — 2 = (x + 2)(5x2 — 16x + 4) + (—10) |

f(x) = (x=k) ¢ q(x) $ o F A

illustrates this connection. This form of the division algorithm is useful in devel-
oping the remainder theorem.

Evaluating Polynomial Functions Using the Remainder Theorem  Suppose that
f(x) is written as f(x) = (x — k)g(x) + r. This equality is true for all complex
values of x, so it is true for x = k. Replace x with k.

f(k) = (k—k)q(k) +r, or f(k)=r

This proves the following remainder theorem, which gives a new metho
evaluating polynomial functions.

d of
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Remainder Theorem

If the polynomial f(x) is divided by x — k, then the remainder is equal

to f(k). —

-

In Example 1, when f(x) = 5x* — 6x2 — 28x — 2 was divided by x + 2.
or x — (—2), the remainder was —10. Substitute —2 for x in f(x).

£(=2) = 5(~2)" - 6(~2)2 - 28(~2) 2

=—40—-24 + 56 -2 Use parentheses
around substituted
=—10 values to avoid errors.

As shown below, an alternative way to find the value of a polynomial is to use
synthetic division. By the remainder theorem, instead of replacing x by —2 to
find f(—2), divide f(x) by x + 2 using synthetic division as in Example 1.
Then f(—2) is the remainder, —10.

-2)5 -6 —28 -2

—“jo"mp ' 2§
5 =16 = 4 —10 «— f(-2)

o
2k ’}i )\,
m Applying the Remainder Theorem /li/:j,‘)\’")

D e il ) g s

Let f(x) = —x* + 3x? — 4x — 5. Use the remainder theorem to find f(—3).

Testing Potential Zeros | A zero of a polynomial function f(x) is a number
such that f(k) = 0. The real number zeros are the x-intercepts of the graph of the

i function.
The remainder theorem gives a quick way to decide whether a number & is a

zero of a polynomial function defined by f(x), as follows.

1. Use synthetic division to find f(k).
2. If the remainder is 0, then f(k) = 0 and k is a zero of f(x). If the remainder
P is not 0, then & is not a zero of f(x).
P J | \ _(: 3 2 i ; .
Ot 2404 o A zero of f(x) is aroot, or solution, of the equation f(x) = 0.

S\ N\J; l\A)J y - :§ w3
Gl AP sp
“) QY e B G LD Daciding Whothor.a Numborls 8 2010 o iouissucsiiciinisorccicnni

Decide whether the given number k is a zero of f(x).
@) f(x)=x*—4x2+9x—6; k=1
o ® fx)=x*+x2-3x+1; k=-1

O pr

o)) (‘»,3&...1\(: oa>
435

7“‘\<_J\,e\_5’,"a_(c) fr)=xt=2x0+4x2+2x—=5; k=1+2

-
A
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) = x* -4+ 9x - 6 SOLUTION
A ] (a) Use synthetic division to decide whether 1 is a zero of f(x) = x3
\}f 9x — 6.
< .’h"z S Proposed zero —> 1T -4 Q —6 <« f(x)=x—4x? 4 9,
1 I 3 6
F{S{“ Y=o | 3 6 () <— Remainder

Since the remainder is 0. f(1) = 0, and 1 is a zero of the given polynomial
) , > o ox e ASD : :
Figure 7 function. An x-intercept of the graph of f(x) =x* —4x* +9x — 6 s |
so the graph includes the point (1.0). The graph in Figure 7 supports this,

(b) For f(x) = x* + x? — 3x + 1., remember to use 0 as coefficient for the missing

8 x3-term in the synthetic division.
[T1=8" Yo R2 =301
3

=3 1
-2 5

Proposed zero —> — IW 0 |
|
1 —-1" 2 =5 6 <— Remainder

(-1.6)

= fv=e The remainder is not 0, so —1 is not a zero of f(x) =x*+ x> —=3x+ 1. In
&% fact, f(—1) = 6, indicating that (—1,6) is on the graph of f(x).The graph
Figure 8 in Figure 8 supports this.

(¢) Use synthetic division and operations with complex numbers to determine
whether 1 + 2i is a zero of f(x) = x* — 2x3 + 4x2 + 2x — 5.

1 +2i)1 -2 4 2

-5
. 1 +21 =5cmlemli 5 i? = —1 (Section 1.2)
w =121 = k=2 0 <— Remainder

Since the remainder is 0, 1 + 2/ is a zero of the given polynomial function.
i Notice that 1 + 2i is not a real number zero. Therefore, it cannot appear as
| an x-intercept on the graph of f(x).

Use synthetic division to perform each division. See Example 1

X +7x2+ 13x+ 6 2t =3 =724+ 70— 10

1 ’ X2 - x—2
x4 +5x3+4x2-3x+9 X0 = 3x% + 2x3 — 622 — Sx + 3
il x+3 . e
H —11x* + 2x3 — 832 — 3 s g 15N
5 8x>—4 p x4+ x2 4+ 3Xx +§
Xl 2 1
i .\'+;
| D N, RO -
7& x*—1
x+1 8. Y=
"1,; xT+ ]
' 9,
x4 ]

Express f(x) i 2 Jor 3
wpress f(x) in the form J(x) = (x - K)q(x) + r for the given value of k.

10, f(x) = 2x3 + 3x2 — 16 + 10; k= -4

I f(x) = =33 4 52 4 =2 k=2

b

mxercises B
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12. f(x) =2x* + 3~ 15x2 + 3x; k= -3

3. fx) = =5 + X+ 222 + 3x 4+ 1: k=1

For each polynomial function, use the remainder theorem and synthetic division to find
f(k). See Homework 1. '

4. f(x) =x*-4x-5; k=5 15. f(x) = —x>+8x2+63; k=14

16. f(x) =2x—3x2—5x+4: k=2

17. f(x) =x*+ 6x3 + 9x2 4+ 3y — 3 k=4

18. f(x)=6x>-31x2— 155 k==L 19, f(x) =x2—x+3; k=32

20. f(x) =2x2+ 10; k= i\/5

Use synthetic division to decide whether the given number k is a zero of the given poly-
nomial function. If it is not, give the value of f( k). See Example 2 and Homework 1.
21, f(x)=x*+4x—5; k= -5 22, f(x)=x3+2x2—x+6;, k=-3
23 f(x) =2+ 9x2—16x+ 12, k=1 24. f(x) =2x>—3x2—5x; k=0

25. f(x) =3x*+13x — 10x + 8; k= -4

26. f(x)=16x*+3x2 - 2; k=14 27. f(x)=x2—4x+5 k=2—i

28. f(x)=x*=3x+5 k=1-2i 29. f(x)=2x3—x2+3x—5;k=2—i

Relating Concepts

For individual or collaborative investigation (Exercises 30-34)

The remainder theorem indicates that when a polynomial f(x) is divided by x — k,
the remainder is equal to f(k). For

f@)iswis2yt =t 2;

use the remainder theorem to find each of the following. Then determine the coordi-
nates of the corresponding point on the graph of f(x).

30. f(=1) 31 f(0) 32. f(%) 33. f(3)

@ 34. Use the results from Exercises 30-33 to plot eight points on the graph of f(x).

Connect these points with a smooth curve. Describe a method for graphing
polynomial functions using the remainder theorem.

m Zeros of Polynomial Functions I

Factor Thegrem

Rational Zergs Theorem
Number of Zeros
Conjugale Zeros Theorem

Finding Zeros ofa
Polynomial Function

Descartes’ Rule of Signs

B

Factor Theorem  Consider the polynomial function

f(x)=x2+x-2,

[ ¢ \ )

(;}d("_i‘,“ 41:' .ﬂlf(x) = (x—1)(x+2), (Section 1.4)

Twe i) lown, \ ———
For this function, f(?) =0 and f(—2) =0, and thus 1 and —2 are zeros of
f(x). Notice the special relationship between each linear factor and its corre-
sponding zero. The factor theorem summarizes this relationship.

v?ich is written in factored form as
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i

Factor Theorem e - B
For any polynomial function f{x). x — & is a factor of the polynomial if
and only if f(k) =0.

Deciding Whether x — k Is a Factor

a factor of each polynomial.

Determine whether x — 1 1s

o @ Ff(x)=2x*+32—5x+7

e i : .

SR Ew) B /) =3-2+ 2—8x2+5x+ 1

Vo ab il 03 SOLUTION
whoe 2T (a) By the factor theorem. x — 1 will be a factor if f(1) = 0. Use synthetic
) 430 division and the remainder theorem to decide.
> (@ o
\ "w et 1)2_0 3 —5 7 (Section4.2)
:(" ‘—’:) riew’- deC — Clseazen? cpefﬁciyz 2 &0
for the missing term. 3 2 5 0 T <—f(1)=7

The remainder is 7 and not 0,so x — 1 is not a factor of 2x?+ 3x2 — 5x + 7.

1 -8 5 1
1 DGzl
2 —6 -1 0<«— f(1)=0

(b) 1)3

3

Because the remainder is 0, x — 1 is a factor. Additionally, we can deter-
mine from the coefficients in the bottom row that the other factor is

=2
3
1

xt+ 3+ 2x2—6x— 1.
Thus, we can express the polynomial in factored form.
fx)=(x=1)Gx*+x3+2x2—6x—1)

We can use the factor theorem to factor a polynomial of greater degree into
linear factors of the form ax — b.

m Factoring a Polynomial Given a Zero

Factor f(x) = 6x* 4+ 19x% + 2x — 3 into linear factors if —3 is a zero of f.

- o )
Ra.nonal Zeros Theorem  The rational zeros theorem gives a method to de-
Fermlne all possible candidates for rational zeros of a polynomial function with
integer coefficients.

Rational Zeros Theorem

P . i .

If7isa rational number written in lowest terms, and if £ is a zero of f,
:{ po}lynomlal function with integer coefficients, then p is a factor of the
constant term, and ¢ is a factor of the leading coefficient.

U

5 ; ry _ " .
Proof f(%) =0 since G is a zero of f(x).




LOOKING AHEAD TO CALCULUS
Finding the derivative of a polynomial
function is one of the basic skills re-

a first calculus course. For

quired in
the functions
f(x) =x*—x*+5x—4,
g(x)=—x°+ x2—3x+4,
and h(x)=3x3—x*+2x -4,

the derivatives are
f(x) =45 - 2x +5,
g'(x) = —6x°+2x =3,

and H(x)=9%% - 2x+2.

Notice the use of the “prime” notation.

For example, the derivative of f(x) is
denoted f'(x).

Look for the pattern among the
exponents and the coefficients. Using
this pattern, what is the derivative of

F(x) = 4x* —3x3 + 6x — 4?7

J0) = 6r* 4+ 70 ~ 1262 3x 4 2
A
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Definition of zero of f

Power rule for exponents
(Section 1.3)

P a1
(In<'_"> + (("_](L> +
q qr:*l

(I,,pn + (In—ll)"—l([ 4+ all)(]"_l

Multiply by ¢” and
subtract apq"” .

_aoqll

pla,p" + 1P 2q+ 4 a;q""') = —apq" Factor out p.

This result shows that —agq" equals the product of the two factors p and
S A 5 ; T

(anp" ' + + a;g""). For this reason, p must be a factor of —aoq". Since it

was assumed that i—; is written in lowest terms, p and g have no common factor

other than 1, so p is not a factor of q". Thus, p must be a factor of ao. In a simi-
lar way, it can be shown that ¢ is a factor of a,.

m Using the Rational Zeros Theorem

Consider the polynomial function.

Ix) =6x* + 12— 12%2 = 3c + 2
(a) Listall possible rational zeros.
(b) Find all rational zeros and factor f(x) into linear factors.
SOLUTION

(a) For a rational number 4 to be a zero, p must be a factor of @y = 2, and
g must be a factor of a; = 6. Thus, p can be =1 or =2, and g can be
*1, £2, £3, or £6. The possible rational zeros, 5, are *1, 2,

| 1 | 2
i-f’ ij, i(—),and ij.

(b) Use the remainder theorem to show that 1 is a zero.

Use “trial and error” 1)6 7 —12 =3 )
to find zeros. 6 13 1 —2

6 13 I =2

The 0 remainder shows that 1 is a zero. The quotient is 6x* + 13x2 + x — 2.
f(x) = (x = 1)(6x3+ 13x2 + x — 2)

Begin factoring f(x).

Now, use the quotient polynomial and synthetic division to find that —2 is

a Zero.
-2)6 13 ' =2
== Q=) 2
6 J3 =1 0 <—f(-2)=0

The new quotient polynomial is 6x% + x — 1. Therefore, f(x) can now be
completely factored as follows.

fe)=(x—~1)(E+2)(6 +x—1)
fx)=(@x—-1Dx+2)(3x—1)(2x+1)

Setting 3x — 1 =0and 2x + 1 =10 yields the zeros % and — % In summary, the

! :
rational zeros are 1, =2, % and — 5, and they can be seen as x-intercepts

on the graph of f(x) in Figure 9. The linear factorization of f(x) is
fx) = 6x* + Tx* = 1223 = 3x+ 2
fx)=(x—1)(x+2)(3x—1)(2x + 1).

multiplying
these factors.
Check by




132 Introduction to Mathematics

NOTE In Example 2, once we obtained the quadratic factor
6x2+x—1,

we were able to complete the work by factoring it directly. Had it not beep

casily factorable, we could have used the quadratic formula to find the other

two zeros (and factors).
R —

e e S B

CAUTION The rational zeros theorem gives only possible rational
zeros. It does not tell us whether these rational numbers are actual zeros.
We must rely on other methods to determine whether or not they are indeed
seros. Furthermore, the polynomial must have integer coefficients.

To apply the rational zeros theorem to a polynomial with fractional
coefficients. multiply through by the least common denominator of all the
fractions. For example, any rational zeros of p(x) defined below will also
be rational zeros of g(x).

gk o 2 I

x)=xt—=x>+-x*—Zx—73

/)( ) 6 3 (’ o}
g(x) = 6xt —x3+4x2—x—2 Multiply the terms of p(x) by 6.

o

Number of Zeros . The fundamental theorem of algebra says that every
function defined by a polynomial of degree 1 or more has a zero, which means
that every such polynomial can be factored.

Fundamental Theorem of Algebra

Every function defined by a polynomial of degree 1 or more has at least one
complex zero.

From the fundamental theorem, if f(x) is of degree 1 or more, then there is
some number k; such that f(k;) = 0. By the factor theorem,

f(x) = (x — ky)qi(x), for some polynomial g;(x).

If ¢i(x) is of degree 1 or more, the fundamental theorem and the factor theorem

can be used to factor ¢,(x) in the same way. There is some number k; such that
q1(ky) =0, so

q(x) = (x = ka)ga(x)
and f(x) = (x = k) (x = k) ga(x).
Assuming that f(x) has degree n and repeating this process n times gives
f(x) =alx —k;)(x —ky) -+ (x — k,). ais the leading coefficient.

[l:uch of tl\cts‘c .luclors leads to a zero of f(x), so f(x) has the n zeros ki k2.
| ey, ..., k. This result suggests the number of zeros theorem.

Number of Zeros Theorem

A functi »fine p - .
function defined by a polynomial of degree n has ar most n distinct 2eros:

|.. |



Polynomial and Rational Functions 133

For example, a polynomial function of degree 3 has ar most three distinct
zeros but can have as few as one zero. Consider the following polynomial.

f(x)=x3+3x2+3x+1
f(x)=(x+1)

The function :f is of degree 3 but has only one zero, —1. Actually, the zero —1
occurs three times, since there are three factors of x + 1. The number of times a
zero occurs is referred to as the multiplicity of the zero.

Finding a Polynomial Function That Satisfies Given Conditions
(Real Zeros)

Find a function f defined by a polynomial of degree 3 that satisfies the given
conditions.

(a) Zerosof —1,2,and4; f(1)=3
(b) —2 is azero of multiplicity 3; f(—1) =4

NOTE In Home Work 2(a), we cannot clear the denominators in f(x) by
multiplying each side by 2 because the result would equal 2 * f(x), not f(x).

Conjugate Zeros Theorem = The following properties of complex conjugates
are needed to prove the conjugate zeros theorem. We use a simplified notation
for conjugates here. If z = a + bi, then the conjugate of z is written z, where
Z = a — bi. For example, if z = —5 + 2i, then z = —5 — 2i. The proofs of the
first of these properties is left for Exercise 57.

Properties of Conjugates

For any complex numbers ¢ and d, the following properties hold.

c+t+d=¢+d, crd=¢-d, and c" = (c)"

The remainder theorem can be used to show that both 2 + i and 2 — i are
zeros of f(x) = x> —x?—7x+ 15. In general, if z is a zero of a polynomial

function with real coefficients, then so is Z.

Conjugate Zeros Theorem

If f(x) defines a polynomial function having only real coefficients and if
z=a + bi is a zero of f(x), where a and b are real numbers, then

7 = a — bi is also a zero of f(x).

Proof  Start with the polynomial function

f(\) = a,x" + au-l-\'”ﬂl Tl g% ao;
where all coefficients are real numbers. If the complex number z is a zero of f (x),
then we have the following.

f(ﬂ) > (lIIZ” + - I:” 3) rheiise + @z e ay = 0

#
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az" + ap-12" e+ agzta= 0 From the preceding discussion

Take the conjugate of both sides of this equation.
az" + a2+ tazta= 0
a;z" + [,:I-‘T.ﬁ +rt+azta= 0 yse generalizations of the properties
- ' z+d=c+dandc- d=¢-d.
=0«

;THZ:E+ (I,,q?"rl o e (l)i + ap
=0 Use the property ¢" = (¢)"and

= — 1 o e 7) + a
a,(Z)" + ap-1(2)" +ai(2) + % :
n( ) -1 ) ( ct that for any real number a,

the fa

f(f) =0 a=a.

Hence 7 is also a zero of f(x), which completes the proof.

| Lye N
CAUTION When the conjugate zeros theorem is applied, it is essential
that the polynomial have only real coefficients. For example,

fx)=x—(1+1i)

has 1 + i as a zero, but the conjugate | — i is not a zero.

Finding a Polynomial Function That Satisfies Given Conditions

EXAMPLE 3 |
; (Complex Zeros)

Find a polynomial function of least degree having only real coefficients and

zeros 3and 2 + i.

SOLUTION The complex number 2 — i must also be a zero, so the polynomial
has at least three zeros: 3, 2 + i, and 2 — i. For the polynomial to be of least
degree, these must be the only zeros. By the factor theorem there must be three

factors: x — 3, x— (2 + i), and x — (2 — i).

f(x) = (x— 3){.\’ =2+ l)] [.\' == l)] Factor theorem

) =x-3)(x-2=ix=2%1%) Distribute negative signs.

flx)=x—3)(x*—4x+35) Multiply and combine
like terms; i* = —1.

(Section 2.2)
i ¥ = T2+ 17— 15 Multiply again.

Any nonzero multiple of x* — 7x* + 17x — 15 also satisfies the given con-
ditions on zeros. The information on zeros given in the problem is not sufficient
to give a specific value for the leading coefficient.

Finding Zeros of a Polynomial Function  The theorem on conjugate zeros helps
predict the number of real zeros of polynomial functions with real coefficients.
e A polynomial functi ith real coefficients of

polynomial function with real coefficients of odd degree n, where n = 1,

must have at .least one real zero (since zeros of the form a + bi, where
b # 0, occur in conjugate pairs).

e A polynomial function with real coefficients of even degree n may have no
real zeros.

1 | LS R Finding All Zeros Given One Zero

Find all zeros of {(x) = x4 3 5
g ; % i ®. s g el . C y »
/) Tx* + 18x 22x + 12, given that | — i is a zero.
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NOTE " In Home Work 3, if we had been unable to factor x> — 5x + 6 into
ln:ear factors, we would have used the quadratic formula to solve the equation
X= = 5x + 6 =0 to find the remaining two zeros of the function.

Descartes’ Rule of Signs ~ The following rule helps to determine the number
of positive and negative real zeros of a polynomial function. A variation in sign
is a change from positive to negative or from negative to positive in successive
terms of the polynomial when they are written in order of descending powers
of the variable. Missing terms (those with 0 coefficients) are counted as no
change in sign and can be ignored.

Descartes’ Rule of Signs

Let f(x) define a polynomial function with real coefficients and a nonzero
constant term, with terms in descending powers of x.

(a) The number of positive real zeros of f either equals the number of vari-
ations in sign occurring in the coefficients of f(x), or is less than the
number of variations by a positive even integer.

(b) The number of negative real zeros of f either equals the number of vari-
ations in sign occurring in the coefficients of f(—x), or is less than the
number of variations by a positive even integer.

m Applying Descartes’ Rule of Signs

Determine the different possibilities for the numbers of positive, negative, and
nonreal complex zeros of

flx) =x*—6x3+8x2+2x— 1.
SOLUTION We first consider the possible number of positive zeros by observ-
ing that f(x) has three variations in signs.

f(x) = +x* = 6x3+8x2+2x— 1

XA A R
I 2 3
Thus, by Descartes’ rule of signs, f(x) has either three or one (since 3 =2 = 1)
positive real zeros.
For negative zeros, consider the variations in signs for F(—=x).
F(=x) = (=x)* = 6(—x)" + 8(=x)? + 2(—x) — 1

xt+6x3+8x2—2x—1
x__A
1

Il

Since there is only one variation in sign, f(x) has exactly one negative
real zero.

Because f(x) is a fourth-degree polynomial function, it must have four
complex zeros, some of which may be repeated. Descartes’ rule of signs has
indicated that exactly one of these zeros is a negative real number.

e One possible combination of the zeros is one negative real zero, three posi-
tive real zeros, and no nonreal complex zeros.

e Another possible combination of the zeros is one negative real zero, one
positive real zero, and two nonreal complex zeros.

—
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m, any possible nonreal complex zeros must oceyr

By the conjugate zeros theore
has real coefficients. The table below summarizeg

in conjugate pairs since f(x)
these possibilities.

| Possible Number of Zeros
I e Positive | Negative | Nonreal Complex
positive
zeros 3 l 0
—+— X
3 1 1 2
24

in Figure 10 verifies the correct combination of three

The graph of f(x) ; ;
ative real zero, as seen in the first row of

— 4 2 iy :
@) = x* -6+ 8t 4 20 - 1 positive real zeros with one neg
Figure 10 the table.*

NOTE Descartes’ rule of signs does not identify the multiplicity of the
zeros of a function. For example. if it indicates that a function f(x) has ex-
(x) may have two distinct positive real

actly two positive real zeros, then i
zeros or one positive real zero of multiplicity 2.

Exercises
i
| Concept Check Decide whether each statement is true or false. If false, tell why.
! 1. Since x — 1 isa factor of f(x) = x® — x* + 2x2 — 2, we can conclude that f(1) = 0.
1 2. For f(x) = (x + 2)*(x — 3), 2 is a zero of multiplicity 4.
I
I Use the factor theorem and synthetic division to decide whether the second polynomial is
a factor of the first. See Example 1.
3. P =5t 3 +1; =1 4, 2x*+5x3 —8x?+3x+13; x+1
5. =% & =22 6. 4x2+2x+54;x—4
7.x3+2x2+3;x— 1 8. Wt 5 -t £ ¥ Gi a3

Factor f(x) into linear factors given that k is a zero of f(x).See Homework 1.
9. f(x)=2x>=3x—17x+30; k=2
10. f(x) =6x*+ 13x2— 14x+3; k= -3
11. f(x) =6x3+25x2+3x—4; k= —4
128 f(x) = x* + (7= 3i)x2 + (12 — 21i)x — 36i; k = 3i
13. f(x) =23+ (3—2i)x+ (-8 = 5i)x+ (3+3i); k=1+i
14. f(x) = x* + 203 = Tx2 = 20x — 12; k = =2 (multiplicity 2)
For each polynomial function, one zero is given. Find all others. See Homework I and 3.

) = = el 16. f(x) =x—Tx2+ 17x - 15; 2~
17. f(x) =x*+5x2 +4; —i

For each polynomial function, (a) list all possible rational zeros, (b) find all rational
zeros, and (c) factor [(x).See Example 2,

A ) :
The authors would like 1o thank Mary Hill of College of DuPage for her input into Example 4.
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18. f(x) =x*—2x? - 13x - 10 19. f(x) =x*+6x2—x—30
20. f(x) =6x*+ 1722 = 31x — 12 21. f(x) =24x>+40x% —2x— 12

For each polynomial Junction, find all zeros and their multiplicities.

22, f(x) = (x—2)}(x2-7) 23. f(x) =3x(x —2)(x +3)(x*— 1)

24, f(x) = (x*+x - 2)5(.\' -1+ \/3)2

Find a polynomial function f(x) of degree 3 with real coefficients that satisfies the given
conditions. See Home Work 2.

25. Zeros of =3, 1,and 4; f(2) = 30

26. Zerosof =2, 1,and 0; f(—1) = —1

27. Zero of —3 having multiplicity 3; f(3) = 36

& Zero of 0 and zero of 1 having multiplicity 2; f(2) = 10

Find a polynomial function f(x) of least degree having only real coefficients with zeros
as given. See Homework 2-3 and Example 3.

29. S+iand5—i 30. 0,i,and 1 +1

3. 1+V2,1-V2,and | 32. 2—i,3,and —1

33.2and 3+ 34. 1-V2,1+V2.and 1 —i
35.2—iand 6 — 3i 36. 4,1 —2i,and 3 + 4i

37. 1 + 2i and 2 (multiplicity 2)

Use Descartes’ rule of signs to determine the different possibilities for the numbers of
positive, negative, and nonreal complex zeros for each function. See Example 4.

38. f(x) =2x3—4x2+2x+7 39, f(x) =4x3—x2+2x—7

—=8x% 43 = 6x% £ 557

Il

40. f(x) =5x*+3x2+2x—-9 41. f(x)

Il

TS+ 6x4 +2x3+9x2+x+ 5
S5

(-
2. f(x)=x>+3x*—x3+2x+3 43. f(x)
(- xS —6x5+x3 —4x2 +x+2

44. f(x)=2x>—Tx+6x+8 45. f(x)
Find all complex zeros of each polynomial function. Give exact values. List multiple
zeros as necessary.*

46. f(x)==x*+ 2x3 — 3x2 + 24x — 180

47. f(x) =x*+x> =92+ 11x—4

48. f(x) =2x% + 11x* + 16x3 +15x + 36x

49. f(x) =x>—6x*+ 14x3 — 202 + 24x — 16

50. f(x) =2x*=x*+Tx>—4x—4 Sl f(x) =5x3—9x2+28x+ 6

52, f(x) = x*+29x2 + 100 53. f(x) =x*+2x2+ 1
54, f(x) =x* = 6x + 752 55. f(x) = x* — 8x3 + 29x2 — 66x + 72

56. f(x)=x%—9x*— 16x* + 144

If ¢ and d are complex numbers, prove each statement. (Hint: Let ¢ = a + bi and
d = m + ni and form all the conjugates, the sums, and the products.)

§7.c+d=¢+d 58. «a = a for any real number a

# The authors would like to thank Aileen Solomon of Trident Technical College for preparing and
suggesting the inclusion of Exercises 46-52,

#
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In 1545, a method of solving

developed by Niccolo Tartaglia, was
Cardano. The formula for finding the one re

(Source: Gullberg,J., Mathe
Use the formula to solve

Introduction to Mathematics

3

a cubic equation of the form

X' +mx=n,

pul)/i\lwd in the Ars Magna, a work by Girolam
B . s - 0
al solution of the equation is

o ECR e OO

59, x3+9x =26

e —

Glossary

axis (of symmetry) of a parabola The
line of symmetry for a parabola is the
axis of the parabola.
i Y pl Jas ¢ 31 ala) (B, 5%
.-Q_'#lﬂ\ CL.E.H Js* }AL’)L(‘
leading coefficient In a polynomial
function of degree n, the leading
coefficient is a,. It is the coefficient
of the term of greatest degree.
iyl 5 gl B3aaze s éi Seoldl Jetadi
e Jelee 2y 2 ,__5;[,_.2]\ J,ol.all 045 n
L G-yl

parabola (function definition) A
parabola is a curve that is the graph of a
quadratic function defined over the set
of all real numbers.
st ch.;.!l (D iy o) ¢ SIS chzll
Qo gat (530 B pre lony J WA Gl o) o
Liaadl sl
polynomial function of degree n
A polynomial function of degree n,
where n is a nonnegative integer, is a
function defined by an expression of the
form f(x) = ax" + a1 X" R -
ax + ag, where a,, ay-y, . - ., i, and
ay are real numbers, with a, # 0.

33dnza alls éi 1 a0 oy 5 g1 53z U1

c..h—d_ J.U—Ilf)ﬁ;‘,._.’-dl&a-).my)).l;-‘
Ty o I 0 325 A3 0t gl 22
f(\') = (l,,,\‘" + (l,,_|.l'"7l R =
ag 5 Ay, A1y - - A Ol & cagx + ap
N o 151asl as
quadratic function A function f of
the form f(x) = ax> + bx + ¢, where a,
b. and ¢ are real numbers, with a-# 0, is
a quadratic function. v
Gy [ slan g L AN A
CcsbyasSsef(x) = ax* + bx + ¢
a5 Dolae a0 # OC,:._.z,z’Bu;i
root (solution) of an equation A zero
k of f(x) is a number such that f(k) =0
is true.
o f(x) Bl k jio é'l Dol () e
w\)ﬁd..?uf(k) = OJ:AA.L:«
synthetic division ~ Synthetic division
is a shortcut method of dividing a
polynomial by a binomial of the form
X ~ik;
J\Suudoj.a..&w}bdnﬂ,;dlh..dl
X =k Gl ad) gL e s gad]
vertex of a parabola The vertex of
a parabola is the point where the axis
of symmetry intersects the parabola.

each equation for the

smatics from the Birth of Numbers, W.W.Norton & Company )
one real solution.

For the graph of a quadratic function,
this is the turning point of the
parabola.
batie iy A Lol p ¢ JUSU pladl
Js# i ade Gl . S wladll B 2
LN Dm0 Jl > hadaiz 3¢ SIS Radll
zero of multiplicity n A polynomial
function has a zero k of multiplicity n
if the zero k occurs exactly n times. The
polynomial has exactly n factors of x — k.
ssddlisaazs dls n o)) S5 s sl aall
el O 13 M o 115 S K i s
N st ssdams  aalls a0 1 Sk
X =k Jalss
zero polynomial The function f
defined by f(x) = 0 is the zero
polynomial.
Sasas f Ul 2k kall s gl iadane
f(x)=0




140 Introduction to Mathematics

Inverse Functions

= One-to-One Functions One-to-One Functions = Suppose we define the function

® Inverse Functions

® Equations of Inverses = {('_l 2),(—1,1 ), (0‘0)‘ (l’ 3)’ (2’ D)}

® An Application of (Notice that we have defined F so that each second component is used on]
Inverse Functions to : i - E
Cryptography once.) We can form another set of ordered pairs from F by interchanging the

x- and y-values of each pair in F. We call this set G, so

6= {(2.~2), [1;=1);(0:0): (3, 1), (5:2)}.

Domain Range i
S To show that these two sets are related, G is called the inverse of F. For a func-

tion f to have an inverse, f must be a one-to-one function.

In a one-to-one function, each x-value corresponds to only one y-value,
and each y-value corresponds to only one x-value.

The function f shown in Figure 1 is not one-to-one because the y-value 7 corre-
Not One-to-One sponds to two x-values, 2 and 3. That is, the ordered pairs (2,7) and (3.7) both

Figure 1 belong to the function. The function f in Figure 2 is one-to-one.

Domain Range

One-to-One Function
___A function f is a one-to-one function if, for elements @ and 4 in the domain
f)f_fl. ; \?\L $> ;,S
a # b _implies f(a) # f(b).

g

One-to-One

Figure 2

Using the concept of the contrapositive from the study of logic, the last line
in the preceding box is equivalent to
N 4 AP o~ f(a) = f(b) implies a = b.
o ab LD o ﬂl f(a) = f(b) implies a=b.
We use this statement to decide whether a function f is one-to-one in the next
example.

Sr ed 43 L;’j m Deciding Whether Functions Are One-to-One

— . ctiow . Decide whether each function is one-to-one.

1)

e f(x)=—4x+12 ®) f(x)=V25—x

{ S evew A0 F .

| -~y y SOLUTION

| hot ONE =10 - e Aunthion,

(a) We must show that f(a) = f(b) leads to the result a = b.
Z | /; 95 f”/)
> fla) = f(b)
2\
] &> ~4a + 12 = —4p + 12 f(x) = —4x + 12

~4a = —4p Subtract 12.

a=b Divide by —4

By the definition, f(x) = —4x + 12 is one-to-one.
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(b) I;O;thc%fulmion f(x) = V25 — x2, if we choose a = 3 and b = —3, then
: —3, but

f(3)=V25-32=V25- = \/16 =4

and f(=3)=V25—(-32=V25-9=4.

Here, even though 3 # —3, f(3) = f(—3) = 4. By the definition, f is not
a one-to-one function.

As illustrated in Example 1(b), a way to show that a function is not one-
to-one is to produce a pair of different domain elements that lead to the same
function value. There is also a useful graphical test, the horizontal line test, that

tells whether or not a function is one-to-one.

Horizontal Line Test
A function is one-to-one if every horizontal line intersects the graph of the

function at most once.

- 5
[ NOTE In Example 1(b), the graph of the function is a semicircle, as
:1' shown in Figure 3. Because there is at least one horizontal line that intersects

the graph in more than one point, this function is not one-to-one.

WTIETEER Using the Horizonta Line Test

Determine whether each graph is the graph of a one-to-one function.

¥

u}’j' Lo /\‘:Pl’ Mec
5 ‘ (b) O"

N
N ()\l‘
Vi \

Notice that the function graphed in Homework 1(b) decreases on its entire
domain. In general, a function that is either increasing or decreasing on its
; : s = 2
entire domain, such as f(x) = —x, g(x) = x*, and h(x) = N mikthe

one-lo-one.

|
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In summary. there are four ways to decide whether a function is one-to-one

Tests to Determine Whether a Function Is One-to-One

1. Show that f(a) = f(b) implies a = b. This means that f is one-to-cne.
(Example 1(a))

2. In a one-to-one function, every y-value corresponds to no more than
one x-value. To show that a function is not one-to-one, find at least two
x-values that produce the same y-value. (Example 1(b))

3. Sketch the graph and use the horizontal line test. (Homework 1)

4. If the function either increases or decreases on its entire domain, then it
is one-to-one. A sketch is helpful here, too. (Homework 1(b))

. ) - -~ .
Inverse Functions Consider the functions

5

1
f(x)=8x+5 and g(x)= reiairs

Let us choose an arbitrary element from the domain of f, say 10. Evaluate
f(10).
)i=8 <10k 5 Let x = 10.

f(10
f(10) =85 Multiply and then add

Now, we evaluate g(85).

| 5
g((\’5)=§(85)—§ Let x = 85.
_85_5
g 3 Multiply.
80
= —8— Subtract.
.S’(SS) =10 Divide.

Starting with 10, we “applied” function f and then “applied” function g to the
result, which returned the number 10. See Figure 4.

i —§'_) » “)

Figure 4

As further examples, check that

f3)=29 "and  g(29) =3,

J(=5)=-35 and g(—=35) = -5,

} 3 |
8(2) = and ( : ) =9 |
8 / 8 . 1
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In particular, for this pair of functions,

f(g(2)) =2 and g(f(2)) =2.
In fact, for any value of x,

f(g(x)) =x and g(f(x)) =x.

Using the notation for composition introduced in Section 3.3, these two equa-
tions can be written as follows.

(fog)(x)=x and (geo f)(x)=x The resultis the identity function.

Because the compositions of f and g yield the identity function, they are inverses
of each other.

_—5 { mortant

Inverse Function

Let f be a one-to-one function. Then g is the inverse function of f if
(f°g)(x) = x forevery xin the domain of g.

and (g°f)(x) = x foreveryxin the domain of f.

The condition that f is one-to-one in the definition of inverse function is
essential. Otherwise, g will not define a function.

pgciding \'Nhethrer Tvyo Functiops Afe Inverse§
Let functions f and g be defined by

f(x)=x*—1 and g(x)= /ST
respectively. Is g the inverse function of f?

SOLUTION As shown in Figure 5, the horizontal line y
test applied to the graph indicates that f is one-to-one, 1
so the function does have an inverse. Since it is one-to- 5B I
one, we now find (f e g)(x) and (g° f)(x). T

(fog)x) = fg(x)) =(Va+1) =1 (Section33)
=i =71

=x

Figure 5
(go N)(x) = g(fx) = V(-1 +1 y
=V

Since (f o g)(x) =x and (g ° f)(x) = x, function g is the inverse of function f.

A special notation is used for inverse functions: If g is the inverse of a func-
tion f, then g is written as f ~' (read “f-inverse”). In Example 2,

f(x) =x*—=1 hasinverse f I(x) = \V\_ﬁ
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Number of
Year | Unhealthy Days
2004 7
2005 32
2006 8
2007 24
2008 14
2009 13

Source: Ilinois Environmental
Protection Agency.

obg -40. 0

k_.)‘JJ‘ ,\/é"\l)ﬁ

\"'&(QCS_ \ﬁ)ﬂé’ \;/J)

L5 Ay D ye=t O

u \el'w

-’

n f ~' with a negative exponent,

CAUTION Do not confuse the —1 il s -
The symbol f ~'(x) does not represent 7y - It represents the inverse func-

tion of f.

function, the domain of [ is the range of | ~!,

By the definition of inverse
-1, See Figure 6.

and the range of f is the domain of |

Domain of f Range of

-l
Range of f Domain of £~

Figure 6

m Finding Inverses of One-to-One Functions

Find the inverse of each function that is one-to-one.
(a) F={(—2’1)»(—1-0),(0-l)-(1v2),(2.2)}_

M G=1{(3.1).(0.2),(2,3),(4.0)}

(¢) The table in the margin shows the number of days in Illinois that were
unhealthy for sensitive groups for selected years using the Air Quality
Index (AQI). Let f be the function defined in the table, with the years
forming the domain and the numbers of unhealthy days forming the range.

Equations of Inverses " The inverse of a one-to-one function is found by inter-
changing the x- and y-values of each of its ordered pairs. The equation of the inverse
of a function defined by y = f(x) is found in the same way, as given in the box on

the next page.

Finding the Equation of the Inverse of y = f(x)

For a one-to-one function f defined by an equation y = f(x), find the
defining equation of the inverse as follows. (If necessary, replace f(x) with
y first. Any restrictions on x and y should be considered.)

(2 Step 1 Interchange x and y.

%Stepz Solve for y.
Step 3 Replace y with f ~!(x).

EXAMPLE 3 . F}iqdinqﬁquqipns of Inverses

I)L(,ld(. « l o D« V '. " &

> h, I > h a at d ,' " -t t”n( tion ll SO,
B whether cach equa 1on defies L one-to-one

equ‘lll()n U‘ th mverse,

@ f(x)=2x+5 b)) y=x2+2 @ f(x)=(x-2)°



This graph
passes the
horizontal
line test,

Figure 7

‘
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SOLUTION

(a) The graph of y = 2x + 5 is a nonhorizontal line, so by the horizontal line
test, f is a one-to-one function. To find the equation of the inverse, follow
the steps in the preceding box, first replacing f(x) with y.

f(x)=2x+5
y=2x+5 Lety= f(x).
x=2y+5 Interchange x and y. (Step 1)
x—5=2 Subtract 5.
Solve for y.
S 5 Divide by 2.[ (Step 2)
2 ) Rewrite.
e 1 S Replace y with f ~'(x). (Step 3)
f\(x) ==x—2 Wm_i f;( P
3 ARG
Thus, f ~'(x) =*5> = Lx — 3 is a linear function. In the function defined by
y = 2x + 5, the value of y is found by starting with a value of x, multiplying
by 2, and adding 5.

The form f ~!(x) = *5- for the equation of the inverse has us subtract
5 and then divide by 2. This shows how an inverse is used to “undo™ what a
function does to the variable x.

(b) The equation y = x? + 2 has a parabola opening up as its graph, so some
horizontal lines will intersect the graph at two points. For example, both
x =3 and x = —3 correspond to y = 11. Because of the presence of the
x2-term, there are many pairs of x-values that correspond to the same
y-value. This means that the function defined by y = x> + 2 is not one-to-

one and does not have an inverse.
The steps for finding the equation of an inverse lead to the following.

y=x2+2

x=y*+2
both roots. .
+TVx—=2=Yy

The last step shows that there are two y-values for each choice of x
greater than 2, so the given function is not one-to-one and cannot have

Interchange x and y.
Solve for y.

Square root property (Section 2.3)

an inverse.

(¢c) Figure 7 shows that the horizontal line test assures us that this horizontal
translation of the graph of the cubing function is one-to-one.

f(x) = (x—2) Given function
y=(x~- 2)3 Replace f(x) with y.
x=(y—2) Interchange x and y.

\VA: = \/3 (y— 2)" Take the cube root on each side.
\y\ =y—2
\‘/\ +2=y

fNx) = Vi +2

Va' = a (Section 1.6)
Solve for y by adding 2.

Replace y with f '(x). Rewrite.
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) d € bl |

< X ~= m Finding the Equation of the Inverse of a Rational Function

h The rational function

, b 4
v Ol

ro

(%)

5 S

—, x#4
c— 4

\

fx) =

-

is a one-to-one function. Find its inverse.

One way to graph the inverse of a function f whose equation is known

‘ follows.
= il Step 1 Find some ordered pairs that are on the graph of f.
1ge x and y to get ordered pairs that are on the graph of f ',
and sketch the graph of f ' through them.
and use symmetry to find

=2 ' Step 2 Interchar

| N = Step 3 Plot those points.

" i Another way is to select points on the graph of f

I b b ' corresponding points on the graph of f~ L, ‘ ‘

% For example, suppose the point (a.b) shown in Figure 8is on the graph of

N a one-to-one function f. Then the point (b.a) is on the graph of f “!. The line

o segment connecting (a, b) and (h.a) is perpendicular to. and cut in half by, the

\ = — X line y = x. The points (a,b) and (b.a) are “mirror images™ of each other with

y . respect to v = x. Thus, we can find the graph of f =1 from the graph of f by
each point in f with respect to the line y = x.

) Figure 8 locating the mirror image of
T (¢). 423 .

s ——= T | Gepkiva A Giveatho Grapol] p—
In each set of axes in Figure 9, the graph of a one-to-one function f is shown in
blue. Graph f ' in red.

SOLUTION In Figure 9, the graphs of two functions f shown in blue are given
with their inverses shown in red. In each case, the graph of f ! is areflection of

the graph of f with respect to the line y = x.

v A)

\npa 4 CMQ-

/}
ORISR Finding the Inverse gt_p Function with a Restricted Domain

Let f(x) = Vx+5, x= -5 Find f~}(x).

Figure 9

Important Facts about Inverses

1. If f is one-to-one, then f ' exists. Z

2. The domain of f is the range of f ', and the range of f is the domain of f b

3. If the point (a, b) lies on the graph of f, then (b, a) lies on the graphof f .
The graphs of fand f =" are reflections of each other across the line y. =«

4. To find the equation for [ ', replace f(x) with y, interchange x and y,
and solve for y. This gives f '(x). : :
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An Application of Inverse Functions to Cryptography = A one-to-one function
and its inverse can be used to make information secure. The function is used
to encode a message, and its inverse is used to decode the coded message. In
practice, complicated functions are used. We illustrate the process with a simple
function in Example 5.

m Using Functions to Encode and Decode a Message

US(? the one-to-one function f(x) = 3x + 1 and the following numerical values
assigned to each letter of the alphabet to encode and decode the message BE
MY FACEBOOK FRIEND.

Al sl H 38 0 15 vV 2
Bjisk2 (- P 16 W 23
G- 3 J 10 Q 17 X 24
D 4 K 11 R 18 Y 25
E 5 L 12 S 19 Z 26
F 6 M I3 T 20

G 7 N 14 U 21

SOLUTION  The message BE MY FACEBOOK FRIEND would be encoded as

7 16 40 76 19 4 10 16 7
46 46 34 19 55 28 16 43 13

because
B corresponds to 2 and  f(2) =3(2) + 1 =7,
E correspondsto5 and f(5) =3(5)+ 1 =16, and so on.
Using the inverse f ~'(x) = %\ = % to decode yields
1 1
f"7)==(7) —==2, which corresponds to B,

1 1
fI(16) = 5(16) e 5, which corresponds to E,  and so on.

m Exercises

Decide whether each function as graphed or defined is one-to-one. See Example 1 and
Homework 1.
1. y 2. y 3. y

Glevs = N T
G SR i b

4, y=2x—8 5. y=V6-x 6. y=2x'~1

-1 8. y=2+12-6 9. y=Vr+1-3
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EJ 10. Explain why a constant function, suchas f(x) = 3, defined over the set of rea] .

bers, cannot be one-to-one.

Concept Check Answer each of the following.

11. For a function to have an inverse, it must be

of £, and the range of f is equal

12. The domain of f is equal to the

to the of f7\.

13. True or false: If f(x) = x2, then f 7 '(x) = \/:

14. If a function f has an inverse and f(—3) =6, then f~'(6)

Concept Check In Exercises 15-17, an everyday activity is described. Keeping in mind

that an inverse operation “undoes” what an operation does, describe each inverse activiry

5. tying your shoelaces
16. entering a room

17. screwing in a light bulb

Decide whether the given functions are inverses. See Homework 2.

22 flx)=""5. 8(X)= _'_' r 23, f(x) =~ S e .

fx)=x2+3, x=0; gx)=Vx—3, x=3

1)
ES

If the function is one-to-one, find its inverse. See Homework 2.

N
it

25. {(-3,6),(2,1).(5,8)} 26. {(1,-3),(2,~7),(4,-3). (5,

Decide whether each pair of functions graphed are inverses. See Example 3.

| 2. ) 28 \

i \ 7
a— + ‘yveX

no - ,

2 tn
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For each function as defined that is one-to-one, (a) write an equation for the inverse
ﬁ‘."”m" in the form y = f~(x), (b) graph f and f~' on the same axes, and (c)
give the domain and the r ange of f and f . If the function is not one-to-one, say so. See
Examples 3—-4.

29. y=3x—4 30. f(x) = —dx+3 3L f(x) =x>+1
32. y=x?+38 33.y=1, x#0 Bl ) =——, *#3
X X
N 2x+ 6
ﬁ.f(i)—xj. # 53 36.f(,r)=x_3. x#3

37. fx)=V6+x, x=-6

Graph the inverse of each one-to-one function. See Example 4.

38. y 39. y
4 7
o 12
7
7
/
>
X — X
vall 0
P
G /
7 /
7 7
[ 7
40. y
7
i
7
s
7
%
X
/)0
7
/
s/
7
7

Concept Check The graph of a function fis shown in the figure. Use the graph to find
each value.

41. f7'(4) 42.: £7(0) 43. f7Y(-=3)

Concept Check Answer each of the Jollowing.
44. Suppose f(x) is the number of cars that can be built for x dollars. What does
f£7'(1000) represent?

45. If a line has slope a, what is the slope of its reflection across the line y = x?

Use the alphabet coding assignment given in Example 5 for Exercises 46-47.

46. The function f(x) = 3x — 2 was used to encode a message as

—3725 19 .61 13 34 22 1.55 1 52 52 25 64 13 '10.
Find the inverse function and determine the message.

47. Encode the message SEND HELP, using the one-to-one function f(x) =x% — 1.
7 Give the inverse function that the decoder will need when the message is received.
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Exponential Functions

Exponents and Properties
Exponential Functions
Exponential Equations
Compound Interest

The Number e and
Continuous Compounding

Exponential Models

Exponents and Properties " Recall the definition of a™": If a is a real num-

ber, m is an integer, n is a positive integer, and Va is a real number, then

amn = (\"/I;)m. (Section 1.6)

For example,

1
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In this section we extend the definition of a” to include all real (not just

rational) values of the exponent r. For example, 2V3 might be evaluated by
\/3 with the rational numbers 1.7, 1.73,1.732,

approximating the exponent
proach the value of \/3 more and more

and so on. Since these decimals ap
closely, it seems reasonable that 2\/3 should be approximated more and more
closely by the numbers 2!7, 2!, 21732 and so on. (Rccall, for example, that
217 = 210 = (%)'7.) To show that this assumption is reasonable, Figure 10
gives graphs of the function f(x) = 2* with three different domains.
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Figure 10

Using this interpretation of real exponents, all rules and theorems for expo-
nents are valid for all real number exponents, not just rational ones. In addition
to the rules for exponents presented earlier, we use several new properties in this
chapter. These properties are generalized below. Proofs of the properties are not
given here, because they require more advanced mathematics.
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Additional Properties of Exponents
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_For any real number @ > 0, a # 1, the following statements are true.
(a) a* is a unique real number for all real numbers x.

e wiatad o (b) a® = af if and only if b = c.

(¢) Ifa>1and m < n, then a" < a".
(d) If0 <a < 1and m < n, then a™ > a".
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Properties (a) and (b) require a > 0 so that a* is always defined. For
examp.lej, (=6)* is not a real number if x = % This means that a* will always
be positive, since @ must be positive. In property (a). a cannot equal 1 because
1" =1 for every real number value of x, so each value of x leads to the same
real number, 1. For property (b) to hold, a must not equal 1 since, for example,
1* =15, even though 4 # 5.

- Properties (c) and (d) say that when a > 1, increasing the exponent on
a” leads to a greater number, but when 0 < a < 1, increasing the expo-
nent on “a” leads to a lesser number.

EXLMPI.E L0} Evaluating an Exponential Expression

If f(x) = 2%, find each of the following.

@ (-1 ® 6 @ f<%) @ f(492)

SOLUTION

@)ﬂ—w=2”=% Replace x with —1.

(b) f(3)=2"=8
@)f@)=P”=Qwa=nmz\ﬁ;=vm;—=4vg (Section 1.6)

(d) f(4.92) = 2% = 30.2738447

Exponential Functions = We now define a function f (x) = @* whose domain
is the set of all real numbers. Notice how the independent variable x appears in
the exponent in this function. In earlier chapters the independent variable did not
appear in exponents.

Exponential Function

Ifa>0and a # l,then
f(x) = a*

defines the exponential function with base a.

—

NOTE We do not allow 1 as the base for an exponential function. 1f
a = 1, the function becomes the constant function defined by f(x) =1,
which is not an exponential function.

Figure 10 showed the graph of f(x) = 2" with three different domains. We

repeat the final graph (with real numbers as domain) here.

e The y-interceptis y =2’ = 1.

e Since 2* > 0 for all x and 2*— 0 as x — —c, the x-axis is a horizontal
asymptote.

e As the graph suggests, the domain of the function is (<, o) and the range
is (0, %).

e The function is increasing on its entire domain, and it therefore is one-to-one.
These observations from Figure 10 lead to the following generalizations

about the graphs of exponential functions.
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Exponentnal Functlon f(X)

Domain: (—2, %) Range: (0. =)
For f(x) =2%
i x [ f(x) . fin=a"a>1
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Figure 11 1‘.‘!
e f(x)=a"fora> l is increasing and continuous on its entire domain,
(=2, ®). e T
ook «| e Thexaxis is a horizontal asymptote as x—> —.
. e The graph passes through the points (—l.‘%). (0.1). and (1.a).
¥ For f(x) = (3)"
x | f(x) 4
-3 8 fx)=a".0<a<l
2l )
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Figure 12

e f(x) = a* for 0 < a < 1, is decreasing and continuous on its entire
domain, (—=, ).
e The x-axis is a horizontal asymptote as x — .

e The graph passes through the points (—l.},) .(0,1), and (1,a).

The graph of y = f(—x) is the gmph of y= f( k\r eﬂeued ACTOSS thc

y-axis. Thus, we have the follow
p o 1E

If f(x) =2%, then f(—x)=2"=2"1*=(2"")y= (%) .
This is supported by the graphs in Figures 11 and 12.

The graph of f(x) = 2* is typical of graphs of f(x) = a* where a > 1. For
larger values of a, the graphs rise more steeply, but the general shape is similar
to the graph in Figure 11. When 0 < a < 1, the graph decreases in a manner
similar to the graph of f(x) = ( ) In Figure 13 on the next page, the graphs of
several typical exponential functions illustrate these facts.

‘4
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fix)=da*
Domain: (—ee, e); Range: (0, =)
* When a > 1, the function is increasing.
* When 0 < a < 1, the function is decreasing.

« In every case, the x-axis is a horizontal
asymptote.

Figure 13

In summary, the graph of a function of the form f(x) = a* has the follow-
ing features.

Characteristics of the Graph of f(x) = a*

1. The points (—1,},), (0,1), and (1,a) are on the graph.
(M?)(\/Aw{ a—— 2.1f a > 1, then f is an increasing function. If 0 < ¢ < 1, then fisa
decreasing function.

““?"'\“‘k 4—— 3. The x-axis is a horizontal asymptote. or U‘ =0
4. The domain is (—%, %), and the range is (0, *).

(010030 TSR Graphing an Exponential Function s
Graph f( ;); 5*. Give the domain and range. | > Q s (o,)

(eS| e,

d

@ Graphing Reflections and Translations

Graph each function. Show the graph of y = 2* for comparison. Give the
domain and range.

@ f(x)=-2 M) f(x) =23 © f(x)=2v2—1

SOLUTION In each graph, we show in particular how the point (0, 1) on the
graph of y = 2* has been translated.

(a) The graph of f(x) = —2" is that of f(x) = 2* reflected across the x-axis.
The domain is (—, ®), and the range is (—,0). See Figure 14.

(b) The graph of f(x) = 2" is the graph of f(x) = 2* translated 3 units to the
left, as shown in Figure 15. The domain is (—, ), and the range is (0, ).

(¢) The graph of f(x) =22 —1 is that of f(x) = 2" translated 2 units to
the right and | unit down. See Figure 16. The domain is (—, ), and the

range is (—1,%).
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Figure 14 Figure 15

Because the graph of y = a* is that of a one-to-one
. we need only show that x; = X2. Property (b) given
d to solve exponential equations, which are equa-

~Exponential Equations |

function, to solve a* = a*
earlier in this section is use
tions with variables as exponents.

VLl S olvmg an Exponential Equation

Solve(g)'=81.—!7 (3) 3|

it
=4 -$» X = —"'—1 — SD’-*“J‘IC“ Set = :L'ii

o —-X
. \CTIEN soving an Exponential Equation

Solve 2¥+4 = 876,
SOLUTION Write each side of the equation using a common base.
. 2.r+4 = g6
2v+4 = (2%)*6  Write 8 as a power of 2.
2xtd = 23.\-—l8 (um)n = g™
x + 4 =3x— 18 Setexponents equal (Property (b)).
—2x=-22 Subtract 3x and 4. (Section 2.1)
x=11 Divide by —2.

Check by substituting 11 for x in the original equation. The solution set is {1 2

Later in this chapter, we describe a general method for solving exponenual
equations where the approach used in Example 3 and Home Work 2 is not
possible. For instance, the above method could not be used to solve an equation

like

7* = 12,
since IL1s not easy to express both sides as exponential expressions with the
same base.

\/{(3\\""(“

Y HOMEWORK 3 [

Solve x¥3=8], = ')_
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.\'ﬂ) — FomPoupd Interest | Recall the formula for simple interest, / = Pri, where
— Pis pnnc1p§l (amount deposited), 7 is annual rate of interest expressed as a deci-
mal, and 7 is time in years that the principal earns interest. Suppose f = 1 yr.

Then at the end of the year, the amount has grown to

P+ Pr=P(1+r),

Fhe original principal plus interest. If this balance earns interest at the same
interest rate for another year, the balance at the end of that year will be

[P(1+7r)] + [P +r)]r=[P(1 +r)](1 +7) Factor.
=P(1 +r)2 a-a=a
After the third year, this will grow to
[P(1+r2] +[P(1+r)2]r=[P(1+r)2](1 +7r) Factor.
= P(1 + ). @-a=a
Continuing in this way produces a formula for interest compounded annually.
A =P(1 + r)

The general formula for compound interest can be derived in the same way.

Compound Interest

If P dollars are deposited in an account paying an annual rate of interest r
compounded (paid) n times per year, then after ¢ years the account will con-
tain A dollars, according to the following formula.

tn
A =P(1 + 5)
n

lu Exercises '

For f(x) = 3" and g(x) = (‘%)'(, find each of the following. In Exercises 7 and 8, round
the answer to the nearest thousandth. See Example 1.

1. f(2) 2. f(-2) 3. 5(2) 4. 5(-2)
5. f@) g g(%) 7. £(234) 8. g(—1.68)
Graph each ﬁmlction.. See Homework 1.

1) 3\
9. f(x) =3 w. 50 =(3) 50 =(2)
zw-(5)  Baw=e 14. f(x) = 2

Sketch the graph of f(x) = 2" Then refer to it and use the techniques of Chapter 3 to
graph each function as defined. See Example 2.

18, f(x)=2+1 16. f(x) =2+ 17. f(x) = —2x+2
18, f(x) =27 19. f(x) = 2-““' +2 20, f(x) =2*2 — 4

Sketch the graph of f(x) = (%)' Then refer to it and use the techniques of Chapter 3 to
graph each function as defined. See Example 2.

a0 =(3) -2 2= (3)" 2. 10 =(3) "
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2. f(x) = (%) 25. f(x) = G)* +2

27. Concept Check Fill in the blank: The graph of f(x) = a™™ is the same as that of

g(x) = ( )*.
Connecting Graphs with Equations Write an equation for the graph given. Each repre-

sents an exponential function f, with base 2 or 3, translated and/or reflected.

28. y

1 4=2 32. (;) -2 33.27%=38

36. 472 =2%+3

Logarithmic Functions

m Logarithms
m Logarithmic Equations
®m Logarithmic Functions

= Properties of Logarithms

m\Por{ a««g

Logarithms ~ The previous section dealt with exponential functions of the form
y = a" forall positive values of a, where @ # 1. The horizontal line test shows that
exponential functions are one-to-one and thus have inverse functions. The equation
defining the inverse of a function is found by interchanging x and y in the equation
that defines the function. Starting with y = @" and interchanging x and y yields

x=a.
Here y is the exponent to which @ must be raised in order to obtain x. We call this
exponent a logarithm, symbolized by the abbreviation “log.”” The expression logq ¥
represents the logarithm in this discussion. The number a is called the base of the

lo.garithm. and x is called the argument of the expression. It is read “logarithm
with base a of x,” or “logarithm of x with base a,” or “base a logarithm of x.”

Logarithm

For all real numbers y and all positive numbers a and x, where @ # 1,
a— y =log,x isequivalentto x = a’.

The expression log, x represents the exponent to which the base a must
be raised in order to obtain x.,
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(BN Writng Equivalent Logarithmic and Exponentia Eorms ..

The table shows several pairs of equivalent statements, written in both logarith-
mic and exponential forms.

SOLUTION To remember the relationships among a, x,
and y in the two equivalent forms y = log,x

Fi ithmic Form pbnenti_aI\Fomi}i and x = @, refer to these diagrams
i ‘ S—— A logarithm is an exponent.
log,8 =3 2’=8 Exponent
logi16 = —4 $)rt=ne
£ (2) Logarithmic form: y = log, x
log o 100,000 = 5 103 = 100,000 T
Base
logs g7 = —4 34=g Exponent
\ \ 4 logs 5 =11 5'=5 Exponential form: a* = x
o4 3)0 i
| G 1 = 2\V
1 OEE 50 (4) : Base
loa \ = O x Logarithmic Equations ' The definition of logarithm can be used to solve a
J ) logarithmic equation, which is an equation with a logarithm in at least one
/

term. Many logarithmic equations can be solved by first writing the equation in
exponential form.

/ACLLANLIEM Solving Logarithmic Equations
.

w\g A ( Solve each equation.
W\e s N )s (ol U\g‘,( ve each equation

plee M -2 8 _ AN _3 ¢ 3
. & ¢ yég\_,j\ @) long—3 @ log4x—§ @ log49\/?=x
SRR R ro)
~ U S A 5 3 TR : ;
\ JZ) ) e Logarithmic Functions | We define the logarithmic function with base a as
B CYRV-S PSR follows.
= \ iy’

. Logarithmic Function SRS

IW'FQH(W&; r— Ifa>0,g7 1 and x > 0, then

f(x) = log, x

defines the logarithmic function with base a.

Exponential and logarithmic functions are inverses of each other.
y = 2" is shown in red in Figure 17. The graph of its inverse is fou
ing the graph of y = 2" across the line y = x. The
defined by y = log, x, shown in blue, has the y-

The graph of
nd by reflect-
graph of the inverse function,
axis as a vertical asymptote.

x | 2% x | log, x
~2 0.25 0.25 =2
=] 0.5 0.5 =1

0 | | 0
1 2 2 |
2 |4 4 2

Figure 17
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Since the domain of an exponential function is the set of all real numberg,

the range of a logarithmic function also will be the set of all real numbers. In he

same way, both the range of an exponentlal function and the domain of a loga-

rithmic function are the set of all positive real numbers.

Thus, logarithms can be found for positive numbers only.

" Logarithmic Function f(x) =

Domain: (0, «) Range: (—%, ©)

logas x

For f(x) = logs x:

—{— f(x) f(x) =log,x,a>1
1 =
‘: % (a, 1)
2 | 1 .
1 0 o /(1,0
2 1 |
4| 2 (@-1)
8 3

Figure 18

o f(x) = log, x, for a > 1, is increasing and continuous on its entire
domain, (0, ).
e The y-axis is a vertical asymptote as x — 0 from the right.

e The graph passes through the points (,l, -1 ), (1,0), and (a,1).

For f(x) = logs x:

x| f(x) y

. 2

1 1 (a, 1)

2

1 0 - (1,0 :

A l\

41 2 (@)

8 -3 f(x)=log, x,0<a<1
Figure 19

e Sf(x) =log,x, for 0 < a < 1, is decreasing and continuous on its
entire domain, (0, »).

¢ The y-axis is a vertical asymptote as x — 0 from the right.

e The graph passes through the points (}, -1 ) (1,0), and (a, 1)
P

B e e . ——4
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Th.e graphs in Figures 18 and 19 and the information with them suggest the
following generalizations about the graphs of logarithmic functions of the form

f(x) = log, x

Characteristics of the Graph of f(x) = log, x

1. The points (g, -1 ),(1.0), and (a, 1) are on'the graph.

“— 2.1If a > 1, then f is an increasing function. If 0 < a < I, then f is a
decreasing function.
~ X0 §
3. The y-axis is a vertical asymptote.
4. The domain is (0, %), and the range is (—%, %).
¥ m Graphing Logarithmic Functwns
Graph each function. o —QIMT — lncreas, by ‘Cd'tmwc - wikore
Jd
“ e
(@ f(x)= logm X M) f(x)= ]083 N
* 1 ) :A \ Ve %~ wele o
soLuTion ' ,'04\ xDm%,.M 2 : Y
(< = “& > v-Ll \‘»u ((K *’v\ =axi S
(a) One approach is to ﬁrst graph y= ) which defines the inverse function
of f, by plotting points. Some ordered pairs are given in the table with the
graph shown in red in Figure 20. The graph of f(x) = log» x is the reflec-
tion of the graph of y = (l:)‘ across the line y = x. The ordered pairs for
= log,» x are found by interchanging the x- and y-values in the ordered
palrs for y = ( ) See the graph in blue in Figure 20.
e [y= () x|S0 =tomnx o (1)) yor ® | AW =tomax
» /
-2 4 4 -2 P 4 3 =l -
-1 2 2 -1 A 1 0 i
0 1 1 0 // 3 1 3+ flx)=logyx |
l ! ! 1 / 9 2 i3 ‘
il 1 3 2 PP L7 5 |
1 | PA. 4 LY ‘
4 16 16 4 /-2 4 ‘
4 f(x) =logypx° T ‘
Figure 20 Figure 21

(b) Another way to graph a logarlthmlc function is to write f(x) =y = log; x
in exponential form as x = 3", and then select y-values and calculate corre-
sponding x-values. Several selected ordered pairs are shown in the table for
the graph in Figure 21.

CAUTION If you write a logarithmic function in exponential form to
graph, as in Example 2(b), start first with y-values to calculate corre-
sponding x-values. Be careful to write the values in the ordered pairs in
the correct order.
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More general logarithmic functions can be obtained by forming the compo-

sition of f(x) = log, x with a function g(x). For example, if f(x) = log, x and
g(x) =x—1, then

(fog)(x) = f(g(x)) = loga(x — 1). (Section 3.3)

The next example shows how to graph such functions.

Imprtaut P m Graphing Translated Logarithmic Functions

Graph each function. Give the domain and range.

@ f(x) =loga(x— 1) (. (\M\"'( 9. B f(x) = (logsx) =1

(© f(x)= log4(x + 2) + l}< / . ";’“'F*\ ‘\j“_ t\;,x,
Yo 1 J = _"ulf "“//_; /(\ [V\flyi':‘;u,q‘
* \r easiney % X= -1 Neaiel agjm?koic N =0 _): Nered csun 1*'&
| NOTE If we are given a graph such as the one in Figure 22 and are asked i

to find its equation, we could reason as follows: The point (1,0) on the
basic logarithmic graph has been shifted down 1 unit, and the point (3,0)

=l -1
LT lﬂ%‘) on the given graph is 1 unit lower than (3, 1), which is on the graph of
f‘i/’; AR R y = logs x. Thus, the equation will be
(1,-1
y = (logzx) — 1.
Figure 22

Properties of Logarithms " The properties of logarithms enable us to change
the form of logarithmic statements so that products can be converted to sums,
quotients can be converted to differences, and powers can be converted to
products.

\'/Pcr4w ‘{ A
g o— ' Properties of Logarithms
For x > 0,y>0,a>0, a# 1, and any real number r, the following
properties hold.
Property Description
Product Property The logarithm of the product of two num-
log, xy = log, x + log, y bers is equal to the sum of the logarithms
of the numbers.
‘ Quotient Property The logarithm of the quotient of two num-
i log, x = log, x — log, y bers I‘S equal 'lo the difference between the
{ y logarithms of the numbers.
A ), Y it b
( i :‘0,“"”','2"’1’“'[)’ T'he logarithm of a number raised to a
| 8o X" = rlog, x power is equal to the exponent multiplied
! ! : o by the logarithm of the number.
! : LOgarithm of | 4 y : 2
' \ ) The base L :
v : L \an: Rk 1¢ base a logarithm of 1 is 0. :
i3 -1 Base 7
] ase a Logarithm of a The base a logarithm of a is 1.

log,a = 1
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Proof  To prove the product property, let m = log, x and n = log, y-

LOOKING AHEAD TO CALCULUS

]()g” x=m means am" =x
A technique called logarithmic

differentiation, which uses the log,y=n means a"=y
properties of logarithms, .czm Now consider the product -
often be used to differentiate
complicated functions. xy=a™-aq" Substitute.
xy =™ Product rule for exponents (Section 1.3)
log,xy=m +n Write in logarithmic form.

log, xy =log, x +log,y Substitute.

The last statement is the result we wished to prove. The quotient and power
properties are proved similarly.

+ QLU Using the Properties of Logarithms

Rewrite each expression. Assume all variables represent posmve real numbers,
with @ # 1 and b # 1.

15
@) loge(7.9) (b) logs = (©) logs V8

mnq 3 - x}y’
@ log, =5 © loga Vo2 ® logs (| =
SOLUTION

(a) loge(7 +9) = loge7 + loge 9 Product property

(b) logy % = logg 15 — logo 7 Quotient property

(¢) logs \/g = logs(8'?) = logs 8  Power property Use parentheses

to avoid errors.

mnq
(d) ]oga = log,m + log,n +log,q — (logq pz + log, t*)
Product and quotient properties

= log,m + log,n + log, ¢ — (2log, p + 4 log, 1)
Power property
= log, m + log‘, n+log,q—2log,p—4log,t

Be careful
(e) log, V3 m’ = log, W = loga m
3 5 ) I/n
(f) log[m/ lOgb<x i, ) Va = a'" (Section 1.6)

| X y

= ]og,, Power property

..’

1 Product and quotient
e 3 5F ez Sm
= (logy x3 + log, y* — log, z™) A

|
=—(3logyx + 5log,y —mlog,z) Power property

n

3 5 m Distributive property
= = log, x + ; logpy — ; log, z (Section 1.2)
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R s 5 00 ¥ W Using the Properties of Logarithms
\.r] < I \ \’\"“ L e 3

/
— - f/ . . -4
il " Write each expression as a single logarithm with coefficient 1. Assume all vari-

ﬂ%‘
!

dlar mes™ AV 0y Lol - .
‘\‘\’ e c i ables represent positive real numbers, with a # 1 and b # 1.
< O ) o= - o Gk Vi)Y -
> : ® (@) logs(x +2) + logs x — log3 25 53\_‘_{:__ (b) 2log,m— 3log,n
s
O YUs Saf H\ 2% = los it
¢ 1 3 - J 3
e ) any, (c) Elog/, m + 5 logy 2n — log, m’n 3 3“ N
% o . 2 it (20} 2 ORI
\eo, ™ 4 e >3 ~>"*:,"ﬁ;'"’\f}b-‘;v":'
d "N \ =

CAUTION There is no property of logarithms to rewrite a logarithm
of a sum or difference. That is why, in Homework 3(a), logs(x + 2) was
not written as logz x + logs 2. The distributive property does not apply in a
situation like this because logs(x + y) is one term. The abbreviation “log”

is a function name, not a factor.

The next example uses = symbols for values of logarithms. These are actu-

ally approximations.

Napier’s Rods
The search for ways to make cal- m Using the Properties of Logarithms with Numerical Values

culations easier has been a long,

ongoing process. Machines built Assume that log o 2 = 0.3010. Find each logarithm.
by Charles Babbage and Blaise

Pascal, a system of “rods™ used @ logio 4 @) logio5
by John Napier, and slide rules

were the forerunners of today’s SOLITION 1
calculators and computers. The (a) logo 4 =logo 22 (b) logo5 =logyo —
invention of logarithms by John 2
Napier in the 16th century was a =2logp2
great breakthrough in the search -

for easier calculation methods. 2(0.3010)

Source: IBM Corporate Archives. = 0.6020

lOgI() 10 — lOg|0 2
1 —0.3010
= 0.6990

Recall that for inverse functions f and g, (f° g)(x) = (g° f)(x) = x. We
can use this property with exponential and logarithmic functions to state two
more properties. If f(x) = a* and g(x) = log, x, then

(f o g)(_x) = g%  and (g o f)(x) = log‘,(a"’).

Theorem on Inverses
For a > 0, a # 1, the following properties hold.

a'%«* = x (forx > 0) and log, a* = x

The following are examples of applications of this theorem.

log; 10 — g
7810 = 10, logs5*=3, and log, rt*' =k + |

|rhf fmcopd statement in the theorem will be useful when we solve other
ogarithmic and exponential equations,
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Exercises

Concept Check In Exercise I, match the logarithm in Column I with its value in
Column II. Remember that log, x is the exponent to which a must be raised in order to

obtain x.
I 11
1. (a) log, 16 A. 0
(b) logs 1 B. L
2
(c) logi0.1 C. 4
(d) log, V2 D: =3
1
(e) log.— E. -1
o2
(f) logi»8 F. -2

If the statement is in exponential form, write it in an equivalent logarithmic form. If the
statement is in logarithmic form, write it in exponential form. See Example 1.

2Nz~ 07
2. 3* =38l 3. (g) = 4. loge36 =2 5. log,;81 =38
@ 6. Explain why logarithms of negative numbers are not defined.

Solve each logarithmic equation. See Homework 1.

1
7. .\'=Iogsa 8. log,§=5 2..t=logs\4/§
10. x = 3lows8 11. x-=2le? 12. log, 25 = -2
5
13. logsx =3 14. x = log; V16 15. logox =3
1_6_: lOg|/3(,\' + 3) =—4 _1_7- ]Og(‘+3) 6=1

18. 3x— 15=log,1 (x> 0,x# 1)

@ 19. Compare the summary of characteristics of the graph of f(x) = log, x with the similar
summary about the graph of f(x) = a* in Section 5.2. Make a list of characteristics
that reinforce the idea that these are inverse functions.

Sketch the graph of f(x) = log, x. Then refer to it and use the techniques of Chapter 3
to graph each function. Give the domain and range. See Homework 2.

20. f(x) = (logzx) +3 21. f(x) = |loga(x + 3)|

Sketch the graph of f(x) = logx x. Then refer to it and use the techniques of Chapter 3
1o graph each function. Give the domain and range. See Homework 2.

22. f(x) = login(x = 2)

Concept Check In Exercises 23-25 match the function with its graph from choices A-F.

1
23. f(x) = logax 24. f(x) = logz = 25. f(x) = loga(x — 1)
A y B. y [ 8 ¥

1 2 0) 3 0
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mple 2 and Homework 2.

Graph each function. See Exa

26. f(x) = logs x 27. f(x) = logia(1 = %) 28: f(x) =logs(x— 1) +2

ations In Exercises 29-31, write an equation for the

Connecting Graphs with Equ
thmic function f with base 2 or 3, translated and/or

graph given. Each is a logari
reflected. See the Note following H omework 2.

30.

es of logarithms to rewrite each expression. Simplify the result if pos-

Use the properti
ers. See Example 3.

sible. Assume all variables represent positive real numb.

6x 5V7
32. long‘ 33. logs

f
5r3 ab Vi Vy
35. logny[ 75 36. loga — 37. loga ——

Write each expression as a single logarithm with coefficient 1. Assume all variables rep-
resent positive real numbers. See Homework 3.

34. logs(2x + 5y)

! 38. log, x + log, y — log, m 39. log,m — logan — logat
b I 3 ,
| 40. 3 log), x*y® — 1 log, x%y 41. 2log,(z + 1) + log,(3z + 2)

2 |
423 — 3 logs 5m® + 3 logs 25m?

| . . . :
»‘. | Given the approximations logo 2 = 0.3010 and log o 3 = 0.4771, find each logarithm
: I without using a calculator. See Example 4.

il 9
! 43. logo 6 4. lOgm; 45. logmz 46. Iogm\/.%

: Exponential and Logarithmic Equations

i }! m Exponential Equations E . TR ;
xponential Equations ~ We solved exponential equations in earlier sections:

! .‘!‘ ® Logarithmic Equations Gener: .
al methods for solving thes ations below
il - L2, § g these equations depend on the property DEIOT:
] pplications and Models g . o .
: 2} which follows from the fact that logarithmic functions are one-to-one.
I o
| 1§ I 1= 5, Property of Logarithms
¥ 4 | If x >
In =log, Jrafael a>0, and a # 1, then the following holds.
! JEN :
+ )/ X = 18 eauivs
% VA gl iyt iy cqunvqlcnt o Al‘ogax = log, y.
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B EXAMPLE 1 Solving an Exponential Equation _

Solve 7* = 12. Give the solution to the nearest thousandth

SOLUTIO!\I The properties of exponents given in Section 5.2 cannot be used to
solve this equation, so we apply the preceding property of logarithms. While
any appropriate base b can be used, the best practical base is base 10 or base e.
We choose base e (natural) logarithms here.

=12

iu In7*=1n12

In7=1In12
- ' / - X
e ) w—ﬂ-/i*
o |\ x_lnlz

In7

B ’ A
S5l o e Yt W A3 T x = 1277

The solution set is {1.277

Property of logarithms

Power property (Section 5.3)

Divide by In 7.

«}u/)v"\——/')' (S5l =S
JP’\) \f"\/)‘

Q,,yf;)\ \\W» ;\

,)L \o &
e J CAUTION When evaluating a quotient like ll“n'72 in Example 1, do not

confuse this quotient with In = 12 which can be written as In 12 — In 7. We
cannot change the quotient of two logarithms to a difference of logarithms.

— —_—

PR
( In7 7) }/
s ot BRI ">/ * '( ) "

L.\_ —

WMQM e - \ane =]
\ Jf\
O s

Solve 32! = 0.4**2. Give the solution to the nearest thousandth.

Solving an Exponential Equation

4_@ Sol\nng Base e Exponential Equations R —

Solve each equation. Give solutions to the nearest thousandth.

@ e"l =200 ((b eZH-l % e—-l.\' =3¢

SOLUTION
(a) e* =200
In e* = In 200 Take the natural logarithm on each side.
x2 = In 200 Ine” = x* (Section 5.3)
i
both roc® x= 1+VIn200 Square root property (Section 1.3)
x =~ 12302 Use a calculator.

The solution set is { *

2.302}.
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i
[ (b) e?_\+| N (,—4\ = 3¢
| .
} LY e~ 2t =3¢ a" « a" = a™" (Section 1.3)
3 -r e X=3 Divide by e ','l = ™", (Section 1.3)
5 Ine®=1In3 Take the natural logarithm on each side.
—2xIne=1In3 Power property -
—2x=1In3 Ine=1
i 1 . I
x=i= 5 In3 Multiply by —3.

x =~ —0.549 Use a calculator.

The solution set is {—0.549}.

Solving an Exponential Equation Quadratic in Form

Nery A HOMEWORK 2
\NFE‘“I—', L Solve e2* — 4e¢* + 3 = 0. Give exact value(s) for x.

Logarithmic Equations Y The following equations involve logarithms of vari-

i .
' able expressions.

= m Solving Logarithmic Equations
g i/L __&"j / L\'J | [) ) ] € e Tt ; g o T :
e & Vo Lat d$ Solve each equation. Give exact values.
2 ,3‘~L_5_:-" Cis J '(a)\ 7lnx = 28 @ log‘-’('\’3 i 19) =
= e : SOLUTION
\ | - lo< -
J/,/) » o~ 0 ) s (a) 7Inx=28
W i’ s Inx=4 Divide by 7.
-\)) v A\ ))\22—‘ ok o & x =e* Write the natural logarithm in exponential form.
\
Sw//") \ 5.%:)\ < The solution set is {e*}.
N TR <
oo = (b) log,(x3 = 19) =3
2 J)‘ Z’ 9 & Ve \) gZ( )
i - ' o)) 2> = 19:=25 Write in exponential form.
e > J ¥ - 3
U x>—19=8§ Apply the exponent.
: : s gy Ak
S, ol PN x*=27  Add19.
" | - \J 3 d"" A Ls x = \3/2—'; Take cube roots.
/ 2/ _" -
oy NP2 o> 2 "f—)\ pza Va1 =3
3 ST S P The solution set is {3}.
//')‘ /JW =
X mhsminq a Logarithmic Equation p—

- Y
\}-,-33‘; S ),\,2 g Solve log(x + 6) — log(x + 2) = log x. Give exact value(s).

JJJ’CM S 5 )

f,/"\‘U'l'l()N Recall that the domain of y = log,x is (0, %). For this reason,
it is always necessary to check that proposed solutions of a logarithmic
equation result in logarithms of positive numbers in the original equation-

44
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2GR Solving a Logarithmic Equation

Solve log,[ (3x — 7)(x — 4)] = 3. Give exact value(s).
SOLUTION  logz[(3x = 7)(x —4)] =3
Bx=7)(x—4)=23 Write in exponential form.
3x2—19x+28 =38 Multiply. (Section 1.3)
3x2—=19x+20=0 Standard form
(3x—4)(x—=5)=0 Factor.
3x—4=0 or x—5=0 Zero-factor property

4
x = 3 or x=135 Solve forx.

A check is necessary to be sure that the argument of the logarithm in the given
equation is positive. In both cases, the product (3x — 7)(x — 4) leads to 8, and

log, 8 = 3 is true. The solution setis {§.5 }

pVA G00AY A€ Solving a Logarithmic Equation

Solve log(3x + 2) + log(x — 1) = 1. Give exact value(s).

NOTE We could have used the definition of logarithm in Homework 4 by
first writing

log(3x +2) + log(x—1) =1 Equation from Home Work 4
log o[ (3x + 2)(x — 1)] =1 Product property
(Bx+ 2)(x=1)= 10!, Definition of logarithm (Section 5.3)

and then continuing as shown on the preceding page.

m Solving a Base e Logarithmic Equation

< Solve In e* — In(x — 3) = In 2. Give exact value(s).

2K

Y

SOLUTION This logarithmic equation differs from those in Example 4 and
Homework 4 because the expression on the right side involves a logarithm.

Ine" —In(x —3)=1In2

Inx—In(x—3)=1In2 et = x (Section 5.3)
In : =In2 Quotient property
X g
=2 Property of logarithms
=3

x=2(x—3) Multiply by x = 3.

2x— 6 Distributive property

=
Il

6=x Solve for x.

Check that the solution set is {6}.
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Solving Exponential or Logarithmic Equations
To solve an exponential or logarithmic equation, change the given equation
into one of the following forms, where a and b are real numbers, @ > 0 ang
a # 1, and follow the guidelines.
1. ¢/ = b

Solve by taking logarithms on both sides.

2. log, f(x) = b
Solve by changing to exponential form a® = f(x).

3. log, f(x) = log. g(x)
The given equation is equivalent to the equation f(x) = g(x). Solve
algebraically.

4. In a more complicated equation, such as

el . e =3¢

in Example 2(b), it may be necessary to first solve for a/™ or log, f(x)
and then solve the resulting equation using one of the methods given
above.

5. Check that each proposed solution is in the domain.

Applications and Models ]

WCIIETETER Avplying an Exponential Equation to the Strength of a Habit

' The strength of a habit is a function of the number of times the habit is repeated.
| | If N is the number of repetitions and H is the strength of the habit, then, accord-
i ing to psychologist C.L. Hull,

i H =1000(1 — ™),

where k is a constant. Solve this equation for k.

EXAMPLE 6 N_Mgdgqug EPI_I! (_:opgglgptipn in the U.S.
The table gives U.S. coal consumption (in quadrillions of British thermal units,
' or quads) for several years. The data can be modeled by the function

f(1)=2492Int-9331, = 80,

where 1 is the number of years after 1900, and f(r) is in quads.

B T 105 S S i)

(a) Approximately what amount of coal was consumed in the United States in

3
| 1o .
, 1980 2003? How does this figure compare to the actual figure of 22.32 quads?
%’ 1985 17.48 (b) If this trend continues, approximately when will annual consumption reach
5 25 quads?
il 1990 19.17 i
§ i SOLUTION
1995 20.09
- T (a) The year 2003 is represented by ¢+ = 2003 — 1900 = 103.
: i e 25.80 f(103) =24921n 103 — 9331 Let 1= 103.
: ‘* 2008 22.39 ~ 22.19
! Source: U.S. Energy Information Based on this model, 22,19 quads were used in 2003. This figure is very
Administration. close to the actual amount of 22.32 quads.

4-‘
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(b) Replace f(t) with 25, and solve for ¢.
25=2492Int—9331 f(1) =25 in the given model.

11831 =24921In¢ Add 93.31.
Int= L1631 Divide by 24.92. Rewrite.
2492
t = 18312492 Write in exponential form.
t=1153

Add 115 to 1900 to get 2015. Based on this model, annual consumption will
reach 25 quads in 2015.

Exercises

Concept Check An exponential equation such as
55='9
can be solved for its exact solution using the meaning of logarithm and the change-of-

base theorem. Since x is the exponent to which S must be raised in order to obtain 9, the
exact solution is

log 9 In9
S QR ——1
log 5 In5

logs 9, or

For each equation, give the exact solution in three forms similar to the Jorms explained

above.

1\*
o IF= 9 2o hle== =12
1. 7*=1 (2> 1

Solve each exponential equation. In Exercises 3—14, express irrational solutions as deci-
mals correct to the nearest thousandth. In Exercises 1517, express solutions in exact
form. See Examples 1-2 and Homework 1-2.

6. 41 =3 7. G+1 = 42! 8. e = 100

9, T+ e = de 10. G) =-3 11, 0.05(1.15) = ¢
120 3(2)2+1=100  13. 2(1.05)* +3 = 10 14. 5(1.015)19% = g
15, ¥ — 6 +8=0 16,2 +e*=6 17, 5% + 3(5%) = 28

Solve each logarithmic equation. Express all solutions in exact form. See Examples 3-5.

18. 5Inx =10 19. In(4x) = 1.5

20. log(2 —x) =0.5 21. logs(2x +4) =2

22. logy(x* +37) =3 23, Inx+Inx?=3

24, logs[(x +5)(x —3)] =2 25, loga[(2x + 8)(x +4)] =5

‘— o e—
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26. log x + log(x + 15) =2 21. log(x +25) = log(x +10) + log 4

28. log(x — 10) — log(x — 6) = log 2 29. In(5 —x) +In(=3 = x) =In(] - 8x)
30. logg(x +2) + logs(x +4) = logs 8 31. loga(x? = 100) — loga(x + 10) = |
: log x + log(x — 21) = log 100 33. log(9x +5) =3 + log(x + 2)
; lnzﬂu -2)—In4=—In(x—2) 35. logs(x +2) + logs(x —2) = |
36. loga(2x—3) + loga(x +1) =1 37. Ine*—2Ine=1In et
38. logy(logax) =1 39. log x> = (log x)?

ear the following statement: “I must reject any

/ “heck Suppose you overh s , . .
A Eascan e ek ation involving logarithms.” Is thjs

negative proposed solution when I solve an equ
correct? Why or why not?
Solve each equation for the indicated variable. Use logarithms with the appropriate
bases. See Home Work 5.

2. T=To+ (T, - Tn)lo_". for

41 = +L for x
= p=a Inx’ ;

43 125(1 _e—Rwl)_ for ¢ éi.. )‘=A+B(l —e‘C‘). for x
1 R

)

x is the argument.
055 dog, x et )l 1 ol 3 Gllall ad)
Lokl ax
base of a logarithm In the expression
log, x, a is the base.
ORPCR PR UPWEIN PR PRI
aaeldl a5 dog, x
compound amount  In an investment
paying compound interest, the
compound amount is the balance
after interest has been earned. (The
compound amount is sometimes called
the future value.)
O #2550 GV el sl § S M AL
W) ol day dwo I ga S M sl
(- Lzl da @) Gt s M HU1 e 3l

compounding of money involves the
computation of interest as the frequency
of compounding approaches infinity,
leading to the formula A = Pe’".
)‘;.JI\T.:SJUIE;_,.E;!,UI_,A.U).:.J?.:S,J
S SR o 38 Olz| e U1 gaSU
Limall ) (5332 & ¢ BN > ) oS A
A = Pe"!
exponential equation  An exponential
equation is an equation with a variable
in an exponent.
055 slee A Lol é‘ LN sl
Apaza Lo
exponential function If g > () and
a # l.lhcn f(x) = a* defines the
exponential function with base q.
oba# 1 a > 05513 2.9 V)
a0 LN DI sad f(x) = g

i
1 r m
} 45. log A =log B — Clogx, forA 46. A=P<l+;) , fort
i
{
Il
H
it
i
il Glossary
|
'
i
HH
| argument In the expression log, x, continuous compounding Continuous  future value In an investment paying

compound interest, the future value is the
balance after interest has been earned.
(The future value is sometimes called the
compound amount.)

$4S 050 Yl sl G A Y1 2a
\..JL.Z’-’.b\..; .l:..ﬂ;”dé 21;_-'\'1 '«._.'A! ok
OV Gan 3l Y1 2l e sla) sl
.(?511\ :L.u
inverse function Let f be a one-to-
one function. Then g is the inverse
function of f if (f e g)(x) = x for every
x in the domain of g, and (g © f)(x) =
for every x in the domain of f.

o | s £ DN ) LSl D
015 13) f V1Al LSl DIt g g OB 1
348 3l g x JSI (£ 8)x) =
Sold g x g (g o ) =+
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Angles

Basic Terminology
Degree Measure
Standard Position
Coterminal Angles

Line AB
A B
—— Segment AB
A B

O———————> Ray AB
A B 2

Figure 1

Terminal side

Vertex A
Initial side

Figure 2

A complete rotation of a ray
gives an angle whose measure

; ) e

is 360°. 3¢5 of a complete
rotation gives an angle whose
measure is 1°.

Figure 4

Introduction to Mathematics

Basic Terminology ' Two distinct points A apd B d.etermir.xe a line called line
AB. The portion of the line between A and B, including pomts A and B them.
selves, is line segment AB, or simply segment AB. The portion of line AB that
starts at A and continues through B, and on past B, is the ray AB. Point A is the
endpoint of the ray. See Figure 1. . .

In trigonometry, an angle consists of two rays in a plane with a commop
endpoint, or two line segments with a common endpoint. The§e two rays (or
segments) are the sides of the angle, and the common endpoint is the vertex of
the angle. Associated with an angle is its measure, generated by a rotation about
the vertex. See Figure 2. This measure is determined by rotating a ray starting
at one side of the angle, the initial side, to the position of the other side, the
terminal side. A counterclockwise rotation generates a positive measure, and
a clockwise rotation generates a negative measure The rotation can consist of
more than one complete revolution.

Figure 3 shows two angles, one positive and one negative.

Positive angle Negative angle

Figure 3

An angle can be named by using the name of its vertex. For example, the
angle on the right in Figure 3 can be named angle C. Alternatively, an angle can
be named using three letters, with the vertex letter in the middle. Thus, the angle
on the right also could be named angle ACB or angle BCA.

Degree Measure | The most common unit for measuring angles is the degree.
Degree measure was developed by the Babylonians 4000 yr ago. To use degree
measure, we assign 360 degrees to a complete rotation of a ray.* In Figure 4,

notice that the terminal side of the angle corresponds to its initial side when it
makes a complete rotation.

: |
One degree, written 1°, represents 360 of a rotation.

"{‘;:)ereflore, 90° represents '3% = }; of a complete rotation, and 180° represents
360 = 3 of a complete rotation.

An angle measuring between 0° and 90° is an acute angle. An angle mea-
suring exactly 90° is a right angle. The symbol 7 is often used at the ‘--'l‘l€’:
of a right angle to denote the 90° measure. An angle measuring more thar 90

but less than 180° is an obtuse angle, and an angle of exactly 180° is a st* right
angle.

*The Babylonians were the first to subdivide the circumference of a circle into 360 parts. There .m
. SR g s 1n

ous theories about why the number 360 was chosen. One is that it is approximately the number 0f <=3

a year, and it has many divisors, which makes it convenient to work with.
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(4x)° \ (6x)°

(b)
Figure 6

Figure 7
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In Figure 5, we use the Greek letter  (theta)* to name each angle.

A T

/tcute angle Right angle Obtuse angle Straight angle
0° < 0 < 90° 0 = 90° 90° < 0 < 180° 6 = 180°
Figure 5

If the sum of the measures of two positive angles is 90°, the angles
are complementary and the angles are complements of each other. Two posi-
tive angles with measures whose sum is 180° are supplementary, and the
angles are supplements.

REZITER Finding the Complement and the Supplement ofan Angle .
For an angle measuring 40°, find the measure of (a) its complement and (b) its
supplement.
SOLUTION
(a) To find the measure of its complement, subtract the measure of the angle
from 90°.
90° — 40° = 50° Complement of 40°
(b) To find the measure of its supplement, subtract the measure of the angle
from 180°.
180° — 40° = 140°  Supplement of 40°

WTTIEITETEN Finding Measures of Complementary and Supplementary Angles
Find the measure of each marked angle in Figure 6.

The measure of angle A in Figure 7 is 35°. This measure is often expressed
by saying that m(angle A) is 35°, where m(angle A) is read “the measure of
angle A.” It is convenient, however, to abbreviate the symbolism m(angle A) = 35°
as A = 35°.

Traditionally, portions of a degree have been measured with minutes and
seconds. One minute, written 1’, is 61—5 of a degree.

l o
1’ = E or 60’ =1°
One second, 1", is % of a minute.
1" = L, TN S 60" =1’
e Ghic 600 o

The measure 12° 42' 38" represents 12 degrees, 42 minutes, 38 seconds.

I VS e (B
#In addition to 0 (theta), other Greek letters such as « (alpha) and B (beta) are often used.
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ETIITE colculating with Degrees, Minutes, and Seconds
Perform each calculation.
(a) 51°29' +32°46’ (b) 90°—73° 12
SOLUTION
@) 4 g; Zz: Add degrees and minutes separately.
83°75'

The sum 83° 75’ can be rewritten as follows.
83°75' =83°+1°15" 75'=60"+15'=1°15'

= 84° 15’ Add.
(b) 89°60" Write 90° as 89° 60".
—73°12'
16° 48’

Ct?‘\“ sl W Converting between Decimal Degrees and Degrees, Minutes,

. mssesaeseene and Secondsi il st aale s de sl il

(a) Convert 74° 08’ 14” to decimal degrees to the nearest thousandth.

(b) Convert 34.817° to degrees, minutes, and seconds to the nearest second.

. Standard Position | An angle is in standard position if its vertex is at the ori-
gin and its initial side lies on the positive x-axis. The angles in Figures 8(a) and 8(b)
are in standard position. An angle in standard position is said to lie in the quadrant
in which its terminal side lies. An acute angle is in quadrant I (Figure 8(a)) and
an obtuse angle is in quadrant II (Figure 8(b)). Figure 8(c) shows ranges of angle
measures for each quadrant when 0° < 6 < 360°.

900
y B/
QII i i
QI T QI
90° <6 < 180°:: 0° <6 <90°
Terminal side 160° 180° ~———— P o 360°
x £ Qqm | Qv
Initial side 0 180° < 6 < 270°}- 270° < 6 < 360°
270°
(a) (b) (c)
Figure 8

Quadrantal

Angles in standard position whose terminal sides lie on the x-axis or y-axis, such
- as angles with measures 90°, 180°, 270°, and so on, are quadrantal angles.
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; Coterminal Angles © A complete rotation of a ray results in an angle measur-
ing 360°. By continuing the rotation, angles of measure larger than 360° can
P§ prodyced. The angles in Figure 9 with measures 60° and 420° have the same
initial side and the same terminal side, but different amounts of rotation. Such
angles are coterminal angles. Their measures differ by a multiple of 360°. As
shown in Figure 10, angles with measures 110° and 830° are coterminal.

Coterminal
angles Coterminal

angles

Figure 9 Figure 10

13,0.\|d033 Finding Measures of c"“’__'_'!'_',i,“ﬁl Angles

Find the angles of least positive measure that are coterminal with each angle.
(a) 908° (b) 2=75% (c) —800°
SOLUTION

(a) Subtract 360° as many times as needed to obtain an angle with measure
greater than 0° but less than 360°. Since

908° — 2 - 360° = 188°,

an angle of 188° is coterminal with an angle of 908°. See Figure 11.

Figure 11 Figure 12

(b) See Figure 12. Use a rotation of
360° + (—75°) = 285°.
(¢) The least integer multiple of 360° greater than 800° is
360° + 3 = 1080°.
Add 1080° to —800° to obtain

1080° + (—800°) = 280°.
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Examples of Coterminal

Quadran

tal Angles

5

£360°, £720°

—630°, —270°, 450°

180°

—180°, 540°, 900°

270°

—450°, —90°, 630°

Exercises

e LA o LIS NGRS RN RS B e s———

Sometimes it is necessary to find an expression that will generate all angles
coterminal with a given angle. For example, we can obtain any angle cotermina]
with 60° by adding an integer multiple of 360° to 60°. Let n represent any inte-
ger. Then the following expression represents all such coterminal angles.

60° + n + 360°  Angles coterminal with 60°

The table below shows a few possibilities.

Valueofn |  Angle Coterminal with 60°

2 60° + 2 - 360° = 780°

1 60° + 1 + 360° = 420°
0 60° + 0 - 360° = 60° (the angle itself)
-1 60° + (—1) + 360° = —300°

The table in the margin shows some examples of coterminal quadrantal
angles.

\CLIEITITED Analyzing the Revolutions of a CD Player

CD players always spin at the same speed. Suppose a player makes 480 revo-
lutions per min. Through how many degrees will a point on the edge of a CD
move in 2 sec?

Find (a) the complement and (b) the supplement of an angle with the given measure. See
Examples I and 2.

1. 60° 2. 18° 3. 89°
4. 10° 5. 39°50' 6. 50° 40’ 50"

Find the measure of each unknown angle in Exercises 7—1].

7; 8.
(20x + 10)%79)"

(9x)°

(Bx+5)° Onr
X

10. supplementary angles with measures 6x — 4 and 8x — 12 degrees
11. complementary angles with measures 3x — 5 and 6x — 40 degrees

12. Concept Check What is the measure of an angle that is its own supplement?

Lk
SRR T A
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Find the S .
fi)l::c the measure of the smaller angle formed by the hands of a clock at the following

14 9:45 15. 6:10

Concept Check Answer each question.
16. If an angle measures x°, how can we represent its supplement?

17. If a negative angle has measure x° between 0° and —60°, how can we represent the
first positive angle coterminal with it?

Perform each calculation. See Example 2.

18. 75° 15’ + 83°32' 19. 110°25' + 32°55'
20. 47°23" — 73°48’ 21. 90° — 17°13’
22. 180° — 124° 51’ 23. 55°30' + 12°44' — 8° 15’

24. 90° — 36° 18" 47"

Convert each angle measure to decimal degrees. If applicable, round to the nearest thou-
sandth of a degree.

25. 82°30’ 26. 133°45' 27. —70°48’

28. 38°42' 00" 29. 34°51' 35" 30. 165°51' 09"

Convert each angle measure to degrees, minutes, and seconds. Round answers 10 the
nearest second, if applicable.

31. 46.75° 32. 174.255° 33, —25485°
34. 59.0854° 35. 102.3771° 36. 122.6853°

Find the angle of least positive measure (not equal to the given measure ) that is cotermi-
nal with each angle. See Example 3.

37. 86° 38. 58°40’ 39. —98° 40. —203°

41. 541° 42, —541° 43. 699° 44. 1000°

45, 8440° 46, —8440°

Give two positive and two negative angles that are coterminal with the given quadrantal
angle.

47. 180° 48. 270°

Give an expression that generates all angles coterminal with each angle. Let n represent
any integer.

49. 45° 50. 225° 51. —180° 52. 360°
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m Trigonometric Functions ,-

® Trigonometric Functions Trigonometric Functions.  To define the six trigonometric functions, we
® Quadrantal Angles start with an angle 6 in standard position and choose any point P having co-
® Reciprocal Identities ordinates (x,y) on the terminal side of angle 6. (The point P must not be the
L] Signs.and Ranges of vertex of the angle.) See Figure 13 on the next page. A perpendicular from
Function Values point P to the x-axis at point Q determines a right triangle, having vertices at
= Pythagorean Identities 0. P, and Q. We find the distance r from P(x,y) to the origin, (0,0), using
= Quotient Identities the distance formula.
r="V(x-0)+(y—0)
r=Vx%+ y?
Notice that r > 0 since this is the undirected distance.
y The six trigonometric functions of angle 6 are sine, cosine, tangent, cotan-
P(x, y) l'“P"M gent, secant, and cosecant, abbreviated sin, cos, tan, cot, sec, and csc.
r &.‘wr“ e e o B
y - Trigonometric Functions
0 K TP ST w0 ot R ST
\ Let (x,y) be a point other than the origin on the terminal side of an
> X . .. . . ohee it e
e @ angle 0 in standard position. The distance from the point to the origin is
k. - r = Vx? + y2. The six trigonometric functions of 6 are defined as follows.
igure
x
sing =2 cos @ = = tan =2 (x #0)
r r x
r r X
csc0=; (y #0) sec0=; (x #0) cot0=; (y#0)
2 GV Finding Function Values of an Angle :
The terminal side of an angle 6 in standard position ¥
passes through the point (8, 15). Find the values of
the six trigonometric functions of angle 6. (8.15)
SOLUTION  Figure 14 shows angle 6 and the triangle x= 8
formed by dropping a perpendicular from the point 17 15 y=15
(8, 15) to the x-axis. The point (8, 15) is 8 units to the ¥
right of the y-axis and 15 units above the X-axis, so 0
x=8andy=15 Nowuse r=Vx2+y2, 0 8 ‘

r=\/82+152=\/64+22 =‘/289=17 Figure 14

We can now find the values of the six trigonometric functions of angle 6.

15 8 ) 15

sinf === — cosfh===— .__2_=__
17 0s 7 tan 0 el

i o [ x - -8
cscl=—=— 3 =—=— ===
Nl sec 0 Pl cot 6 S

wath



oY),
OP=r Z[I
OP’ =r:
(x,y)
P
e 0
0 0 o
Figure 15

ﬁ_

x+2y=0,x20

Figure 16
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lLWAYOEIER Finding Function Values of an Angle ke

The terminal. side of an angle  in standard position passes through the point
(—3, —4). Find the values of the six trigonometric functions of angle 6.

‘ We can find the six trigonometric functions using any point other than the
origin on the terminal side of an angle. To see why any point can be used, refer
to Figure 15, which shows an angle 6 and two distinct points on its terminal side.
Point P has coordinates (x,y), and point P’ (read “P-prime”) has coordinates
(x',"). Let r be the length of the hypotenuse of triangle OPQ, and let 7" be the
length of the hypotenuse of triangle OP'Q’. Since corresponding sides of simi-
lar triangles are proportional,

S0 sin 6 = ; is the same no matter which point is used to find it. A similar result
holds for the other five trigonometric functions.

We can also find the trigonometric function values of an angle if we know
the equation of the line coinciding with the terminal ray. Recall from algebra
that the graph of the equation

Ax+ By=0

is a line that passes through the origin. If we restrict x to have only nonpositive
or only nonnegative values, we obtain as the graph a ray with endpoint at the
origin. For example, the graph of x + 2y = 0, x = 0, shown in Figure 16, is a
ray that can serve as the terminal side of an angle 6 in standard position. By
choosing a point on the ray, we can find the trigonometric function values of
the angle.

SOULILTY Finding Function Values of anAngle .. ...
Find the six trigonometric function values of the angle 6 in standard position, if
the terminal side of 6 is defined by x + 2y =0, x = 0.

SOLUTION The angle is shown in Figure 17 We y
can use any point except (0,0) on the terminal
side of 6 to find the trigonometric function val-
ues. We choose x = 2 and find the corresponding

y-value.

x+2y=0, x=0
2+2y=0 Let x = 2.
2y = -2 Subtract 2.
y= —1 Divide by 2. Figure 17

The point (2, — 1) lies on the terminal side, and the corresponding value of r is
r=V22+ (-1)?%= \/5. Now we use the definitions of the trigonometric

functions.

et Ll e
sin = s s /5 5
%R g Vil
r 5 WE .5

Multiply by % which equals 1,

to rationalize the denominators.
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Recall that when the equation of a line is written in slope-intercept form

y =mx + b, (Section 2.5)

the coefficient m of x is the slope of the line. In Example 2 the equation

x+ 2y =0 can be written as y = —5,\ so the slope is —3. Notice that
tan 0 = —%.

In general, it is true that m = tan 6.

y Quadrantal Angles’  If the terminal side of an angle in standard position lies
1 along the y-axis, any point on this terminal side has x-coordinate 0. Similarly,
an angle with terminal side on the x-axis has y-coordinate O for any point on the
0 terminal side. Since the values of x and y appear in the denominators of some
1 trigonometric functions, and since a fraction is undefined if its denominator is 0,
some trigonometric function values of quadrantal angles (i.e., those with termi-
nal side on an axis) are undefined.

When determining trigonometric function values of quadrantal angles,
Figure 18 can help find the ratios. Because any point on the terminal side can be
used, it is convenient to choose the point one unit from the origin, with r =

To find the function values of a quadrantal angle, determine the position of
the terminal side, choose the one of these four points that lies on this terminal
side, and then use the definitions involving x, y, and r.

g‘\L’ e MFinding Function Values of Quadrantal Angles

Find the values of the six trigonometric functions for each angle.
(a) an angle of 90°

0,1) ¢
1

Ye &

o
Y'e n
nnn
O

—_~
—_

=
nmnun e
b

=
-

&
b A

(-1, 0)

x=0
=-1 T 0, -1

-

r=1

Figure 18

(b) an angle 6 in standard position with terminal side through (—3,0)

The conditions under which the trigonometric function values of quadrantal
angles are undefined are summarized here.

I condltic_ms _for Undoimod Function Valuos

Identify the terminal side of a quadrantal angle.

e If the terminal side of the quadrantal angle lies along the y-axis, then the |
tangent and secant functions are undefined. ’

1

e Ifthe terminal side of the quadrantal angle lies along the x-axis, AL

cotangent and cosecant functions are undefined.
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180;["h267(f)1inct1(()1n val:xes of some cgmmonly used quadrantal angles, 0°, ,900’
o " ,an 3§0 3 z.lre summarized in the table. They can be determined
en needed by using Figure 18 and the method of Homework 2(a).

For other quadrantal angles such as —90°, =270, and 450°, first determine
the coterminal angle that lies between 0° and 360°, and then refer to the table
entries for that particular angle. For example, the function values of a —90°
angle would correspond to those of a 270° angle.

Function Values of Quadrantal Angles

el e e ik s e il R
0|80 ! 0 Undefined 1 Undefined
90° 1 0 | Undefined 0 Undefined 1
18054 (SORE S8 0 Undefined -1 Undefined
270° | —1 0 | Undefined 0 Undefined =il
360° 0 1 0 Undefined 1 Undefined

Reciprocal Identities " Identities are equations that are true for all values of
the variables for which all expressions are defined.

(x+y)2=x2+2xy+y2  2(x+3)=2x+06 Identities

Recall the definition of a reciprocal: the reciprocal of the nonzero number x
is { For example, the reciprocal of 2 is %, and the reciprocal of ,8—1 is %. There
is no reciprocal for 0.

The definitions of the trigonometric functions earlier in this section were
written so that functions in the same column were reciprocals of each other.
Since sin 6 =% and csc 6 =§,

1 1
sin 0 = and csc§ = ——, providedsin@ # 0.
csc sin 6

Also, cos 6 and sec 6 are reciprocals, as are tan 0 and cot 6. The reciprocal
identities hold for any angle 6 that does not lead to a 0 denominator.

Reciprocal Identities

For all angles 6 for which both functions are defined, the following identi-
ties hold.

1 1
sin 0 = cos 0 = tan 0 = 1
csc 0 sec 0 cot O
1 1
csc 0 = — sec ) = cot @ = 1
sin 0 cos 0 tan 0

The reciprocal identities can be written in different forms. For example,

1 ;
sin@ = — can be written c¢sc @ =

— e’ (sin @) (csc 0) = 1.
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Using the Reciprocal Identities

Find each function value.

o ‘1‘“

(b) sin @, given that csc 6 = — Vi

(a) cos 6, given that sec 6 = % 3

SOLUTION

(a) Since cos 6 is the reciprocal of sec 6,

1 5 i 3.3 Simplify the complex fraction.
c050=———6—5— S 55
3
V12
(b) sinf = ——— sin@ = o5 and csc 6 = — S

Simplify the complex fraction as in part (a).

=— Viz=Va-3=2V3
2V3
1 =
=g Divide out the common factor 2.
3

Multiply.

= — ——=+ —— Rationalize the denominator.
N353
V3
3

" Signs and Ranges of Function Values | In the definitions of the trigonometric
functions, r is the distance from the origin to the point (x,y). This distance is
undirected, so r > 0. If we choose a point (x,y) in quadrant I, then both x and
y will be positive, and the values of all six functions will be positive.

A point (x,y) in quadrant II satisfies x < 0 and y > 0. This makes the
values of sine and cosecant positive for quadrant II angles, while the other four
functions take on negative values. Similar results can be obtained for the other
quadrants.

This important information is summarized here.

Signs of Function Values

x<0,y>0,r>0 x>0,y>0,r>0

1
1!
I -
v

1
Sine and cosecant

positive

1
All functions

positive

x<0,y<0,r>0

0

e

x>0,y<0,r>0

i e =
m v
- - - + Tangent and cotangent Cosine and secant
positive positive

HOMEWORK 3 BT

Determine the signs of the trigonometric functions of an angle in standard posi-
tion with the given measure.

(a) 87° (b) 300° (¢) —200°
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NOTE  Because numbers that are reciprocals always have the same sign,

the sign of a function value automatically determines the sign of the recip:
rocal function value.

m Identifying the Quadrant of an Angle

Identify the quadrant (or possible quadrants) of an angle 6 that satlsﬁes the
given conditions.

(@) sinf > 0,tan 6 < 0 (b) cos® < 0,secd <0

SOLUTION

(a) Since sin @ > 0 in quadrants I and I1and tan 6 < 0 in quadrants Mand IV,
both conditions are met only in quadrant II.

(b) The cosine and secant functions are both negative in quadrants II and III, so
in this case 6 could be in either of these two quadrants.

Figure 19(a) shows an angle 0 as it increases in measure from near 0°
toward 90°. In each case, the value of  is the same. As the measure of the angle
increases, y increases but never exceeds r, so y = r. Dividing both sides by the
positive number r gives 7 r=1.

©,r)

—Q

s s
R

r . \
A\ 1(,0) 3

0 x T
(a)
Figure 19

In a similar way, angles in quadrant IV as in Figure 19(b) suggest that

| Yy
6 kTl
d\ - l(rﬂ x r
gy
> y SO =
and —1=sinf=1. ‘; = sin @ for any angle 0.
> Similarly, —1=<cosf =1
- ST ' :
?0.-1 The tangent of an angle is defined as ‘; It is possible that x <y, x =y, or
(b) x > y. Thus, { can take any value, so tan 6 can be any real number, as can cot 6.
The functions sec 6 and csc 6 are reciprocals of the functions cos 6 and
Figure 19

sin 0, respectively, making

sech = —1 or sec =1 and cscO=-—1 or csch=1.

In summary, the ranges of the trigonometric functions are as follows.
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Range
Trigonometric Range .
Fuﬁction of 6 (Set-Builder Notation) (Interval Notation)

sin 0, cos 0 {yllyl =1} [-1,1]

tan 6, cot 6 {y| yisa real number} (=, )

sec 6, csc {y|lyl=1} (-, —1] U [1,)

LUV Deciding Whether a Value Is in the Range of a Trigonometric Function

ey |

Decide whether each statement is possible or impossible.

(a) sin@ =25 (b) tan6 = 11047 (c) secH=0.6

The six trigonometric functions are defined in terms of x, y, and r, where the
Pythagorean theorem shows that

r’=x24+y2 ‘and r>0.

With these relationships, knowing the value of only one function and the quadrant

in which the angle lies makes it possible to find the values of the other trigono-
metric functions.

2LUEET Finding All Function Values Given One Value and the Quadrant

Suppose that angle 6 is in quadrant I and sin § = % Find the values of the other
five trigonometric functions.

SOLUTION  Choose any point on the terminal side of angle 6. For simplicity,
since sin § = % choose the point with r = 3,

: 2
sin § = 3 Given value
) . y :
= 3 Substitute * for sin 6.
; Yre4
Since 7 =3 and r =3, then y = 2. To find x, use the equation x* +y? = 12,

X2+ y2 =2

x2+22=32 Substitute.
x2+4=9 Apply exponents.
2=
XE=5 Subtract 4,
: ( Remember both ro@
2 NS of s -V Square root property
x=-5
("'\/5" 2) 12 y=2
r=3 5 Tim,
* Since 6 is in quadrant II, x must be negative. Choose x = —V/5 so that th
R i OINt (— 9: 2) is on the terminal side of ¢ See Figure 20. Now we can find ("
-2 0 2 values of th

€ remaining trigonometric functions,

AT cos ) = & = _T\/g \/g

r P

Figure 20
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Se°9=5=L\[=_i.\/§ 3V5
X e e
V. These have
\/g \/g > rationalized
ta“9=X=L=_L.£=_2\/§ denominators.
% _\/5 \/g 5 5
) 2 2
csc0=£=§
y 2

7Pvthazgorei;n Identities  We derive three new identities from the relationship
b el o YHEES

x2+ y2 =2  Equation of the Pythagorean theorem

= Divide by 7.

) y\? 1
3 15y e 1 Power rule for exponents; = = (§)"

(cos 0)* + (sin 0)>=1 cos0=7,sin 0=1

sin? @ + cos2® =1  Apply exponents; commutative property

t:ng again with x? + y? = r? and dividing through by x? gives the following.

rl o fa 5
= T,_‘ Divide by x~.

9 9
N2 r\2
b (}—> = (") Power rule for exponents
X X

r

1 + (tan 0)* = (sec 0)*> tanf = Y secO=5%
tan2 0 + 1= secz 0 Apply exponents; commutative property
Similarly, dividing through by y? leads to another identity.

1+ cot?0 = csc2 0

Pythagorean identities since the original equation

These three identities are the
that led to them, x2 + y? = r?, comes from the Pythagorean theorem.

Pythagorean |dentities
For all angles o for which the function values are defined, the following
identities hold.

o 2 2 L 2
\rr.\“bv\(‘“j_ e sin? 0 + cos20 =1 tan? 0 + 1 = sec 0 1 + cot?0 = csc* 0
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As before, we have given only one form of each identity. However,
algebraic transformations produce equivalent identities. For example, by
subtracting sin? 6 from both sides of

sin? @ + cos? 0 = 1,
we obtain an equivalent identity.
cos20=1—sin?0 Alternative form

It is important to be able to transform these identities quickly and also to rec-
ognize their equivalent forms.

Quotient Identities = Consider the quotient of sin 6 and cos 6, for cos § # 0.
LOOKING AHEAD TO CALCULUS

; y )

The reciprocal, Pythagorean, and sin 6 = i = Z = f- = }—’ . L = ‘— =tanéd

quotient identities are used in calculus cos 6 ; AR AR .

to find derivatives and integrals of 3 Z S
trigonometric functions. A standard Similarly, ¢~ g = cot @, for sin @ # 0. Thus, we have the quotient identities.

technique of integration called

trigonometric substitution relies on A o
R Quotient Identities
the Pythagorean identities.

For all angles 6 for which the denominators are ¢ @, the following
identities hold.

| o sinf s cos§
"Rt cos® sin@
HOMEWORK 5 Using Identities to Find Function Values

Find sin 0 and tan 6, given that cos § = — % and sin 6 > 0.

CAUTION ' Be careful to choose the correct sign when taking square roots.

‘m Using Identities to Find Function Values

Find sin 6 and cos 6, given that tan 6 = % and 6 is in quadrant III.

SOLUTION  Since 0 is in quadrant I11, sin @ and cos 6 will both be negative. It is tempt-

ing to say that since tan 6 = 300 44 tan ¢ = = Wenin 0= =i eotiin~5.

This is incorrect, because sin 6 and cos 6 must be in the interval [— 1.1 ] :
We use the Pythagorean identity tan? 0 + | = sec2 g to find sec 6, and then
the reciprocal identity cos 6 = ﬁ to find cos 6.

2
tan® 0 + 1 = sec? 9 Pythagorean identity

4 2
<§> +1= SCC20 tan 0 :é

16
—9— + 1 =sec? g Square :
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Be careful to 25
ety 2
choose the correct T 6 Add
sign here.
o 2 = Choose the negative square root since sec
=secl . : be
3 is negative when 6 is in quadrant III.
3
% g = cos 0 Secant and cosine are reciprocals.

Since sin? @ = 1 — cos? 0,

s o Y .
sin“0=1-— —g cosf=—3

9

in2f = 3
sinff=1—-— Square — 3.
25 gL
)
sin“ 0 = — Subtract.
25 )
Again, be careful.
sinf = — 5 Choose the negative square root.
¥
i' x=-3
3+ y=-4 e =
st £t “OTE  Example 6 can also be worked by sketching 6 in standard posi-
/‘\ tion in quadrant II1, finding r to be 5, and then using the definitions of sin 6
AT T e 2nd cos 0 in terms of x, y, and r. See Figure 21.
When using this method, be sure to chovse the correct signs for x and
| y as determined by the quadrant in which the erminal side of @ lies. This
-4 L is analogous to choosing the correct signs afier 2pplying the Pythagorean
identities.
Figure 21 hi e
Exercises

Concept Check Sketch an angle 0 in standard position such that 0 has the least posi-
tive measure, and the given point is on the terminal side of 6 . Then find the values of the
six trigonometric functions for each angle. Rationalize denominators when applicable.

See Example 1.
1. (~12,-5) 2. (—4,-3) 3. (15,-8) 4. (—24,-7)
5. (0,5) 6. (~5,0) 7. (-1, V3) 8. (—21/3,2)

9. Concept Check How is the value of r interpreted geometrically in the definitions of
the sine, cosine, secant, and cosecant functions?

Concept Check Suppose that the point (x,y) is in the indicated quadrant. Decide
whether the given ratio is positive or negative. Recall that r = N/ x* + y. (Hint: Draw-

ing a sketch may help.)

y i1, W, & 12. m, 2 131, 2
10. 111, > 5 : A

Y s, 102 (g1 17.1,2
14. 11, 1 > 5 L2 B

R e —
R R R

ISR RS el BRSNS
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In Exercises 18-21, an equation of the terminal side of an angle 0 in standard position
is given with a restriction on x. Sketch the least positive such angle 6, and find the val-
ues of the six trigonometric functions of 0. See Example 2.

18. 3x+5y=0,x=0 19. —5x—3y=0,x=0
20 x—y=0,x=0 21. \/§x+y=0,x50

To work Exercises 22-30, begin by reproducing the graph in Figure 18 Keep in mind
that for each of the four points labeled in the figure, r = 1. For each quadrantal angle,
identify the appropriate values of x, y, and r to find the indicated function value. If it is
undefined, say so.

22. sin 90° 23. cot 90° 24. csc 270°
25. cos(—90°) 26. tan 450° 27. sec(—540°)
28. cos 1800° 29. cot 1800° 30. tan 1800°

Use the trigonometric function values of quadrantal angles given in this section to evalu-
ate each expression. An expression such as cot*> 90° means (cot 90°), which is equal
to 02 =0.

31. tan 0° — 6 sin 90° 32. 4 csc270° + 3 cos 180°
33. 2sec 0° + 4 cot? 90° + cos 360° 34. —3sin* 90° + 4 cos? 180°
35. cos?(—180°) + sin?(—180°)

If nis an integer, n + 180° represents an integer multiple of 18727, (2 + 1) = 90° repre-
sents an odd integer multiple of 90°, and so on. Decide wheinzr i cxpression is equal

100, 1,0r —1 oris undefined.
36. sin[n - 180°] 37. tan{(2n + 1} -
38. cot[n + 180°]

Use the appropriate reciprocal identity to find each function vaive 2o w0122 denomi-
nators when applicable. See Example 3.

39. sec 6, given that cos 6 = % 40. csc 8, given that sin & = — %

41. cot 0, given that tan 0 = 18 42. sin 6, given that csc 9 = L

>

43. cos 0, given that sec 6 = 9.80425133

Determine the signs of the trigonometric functions of an angle in standard position with
the given measure.

44, 84° 45. 195° 46. 125°
47. —15° 48. 1005°

Identify the quadrant (or possible quadrants) of an angle 0 that satisfies the given con-
ditions. See Example 4.

49. cos@ > 0,sec >0 50. sin® > 0,tan 9 > 0
51. cosf < 0,sinf <0 52. ¢csc® > 0,cotd >0
53. cotf < 0,sech <0 54. tan® < 0,coth < 0

Decide whether each statement is possible or impossible for some angle 6.

55, sinf =3 56. cos 0 = —0.56 57. cot0 =0.93
58. sec=-09 59. csc 0 = —100

AR,
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UA. o idpntits s

se identities to solve each of the following. See Examples 5 and 6.
60. Find sin 0, given that cos 6 = ¥ and 0 is in quadrant IV,

61. Find sec 6, given that tan 0 = # and 0 is in quadrant I11.

62. Find cot 0, given that csc 6 = —2 and 0 is in quadrant I11.

Evaluating Trigonometric Functions

@ Right-Triangle-Based

Definitions of the Right-Triangle-Based Definitions of the Trigonometric Functions ' We used
Trigonometric Functions angles in standard position to define the trigonometric functions in Section 6.2.
Cofunctions There is another way to approach them: As ratios of the lengths of the sides of
@ Trigonometric Function right triangles.
Values of Special Angles Figure 22 shows an acute angle A in standard ¥
m Reference Angles ppsition. The definitions of the trigonometric func-
w Special Angles as Flon values of angle A require x, y, and r. As drawn By
Reference Angles in Figure 22 x and y are the lengths of the two legs
m Finding Angle Measures of the right triangle ABC, and r is the length of the r .
hypotenuse.
The side of length y is called the side oppo- e
site angle A, and the side of length x is called the ~A———"7C i

side adjacent to angle A. We use the lengths of ’

these sides to replace x and y in the definitions of Figure 22

the trigonometric functions, and the length of the hypotenuse to replace r, to get
the following right-triangle-based definitions.

St

ﬂaa I e e Right-Triangle-Based Definitions of Trigonometric Functions

Let A represent any acute angle in standard position.

y side opposite A r hypotenuse
SINA. =.= S0 o e el SCAd =—= ——m——
r hypotenuse vy side opposite A
ide adjacent to A hypot S
cosA:,_\:__Sl e adj secA=£~= : yp. enuse
r hypotenuse x  side adjacent to A
side opposite A x  side adjacent to A
tanA=l=—,——-—.——“_ cotAi=imi= =y =
Y side adjacent to A y side opposite A

NOTE We will sometimes shorten wording like “side opposite A” to just
“side opposite" when the meaning is obvious.

(TR FningTigonontrio Funsion alesf an Acuts Al d
4 and tangent values for angles A and B in the right triangle

25 Find the sine, cosine,
Y in Figure 23.
A f the side opposite angle A is 7, the length of the side

24 c  soLUTION The length 0 : ‘
adjacent L0 angle A is 24, and the length of the hypotenuse is 25.

Figure 23

——— - v A T RETRIATT Lo YLt T AR AT TR =
e AT A A R A S R R N L P R R S e

CEIA S Y
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_ side opposite 7 G side adjacent 24 e w 7

hypotenuse 25 hypotenuse 25 side adjacent 74

sin

The length of the side opposite angle B is 24, and the length of the side adjacen
toBis7.

24 7 ! 2_4_ Use the relationships
sin B = 2_5 cos B= 2_5 tan B = 7 given in the box,

W Now Try Exercise 1.

NOTI  Because the cosecant, secant, and cotangent ratios are the reciprocals
of the sine, cosine, and tangent values, respectively, in Example 1,

25
csc A =7, sec A =

)

24 25
2—4, cot A =—7—, cse B = E

25 7,
sccB=—7—, and colB=~22.

Cofunctions  In Example 1, notice that sin A = cos B and cos A = sin B.
Such relationships are always true for the two acute angles of a right triangle.
R Figure 24 shows a right triangle with acute angles A and B and a right angle
5 at C. The length of the side opposite angle A is a, and the length of the side
¢ 3 A opposite angle B is b. The length of the hypotenuse is c.

By the preceding definitions, sin A = £. Also, cos B = % Thus,

Whenever we use A, B, and C to name
angles in a right triangle, C will be the

a
right angle. SsinA = -E- = cos B.
Figure 24 a =
Similarly, tanA = -I; =cotB and secA = - w B.
¢
Since the sum of the three angles in any triaig’ 1207 and angle C equals
90°, angles A and B must have a sum of 180° 20°, As mentioned in
Section 6.1, angles with a sum of 90° are compi« ..y angles. Since angles
A and B are complementary and sin A = cos /, v+ ‘uctions sine and cosine
are cofunctions. Tangent and cotangent are also o 1unciions, as are secant and
cosecant. And since the angles A and B are comuviomentary, A + B = 90°, or

B =90° — A, giving the following.
sin A = cos B = cos(90° ~ A)

Similar cofunction identities are true for the other trigonometric functions.

~ Cofunction Identities

For any acute angle A, cofunction values of complementary angles are equal.
c0s(90° — A) secA = cs¢(90° — A) tan A = cot(90° — A)
sin(90° — A) cscA = sec(90° — A) cotA = tan(90° — A)

m Writing Functions in Terms of Cofunctions

Write each function in terms of its cofunction.

sin A

1l
1l

cos A

]

(a) cos 52° (b) tan 71° (¢) sec 24°

& Now Try Exercises 25 and 27.
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2
Equilateral triangle

(a)

60° 90°| }90° 60°

1 1
30°-60° right triangle
(b)

Figure 25

Figure 26

Tngaonometric Function Values of Special Angles = Certain special angles, such
& 39 »45°, and 60°, occur so often in trigonometry and in more advanced math-
ematics that they deserve special study. We start with an equilateral triangle, a
triangle with all sides of equal length. Each angle of such a triangle measures 60°.
Although the results we will obtain are independent of the length, for convenience
we choose the length of each side to be 2 units. See Figure 25(a)

Bisecting one angle of this equilateral triangle leads to two right triangles.
ez.lch of which has angles of 30°, 60°, and 90°, as shown in Figure 25(b). An angle
bisector of an equilateral triangle also bisects the opposite side: therefore, the
shorter leg has length 1. Let x represent the length of the longer leg.

22 =12+ x? Pythagorean theorem
4 =1+x2 Apply the exponents.
3=x2 Subtract 1 from each side.

\/5 = Square root property:

choose the positive root.

Figure 26 summarizes our results using a 30°—60° right triangle. As shown in
the figure, the side opposite the 30° angle has length 1; that is, for the 30° angle,

hypotenuse = 2, side opposite = 1, side adjacent = V3.

Now we use the definitions of the trigonometric functions.

. . sideopposite 1
sin30=—————-=—
hypotenuse 2
, _ side adjacent V3
cosdri=———— =
hypotenuse 2
, _ side opposite 1 1 V3 V3
tan30°=——7""—"""—"F="F "7 £  a
side adjacent /3 /3 V3 3
2
csc 30° = I 2
2 2
sec30°=—F7+=—F+
Vi V3
V3¢ s
cot30°=——=V3

m Finding Trigonometric Function Values for 60°

Find the six trigonometric function values for a 60° angle.

SOLUTION Refer to Figure 26 to find the following ratios.

sin 60° = cos 60° = tan 60° =

-|&
oS &

| —

A
2
2

=2 cot60°=—+=

Il

—

= %—3 sec 60° =
3

csc 60° = \/5

(98]

& Now Try Exercises 29, 31, and 33.
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NOTE The results in Example 2 can also be found using the fact that ¢q.
function values of complementary angles are equal.

1
45°-45° right triangle

Figure 27

We find the values of the trigonometric functions for 45° by starting with
a 45°~45° right triangle, as shown in Figure 27. This triangle is isosceles. For
simplicity, we choose the lengths of the equal sides to be 1 unit. (As before, the
results are independent of the length of the equal sides.) If r represents the length
of the hypotenuse, then we can find its value using the Pythagorean theorem.

124+ 12=r2
2=r2

Vi=r

Now we use the measures indicated on the 45°—45° right triangle in Figure 27,

Pythagorean theorem
Simplify.

Choose the positive root.

| %2 N -
sind5°=—==——c0s45’=—F+==—]— tand5°=—-=]
g 28 3 2 1
7% =
V2 V2 -
escdF=—"=V2 secds=—"=V2 cotds’= % =1

1

Function values for 30°, 45°, and 60° are summarized in the table that follows.

Function Values of Special Angles

0 sin@ | cos® | tan@ | cot® | =@ csc 0
] 3 /3 £l o
30° = VR s | 2 2
2 2 3
V2 \V/2 =
45° ST le— | /9
2 2 : N
V3 it - V 2V3
60° - - \/3 ‘ -

NOTE  You will be able to reproduce this table quickly if you learn the
values of sin 30°, sin 45°, and sin 60°. Then you can complete the rest of the

table using the reciprocal, cofunction, and quotient ide

ntities.

SE————
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Exercises

Fi > :
nd exact values or expressions for sin A, cos A, and tan A. See Example 1.

1.
2:
21 29
53 45
20 %
9 28
3.
,’
n
m A

Concept Check For each trigonometric function in Column I, choose its value from

Column I1.
I 1
5. sin 30° 6. cos 45° A. V3 B. 1 ¢ %
7. tan 45° 8. sec 60° D. ﬁ E. 2—\/—5 F [?1
2 3 3
9. csc60°  10. cot 30° G.2 H. %—3 L V2

Suppose ABC is a right triangle with sides of lengths @, b, and ¢ and right angle at C.
(See Figure 24.) Find the unknown side length using the Pythagorean theorem,
and then find the values of the six trigonometric functions for angle B. Rationalize
denominators when applicable.

1. a=5b=12 12. a=3,b=4 13.a=6,c=1
14. b=17,c=12 15. a=3,¢c=10 16. b=8, c=11
17 a=1, e=2 18.a=V2,c=2 19.b=2,c=5

20. Concept Check Give a summary of the six cofunction relationships.

Write each function in terms of its cofunction. Assume that all angles in which an
unknown appears are acute angles.

21. cos 30° 22. sin45° 23. csc 60° 24. cot73°
25, sec 39° 26. tan 25.4° 27. sin 38.7° 28. csc 49.9°

For each expression, give the exact value. See Example 2.

29. tan 30° 3(. cot 30° 31. sin 30° 32. cos 30°
33, sec 30° 34. csc 30° 35, csc45° 36. sec 45°
37. cos 45° 38, cot45° 39. tan 45° 40, sin 45°
41. sin 60° 42. cos 60° 43. tan 60° 44, csc 60°

e A S R R O D Y A R R
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Relating Concepts

For individual or collaborative investigation (Exercises 45—48)

-

The figure shows a 45° central angle in a circle with ra-
dius 4 units. To find the coordinates of point P on the

circle, work Exercises 45-48 in order.
45. Sketch a line segment from P perpendicular to the ‘: 4

~

X-axis.

46. Use the trigonometric ratios for a 45° angle to la-
bel the sides of the right triangle you sketched in
Exercise 45.

47. Which sides of the right triangle give the coordi-

nates of point P? What are the coordinates of P?
48. The figure at the right shows a 60° central angle in

a circle of radius 2 units. Follow the same proce-
dure as in Exercises 45-47 to find the coordinates
of P in the figure.

Concept Check Work each problem.

49. Find the equation of the line that passes through the origin and makes a 30° angle
with the x-axis.

50. Find the equation of the line that passes through the origin ' makes a 60° angle
with the x-axis.

51. What angle does the line y = V/3x make with the positive -

b /4 e =
52. What angle does the line y = ¥r make with the positive

Find the exact value of each part labeled with a variable in eac’:

53¢

55,

O Q ]

r m

Find a formula for the area of each figure in terms of s.

57,

SRS G



Trigonometric Functions 197

Match each angle in Column I with its reference angle in Column II. Choices may be
used once, more than once, or not at all.

I I
59. 98° 60. 212° A. 45° B. 60°
61. —135° 62. —60° C. 82° D. 30°
63. 750° 64. 480° E. 38° F. 32°

Complete the table with exact trigonometric function values. Do not use a calculator.
See Example 3.

0 sin0 | cos0 | tano | cotd | seco | esco
65. 30° 1 ﬁ 2V3 2
2 2 3
66. 45° 1 1
67. 60° % 3 2
68. 120° V3 -3 g_\/_g

1 2 | 3
69. jase | V2 s Va2 —V/ V2
i I 2
. V3 V3 ’
i e e P T
o 2 3
7 i L _\_/;:; V3 -2
’ 3
| -~ 5 2V3

6}
P | —
w




n:. Limits of Functions - : ;

ates of change, tangent lines, and areas

® One-Sided Limits - boutr
In order to speak meaningfully abo 3 2P0
n Il:ules for Calculating bounded by gurvcs we have to investigate the proc:ss :f ﬁ?d":,%el;?g:;:;gﬁd‘
imits SR which the develop us
f limit is the cornerstone on
S CONCERA finition of a limit, let us look at more examples,

® The Squeeze Theorem rests. Before we try to give a de

A e i~ T i —
< \ ¥ 2

A\ &
nearx=1.

Describe the behavior of the function f(x) = St

=TT A §0ﬁﬁlﬂN Note that f(x) is defined for all real numbers X except X =»I:-,J :
ression for f(

R can’t divide by zero.) For any x # 1 we can simplify the exp
factoring the numerator and canceling corm_@n factors:
/ ) |
—(x‘l)(x"'l)".u-l for x # 1.
(e e b A T |

The graph of fis the line y = x + 1 with one point removed, namely,

e /| | e (1,2). This removed point is shown as a “hole” in the graph in ,H‘.'-ﬁ,'
J A ' ¥ though f(1) is not defined, it is clear that we can make the value,_qg,:.' -
: as we want to 2 by choosing x close enough to 1. Therefore, we sa

by 1,: fhf graph of approaches arbitrarily close to 2 as x approa.ches. 1, or, mQ,_..
f(x)= - approaches the limit 2 as x approaches 1. We write this as :

-

x=-1
. 257 i S
lim f(x)=\?_/\) o

x—1

:t-’)‘“;- "‘("-"\ Al
) —— -~ -
.

m; ———— e - i

What happens to the function g(x) = (1 + x%)"* as xapgmaches

The examples above suggest the following infomqugge_t_initignp 4

O A S

Definition 1 An informal definitio

If f(x) is defined for all x near a, exce

ensure that f(x) is as close as we war

not equal to a, we say that the f

approaches a, and we write
This definition is informal bgé - we w

. . TR ol s 3 S

enough are imprecise; th:;g;%g}; [ cont féffmo\
manufacturing a piston, close enough ma i f ";}fb
an inch. To an astronomer studying di - _ m%}’i‘olugi}p
within a few thousand.,lig -years. The dt >n should be cle
however, to enable us to rec : its of specific fu
more precise “formal” definiti ection 7.4, is needed if
prove theorems about limits like T 2-4, stated later in this s
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Find (a) 1'1_1.1_1 X and (b) I.l_r__n c (\zhcm € is a constant).
— KA s

SOLUTlON In Words, pan (a) asks: “Whal dmsx‘ h aS K L B >, ..', :
The answer is surely a. PProach as x approaches a?”

H m;_., B
| lim x=a. P o |

R4
3 Simil.arly. part (b) asks: “What does ¢ approach as X approaches a?'"lhe’" o
here is that ¢ approaches c: Yyou can’t get any closer to ¢ than by being

lim ¢c=c.
1.

Example 2 shows that lim,., f(x) can sometimes be evaluated by just calcul:
| J(@). This will be the case if /(x) is defined in an open interval containing x =

and the graph of /passes unbroken through the point (a,f(a)). The next e
shows various ways algebraic manipulations can be used to ev '
in situations where f(a) is undefined. This usually happens when fix
tion with denominator equal toQ atx=a.

HOMEWORK 2
5 2 Y A Evaluate:
SO R TR e o
A Sy S v S s
(a) 1l + (b) lim-
e R - 1
les b 40, +2 % \"\/"\A

nmay bejdcﬁned on both?‘ it . g N o

Cx= 3 C/ER “For example, the function_ me i el et a el
be'seen"inamz(_‘.),thg val X 2o g;ﬁ L uc as x
| )1 ¢ approaches 0;thereis no single number L tha ~

o f(a).

3 3 ORI B g T TR S T S "*';‘-.‘; «‘-t"‘ S
i B e T s Sk ~fqllowmg_¢xamp!e:sh9l\‘vs{t}1§ﬁ ven if f(x) is defined at x = a, the limit
‘p-)-Z S ,-Of f(x) as x approaches a may not be equal

PP e P RS SYITR S = L ST L L — - (..(‘
_."Ql.l;;)’cyu“"s \ . e \ _ * o

BEWARE! ,
Always be aware that the existence of o
fim,— f(x) does not require that fla)  Let g
exist and does not depend on f(a) even
if fla) docs exist. It depends only on
the values of f(x) for x near but not
equal to a.

—



202

negative side of @
= left-hand side of a

,

. -

." S a
¥ — - means x approaches a from the left

positive side of @
= nght-hand side of @

—id

‘T R i ‘-'
x — a+ means x approaches a from the right

Figure 3 One-sided approach

— |

y = sgn(x)

Figure 4 lim sgn (x) does
not exist, because
lf.'o" sgn (x)=-1, 'hm sgn (x) =1

Introduction to Mathematics

'_’_d—’_-_-’[i’_"—t;—\ e, if “n]x—aaj(-r) =L and lin]lwf(.") = M
One-Sided Limi . fcan only have one limit at any particular poim'
then L=M. Although a function/ describe the behavior of functions lha;

be able tO /
a3 heless, useful to - s :
U], MeVer bers as X approaches a from one side or the other. (See

approach different num

Figure 3.)

Limits are uniqu

Informal definition of left and right limits

rval (b, @) extending to the left of x =a, and if
se as we want to L by taking x to the left of 4
left limit L at x = a, and we

Definition 2

me inte
as clo
hen we say f(x) has

If f(x) is defined on sor
we can ensure that f(x) 15
and close enough to a, t

write
Jim ) =L
i 1 ight of x =
-« defined on some interval (a, b) extending to the rig a. and
e close as we want 0 L by taking x to the right

if we can ensure that f(x) is as
of a and close enough to @, th
we write

en we say f(x) has right limit L at x = a, and

lim f(x)=L.

x—rot

+ to denote approach from the right (the positive side)

Note the use of the suffix
he left (the negative side).

and the suffix — to denote approach from t

| HOMEWORK3

The signum function sgn (x) = x/| x| (see Figure 4) has left limit —1 and right
limit 1 at x=0:

JLI’(!)\_ sgn (x) =—1 and ,ll.'}l sgn (x) =1

because the values of sgn (x) approach —1 (they are —1) if x is negative and
appnoachf:s 0, and they approach 1 if x is positive and approaches 0. Since these
left and right limits are not equal, lim,_,, sgn (x) does not exist.

/'\s §uggested in Home Work 3, the relationship between ordinary (two-sided)
limits and one-sided limits can be stated as follows:

—

Theorem 1: Relationship between one-sided énd two-sid;d'irigl?-i" V

A function /(x) has limit L at x = a if and only if it has both left and right

limits there and these one-sided limits are both equal to L: '

1@513 fxX)=L & li*lp‘ S(x) = lim f(x)=L.

f"ﬁ‘.' .'-,'.:, '7:“(_5':7,' .
ESENIERE AL

>—— ) - y . . .

If f(x)= L 2 1
f(x) SR find: lenJ. f(x), Jljlzl J(x), and lim f(x)
- 122 X

SOLUTION  Observe that |x — 2| = x -

Therefore, 2ifx>2,and |x— 2| =—~(x—2) if x<2.
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x—2 : . —(x=2
Ll L) Sl e A i /() — iy S =)
= |lim g = Iim -(1—2)
2+ (x = 2)(x + 3) x=2- (x = 2)(x + 3)
=% ek e
=R TEEn T, A ST

Since lim,>- f(x) # lim,_,, f(x), the limit lim,_,, f(x) does not exist.

7 —— FPR——— ‘
[

LIS What one-sided limits does g(x) =v1—-x haveatx=-land x=1? oA

~ Rules for Calculating Uums - The following theorems make it easy to calcu- | "
late limits and one-sided limits of many kinds of functions when we know some iv
elementary limits. We will not prove the theorems here. (See Section 7.4.) ‘ s

W———

Theomn 2 l.umt Rules

L e x D S R

If lim,_,, f(x) = L, lim,_,, g(x) = M, and k is a constant, then &
I.  Limit of a sum: 11_1.12 [f(x)+g(x)]=L+M - J

2. Limit of a difference: lim [ f(x) - g(x)]=L-M
3. Limit of a product: lim f(x)g(x) = LM
4. Limit of a multiple: lim kf(x) = kL

FIANS PRGN S5A. ¥ 3

s R S, () L
5. Limit of a quotient: x_m = (x) i if M # 0.
If mis an integerand n is a posmve integer, then :
6. Limit of a power: hm [f’(x)]""—L""".pmvxdedL>0 nfn » :
10 00 even.andLazOlfm.
If f(x) < g(x) on an interval containing a in its mtenor, then 6L

7. Ordenspreeerved., LSM

assumption that _ﬂx) < g(x) on an open interval extendmg in the t f. opr :
direction from a. e

1

In words, rule 1 of Theorem 2 says that the limit of a sum of functions is thes’un}‘;v S
of their limits. Snmnlarly, rule 5 says that the lumt of a quotient of two fun’cn* I

¥

zero. Try to state theotherrulesmwords ‘,,e BRI o

Wecanmakcuseof(hehmxts(a)hm,_..c c(wherecnsaeons'ta'n ,randx |
(b) lim,..,, x = a, from Example 2, together with parts of TheommZto’" alculate _*’_“f‘ i
lumtsofmanyoombmanonsofﬁmcuons. - (ol e

EXAMPLE 5

S g KT, ',.a'

s formed | :3‘,?1 combir 'i.‘: |

___ll:: (Lp";‘gin h]a n ng
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at the limit of such a combination is the same com

Th m 2 assures us th _ :
core d ¢ of the pasic functions, provided the denominmor

bination of the limits @ an
does not have limit zero. Thus.

2 2ya+4 .
2+ x+4 a‘+ a 3 ind
i = provided a” — 2a~+ 7 #

I 22+ 7 a’— 2a*+ 7 0.

{ as in (a) shows that lime 2x+ D) =2(2) + 1 =5 Thep
le 6 of Theorem 2) assures us that

lim Y25+ 1 =3

(b) The same argumen
the Power Rule (ru

The following result is an immediate corollary of Limit Rules.

Theorem 3: Limits of Polynomials and Rational Functions

1. If P(x) is a polynomial and a is any real number, then
lim P(x) = P(a).
2. If P(x) and QO(x) are polynomials and O(a) # 0, then

o P _ P@
x—a Q(x)  Q(a)

The Squee.ze Theorem The following theorem will enable us to calcul
some very important limits in subsequent chapters. It is called the Squ 5
Theorem because it refers to a function g whose values are squeezed betwge R
values of two other functions fand 4 that have the same limit L at a point a Bn Shc
trapped between the values of two functions that approach L, the values f' S
also approach L. (See Figure 5.) , eSS

B [ e e et o e e

» X

Fi .
gure5 The graph of g is squeezed between those of fand h




calculate
Squeeze
ween the
a. Bcing
of g must

-

Suppose thatf(x) < g(x) < h(x) holds for e
ing a, except possibly at x= g itself. Sup;l; sJ: l:l :gx;eaomn interval °°ntam _:a

HOMEWORK 5

 Given that 3~ S u(x) <3+ for all x %0, find lim,_ u(x)

EXAMPLE 6 o
Show that if lim._,, | f(x)| =0, then lim,_, f(x)=0. -
SOLUTION  Since —|f(x)| < f(x) < | f(x)|, and ~{f(x)| and | f(x)| both havéiim 0

as x approaches a, so does f(x) by the Squeeze Theorem.

U ..»(,J,qf i{ //“ l(lf"/l'")!fﬂ '{”’";’Tf7’.':-‘)r;ﬁb?;”}jiﬂnf‘.‘{'-j}'?_)-ﬂ’ ‘/fﬂnrlql’i,ﬂ'h’l/’_) ) {}
)

1.({44[}'(’ ’}{
oy S L g
m ol f_-)\ 1im g(x)
lim g(x) e D
.’::"[E.‘f-{‘*}/ =34
H” II (,"’,} i f;)"""uvc

""‘ € ."'h'fur"") / 1'(: n /,f /)¢1f(f )

In Exercisés -
; 45
(Y2 Ax 5. lim ——
Iim (x° '/:_5' + e w4 O
2-6x+9
=2 7. im ——@a
’; h.l_'l‘ ‘ﬂi- ’ —\ ¥ ‘.;. >/
o 3 N0 1
Jvx-3
' ]},H,"i.;-_.,;;‘_
A R
n ¢ -9 xX— 9
| I — e A
-2 4 n
|x
Y 4 - 1)
X /‘j‘, “_L“,“ )‘r”

n B

UJ ‘“‘

-
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21. fix)=+/x

wess why?) Evaluate this limit Jor the fu

s
!
19. f(x) = x° 20. fix) =~

In Exercises 22-27, find the indicated one- sided limit or explain why it does not exisy,

p——

22. lim V2 - x 23. lim V2-x 24. hmﬂ\/w -
2 Np=2" x—»(
)
o : x—a xX-—4
25. lim Vx3 - x 26. hm Lr’lz 27. lIim
ol  Tend e St £ ¢ K 2~ |_(+2|
Exercises 28-29 refer 1o the function '
x—1 if x< -1 '

) =4 %1 if=l<x<0
(x+m ifx>0.
Find the indicated limits.

28. lim f(x) 29. lim f(x)

120

30. Suppose lim, . f(x) =2 and lim,_, 2(x) =~-3. Find:

(a) lim (g(x) +3) (b) lim xf(x) (¢) lim (2(x))’ (d) lim —
b i~ d -4 x~-»4 f(x)
x)— 5
a1 1f tim 25272 = 3_find lim f(x).
r+2 X= 2 x=2

Using the Squeeze Theorem
32. If 2 - x* < g(x) €2 cos x for all x, find |in(1) 2(x).
-

33. On what intervals is x'* < x’? On what intervals is x'* > x*? If the graph of y =
always lies between the graphs of y = ' and y = x°, for what real numbers a :
determine the value of lim,.., A(x)? Find the limit for each of these values of a '

e — e
-~

W8 Limits at Infinity and Infinite Limits

® Limits at Infini : : . ‘
e mﬁn::: > In this section we will extend the concept of limit to allow for two situatio y

Radier ] Fandaios covered by the definitions of limit and one-sided limit in the previous section
= Infinite Limits (i) limits at infinity, where x becomes arbitrarily large, positive or negative!

(ii) infinite limits, which are not really limits at all but provide useful sym‘
for describing the behavior of functions whose values become arbitrar
large, positive or negative. E
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Figure 7 The graph of x4/ + 1

Limits atInfinity ' Consider the function

RY

‘/xz + 1

whose graph is shown in Figure 7 and for which some values (rounded to
7 decimal places) are given in Table 1. The values of f(x) seem to approach | as
X takes on larger and larger positive values, and —1 as x takes on negative values
that get larger and larger in absolute value. We express this behavior by writing

!i_.tg Jx)=1  “f(x) approaches | as x approaches infinity."”

f(x)=

lim f(x)=-1 “f(x) approaches —1 as x approaches negative infinity.”

The graph of f conveys this limiting behavior by approaching the horizontal
lines y = 1 as x moves far to the right and y = —1 as x moves far to the left. These
lines are called horizontal asymptotes of the graph. In general, if a curve
approaches a straight line as it recedes very far away from the origin, that line is
called an asymptote of the curve,

If the function fis defined on ;n iﬁterva'l_'(a. =) and if we can ensure th'va_t'
J(x) is as close as we want to the number L by taking x large enough, then
we say that f(x) approaches the limit L as x approaches infinity, and we

. .::ll_l.r_l.f(‘x)#l..‘

If fis defined on an interval (—os, b) and 1f we can msure that f(x) is as.glg'sc?-l

as we want to the number M by taking x negative and large enough
in absolute value, then we say that f(x) approaches the limit M asx

approaches negative infinity, and we write
,!_i}!}, f(x)= M .

Recall that the symbol e, called infinity, does not represent a real number.
We cannot use < in arithmetic in the usual way, but we can use the phrase
“approaches =" to mean “becomes arbitrarily large positive” and thephrase .

“approaches —e=" to mean “becomes arbitrarily large negative ” RN

In Figure 8, we can see that lim,_... 1ix=lim, . 1/x=0. The x-axis is a horizontal
asymptote of the graph y=1/x. s

The theorems of Section 7.1 have suitable counterparts for limi '~ at i
negative infinity. In particular, it follows from the example above an



) -
i

'.~'ft LAY

"t

4
=~

Introduction to Mathematics
_ ( for any positive integer n. We wijy
Example 2 shows how 1o obtain the
|gebraic means, without resorting 1 [
did above.

"
mits that Jim e 1/x

' es.
use this fact in the following exampl

limits at = for the function x/vx % 1 by ah pigae
making a table of values of drawing a grapi

: X
Evaluate lim f(x) and lim, fix) for fx) = J;Tﬁ
f(x) as follows:

Product Rule for h

SOLUTION Rewrite the expression for

- x
flx) = = 1
xZ (l+ }12-) ﬂ\/:’- X2

Rcmembcr ‘R = |x|.

x
5 | + 1
%] X2
S SER L ‘where sgnx
14 ;E'

The factor +/1 + (1/2) approaches 1 as x approaches = O
the same limits as x — == as does sgn (x). Therefol

limf)=1 and  lim fG)=

[~ =~ > X
it 7y Y =

- Y ,‘ - al J 105 ¥ i . . -' / : TR Ly e
limits at oo are constant ones, P(x) = ¢. The

rational functions. Recall that a rational function

The following examples show how to render such a
limits at infinity and negative infinity (if they exi
do this is to divide the numerato enomir

appearing in the denominator. The

=N

negative infinity either bothfml‘to"éxlst« o ' 18!

=TT
h
AN LR IN
A

-y

y HOMEWORK 1

SUMMARY OF LIMITS AT 4= FOR
RATIONAL FUNCTIONS HOMEWORK 2

LetP(x)=a, ™+ . 4 a,and , T
QUx)=b, X"+ -+ + bybe polynomials
of degree m and n, respectively, so B‘V'Ill:l)aéi I,
that &, # 0 and b, # 0. Then ‘ |
lim Fulx)
(2) equals zero if m < n,
@)QMﬁﬂm=n,
(c) does not existif m >n..

ey

LUncuons at infinity and
0ty ant




ﬂ (-1,=1)

o | Figure 9 lim, ., l/x =—oo,
um‘-.o. 1/x =00
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Find lim,_,_ (\/x* + x = x).

SOLUTION We are trying to find the limit of the difference of two functions,
each of which becomes arbitrarily large as x increases to infinity. We rationalize
the expression by multiplyi

ng the numerator and the denominator (which is 1)
by the conjugate expression j:x: +x+x

X=—pon

lim (\/.t2+.r—x)— lim ( .t2+.r-.t)( xzhﬁx)

X—poe VXP4+ x4+ x
_ x24 x— x2
= |im
X=poo l
x2 (14— )+x
X
{ X . |
= |lim = lim =
e A .

(Here, J/x* = x because x>0 as x — o0.)

Remark The limit lim,,_. (+/x* + x = x ) is not nearly so subtle. Since —=x >0

as x — —oo, we have /X +x — x > /2 + x, which grows arbitrarily large as
x — —ee, The limit does not exist.

ﬂ . -
Infinite Limits A function whose values grow arbitrarily large can some-
times be said to have an infinite limit. Since infinity is not a number, infinite

limits are not really limits at all, but they provide a way of describing the behavior

of functions that grow arbitrarily large positive or negative. A few examples will
make the terminology clear.

WLIETIIEN (A two-sided infinite limit)

Describe the behavior of the function f(x) = 1/x* near x =0,

WEZTTN (One-sided infinite limits)

Describe the behavior of the function f(x) = 1/x near x = 0. (See Figure 9.)

SOLUTION As x approaches 0 from the right, the values of f(x) become larger

and larger positive numbers, and we say that f has right-hand limit infinity at
x=0:

lip f) ==

Similarly, the values of f(x) become larger and larger negative numbers as x
approaches 0 from the left, so fhas left-hand limit —ec at x = 0:

lim f(x) = —ee.

These statements do not say that the one-sided limits exist; they do not exist
because e and —o are not numbers. Since the one-sided limits are not equal

even as infinite symbols, all we can say about the two-sided lim,_ f(x) is that it
does not exist.

s 3OL3

ot §
gl
4

J'.:/"'ITA .

=0

o N
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m A@jyggial behavior at infinity)
(b) lime—e (X — ¥ +2)=—2o

(a) lim,.- (3 —r+2)=°
(d) lim— (X‘ - 5x —X) =00

(¢) lim. .. (' - Sy —x)=¢e

The highest-degree term of a polynomi
large, so the limits of this term ?t oo an
polynomial. For the polynomial in parts

3x - 24+ 2= 3t3(1-— —l-+-3-)
: 4 3x 3x3

ses approaches 1 as x approaches +2, 50 the be-
that of its highest-degree term 3.

al dominates the other terms as |x| groyws
d —eo determine the limits of the whole
(a) and (b) we have

The factor in the large parenthe
havior of the polynomial is just

We can now say a bit more about . i
rational function whose numerator has higher de

Earlier in this section we said that such a limit does not ex
can assign oo or — to such limits, as the following examp

37010 21 (Rational functions with numeratc
N<B
Gha  (~omk

Evaluate .l‘l—lbnl. ;—2—4-—7. 0, 00

SOLUTION Divide the numerator and the denomir
of x in the denominator: s

HOMEWORK 5

o AT o =l
L oA - *® s N
e e )
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Continuity <) e D\

m Continuity at a Point When a car is driven along a highway, its distance from its starting pomt'depends
Continuity on an Interval on time in a continuous way, changing by small amountshover S?l()l’t thZrYals
: i : i . When the car 1S parked in a

® There Are Lots of of time. But not all quantities change in this way. W P ‘

s anotions parking lot where the rate is quoted as “$2.00 per hour or portiop,” the parking_}; i
charges remain at $2.00 for the first hour and then suddenly jump to $4.00

as soon as the first hour has passed. The function relating parking charges to =

1

m Continuous Extensions

and Removable »
D'sc,ommumes , parking time will be called discontinuous at each hour. ¥n tl}ls sect}on we

- gl° '"";":f’s. F“'"C"O"s’l v define continuity and show how to tell whether a function is continuous. We
T e will also examine some important properties possessed by continuous functlonsf

m Finding Maxima and
e Srsphically ~ Continuity at a Point | Most functions that we encounter have domains that

® Finding Roots of ; ' . : 1 i a
Equa,iﬂns are intervals, or unions of sepagte intervals. A po.mt. P. in the domain of such
function is called an interior point of the domain if it belongs to some open

. . ~finterval contained in the/domain. If it is not an interior point, tt}en P 1s called .n.’
WYV 2 A 2 endpoint of the domain, For example, the domain of the function f(x) = v4 —x*

1s the @ interval -7, which consists of interior points in the interva’[
(-2, 2), a left{endpoint|2/ and a right endpoint 2./The domain of the function™

= 1/x s the union of open intervals (—e, 0) U (0, > ) and consists entirely 0
ATIPRAYS. [ﬁx(fgm Note that alth’og_gi?‘fs an endpoint of each of those intervals, it

———

does not belong to the domain of Z and so is not an endpoint of that domain.

end 091 dA Y




Limits and Continuity 213

-~

N A =
- . £
0

e - )

Definition 4(Continuity at an interior poinj\i
e e ——

e ———
(___We say that a function fis continuous at an interior point c of its domain if

’
|

+ / = lim /() = f(c). )

<

If either lim,_,. f(x) fails to exist or it exists but is not equal to f(c), then we
will say that fis discontinuous at ¢,

In graphical terms, fis continuous at an interior point ¢ of its domain if its graph
has no break in it at the point (¢, f(¢)); in other words, if you can draw the graph
through that point without lifting your pen from the paper. Consider Figure 10.
In (a), fis continuous at c. In (b), fis discontinuous at ¢ because lim,.,. f(x) #
f(c). In (¢), fis discontinuous at ¢ because lim,,. f(x) does not exist. In both
(b) and (c) the graph of fhas a break at x = c.

QALY (a) 4 (b) 4 (©)

y=/x)

y=f(x)

c X
Figure10 .~ .
k. (a) fis continuous at ¢
~(b) l}_‘}}f(x) #f(c) A
C’(;) fi;r.xcff(x) does not cxisQ

’

. - . . - . . . b Aw o o f\‘
Although a function cannot have a limit at an endpoint of its domain, it can still lf«,,»\_.;ﬁv%";'qa‘: :
have a one-sided limit there. We extend the definition of continuity to provide @:\,\'&%’%‘ 3
for such situations. RS TROAS
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We say that f ié@onﬁnuous at ¢ if }-‘L“» [f(x) =f(c). w:f,v\;¢ 0 \
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We say that f 1@continnous atcif }_1{‘11 [f(x) =f(c). ,.‘ ..,;‘;;3“,;&;@
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: —  The Heaviside function H(x), whose graph is shown in Figure 11, is continuous MR
y=HO | g every number x except 0. It is right continuous at 0 but is not left continuous SR

or continuous there. 5
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The relationship between continuity and one-sided continuity is summarized in e
the following theorem. ¢
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Function fis continuous at ¢ if and only if it is both right con_t-i_n_uous' and left
\§ continuous atc. l
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Yt y=flx)

=, ! 3

Figure 12 f(x)=./4~x is

continuous at every point of its
domain

X

(_l-"l)

Figure 13 |/x is continuous
on its domain

i int ‘
Definition 6 Continuity atan endpo d - |
int ¢ of its domain if it is righy
is | s at a left endpol 2
We say that fis continuou
continuous there. ; :
We say that fis continuous at a righ

continuous there,

t endpoint ¢ of its domain if it is jef

. : . . - hc ri ht -l

T i 4—x [2, 2]. It is continuous at the right eng.
he function f(x) = v4 = has domain : A A eh

[ it i tinuous there, that lS.be‘ USS, m,—2-J{: = f(2).

PO}nt : bc'cause ‘u lts tl;? lccof[: ::r:\dpo t =2 because 1L 1S right copumfous there:

]lt is cor}(n:)uo‘g_a f(=2). Of course ous at c\éery INtErior point of

m, 2. J\X)=v= . : : .

its domain. If =2 < ¢ < 2, then | £70) s = f(c). (See Figure 12)

in
,fis also continu
f(x) = J4 - c

| Continuity on an Interval ?  We have defined tl'Ie <_:0ncepl of continuity at 3
s the concept of continuity on an interval.

point, Of greater importance 1
e o N
1;’* - : ok o '.f'_(’ e
Definition 7 Continuity on an nte val e T ‘3
: : e interval / if it is continuous at
We say that function f'is continuous on the l_n‘__ al '
each pzint of 1. In particular, we will say that £ is a continuous function if f
is continuous at every point of its domain.

The function f(x) = ¥X is a continuous function. Its domain is [0, =). It is
continuous at the left endpoint 0 because it 1s right continuous there. Also, fis

continuous at every number ¢ > 0 since lim,.. Jx =+/c.

The function g(x) = 1/x is also a continuous function. This may seem wrong to
you at first glance because its graph is broken at x=0. (See Figure 13.) However,
the number 0 is not in the domain of g, so we will prefer to say that g is unde-
fined rather than discontinuous there. (Some authors would say that g is discon-
tinuous at x = 0.) If we were to define g(0) to be some number, say 0, then we
would say that g(x) is discontinuous at 0. There is no way of defining g(0) so

that g becomes continuous at 0.

The greatest integer function [x] is continuous on every interval [n, n + 1), where
n is an integer. It is right continuous at each integer n but is not left continuous

there, so it is discontinuous at the integers.

}_im[x]=n=[n]. m[xlzn—l¢n=[n].

TS N

~ There Are Lots of Continuous Functions ~ The following functions are continu-

T RSN R A

ous whemveriﬁgy?m .deﬁed:
(a) all polynomials;
(b) all rational functions;
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(¢) all rational powers ™" = /X",
(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions; and

(¢) the absolute value function | x|.

Theorem 3 of Section 7.1 assures us that every polynomial is continuous every-
where on the real line, and every rational function is continuous everywhere on
its domain (which consists of all real numbers except the finitely many where its
denominator is zero). If i1 and n are integers and n # 0, the rational power func-
tion " is defined for all positive numbers x, and also for all negative numbers x

if n is odd. The domain includes O if and only if m/n 2 0.
The following theorems show that if we combine continuous functions in

various ways, the results will be continuous.

Theorem 6: COmbining,com.inuous:l_m__lctiqns‘

If the functions fand g are both defined on an interval containing ¢ and both
are continuous at ¢, then the following functions are also continuous at c:
the sum f+ g and the difference f— g:

the product fg;

the constant multiple &f, where k is any number;

the quotient f/g (provided g(c) # 0); and

the nth root (f(x))"", provided f(c) > 0 if n is even.

The proof involves using the various limit rules in Theorem 2 of Section 7.1.
For example,

lim (f(x) + g(x)) = lim f(x) + lim g(x) = f(c) + g(c),

vk W

so f+ g is continuous.

_—-—--‘— B e

Theorem 7: Compo:im of continuous lnnctions are contmuous

..HA____au._‘ L 22 e e i - !

If f(g(x)) is defined on an interval containing ¢, and if £ is continuous at L
and lim,.,. g(x) = L, then

lim f(g(x)) = (L) = f(lim g(x)).

In particular, if’g is continuous at ¢ (so L = g(c)), then the composition
[ g is continuous at ¢:

lim /(g(x)) =/(g(c)).

2 - -
M—--w i s k et -
— - =3 = -

The following functions are continuous everywhere on their respective domains:

x=2
x—4

(d) VX (e) sz-Zx-S (f) \/rlt_'l'_zl

(@ 3 -2x (b) (©) |x*-1]
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Figure 14 This function has a
continuous extension to x = |

/x(.t)

(2.2)

*2. 1

- E

Figure 15 g has a removable
discontinuity at 2

Continuous Extensions and Removable Discontinuities As We have sean o8

Section 7.1. a rational function may have a limit even at a point Whe
denominator is zero. If f(c) is not defined, but lim... f(x) = L exists, Wo can

define a new function F(x) by
fix) ifxisinthe domain of f
F('t)z{L if x = c.
F(x) is continuous at x = c. It is called the continuous extension of f(x) l0x
For rational functions f, continuous extensions are usually found by N.
common factors.

2

X X : : - ; ,’\'
Show that f(x) = 7 has a continuous extension to x = 1, and find thy

extension.
SOLUTION  Although £(1) is not defined, if x # 1 we have
2 =
x*t—-x x(c=51) R
f(x)= < T+ DE-1) x+ 1
The function
)= x+ 1

is equal to f(x) for x # 1 but is also continuous at x = 1, having there the val
1/2. The graph of fis shown in Figure 14. The continuous extension of j ra
x =1 is F(x). It has the same graph as f(x) except with no hole at (1, 172).

If a function fis undefined or discontinuous at a point a but can be (mc)deﬁ ned
that single point so that it becomes continuous there, then we say that fh
a removable discontinuity at a. The function f in the above example has
removable discontinuity at x = 1. To remove it, define f()=1/2. »

HOMEWORK 4 | —

ifx#2 |
The function g(x) = {f lf; » has a removable discontinuity at x = 2 ““‘

remove it, redefine 2(2) = 2. (See Figure 15.) |

e

1

Continuous Functions on Closed, vals  Continuous funcnons th
are defined on closed, ﬁmte intervals have special properties that make '. er
particularly useful in mathematics and its applications. We will discuss tw o of
these properties here. Although they may appear obvious, these propemes
much more subtle than the results about limits stated earlier in this chapter; {}‘ :
proofs require a careful study of the implications of the completeness property 0
the real numbers. b
The first of the properties states that a function f(x) that is continuous oF
a closed, finite interval [a, b] must have an absolute maximum value and ; I
absolute minimum value. This means that the values of f(x) at all points of the
interval lie between the values of f(x) at two particular points in the mterval hi‘.-

graph of £ has a highest point and a lowest point.

SRERE




X

Figure 16 Rectangular field:
perimeter = 2x + 2y, area = xy

Limits and Continuity 217 ‘

Theorem B; The Max-Min Theorem

If f/(x) is continuous on the closed, finite interval [a, b], then there exist
numbers p and g in |a, b] such that for all x in |a, b],

f(p) S f(x) < f(q).

Thus fhas the absolute minimum value m = f(p), taken on at the point p, and
the absolute maximum value M = f(g), taken on at the point g,

Many important problems in mathematics and its applications come down to
having to find maximum and minimum values of functions. Calculus provides
some very useful tools for solving such problems. Observe, however, that the
theorem above merely asserts that minimum and maximum values exist: it
doesn’t tell us how to find them. For now, we can solve some simple maximum
and minimum value problems involving quadratic functions by completing the
square without using any calculus.

| ExampLE s [

What is the largest possible area of a rectangular field that can be enclosed by
200 m of fencing?

— —
PRC— .

SOLUTION If the sides of the field are x m and y m (Figure 16), then its per-
imeter is P = 2x + 2y m, and its area is A = xy m’. We are given that P = 200, so
x +y= 100, and y = 100 — x. Neither side can be negative, so x must belong to
the closed interval [0, 100]. The area of the field can be expressed as a function
of x by substituting 100 — x for y:

A =x(100 - x) = 100x — X*.

We want to find the maximum value of the quadratic function A(x) = 100x - x*
on the interval [0, 100]. Theorem 8 assures us that such a maximum exists.

To find the maximum, we complete the square of the function A(x). Note
that x* — 100x are the first two terms of the square (x — 50)° = x* — 100x + 2 .500.
Thus,

A(x) =2,500 — (x ~ 50)*.

Observe that A(50) = 2,500 and A(x) < 2,500 if x # 50, because we are sub-
tracting a positive number (x — 50)* from 2,500 in this case. Therefore, the
maximum value of A(x) is 2,500. The largest field has area 2,500 m’? and is
actually a square with dimensions x =y = 50 m.

Theorem 8 implies that a function that is continuous on a closed, finite interval
is bounded. This means that it cannot take on arbitrarily large positive or nega-
tive values; there must exist a number K such that

| ()] £K; that is, -K < f(x) < K.

In fact, for K we can use the larger of the numbers | f(p)| and | f(¢g)| in the
theorem.
The conclusions of Theorem 8 may fail if the function fis not continuous or

if the interval is not closed. See Figures 17-20 for examples of how such failure

can occur.



¥ = fix)

Figure 17 J(xX) = Ixis
conlinuous on the open
interval (0, 1). It is not
bounded and has neither a

maximum nor a minimum
value

y=f(x)

R

Figure 21 The continuous
function ftakes on the value s at
some point ¢ between a and b

Y= fix)

¥ = f(x) : ;
_. 3
> : ‘2._
1 X :
Figure 18 /(1) =x is Figure 19 This function Figure 20 This fun
continuous on the open is defined on the closed is discontinuous at an
interval (0, 1). It is interval [0, 1] but is interior point of its doms
bounded but has neither discontinuous at the the closed interval [0, |
a maximum nor a endpoint x= 1. It has a It is bounded but hu’
minimum value minimum value but no neither maximum
maximum value minimum values

Finding Maxima and Minima Graphically " The second property of a ¢ O " ti
ous function defined on a closed, finite interval is that the function takes on all ¢
values between any two of its values. This property is called the interm
value property.

L '," X

Theorem 9: 'Tlie lqg_om‘dii lu »(”‘ﬁf*u:;:.'; 33

If f(x) is continuous on tbem(mal [a, ]andlfswanumberbet\y
and f(b), then there exists a number c in [a, b] such that f(c) =s.

M

. -
i

In particular, a continuous function defined on a closed interval takes on
values between its minimum value m and its maximum value M, so its .gr:.
also a closed interval, [m, M ]. o
Figure 21 shows a typical situation. The points (a, f(a)) and (b, f(b)) are
opposite sides of the horizontal line y = 5. Being unbroken, the graph y
must cross this line in order to go from one point to the other. In the figure
crosses the line only once, at x = ¢. If the line y = 5 were somewhat hxgher. he
might have been three crossings and three possible values for c.
Theorem 9 is the reason why the graph of a function that is continu .Tx

an interval / cannot have any breaks. It must be connected, a single, unbr # ke

curve with no jumps. -

HOMEWORK 5 | | i
Determine the intervals on which f(x) = X’ — 4x is positive and negative. :

- Fine jations  Among the many useful tools that calc l%\

provnde are ones that enable us to calculate solutions to equations of the forr
f(x) =0 to any desired degree of accuracy. Such a solution is called a root of
equation, or a zero of the function f. Using these tools usually requires pr Vi
knowledge that the equation has a solution in some interval. The Intermedia
Value Theorem can provide this information. :
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Show that the equation x’ —x — 1 = 0 has a solution in the interval [1, 2].

SOLUTION The function f(x) = x' — x — 1 is a polynomial and is therefore
continuous everywhere. Now f(1) =—1 and f/(2) = 5. Since 0 lies between —1 and
S. the Intermediate-Value Theorem assures us that there must be a number ¢ in

[1, 2] such that f(¢) = 0.

One method for finding a zero of a function that is continuous and changes sign
on an interval involves bisecting the interval many times, each time determining
which half of the previous interval must contain the root, because the function
has opposite signs at the two ends of that half. This method is slow. For example,
if the original interval has length 1, it will take 11 bisections to cut down to
an interval of length less than 0.0005 (because 2'' > 2,000 = 1/(0.0005)), and
thus to ensure that we have found the root correct to 3 decimal places. But
this method requires no graphics hardware and is easily implemented with
a calculator, preferably one into which the formula for the function can be

programmed.

HOMEWORK 6

Solve the equation x’ — x — 1 = 0 of Example 6 correct to 3 decimal places by
successive bisections.

Remark The Max-Min Theorem and the Intermediate-Value Theorem are
examples of what mathematicians call existence theorems. Such theorems
assert that something exists without telling you how to find it. Students some-
times complain that mathematicians worry too much about proving that a problem
has a solution and not enough about how to find that solution. They argue: “If
[ can calculate a solution to a problem, then surely I do not need to worry about
whether a solution exists.” This is, however, false logic. Suppose we pose
the problem: “Find the largest positive integer.” Of course this problem has no
solution; there is no largest positive integer because we can add 1 to any integer
and get a larger integer. Suppose, however, that we forget this and try to calculate
a solution. We could proceed as follows:

Let N be the largest positive integer.

Since 1 is a positive integer, we must have N 2 1.

Since N? is a positive integer, it cannot exceed the largest positive integer.
Therefore, N* < N and so N>~ N <0.

Thus, N(N - 1) £0 and we must have N- 1 <0.

Therefore, N< 1. Since also N> 1, we have N = 1.

Therefore, 1 is the largest positive integer.

The only error we have made here is in the assumption (in the first line) that the
problem has a solution. It is partly to avoid logical pitfalls like this that mathe-
maticians prove existence theorems.



