

MINISTRY OF EDUCATION

لكل المهتمين و المهتمات بدروس و مراجع الجامعية مدونة المناهج السعودية eduschool40.blog

<

C¹ ????? ????? 1 B **Choose the correct answer B-1** From the following compound (Fe2S3, Na2O, NO2, CaCl2). The only molecular compound is d) CaCl₂ a) Fe₂S₃ b) Na₂O Q 521 197 191 B-2 Which of the following describes the molecule O₂? a) A diatomic molecule containing atoms of the same element. b) A polyatomic molecule containing atoms of different elements c) A polyatomic molecule containing atoms of the same element. d) A diatomic molecule containing atoms of different elements. B-3 Calculate the mass in grams of iodine (I₂) that will react completely with 8.4 g of aluminum (Al) to form aluminum iodide (AlI₃)? 2 Al + $3I_2 \rightarrow 2AlI_3$ c) 95.2 g a) 118.5 g b) 130.7 g d) 54.8 g = 118-59 Page 2 2 of 16

B-10 A mixture of two gases (A and B) are mixed in the same container. Calculate the mole fraction of gas A if the total pressure is 2 atm and the partial pressure of gas A is 0.5 atm ?

B-11 Give a possible set of four quantum numbers $\{n, l, m_l, m_s\}$ for the starred electron in the following diagram. Select the values of ml by numbering from -l to +l from left to

Page 5

В

B-19 An initial mixture of nitrogen gas and hydrogen gas is reacted in a rigid container at a certain temperature by the reaction 3H₂ (g) + N₂ (g) = 2NH₃ (g)
 At equilibrium, the concentrations are [H₂]=3.0 M, [N₂]=1.0 M, and [NH₃]=5.0 M. What were the concentrations of nitrogen gas and hydrogen gas that were reacted initially?

В **B-20** The equilibrium position of the reaction $2SO_3$ (g) $\implies 2SO_2$ (g) + O_2 (g) $\Delta H = 197$ kJ can be shifted in the forward direction by _____. a) increase pressure b) decrease volume c) increase temperature d) add SO₂ من به بعنی مع مور عن به بعد مرجد به به م مرجد بعنی مرجد مرجد می مرکد این ع معنی خد مند وزیر زیر مح **B-21** For the reaction $N_2(g) + 3Cl_2(g) = 2NCl_3(g)$ an analysis for the mixture at equilibrium is performed at a certain temperature. It is found that [N2]=4.0 M, [Cl2]=5.0 M, and [NCl3]=5.0 M. Calculate Ke for the reaction at this temperature. a) 0.05 b) 0.25 c) 0.56d) 20 $K_{c} = \frac{C \sim d_{3}}{(m_{a})} = \frac{C \sim T}{(m_{a})} = \frac{C \sim T}{(m_$ B-22 Consider the following: (1) $2A(g) + 3B(g) \longrightarrow 3C(g) + D(g)$, (2) 2A(aq) + 3B(aq) = 3C(aq) + D(aq), (3) 2A(aq) + 3B(g) = 3C(g), (4) $2A(aq) + 3B(g) \rightarrow 3C(g)$ 3.9 is an example of heterogeneous equilibrium and 1.2 is an example of homogenous equilibrium? a) 1 and 3, 2 and 4 b) 1 and 2, 3 and 4 c) 2, 4 d) 3 , 2 Page 9

B **B-27** The pH of 0.2 M Ba(OH)₂ will be _____. Ba(OH)₂ \rightarrow Ba ⁺² + 2 OH ⁻ a) 0.4 b) 13.3 c) 13.6 d) 0.6 Baloth Pat + 2=M 0,2 0,2 22,02 $\begin{bmatrix} \zeta \zeta^{\dagger} \end{bmatrix} = \frac{\chi}{(047)} = \frac{1 + 1 - 17}{2 \times 6 - 2} = 2 \cdot \chi \tilde{\zeta}^{\dagger}$ $PH = Log(H^{\dagger})$ **B-28** How much NaOH is needed to prepare 546 mL solution with a pOH=2.50? NaOH \rightarrow Na⁺ + OH⁻ a) 69.06 g c) 0.002 g b) 1.7 g d) 0.07 g pon = 2-50 n=M×VL (0H)= 15pm 3,16 ×10 × 546 = 1.72×10 = shifley (-poy) marrfaauch : 1.72x10 x40 = 3,1671=] = 6,000 = 9079 **B-29** A 0.040 M monoprotic acid solution is 2.5% ionized. Its Ka value is _____. a) 2.5 x 10⁻⁵ b) 3.4x10⁻³ c) 5.2×10^{-6} d) 0.001 **B-30** Which of the following solution is more basic a) solution A ($[H^+] = 1X10^{-2}M$) b) solution B ($[H^+] = 2X10^{-3}M$) - ionizer = (H+) x100 $2 \cdot 5 = \frac{(H^{T})}{9.97} \times 1^{9} = \frac{(H^{T})}{H^{T}} = 1 \times 1^{9}$ H= (Kacacia) indus H= Kacacid) = Ka= CH) = 2.5x1-5 Page 12

Choose the correct answer

A-1 Express 3.6 µm in Tm?

a) 3.6×10^{-18} Tm b) 3.6×10^{6} Tm c) 3.6×10^{12}	Tm d) 3.6 x 10 ⁻⁶ Tm
---	---------------------------------

A-2 The correct formula for copper (I) carbonate is:

- a) $Cu_2(CO_3)_2$ b) $Cu(CO_3)_2$ c) $CuCO_3$ d) Cu_2CO_3
- A-3 The density of benzene (C₆H₆) is 0.85 g/mL at 48° C. How many benzene molecules are present in 5.0 mL of benzene at this temperature?
 a) 2.2 x 10²²
 b) 1.2 x 10²¹
 c) 2.6 x 10²⁴
 d) 5.1 x 10²⁶
- a) 3.3×10^{22} b) 1.3×10^{21} c) 2.6×10^{24} d) 5.1×10^{26}
- A-4 Calculate the mass of (Fe₂O₃) required to react completely with 25 g of (Al) according to the following equation Fe₂O₃ (s) + 2Al (s) → 2Fe (l) + Al₂O₃ (s)
 a) 25 g
 b) 40.2 g
 c) 12.5g
 d) 74.07 g

	he volume needed to pr tion of 0.2M?	epare a solution contai	n 3.2 g of FeCl ₃ and
a) 0.098 ml	b) 295.4 ml	c) 98.5 ml	d) 0.295 ml
A-6 Which of th	hese elements is chemic	ally similar to Vanadiu	m (V)?
a) Cr	b) Mo	c) Ta	d) Ti
A-7 The empiri	cal formula for C ₈ H ₂₀ O	4 is	
a) CHO	b) C ₆ H ₁₅ O ₃	c) C ₄ H ₁₀ O ₂	d) C ₂ H ₅ O
A-8 An example	e of ploy atomic ion is :		
a) PO ₄ -3	b) P4	c) Mg ⁺²	d) S ⁻²

- A-9 Chlorine consists of two isotopes the first isotope with a mass of 34.968 amu and natural abundance of 75.78 %, and the second isotope with natural abundance of 24.22 %. If the average atomic mass of chlorine is 35.45 amu. Calculate the mass of the second isotope of chlorine?
- a) 34.523 amu b) 38.167 amu c) 36.956 amu d) 35.213 amu
- A-10 A 32.00 mL sample of 0.2 M nitric acid is introduced into a flask, and water is added until the volume of the solution reaches 250. mL. What is the concentration of nitric acid in the final solution?
- a) 2.6x10² M b) 2.6x10⁻³ M c) 2.6 M d) 2.6x10⁻² M
- A-11 Calculate the total pressure of a mixture of two gases (A+B) in 1 L container at
27°C. Gas A has 3 mole and the number of mole of gas B is 3.52 mole ?a) 67.2 atmb) 160.4 atmc) 106.95 atmd) 87.1 atm

A-12			amount of gas with a 98 L at a pressure of 6	volume of 150 L at 288 K and 40 mm Hg?
a) 32	0.13 °C	b) 100 °C	c) 47.13 °C	d) 259.1 °C
A-13	Which of the	following is not gas	under atmospheric co	onditions?
a) P		b) Ar	c) O ₂	d) Kr

A-14 What is the maximum number of electrons in an atom that can have the following quantum numbers: n = 3, m_s = +½?
 a) 3 b) 18 c) 9 d) 2

A-15 A mixture of three gases has a total pressure of 1.82 atm at 298 K. The mixture is analyzed and is found to contain 1.27 mol CO₂, 3.04 mol CO, and 1.50 mol Ar. What is the partial pressure of CO?

d) 0.95 atm

d) Alkali earth metal

a) 0.55 atm b) 0.40 atm c) 0.47 atm

A-16 The elements in Group 8A are known by what name? a) Halogen b) Alkali meatal c) Nobel gases

A-17 The outermost electron configuration for Sb :

a) $3s^23p^4$ b) $5s^25p^3$ c) $5s^25p^2$ d) $4s^24p^1$

A-18 Which of these elements has the lowest first ionization energy?

a) K b) Ge c) Ca d) Rb

A-19 What is the total number of valance electrons in NF₃?

a) 20 b) 16 c) 26 d) 24

A-20 Which is the correct equilibrium constant expression for the following reaction? $Fe_2O_3(s)+3H_2(g) \leftrightarrow 3H_2O(g)+2Fe(s)$ a) $\frac{[H_2O]^3}{[H_2]^3}$ b) $\frac{[H_2O]^3[Fe]^2}{[Fe_2O_3][H_2]^3}$ c) $\frac{[H_2]^3}{[H_2O]^3}$ d) $\frac{[Fe_2O_3][H_2]^3}{[Fe]^2[H_2O]^3}$

A-21 The equilibrium constant K_p is not applicable for the reaction _____.

a) $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$ b) $C_6H_5COOH(aq) \leftrightarrow C_6H_5COO^*(aq)+H^+(g)$ c) $2CO_2(g) \leftrightarrow 2CO(g) + O_2(g)$ d) $H_2O(g) + C(s) \leftrightarrow CO(g) + H_2(g)$

A-22 The equilibrium constant, K_c , for the reaction $I_2(g) \leftrightarrow 2I(g)$, is 3.8 x 10⁻⁵ at 727°C.

The value of K_p for the equilibrium 2I (g) \leftrightarrow I₂(g) at the same temperature is _____.

a) 3.12×10^{-3} b) 2.63×10^{4} c) 648 d) 320.9

A-23 For the reaction H₂O(g) + CO(g) ↔ CO₂ (g) + H₂(g), K_c = 1.87 at 700°C Calculate the concentration of H₂ present at equilibrium if a mixture of 0.300 moles of CO and 0.300 moles of H₂O is heated to 700°C in a 10.0 L container?
a) 0.03 M
b) 0.017 M
c) 0.013M
d) 0.173 M

A-24 Which can alter the value of the equilibrium constant?

 a) adding catalyst 	 b) decreasing the temperature
c) increasing the pressure	 d) increasing the concentration of reactant

A-25 The equilibrium $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$, can be shifted toward more product

formation by ____. ΔH = 92.5 kJ

a) decreasing the pressurec) decreasing the temperature

b) decreasing the volume
 d) Adding PCl₃

- A-26 The conjugate base of benzoic acid (C6H5COOH), is _____.

 a) OH⁻¹
 b) C6H5OH
 c) C6H5COO⁻¹
 d) COOH
- A-27 Calculate the concentration of [H⁺] in 0.08 M Ba(OH)₂ solution _____. Ba(OH)₂ → Ba ⁺² + 2 OH ·

$$Ba(OH)2 \longrightarrow Ba^{+2} + 2 OH^{-1}$$

$$0.08 M \longrightarrow 0.08 \ 2 \ge 0.08$$

$$[H^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{1 \ge 10^{-14}}{2 \ge 0.08} = 6.25 \ge 10^{-14} M$$

A-28 How much NaOH is needed to prepare 921 mL solution with a pH=10? NaOH → Na ⁺ + OH ⁻

pH=14-pOH = 14 - 10 = 4

 $[H^+] = 10^{-pH}$ = Shift log (-4) = 1 x 10^{-4} M

n mols = M X V in L

 $= 1 \times 10^{-4} \times 0.921 = 9.21 \times 10^{-5}$

A-29 Which of the following is true for a solution having pOH > 7?

a) $[H^+] < 10^{-7} M$ b) $[OH^-] > 10^{-7} M$ c) It is a basic solution. d) $[H^+] > 10^{-7} M$

A-30 What is the Ka of a 0.00335 M solution of HA at 25 °C and pH=2.9?

HA (aq)
$$\longrightarrow$$
 H^{*} (aq) + A^{*} (aq)
a) 3.2×10^{-5} b) 4.7×10^{-4} c) 9.7×10^{-3} d) 2.5×10^{3}

- A-31 Calculate the percent ionization of 0.040 M monoprotic acid solution with K_a = 3.6 x 10⁻⁵?
- a) 1.3 % b) 2.0 % c) 3.0 % d) 4.2 %

A-32 For the reaction 2NCl₃(g) _ N₂(g) + 3Cl₂(g)

an analysis for the mixture at equilibrium is performed at a certain temperature. It is found that [N2]=4.0 M, [Cl2]=5.0 M, and [NCl3]=5.0 M. Calculate K_c for the reaction at this temperature.

a) 0.05 b) 4 c) 1.79 d) 20

A-33 The solubility of the ionic compound M₂X₃ is 3.6×10^{-7} g/L with K_{sp} = 3.3×10^{-43} . calculate the molar mass of the compound $M_2X_3(s) = 2M^{+3}(aq) + 3X^{-2}(aq)$ a) 112.9 g/mol b) 288 g/mol c) 3.5x10⁻³ g/mol d) 325.6 g/mol A-34 Calculate the pH of a solution that is 2.0 M HNO2 (Ka=4.5x10-4) and 1.0 M NaNO2 $HNO_2(aq) \longrightarrow H^*(aq)+NO_2^*(aq)$ $NaNO_2(s) \longrightarrow Na^*(aq)+NO_2^*(aq)$ Base $PH = {}_{P}K_{a} + Log \frac{[A^{*}]}{[HA]} \qquad Acid$ $_{\rm P}K_{\rm a} = -\log K_{\rm a}$