

Waves

MAIN TOPICS

- Waves
- Wave Motion
- Transverse and Longitudinal Waves
- Interference
- Standing waves

WAVES

A Periodic wiggle in space and time that transports energy

A wave can be described as a disturbance that travels through a medium from one location to another location without transporting matter

WAVES CHARACTERISTICS

Crests:

High points of the wave

Troughs:

Low points of the wave

WAVES CHARACTERISTICS

Distance from the midpoint to crest or trough Wavelength:

Distance from the top of one crest to the top of the next crest, or distance between successive identical parts of the wave

CHAPTER

CHAPTER 11

WAVES CHARACTERISTICS

Frequency:

number of to-and-fro vibrations in unit time
Unit: 1 vibration per second = 1 Hertz

Period:

defined as the time it takes for a complete vibration Unit: any unit of time, often second

The distance between adjacent peaks in the direction of travel for a transverse wave is its

- A. frequency.
- B. period.
- C. wavelength.
- D. amplitude.

The distance between adjacent peaks in the direction of travel for a transverse wave is its

- A. frequency.
- B. period.
- C. wavelength.
- D. amplitude.

Explanation:

Or between adjacent troughs or any adjacent identical parts of the waveform.

WAVES CHARACTERISTICS

Relationship between frequency and period: Frequency = 1/period Unit: Hertz (Hz) Period = 1/frequency

Unit: second (s)

The source of all waves is a vibration. Higher frequency means increased rate of energy transfer—shorter wavelengths.

If the frequency of a particular wave is 20 Hz, its period is

- A. $1/_{20}$ second.
- B. 20 seconds.
- C. more than 20 seconds.
- D. none of the above.

If the frequency of a particular wave is 20 Hz, its period is

- A. $1/_{20}$ second.
- B. 20 seconds.
- C. more than 20 seconds.
- D. none of the above.

Explanation:

Note when f = 20 Hz, T = 1/f = 1/(20 Hz) = 1/20

second.

WAVE MOTION

Wave speed:

describes how fast a disturbance moves through a medium

related to the frequency and wavelength of a wave

Speed = Frequency x Wavelength $V = f \times \lambda$

WAVE MOTION

Example:

a wave with wavelength 1 meter and frequency of 1 Hz

Speed = Frequency x Wavelength = 1 x 1 = 1 m/s

TYPES OF WAVES

CHAPTER 11

• Longitudinal waves:

the direction in which the medium vibrates is parallel to the direction of wave.

Transverse waves:

the direction in which the medium vibrates is perpendicular to the direction of wave.

The vibrations along a transverse wave move in a direction

- A. along the wave.
- B. perpendicular to the wave.
- C. Both of the above.
- D. Neither of the above.

CHAPTER 11

The vibrations along a transverse wave move in a direction

- A. along the wave.
- B. perpendicular to the wave.
- C. Both of the above.
- D. Neither of the above.

Explanation:

The vibrations in a longitudinal wave, in contrast, are along (or parallel to) the direction of wave travel.

INTERFERENCE

Combined effect of two or more overlapping waves

TYPES OF INTERFERENCE

Constructive interference:

Crest of one wave overlaps crest of another wave. This interference results into a wave of increased amplitude

CHAPTER

Constructive Interference

TYPES OF INTERFERENCE

Destructive interference:

Crest of one wave overlaps trough of another wave. This interference results into a wave of decreased amplitude

CHAPTER

Destructive Interference

STANDING WAVES

Standing waves are produced when two sets of waves of

equal amplitude and wavelength pass through each other in opposite directions.

NODES

A point along a standing wave where the wave has minimum amplitude.

