

TPHYS 110 اختبار ات الدوري الأول

$$Cm \xrightarrow{\div 100} m$$

$$|cm \xrightarrow{\chi | 000} m$$

 $\underline{- | 000}$

$$\min \frac{\chi_{60}}{\underline{\leftarrow \pm 60}} S$$

$$h \xrightarrow{\chi_{3}}_{\xi \to 0} \rightarrow J$$

$$\frac{\chi}{3600} = \frac{1}{1000}$$

$$g \xrightarrow{:} looo$$
, kg
 $\epsilon \times looo$

() (0504590132) مینایت روند

$$\frac{(h 2)}{(h 2)} = \frac{(h 2)}{(h 2)} + \frac{(h 2)}{($$

$$Ch Z G$$

$$I = \frac{1}{2} \frac{1}{2}$$

$$\overrightarrow{A} = A_{x}i + A_{y}j$$

$$\overrightarrow{A} = A_{x}i + A_{y}j$$

$$A_{x} = \frac{1}{x} (\text{omponent} = \text{horizontal (omponent} \\ A_{x} = \frac{1}{x} (\text{omponent} = \text{horizontal (omponent} \\ A_{y} = \frac{1}{y}, \frac{1}{x}, \frac{1}{x},$$

Ch 3 (8) dot product A= Axi + Ayj + Azk Scalar Product the -jell B = Bxi + Byj + Bzk $\overrightarrow{A} \cdot \overrightarrow{B} = A_X B_X + A_Y B_Y + A_Z B_Z$ À, B = IA/ B/ (OSB $C \circ S \Theta = \overrightarrow{A} \cdot \overrightarrow{B}$ $\overrightarrow{IA} \parallel \overrightarrow{R} \parallel$ If A.B=0 (ALB 6=90° i.i=1 j.j =k k.k=1 ij=j.i=o j.k=k.j=o i.k=ki=o TP A = Axi+ Ayj + Azk $\frac{\left(\frac{Ax}{IA}\right)}{\left(\frac{Ay}{IA}\right)} = 3 \frac{\left(\frac{1}{V}\right)}{x} \frac{9}{28} \frac{8}{28} \frac{8}{28} \frac{1}{V} \frac{1$

K Fa P	ing Abdulaziz University aculty of Science-NJ hysics Dept. hysics 110 Ph. No where where the second
「「「」「「」」	Test # 1 28/12/1435H Time:90 min. Student Name: Student no Section:
	Q.1 In figure (1), the x-component of the vector \vec{C} is:y(A) $8\hat{i}$ m(B) $4\hat{j}$ m(C) $4\hat{i}$ m(D) Zero(E) $-5\hat{i}$ $ \vec{C} = 4$ m $ \vec{A} = 4$ m
	Q.2 In figure (1), the vector \overline{A} in unit vector notation is:(A) $10\hat{i} + 3\hat{j}$ (B) 4'(C) $3.5\hat{i} + 2\hat{j}$ (D) $4\hat{i} - 3\hat{j}$ (E) $5\hat{i}$ Figure (1)
X	$\frac{4 \cos 3 \circ + 4 \sin 3 \circ - 3 \cdot 5 i}{\mathbf{Q.3} \text{ In figure (1), the vector } \vec{A} + \vec{B} + \vec{C} \text{ is: } A + (-s_i) + 4 \hat{j} = 2 A - 5 i - 4 \hat{j}}$ (A) -1 m (B) (-1.5 \hat{i} + 6 \hat{j}) m (C) 5 \hat{i} m (D) 9 m (E) (-5 \hat{i} + 4 \hat{j}) m
:	Q.4 The angle between vectors $\vec{A} = 2\hat{i} + 4\hat{j}$ and $\vec{B} = 8\hat{k}$ is: (A) 90° (B) 30° (C) 45° (D) 120° (E) Zero
	Q.5 Given two vectors $\vec{A} = 6\hat{i} - 10\hat{j} + 4\hat{k}$ $\vec{B} = 4\hat{i} - 7\hat{j} + 4\hat{k}$ then $\vec{A} - \vec{B}$ is:(A) $10\hat{i} + 3\hat{j}$ (B) $2\hat{i} - 3\hat{j}$ (C) $9.5\hat{i}$ (D) $2\hat{i} + 3\hat{j}$ (E) $-5 + 9.5\hat{i}$
	Q.6 Given two vectors $\bar{a} = 6\hat{i} + 10\hat{j} - 4\hat{k}$, $\bar{b} = 4\hat{i} - 7\hat{j} + 5\hat{k}$, then $\bar{a} \cdot \bar{b}$ is:(A) $10\hat{i} + 3\hat{j}$ (B) 56 (C) $- 66$ (D) $10\hat{i} - 3\hat{j}$ (E) $10\hat{i} + 3\hat{j} + \hat{k}$
Q	Q.7 The unit vector of $\vec{A} = 3\hat{i} + 4\hat{j}$ is: (A) $\frac{4}{5}\hat{i} - \frac{3}{5}\hat{j}$ (B) $\frac{3}{5}\hat{i} - \frac{4}{5}\hat{j}$ (C) $\frac{3}{5}\hat{i}$ (B) $\frac{3}{5}\hat{i} + \frac{4}{5}\hat{j}$ (E) $\frac{4}{5}\hat{j}$
	Q.8 If a stone starting from rest fall freely, the distance it will fall in 4.0 seconds? $d = -9.5$ (A) 15 m (B) 29 m (C) 44.1 m (D) 88 m (E) 78.4 m
ي لار آلا	Q.9 A car <u>initially at rest travels 50 m in 5 s</u> along a straight line with constant acceleration. The acceleration of the car is: (A) 3.2 m/s ² (B) 5 m/s ² (C) 4.44 m/s ² (E) 4 m/s ² (E) 7 m/s ²
à	Q.10 If $\vec{A} = 2\hat{i} + 4\hat{j}$, $\vec{B} = a_x\hat{i} - \hat{j}$ and $\vec{A} \times \vec{B} = -20\hat{k}$, then a_x is (A) $3\hat{i} + 4\hat{j} - 5\hat{k}$ (B) 40 (C) 4.5 (D) $\hat{i} + 2\hat{j} - 5\hat{k}$ (E) 7
8	Q.11 A vector perpendicular to vector $\vec{A} = 2\hat{i} + 4\hat{j}$ is: (A) $3\hat{i} + 4\hat{j} - 5\hat{k}$ (B) $5\hat{k}$ (C) $3\hat{i}$ (D) $2\hat{i} - 4\hat{j}$ (E) $4\hat{j}$
AND NO	Q.12 Given $C = A^2 B^2$ where <u>C</u> is in meter square and B in seconds. The unit of A is: (A) m/s (B) m ² /s (C)Km/s ² (D) m ³ /s ² (E) Kg.m/s ²
	Q.13 An object starts from rest at the origin and moves along the x-axis with a constant acceleration. Its displacement as it goes from $x_1 = 4 \text{ m to } x_2 = 12 \text{ m is:}$ (A) 12 m (B) 8 m (C) 3 m (D) 16 m (E) - 8 m

X->V->4

 $\overline{\bigvee_{\star}}$

	くそに			the second s
	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Q.14 The acceleration	tion due to gravity ac	ts:		
(A) upward (B)	depending on the mo	otion (C) downward (D) toward outer spac	e (E) horizontal
Q.15 The angle b	etween c̄ = -15i +3	35ĵ + 5k̂ and the positiv	ve y-axis is: 559	
(A) 97.5°	(B) 120°		- €) 24.3°	(E) 113°
		³ . This value in SI-unit is		
(A) 1 kg/m ³	(B) 11 kg/m ³	(C)1.34×10 ⁻³ kg/m ³	(D) 11.34 kg/m³	(長) 11340 kg/m ³
Q.17 The result of	$(\hat{j} \times \hat{k}) \times \hat{j}$ is:	i-k;		
(A) zero	(B) 3	(C) -1.0	(\mathbf{E}) $\hat{\mathbf{k}}$ (E)) 1.0
Q.18 The distance	(x) in meters trave	lled by a particle is rela	ted to time (t) in se	conds by the equation of
motion x = $\frac{10t + 4t^2}{10 + 8t}$. The velocity of the	particle after 3 s is: ≼€0-34 m/s	(D) 10 m/s ²	(E) 43 m/s²
				(E) 43 m/s
Q.19 When an obje (A) uniform	ect is moving with <u>cor</u> (B) zero	<u>nstant velocity,</u> its accele (C) non uniform		(E) positive
· · ·	1			
Q.20 A particle's po (ᢩᢩᠺ) 12 m/s²	sition is described a (B) 40 m/s ²	is x(t)= 6t ² +2. Its accelera (C) 15 m/s ²	ation is: $5^{\frac{1}{2}} + 3$	(E) 24 m/s ²
				() 27 11/5
Q.21 A Train is driv (A) 450 m/s	ing with a c <u>onstant</u> s (B) 90.3 m/s	peed of <u>325 km/h</u> r. This (C) 45 m/s	speed in SI-unit is: (D) 125 m/s	(E) 25 m/s
· · ·				~ ~ ~
Q.22 You throw a l ball is 10 m above y	oall vertically upward	from the ground with in	nitial velocity of 20 n	n/s, the velocity when the
(A) 15 m/s		→(C) 14.3 m/s	(D) Zero	(E) 11.3 m/s
Q.23 The position	of a particle moving	g along the x axis is giv	ren by x = (21 + 22	t – 6t ²) m, where t is in
(A) -6 m	(B) 8 m	ime interval t = 1.0 s to t (C) -8 m	= <u>3.0</u> s is; (D) -4 m	(E-) 4 m
Q.24 Which of the f		not a vector quantity?	· · · · · · · · · · · · · · · · · · ·	
(A) Velocity ★	(B) Weight ⊀	(C) force	(D) Displacement	(E) Speed
Q.25 If \overline{A} and \overline{B} a	are vectors with the r	magnitudes <u>5</u> and <u>4</u> resp	ectively and the mag	initude of their vector
	en the angle betweer			
(A) 30°	(B) 45°	(C) 180°	(D) 60°	(E) 90°
Q.26 SI unit of velo		$\langle \mathbf{O} \rangle$ have $l = \frac{2}{3}$	$(D) = l_2^2$	
(A) m/s	(B) cm/s ²		(D) m/s ²	(E) cm/s
	ng at <u>30</u> m/s. The sp (B) 108 km/h	beed of this car is equal t (C) 100 km/h		
	, , , , , , , , , , , , , , , , , , ,	. ,	(D) 20 km/h	(E) 72 Km/h
Q.28 In order to det (A) distance	ermine the velocity y (B) acceleration		oth A and C	(E) both B and A
×	V- d	E M		V
Q.29 A stone is dro height from the grou		ng at a height of <u>30 m.</u>	When the speed of	the stone is <u>13.6</u> m/s its
(A) 23 m	(B) -8.1 m	(C) 12.3 m	∕(□) 20.6 m	(E) 16.4
Q.30 A man bas a n	nass of <u>80 kg</u> . Hisw	eight) is:		
(A) 300 watt	(B) 650 N:m		34 g.cm/s (E) 78	34 Kg.m/s ²
*	£	e e	·	

Suppose	افترض	Negative	سالب	Common	مشتركه	Angle	زاوية
Shot	قدف	Object	جسم	due to	بسبب	Absence	غياب
Thrown	رمي	Parallel	موازي	Equivalent to	تساوي	Appropriate	المناسبة
Towards	باتجاه	particle	جسيم	Exerted	تۇٹر	Air resistance	مقاومة الهواء
Traveling	يسير	respectively	على التوالي	Height	ارتفاع	Ball	کرہ
Upwards	للاعلي	Projected	قذف	kicked	ركلت	Block	4.175
Vertically	راسياً	Reaches	يصل	Means	يعني	Carte	صندوق
Walk	مشى	Rocket	صاروخ			Component	مركبة

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

2 A = 2(1 + 4) + 0 (Ψ) B= 0+0+9k A.B= 0+0+0=0 A.B. = 0 - = 0° (A) A-61-10)+4L **(**S) B= 41-7)+4K A-B= 21-30 (\mathcal{B}) a- 6(+10)- 4K 6) 5- 41-71+SK a.b= 24 - 70-20 = -66 \bigcirc A = 31 + 41(7) $|\vec{A}| = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = 5$ $i_{A} = \frac{\vec{A}}{\vec{A}} = \frac{3i'+yj}{5} = \frac{3}{5}i'+\frac{y'j}{5}$

S Vo=0 (\mathcal{G}) a=-9.8 m/j2 7-? t = 4 ry= vot+ = at = o(4)+ = (-9.8)(4)2 4= -78.4m distance=191=78.4 m (\mathbf{E}) (9)X=50m 5020 a = 7t = 53X= Vot+ - at $50 = 0(5) + \frac{1}{2} a(5)^2 \Rightarrow$ $a = 4m/s^2$ (\mathcal{D}) $\vec{A} = 2i + kj$ $\vec{B} = a_{\chi}i - j$ (1)AXB = - lok 01x=??

(6)
$$31 \text{ cm}^3 - \frac{x1000}{x1000} + 31 \text{ m}^3$$

 $11.34 \times 1000 = 11340 + 31 \text{ m}^3$ (6)
(1) $(3 \times k) \times j$
 $= (1 \times j) = k$ (1) $(1 \times j) = \frac{1}{2}$
 $(2) \times 1 = 10t + 4t^2$
 $1 = 10t + 8t$
 $t = 3.5 \implies V = 10t + 8(3) = 34 \text{ m}/s$ (2)
(1) Constant velocity $\implies a = 0$ (3)
(2) $(2) \times 10t + 2t^2$
 $\sqrt{2} \times 10t + 2t^2$
 $\sqrt{2}$

(1)
$$315 \text{ km/h}$$

 $\text{ km/h} \quad \frac{\times \frac{1000}{360}}{360} \text{ m/s}$
 $325 \text{ km/h} \times \frac{1000}{360} = 90.3 \text{ m/s}$
 $325 \text{ km/h} \times \frac{1000}{360} = 90.3 \text{ m/s}$
(2) $V_{0}=20\text{ m/s}$ $\alpha = -9.8 \text{ m/s}^{2}$
 $y = 10\text{ m}$ $U = ?$
 $U^{2} = V^{2} + 2\alpha y = (20)^{2} + 2(-9.8)(10)$
 $U = 14.3 \text{ m/s}$ (2)
(2) 14.3 m/s (2)
(3) $\chi = 21 + 22t - 6t$
 $D\chi = \chi_{2} - \chi_{1}$
 $t_{1} = 1s \longrightarrow \chi_{1} = 21 + 22 - 6 = 37\text{ m}$
 $t_{2} = 3s \implies \chi_{2} = 21 + 22(2) - 6(4) = 41\text{ m}$
 $D\chi = \chi_{2} - \chi_{1} = 41 - 37 = 4\text{ m}$ (5)

dropped (ng) 30m a = -9.8 m/s V0--0 U=-13.6M/5 y=??

12= vo + 2ay $(-13.6)^2 = 0 + 2(-9.8) y \implies y = -9.4 m$

height = h= 30-191 = 30-9.4 = 20.6 m (D)

(30)m = 80 kg W=mg=80×9.8 = 784 N - 784 kg.m²/22

King Abdulaziz University Faculty of Science Physics Dept. Physics 110 First Term Exam

2/12/1434 H

First Term Exam		1434 H	Time:90 min.
Student Name:		ent no.:	Section:
Q.1 The SI unit of length	is: (B) s	(C) m/s	(D) kg
Q.2 A man has a mass o	f 90 kg. The mass of the	man in grams is:	(D) 9×10 ⁴ g
(A) 9×10 ¹ g	(B) 9×10 ² g	(C) 9×10 ³ g	
	gth of 60 mm, its volume	in SI unit is: (volume = length ³)
	(B) 5.12×10 ⁻⁴ m³	(C) 3.43×10^{-4} m ³	(D) 2.16×10 ⁻⁴ m ³
Q.4 Which unit of these i (A) kg	s used to measure the ac (B) m/s ²	cceleration? (C) m	(D) m/s
Q.5 A train moves with a (A) 29.52 m/s	speed of 54 mile per hou	ur. The speed in SI units is: (H	int: 1 mile=1610 m)
	(B) 27.28 m/s	(C) 24.15 m/s	(D) 18.78 m/s
Q.6 A squire classroom h	nas a length of 500 cm. its	s area in SI units is:	(D) 25000 m ²
(A) 25 m ²	(B) 250 m ²	(C) 2500 m ²	
Q.7 A car moves along th (A) Decreasing	ne x-axis with constant sp	beed, the acceleration of the car i	s:
	(B) 9.8 m/s ²	(C) Zero	(D) Increasing
Q.8 A bicycle travels 14 k	m in 30 min. Its average	speed is:	(D) 14 km/h
(A) 34 km/h	(B) 28 km/h	(©) 22 km/h	
Q.9 A particle movies all seconds. The instantaneo (A) 14 m/s		to the equation x = 2t + 3t², whe : (C) 26 m/s	re x is in meters and t is in (D) 32 m/s
seconds. If its speed as it	passes the second point	covers the distance between tw t is 20 m/s, its speed at the first p (C) 10 m/s	point is:
Q.11 A car uniformly cha	nges its speed from 20 n	n/s to 5 m/s in 5 s. Its acceleratio	n is:
(A) - 4 m/s ²	(B) - 3 m/s ²	(C) - 2 m/s ²	(D) - 1 m/s ²
Q.12 A ball thrown straig (A) Zero	ht up from a bridge would	d have acceleration with magnitu	de of:
	(B) more than 9.8 m/s	² (C) less than 9.8 m/s ²	(D) 9.8 m/s ²
Q.13 An object falling tov	ward the earth's surface w	will have velocity that its magnitud	de is: (Ignore air resistance)
(A) Increasing	(B) Zero	(C) 9.8 m/s ²	(D) Decreasing
(SI units), the height at t =	= 0 is:	ward is given by the equation y	allefallen en e
		(C) 2 m maximum height of 30 m. The in	-
(A) 28.0 m/s	(B) 24.2 m/s	(C) 19.8 m/s	(D) 14.0 m/s
Q.16 A stone is falling do	wn from rest at a height o	of 15 m above the ground. It reac	hes the ground after:
(A) 1.01 s	(B) 1.43 s	(C) 1.75 s	(D) 2.02 s

×	J.		X arras
	vertically up with an initial spee	d v_o . When the ball was	s 2 m above the ground, the
speed was 0.7 of the initial (A) 14.36 m/s	speed. The initial speed is : (B) 10.43 m/s	(C) 8.77 m/s	(D) 6.56 m/s
Q.18 A ball is thrown vertic (A) 0.61 s	ally upward at speed of 13 m/s (B) 0.82 s	. The time will take to r (C) 1.12 s	each its maximum height is: (D) 1.33 s
Q.19 Which of the following (A) Distance	quantities is not a vector qua (B) Velocity	ntity? (C) Mass	(D) Acceleration
Q.20 The components of ve (A) 4.46 m	ector \vec{A} are given as $A_x = 5.2 \text{ m}$ (B) 6.30 m	n and A _y = - 5.6 m. The (C) 7.64 m	magnitude of vector Āis: (D) 9.19 m
Q.21 Given $\vec{A} = 2\hat{i} + \hat{j} + 3\hat{k}$	$\vec{B} = 2\hat{i} - 6\hat{j} + 7\hat{k}, \ \vec{C} = 2\hat{i} - \hat{j} + 4\hat{k}$	\hat{k} . Then the vector \vec{D} =	$2\overline{A} - \overline{B} - \overline{C}$ is:
(A) 4î-12ĵ+13k	(B) - $3\hat{j} + 2\hat{k}$	(C) $-4\hat{i}+14\hat{j}-15\hat{k}$	(D) $9\hat{j}-5\hat{k}$
Q.22 Given $\vec{a} = 4\hat{i} + \hat{j} + \hat{k}$	$, \vec{\mathbf{b}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}, $ Then $(\vec{\mathbf{a}} \cdot \mathbf{j})$	\overline{b}) is:	
$(A)4\hat{i}-2\hat{j}+2\hat{k}$	(B) 4	(C) $4\hat{i} + 2\hat{j} + 2k$	(D) -16
Q.23 The result of $\hat{i} \cdot \hat{j}$ is:			
(A) î	(B) k	(C) Zero	(D) ĵ
Q.24 In figure, if $\vec{A} + \vec{B} - \vec{C} =$	$2\hat{i}$ then the vector \bar{A} in unit ve	ctor notation is:	$\left \bar{\mathbf{C}} \right = 4 m$ Y
(A) 4î+2ĵ (B) 9î	+ $4\hat{j}$ (C) $6\hat{i} + 4\hat{j}$	(D) 5î-4ĵ ◀	$ \vec{B} = 4 m$
A = - 4 - 4			Ā
Q.25 Given $\vec{c} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ (A) 90°	and $\vec{d} = \hat{i} - 2\hat{j} + 3\hat{k}$,then the (B) 83°	e angle between vector (C) 75°	\vec{c} and \vec{d} is: (D) 53°
Q.26 If $\vec{A} \cdot \vec{B} = 0$, the angle (A) 360°	between the vectors \vec{A} and \vec{B} (B) 270°	is: (Hint: Ā and Ē are (C) 180°	non-zero vectors) (D) 90°
Q.27 If \vec{A} and \vec{B} are ve	ctors with magnitudes 5 and	4, respectively, and th	ne magnitude of their cross
product is 13.3, then the ang (A) 34°	gle between Ā and Ē is: (B) 37°	(C) 42°	(D) 50°
Q.28 Given that $\vec{a} = \hat{i} + 2\hat{j}$	$-2\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{i} + 2\hat{k}$.th	ien ā×b is:	
	(B) $2\hat{i} + 2\hat{j} + 4\hat{k}$	(C) $6\hat{i} + 2\hat{j} - 5\hat{k}$	(D) 4
Q.29 The result of $(\hat{i} \times \hat{j}) \times \hat{i}$	is:		· · · · · · · · · · · · · · · · · · ·
(A) ĵ	(B) i	(C) Zero	(D) k
Q.30 The result of $(\hat{k} \times \hat{i}) \cdot \hat{j}$	is:		
(A) î	(B) ĵ	(C) 1	(D) k

Words Meanings:

		D	" ! •••	b .Ø	1	0:1-	1.1
Above	فوق	Decreasing	يتناقص	Man	رجل	Side	ضلع
Acceleration	تسارع	Distance	إزاحة	Mass	كتله	Speed	سرعة
According	طبقا ل	Down	تحت	Maximum	حد أقصى	Stone	حجر
After	بعد	Earth	أرض	Measure	يقيس	Straight	مستقيم
Along	على طول	Equation	معادلة	Meter	متر	Squire	مربع
Angle	زاوية	Falling	يسقط	Mile	میل	Surface	سطح
Area	مساحة	Figure	رسم بياني	Move	يتحرك	Thrown	قذف
Average	متوسط	Following	التالي	Notation	صيغه	Time	زمن
Ball	کرہ	Football	کرۃ قدم	Object	جسم	Toward	بإتجاه
Between	بين	Given	معطى	Particle	جسيم	Train	قطار
Bicycle	دراجة	Gram	جرام	Point	نقطة	Travel	يرحل
Воу	ولد	Ground	سطح الارض	Position	موضع	Uniformly	بانتظام
Bridge	جس	Height	إرتفاع	Product	ناتج	Unit	وحدة
Car	سيارة	Hour	ساعة	Quantity	كمية	Up	فوق
Classroom	فصل در اسي	Ignore	أهمل	Reach	يصل	Upward	نحو الأعلى
Change	تغير	Increasing	تزايد	Resistance	مقاومة	Used	يستعمل
Component	مركبة	Initial	ابتدائي	Respectively	على التوالى	Vector	متجه
Constant	ٹابت	Instantaneous	لحظي	Result	نتيجة	Velocity	سرعة
Cover	يغطي	Length	طول	Second	ٹانی ة	Vertically	عموديأ
Cross	ضرب اتجاهي	Level	مستوى	Shot	يقذف	Volume	حجم
Cube	مكعب	Magnitude	مقدار	SI	نظام دولي	x-axis	محور السينات

Some Used Formula:

$$\begin{split} \Delta x &= x_2 - x_1. & a_x = a \cos \theta \text{ and } a_y = a \sin \theta. \\ v_{ayg} &= \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}. & a = \sqrt{a_x^2 + a_y^2} \text{ and } \tan \theta = \frac{a_y}{a_x}. \\ s_{avg} &= \frac{\text{total distance}}{\Delta t}. & \overline{a} \cdot \overline{b} = ab \cos \phi. \\ v &= \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}. & \overline{a} \cdot \overline{b} = a_x b_x + a_y b_y + a_z b_z. \\ a_{axg} &= \frac{\Delta v}{\Delta t}. & \overline{a} \cdot \overline{b} = ab \sin \phi. \\ a &= \frac{dv}{dt} = \frac{d^2 x}{dt^2}. & \overline{a} \times \overline{b} = ab \sin \phi. \\ \overline{a} \times \overline{b} = (a_y b_z - b_y a_z) \hat{i} + (a_z b_x - b_z a_x) \hat{j} + (a_x b_y - b_x a_y) \hat{k}. \\ v &= v_0 + at, & x - x_0 = v_0 t + \frac{1}{2}at^2, & v = v_0 + \frac{1}{2}at^2. \\ x - x_0 = v_t - \frac{1}{2}at^2. & \text{for free full} \quad a = -g = -9.8 \text{ m/s}^2 \\ \text{for free full} \quad a = -g = -9.8 \text{ m/s}^2 \end{split}$$

(a)
$$(1) = \frac{1}{100} = 100$$
(b)
$$(1) = \frac{1}{100} = 500$$

$$Area = (length)^{2} = (5)^{2} = 25m^{2} \text{ (A)}$$
(c)
$$(1) = 14 \text{ km} = 30 \text{ min} = 30$$
(c)
$$1 = 14 \text{ km} = 30 \text{ min} = 30$$
(c)
$$1 = 14 \text{ km} = 14 \text{ min} = 30 \text{ min} = 30$$
(c)
$$1 = \frac{1}{4} = \frac{14}{0.5} = 28 \text{ m/h}$$
(d)
$$1 = \frac{1}{4} = \frac{14}{0.5} = 28 \text{ m/h}$$
(e)
$$1 = \frac{1}{4} = 2 + 6t$$

$$t = 35ec \implies 0 = 2 + 6(3) = 20 \text{ m/s}$$
(f)

5 10) from vest => vo=0 y=-15m t=? 15m $\alpha = -9.8 \text{ m/m}$ y= vit + ½ at => -15= 0 + ½(-9,8)t2 $-15 = -4.9t^2 \implies t^2 = \frac{15}{4.9} = 3.061$ t= 1.75\$ C 17) \mathcal{O}_{n} Y=2m V= 0.700 a = - 9.8 m/s2 $v^2 = v^2 + 2ay$ $(0.7U_{0})^{2} = 0. + 2(-9.8)(2)$ 0.4902 = 00 -39.2 e^{-1} $0.49v_0^2 - v_0^2 = -39.2$ -0.51(3) = -39.2 = 0.2 = 39.2US=76.86 "15" US-8.77 M/16

 $\overline{a} = 4l' + j + k$ Be (-2)+2k a.b = 4-2+2 = 4 B $(\cdot) = 0$ C (13)r In [B] = 4m in −X 24) $B^{2} = -\xi(C)$ $\vec{c} = 4m \quad in + y \quad \Rightarrow [\vec{c} = 4j]$ $\overline{A}^{2} + \overline{B}^{2} - \overline{C} = 7i$ $\overrightarrow{A} - 4\overrightarrow{i} - 4\overrightarrow{j} = 2\overrightarrow{i}$ $\vec{H} = 2i + 4i + 4j$ A= 6(+4) \bigcirc

E $\vec{C} = 2(i+3)+2k$ $\vec{d} = \vec{l} - 2j + 3k$ 2.7 = 2-6+6=2 $\vec{[c]} = \sqrt{(2)^2 + (3)^2 + (7)^2} = \sqrt{17}$ $|\vec{d}| = \sqrt{(0^2 + (2)^2 + (3)^2)} = \sqrt{14}$ $\cos \theta = \frac{\overrightarrow{C} \cdot \overrightarrow{d}}{|\overrightarrow{C}||\overrightarrow{d}|} = \frac{2}{|\overrightarrow{V}|\overrightarrow{7}||\overrightarrow{4}|} = 0.1296$ B= Cos⁻¹(0.1296) = 82.55° № 83° B $(16) \overrightarrow{A} \cdot \overrightarrow{B} = 0 \implies \overrightarrow{A} + \overrightarrow{B} \implies \overrightarrow{B} = 9^{\circ} (10)$ $|\vec{B}| = 4$ ĨA) - 5 27 $|\overrightarrow{A} \times \overrightarrow{B}| = |3.3|$ G=? (AXB) = IA/IB) sing => 13.3=(5)(4) sing sine= 13.3 = 0.665 = 0 6= sint (0.665) = 42°

King Abdulaziz University Faculty of Science Physics Dept. Physics 110

Test 1 Student Name:		30/11/1433 H Student no.:		Time:90 min. Section:
Q,1 One nanomete (A) 10 ⁻⁹ m	r is equal to: (B) 10 ⁻⁸ m	(C) 10 ⁻⁵ m	(D) 10 ⁻⁶ m	(E) 10 ⁻¹² m
Q.2 The prefix (mic (A) 0.01	ro) means: (B) 0.01	(C) 0.001	(D) 0.000001	(E) 0.1
Q.3 The fundament (A) foot	unit which is commo (B) kilogram	on in MKS and FPS sy (C) meter	stem is: (D) pound	(E) second
Q.4 What is the app (A) gram	propriate SI unit of M (B) inch	ass: (C) foot	(D) meter	(E) kilogram
Q.5 A car is travelir (A) 10 m/s	g at 36 km/h. The sı (B) 20 m/s	beed of this car is equi (C) 5 m/s	valent to: (D) 36 m/s	(E) 11 m/s
Q.6 A train changes (A) 75 m	s its speed from 20 n (B) 68.75 m	n/s to 5 m/s in 6 s. The (C) 80 m	e distance it moved in the (D) 31.25 m	e sixth second is: (E) 6.25 m
Q.7 Plane lands wit (A) 576 m	h a speed of 96 m/s (B) 765 m	and accelerates at -8 (C) 686 m	m/s². The distance cover (D) 150 m	ed to come to stop is: (E) 628 m
then its speed at t=: (A) 11.6 m/s Q.9 The speed of	3.6 s is: (B) 13 m/s a car moving on a s	(C) 7.8 m/s	(m/s) as a function of ti	V⇒₂2 ² (E) 9.9 m/s
following equation (A) 3 m/s ²	/(t)=24+t ³ , the accel (B) 12 m/s ²	leration of the car at t= (C) 6 m/s ²	2 s is: (D) 24 m/s ²	(E) 15 m/s²
Q.10 A stone is dro (A) 2.41 s	pped from a height of (B) 1.1 s	of 28.5 m above the gr (C) 3.0 s	ound. The stone reaches (D) 2.29 s	s ground after: (E) 3.5 s
Q.11 A ball is throw (A) 245 m/s	n vertically from grou (B) 100 m/s	und level to rise to a m (C) Zero	haximum height of 45 m. (D) 31.3 m/s	The initial speed is: (E) 29.70 m/s
Q.12 A boy walks displacements is: (A) 30 m east	180 meters due ea (B) 150 m east	st and then turns arc (C) 120 m east	und and walks 30 mete (D) 180 m west	ers due west. The boy's (E) 180 m east
Q.13 A boy walks ² a distance of: (A) 190 m	50 meters due east (B) 150 m	and then turns around (C) 110 m	l and walks 40 meters du (D) 180 m	ue west. The boy walked (E) 330 m
		Telling Second	5 m/s in a period of 2 s (D) 1 m/s ²	
Q.15 In order to de (A) time	etermine speed you r (B) distance	nust know. (C) mass	(D) both A and B	(E) both B and C _
Q.16 In the absend (A) acceleration	ce of air resistance, a (B) velocity	an objects fall at const (C) speed	ant. (D) distance	(E) none of these
Q.17 What is the (A) 1.0 m/s	e speed of an object at (B) 9.8 m/s	rest? (C) zero	(D) 32 m/s	(E) -9.8 m/s
---	--	---	--	--
Q.18 A soccer b	all is kicked horizontally	v. If its displacement a	after 5 s is 30 m, then it	s average speed is:
(A) 5.0 m/s	(B) 8.0 m/s	(C) 14.1 m/s	(D) 6.0 m/s	(E) Zero
Q.19 Which of th (A) Mass	ne following quantities is (B) Time	s not a scalar quantit (C) Speed	y? (D) Temperature	(E) weight
Q.20 A vector of (A) 5 and 8.7	magnitude 10 has an a (B) -5 and -8.7	ngle with the positive (C) 5 and -8.7	x-axis of 120°. There c (D) -5 and 8.7	components are: (E) none of these
		op of building. It hits	the ground after falling	for 5 s. The magnitude of
the height of the (A) 122.5 m	building is: (B) 224 m	(C) 332 m	(D) 176.4 m	(E) 420 m
Q.22 An object f (A) Increasing	alling toward the earth's (B) Decreasing			e is: (Ignore air resistance)
		(C) 9.8 m/s ²	(D) Zero	(E) none of these
Q.23 The result	of (ĵ×ƙ)•î is:			
(A) î	(B) 1	(C) Zero	(D)	(E) ĵ
Q.24 Given ā = î	$\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j}$	$+4\hat{k}, \ \vec{c} = 2\hat{i} - \hat{j} - 4\hat{k}.$	If $\vec{r} = \vec{a} + \vec{b} + \vec{c}$. Then th	e vector r is:
(A) $-\hat{i} - 2\hat{j} + 3\hat{k}$	(B) $\hat{i} + 4\hat{j} - 5\hat{k}$	(C) 3.5i	(D) 5î - 2ĵ + 3k	(E) $\hat{i} + 2\hat{j} - 5k$
Q.25 A vector ha (A) 10 m and 57	as components x=8 m a ° (B) 14 m and 53°		ude and direction with p 3° (D) 10 m and 36.7°	
Q.26 Given \bar{C} =	î + 2ĵ + 3k̂ , D̄ = 2î - 3ĵ	+ $4\hat{k}$, then the angle	e between vector \vec{C} and	l D̃is:
(A) 90°	(B) 30°	(C) 45°	(D) 180°	(E) 66.6°
Q.27 Given \vec{a} =	$\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j}$	$\hat{j} + 4\hat{k}, \vec{c} = 2\hat{i} + 2\hat{j} - 4\hat{k}$	4k. Then $\vec{a} \cdot (\vec{b} \times \vec{c})$ i	s:
(A) $3\hat{i} + 4\hat{j} - 5\hat{k}$	(B) 66	(C) 25	(D) $\hat{i} + 2\hat{j} - 5\hat{k}$	(E) 50
notation is:	(1), if $\vec{A} + \vec{B} + \vec{C} = -2\hat{i}$ (B) $9\hat{i} + 4\hat{j}$ (C) $-8\hat{i} + \hat{j}$			$(1) \qquad \begin{array}{c} Y \\ \vec{C} = 6 m \\ \vec{A} = 4 m \end{array} X$ $\vec{B} \qquad \qquad$
Q.29 The angle	between vector $\vec{E} = -4\hat{i}$	i+2i and the posit	ive + x-axis is:	
1927 - 1927 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 - 1928 -	3) 153.4°	(C) 45°	(D) 180°	(E) 53.13°
Q.30 If \overline{A} and	B are vectors with mag	gnitudes 5 and 4, res	pectively, and the their	dot product is 17.32, then
the angle betwee				
(A) 90°	(B) 60°	(C) 45°	(D) 180°	(E) 30°

В

$$(2)$$

$$N_{0} = 20 m l_{p} \quad t = 5 x \quad a = -2.5 m l_{p} x$$

$$X_{1} = N_{0}t + \frac{1}{2} a t^{2} = 2o(5) + \frac{1}{2}(-2.5)(5)^{2}$$

$$(X_{1} = 68.75m)$$

$$N_{0} = 20 m l_{s} \quad t = 6x \quad a = -2.5 m l_{p}^{2}$$

$$N_{1} = N_{0}t + \frac{1}{2} a t^{2} = 2o(6) + \frac{1}{2}(-2.5)(6)^{2}$$

$$N_{1} = 75 m$$

$$N_{1} = 75 m$$

$$X = N_{0}t + \frac{1}{2} a t = 12 c a b \frac{1}{2} a c b c x$$

$$X_{1} = 12 c a b \frac{1}{2} a c c b x$$

$$X = X_{2} - X_{1} = 75 - 68.75 = 6.25 m$$

$$(E)$$

3
7 No= 96 m/s
$\chi = 2$ M/J^2
V = 0
$\chi^2 = \chi^2_0 + 2a \times \Rightarrow 0 = (96)^2 + 2(-8) \times$
$o = (96)^{2} - 16 \times = 16 \times = (96)^{2}$ (÷16)
$X = \frac{(96)^2}{16} = 576 \text{ m}$ (A)
(a=3m/12 No= 2.2m/2
t= 3.61 V=?
V= V+at = 2.2 + 3 (3.6) = 13 m/s
B
$9 \sqrt{2} = 24 + t^3$
$a = \frac{dv}{dt} = 3t^2$
t=25 -> a=3(2)2=12m/22 B

(1)
$$dropped \implies v_{0=0}$$
 $y = -28.5 \text{ m}$
 $A = -9.8 \text{ m/s}^{A}$ $t = ?$
 $y = v_{0}t + \frac{1}{2}at^{2}$
 $-28.5 = 0 + \frac{1}{2}(-9.8)t^{2}$
 $-28.5 = -4.9t^{2}$
 $t^{2} = \frac{-28.5}{-9.9} = 5.816$ $urrin
 $t = \sqrt{5.816} = 2.41 \text{ s}$ (A)
(1) maximum height $\implies v = 0$ $a = -9.8 \text{ m/s}^{2}$
 $v_{0} = ?$ $y = 45 \text{ m}$
 $v_{0} = ?$ $y = 45 \text{ m}$
 $v_{1} = v_{1}^{2} + 2ay \implies 0 = v_{1}^{2} + 2(-9.8)t^{4}S^{2}$
 $s = v_{0}^{2} - 882 \implies v_{0} = 882$ $urrin$
 $v_{0} = \sqrt{882} = 29.7 \text{ m/s}$ (E)$

$$(6)$$

$$(16) \quad C_{1}C_{2}C_{3}$$

$$(16) \quad C_{2}C_{2}C_{3}$$

$$(17) \quad at rest$$

$$(18) \quad f = 30$$

$$(19) \quad Weight$$

72) فحمالة مقوط الحبم تحو الأرمهم معدا - السرعة ليزاير increasing A (23) (Jxk).(·k · = \dot{L} B (24) $a = \frac{1}{2} + 2j + 3k$ D= ?(-3j+4k $\vec{c} = 2\vec{i} - \vec{j} - 4\vec{k}$ F=a+b+c= 51 -1)+3k D X=8m 9=6m $\vec{H} = \chi(+ y) = \delta(+ 6)$ $|\vec{A}| = \sqrt{(8)^2 + (6)^2} = 10 \text{ m}$ $A = \tan^{-1} \left| \frac{6}{8} \right| = 36.87^{\circ}$

= i'(12 - 8) - j(-8 - 8) + k(4 + 6)= 4(+16) +10k $\vec{a} = (i + j + 3k)$ To x c = 4 (+ 16) + 10k E, a. (bx2) = 4 +16 + 30 = 50 +X JÍIZ A= 41 NG) + y o vílé $\tilde{c} = 6)$ $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = -1i$ ψ i + \vec{B} + $6\dot{j} = -2\dot{l}$ $\vec{B} = -2i - 4i - 6j$ B' = -6(-6)(A)

$$(16)$$

$$(16)$$

$$(19) \quad \vec{E} = -4i + 2j$$

$$\Theta = \tan^{-1}\left|\frac{2}{4}\right| = 26.6^{\circ}; \text{ Cul}[7:1] \neq 1$$

$$\forall (\vec{E}), \quad \forall (\vec{E}) = 153.4^{\circ} \quad (\vec{B})$$

$$(36) \quad |\vec{A}| = 5 \quad |\vec{B}| = 4 \quad \vec{A} \cdot \vec{B} = 17.32$$

$$(36) \quad |\vec{A}| = 5 \quad |\vec{B}| = \frac{17.32}{(5)(4)} = 0.9666$$

$$\Theta = (65^{-1}(0.866) = 3^{\circ}) \quad (\vec{E})$$

King Abdulaziz University Faculty of Science Physics Dept. Physics 110

Test1		25/11/1432H		Time:90 min.
Student Name:		Student no.:		Section:
		2		
	Aluminum is 2.7 g/cm			
(A) 270 kg/m³	(B) 1 kg/m [°]	(C)2.7×10 ⁻³ kg/m ³	(D) 2700 kg/m ³	(E) 27 kg/m³
		l of OC lung /long Their area	ad in Claunities	
	g with a constant speed			(E) 25 m/a
(A) 45 m/s	(B) 20 m/s	(C) 10 m/s	(D) 12.5 m/s	(E) 25 m/s
0 3 The SI (metric	system) unit of length	is		
(A) nm	(B) mm	(C) meter(m)	(D) kilogram(kg)	(E) cm
() () () () () () () () () () () () () ((=)		(_)	(_,
Q.4 A square with	an edge of exactly 10	mm has an area of		
(A) 10^3 m^2	(B) 1 m ²	(C) 10 ⁻² m ²	(D) 10 ⁻⁴ m ²	(E) 10⁴ m²
Q.5 The speed v	in m/s of a car is given	n by $v = bt^2$ where the	e time t is in seconds .The u	nit of b is:
(A) m/s⁴	(B) ms	(C) m/s ²	(D) m/s ³	(E) m/s
()	、 <i>,</i>	• • • • • •	and a subsection of the second se	
Q.6 The SI units o	f the base quantities (L	ength, Mass, Time) are	e:	
(A) gcs	(B) MKS	(C) cgs	(D) cms	(E) mgs
	е _{ско} ни			
) m in 10.0 s .The run averag	
(A) 2.2 m/s	(B) 1.0 m/s	(C) 1.22 m/s	(D) 4.0 m/s	(E) 2.0 m/s
-	with a constant speed			
(A) 300 m	(B) 400 m	(C) 100 m	(D) 500 m	(E) 600 m
O Q If a particle m	oves from x = 6 m to x	- 11 m then Ax is		
(A) + 5.0 m		(C) + 17.0 m	(D) - 17.0 m	(E) + 10.0 n
	(D) 0.0 m	(0) • 17.0 m		(Ľ) * 10.011
	、 ,	、 ,		. ,
Q.10 The position	of a body moving alon	、 ,	$x = 3 t - 4 t^2 + t^3$. Its position	. ,
Q.10 The position	of a body moving alon	g the x axis is given by	$x = 3 t - 4 t^2 + t^3$. Its position	n at t = 2 s is:
Q.10 The position (A) + 6.0 m Q.11 How many n	of a body moving alon (B) +2.0 m neters in 50 kilometers	g the x axis is given by (C) -6.0 m ?	x = 3 t – 4 t ² + t ³ . Its position (D) -2.0 m	n at t = 2 s is: (E) +8.0 m
Q.10 The position (A) + 6.0 m Q.11 How many n	of a body moving alon (B) +2.0 m	g the x axis is given by (C) -6.0 m	$x = 3 t - 4 t^2 + t^3$. Its position	n at t = 2 s is:
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m	g the x axis is given by (C) -6.0 m ? (C) 100 m	$f x = 3 t - 4 t^{2} + t^{3}$. Its position (D) -2.0 m (D) 10 m	n at t = 2 s is: (E) +8.0 m (E) 50.0 m
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th	x = 3 t – 4 t ² + t ³ . Its position (D) -2.0 m (D) 10 m ne velocity after 2 seconds is	n at t = 2 s is: (E) +8.0 m (E) 50.0 m
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m	g the x axis is given by (C) -6.0 m ? (C) 100 m	$f x = 3 t - 4 t^{2} + t^{3}$. Its position (D) -2.0 m (D) 10 m	n at t = 2 s is: (E) +8.0 m (E) 50.0 m
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m re velocity after 2 seconds is (D) -17.6 m/s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m (D) 10 m re velocity after 2 seconds is (D) -17.6 m/s re time at a half of the distant	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is:
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m re velocity after 2 seconds is (D) -17.6 m/s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s	(D) 10 m (D) -17.6 m/s (D) -17.6 s (D) -17.6 m/s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m (D) 10 m re velocity after 2 seconds is (D) -17.6 m/s re time at a half of the distant	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m (D) 10 m (D) -17.6 m/s (D) -17.6 m/s (D) 6.43 s (D) 6.43 s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m (E) -8.3 m/s ce is: (E) 1.43 s height is:
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m (D) 10 m (D) -17.6 m/s (D) -17.6 m/s (D) 6.43 s (D) 6.43 s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s height is: (E) 15.0 m
 Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m Q.15 An object is after 2 s is: 	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s n ground level with a sp (C) 45.9 m	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m the velocity after 2 seconds is (D) -17.6 m/s the time at a half of the distant (D) 6.43 s peed of 30 m/s. Its maximum (D) 5.0 m peed of 5 m/s. If g = 10 m/s ²	n at t = 2 s is: (E) +8.0 m (E) 50.0 m (E) -8.3 m/s (E) 1.43 s height is: (E) 15.0 m its final velocity
 Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m Q.15 An object is after 2 s is: 	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m (D) 10 m (D) -17.6 m/s (D) -17.6 m/s (D) -17.6 m/s (D) 6.43 s (D) 6.43 s (D) 5.0 m	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s height is: (E) 15.0 m
Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10 ⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m Q.15 An object is after 2 s is: (A) -6.0 m/s	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m thrown straight up from (B) -8.0 m/s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s n ground level with a sp (C) 45.9 m n ground level with a sp (C) -10.0 m/s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m the velocity after 2 seconds is (D) -17.6 m/s the time at a half of the distan (D) 6.43 s peed of 30 m/s. Its maximum (D) 5.0 m peed of 5 m/s. If g = 10 m/s ² (D) -15.0 m/s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s height is: (E) 15.0 m its final velocity (E) 5.0 m/s
 Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m Q.15 An object is after 2 s is: (A) -6.0 m/s Q.16 A car starts 	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m thrown straight up from (B) -8.0 m/s from rest and goes dow	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s n ground level with a sp (C) 45.9 m n ground level with a sp (C) -10.0 m/s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m the velocity after 2 seconds is (D) -17.6 m/s the time at a half of the distant (D) 6.43 s peed of 30 m/s. Its maximum (D) 5.0 m peed of 5 m/s. If g = 10 m/s ²	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s height is: (E) 15.0 m its final velocity (E) 5.0 m/s
 Q.10 The position (A) + 6.0 m Q.11 How many n (A) 50×10⁻¹ m Q.12 A stone drop (A) -16.6 m/s Q.13 A stone drop (A) 3.43 s Q.14 An object is (A) 10.0 m Q.15 An object is after 2 s is: (A) -6.0 m/s Q.16 A car starts 	of a body moving alon (B) +2.0 m neters in 50 kilometers (B) 50 × 10 ³ m oped from a building of (B) -19.6 m/s oped from a building of (B) 2.43 s thrown straight up from (B) 20.4 m thrown straight up from (B) -8.0 m/s	g the x axis is given by (C) -6.0 m ? (C) 100 m height 60.0 meters. Th (C) -15.6 m/s height 20.0 meters. Th (C) 5.43 s n ground level with a sp (C) 45.9 m n ground level with a sp (C) -10.0 m/s	$f x = 3 t - 4 t^2 + t^3$. Its position (D) -2.0 m (D) 10 m the velocity after 2 seconds is (D) -17.6 m/s the time at a half of the distan (D) 6.43 s peed of 30 m/s. Its maximum (D) 5.0 m peed of 5 m/s. If g = 10 m/s ² (D) -15.0 m/s	n at t = 2 s is: (E) +8.0 m (E) 50.0 m : (E) -8.3 m/s ce is: (E) 1.43 s height is: (E) 15.0 m its final velocity (E) 5.0 m/s

				В
Q.17 The result o	f (î×k̂)• î is:			
(A) î	(B) 1	(C) ĵ	(D) k	(E) -1
Q.18 In figure, if	$\vec{A} - \vec{B} + \vec{C} = -7\hat{j}$ then	the vector \vec{A} in unit v	vector notation is: $ \bar{C} = 5 m$	Y
(A) 2î+10ĵ (E	3) 5î-10ĵ	(C) 6î + 6j (D) 5î	i-14ĵ (E) 4î ▲	Ā Ē =7 m
Q.19 The angle b (A) 15°	etween vector Ē = î (B) 155°	i̇̀ + 3ĵ + 2k̂ and the p (C) 145°	ositive y-axis is : (D) 36.66°	(E) 74.49°
Q.20 Given ā = 9	$\hat{i} - 6\hat{j} + 21\hat{k}$, then	the magnitude of vec	tor	
(A) 7.9	(B) 15.33î	(C) 10.33ĵ	(D) 12.33k̂	(E) 5.2
		-6k̂, b̄ = -4î +5ĵ +7k̂ (C) 2î +3ĵ +7	, then ā - b̄ is: ƙ (D) 7î + 5ĵ - 13ƙ	(E) 10î + 5ĵ
Q.22 Given two v (A) 10î - 17ĵ + 8k̂		+ 4 \hat{k} , \vec{B} = 4 \hat{i} - 7 \hat{j} + 4 \hat{k} (C) 9.5 \hat{i}	, then Ā +Ē is: (D) 7î +5ĵ -13ƙ	(E) 2î+3ĵ
Q.23 Two vectors (A) 3i+3ĵ	s Ā = 8ĵ + 6k̂ and i (B) - 44 î̂	Ē =2ĵ - 4k̂ , then the (C) -8	vector product of $\vec{A} \cdot \vec{B}$ is: (D) 2î-3ĵ	(E) 18
Q.24 The result o	of $(\hat{i} \times \hat{k})$ is:			
(A) Î	(B) Zero	(C) - ĵ	(D) k	(E) 1
Q.25 Given two v	vectors $\vec{a} = 10\hat{j} - 4\hat{k}$, $\vec{b} = 5\hat{j} + 10\hat{k}$, then	ā×bīs:	
(A) 20	(B) 120î	(C) 10ĵ	(D) 10î + 3ĵ	(E) 10î-3ĵ
Q.26 If the compo with the positive x		\vec{B} is given by B_x =-20	cm and $B_y=6$ cm, then the dire	ection of this vector
(A) 163.3°	(B) 60°	(C) 45°	(D) 16.7°	(E) 180°
Q.27 If the compo vector is:	onents of the vector	is given by A _x = -97.0) cm and A _y = -24.5 cm, then th	e magnitude of this
(A) 1 cm	(B) 100 cm	(C) 15 cm	(D) 10 cm	(E) 5 cm
Q.28 Which of th (A) weight	e following quantitie (B) distance	es is a vector quantity (C) time	? (D) temperature	(E) Mass
Q.29 An object resistance) (A) Decreasing	falling toward the (B) Zero	earth's surface will h (C) 9.8 m/s ²	ave acceleration that its mag (D) Increasing	gnitude is: (Ignore ai (E) -9.8 m/s ²
	thrown straight up) 8.0 m	from ground level with (C) 20.4 m	n a speed of 15 m/s. Its maxim (D) 10.0 m	um height is: (E) 11.5 m

7

l glcm³ Xlooo Kolm³ 2.7 × 100 = 2700 Kg/m3 (D) km/h 1000 m/s U) $36 \pm \frac{1000}{3600} = 10 M/s$ 3 Length ----> meter (m) \bigcirc (4) diel = lomm = <u>lo</u> 1000 = 0.01 $(0.01)^2 = 10^{-4} \text{ m}^2 (D, D)^2 = (10.01)^2 = (10.01)^2$ $U = bt^2 \implies b = \frac{U}{t^2} = \frac{m/r}{r^2}$ (s) $= \frac{M}{\sqrt{13}} = \frac{M}{\sqrt{13}}$ \bigcirc Length, Mass, Time m leg it Mkr (B)

3
(12) dropped => No =0 N =?
$t=1,5$ $\alpha=-9.8 m/r^2$
V=V.+at= 0-9.8(2) =-19.6m/sB)
(13) dispred => No = 0 t=?
$a = -9.8 \text{ m/m}$ $\vartheta = -\frac{20}{2} = -10 \text{ m}$ k $\omega \alpha i j v$
$\vartheta = v_{st} + \frac{1}{2}at^2$
$-10 = 0 + \frac{1}{2}(-9.8)t^{1}$
-lo = - 4.9t 4.9 t = 2.0408
t= V2.0408 = 1.435 (E) "/"
(1) No = 30 m/s multimum height =>
a= -9.8 m/2 y=? N=0
1 ² = 1.+2ay => 0=1307+2(-9.8)
$0 = 900 - 19.69 \implies 19.69 = 900 \implies 19.69 = 900 \qquad = 19.69 \qquad = 19.69 \qquad = 19.69 \qquad = 900 \qquad = 19.69 \qquad = 19.6$

$(5) \sqrt{5} = 5 M / p^2$ $\sqrt{5} = ?$	$\partial = \log \ln n$ $\alpha = -\partial = -\log \ln n$ t = 2r
N=Notat= 5.	-lo(2) = -15 M/s (D)
	$\alpha = 2 m/r$ 1 = 6 m/r
$V = V_0 + at$ 6 = 0 + 2t =	A 2527 (A)
$(i \times k) \cdot j$ $(i \times k) \cdot j = -j \cdot j \cdot j = -j \cdot j \cdot$	$(j,j) = -1 \in$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J = SM J = SM IBJ = 7M BJ = 7M BJ = 7M

(1)
$$\vec{F} = (i + 3j + 2k)$$

 $\vec{E} = \sqrt{1 + 9 + 4} = \sqrt{14}$
 $\vec{\Theta} = \cos^{-1}(\frac{3^{\prime}}{\sqrt{14}}) = 36.7^{\circ}$ (D)
(1) $\vec{\Omega}^{2} = 9(i - 6j + 1)k$ $\frac{1}{3}i \neq 1i \neq 1i \neq 1i$
 $\frac{1}{3}\vec{\alpha} = 3(i - 2j + 2k)$ $3dtr = i \neq 1i$
 $\frac{1}{3}\vec{\alpha} = 3(i + 16j - 12k)$ (D)
(1) $\vec{\alpha}^{2} = 3(i + 16j - 12k)$ (D)
(1) $\vec{\alpha}^{2} = 3(i + 16j - 12k)$ (D)
(1) $\vec{\alpha}^{2} = 3(i + 16j - 12k)$ (D)
(1) $\vec{\alpha}^{2} = 4(i - 16j + 4k)$
 $\vec{\beta} = 4(i - 7j + 4k)$
 $\vec{\beta} + \vec{B} = 10i - 17j + 6k$ (A)

20) Bx =-20 By = 6Ostan (By) $= \tan \left| \frac{6}{20} \right| = 180 - 16.7 = 163.3^{\circ}$ (A)27) Az= -97 Ay = -2y.s $\vec{|A|} = \sqrt{|A_x^2| + A_y^2|} = \sqrt{(97)^2 + (14.5)^2}$ 5 100 B (A)(20) Weight ñ $(a) = g \cdot g \cdot m/s^{2}$ (C)(30) No= 15 M/J a = -9.8 m/s maximum height => 1=0 y =7 $\sqrt{2} + \sqrt{2} + 2ay = 0 = 115/2 + 2(-9.8)/3$ 19.69 = 225 J = 225 = 11.5 M

اختيارات الدوري الثاني

مانه موانيم Philo Ch 4 $\vec{V} = \chi(t)(+\gamma(t))$ $\vec{\Lambda} = \Lambda_{\chi} dx (+ \Lambda_{\chi} dx) j$ $\vec{a} = a_{\chi}(t) \dot{i} + a_{\chi}(t) j$ ب لنتام Niet r アノ á $\frac{dr}{dt}$ NE a = du dt $\frac{d}{dt}$ (dr) à is constant T= T. + at Circular motion ad WI The R Centriptal acceleration R jélisas Fi 5, J. 8- (1) a = -Period = T = est = 2TTR | T= M ALV الزممانيك يدد اللفات

.

$$\frac{(h + y)}{R} = \frac{y^{2} \sin 2\theta}{2}$$

$$\frac{(h + y)}{R} = \frac{y^{2} \sin 2\theta}{2}$$

$$\frac{(h + y)}{R} = \frac{y^{2} (\sin \theta)^{2}}{2\theta}$$

$$\frac{(h + y)}{R} = \frac{y^{2} (\sin \theta)^{2}}{2\theta}$$

$$\frac{(h + y)}{R} = \frac{y^{2} (\sin \theta)^{2}}{2\theta}$$

$$\frac{(h + y)}{R} = \frac{y^{2}}{2\theta}$$

$$\frac{(h + y)}{R} = \frac{y^{2}}{R}$$

$$\frac{Ch 4}{3}$$

$$\frac{\sqrt{3}}{\sqrt{4}}$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$\frac{Ch}{\pi} = \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty}$$

$$\frac{ch}{dt} \frac{ch}{dt} \frac{ch}{dt} \frac{dt}{dt} \frac{$$

ار مېرمې د مېروند د د د د د د د د و

.

$$(3)$$

$$\frac{3}{2}$$

ph ILo King Abdulaziz University Faculty of Science Physics Dept. Physics 110 (··· · Time:90 min. 11/2/1436H Test #2 Section: Student no. Student Name: Q.1 A body of weight 600 N running in a circular path of R=1 m at a velocity of 8 m/s. The centripetal force is: (D) 408 N (E) 3918.4 N (C) 4096 N (B) 5224.5 N (A) 64.5 N Q.2 At the highest point, the magnitude of the acceleration of a projectile is: (D) 19.6 m/s² (E) 9.8 m/s^2 (C) 4.9 m/s² $(A) -9.8 \text{ m/s}^2$ (B) Zero **Q.3** A feather (ریشة) and a coin dropped in a vacuum fall with equal (E) velocitv (B) none of these (C) kinetic energy (D) acceleration (A) force **Q.4** In which case will the magnitude of the normal force on the block be equal to $(Mgcos\theta)$? (A) case 1only (B) case 2 only M (C) case 1 and 2 M (D) case 3 only (E) cases 1, 2, and 3 Case 2 Case 1 Case 3 Q.5 Referring to question 4, in which case will the x-component of the weight of the block be equal to (Mg sinθ)? (B) case 2 only (C) case 3 only (D) cases 2 and 3 (E) case 1 only (A) cases 1 and 2 Q.6 If the forces on an object are balanced, the object will (A) Remain at rest if initially at rest. (B) Continue moving in a straight line if initially moving in a straight line. (C) Both A and B (D) Neither A nor B (E) None of these **Q.7** A man of mass 100 kg. His weight is: (E) 490 N (D) 98 N (A)50 N (B) 980 N (C) zero **Q.8** 1Newton is equivalent to: (B) 1 kg. m/s² (C) 1 kg of mass (D) 1 kg of force (E) none of these (A) 9.8 kg.m/s² Q.9 The static coefficient of friction µ_s and the angle at which the object is about to move on a surface θ are related as (C) tan $\theta = \mu_s$ (D) tan μ_s=θ (E) sin $\mu_s = \theta$ (A) $\sin \theta = \mu_s$ (B) $\cos \theta = \mu_s$ **Q.10** A 5 kg mass is held at rest on a frictionless 30° incline by force \overline{T} . The magnitude of \overline{T} is: (E) 100 N (A) 5 N (B) 75 N (C) 24.5 N (D) 50 N

	d three men inside hav I.2 m/s2, the tension ir		of 600 kg. If t	the elevator is a	ccelerating upwards
(A) 600 N (B) 51	60 N (C) 10	00 N	(D) Zero	(E) 60	600 N
	or the centripetal force				
(A) $a = \frac{v^2}{R}$.	(B) F=ma	(C) F=mg	(D)none of	these	(E) $F = m \frac{v^2}{R}$
	e figure, two forces of der to keep A in equi				9N A
(A) 13.5 N (B) 18	.82 N (C) 2.7 N	(D) 15.59 N	(E) 75 N		18 N
(A) of the displaceme	always in the directior ent (B) of the final vel	ocity (C) of the			,
Q.15 A force of 98 N friction is	l is required to just sta	rt moving a boo	dy of mass 10	00 kg over ice. T	he coefficient of static
(A) 0.2	(B)) 0.1		(C) 0.6	(D) 0.4	(E) 0.5
Q.16 In the figure m	$_1$ =10 kg and m ₂ =5 kg,	the gravitationa	al force on m ₁	is:	
(A) 30 N (B) 14	47 N (C) 9.8 N	(D)Zero (E)	75 J		m ₂
- ·	ct is moving on a ho he object accelerates (B) 10 (D) 1.8		iless plane,	as .10 N	
Q.18 A box stands c (A) mg sinθ	on a rough incline plan (B) mg tanθ	e of θ, its movir (C) mg cosθ	ng with a cons (D) n		friction force is: (E) ½ mg ²
Q.19 When a body i (A) Static friction	s moving on a rough s (B) Dynamic friction	urface, the forc (C) Limiting fric		s called. Rolling friction	(E) parallel friction
Q.20 A force of 24 N (A) 16 m/s ²	is applied to move a s (B) 3 m/s²	tationary body (C) 12 m/s²		. The accelerations m/s ²	on of the body is: (E) 6 m/s²
Q.21 The component velocity \overline{v} at (t = 3s)		ity as a function	n of time are	given by v _x =2t+	2 and v _y =4t-2, then its
	(B) $\overline{v} = 9\hat{i} - 3\hat{j}$	(C) $\overline{v} = 10\hat{i} + 8$	Bj (D) V	$\overline{v} = 8\hat{i} - 10\hat{j}$	(E) $\overline{v} = 8\hat{i}$

D
Q.22 A block is initially sliding with acceleration of -1 m/s ² on a rough horizontal surface. The coefficient of friction between the block and the surface is:						
(A) 0.3	(B) 0.2	(C) Zero	(D) 0.1	(E) 0.4		
Q.23 The displacement of a particle moving from $\vec{r}_1 = 5\hat{i} + 6\hat{j} + 2\hat{k}$ to $\vec{r}_2 = -5\hat{i} + 6\hat{j} + 2\hat{k}$ is:						
(A) 8	(B) $4\vec{j} + 6\vec{k}$	(C) 10î +5 <i>ĵ</i>	(D) 5ĵ	(E) -10î		
Q.24 A ball is kicked	horizontally on the gro	ound towards east. T	he direction of friction	onal force will be towards:		
(A) North	(B)East	(C) South	(D) East north	(E) West		
Q.25 An object slows	s down in such a way l	hat its acceleration is	s constant. This me	ans that:		
(A) there is no force a	acting on it	(B) the force acting				
(C) the force acting c	on it decreases	(D) the force acting	on it is constant	(E) none of these		
Q.26 When a force is	s applied to a body wit	h mass of 10 kg, the	acceleration of the	body is 1m/s ² . If the same		
force is applied to a b	oody with mass of 40 k					
(A) 1 m/s ²	(B) 16 m/s ²	(C) 4 m/s ²	(D) 0.25 m/s ²	(E) 24 m/s ²		
Q.27 If a ball is proj velocity of the ball aft	ected with velocity 30 er one second is:	m/s at angle of 30°	with the horizontal	I. The y-component of the		
(A) 0.2 m/s	(B) 20 m/s	(C) 5.2 m/s	(D) 10 m/s	(E) 12 m/s		
Q.28 Refer to question	on 27, the time taken b	by the ball to return to	the ground is:			
(A) 2.04 s	(B) (C) 3.0			E) 2 s		
Q.29 Refer to questio	n 27, the range of the	projectile is:				
(A) 100 m	(B) 79.53 m	(C) 200 m	(D) 35.35 m	(E) 20 m		
Q.30 Refer to question 27, the maximum height attained by the projectile is:						
(A) 5.1 m	(B) 11.48 m	(C) 20 m	(D) 100 m	(E) 25 m		

Revolutions	دورات	Object	جسم	Experience	واجه	Angle	زاوية
Stationary	ثابت	Oppose	تعيق	Describe	صف	Ball	کرہ
Slide	انزلق	Parachute	مظله	Dropped	سقط	Balanced	متزن
Spring	زنبرك	Particle	جسيم	Exerted	تؤثر	Block	كتله
Stretch	استطال	Perpendicular	عمودي	Flat board	لوح مستوي	Brick	بلوك
Toolbox	صندوق	Projected	قذف	Height	ارتفاع	Cable	سىلك
Thrown	رمي	Radius	نصف القطر	Inclined plane	مستوى مائل	Cart	عربه
Track	مسار دائري	Remain	يبقى	Influence	تأثير	Circular	دائرى
Traveling	يسير	Restoring force	قوة الإرجاع	kicked	ركلت	Clockwise	مع عقارب الساعة
		Referring to	بالرجوع الى	Magnitude	قيمة	Elevator	مصعد

 $D W = Mg = 600 N = DM = \frac{600}{9.9} = 61.2kg$ R = 1 mV = 8 m/r $F_{\perp} = \frac{MU^2}{R} = (61.2)(8)^2 = 3918.4N$ Ē, 2 (\mathbf{E}) (a) = 9.8 m/2 الفوط الحر والمأ مبا - ج ثابة ٢ ٢ - ٥ 3 Constant acceleration NR JF $(\mathbf{\Psi})$ N = MgCorg masing * Mgcos G care 3 (D) المكبة لا للوزم S Mgsinb

(1)
$$M = 600 \text{ by}$$
 $a = 1.2 \text{ m/s}^2$
 $T - \text{mg} = ma$
 $T = \text{mg} + \text{ma}$
 $a \uparrow \int_{-\text{mg}}^{T}$
 $T = \text{mg} + \text{ma}$
 $a \circ 0^2 \text{ set} 600 (1.2) = 6600 \text{ N}$
(1) $F_{\perp} = \frac{m u^2}{R}$
(1) $F_{\perp} = \frac{m u^2}{R}$
(1) $F_{\perp} = 9 \text{ N}$
 $F_{\perp} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{2} = 18 \text{ cos } 330 \text{ c} + 18 \text{ sin } 330 \text{ s}$
 $F_{3} = 0$
 $9 \text{ so } + 15 \text{ so } 1 - 9 \text{ s} + \text{ s} = 0$

$$(1)$$

$$F_{3} = -15 \cdot 59 (1)$$

$$1F_{3} = \sqrt{(15 \cdot 59)^{2} + 0} = 15 \cdot 59 \text{ N}$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(1) (2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

(b)
(c)
$$F = 24 \text{ N}$$
 $m = 8\frac{1}{8}$
 $F = ma \implies a = \frac{F}{m} = \frac{24}{8} = 3 \frac{m}{p^2}$
(c) $N_x = 2t + 2$ $Ny = 4t - 2$
 $\overline{N} = N_x (1 + N_y) = (2t + 2) (1 + (4t - 2))$
 $t = 3.5 \implies \overline{N} = (2(3) + 2) (1 + (4(3) - 2))$
 $\overline{N} = 8(1 + 10)$
(c) $a = -1 \frac{m}{p^2}$
 $a = -M_x g$
 $-1 = -M_x (9.8) \implies M_x = \frac{-1}{-9.8}$
 $M_y = 0.1$ (D)

7) $\vec{r_2} = -5i + 6j + 2k$ (23) $\vec{r}_1 = 5c' + 6\dot{2} + 2k$ Dr= 12 - TI= -101 E) م تعاس الحركة الحركة في المحالية مع المحركة وهواله المحركة في المحاد مع عامه (\mathbf{r}) west i've l'élé (\vec{E}) FE [^]25) E alsolu net force = These = jul がど the force acting on the object is Constant D)

8) $\frac{16}{m_{1}=log}$ $a_{1} = 1m/r^{2}$ F= m1a1= 10(1) = 10 N $\frac{1}{9} \frac{1}{9} \frac{1}$ ~ 0.25m/22 D Vo= 30m/r G=30° Voy= Vosine = 30 sinsi = 15m/s a=-9.8 m/2 t=15 Uy=? Uy= Voy+at = 15 - 9.8(1)= 5.2 m/s @ (29) Vo-30M/2 6-30° t= 2005ing = 2(30) Sin30 = 3.06 r

9 29) Vo= 30m/1 6=30 $R = \frac{v_0^2 \sin 2\theta}{9.8} = \frac{(30)^2 \sin (2x30)}{9.8}$ R= 79.53 m B Vo= 30m/r $(3\vec{o})$ 6- 3° $H = \frac{U_{0}^{2}(\sin \theta)^{2}}{2g} = \frac{(30)^{2}(\sin 30)^{2}}{2\chi 9.8}$ = 11.48 B

King Abdulaziz University Faculty of Science Physics Dept. Physics 110

,

Second Term Exam Student Name:		1/1435 H dent no.:	Time: 90 min. Section:
Q.1 The position of a par (A) 1	ticle is $\vec{r} = 4\hat{i} + 3\hat{j} + \hat{k}$, its (B) 2	component in the z-axis is (C) 3	: (D) 4
	m position rً ₁ = 2î - 5ĵ + 4 (B) 9ĵ - 6ƙ	4 \hat{k} to \vec{r}_2 = 2 \hat{i} + 4 \hat{j} - 2 \hat{k} , then t (C) 9 \hat{j} + 2 \hat{k}	he displacement is: (D) ĵ - 6k̂
Q.3 Referring to question (A) 0.33ĵ - 2k̂	n 2, the average velocity (B) 3ĵ – 1.5k̂	y of the particle in 3 s is: (C) 3ĵ - 2k̂	(D) 1.33î + 3 <u>î</u> - 2k
		ates (meters) of the car's elocity of the particle in vect (C) 10î + 4ĵ	position as a function of time t or notation at t = 2 s is: (D) 2ĵ
	es its velocity from \vec{v} . (B) $3\hat{i} + 6\hat{j} + 3\hat{k}$	$\begin{array}{c} \begin{array}{c} 1 = 6\hat{i} - 10\hat{j} - 5\hat{k} & \text{to} \vec{v}_2 = 18\hat{i} + 1 - 12\hat{k} \\ 1 + 2\hat{k} & - 12\hat{k} \\ \end{array} \\ \begin{array}{c} (C) 2\hat{i} + 4\hat{j} + 2\hat{k} \end{array}$	• $14\hat{j} + 7\hat{k}$ in 2 s, its average (D) $4\hat{i} + 8\hat{j} + 4\hat{k}$
	that its position (in met		n seconds) is $\vec{r} = 6t^2\hat{i} - t^3\hat{j} + 3t\hat{k}$,
Q.7 A stone is thrown ho (A) circular	rizontally from the top o (B) parabolic	of a tall building. It follows a (C) a straight line	path that is: (D) two straight lines
Q.8 The horizontal range (A) 90°	e for the projectile is ma (B) 45°	ximum when its launch ang (C) 30°	le is: (D) 60°
Q.9 A projectile is launch (A) 20 m/s	ed to achieve a maximu (B) 24 m/s	um range of 60 m, the initial (C) 30 m/s	speed of the projectile is: (D) 33 m/s
Q.10 A toy car runs on a the table is: (A) 60°	horizontal table with 6 (B) 45°	m/s. The angle it makes w	ith the horizontal when it leaves (D) 90°
-		a uniform circular motion ar (Ĉ) perpendicular	
	with a constant speed	of 30 m/s. When the truck	follows a curve in the road, its
(A) 225 m	(B) 144 m	(C) 100 m	(D) 81 m
Q.13 The unit of force is (A) 9.8 kg.m/s ²	(B) 1 kg of mass	(C) 1 kg.m/s ²	(D) 1 kg of force
Q.14 A car travels east a (A) greater than zero	t constant velocity. The (B) less than zero	e net force on the car is: (C) 9.8 N	(D) zero

	M=5 (8=0 18 M=18) (18 M=18) (18	- Martin Sta 20 - Martin St	Nellandi Mar Nellandi
Q.15 Two forces to the west. The (A) 5.0 m/s ²	are applied to an object of mass magnitude of the acceleration of (B) 4.0 m/s ²	5 kg. One force is 10 the object is: (C) 2.5 m/s ²	6 N to the north and the other is 12 N (D) 2.0 m/s ²
Q.16 Acceleratio (A) net force	n is always in the direction of the (B) initial velocity	(C) final velocity	(D) displacement
Q.17 A string fro (A) 49 N	m the ceiling suspends a mass of (B) 34.3 N	3.5 kg. The tension (C) 3.5 N	in the string is: (D) zero
Q.18 A 70 kg per (A) 1.67 m/s ²	rson weighs 116.9 N on the moor (B) 19.6 m/s ²	n. The acceleration o (C) 4.9 m/s ²	f gravity on the moon is: (D) 9.8 m/s ²
Q.19 In the figure	e m ₁ =13 kg and m ₂ =2 kg, the graves $m_1 = 13 \text{ kg}$ and $m_2 = 2 \text{ kg}$.	vitational force on m	1 is:
(A) 50 N	(B) 98 N	(C) Zero	(D) 147 N
Q.20 In the figure	$\phi \circ \mathcal{O}_1 \notin \pi \mapsto -\pi \pi$	5: - Fologa 	F=15 N =5 kg 25°
(A) 41.1 N	(B) 39.9 N	(C) 37.8 N	(D) 36.1 N
Q.21 A cable hol (A) 200 N	ds a ball of weight 200 N in static (B) 400 N	equilibrium. The ter (C) 100 N	nsion in the cable is: (D) zero
Q.22 If m₁=9 kg a	and m ₂ =5 kg are connected by a 	. a.	ulley. The acceleration is:
(A) 1.6 m/s ²	(B) 2.8 m/s ²	(C) 3.3 m/s ²	(D) 4.9 m/s ²
	re $m_1=2$ kg and $m_2=4$ kg the t sceleration of the system is:		ing together on frictionless surface m_2
(A) 1.63 m/s ²	(B) 2.94 m/s ²	(C) 3.06 m/s ²	(D) 3.92 m/s ²

Q.24 When a body i (A) Static friction	s moving on a rough surface, (B) Limiting friction	the force of friction is ca (C) Kinetic friction	
	wn in the figure starts to slide ce F= 20 N is applied. The		$ f_{s} = 60 \text{ N} $
(A) 0.17	(B) 0.25	(C) 0.33	(D) 0.42
connected to each	two boxes of mass m ₁ =12 k other by a massless cord. If le magnitude of the frictional	m ₂ descends with	Rough surface
(A) 49.0 N	(B) 68.6 N	(C) 78.4 N	(D) 88.2 N
Q.27 Referring to qu (A) 137.2 N	uestion 26, the normal force e (B) 127.4 N	xerted on m ₁ by the plar (C) 107.8 N	ne is: (D) 117.6 N
	on a rough incline plane. The friction force is:	plane is inclined at an	angle of θ . If the box moves with
(A) mg cosθ	(B) mg sinθ	(C) mg tanθ	(D) mg
	ally sliding with acceleration of block and the surface is: (B) 0.2	F -4 m/s ² on a rough hori (C) 0.1	izontal surface. The coefficient of (D) 0.3
	moves on a circular road of The maximum speed with wh (B) 10.4 m/s		cient of friction between the tires his curve without sliding is: (D) 8.85 m/s
		i≫jév⊜	Ţ
		N S	
<u>19</u> 10-110 - Activitation Children († 1900) 1900 - Activitation († 1900)			

Words Meanings:

Acceleration	تسارع	Differed	مختلف	Make	يصنع	Second	ثانية
Achieve	يحصل على	Direction	إتجاه	Mass	كتله	Shown	موضح
Airplane	طائرة	Displacement	إزاحة	Massless	عديم الكتلة	Slide	ينزلق
Always	دائماً	Downward	اسفل	Maximum	حد أقصى	Speed	سرعة
Angle	زاوية	East	شرق	Meter	متر	Stand	يقف
Applied	مؤثر	Equilibrium	أتزان	Moon	قمر	Start	يبدأ
Automobile	عربة	Equivalent	مكافىء	Motion	حركة	Static	سكوني
Average	متوسط	Exerted	مبذول	Move	يتحرك	Straight	مستقيم
Axis	محور	Figure	رسم بياني	Net	محصلة	String	وتر
Ball	کرہ	Final	نهائي	Normal	رد الفعل	Surface	سطح
Between	بين	Follow	يتبع	North	شمال	Suspend	معلق
Block	قالب	Force	قوة	Notation	صيغه	System	نظام
Body	جسم	Friction	إحتكاك	Object	جسم	Table	طاولة
Box	صندوق	Frictionless	عديم الإحتكاك	کافئ Parabolic	على شكل قطع مد	Tall	طويل
Building	مبنى	Function	دالة	Parallel	موازي	Tension	شد
Cable	کبل	Given	معطى	Particle	جسيم	Through	خلال
Called	يسمى	Gravitational	جاذبي	Path	مسار	Thrown	قذف
Car	سيارة	Gravity	جاذبية	Perpendicular	متعامد	Time	زمن
Ceiling	سقف	Greater	أكبر	Person	شخص	Тор	أعلى
Centripetal	مركزي	Hold	يمسك	Position	موضع	Тоу	لعبة
Change	تغير	Horizontal	افقي	Projectile	مقذوفة	Travel	يرحل
Circular	دائري	Incline	مائل	Pulley	بكرة	Truck	شاحنة
Coefficient	معامل	Initial	ابتدائي	Radius	نصف قطر	Uniform	منتظم
Component	مركبة	Kinetic	حركي	Range	مدی	Unit	وحدة
Connected	متصل	Launch	يطلق	Referring to	بالرجوع إلى	Velocity	سرعة
Constant	ٹابت	Leave	يترك	Road	طريق	Weigh	يزن
Coordinate	أحداثي	Less	أقل	Rolling	تدحرج	Weight	وزن
Cord	حبل	Limiting	محدد	Rough	خشن	West	غرب
Curve	منحنى	Line	خط	Run	يجري	When	عندما
Descend	يهبط	Magnitude	مقدار	Round	يدور	• s.	

Some Used Formula:

$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$	$x - x_0 = (v_0 \cos \theta_0)t.$	$T = \frac{2\pi r}{v}$
	$y - y_0 = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2.$	V
$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$	$v_1 = v_0 \sin \theta_0 - gt,$	$\vec{F}_{net} = m\vec{a}$
$\vec{v}_{svg} = \frac{\Delta \vec{r}}{\Delta t}$	$v_3^2 = (v_0 \sin \theta_0)^2 - 2g(y - y_0).$	W = mg.
$\overline{v} = \frac{d\overline{r}}{dt}.$	$y = (\tan \theta_0)x - \frac{gx^2}{2(v_0 \cos \theta_0)^2}$	$f_{s,\max} = \mu_s F_{N-1}$
$\overline{a}_{avg} = \frac{\overline{v}_2 - \overline{v}_1}{\Delta t} = \frac{\Delta \overline{v}}{\Delta t}$	$R = \frac{v_0^2}{g} \sin 2\theta_0$	$f_k = \mu_k F_N.$
$\overline{a} = \frac{d\overline{v}}{dt}$	$a = \frac{v^2}{r}$	$F = \frac{mv^2}{R}$
	$\frac{d}{dx}x^m = mx^{m-1}$	$a = \sqrt{a_x^2 + a_y^2}$
	الفيزياء يتمنى لكم دوام التوفيق	2119

قسم الفيزياء يتمنى لكم دوام التوفيق ،،،

r' = 4(+3) + 1c2-Component = 1 A $\overline{Y_2} = 2(1 + 4) - 2k$ $\vec{r_1} = 2('-5j) + 4k$ Dr = Y2- VI = 9j - 6k B Dt = 3s3 $v_{ave} = \frac{DV}{DK} = \frac{9j-6k}{2}$ = 3j-2k m/s (C (q) X = st $y = t^2 - 1$ $\vec{r} = \chi(t + \gamma) = \text{St}(t + (t^2 - 1))$ $\vec{v} = \vec{dv} = 5i + 2tj$ $t = 2r \implies \overline{v} = S(i + Ur)j = S(i + \frac{y}{2})$

 $\vec{v_1} = 6(-10) - 5k$ $\vec{v_2} = 19(+14) + 7k$ (S) Dt= 21 $a_{ave} = \frac{\sqrt{2} \cdot \sqrt{1}}{DL} = \frac{(18 - 6)(1 + 18)(1 + 18)(1 + 18)}{2}$ ane = 171 + 24) + 12k aare = Gl'+ nj+6k m/mA $\vec{r} = 6\vec{t}\vec{c} - t^3\vec{j} + 3t\vec{k}$ (6) $7 = \frac{dr}{dt} = 12ti - 3tj + 3t$ $a_{s} = \frac{di}{di} = 12i - 6tj$ \mathbb{C} (7)Parabolic Path B

(1)
(1)
$$N = 1 kg \cdot m/\mu$$
 (C)
(1) Constant velocity \rightarrow net forces o
(1) $Constant velocity \rightarrow net forces o
(1) $M = 5kg$
(1) $M = 5kg$
(1) $F_1 = 16$ (north) \rightarrow F_2
(1) $F_1 = 16$ (north) \rightarrow F_2
(1) $F_1 = 16$ (north) \rightarrow F_2
(1) $F_2 = 12 N$ (west) \rightarrow $F_2 = -12i$
 $F_1 = 16j$
 $V_{F_2} = 12 N$ (west) \rightarrow $F_2 = -12i$
 $F_2 = -12i$
 $F_1 = 16j$
 $V_{F_2} = 12 N$ (west) \rightarrow $F_2 = -12i$
 $F_2 = -12i$$

(17)
$$m = 3.5 kg$$

 $z F = 0$ $w = 7.5 kg$
 $z = mg = 3.5 \times 9.8$
 $z = 34.3 N$ (B) mg
(19) $m = 7.0 kg$ $W = 11.6.9 N$
 $g' = \frac{W}{M} = \frac{116.9}{70} = 1.67 m l_{p} \frac{W}{M}$
(19) $m_1 = 13 kg$
 $m_2 = 2 kg$
 $F_{g_1} = m_1 g + m_2 g$
 $= 13 \times 9.8 + 2 \times 9.8 = 147 N$ (D)
(20) $m = 5 kg$ $F = 15 N$ N
 $N + F \sin 25 = mg (or 30^{\circ})$
 $N = mg (or 30^{\circ} - F \sin 25^{\circ})$
 $M = mg (or 30^{\circ} - F \sin 25^{\circ})$

٢k . UB) Mgsing mgloss الرد كالم FIC = Mgsino B (29) $\alpha = -4 \, m/r^2$ $M_k = ?$ a=-Mrg = - 4= -Mr (9.8) $M_{k} = \frac{4}{0.6} = 0.408$ (A) $M_{S} = 0.5 \quad U_{=} 7$ R=22m 30) $F_{\Gamma} = F_{\perp} \implies M_{\Gamma} m_{g} = m_{\sigma}^{2}$ $0.5 \times 9.8 = \frac{v^2}{10}$ (1= 0.5×9.8×22 = 107.8 (= VI07.8 = 10.38 M/S B

(ing Abdulaziz University aculty of Science hysics Dept. hysics 110

Test #2

Time:90 min.

+415-1+21-34

Section: Student Name: Student no :: **Q.1** The displacement of a particle moving from $\bar{r}_1 = \hat{i} - 2\hat{j} + 3\hat{k}$ to $\bar{r}_2 = 2\hat{i} - 3\hat{j} + 4\hat{k}$ is: ODW-M (B) $\hat{i} + 5\hat{j} + \hat{k}$ (D) $\hat{i} - 5\hat{i} + \hat{k}$ (C) 25 ~Q.2 A particle moves in x-y plane in such a way that its x and y coordinates vary with time according to $x=t^3-5t$ m and $y=2t^2+6$ m. where t is measured in seconds. The velocity of the particle at t=3 s is: (1) (22î + 12î) m/s (A) (7i - 12j) m/s (B) (22i + 18j) m/s (C) 14 m/s (E) (2k)m/s2 Q.3 If a ball is projected with velocity 30 m/s at angle of 30° with the horizontal. The y-component of the velocity of the ball after one second is: (B) 20 m/s (E) 12 m/s (C) 0.2 m/s (D) 5.2 m/s (A) 10 m/s Q.4 Refer to question 3, the time taken by the ball to return to the ground is: (65) 3.06 s (A) 5 s (B) 4 s (C) 2.04 s (D) 10 s , Q.5 Refer to question 3, the range of the projectile is: (D) 35.35 m (A) 100 m (B) 200 m (😋) 79.5 m (E) 20 m Q.6 Refer to guestion 3, the maximum height attained by the projectile is: (🚯) 11.5 m (B) 20 m (C).100 m (D) 5.1 m (E) 25 m Q.7 If you drive west at 15 km/h for one hour, then drive east at 20 km/h for one hour, your net displacement is: (B):5 km east (B) 35 km west (C) 15 km west (D) 35 km east (E) 5 km west \geqslant Q.8 An 800 kg elevator is moving up with an acceleration of 1.2 m/s 2 . The tension in the cable is: (B) 8800 N (B) 12800 N (C) Zero (D) 10400 N (E) 6880 N

Q.9 In the figure m_1 =4 kg and m_2 =2 kg are connected by a light string that passes over a smooth pulley. The tension in the string is:

(D) 13.07 N

(E) zero

(R) 26.13 N (B) 9.8 N (C) 17.6 N $T_{2}-m_{e}g=m_{2}\alpha$ $m_{1}g-T_{1}=m_{1}\alpha$ $m_{1}g-m_{2}g=6\alpha$ $G_{1}=3.27$

متزن

Q.10 If the forces on an object are balanced, the object will

(A) Remain at rest if initially at rest.

(B) Continue moving in a straight line if initially moving in a straight line.

(Both A and B

(D) Neither A nor B

(E) None of these

*			•		G
Q.11 The diagram show horizontal surface. The r object is:	s a 7 kg object ac magnitude of the	ccelerating at 10 frictional force f	m/s^2 on rough $_k$ acting on the	a= fk	10 m/s ^e F=85 N m=7 kg
(A) 20 N (B) 5 N	(C) 10 N	(D) 15 N	(E) 25 N		
Q.12 A body of 600 N	running in a cir	cular path of F	R=1 m at a ve	locity of 8 r	n/s. The centripetal
force is: (A) 64.5 N (B)	5224.5 N	(C) 4096 N	(D) 408 N	J	(Ē) 3918.4 N
Q.13 A 10 kg brick and a (B) The same as the forc (B) 10 times as much as (C) Zero (D) All of these	e on the 1 kg bool	(m. The force of g	gravity on the	TU Kġ drick is:
(E) None of these					Lein
Q.14 A ball is shot from	m the ground into	o the air. At a	height of 12.5 i	m, its velocit	y is observed to be
$\bar{v} = 5.8\hat{i} + 9.7\hat{j}$ in m/s. T (A) 19.3 m/s (B)	he magnitude of tr) 5.8 m/s	ne ball's initial ve (C) 18.41 m/s	elocity is: (D) 9.7 m	n/s	(E) 33.6 m/s
Q.15 A 6 kg mass is hel					
magnitude of \overline{F} is:			,		F.A.
(A) 5 N 🤀) 29.4 N	I (C) 4.9 N	(D) 24.5 N	(E) Zerc		30°
) 12.5 m/s²	(C) 16 m/s ²	(D) 20 m 521 SiF_ 41	ne acceleratio //s²	n of the body is: (B) 4 m/s ² $ur = 0, T$ $N \leftarrow$
Q.17 In the figure m ₁ =4 between m ₂ and the here frictionless. The frictiona	orizontal plane is	0.50. The incli	ined plane is is:	N N N N N N	$\begin{array}{c} T \in \mathbf{m}_2 \\ T \\ $
(A) Zero (🕲 9.8 N	(C) 19.6 N	(D) 2 N	(E) 4.9 N m ^{v51}		nesen meg
Q.18 You drive your	car clockwise	around a cir	cular track of	radius 30	m. you completes
12 revolútions around	the track in 2 m) 9.8 m/s	inutes. Your av (C) 10 m/s	verage speed is (D) 30 m	•	(E) 15.7 m/s
	B) g⋅cm/s	(C) kg.s²/m	(D) kg.r	m/s 7461353	(E) kg · m²/s
Q.20 Mr. Felix of 900 N	opens his parach	ute and experier	nces an air resist	tance force of	500 N. The net force
on the Felix is: (A) 300 N downward (I	B) 500 N downwar	d (🎯 400 N do	wnward (D) 400	N upward	(E) 500 N upward
Q.21 An object is pulled	d northward with a	a force of 20 N a	and southward w	ith a force of	10 N. The magnitude
of the net force on the o	bject is: B) 5 N	(C) 15 N	(🕑) 10		(E) 30 N
Q.22 The force that opp (A) Tension (B) Norm		of an object is ca Gravitational forc	alled e (D) App	lied force	侮) Friction

÷ .

Q.23 Describe the motion of the 5 kg mass in the horizontal frictionless F **4** 60 N plane, as shown in the figure: (A) The object accelerates at 1.5 m/s² (right) 30-20 10=MA 60° (B) The object accelerates at 10 m/s² (right) 20 N (C) The object accelerates at 15 m/s² (right) (D) The object accelerates at 2 m/s² (right) (E) The object does not accelerate Vw Q.24 At the highest point, the magnitude of the acceleration of a projectile is X 16 9.8 m/s² (A) -9.8 m/s² Zero V9 (C) 4.9 m/s² (D) 19.6 m/s² Q.25 A toolbox, of mass M, is resting on a flat board. One end of the board is lifted up until the toolbox just to slide. The angle θ that the board makes with horizontal for this to occur depends on the (A) mass, M (B) gravity is not acting on it (C) normal force (D) coefficient of static friction (E) none of these Q.26 A block is initially sliding with acceleration of -1.5 m/s² on a rough horizontal surface. The coefficient of friction between the block and the surface is: 0.15 (A) 0.1 (B) 0.2 (D) 0.4 (C) 0.3 Q.27 An object moves left to right (right is positive) with speed decreasing at a constant rate, (A) its acceleration is negative. (B) the net force on it is decreasing (C) the net force on it is increasing (D) its acceleration is positive. (E) none of these Q.28 A ball was projected upward at angle θ₀ with the horizontal at an initial speed 40 m/s. The ball reached the highest point after three seconds, the angle θ_0^{t} is: (A) 5.7° (B) 37.3° (Đ) 47.3° (C) 60° (E) 36° Q.29 Two forces act on a particle of mass 2 kg. $\overline{F}_1(40\hat{i}+30\hat{j})$ N and $\overline{F}_2(20\hat{i}+50\hat{j})$ N. The magnitude of acceleration is: (C) 200 m/s² (A) 10 m/s² (B) Zero (D) 100 m/s² (6) 50 m/s² Q.30 A particle of mass m=1.5 kg is moving with velocity, $v(t) = [(5t^2)\hat{i} - (2t)\hat{j}] m/s$ where t is time. The net force on the particle in SI units (as unit vector notation) is: (A) 20tî - 4î (B) 14ti 🔞) 15 ît - 3 ĵ (E) 16i (C) 25 $zf = \alpha xm$ 15ti - 3j

С

V2=2(-3)+4E $\overline{Y_1} = c' - 2j + 3k$ $\overrightarrow{Dr} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ += f-5t y= 2f+6 $\vec{\gamma} = \chi (+3) = (t^3 - 5t) (+ (2t^2 + 6))$ $\vec{v} = \vec{dr} = (3t^2 - 5)t' + 4tj$ $t = 3s = 3\sqrt{3} = (3(3)^2 - 5)(1 + 4(3))$ $\sqrt{1} = 21i + hj$ (D)

(m) 10=30m/j $\Theta = 3^{\circ}$ Ny = ? t=15 a = -9.8 M/12 Noy = Nosine = 305in30 = 15 m/s √y = √oy + at = 15 - 9.8(1) = 5.2 M/p (D) $t = \frac{2 \sqrt{.5in\theta}}{g} = \frac{2(30) \sin 30}{9.8}$ 4) - 3.06 \$ E $R = \frac{\sqrt{2}^{2} \sin 2\theta}{g} = \frac{(30)^{2} \sin(2\chi_{30})}{9.8}$ S = 79.53 m (c) $H = \frac{\sqrt{3} (\sin \theta)^2}{2g} = \frac{(30)^2 (\sin 30)^2}{2000} = 11.5 \text{ m}$ 6

.

(1)
(2)
(3)
$$2J_{2}U_{1}I_{2}^{2} - W_{2}X_{2}^{2} = 26J_{2}U_{2}^{2}$$

 $T - M_{2}g + M_{2}A$
 $T = M_{2}g + M_{2}A$
 $T = 2 \times 9.8 + 2 \times 3.27 = 26.14 N$ (A)
(10)
 $NIC = 3T TOUC = 20 TOUC = NJO - 51$
(10)
 $M = 7 E_{3}$ $F_{4} = \sqrt{2} I = \sqrt{2} I$
(10)
 $M = 7 E_{3}$ $F_{4} = \sqrt{2} I = \sqrt{2} I$
(10)
 $M = 7 E_{3}$ $F_{4} = \sqrt{2} I = \sqrt{2} I$
(10)
 $F_{5} = 85 - 70 = 15 N$ (D)
(12) $W = Mg = 600 N \implies M = \frac{W}{g} = \frac{600}{9.8} = 6I.22g$
 $R = IM$ $N = 8W/N$
 $F_{4} = M + \frac{2}{R} = 6I.22 + \frac{(5)^{2}}{1} = 39184 N$

(3)
$$W = M_{1} \cdot g = 10g$$

 $W_{brick} = M_{bold} \cdot g = 1g$
 $W_{book} = M_{bold} \cdot g = 1g$
 $W = 10(W_{book})$ (B)
 $W' = 5.8i + 9.7j m/r$
 $V = 9.7m/r$
 $V = 18.4 m/r$
 $V = 18.4 m/r$
 $V = 19.3 m/r$ (B)

(1)
$$N = kg. m/r^{2}$$

(1) $N = kg. m/r^{2}$
 $2 = 3 av - 3av = 4av N 1$
 $2F = 3 av - 3av = 4av N 1$
 $4 = 2av N 1$
 $2F = 3av - 3av = 4av N 1$
 $4 = 2av N 1$
 $2F = 7av - 3av = 4av N 1$
 $4 = 2av N 1$
 $7av - 2av - 3av - 4av - 4av$

(24)
$$|a| = 9.8 \text{ m/s}^2 = \frac{1}{5} \frac$$

(3)
(28)
$$V_{0} = V_{0} mV_{1}$$

 $3s = 299 mU l m'$
 $3s = 299 mU l m'$
 $J_{1} = 2X3 = 6s$
 $t = \frac{2V_{0} sine}{9} \rightarrow 6 = \frac{2(40) sine}{9.8}$
 $sine = \frac{6X9.8}{2X40} \rightarrow 0.735$
 $\Theta = Sin^{-1}(0.735) = 47.3^{\circ}$ (D)
(3) $M = 2kg$
 $F_{1} = (40i + 30j)N$, $F_{2} = 20i + 50j$
 $\Sigma F = m\overline{a}$
 $F_{1} + F_{2} = ma \rightarrow (V_{0}i + 30j) + (20i + 50j) = 7\overline{a}$
 $60i + 80j = 7\overline{a} \xrightarrow{+2} \overline{a} = (30i + 40j) m/n^{2}$
 $(\overline{a}) = \sqrt{(30)^{2} + (40)^{2}} = 50 m/n^{2}$ (E)

m=1.5 kg $\vec{v} = (sti - 2tj) m/s$ $\vec{a} = \frac{d\vec{v}}{dt} = 10ti-2j$ $2\vec{F} = m\vec{a}$ 2F=1.5 (loti-2j)

$$= 15t(-3)$$

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

30
King Abdulaziz University Faculty of Science Physics Dept. Physics 110

660133 Ph 110

Test#2		1/6/1433 H		Time: 90 min.			
Student Name:		Section:					
Q.1 The displacement of a particle moving from $\vec{r}_1 = 5\hat{i} + 6\hat{j} + 2\hat{k}$ to $\vec{r}_2 = -5\hat{i} + 6\hat{j} + 2\hat{k}$ is:							
(A) -10i	(B) 4j +6k	(C) 10î +5 <i>j</i>	(D) 5j	(E) 8			
Q.2 The components of the a car's velocity as a function of time are given by $v_x=2t+2$ and $v_y=4t-2$, then its velocity \overline{v} at (t = 3s) is :							
(A)	(B) v = 9i - 3j	(C) ⊽ = 8î + 10ĵ	(D)	(E) v = 8i			
Q.3 A man of mass (A) 122 N	60 kg. His weight is: (B) 6.12 N	(C) zero	(D) 9.8 N	(E) 588 N			
Q.4 1Newton is equi (A) 9.8 kg.m/s ²	ivalent to: (B) 1 kg. m/s²	(C) 1 kg of mass	(D) 1 kg of force	(E) none of these			
Q.5 A body moves with constant speed in a circular orbit. Its acceleration is:(A) equal zero(D) in the direction of the velocity of the body(B) toward the center(E) opposite to the velocity of the body.(C) outward, away from the center							
Q.6 In the projectile (A) Zero	es motion the accelera (B) 9.8 m/s ²	tion in the horizontal d (C) 19.6 m/s²	irection is: (D) 4.9 m/s ²	(E) 32 m/s ²			
Q.7 A ball is shot fro	om the top of a buildir	ng of height 12.5 m, w	ith initial velocity \vec{v}_{o} =	5.8 î +9.7 ĵ, in meters			
per second (\hat{i} horizo (A) 5 m/s	ntal, ĵ upward). What (B) 6 m/s	is the magnitude of the (C) 19.3 m/s	e ball's velocity just be (D) 10 m/s	efore it hits the ground? (E) Zero			
initial velocity is:	-	1		m the starting point, the			
(A) 34.3 m/s	(B) 10 m/s	(C) 196 m/s	(D) 24.25 m/s	(Ē) 22.14 m/s			
The magnitude of the (Å) 4 m/s ²	e acceleration of the c (B) 2 m/s ²	bject is: (C) 3 m/s²	(D) Zero	her is 56 N to the west. (E) 5 m/s ²			
Q.10 Three forces act on a particle that moves at a constant speed $v = 4\hat{i} - 14\hat{j}$ m/s. If $\bar{F}_1 = 5\hat{i} - 4\hat{j}N$ and							
Ē ₂ = -5î - 4ĵ _{N,} Ē ₃ is: (A) 10î	(B) 8ĵ	(C) 10î +8ĵ	(D) -10j	(E) 8î			

·				Α				
Q.11 A plastic box of mass 0.7 kg slides down an inclined plane with an angle 40° with the horizontal. If $\mu_k=0.2$ the acceleration of the box in SI units is:								
$\mu_k=0.2$ the acceleration (A) 1.5 up	(B) 4.8 down	(C) 0.5 up	(D) 1.5 down	(E) 3.5 up				
Q.12 A block is initially at a speed of 9.8 m/s on a rough horizontal surface. If it come to rest in a distance of								
49 m, the coefficien (A) 1	t of friction between the (B) 0.1	(C) 2.3	(D) 0.3	(E) 0.5				
Q.13 A particle mo	ves at constant speed i	n a horizontal circ	le of radius 5 m, making	a complete circle in 4 s.				
The acceleration is: (A) 15 m/s ²	(B)10 m/s ²	(C) 8 m/s ²	(D) 12.34 m/s ²	(E) Zero				
Q.14 The x-and y-	-coordinates of a partic	le in motion, as t	unctions of time t, are g	given by: x=5t ² -3t+6 and				
y=3t ³ -3t ² -12t-3. The (Á) (-3,-12) m/s	x- and y-components of the second se second second sec	of the velocity at t= (C) (18,-6) m/s	=0 is: (D) (-6,-3) m/s	(E) (-6,10) m/s				
-	or the centripetal force		.					
(A) $a = \frac{v^2}{R}$	(B) F=ma	(C) F=mg	(D) $F = m \frac{v^2}{R}$	(E) none of these				
Q.16 As shown in the figure a box on frictionless inclined plane. The m=0.5.kg								
then the magnitude	of F is:							
	9.8 N (C) 4.9 N	بيويعهم والأشر بار	(E) Zero	Ē				
Q.17 In the figure, (A) 1 m/s ² (B) 4	if F=4 N then the value m/s^2 (C) 9.8 m/s ²	of box acceleration (D) 6 m/s ²	E) 2.03 m/s ²	30°				
	if F=4 N then the norma (B) 2.24 N	al force on the bo (C) [.] 12.24 N	k is: (D) 6.24 N	(E) Zero				
		° to the horizont	al with a speed of 14.0	m/s. The time it takes to				
reach the horizonta (A) 0.92 s	Il range is: (B) 0.71 s	(C) 0.15 s	(D) 1.43 s	(E) 0.38 s				
Q.20 The formula t (A) F=2f	for the friction force is: (B) F=ma	(C) w=mg	(D) F=N	(È) f=µ N				
		the horizontal wi	th a speed of 14.0 m/s.	The maximum height that				
the ball can reach i (A) 9.87 m	s: (B) 4.13 m	(C) 15.33 m	(D) 12.68 m	(E) 2.5 m				
Q.22 In the figure, the block is about to slide when a force F is applied. If the coefficient of static friction μ_s =0.45 then the applied force is:								
(A) 6 N	(B) 30 N	(C) 26.46 N	(D) 13.23 N	(E) Zero				

A Q.23 A block slides down on a frictionless inclined plane at an angle of 20°. The acceleration of the block is: (E) 1 m/s^2 (D) 3.35 m/s² (B) 4.9 m/s² (C) Zerò (A) 9.8 m/s² Q.24 The velocity and acceleration of a body in a uniform circular motion are: (E) none of these (B) differed by 135° (C) perpendicular (D) parallel (A) differed by 45° Q.25 Refer to question 22, the normal force on the box is: (E) 26.4 N (D) 58.8 N (B) 84.87 N (C) Zero (A) 49 N Q.26 A cable holds a ball of mass 20 kg in static equilibrium. The tension in the cord is: (E) 196 N (D) zero (B) 9.8 N (C) 220 N A) 500 N Q.27 A 1500 kg car is moving with a constant speed. The net force on the box is: (E) 153 N (D) 9.8 N (C) 14700 N (B) 1500 N (A) Zero Q.28 A forward horizontal force of 12 N is used to pull a 240 N crate at constant velocity across a horizontal floor. The coefficient of friction is: (E) 0.05 (D) 0.3 (C) 2.3 (B) 0.1 (A) 1 Q.29 A block of mass m is pulled at constant velocity along a rough horizontal floor by an applied force F as shown. The magnitude of the frictional force is: F (D) mg cosθ (E) zero (C) F tanθ (A) F cosθ (B) F sinθ θ m Q.30 A box is sliding down an incline that is 35° above the horizontal. If the coefficient of kinetic friction is 0.40, the acceleration of the crate is: (E) 1.3 m/s² (D) 8.8 m/s² (C) 5.8 m/s^2 (B) 2.4 m/s^2 (A) Zero Good Luck

Radius	نصف القطر	Object	جسيم	down	الى اسىفل	Angle	زاوية
Refer to question	بالرجوع الى السؤال السابق	Period	الزمن الدوري	Elevator	مصعد	Automobile	سيارة
Upwards	للاعلى	Prevents the box from slipping down			يمنع الصندوق من الانزلاق الى اسقل	Block	جسم
Vertically	عموديا	Rough surface	سطح خشن	kick	- ضربت	Brake	فرامل
		Speed	سرعة	Hang	معلق	Component	مركبة
		String	خيط	Initial	الابتدانية	Cord	حبل
		Tension	الشد	Magnitude	قيمة	Carte	صندوق
		Thrown	قذف	Massless	عديم الكتلة	Circular path	مسار دائري
		Traveling	تسير	Moving	تتحرك	Cubic	مكعب

1) VI= S(+ 0) +2k Y2 = -51 + 6j+2k $Dr = \hat{r}_2 - \hat{r}_1 = -10i$ A) 1y=4t-2 Ny = 2++2 Ì V = Vx i + 4j = (2++2) i+ (4+-1) j t=3,5 =]= (6+1)(+ (12-2)j $\int \vec{v} = \vec{v} + \vec{v}$ \bigcirc M = 60 kg = W = mg = 60×9.8 = 588 N 3 (4) 1N=1kg. m/52 (B) \overline{S} (B)

3 4.92 -9.77 -12.5=0 いない XS 1 t= 2.87 s Ny = N.y+at = 9.7 + (-9.8) (1.07) = -19.4 m/s V= Vy2+vg2 = 19.3 m/s C E Rmay : Som No= ? $R_{max} = \frac{1}{3} = 50 = \frac{1}{9.8}$ 2 = 50×9.8 = 490 4/11 Vo: V 490 = 22.14 M/r (E) $F_1 = 33j$ (5/2) $F_2 = -51i$ F_1 (9) m = 16.25 kg $\Sigma \hat{F} = M \hat{a} \implies -56\hat{i} + 33\hat{j} = 16.25 \hat{a}$ $\vec{a} = -3.45(+2.03) = 1\hat{a}/(3.45)^{2} + (2.03)^{2} = 4M/r^{2}$

B) a 23 6 = 20 Q = gsine = g.g sinzo = 3.35 m/s1 D Via 24) N=mg=6×9.8 = 58.8N () F 25) m = 20kg NV, SIT = Mg = 20×9.8 = 196 N @ Constant speed => EF=0 (A) (1J) F=12N Mg=240N FreetoF (29) N= mg = 240 N السرعة تكتة FR= F= INN $M_{\rm E} = \frac{F_{\rm E}}{M} = \frac{12}{740} = 0.05$ G

9 N FF ぼれるし J Fains F A FE= FCOSE sliding MR=0.4 down 0 = 35° (30) الحبم لأنو تعليه مو: مارمِن ٢ ولا ٦ Q=g si'ne - Meg Core = 9.8 sin35 - 0.4 × 9.8 Gr35 B a= 2.41 m/s2

$$(3)$$

$$N = kg \cdot m/r^{2}$$

$$J = N \cdot m$$

$$J = kg \cdot m^{2}/r^{2}$$

$$Watt = kg \cdot m^{2}/r^{3}$$

$$Watt = kg \cdot m^{2}/r^{3}$$

$$K = kinetic - energy$$

$$K = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2})$$

$$K = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2})$$

$$K = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2})$$

$$K = \frac{1}{2}k(x_{F}^{2} - x_{i}^{2})$$

$$W = \frac{1}{2}k(x_{F}^{2} - x_{i}^{2})$$

$$Work \ done \ on \ the spring$$

$$W = \frac{1}{2}k(x_{F}^{2} - x_{i}^{2})$$

$$Work \ done \ on \ the spring$$

$$\begin{aligned} \hline Ch & g \\ \hline D \\ \hline D \\ \hline D \\ \hline F \\ \hline F$$

\ch 8 |

شفن القة الكارجيم م أو شفن موة الاصطاليم = f Wre = - Frd 1 i J~ V-ees are= à, es, 7 es er lon 6 = W | 1 - 1 - 1 - 1 - 1 | $Dk = kf - ki = \frac{1}{2} m(v_f^2 - v_i^2)$ $L_{\mu} = \frac{1}{2} m(v_f^2 - v_i^2)$ لو نا ۷ = ۲۷ ادا کم میرد برد، کار ۵ = ۲۵ ک Dug=mg(hf-hi)) ∓even he (DUg = mgsine (df - di)) store (de ر 6 معلومة و م اير محلومة إذا كرك الحبس الع مستوى أفقي DUJ= 0 $\int DU_{r} = \frac{1}{2} k (\chi_{f} - \chi_{i^{2}})$ إذا لم يوجد بالمانة تزيرك (٥ = ١٠)

Ch 83 ولافلاح () اذا كام البعد مم الأرص أم معلوم خع النقلة الفل h since you and ellistic living h since miléil mains lise $P \int \frac{d}{dt} \frac{d}{d$ \bigcirc ما لكونه بعيداً سرالزنبر ال اكسم X=O 7 Xi=0 600000

Chg

اختبارات نهائيت

bdulaziz University aculty of Science hysics Dept. hysics 110

γ,

Final Exam. Student-Name		Student no		Time:120 min. Section
				and the second
		then (2Ā + Ċ)×(Ē) is:	(D) 40k	(E) -60k
(A) -22	(B) î+2ĵ	(C) 57		(-)
Q.2 If $\vec{A} = 2\hat{i} + 4\hat{j} + 4\hat{k}$	$,\vec{B} = 5\hat{i} - 5\hat{j} + 5\hat{k}$ then	•B is:		
(A) -22 k	(B) 10	(C) î + 2ĵ - 5k	(D) -20k̂	(E) 20
(A) 15 m/s²	(B) zero	s a constant velocity of (C) 120 km/h ²	(D) 40 m/s	(L)2011/3
Q.4 A stone is thrown (A) its weight (B) less	n vertically into the air. than its weight (C)mo	At the very top of its to bre than its weight	rajectory the net force (D) zero	on it is: (E) half its weight
Q.5 A scalar quantity	is:	direction		
(A) a quantity that has	s both magnitude and s magnitude only and	no direction		
(C) a quantity that has	s no magnitude and oi	nly direction		
(D) a quantity that has	s neither magnitude of	fdirection	(E) none of th	
Q.6 A stone is throw	n vertically into the air	. At the top of its path,	its acceleration (m/s ²) is:
	ess than 9.8 (C) gr	reater than 9,8	(D) zero	(E) none of these
Q.7 A car takes 10 s	to accelerate from 0 to	o 70 m/s. assuming co	nstant acceleration, th	nen acceleration is:
(A) 7 m/s ²	(B) 9.8 m/s ²	(C) 2.8 m/s ²	(D) zero	(E) 5 m/s ²
Q.8 According to New	wton, force is equal to	acceleration multiplied	d by	
(A) mass	(B) speed	(C) vector plane	(D) time	(E) velocity
	tion on a sliding object	ct is 20 N. The magnit	ude of the applied for	rce need to maintain a
constant velocity is: (A) more than 10 N	(B) less than 10 N	(C) 10 N	(D) 20 N	(E) zero
		ed upon by the gravitat	tional and the	force.
(A) acceleration	(B) friction	(C) inertia	(D) normal	(E) centrifugal
Q.11 The unit for wo				
(A) watts	(B) kg	(C) newton	(D) second	((E) joule
Q.12 In the formula	$w = \vec{F} \cdot \vec{d}$, then \vec{d} states	nd for?		
(A) time	(B) displacement	(C) work	(D) force	(E) mass
Q.13 Compared to the (A) more	he <u>mass</u> of a certain c (B) less	bject on the Earth, the (C) the same	e mass of the same ob (D) zero	oject on the moon is: (E) half
Q.14 Force is defin (A) mass/volume (E) acceleration/area	(B) (mass) × (veloci	ity) (C) mass/ac	celeration (D)	(mass) × (acceleration

Contraction of the local division of the loc

Q.15 An object that has kinetic energy must be: (D) at elevated position (E) none of these (C) at static equilibrium (B) at rest (A) moving Q.16 Your weight is: (B) the gravitational attraction between you and the Earth (A) your mass (E) none of these (C) your work (D) all of these Q.17 A particle moves 8 m in the positive y-direction while being acted upon by a constant force $\hat{F} = (4\hat{i} + 2\hat{j} - 4\hat{k})$ N. The work done on the particle by this force is: (E) none of these (D) -20 J (C) 16 J (B) 10 J (A) 20 J **Q.18** At time t = 0 a 2 kg particle has a velocity of (3î - 2ĵ) m/s . At t = 3s its velocity is (4î +3ĵ) m/s . During this time the work done on it was: (E) (4î +36î) J (D) 12 J (C) 14 J (A) 6 J (B) 24 J Q.19 An 800 kg elevator is moving up with an acceleration of 1.4 m/s². The tension in the cable is: (E) 6880 N (D) 10400 N (C) Zero (A) 6720 N (B) 8960 N Q.20 A boy kicks a ball at an angle 42° to the horizontal with speed 12.5 m/s. The time it takes to reach its range is: (E) 0.79 s (D) 1.71 s (C) 1.57 s (B) 1.96 s (A) 0.92 s Q.21 A force of 20 N is applied to move a stationary body of mass 10 kg. The speed of the body after 6 s is: (E) 8 m/s (D) 18 m/s (B) 12 m/s (C) 16 m/s (A) 1.25 m/s Q.22 In figure (1) $m_1=2$ kg and $m_2=1$ kg. If m_2 descend with constant Fig. (1) speed, the tension in the cord is _m1 (E) 9.8 N (D) 7.35 N (C) 4.9 N (A) Zero (B) 19.6 N Motion **Q.23** In figure (1), the normal force between m_1 and the plane is: (D) 980 N (E) zero (C) 9.8 N (B) 25.46 N (A) 19.6 N **Q.24** In the figure (1), the frictional force exerted on m_1 by the plane is: (E) zero (D) 19.6 N (C) 4 N (B) 9.8 N (A) 7.35 N Q.25 If the restoring force is 15 N, Then the work done in stretching a spring a distance of 0.5 m is: (E) -3.75 J (D) -12 J (C) -9 J (B) -6 J (A) -3 J Q.26 The maximum range of a projected ball is 92 m, the initial speed of the ball was: : (D) 28.17 m/s (E) 9 m/s (B) 253.57 m/s (C) 88.2 m/s (A) 30 m/s Q.27 If the work done on a particle is 32 J in 4 s. The power is: (E) 12 W (D) 6 W (C) 1 W (A) 36 W (́(B) 8 W 🔵 Q.28 The potential energy of a falling object of weight w from height h is: $(D) mvt^2$ (E) mv (C) ma (B) Fd cos θ (A) mgh Q.29 Which of the following quantities is not a scalar quantity? (E) Force (C) Mass (D) Time (B) Speed (A) Temperature

В

Q.30 The result		•						
(A) Zero	(B)		(C) ĵ	(D) î		(E) 1	Million and an and a	
Q.31 Which on (A) watts	e of the followin (B) joule		a unit of kinetic (C) newton	energy? (D) se	econd	(E) kg		
Q.32 In the fig Then the box ac	Q.32 In the figure (2), three forces pull on a box. Then the box acceleration is:							
(A) 5.8 m/s ² ((63 m/s² (D) 1.8		Fig. (2		**************************************	
Q.33 A ball is t before it strikes	thrown down ve the ground is:	ertically with a	an initial speed	of v₀ from a h	eight of h. The	e speed of the b	all just	
(A) v=ht	(B) v =	$\sqrt{v_0^2 + 2gh}$			-v₀sin θ	(E) v=v₀		
	(2) 10		average speed is (C) 350 km/h	2		(E) 300 km/h		
Q.35 A particle	moving accord	ding to coordi	inates x = (t + 4)	m ,y = (2t + 4)	m .the positio	on vector at t=2 s	s is:	
(A) (10î+10ĵ)		m	(C) (6î + 8ĵ) m	ר (D) 4	m	(E) 3 m		
Q.36 A ball of (A) 3 m/s	mass 5 kg has (B) 2 m	kinetic energ n/s	y of 250 J. Its ve (C) 5.72 m/s	elocity is: (D) 1	10 m/s	(E) 7 m/s		
Q.37 A small	ball tied to a sti	ring swing be	ginning from res	st at point A.				
	aximum kinetic (B) B	; energy at po (C) C	(D) D	(E) E	Strin	g	h₁	
Q.38 In figure	(3), the ball ha	s maximum p	potential energy	at point:	Ball			
(A) A	(B) B	(C) C	(D) D	(E) E	A	B E	E ••••	
Q.39 In figure (A) 3 m/s	(3), if h=1.5 m, (B) 1 m/s	the speed at (C) 5.42 m/s	t point C is: (D) zero	(E) 4.43 m/s	s Fig. (3)	C		
Q.40 In figure (A) 3 m	(3), if the spee (B) 0.6	d at point C i 1 m	s 2 m/s and the (C) 5 m	speed at poin (D) z	t E is 1 m/s, th zero	nen the height h ₁ (E) 0.15 m	is:	
				. 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			4 	
						•		
						Goo	od Luck	
	r							

\$

2 Constant velocity => a=0 B 3) داعة مي المعوط إل Ý, a = -9 SE= ma= -mg je l الكيمة الولكية لما مقدر فقل وليرم إبًا. (B) (6) a = - 2 = - 9.8 m/12 Vozo チ U= Zom/n t=101 a = ?U=Vo+at $\alpha = 7 M h^2$ 70 = 0 + a(10)A f=ma [mass] > acceleration

(5)
(6)
$$m \le 2kg$$

 $k = 0$ $\overline{v}_{i} = 3(i-2j)$
 $(\overline{v}_{i}) = \sqrt{9+y} = \sqrt{13}$
 $k = 35$ $\overline{v}_{f} = 4i+3j$
 $1\overline{v}_{f}) = \sqrt{16+9} = \sqrt{25} = 5m/s$
 $W = Dk = \frac{1}{2}m(|\overline{v}_{f}|^{2} - |\overline{v}_{i}|^{2})$
 $= \frac{1}{2}(2)((5)^{2} - (\overline{13})^{2})$
 $= 125$ D
(1) $6 = 42^{\circ}$ $v_{0} = 125 m/s$
 $k = \frac{2v_{0} \sin 6}{9} = \frac{2(12.5) \sin 42^{\circ}}{9.8}$
 $= 1.71 s$ D

7) Fr ett 24 اسمد كابشتي كالوم يو آلاد FR = T = 9.8 N (B) F= 15N $(1\hat{3})$ X1:=0 Xf=o.Sm $k = \frac{F}{x} = \frac{15}{0.5} = 30 \text{ N/m}$ $W = -\frac{1}{2}k(\chi_{f}^{2} - \chi_{i}^{2})$ $=-\frac{1}{2}(30)(0.5^{2}-0)=-3.75J(E)$ (26) Rmax = 92m U0-?? $R_{max} = \frac{v_0^2}{4} \longrightarrow 92 = \frac{v_0^2}{m_a}$ Vos 30 m/s (A) (27) W=32 J t=4,5 $P = \frac{W}{T} = \frac{32}{J} = 6W$ (B)

y=-h $\alpha = -g$ - Vo U-7 (12 : Vi + 299 $(y^{2} \leq (-9)^{2} + 2(-9)(-h))$ $U^{2} = U^{2} + 2gh$ spece = 101 = 102+29h (B) 34 X= 175 km t= 30min $=\frac{30}{60}=0.5h$ V= X = 175 = 350 km/h C (39 X=(t+x)m, y=(2t+x)m $r = x_i + y_j = (t + y) (' + (2t + y))$ $t = 25 \implies r = (2+Y) l' + (Y + Y) j$ r' = (6(' + gj)m)(C)

ĺ0, 36) M=Skg C=250J トラショレン 250= = (5) UZ = U= lom/s (D) الاطاقة مركة عند أمَن عَقَبْ م ت CA der e a's an i's air A (39 A 3g W-DK+DUg+BUr Vi=0 hi=h=1.5m B hrso $\frac{1}{2}m((v_{f}^{2}-v_{i}^{2})+m_{g}(h_{f}-h_{i})=0$ f= ?? $\frac{1}{7}(u_{1}^{2}-0)+9.8(0-1.5)=0$ Uf: 5.42 m/s ()

11 f = 1m/s $f = h_1$ Ċ U1'= 2m/5 W=DK+DUg+DUr $\frac{1}{2}\ln(v_{f}^{2}-v_{i}^{2})+n/g(h_{f}-h_{i})=0$ $\frac{1}{2}(1)^{2}-n^{2}(1) + 9.8(h1-0)=0$ h1= 0.15m (\overline{E})
King Abdulaziz University Faculty of Science Physics Dept. Physics 110

Final		Time: 120 min.		
Student Name:		Student no.:		Section:
Q.1 How many met (A) 1.55 m	ters are in 15.5 kilom (B) <u>15500 m</u>	eters? (C) 1550 m	(D) 1500 m	(E) 155 m
Q.2 In the Internation (A) <u>Newton</u>	onal System of Units, (B) kilogram	the unit of weight is: (C) pound	(D) gram	(E) slug
Q.3 The result of \hat{j} .	ĵ is:			
(A) zero	(B) 3	(C) -1.0	(D) <u>1.0</u>	(E) √3
				direction, have a resultant of
(A) 18	10 units along the po (B) 4i	ositive y-axis, then vect (C) -4i	for C is: (D) $4\hat{j}$	(E)4k̂
Q.5 Referring to qu (A) 90°	estion 4, the angle be (B) 126.9°	etween Ā and the po (C) 180°	ositive y-axis is: (0) (D) 53.1°	(E) 36.9°
Q.6 Referring to qu	estion 4, a vector per	pendicular to vector Â	is:	
(A) 8ĵ	(B) 6î - 8ĵ	(C) 8î +6ĵ	(D) <u>8</u> k	(E) 8î - 6ĵ
Q.7 Given the two	vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$,	$\vec{B} = 4\hat{i} + 7\hat{j} - 4\hat{k}$ the vec	ctor $\vec{B} \cdot \vec{A}$ is:	
(A) Zero	(B) 64î	(C) <u>Z</u>	(D) 64j	(E)4k
Q.8 The result of \hat{j} ×	; î is:			
(A) zero	(B) ĵ	(C) Î	(D) - ĵ	(E) <u>- </u>
Q.9 A particle move (A) -6 m/s	es with a constant acc (B) 20 m/s	celeration of 6 m/s². St (C) 22.4 m/s	arts from rest, its ve (D) 18 m/s	elocity after 3 s is: (E) 36 m/s
		eration is brought to st	op from a speed of	10 m/s in a distance of 20 m.
The acceleration is: (A) 20 m/s ²	(B) 10 m/s ²	(C) <u>-2.5 m/s²</u>	(D) 15 m/s ²	(E) 5 m/s²
Q.11 A ball is proje (A) 793.8 m	cted with an initial sp (B) 253.57 m	eed of 20 m/s. The ma (C) 88.2 m	(D) <u>40.82 m</u>	ball is: (E) 400 m
Q.12 Referring to q (A) 20 m	uestion 11, the maxir (B) 40 m	num height of the bal i	s: (D) 200 m	(E) 100 m
Q.13 Which of the f (A) Speed	ollowing is a vector q (B) <u>Velocity</u>	uantity? Scalaर् (C) Time	Scalet (D) work	(E) Distance

Q.14 A stone is the	•••			e to a maximum height of:
(A) 9.5 m	(B) 10 m	(<u>(C) 5.1 m</u>)	(D) 95 m	(E) 20 m
Q.15 If a particle i (A) 10 m/s ²	is moving horizontally (B) 9.8 m/s²	with constant velocity (C) 4.9 m/s ²	(v=10 m/s), then its (D) Zero	acceleration is: (E) 1 m/s ²
Q.16 A particle is height is:	thrown vertically upw	vard with initial velocity	of 40 m/s. The time	it takes to reach its maximum
(A) 10 s	(B) 2.1 s	(C) 1.3 s	(D) 8.1 s	(E) <u>4.1 s</u>
				12t-4.9t ² , where y is in
(A) 8 m/s	(B) 10 m/s	speed v₀ at t=0 is: _\⁄∖ _(C) 2 m/s	(D) <u>12 m/s</u>	(E) 18 m/s
		nitude of acceleration		
(A) 19.6 m/s²	(B) Zero	(C) 8 m/s ²	(D) 4.9 m/s ²	(E) <u>9.8 m/s²</u>
Q.19 In the figure	if the incline surface	is frictionless, the acce	leration of the block	is: N=9-46
(A) <u>2.54 m/s²</u> (B)	9.5 m/s ² (C) 6 m/s		(E) Zero	15°
Q.20 Referring to (A) 15 m/s ²	question 19, if the inc (B) 0.5 m/s ²	line surface is rough w (C) Zero	ith μ_{k} =0.15, the acce (D) <u>1.12 m/s²</u>	eleration of the block is: (E) 0.2 m/s ²
-		stant speed of 24.7 m/s		
(A) 245.1 N	(B) 190.2 N	(C) <u>Zero</u>	(D) 31.5 N	(E) 70.7 N
Q.22 A spring has equilibrium positio	a force constant of 3	00 N/m. The work don	e on the spring to str	retch it by 4 cm from its
(A) 122.7 J	(B) 110 J	(C) Zero	(D) 98.1 J	(<u>E) 0.24 J</u>
	ss 0.5 kg is dropped f	rom a height 45 m abo	ve the ground. The v	vork done by gravitational
force is:} (A) 5 J	(B) 40 J	(C) 10 J	(D) 4 J	(<u>E) 220.5 J</u>
Q.24 A single con	stant force F = (2î +	ɔĵ́)N acts on a 4 kg pa	rticle. If the particle r	moves from the origin point
		e work done by this for		
(A) -9 J	(B) 11 J	(C) 5 J	(D) Zero	(E) <u>19 J</u>
Q.25 A 5 kg block force on it is: m ^A	slides down on a fric	tionless inclined plane	at an angle of 25º. T	he magnitude of the net
(A) Zero	(B) 44.4 N	(C) 29 N	(D) 62.2 N	(E) 20.7 N
Q.26 A 5 kg block magnitude of the r	slides down on an in	clined plane at an angle	e of 25°. The friction	coefficient μ_k is 0.2. The
(A) 65.4 N	(B) 16.6 N	(C) 40.3 N	(D) <u>11.8 N</u>	(E) Zero
Q.27 A force acce	elerates a 5 kg particl	e of mass from rest to a	a speed of 12 m/s in	4 s. The magnitude of this
force is: (A) 10 N	(B) Zero	(C) 20 N	(D) 25 N	(E) <u>15 N</u>
		5		

<u>,</u>

٦.

Q.28 A particle	moves 6 m in the pos	itive z direction while beir	ng acted upon by a cons	stant force
Ē=(4î-2ĵ+4k̂)N	The work done on the	e particle by this force is:	4KX6=240	
(A) 20 J	(B) 10 J	(C) <u>24 J</u>	(D) -20 J	(E) none of these
Q.29 The block state when:	in the given figure sta	nds on frictionless surfac	e is in an equilibrium	
		F_2 (D) F_1 parallel F_2	· ·	
Q.29 A force of (A) 1.25 m/s	20 N is applied to mo (B) 12.5 m/s	ve a stationary body of m (C) <u>16 m/s</u>	ass 5 kg. The speed of (D) 18 m/s	the body after 4 s is: (E) 8 m/s
Q.30 Which on (A) P=mv	e of the following equa (B) <u>F=ma</u>	ations is associated with f (C) F=2ma	Newton's second law? (D) P= vi	(E) F ₁ =-F ₂
Q.31 Which of ((A) Speed	the following is a scala (B) Velocity	r quantity? (C) Displacement	(D) Acceleration	(E) force
	frictionless table by a f	nnected and bulled to the orce F. Then the acceleration $\mathcal{F}(\mathcal{M}_{\mathcal{S}})$ and		35 kg
(A) 2 m/s²	(B) <u>1 m/s²</u>	(C) 9.8 m/s ²	(D) 6 m/s²	(E) 0.97 m/s ²
Q.33 The formu (A) <u>f=µ N</u>	la for the friction force (B) F=ma	e is: (C) w=mg	(D) F=N	(E) F=2f
		k of radius 75 m with co	onstant speed of 15 m	s. The magnitude of his
centripetal acce (A) 5 m/s ²	leration-is: (B) <u>3 m/s²</u>	(C) Zero	(D) 1.5 m/s²	(E) 1 m/s²
Q.35 A particle	moving from $\vec{r}_1 = 4\hat{i} +$	$5\hat{j} + 8\hat{k}$ to $\vec{r}_2 = 20\hat{i} + 10$	$\hat{i} + 8\hat{k}$ then the displac	ement is:
(A) 10î-3ĵ	(B) 5j +10k	$(C) 16\hat{i} + 5\hat{j}$	(D) 5ĵ	(E) 8
Q.36 If the work (A) 36 W	done on a particle is (B) 2 W	24 J in 4 s. The power is: (C) 1 W	(D) <u>6 W</u>	(E) 12 W
Q.37 A 6 kg blo (A) 360 J	ck is released from re (B) 3528 J	st 80 m above the ground (C) 1200 J	I. When it has fallen 60 (D) 1764 J	m its kinetic energy is: (E) 60 J
	e speed of the bead a	n a frictionless curved win t B is: m/s (D) 8.85 m/s (E) 6		B
then the kinetic	energy of the bead is:	beed of the bead at C is 1	C	6 m
(A) <u>11.76</u> J (E	B) 5.88 J (C) 15 J	(D) 10.84 J (E) 6	50 J L	
Q.40 The poten (A) 6.76 J	tial energy of the beac (B) 3.5 J	l at point A is: (C) 14 J	(D) 17 J	(E) <u>11.76 J</u>

A

. .

•

1
1 IS:SEM = IS:S X low = 15300 m (B)
Weight
$$\longrightarrow$$
 Newton (A)
3 $j \cdot j = 1$ (D)
(Y) $\overrightarrow{A'} = 8l' + 6j$ $\overrightarrow{B} = -8l'$
(Y) $\overrightarrow{A'} = 8l' + 6j$ $\overrightarrow{B} = -8l'$
(+y)
 $gl' + 6j - gl' + \overline{c} = 10j$ (+y)
 $gl' + 6j - gl' + \overline{c} = 10j$
 $\overrightarrow{c} = 10j - 6j = 4j$ (D)
(S) $\overrightarrow{A'} = gl' + 6j$
 $\overrightarrow{A'} = gl' - 6j^{2} = \sqrt{64} + 36 = 10$
 $\theta = \cos^{-1}(\frac{Ay}{B}) = \cos^{-1}(\frac{6}{10})$
 $= 53 \cdot 1^{\circ}$ (D)

6 À = 8(+0) لاحتوى علم المجر العروب علم فاركاه لم 5k D A= (+ j+k A·B= B' = 4(1 + 7) - 9kBA= 4+7-4=7 \bigcirc (9) $J \times i' = -ic$ J. E) (\dot{g}) $\alpha = 6 m / r^2$ 0--0 1=31 U= ? (1= Uotat = 0+ 6(3) = 19 m/r

(3)
(1)
$$V_{0} = I_{0} m I_{3}$$
 $U = 0$
 $X = 2 \omega m$ $a \leq ?$
 $V_{1} a'_{3} = ?$
 $V_{1} a'_{3} = ?$
 $V_{2} = V^{2} + 2aX$
 $0 = (10)^{2} + 2a(20)$
 $a = -2.5 m Mr^{2}$ (2)
(1) $V_{0} = 20 m I_{3}$
 $R_{max} = \frac{U^{2}}{g} = \frac{(2\sigma)^{2}}{g \cdot g} = \frac{g_{0} \cdot g_{2}}{m}$
(1) $V_{0} = 20 m I_{3}$
 $R_{max} = \frac{U^{2}}{g} = \frac{(2\sigma)^{2}}{2(g \cdot g)} = \frac{g_{0} \cdot g_{2}}{mmy}$
 $H = \frac{V^{2} (si' n G)^{2}}{2g} = \frac{(2\sigma)^{2} (si' n YS)^{2}}{2(g \cdot g)}$
 $= I u \cdot 2m$

(4)
(3) Velocity (3)
(12) Vo-lom/r
$$A=-9.8 \text{ m/r}^2$$

max. height $y = 7$
 $y=7$
 $y=2$
 $y=2$
 $y=-2$
 $y=-2$
(15) constant velocity $\Rightarrow a=0$
(16) Vo= 40m/r $a=-9.8 \text{ m/r}^2$
max. $v=0$
height $t=7$
 $v=0.4 \text{ at } \Rightarrow 0=40-9.8 \text{ t}$
 $t=4.1 \text{ x}$ (5)

Constant speed -> net force (Ň) -0 (\hat{n}) k=300 N/m X1'=0 XA= ordym $\stackrel{\text{on}}{=}$ w= $\frac{1}{2}k(x_{p}^{2} - x_{r}^{2})$ = = (300) ((0.04)² - (0)²) = 0.24 J (E) h_{3}) m=0.5 kg d=45m W= mgd J Fmg = 0.5×9.8×45 = 220.5J E Joy/-in d' = (2(1+3j) - (010) = 2(1+3j)24) F = 2l' + Sjd = 2(+3)W=F.J= 4+15= 6J (ϵ)

25) mysine M = 5kga-gring= 9.8 sin25= 4.14 m/s2 2F= ma = 5(4.14) = 20.7 N E) Or EF= mgjing= 5xg, gjin25= Zo. ZN (26) m= 5 kg ML = 0.2 mgCos25° 250 a= gsing-Mkgcos6 = 9.8 Sin25 - 0.2 ×9.8 6525 = 2.365 M/22 2F= ma = S(2.365)= 11.825 N Ð or ZF= mgsing-F/c رو موجرها أولا

Ø, Msskg V0-0 U = 12 m/rt=45 a - 7? $U = V_0 + at \Rightarrow h = 0 + a(k)$ a= 3m/22 F= ma= 5(3) = 15 N E, $\vec{F} = 4(-2) + 4k$ 6k +2 7 = W=F.J= 0+0+2X=2XJ () NN in equilibration האנה זיה فاوم بور الأول F1 F1= F2 (C)

Foma 30) B speed (31)(32) 10 by 3510 F= 50N Sky 2F= ma 50= (5+10+35)a -> 50= 50a a = 1m/m B R= MN (A) (33) (3) R=75M U=15m/2 $a = \frac{U^2}{p} = \frac{U5^2}{75} = 3 m/m$ B T2 = 201+10j+8k (35) $\frac{Y_{1}^{2} = 4(1+S_{1}^{2}+8k)}{D_{1}^{2} = Y_{2}^{2} - \overline{Y_{1}}^{2} = 16(1+S_{1}^{2})}$ Ċ

KA-0+ 6×9.8(20-80)-0 Kp=3520J B'

M= 0.2Kg 6m hc- 6m W-DK+DUg+DUr $E_m(v_f^2 - v_i^2) + mg(h_f - h_i) = 0$ L(on)(y2-0) + 0.2×9.8(3-6)=0 Vf=7.7 m/s (A)U=10.8 44 m/r 39/ k= = m v2= = = (0.2) (10.844)2 = 11.76 J (A) لاظ أنا كاقة رضع من أنا تعمة ٨ 49 h=6m Ug = mgh = 0.2×9.6×6= 11.765 (E)

King Abdulaziz University Faculty of Science Physics Dept. Physics 110

	Final Exam. Student Name:		/1434H nt no.:	Time:120 min. Section:
Ć	Q.1 The unit of power is: (A) Watt	(B) kg ⋅ m²/s	(C) m/s	(D) N⋅m/s³
1	Q.2 The angle between vec (A) 90°	tor c̄ = 3î + 3ĵ + 3k̂ and (B) 180°	d $\vec{d} = -2\hat{i} - 2\hat{j} - 2\hat{k}$ is: (C) zero	(D) 270°
****	Q.3 If $\vec{A} = 3\hat{i} + 3\hat{j} + 3\hat{k}$ and $\vec{B} = (A)$ 12	=4î + 4ĵ + 4k̂ then Ā ● ((B) 6	$\vec{B} \times \vec{A}$) is: (C)zero	(D) 20
	Q.4 The x-component of ve (A) 16 m	ctor Ā is -5 m and the (B) 9 m	y-component is 4 m then the (C) 7 m	e magnitude Ā_is: (D) 6.40 m
X	Q.5 Referring to question 4 A) 126.9°	, the angle that vector (B) 38.66°	Ā makes with the positive x- (C) 123.13°	axis is: (D) 141.34°
Ś	Q.6 At the highest point, the (A) 9.8 m/s ²	e y-component of the v (B) 4.9 m/s ²	elocity of a projectile is	(D) 19.6 m/s ²
	Q.7 The SI unit of weight is (A) kg. m/s ²	s: (B) kilogram	(C) pound	(D) gram
	(-3 m, 9 m). The center of n		cle is:	mass 4 kg is located at a point (D) (-0.6 m, 6.2 m)
	Q.9 A particle of mass 3	kg is moving with velo	pocity $\vec{v}_1 = 5\hat{i} + 2\hat{j}m/s$ and an	nother particle of mass 2 kg is
6	moving with velocity $\vec{v}_2 = -5$ (A) ($\hat{i} + 2\hat{j}$) m/s	$(\hat{i} + 2\hat{j} m/s, \text{ then the ve})$ (B) (2 $\hat{i} + \hat{j}$) m/s	locity of the center of mass is (C)(- î + 2ĵ)m/s	:: (D) (2î – 2ĵ) m/s
	Q.10 Two blocks (A and surface. A horizontal force The force that A exert on B	is applied to the bloc		M _A =4 kg, M _B =6 kg F=60 N
	(A) 9.8 N (B) 40 $F = (m_1 + m_2) = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = $. ,	Lunder	
	Q.11 The result of $\hat{j} \cdot (\hat{j} \times \hat{k})$) is: (B) 3	(C) -1.0	(D) 1.0
and the second	Q.12 The physical quantity (A) force	, which is equal to char (B) velocity	nge in momentum is: (C) acceleration	(D) impulse
	Q.13 The maximum range (A) 793.8 m/s	of a projected ball is 12 (B) 253.57 m/s	25 m, then its initial speed is: (C) 35 m/s	(D) 28.17 m/s
		R	Max 2 22	

E.

h ,		Jon Part	B
	Q.14 3 kg block is pushed across a horizontal surface by in the figure. If the coefficient of kinetic friction between surface is 0.30, the magnitude of the acceleration of the bl (A) 1.1 m/s^2 (B) 4.2 m/s^2 , (C) 3.3 m/s^2	the block and the	3 kg
t.	Q.15 A boy kicks a ball at an angle 40° to the horizontarange is:(A) 0.92 s(B) 1.84 s	(C)1.97 s	(D) 2.36 s) Ch !. (
and the second second	Q.16 A force of 20 N is applied to move a stationary body (A) 1.25 m/s	of mass 10 kg. The speed of (C) 16 m/s $\alpha = 2$	the body after 6 s is: (D) 18 m/s
	Q.17 A car moves 5 km north, 13 km 22.62° south of eas (A) where it started (B) 2.6 east		ar is finally at: (D) 2.6 west
	Q.18 In the figure, if m_1 =4 kg and m_2 =3 kg a horizontal for the acceleration of the system 2.5 m/s ² the value of F is:	\bigcirc	► m ₁
	(A) 9.8 N $W_2: T = W_3 = 22.4$ $F = T = W_1 = F = F = F = F = F = F = F = F = F = $	(D) Zero	
	Q.19 Referring to question 18, the normal force between(A) Zero(B) 4 N	m₁ and the plane is: (C) 19.6 N	(D) 39.2 N
	Q.20 Referring to question 18,the tension in the cord is:(A) 53.2 N(B) 9.8 N	(C) 36.9 N	(D)150 N
X		nentum. 10 kg object moving at 30 m/s 100 kg object moving at 2 m/s	
-	Q.22 If an object has kinetic energy, then it also must hav (A) force. (B) momentum.	ve: (C) acceleration.	(D) none of these.
	Q.23 The SI unit of work is:(A) kg \cdot m(B) kg \cdot m	(C) kg · m/s	(D) kg ⋅ m²/s
i and the second	Q.24 An object is moving on a circular path of radius π mone revolutions is: (A) $2\pi^2$ s (B) $3\pi^2$ s	n at a constant speed of 1 m/s $(C) \pi^2 s$	s. The time required for (D) $4\pi^2$ s
	Q.25 Which of the following quantities is a scalar quantity (A) force(B) velocity	(C) time	(D) displacement
	Q.26 A box was pushed 4 m across the floor in 8 s by a h(A) 25 W	norizontal force of 200 N. The (C) 50 W	amount of power is: (D) 150 W
X	Q.27 A particle is moving with initial velocity $\vec{v}_0 = 2\hat{i} - 4\hat{j}m$ velocity at t=5 s is:		component of the final
	(A) -12 m/s (B) 4 m/s √ ∞ √ ∞	(C) 1 m/s	(D) 12 m/s
	121 - 121 -	4-4.161.4.50	
	121 - 410	$\mathbf{V}_{\mathbf{v}}$	

а 1	$V_{+}=V_{+}$, $X_{-}=Z_{+}$ B
Ś	Q.28 A 5 kg block initially rests at the top of an incline frictionless plane. If it is initially at a height of 8 m, its momentum at a height of 4 m is:
	(A) 44.27 kg. m/s (B) 81.30 kg. m/s (C) 1.30 kg. m/s (D) 38.34 kg. m/s (D) 38.34 kg. m/s
	Q.29 A single constant force $\vec{F} = (5\hat{j} + 2\hat{k})N$ acts on a particle. If the particle moves from the origin point with
	vector position $\vec{r} = (6\hat{j} + 5\hat{k})$ m. The work done by this force is: (A) 10 J (B) 20 J (C) 40 J (D) Zero
K	Q.30A 6 kg particle is moving along x-axis with speed 4 m/s makes a completely inelastic collision with another stationary 2 kg particle . The speed of the two particles after collision is: (A) 3.6 m/s(D) 3 m/s
	Q.31 The gravitational potential energy of an object at height y is:(A) mvt^2 (B) Fd cos θ (C) mgy(D) ma
	Q.32 Which of the two given quantities have the same units. (A) Impulse and force (B) Impulse and momentum. (C) Momentum and energy. (D) Energy and force
P	Q.33 A 3 kg block starts from rest at the top of a 30° rough incline and slide a distance of 2 m down the inclinein 1.5 s. The magnitude of the frictional force acting on the block is:(A) 14.7 N(B) 9.8 N(C) 1.5 N(D) 9.36 N
	Q.34 A toy train completes one revelation of its circular track in 10 s. If the radius of the track is 1 m the train's centripetal acceleration is: (A) 0.197 m/s^2 $U = 0.672 \text{ (B)} \text{ (B) } 9.8 \text{ m/s}^2$ (A) 0.197 m/s^2(B) 9.8 m/s^2(C) 1.0 m/s^2(D) 0.39 m/s^2
	Q.35 A particle starts motion at 18 m/s. If it moves 25 m in 2 s its final velocity is:(A) 10 m/s(B) 5 m/s(C) 7 m/s(D) zero
	Q.36 An object that has kinetic energy must be (A) at rest.(C) moving.(D) none of these.
	Q.37 A man of mass 105 kg climbs a stair of 4 m height. The work done by the man is:(A) 4116 J(B) 510 J(C) 4998 J(D) 2499 J
	Q.38 An elevator cabin of mass 3000 kg moves downward with acceleration 1 m/s ² , the tension in the cable is:
	(A) 330 N (B) 26400 N (C) 3 N (D) 32400 N
	Q.39 An object is thrown vertically upward from the ground. When it reaches half of its maximum height, it has a speed of 19.6 m/s. The maximum height reached is:
	(A) 49.4 m (B) 39.2 m (C) 44 m (D) 41.4 m
	Q.40 A spring with spring constant of 4 N/m is compressed by a force of 1.2 N. The elastic potential energy stored in the spring is:
	(A) 0.18 J (B) 0.60 J (C) 4.8 J (D) 0.36 J
	$V = v_0^2 + 2\alpha y$ $X = \frac{V + V_0}{2} + \frac{V - 1}{2} = \frac{126}{5} = \frac{126}{5} = \frac{12}{5} = \frac{12}{5}$
	1.20

1) $\vec{C} = 3(' + 3)' + 3k$ J= -21-19-14 Z.Js _6 -6 - 6 = -18 $\overline{[C]} = \sqrt{9 + 9 + 9} = \sqrt{27}$ $[d] = \sqrt{4 + 4 + 4} = \sqrt{12}$ $Core = \frac{2}{12} \cdot \frac{7}{12} = \frac{-18}{\sqrt{27}\sqrt{12}} = -1$ G= Cos-1(-1) = 180° B (3) A,B K rost (BXA) Elo $\therefore \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{A}) = 0$ \bigcirc مكالمام

$$\begin{array}{c} \textcircled{0} \\ \overrightarrow{A} = 3(1+3) + 3k \\ \overrightarrow{B} = 4(1+4) + 3k \\ \overrightarrow{B} = 4(1+4) + 4k \\ \overrightarrow{B} \times \overrightarrow{A} = \begin{vmatrix} 1 & 1 & 3 & 1 \\ 4 & 4 & 4 \\ 3 & 3 & 3 \end{vmatrix} \\ = (1(12-12) - 3(12-12) + k(11-12) \\ = 0 \\ \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{A}) = 0$$

3) at the highest Point Ny=06 6) wer Weight -> Newton = fg.m/m2 Ź) A (8) M X Y 3 3 3 YCM: EMX $= \frac{(3)(3) + 4(-3)}{3 + 4}$ = -0.43 m $y_{cm} = \frac{2my}{2m} = \frac{(3)(3) + 4(9)}{3+4} = 6.43m$ the center of mass is (-0.43, 6.43) B $M_{1} = 3kg \quad \overrightarrow{V}_{1} = (5(i+1j))M_{1}$ (9) $m_{2} = 2kg$ $\vec{U_{2}} = (-9(+2j))m/s$ $m_1 \overline{v_1} + m_2 \overline{v_2} = (m_1 + m_2) \overline{v}$ 3(5('+2))+2(-5('+2)) - (3+2)

151+6j-101+4j = 5V 51 +103 - 57 <u>-</u>'-5 √ = ((+2j) m/~) (A)6Kg 4 69 (1)F=60N ____ A B $2F = ma \implies 60 = (4+\epsilon)a \implies a = \frac{60}{10}$ = 6 M/22 643 FAB > B) FAB = 6(6) = 36N $\rightarrow a = 6 m / r^{1}$ 10 j. (jxk) = j.i (l)- 0 A $\overline{J} = \overline{DP}$ 12 J=impulse الدفع

(13) $R_{\text{max}} = 125m$ $U_0 = ??$ $R_{max} = \frac{v_i^2}{9.8} \longrightarrow 125 = \frac{v_i^2}{9.8}$ V° = (125) (9.9) = 1225 → V°=V1225 = 35 m/s Ċ NA (14) M-3tg ME=0.3 $N = mg + F sin 3^{\circ}$ J FSinzo = 3×9.8+ 305in30° Mg = 44.4N $F_{k} = \mu_{k} N = (0.3) (44.4) = 13.32 N$ FCOS30 - FE = Ma 2F = Ma -> 3000538-13.32 = 3 a $12.66 = 3a \implies a = 4.22 \text{ m/s}^2 (B)$ (15) B= 40° Vo= 18 m/r $t = \frac{205 \text{ sin}\theta}{9} = \frac{2(18) \text{ sin} 40}{9.8} = 2.36 \text{ s}$

16) F=20N m = lokg $\Sigma F = ma \implies 20 = loa \implies a = \frac{20}{10} = 2m/r^2$ ر آلکم $U_{0=0}$ (stationary) $A=2M/r^2$ t=6r U=?U= Uotat = 0 + 2(6) = 12 m/s B 17 A HI-SEM A= 5j (North) W 22.626 121=12 Km (B)=13km 0=360-22.62°=337.38°1 N BEElBEM B = B Cor 337.38 (+ 13,1in 337.38j $\vec{B} = 12i - sj$ $|\vec{c} = -12i|$ (wert) $\vec{R} = \vec{A} + \vec{B} + \vec{c} = sj + ni - sj - ni = 0$ مت مرات عاد لتعنَّم الساية The car is finally at where it started

 (\mathbf{G}) 21) PI = MNI = (20)(20) = 400 kg·m/r 20 kg· P2 = m2N2 = (10) (30) = 300 Eg.m/s $P_3 = M_3 \vee_3 = (1) (3_0) = 3_0 E_{3_1} E_{3_1}$ Py = my vy = (100)(2) = 200 kg·m/2 (A)-> Vto -> Pto >B K= = m v2 (1)(B) work => Joul = ky. m2/p2 (13) V= Imla (24) R= TT $T = \frac{2\pi R}{\Gamma} = \frac{2\pi (\pi)}{\Gamma} = 2\pi^2 \Lambda$ (ls)6=82 (26) W= Fd= (200)(4) = 800 J -+-=20W dexm $P = \frac{W}{T} = \frac{800}{9} = LooW$ B

22) vo=(21-43) mls $\vec{a} = h(t+j)_{m/s}$ t= 5 1 7 = ? $\sqrt{1} = \sqrt{1} + at = (2(1 - 4)) + 5(2(1 + 2))$ = 2(-4j+1o(+sj=(lr(+j))m/)y = 1 m/1(c)M = SkyP U1=0 $y_{i} = DE + Du_{j} + Du_{r}$ (j=? hi=8m hfsym $\frac{1}{2}m(v_{f}^{2}-v_{i}^{2}) + mg(h_{f}-h_{i}) = 0$ +(5)(vf-0)+5(g.8)(4-8)=0 2.5 Vf = 198 = V_f = 78.4 Vf= 8.85 M/1 P= MV = 5(8.85) = 44.27 Egimls

(10) $\vec{F} = (5j + 2k) N$ 29 $(0_{10}) \longrightarrow (6_{j}+5k) m$ d = 6j + sk $W = \vec{F} \cdot \vec{d} = (5)(1) + 7(5) = 30 + 10$ -YoJ@ (30) MI = 6 Kg $V_{1C} = 4 m/s$ M2 = 2 kg V21-0 ~1 U=? $m_1 V_1 i' + m_2 V_2 i' = (m_1 + m_1) V$ 6(4) + 0 = (6 + 2) U $24 = 8V \implies V = \frac{24}{8} = 3M/s$ Us = mgy 3

11 momentum => kg.m/r 31 impulse => kg.m/s B 33) M=3kg μ 64 at V0=0 X=2m mysin3° t=1.5 s a=? 300 Mg (or 30° $\chi = v_0 t + \frac{1}{2}at^2 = 2 = 0 + \frac{1}{2}(a)(1.5)^2$ $a = \frac{1}{1.115} = 1.78 \text{ m/s}^2$ EF= ma => mgsin30-FF= ma FE = mgsin30-ma = 3×9.8 sin30-3(1.78) FE= 9.38N) D $349 T = \frac{10}{1} = 101$ R=1m $T = \frac{2\pi R}{\Gamma} \Rightarrow 10 = \frac{2\times 3 \cdot 1\times 1}{\Gamma}$

12) $U = \frac{2 \times 3.14 \times 1}{10}$ = 0.028 m/s $a = \frac{U^2}{R} = \frac{(0.628)^2}{1} = 0.39 \text{ m/s}^2$ 35 Vo: 18m/s X=25m t= 2,1 U=? $\chi = \frac{v + v_0}{2} + 3 = \frac{v + 18}{2} (2)$ V+18=15 V= 25-18 = 7 m/100 (36) (F= mg = 109 ×9.8 = 1029 N AF 37) WF = Fd = (1029) (4) = 4116 J Img

3 39 M = 3000 by as Im/sn $\Sigma F = ma$ $al \int_{m_e}$ mg - T = maT= mg-ma= 3000 × g.8-3000(1) = 26400 N (B) (39) Vo= 19.6 m/z U=0 h/2 1 vo=19.6 h/2 m/j a = -9.8 m/1 y = h/2 $v^{1} = v^{2} + 2ay$ $O = (19.6)^{2} + 2(-9.8) \left(\frac{h}{2}\right)$ $9.8h = (19.1)^2 \longrightarrow h = \frac{(19.1)^2}{9.8} = 39.2 \text{ m}$ B (40) K= 4 NIM F=1.2N $X = \frac{k}{k} = \frac{1.2}{4} = 0.3 m$ $U_{1} = \frac{1}{2}kX^{2} = \frac{1}{2}(4)(0.3)^{2} = 0.18 \text{ J}(A)$

ng Abdulaziz Univer coulty of Science nysics Dept. nysics 110	sity		
Final Exam Student Name:	29/2/143 Student n		Time:120 min. Section:
Q.1 Which unit of these (A) kg	e is used to measure the speed (B) m/s ²	J? (C) m/s	(D) m
Q.2 A square table has (A) 0.592 m	s an area of 4500 cm². Its lengtl (B) 0.671 m	h in SI units is: (C) 0.742 m	(D) 0.806 m
Q.3 A particle moves a seconds. The instantar (A) 14 m/s	along the x-axis according to th neous speed at t = 5 sec. is: (B) 18 m/s	e equation $x = 6t + 2t^2$, where $(C) 22$ m/s	ere x is in meters and t is in (D) 26 m/s
Q.4 A train uniformly c (A) $- 5.0 \text{ m/s}^2$	hanges its speed from 60 m/s t (B) – 4.0 m/s²	to 20 m/s in 10 s. Its acceler (C) - 2.5 m/s²	ration is: (D) – 2.0 m/s²
Q . 5 An object falling to (A) Increasing	oward the earth's surface will ha (B) Zero	ave velocity that its magnitud (C) 9.8 m/s ²	de is: (D) Decreasing
reach the ground. The (A) 5.1 m/s	rown vertically upward with 19 magnitude of the velocity of the (B) 49.6 m/s lown from rest, it reaches the gr (B) 50.2 m	e ball when it reaches the gr (C) 14.85 m/s	round is: (D) 38.2 m/s
Q.8 Which of the follow (A) Distance	wing quantities is not a vector q (B) Velocity	uantity? (C) Acceleration	(D) Displacement
Q.9 The components of (A) 25.4 m	of vector \overline{A} are given as $A_x = -1$ (B) 22.2 m	8.3 m and A _y = 17.6 m. The (C) 20.5 m	e magnitude of vector Ãis: (D) 18.6 m
Q.10 Given $\vec{A} = -3\hat{i} + \hat{j}$ (A) 17 $\hat{i} + 5\hat{j} - 15\hat{k}$	$\hat{j} + 4\hat{k}, \vec{B} = 3\hat{i} + 3\hat{j} - 2\hat{k}, \vec{C} = -2\hat{i} - (B) -16\hat{i} - 12\hat{j} + 8\hat{k}$	2 \hat{j} - \hat{k} . Then the vector \vec{D} = (C) -3 \hat{i} - 11 \hat{j} - 9 \hat{k}	-2Ā - B + 3C is: (D) -15î - 11ĵ + 5k
Q.11 If \vec{A} and \vec{B} are n (A) 90°	on-zero vectors, then the angle (B) Zero	between the vectors \vec{A} and (C) 180°	d \vec{B} when $\vec{A} \cdot \vec{B} = 0$ is: (D) 45°
Q.12 Consider two verespect to the positive (A) 20°	ctors $\vec{V} = 3\hat{i} + 3\hat{j}$ and $\vec{W} = \cos\theta$ x-axis. For what value of θ (in (B) 135°	$\hat{i} + \sin \theta \hat{j}$, where θ is meas degrees) is $\vec{V} \times \vec{W} = 0$: (C) 45°	sured counter clockwise with (D) 90°
Q.13 A particle moves 3 s is:	s from position $\vec{r}_1 = 3\hat{i} - 8\hat{j} + 6\hat{k}$	to $\vec{r}_2 = 9\hat{i} + 10\hat{j} - 6\hat{k}$, the aver	
(A) 9ĵ - 6k̂	(B) 3î + 9 <u>ĵ</u> - 6k	(C) 3ĵ - 6ƙ	(D) $2\hat{i} + 6\hat{j} - 4\hat{k}$
Q.14 A particle move its acceleration at 1.5 (A) 4î - 6ĵ	s so that its position (in meters s in unit vector notation is: (B) 4î - 12ĵ	e) as a function of time (in s (C) 4î - 3ĵ	seconds) is $\vec{r} = 2t^2 i - t^3 j + 8t$ (D) 4î - 9ĵ

Q.15 A projectile, fired over from its launching point. Find (A) $(28.0\hat{j})$ m/s (B)	a level ground, reaches a d its initial velocity in unit ve (28.0î + 52.5ĵ) m/s	maximum height of 40.0 m a ector notation. (C) (30.5î + 28.0ĵ) m/s			
Q.16 An airplane travels we (A) greater than zero	st at constant velocity. The (B) less than zero	net force on the plan is: (C) 9.8 N	(D) zero		
Q.17 Acceleration is always					
(A) displacement	(B) net force	(C) final velocity	(D) initial velocity		
Q.18 A man weighing 690	N is in an elevator that is	accelerating upward at 4 m	/s ² . The magnitude of the		
force exerted on him by the	elevator's floor is:	(C) 957.6 N	(D) 971.6 N		
(A) 929.4 N	(B) 943.5 N	(C) 957.0 N			
Q.19 Two blocks (A and frictionless surface. A 46 N shown. The acceleration of B	N constant force is applie		g, m _B = 18 kg		
(A) 1.92 m/s ²	(B) 1.75 m/s ²	(C) 1.54 m/s ²	(D) 1.42 m/s ²		
Q.20 In the figure a block B by two cords. The angle θ_1 = 50 N, then the tension in cor	20° and $\theta_2 = 40^\circ$. If the ter	the is sound in the second second	Cord 1 B		
(A) 61.3N	(B) 73.6 N	(C) 85.9 N	(D) 98.1 N		
Q.21 As shown in the figure $m_1 = 9$ kg and $m_2 = 12$ kg, if the two blocks are moving on frictionless surface and					
connected with a rope of ne	gligible mass. The tension	T in that rope is:			
		m ₁ T .	F = 30 N m ₂		
(A) 14.0 N	(B) 16.4 N	(C) 18.4 N	(D) 19.7 N		
Q.22 A box stands on a ro	ugh incline plane. The pla	ne is inclined at an angle of	20. If the box moves with		
constant speed, the friction (A) mg sin 2θ	force is: (B) mg cosθ	(C) mg cos2θ	(D) mgsinθ		
Q.23 A car is traveling at 8	m/s on a horizontal highwa	y. If the coefficient of friction	between the road and		
tires on rainy day is 0.1, the	distance in which the car w	vill stop is:	(D) 32.65 m		
(A) 114.8 m	(B) 73.47 m	(C) 51.02 m			
		of 18 m/s around circular tr	ack of radius 250 m. The		
magnitude of the centripeta (A) 1732.8 N	l force is: (B) 1555.2 N	(C) 1387.2 N	(D) 1228.8 N		
Q.25 A moving particle of n (A) 2.08 m/s	nass 6 Kg, has Kinetic ener (B) 2.24 m/s	rgy of 15 J. Its speed is: (C) 2.38 m/s	(D) 2.52 m/s		
Q.26 The SI unit of work is (A) kg.m ² /s	: (B) kg.m	(C) kg.m/s	(D) kg.m²/s²		
		والمسترية والمسترية ومنامعا فللتك سنت والروان سلامتهم والمتبار والمروان والمتكر ومستريفا والمتكر			

Q.27 A 1100 kg car move (A) 79.2 kJ	es from rest to speed of 18 m/s (B) 107.8 kJ	s. The net work done is: (1 (C) 140.8 kJ	kJ = 1000 J) (D) 178.2 kJ
Q.28 In the figure, a 6 k plane, by a force F. As gravitational force on the	g block is pushed up on a fri the block moves 3 m, the v olock is:	ictionless inclined work done by the	F
(A) - 29.4 J	(B) - 58.8 J	(C) - 88.2 J	(D) 117.6 J
(A) 120 J	F = 35 N and the block move (B) 140 J	(C) 160 J	(D) 180 J
500 N/m, the work done b (A) 0.9 J	t to a spring and placed hor by the horizontal force to pull t (B) 1.23 J	he spring slowly through ar (C) 1.6 J	n extension of 8 cm is:
Q.31 The position of a 3 I seconds. Find the net wor (A) -36 J	kg object as a function of time k done on the object from <i>t</i> = (B) zero	is given by x = - 6t - 3t ² + t 0 to <i>t</i> = 2 s. (C) 45 J	³ , with <i>x</i> in meters and <i>t</i> in (D) 72 J
Q.32 Which one of the fo (A) J/s	llowing choices is a unit of po (B) N .m/s ²	wer? (C) m/s	(D) kg .m²/s
Q.33 If the work done on (A) 6.0 W	a particle is 18 J in 7 s. The p (B) 3.6 W	oower is: (C) 2.6 W	(D) 2.0 W
	g constant of 20 N/m is comp	recsed by a force of 13 N.	The potential energy stored
in the spring is: (A) 4.90 J	(B) 4.23 J	(C) 3.60 J	(D) 3.03 J
Q.35 The potential energ (A) mgh	y of a falling object from heigl (B) <i>Fd cos θ</i>	ht h is: (C) ma	(D) mvt ²
Q.36 Work done by a fric (A) All of the these	tional force is: (B) positive	(C) zero	(D) negative
Q.37 If a restoring force (A) 2.8 J	of a stretched spring is 17 N. (B) 3.3 J	The work done in stretching (C) 3.8 J	g the spring 0.5 m is: (D) 4.3 J
	6 kg is located at a point (2 m, mass of these two objects is: (B) (-0.8 m, 5.2 m)	4 m). Another object of ma (C) (-1.9 m, 5.7 m)	ass 4 kg is located at a point (D) (-2.7 m, 6.0 m)
Q.39 If the object has kir (A) force	etic energy, then it also must (B) non of these	have: (C) acceleration	(D) momentum
	peed of 50 m/s strikes a plate e speed and angle, as shown entum of the ball.		
A) 100 kg⋅m/s at 45.0° to B) 100 kg⋅m/s perpendic C) 141 kg⋅m/s at 45.0° to D) 141 kg⋅m/s perpendic	ular to the plate		45° 45° Plate

Words Meanings:

			تحت	Mass	كتله	Straight	مستقدم
Above	فوق	Down		Massless	عديم الكتلة	String	وتر
Acceleration	تسارع	Degree	درجه	Massiess	حد أقصى	Surface	سطح
Achieve	يحصل على	Earth	أرض معادلة		<u>سے , سعی</u> متر	Suspend	معلق
Airplane	طائرة	Equation		Meter	<u>مر</u> قمر	System	نظام
Always	دائماً	East	شرق	Moon	<u>مر</u> حرکة	Table	طاولة
Angle	زاوية	Equilibrium	أتزان	Motion	يتحرك يتحرك	Tall	رد طويل
Applied	مؤثر	Equivalent	مكافىء	Move		Tension	شد
Automobile	عربة	Exerted	مبذول	Man	رجل		خلال
Average	متوسط	Energy	طاقه	Measure	يقيس	Through	<u>حمن</u> قذف
Axis	محور	Extension	يتمدد	Mile	ميل	Thrown	
According	طبقاً لـ	Figure	رسم بياني	Momentum	کمیه حرکیه	Time	زمن
After	بعد	Final	نهائي	Must	يجب	Тор	أعلى
Along	على طول	Follow	يتبع	Net	محصلة	Тоу	لعبة
Area	مساحة	Force	قوة	Normal	رد الفعل	Travel	يرحل
attach	تعليق	Friction	إحتكاك	North	شمال	Truck	شاحنة
Also	ايضا	Frictionless	عديم الإحتكاك	Notation	صيغه	Train	قطار
Around	حول	Function	دالة	Object	جسم	Toward	بإتجاه
Ball	ر <u>ی</u> کرہ	Falling	يسقط	Parabolic	على شكل قطع مكافئ	Up	فوق
Between	 بین	Figure	رسم بياني	Parallel	موازي	Upward	نحو الأعلى
Block	بين قالب	Following	لتالى التالى	Particle	جسيم	Used	يستعمل
Body	جسم	Football	کرۂ قدم	Path	مسار	Uniform	منتظم
	مىندوق	Find	اوجد	Perpendicular	متعامد	Unit	وحدة
Box		Fixed	مثبت	Person	شخص	Velocity	سرعة
Building	مبنی دراجة	Given	معطى	Position	موضع	Weigh	يزن
Bicycle			<u>جرام</u>	Projectile	مقذوفة	Weight	وزن
Boy	ولد	Gram	جرام سطح الأرض	Point	نقطة	West	غرب
Bridge	جسر	Ground		Product	ناتج	When	عندما
Cable	کبل	Gravitational	جاذبي بن ت	and the second	<u>م</u> فيحه	Vector	متجه
Called	يسمى	Gravity	جاذبية اي	plate	دفع	Velocity	سرعة
Car	سيارة	Greater	اکبر	push	<u>قدرہ</u> قدرہ	Vertically	عموديا
Ceiling	سقف	Hold	يمسك	power		Volume	<u>رب</u> حجم
Centripetal	مركزي	Horizontal	أفقي	pull	سحب	x-axis	محور السينات
Change	تغير	Height	إرتفاع	Positive	موجب	x-axis	سرر ،سپت
Circular	دائري	Hour	ساعة	Quantity	كمية	· · · · · · · · · · · · · · · · · · ·	
Coefficient	معامل	highway	طريق سريع	Reach	يصل		
Component	مركبة	hang	علق	Resistance	مقاومة		
Connected	متصل	Ignore	أهمل	Respectively	على التوالي		
Constant	ٹ ابت	Increasing	تزايد	Result	نتيجة		
Coordinate	أحداثي	Initial	ابتدائي	Pulley	بكرة		
Cord	حبل	Instantaneous	لحظي		نصف قطر		
Curve	منحنى	incline		Range	مدی		
Classroom	فصل در اسی		طول	Referring to	بالرجوع إلى		
Cover	T	Level	مستوى		طريق		
Cross		Magnitude	مقدار	Rolling	تدحرج		
Cube	مكعب			Rough	خشن		
Clockwise	في اتجاه عقارب الساعه		يطلق		يجري		
Consider	اعتبر			Round	يدور		
Choices	نیبر خیارات		أقل		ٹانی ة		
	<u>پر، </u> قفص		محدد		نظام دولي		
Crate	يهبط		خط		ثانية		
Descend	يهبط مختلف		مستوى		موضح		
Differed	محلق		اقل		ينزلق		
Direction			خطى	and a subscription of the	يروى سرعة		
Displacement	إزاحة				يقف		
Downward		Located	يقع		يبدأ		
Decreasing		Magnitude	مقدار		يبدر سكوني		
Distance	إزاحة	Make	يصنع	Static	سوبي ا		

Some Used Formula:

$\Delta x = x_2 - x_1.$	$v = v_0 + at$.					
1	$x - x_0 = v_0 t + \frac{1}{2}at^2,$					
$v_{\text{avg}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$	-	$v^2 = v_0^2 + 2a(x - x_0).$				
$s_{\text{avg}} = \frac{\text{total distance}}{\Delta t}$.	$x - x_0 = \frac{1}{2}(v_0 + v)t,$					
$s_{avg} = \frac{\Delta t}{\Delta t}$	-					
	fo	r free full $a = -g = -9.8 \text{ m/s}^2$				
$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}.$	$a_x = a\cos\theta$ and $a_y = a\sin\theta$,	$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z.$				
$a_{\rm avg} = \frac{\Delta v}{\Delta t}.$	$a = \sqrt{a_x^2 + a_y^2}$ and $\tan \theta = \frac{a_y}{a_x}$.	$\vec{a} \times \vec{b} = ab \sin \phi.$				
$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}.$	$\vec{a} \cdot \vec{b} = ab \cos \phi,$	$\frac{d}{dx}x^m = mx^{m-1}$				
$\vec{a} \times \vec{b} = (a_y b_z - b_y a_z)\hat{i} + (a_z b_y a_z)\hat{j}$	$(a_x - b_z a_x)\hat{\mathbf{j}} + (a_x b_y - b_x a_y)\hat{\mathbf{k}}.$					
$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$	$x - x_0 = (v_0 \cos \theta_0)t,$ $y - y_0 = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2.$	$T = \frac{2\pi r}{v}$				
$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$	$v_v = v_0 \sin \theta_0 - gt.$	$\vec{F}_{\text{net}} = m\vec{a}$				
$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t}$	$v_{j}^{2} = (v_{0} \sin \theta_{j})^{2} - 2g(y - y_{0}).$	W = mg.				
$\overline{\vec{v}} = \frac{d\overline{\vec{r}}}{dt},$	$y = (\tan \theta_0)x - \frac{gx^2}{2(v_0 \cos \theta_0)^2}$	$f_{s,\max} = \mu_s F_N,$				
$\vec{a}_{avg} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} = \frac{\Delta \vec{v}}{\Delta t}$	$R = \frac{-v_0^2}{g} \sin 2\theta_0$	$f_k = \mu_k F_N,$				
$\vec{a} = \frac{d\vec{v}}{dt}$	$a = \frac{v^2}{r}$	$F = \frac{mv^2}{R}$				
$K = \frac{1}{2}mv^2$	U(y) = mgy.	$\Delta E_{\rm th} = f_k d.$				
$W = Fd\cos\phi = \vec{F}\cdot\vec{d}$	$U(x) = \frac{1}{2}kx^2.$	$W = \Delta E = \Delta E_{\rm mec} + \Delta E_{\rm th} + \Delta E_{\rm int}.$				
$\Delta K = K_f - K_i = W$	$K_2 + U_2 = K_1 + U_1,$	$P_{\rm avg} = \frac{\Delta E}{\Delta t}.$				
$W_{\rm g} = mgd\cos\phi.$	$\Delta E_{\rm mec} = \Delta K + \Delta U = 0.$	$P = \frac{dE}{dt}.$				
$W_{s} = \frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{j}^{2}.$	$K(x) = E_{\rm mec} - U(x).$	$\overrightarrow{r_{\rm com}} = \frac{1}{M} \sum_{i=1}^{n} m_i \overrightarrow{r_i},$				
$W = \int_{x_i}^{x_j} F(x) dx.$	$\Delta U = -\int_{x_i}^{x_f} F(x) dx.$	$\vec{p} = m\vec{v},$				
$P_{\rm avg} = \frac{W}{\Delta t}.$	$\Delta U = -W.$	$\vec{P} = \text{constant}$				
$P = \frac{dW}{dt}.$	$W = \Delta E_{\rm mec} = \Delta K + \Delta U.$	$\vec{P}_i = \vec{P}_f$				
$P = Fv\cos\phi = \vec{F}\cdot\vec{v}.$	$W = \Delta E_{\rm mec} + \Delta E_{\rm th}.$					

(2)
(5)

$$increasing (A)$$

(6) $V_0 = 19 \text{ m/s}$ $t = 7 \text{ s}$
 $a = -9.8 \text{ m/s}^2$ $V = 7$
 $a = -9.8 \text{ m/s}^2$ $V = 7$
 $V = V_0 + at = 19 - 9.8(7)$
 $= -49.6 \text{ m/s}$
 $V = -49.6 \text{ m/s}$
($V = -49.6 \text{ m/s}$ ($V = 7$)
 $= -49.6 \text{ m/s}^2$
 $t = 4.1 \text{ s}$ ($Y = 7$)
 $y = v_0 t + \frac{1}{2}at = 0 + \frac{1}{2}(-9.8)(4.1)^2$
 $y = v_0 t + \frac{1}{2}at = 0 + \frac{1}{2}(-9.8)(4.1)^2$
 $y = -82.4 \text{ m} \implies height = |Y| = 82.4$
(D) m

(3)
(3)
(3)
distance is not a vector
quantity
(A)

$$A = -18.3 \text{ m}$$

 $A = -18.3 \text{ m}$
 $A = -119.3 \text{ m}$
 $A = -10.3 \text{ m}$

(b)
$$\vec{r} = 2t\hat{i} - t\hat{j} + 8t\hat{k}$$

 $\vec{v} = d\hat{i} = 4t\hat{i} - 3t\hat{j} + 8t\hat{k}$
 $\vec{v} = d\hat{i} = 4t\hat{i} - 3t\hat{j} + 8t\hat{k}$
 $\vec{v} = d\hat{i} = 4t\hat{i} - 6t\hat{j}$
 $t = 1.5 \text{ s} = 3\hat{a} = 4t\hat{i} - 6(1.5)\hat{j}$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
(b) $tano = \frac{44}{R}$
 $= \frac{4(4\sigma)}{3\sigma\sigma}$
 $\vec{a} = 100 \text{ m/s}^2$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j} - 9\hat{j} - 9\hat{j})$
 $\vec{a} = (4)\hat{i} - 9\hat{j} - 9\hat{j$

6 Vo E Vo COSBC + Vo sinej = 05.25 sinks.1) it 05.25 sin(20.1)j Jo c (57.56 i + 30.73 j) m/s Constant relocity ->> 16 net force = 0 D Acceleration is always in the 17) direction of the net force B $mg = 690 N \implies m = \frac{690}{9.9} = 70.41$ 18) F - mg = ma F - 690 = 70.41(4) a = 4 min TF= (90+40.41)(4)= 9716 N

(9)
(23)
$$V_{0} = 8 \text{ m/s}$$
 $V = 0$
 $Y = ??$ $M_{F} = 0.1$
 $a = -M_{F}g = -(0.1)(g.8) = -0.98 \text{ m/s}^{2}$
 $v^{2} = v^{2} + 2ax$
 $0 = (8)^{2} + 2(-0.96)x$
 $1.96 \times = 6Y \implies \chi = \frac{64}{1.96} = 32.65 \text{ m}$
(24) $M = 1200 \text{ kg}$ $V = 18 \text{ m/s}$
 $R = 250 \text{ m}$
 $F_{\perp} = m \frac{v^{2}}{R} = (1200)(\frac{(18)^{2}}{150})$
 $= 1555.2 \text{ N}$

10) (25) M= 6 kg k = 15TK= 上mv~=>16= 2(6) v2 4V 11 $U^{1} = \frac{16}{2} = 5$ V= 2.24 m/s B 26) The SI unit of work is \$g.m/ 52 D (17) m = 1100 kg ~1=0 ~1= 18m/s $W_{not} = Dk = \frac{1}{2}m(v_f^2 - v_i^2)$ $= \frac{1}{2} (1100) ((18)^2 - (0)^2) = 178200$ J = 178.2 kJ -1000

(1)
(1)
(28)
$$m = 0 \text{ by} \qquad d \le 3m$$

 $mg \sin 3^{\circ} \qquad mg \cos 3^{\circ}$
 $mg = -(mg \sin 3 \circ) d$
 $= -(6 \times 9.8 \sin 3 \circ) (3) = -88.2 \text{ J}$
(29) $F = 35 \text{ N} \qquad d = 4m$
 $W_F = F d = (35) (4) = 140 \text{ J}$ (B)
(30) $F = 500 \text{ N/m} \qquad \forall p = 0.08m \quad \text{N/z} = 0$
 $W_F = \frac{1}{2} E(\chi_F^2 - \chi_i^2) = \frac{1}{2} (500) (10.08)^2 - 0)$
 $= 1.6 \text{ J}$ (C)

12) 31) m = 3 kg $V = -6t - 3t^{2} + t^{3}$ $V = \frac{d^{3}}{4t} = -6 - 6t + 3t^{2}$ t=0 => vi= -6-0+0=-6m/s $t = 25 = 94 = -6 - 6(2) + 3(2)^{2}$ = -6 -12 + 12 = -6 m/s $W = \frac{1}{2} m (v_f^2 - v_i^2) = \frac{1}{2} (3) (-6)^2 - (-6)^2)$ B) (32) $P = \frac{W}{T} \implies \overline{2}/r$ (A) 33) W= 185 t=71 $P = \frac{W}{T} = \frac{18}{7} = 2.6 W$

(13)
(34)
$$k = 20 \text{ N/m}$$
 $F = 13 \text{ N}$
 $X = \frac{F}{k} = \frac{13}{20} = 0.65 \text{ m}$ $\overbrace{F|X}^{F}$
 $U_{f} = \frac{1}{2} k x^{2} = \frac{1}{2} (20) (0.65)^{2}$
 $= 4.23 \text{ J}$ (B)
(35) $U_{g} = \text{mgh}$ (A)
(36) $W_{F_{k}} = -F_{k} d$ where i_{k} my
(37) $F = 17 \text{ N}$ $X_{p} = 0.5 \text{ m}$ $X_{i} = 0$
 $k = \frac{F}{1c} = \frac{17}{0.5} = 34 \text{ N/m}$ $\overbrace{F|X}^{F}$
 $W = \frac{1}{2} k (x_{p}^{2} - x_{i}^{2}) = \frac{1}{2} (34) ((0.5)^{2} - 0)$
 $= 4.33 \text{ D}$

