

Ch.3

[Naming binary lonic Compound [Invariant charge]: Name of cation + base name of anion tide @Naming binary lonic compound [Variable charge]: name of Cation + Charge of Cation in + base name of anion tide 3 Naming the binary malecular compounds: Prefix + nam of the + Prefix + base name of 2nd element tide C.J. = Corbon monoxidz (4) Naming binary acids: hydro + base name of nonmetal + ic + acid e.g. = Hydrofluoric acid

formula mass/Molar mass: 5 (Number of atoms × Atomic mass) + (Number of atoms × Atomic mass) of 1st element of 1st element) + (of 2nd element of 2nd element) $e.g = H_2 o = (2 \times 1) + [1 \times 16] = 189/m$ 6) Mole Conversion: Mass Mole 6.022×10 Mole 7) Mass Por Cent: Mass Percent at element X = Molar mass of X (00 molar mass of the compound 8) finding the empirical formular 524.5% of Carbon]

() Cansed IL O and

V conver a the VerCentuges to grams: 24.5% - 24,59 2) ConVort magg to moles. $\frac{24.6}{12} = 2.04 \text{ mole}$ 3 divide all by the Smallest number 9 Multiply all mole ratios to make all whole number D'Calculating Molecular formula: Molecular formula = empirical formula X N N = molar mass of Molecular formula molar mass of empirical formula $\left(\circ \right)$

TABLE 3.6 The Effect of Electronegative	LE 3.6 The Effect of Electronegativity Difference on Bond Type	
Electronegativity Difference (Δ EN)	Bond Type	Example
Small (0–0.4)	Covalent	Cl ₂
Intermediate (0.4–2.0)	Polar covalent	HCI
Large (2.0+)	Ionic	NaCl

(1) Bond enorgy

from up to down: get weaker from hift to right: get Stornger

(12) Bond Length:

from up to down: Increase from lift to right: Decrease

Triple bond : Short and Strong Single bond: long and weate

h.4 (13) The percent Vield: Actual Vield x loo Theoretical Xield * Actual Yield less than theoretical Yield (14) Concentration of Solution S. Molar Ity = Amount of Solutz (in mol) Volume of Solution [in L] 5) Solution Dilution:

 $\mathcal{M}_1 \mathcal{V}_1 = \mathcal{M}_2 \mathcal{V}_2$

Strong Electrolyte: Completely ionize, Conduct electricity Weak Electrolyte : Partially ionize, Conduct electricity Non Electrolyte: Non't ioniZe, don't Conduct electricity

Oxidizing agent: O ₂ oxidizes	Reducing agent: CH ₄ reduces
O ₂ is reduced	O ₂ is reduced
-4+1 $CH_4+2O_2 \longrightarrow +4-2 +1-2$ CO_2+2H_2O	$\begin{pmatrix} -4+1 & 0 \\ CH_4 + 2 & O_2 \end{pmatrix} \longrightarrow \begin{pmatrix} +4-2 & +1-2 \\ CO_2 + 2 & H_2O \end{pmatrix}$
Methane is oxidized	Methane is oxidized
(loses electrons).	(loses electrons).

9 Oxidation: Increase in oxidation State Reduction: Deckass in Oxidation State

Jh. 5 20) (Le equilibrium Constant: $k_{q} = \frac{[C]}{[A]^{a}} [D]^{a}$ A3 = Molar Concentration of A [0]= 4 1 ß し forward reaction is favored - the vaction moves vight K>>1 :4 the Position of equilibrium favors product REVErSe reaction is favored the reaction moves le ft XC<1: + the positio of equilibrium favors vactant

TABLE 5.4 Strong Acids

Hydrochloric acid (HCl) Hydrobromic acid (HBr) Hydriodic acid (HI) Nitric acid (HNO₃) Perchloric acid (HClO₄) Sulfuric acid (H₂SO₄) (*diprotic*)

TABLE 5.4 Some Weak Acids

Hydrofluoric acid (HF) Acetic acid (HC₂H₃O₂) Formic acid (HCHO₂) Sulfurous acid (H₂SO₃) (*diprotic*) Carbonic acid (H₂CO₃) (*diprotic*) Phosphoric acid (H₃PO₄) (*triprotic*)

$$\frac{27}{PH} = -\log[H_{30}] \qquad pH + pOH = 14$$

$$\frac{PH}{POH} = -\log[GH] \qquad EH] \times [H_{30}] = 1 \times 10^{14}$$

pH < 7.0	Solution is acidic	[H ₃ O ⁺] > [OH ⁻]	
pH = 7.0	Solution is neutral	$[\mathbf{H}_{3}\mathbf{O}^{+}] = [\mathbf{O}\mathbf{H}^{-}]$	
pH > 7.0	Solution is basic	[H ₃ O ⁺] < [OH [−]]	

The pH Scale

TABLE 5.7 Strong Bases

- Lithium hydroxide (LiOH) Sodium hydroxide (NaOH)
- Potassium hydroxide (KOH)
- Strontium hydroxide [Sr(OH)₂] Calcium hydroxide [Ca(OH)₂] Barium hydroxide [Ba(OH)₂]

Alkenes The simplist alkene is CH2=CH2 WPAc name ethere Common name > othylone

trans-1,2-Dichloroethene

*) fan alkene contains two double bonds: The name will end with [diene] * If an alkene contains three double bonds: The name will end with [triene]

Alkynes IUPAC name e thync The simplist alkgne is CH = CH Common name > acctylene Avonatic Compound Naphthalene Anthracene Benzene Pyrene CH₃ - Structure: OH NH₂ - Common Name: toluene phenol aniline (hydroxybenzene) (aminobenzene) (methylbenzene) - IUPAC Name:

Ethers: They can be formed from two molecules of Alcand. [Condensation Reaction] * lend to be unverctive They are used as [Medical anesthetics] Aldehydes and Ketones. They can be prepared by the controlled [oxidation of alcoho]} Carboxylic acids. * hey are weak acids * They can be produced by foxidation of alcohols * They are the most common organic acids. Ester 8: are the products of reaction between (Alcohols + corboxylic acid by condensation Reaction. * The are responsible for the pleasant aroma lodor

Salonification Reaction. SPan Ester + Strong base (Carboxylic) + Alcohols

Amine: They are the most common organic based.

Amide: * They can be formed from Amine + Corboxylic acid CondenSation Veaction.

Functional Group	Compound Type	Suffix
}c=c⟨	Alkene	-ene
—c≡c—	Alkyne	-yne
—с–ё—ё—н	Alcohol	-01
-ç <mark>-</mark> ğ-ç	Ether	ether
:0: н сн	Aldehyde	-al
:0: -c-c-cc	Ketone	-one
:о: —с—ё—н	Carboxylic acid	-oic ac
-c-ö-c-	Ester	-oate
	Amine	-amine
:0: N	Amide	-amide

