المتتاليات

تمهيد:

قي الجدول الآتي نقرن بكل عدد طبيعي مربعه وبهذا نحصل على متتالية مربعات الأعـداد الطبيعيـة عندئــذ يتكـون لـدينا متتالية لا نهائية من الأعداد الحقيقية.

n	0	1	2	3	4	5	0	
n^2	0	1	4	9	16	25	36	

ولصطلح زمز المتتالية $u_n = u_n$ هو أن نقرن بكل عدد طبيعي n من N عدداً حقيقياً نرمز إليه بالرمز u_n وفـي المثـال $u_n = n^2$ نكتب $u_n = n^2$

مثال: لنقرن بكل عدد طبيعي ضعفه فنحصل على متتالية من الأعداد الزوجية.

n	0	1	2	3	4	 $u_n = 2n$ ونكتب
2n	0	2	4	6	8	

تدريب: لنقرن بكل عدد طبيعي n العدد $u_n = \sqrt{n+1}$ فنحصل على متتالية $(u_n)_{n\geq 0}$ من الأعداد الحقيقية ، أوجد الحدود الأربعة الأولى من حدود المتتالية $(u_n)_{n\geq 0}$

مثال: لنقرن بكل عدد طبيعي n العدد $u_n = rac{1}{n(n+1)}$ حيث $n \ge 1$ ومنه نجد $u_n = u_n$

1	1	1		1
$u_1 = \frac{1}{2}$,	$u_2 = \frac{1}{6}$,	$u_3 = \frac{11}{12}$,	,	$u_n = \frac{1}{n(n+1)}$

تعريف المتتالية:

 $\{n_0, n_0 + n_0, n_0 + n_0\}$ هي تابع مجموعة تعريفه هي مجموعة الأعداد الطبيعية N أو أية مجموعة جزئية غير منتهية منها من الشكل $\{n_0, n_0 + 1, n_0 + 2, \cdots \}$ نرمز لها $(u_n)_{n \ge n_0}$ ونسمي u_n حد المتتالية ذا الدليل n أو الحد العام.وهذا يقابل تعريف التابع: $u : N \to R$; $n \mapsto u_n$

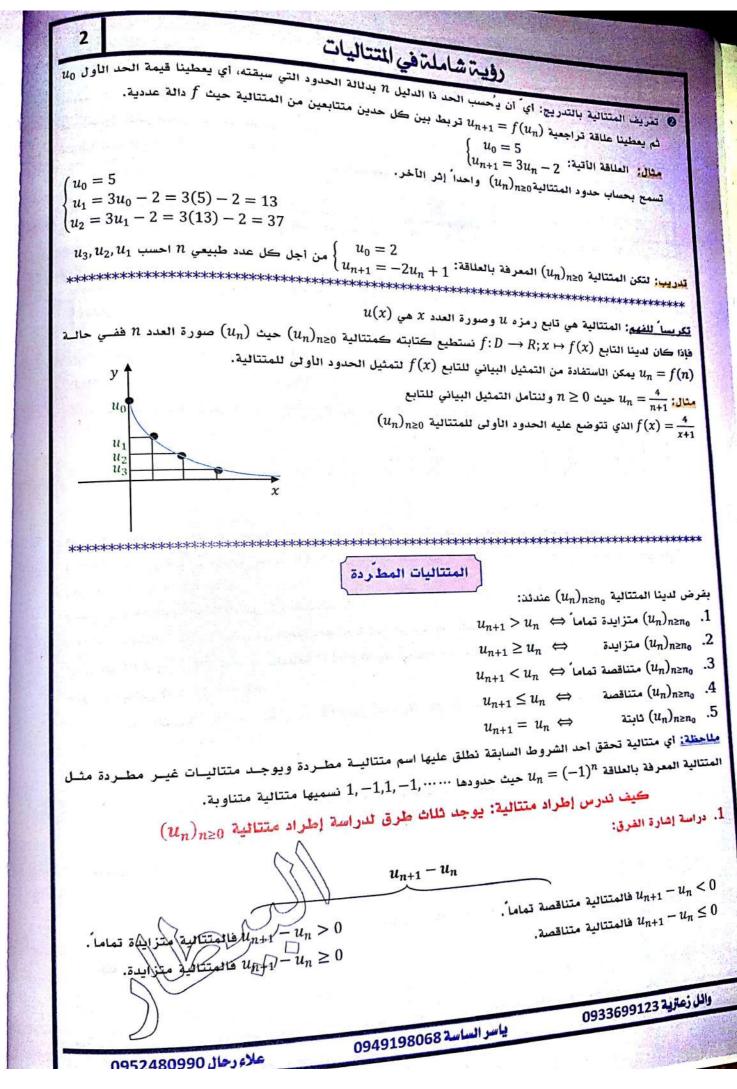
ونسمي u_n حد المتتالية ذا الدليل n (الحد العام).

<u>ملاحظة:</u> للمتتالية عدد لا نهائي من الحدود بقطع النظر عن قيم هذه الحدود.

<mark>مثال:</mark> المتتالية (u_n)_{n≥0} المعرفة بالعلاقة u_n = (−1)ⁿ لها عدد غير منته من الحدود هي (u_n)_{n≥0} بينما تأخذ حدودها قيمتين فقط هي 1,−1+

كيف نعرف متتالية: (طرق توليد متتالية):

1 Taylor of the set of the



 المتتاليات الآتية	متتالية من	طراد کل	Lumpat :	1
 and the second sec		4.70	We there are an and the	54
		A STREET	The she was the	12

1)
$$u_n = -3n + 1$$

 $u_{n+1} = -3(n+1) + 1 = -3n - 3 + 1 = -3n - 2$
 $u_{n+1} - u_n = -3n - 2 - (-3n + 1) = -3n - 2 + 3n - 1 = -3 < 0$

فالمتتالية متناقصة تماماً .

2) $u_n = n^2 - n - 2$ $u_{n+1} = (n+1)^2 - (n+1) - 2 = n^2 + 2n + 1 - n - 1 - 2 = n^2 + n - 2$ $u_{n+1} - u_n = n^2 + n - 2 - n^2 + n + 2 = 2n \ge 0$

فالمتتالية متزايدة ومن أجل
$$1 \ge n$$
 المتتالية متزايدة تماماً.

3) $u_n = n^2 - n$ $u_{n+1} = (n+1)^2 - (n+1)$ $u_{n+1} - u_n = (n+1)^2 - (n+1) - [n^2 - n] = (n+1)^2 - n - 1 - n^2 + n$ $= (n+1)^2 - n^2 - 1 = n^2 + 2n + 1 - n^2 - 1 = 2n > 0$

$$n=1$$
 فالمتتالية متزايدة تماما بدءا من الحد ذا الدليل

4)
$$u_n = (n-5)^2$$

 $u_{n+1} = (n+1-5)^2 = (n-4)^2$
 $u_{n+1} - u_n = (n-4)^2 - (n-5)^2 = n^2 - 8n + 16 - n^2 + 10n - 25$
 $= 2n - 9 > 0$

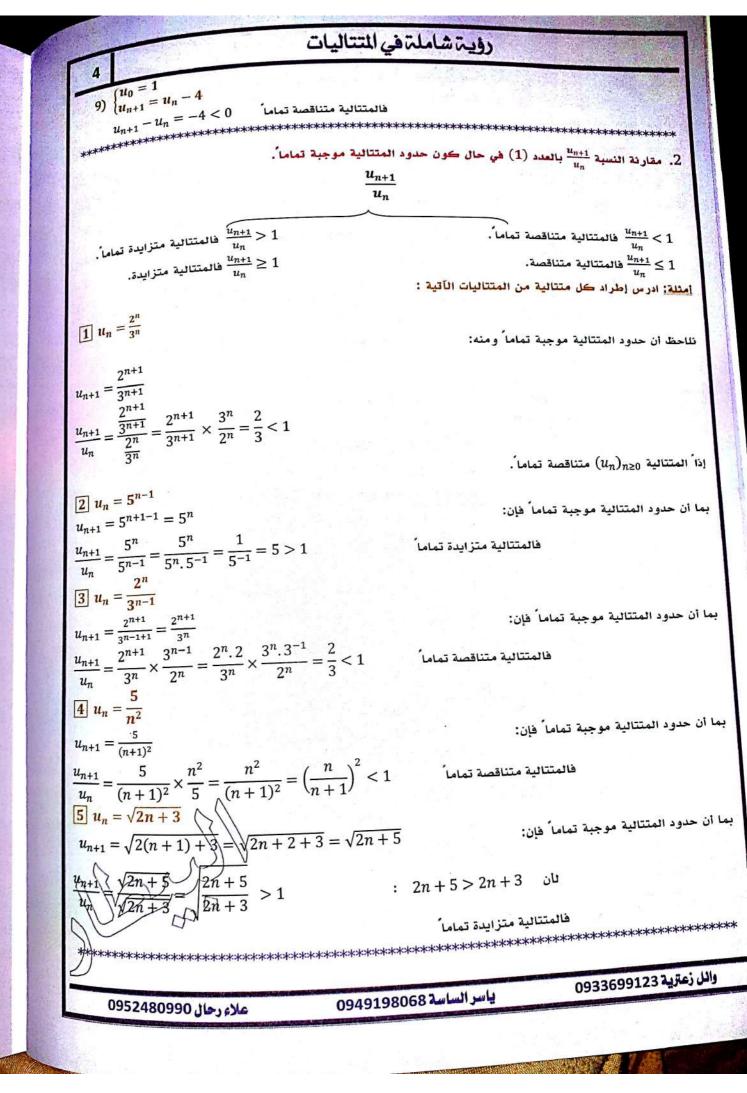
n=5 فالمتتالية متزايدة تماماً بدءاً من الحد ذا الدليل

5)
$$u_n = \frac{n+1}{n+2}$$

 $u_{n+1} - u_n = \frac{n+2}{n+3} - \frac{n+1}{n+2} = \frac{(n+2)^2 - (n+1)(n+3)}{(n+2)(n+3)}$
 $= \frac{n^2 + 4n + 4 - (n^2 + 3n + n + 3)}{(n+2)(n+3)}$
 $= \frac{1}{(n+2)(n+3)} > 0$
(a) $u_n = \frac{2n-1}{n-1}$
 $u_{n+1} = \frac{2(n+1)-1}{n+1-1} = \frac{2n+2-1}{n} = \frac{2n+1}{n}$
 $u_{n+1} - u_n = \frac{2n+1}{n} - \frac{2n-1}{n-1} = \frac{(2n+1)(n-1) - n(2n-1)}{n(n-1)}$
 $= \frac{2n^2 - 2n + n - 1 - 2n^2 + n}{n(n-1)} = \frac{-1}{n(n-1)} < 0$

n=2 فالمتتالية متناقصة تماماً بدءاً من الحد ذا الدليل

7)
$$u_n = \sqrt{4n+1}$$
 $u_{n+1} = \sqrt{4(n+1)+1} = \sqrt{4n+5}$
 $u_{n+1} - u_n = \sqrt{4n+5} - \sqrt{4n+1} = \frac{(\sqrt{4n+5} - \sqrt{4n+1})(\sqrt{4n+5} + \sqrt{4n+1})}{\sqrt{4n+5} + \sqrt{4n+1}}$
 $= \frac{4n+5-(4n+1)}{\sqrt{4n+5} + \sqrt{4n+1}} = \frac{4}{\sqrt{4n+5} + \sqrt{4n+1}} > 0$ 'electric for a set of the set



رؤية شاملة في المتتاليات

 $u_n = f(n)$ هي حال كون المتتالية معرفة بالصيغة f هي حال كون المتتالية معرفة بالصيغة 3 \mathfrak{S}_{n} دراسة إطراد النابع (u_n على المجال $[0, +\infty[$ وننتامل المتتالية $(u_n)_{n\geq 0}$ المعرفة بالعلاقة $u_n = f(n)$ فإن: f عبد هنة: ليكن f تابعا معرفاً على المجال $(n)_n \geq 0$ وانتامل المتتالية $(u_n)_{n\geq 0}$ متتالية معرفاً بالعلاقة $u_n = f(n)$ فإن: محمد هذا المعنى المعرفة المعنى المعرفة بالعام المعرفة بالعام ($\hat{f}(x) \ge 0 = (\hat{u}_n)_{n \ge 0}$ متزايدة تماماً. 1. إذا كان f متزايد تماماً أو متزايد (أم 0 > (n)) كانت $f_n(u_n)_{n \ge 0}$ متزايدة تماماً. 1. إذا كان $(u_n)_{n\geq 0}$ عاد $(f(x) \leq 0 \leq (n)_n)$ كانت $(u_n)_{n\geq 0}$ متناقصة تماماً. 2. إذا كان f متناقص تماماً أو متناقص (أي $0 \leq (f(x))$ كانت $(u_n)_{n\geq 0}$ $u_n = \frac{3n-1}{n+2}$: المعرفة بالعلاقة: $(u_n)_{n \ge 0}$ المعرفة بالعلاقة: $u_n = \frac{3n-1}{n+2}$ مثال 1: الارس (x) = $\frac{3x-1}{x+2}$ المعرف على $R \setminus \{-2\}$ فهو معرف على $[0, +\infty]$ بوجه خاص ومنه شرط المبرهنية الكسري التابع الكسري $f(x) = \frac{3x-1}{x+2}$ لندرس إطراد f(x) على هذا المجال. $[0,+\infty[$ اشتقاقیة علی f $\hat{f}(x) = \frac{3(x+2) - 1(3x-1)}{(x+2)^2} = \frac{7}{(x+2)^2} > 0$ ومنه $\hat{f}(x)$ موجب تماماً على المجال $[0,+\infty[$ ومنه f(x) متزايد تماماً على هذا المجال. فالمتتالية ($u_n)_{n\geq 0}$ متزايدة تماماً. المتتالية الحسابية نقول عن متتالية $(u_n)_{n\geq 0}$ أنها حسابية إذا نتج كل حد عن سابقه بإضافة العدد الحقيقي نفسه. $0 \underbrace{,}_{\underline{+2}} 2 \underbrace{,}_{\underline{+2}} 4 \underbrace{,}_{\underline{+2}} 6 , \dots \dots$ مثال (1): 7, 11, 15, $\dots \dots \dots$ مثال (2): n تعريف: القول أن متتالية $(u_n)_{n\geq 0}$ هي متتالية حسابية معناه يوجد عدد حقيقي r بحيث من أجل كل عدد طبيعي $u_{n+1} = u_n + r$. يسمى ٢ أساس المتتالية الحسابية. $u_0 \underbrace{u_1}_{+r} \underbrace{u_1}_{+r} \underbrace{u_2}_{+r} \underbrace{u_3}_{+r} \underbrace{u_n}_{+r} \underbrace{u_1}_{+r} \underbrace{u_2}_{+r} \underbrace{u_3}_{+r} \underbrace{u_n}_{+r} \underbrace{u_n} \underbrace{u_n}_{+r} \underbrace{u_n}_{+r} \underbrace{u_n}_{+r} \underbrace{u_n}_{+r} \underbrace{u_n$ $u_0 + nr$ $u_n = u_0 + nr$ ومنه نستنتج أن الحد العام للمتتالية الحسابية: $u_0=0$ مثال(1): متتالية الأعداد الزوجية هي متتالية حسابية أساسها 2 حدها الأول $u_n = u_0 + nr$ $u_2 = 0 + 2(2) = 4$ $u_3 = 6$ $u_1 = 0 + (1)(2) = 2$ -7 الماسية أساسها n-2 , n-2 , n+5 الماسها n-2 , n-2 , n-2 , n-2r=-7 نال نال طراح آي حديث متتالين هو عدد ثابت r=-7(n-9) - (n-2) = n - 9 - n + 2 = -7د المتتالية حسابية أساسها r = 5 د ال $u_n = 5n + 3$ هي متتالية حسابية أساسها r = 5 د ان: ($u_n)_{n \ge 0}$ د ا $u_n = 1 + 3 = 5n + 3$ (n-2) - (n+5) = n - 2 - n - 5 = -7 $u_{n+1} = 5(n+1) + 3 = 5n + 8$ P $u_{n+1} - u_n = (5n+8) - (5n+3) = 5$ مسان البيطار 0933756454 طارق سعد الدين 0955561648 خلدون سيروان 0932791896

وبتعميم هذا الحد من أجل كل عدديين طبيعيين m, n نجد: u_5 , u_{17} اوجد $u_8 = 29$ و r = 3 اوجد u_{17} اوجد $u_8 = u_8$ $u_n = u_m + (n - m)r$ $u_{17} = u_8 + (17 - 8)(3)$ $u_5 = u_8 + (5-8)(3)$ = 29 + 27= 29 - 9 $u_{17} = 56$ $u_5 = 20$ تمرين: اختبر أي المتتاليتين الأتيتين حسابية: $1 u_n = n^2 + 1$ $u_{n+1} = (n+1)^2 + 1 = n^2 + 2n + 2$ $u_n = n^2 + 1$ $u_{n+1} - u_n = n^2 + 2n + 2 - (n^2 + 1)$ = 2n + 1 (غیر ثابت) فالمتتالية ليست حسابية. $|2|u_n = 3n + 1$ $u_{n+1} = 3(n+1) + 1 = 3n + 4$ $u_n = 3n + 1$ $u_{n+1} - u_n = 3n + 4 - (3n + 1)$ (ثابت) 3 = فالمتتالية حسابية. مجموع حدود متوالية من متتالية حسابية: الحد الأخير +الحد الأول (عدد الحدود) = 5 <u>ملاحظة:</u> لإيجاد عدد الحدود في مجموع حدود متوالية من متتالية ما: j - i + 1 فإن عدد الحدود $S = u_i + u_{i+1} + \dots + u_j$.1 ^D حساب عدد الحدود بعدها إذا كان ممكناً. 3. إذا كان المجموع لحدود غير متوالية نحوله لمجموع حدود جديدة متوالية . داسر الساسة 0949198068 علاء رحال 0952480990 0933699123 2. 36: 111. Scanned by CamScanner

فترجق لإثبات أن متتالية مفروضة هي متتالية حسابية يجب أن يكون طرح أي حدين متتاليين فيها يساوي عدد حقيقي

 $u_n = u_0 + nr$

 $u_n = u_m + (n-m)r$

 $u_{n+1} - u_n = r($ ثابت)

ثابت أيا كانت n E N ويسمى أساس المتتالية.

وجدنا أن الحد العام لمتتالية حسابية هو من الشكل:

معيار المتتالية الحسابية:

عبارة الحد العام:

حيث 20 هو الحد الأول.

 $u_n = -3n+2$ مدال $(u_n)_{n\geq 0}$ المعرفة بالعلاقة $(u_n)_{n\geq 0}$ u1 , u0 .1 $u_1 = -3(1) + 2 = -1$ $u_0 = 2$ r اثبت ان u_n متتالية حسابية وعين اساسها 2 $u_{n+1} = -3(n+1) + 2 = -3n - 1$ $u_n = -3n + 2$ $u_{n+1} - u_n = -3n - 1 - (-3n + 2) = -3$ (تابت) r=-3 فالمتتالية حسابية واساسها $S = u_0 + u_1 + \dots + u_n$ المجموع n المجموع 3. n - 0 + 1 = n + 1 عدد الحدود: $S = (n+1)\left(\frac{2-3n+2}{2}\right) = (n+1)\left(\frac{4-3n}{2}\right)$ مثال $(u_n)_{n\geq 0}$ نعرف r=5 متالية حسابية فيها $u_0=2$ اساسها $s_n=u_3+\dots+u_n$ نعرف $(u_n)_{n\geq 0}$ فاذا $(u_n)_{n\geq 0}$ n علمت ان $S_n = 6456$ احسب قيمة n-3+1=n-2نلاحظ أن عدد الحدود: n-3+1=n-2 $S_n = \left(1$ عدد اللقول $\left(\frac{u_3 + u_n}{2}\right) = (n-2)\left(\frac{u_3 + u_n}{2}\right)$ لنوجد حد البداية U₃ من قانون الحد العام لمتتالية حسابية: $\begin{cases} u_n = 2 + 5n \\ u_3 = 2 + 5(3) = 17 \end{cases}$ $u_n = u_0 + nr$ = 2 + n(5)= 2 + 5n $S = (n-2)\left(\frac{u_3 + u_n}{2}\right)$ $6456 = (n-2)\left(\frac{17+2+5n}{2}\right)$ 12912 = (n-2)(19+5n) : (2) نضر ب بالعدد (2) : (2) نضر ب بالعدد (2) : (2) نف $12912 = 19n + 5n^2 - 38 - 10n$ $5n^2 + 9n - 12950 = 0$ $\Delta = b^2 - 4ac = 81 - 4(5)(-12950) = 259081 \Longrightarrow \sqrt{\Delta} = 509$ $n_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-9 + 509}{10} = \frac{500}{10} = 50 \Longrightarrow \boxed{n = 50}$ $n_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-9 - 509}{10} = \frac{-518}{10} = -51.8 \qquad \left(N \text{ is single for all of the set of the$ $u_{10} = -12$, $u_{20} = -32$ مثال (u_n) متتالية حسابية فيها $(u_n)_{n \ge 0}$ (u_n) مثال (3) r , 110 .1 $u_n = u_m + (n - m)r$ $u_{20} = u_{10} + (20 - 10)$ \Rightarrow $\vec{n} = -2$ $u_{20} = u_0 + (20 - 0)(-2)$ $-32 = u_0 - 40 \implies \boxed{u_0 = 8}$ طارق سعد الدين 0955561648 خلدون سيروان 0932791896 حسان البيطار 0933756454

رؤية شاملة في المتتاليات

 $S = u_{10} + u_{20} + u_{30} + \dots + u_{100}$ د احسب المجموع السابق یشکل متتالیة من الشکل $v_1, v_2, v_3, \dots, v_{10}$ نلاحظ أن المجموع السابق یشکل متتالیة من الشکل $v_1 = u_{10}$, $v_2 = u_{20}$, $\dots, v_{10} = u_{100}$ حیث : $v_1 = u_{100}$, $v_2 = u_{20}$, $\dots, v_{10} = u_{100}$ و منه یکون عدد الحدود 10 - 1 + 1 = 10 لدینا : $v_1 = u_{10} = -12$

$$v_{10} = u_{100} = u_0 + (100 - 0)(-2) = -192$$

$$S = (10) \left(\frac{v_1 + v_{10}}{2}\right)$$

$$S = (10) \left(\frac{-12 - 192}{2}\right) = -1020$$

r=-2 , مثال $(u_n)_{n\geq 0}$, u_1 مثال $(u_n)_{n\geq 0}$ ، S_n , u_1 احسـب S_n ، u_1 احسـب $(u_n)_{n\geq 0}$ ($u_n)_{n\geq 0}$) مثال $u_{17}=105$

$$u_n = u_m + (n - m)r$$

 $u_{17} = u_1 + (17 - 1)(-2)$ $105 = u_1 - 32 \Longrightarrow \boxed{u_1 = 137}$

17 - 1 + 1 = 17 نلاحظ أن عدد الحدود هو

$$S = 17 \left(\frac{u_1 + u_{17}}{2}\right)$$
$$= 17 \left(\frac{137 + 105}{2}\right) = 2057$$

ملاحظة:

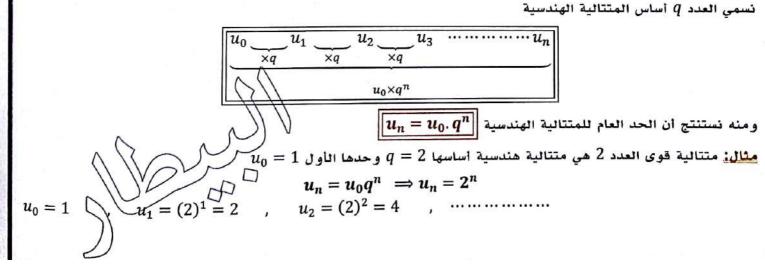
الوسط الحسابي $b = \frac{a+c}{2}$ إذا كانت الماعداد c, b, a ثلاثة حدود متوالية من متتالية من متتالية عندئذ يكون $b = \frac{a+c}{2}$ نسمي b الوسط الحسابي a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية من متتالية حسابية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة حدود متوالية من متتالية حسابية إذا كان a + c = 2b ثلاثة من متتالية من متتالية حسابية إذا كان a + c = 2b ثلاثة من متتالية من متتالية حسابية إذا كان a + c = 2b ثلاثة من متتالية من متتالية من متتالية من متتالية من من متتالية من متتالية من متتالية أذا كان من من متتالية أذا كان من من متتالية أذا كان من متتالية أذا كان من متتالية أذا كان من من متتالية أذا كان من من متتالية أذا كان من متتالية أذا كان من من متتالية أذا كان من من متتالية أذا كان من متتالية أذا كان من من من متتالية أذا كان من من من متتالية أذا كان من من من من متتالية أذا كان من من متلية أذا كان من من من من من من من

المتتاليات الهندسية:

نقول عن متتالية $(u_n)_{n\geq 0}$ أنها هندسية إذا نتج كل حد عن سابقه بضربه بالعدد الحقيقي ذاته.

$$1 \underbrace{,}_{\times 4} 4 \underbrace{,}_{\times 4} 16 \underbrace{,}_{\times 4} 64 , \dots \dots$$

 $\overline{u_{n+1} = q u_n}$ تعريف: القول أن $(u_n)_{n \ge 0}$ هي متتالية هندسية إذا وجد عدد حقيقي q وتحققت العلاقة التدريجية n أياً كان العدد الطبيعي n



 عدال: المتالية (لاعداد n, 2n, 2n, 4n عدد طبيعي هي حدود متوالية من متتالية هندسية اساسها (2) نان ناتج قسمة اي q = q = q

 حدين متتاليين هو عدد ثابت q = 2n

 عدين متتاليين هو عدد ثابت q = 2n

 والعقد: $2 = n^{2n} \stackrel{0}{=} \frac{2n}{n} \stackrel{0}{=} \frac{4n}{2n} = 2$

 عثال: المتتالية المنتالية (المعام يعطى بالعلاقة $n = 5^n$ عدد طبيعي.

 ميال: المتتالية هندسية اساسها 2 = p نان:

 هي متتالية هندسية اساسها 2 = p نان:

 معيد أي المتتالية المندسية ((1) التي حدها العام يعطى بالعلاقة $n = 5^n$

 معيد أي المتتالية هندسية اساسها $q = 5^{n+1}$

 معيد أي المتتالية المندسية ((1) التي حدها العام يعطى بالعلاقة $n = 5^n$

 معيد أي المتتالية المتتالية المتتالية ((1) التي حدها العام يعطى العاقة $n = 5^n$

 معيد اله مندسية الساسها $q = 5^n$

 معيد المتتالية المندسية الساسها q = 1

 معيد المتتالية المندسية:

 ((1) متر) معيد المتتالية المندسية:

عبارة الحد العام:

- $u_n = u_0. q^n$ الحد العام لمتتالية هندسية التي حدها الأول u_0 يعطى \blacklozenge
- $u_n = u_m, q^{n-m}$ m, n بتعميم هذا القانون من أجل كل عددين طبيعيين m, n

 u_6 اوجد $u_3 = 12$, q = 2 اوجد $u_3 = u_3 = 12$, q = 2 ا

$$u_n = u_m \cdot q^{n-m}$$

تمرين: اختبر أي المتتاليتين الآتيتين هندسية:

$$\begin{aligned} \boxed{1} & u_n = \frac{2}{3^n} \\ u_{n+1} = \frac{2}{3^{n+1}} \\ u_n = \frac{2}{3^n} \end{aligned} \\ \Rightarrow \frac{u_{n+1}}{u_n} = \frac{\frac{2}{3^{n+1}}}{\frac{2}{3^n}} = \frac{2}{3^{n+1}} \cdot \frac{3^n}{2} = \frac{1}{3} \quad (\texttt{it}) \\ u_n = \frac{1}{3} \quad \texttt{(it)} \end{aligned}$$

$$q = \frac{1}{3} \quad \texttt{(it)} \\ q = \frac{1}{3} \quad \texttt{(it)} \\ q = \frac{1}{3} \quad \texttt{(it)} \end{aligned}$$

$$\begin{array}{c} u_{n+1} = (n+1)^2 \\ u_n = n^2 \end{array} \right\} \Longrightarrow \frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{n^2} = \left(\frac{n+1}{n}\right)^2 \qquad \left(\frac{1}{2}\right)^2 = \left(\frac{n+1}{n}\right)^2 = \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2$$

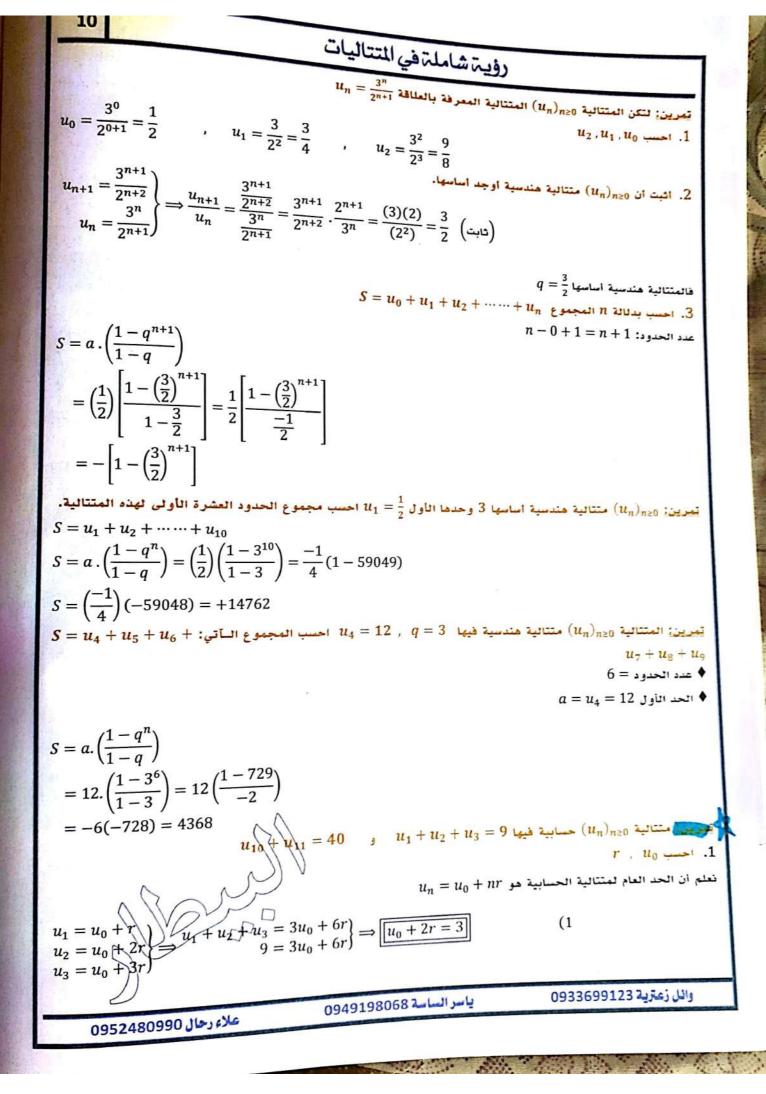
 $u_6 = u_3 q^{6-3}$

 $= 12(2)^{6-3} = 96$

2

فالمتتالية ليست هندسية.

مجموع هود متوالية من متتالية هندسية:
مجموع هود متواليا من متتالية هندسية حدها الأول
$$a$$
 وأساسها $1 \neq q$ يعطى بالعلاقة:
مجموع n حدا متواليا من متتالية هندسية حدها الأول a وأساسها $f \neq q$ يعطى بالعلاقة:
 $S = a \cdot \frac{1-q^n}{1-q}$. الحد الأول $s = a \cdot \frac{1-q^n}{1-q}$.



$u_n = \frac{1}{2^{n+1}}$ المتتالية المعرفة بالعلاقة $(u_n)_{n \ge 0}$ المتتالية المعرفة المعرفة المعرفة المعرفة المتتالية المتتالية المتتالية المتتالية المتتالية المعرفة المتتالية المعرفة المتتالية المعرفة المتتالية المعرفة المتتالية المعرفة المعرفة المتتالية المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المتتالية المتتالية المعرفة المعرفة المعرفة المعرفة المتتالية المعرفة المعرفة المتتالية المتتالية المتتالية المتتالية المعرفة المتتالية المتتالية المعرفة المعرفة المعرفة المعرفة المتتالية المعرفة المتتالية المعرفة المعرفة المعرفة المعرفة المعرفة المتتالية المعرفة المعلمة المعلمة المعلمة المعلمة المعلمة المعلمة المعلمة المعلمة المعرفة المعلمة u_2, u_1, u_0 , احسب .1 $u_0 = \frac{3^0}{2^{0+1}} = \frac{1}{2}$, $u_1 = \frac{3}{2^2} = \frac{3}{4}$, $u_2 = \frac{3^2}{2^3} = \frac{9}{8}$. اثبت ان $(u_n)_{n\geq 0}$ متتالية هندسية اوجد اساسها. $\begin{aligned} u_{n+1} &= \frac{3^{n+1}}{2^{n+2}} \\ u_n &= \frac{3^n}{2^{n+1}} \end{aligned} \implies \frac{u_{n+1}}{u_n} = \frac{\frac{3^{n+1}}{2^{n+2}}}{\frac{3^n}{2^{n+1}}} = \frac{3^{n+1}}{2^{n+2}} \cdot \frac{2^{n+1}}{3^n} = \frac{(3)(2)}{(2^2)} = \frac{3}{2} \quad (1)$ $q=rac{3}{2}$ فالمتتالية هندسية أساسها $S = u_0 + u_1 + u_2 + \dots + u_n$ المجموع n المجموع. 3 n-0+1=n+1 عدد الحدود: $S = a \cdot \left(\frac{1 - q^{n+1}}{1 - q}\right)$ $= \left(\frac{1}{2}\right) \left| \frac{1 - \left(\frac{3}{2}\right)^{n+1}}{1 - \frac{3}{2}} \right| = \frac{1}{2} \left| \frac{1 - \left(\frac{3}{2}\right)^{n+1}}{\frac{-1}{2}} \right|$ $= -\left[1 - \left(\frac{3}{2}\right)^{n+1}\right]$ تصرين: $(u_n)_{n\geq 0}$ متتالية هندسية أساسها 3 وحدها الأول $u_1=rac{1}{2}$ احسب مجموع الحدود العشرة الأولى لهذه المتتالية. $S = u_1 + u_2 + \dots + u_{10}$ $S = a \cdot \left(\frac{1-q^n}{1-q}\right) = \left(\frac{1}{2}\right) \left(\frac{1-3^{10}}{1-3}\right) = \frac{-1}{4} (1-59049)$ $S = \left(\frac{-1}{4}\right)(-59048) = +14762$ $S = u_4 + u_5 + u_6 +$ متتالية ($u_n)_{n \ge 0}$ احسب المجموع المآتي: $u_4 = 12$, q = 3 متتالية هندسية فيها ($u_n)_{n \ge 0}$ احسب المجموع المآتي $u_7 + u_8 + u_9$ عدد الحدود = 6 $a = u_4 = 12$ الحد الأول \blacklozenge $S = a \cdot \left(\frac{1-q^n}{1-q}\right)$ $= 12.\left(\frac{1-3^6}{1-3}\right) = 12\left(\frac{1-729}{-2}\right)$ = -6(-728) = 4368 $u_{10} + u_{11} = 40$ و $u_1 + u_2 + u_3 = 9$ متتالية $(u_n)_{n \ge 0}$ متتالية $(u_n)_{n \ge 0}$ r , u_0 , 1 .1 $u_n = u_0 + nr$ نعلم أن الحد العام لمتتالية الحسابية هو $u_1 = u_0$ $\begin{array}{c} u_1 + u_2 + u_3 = 3u_0 + 6r \\ 9 = 3u_0 + 6r \end{array} \Longrightarrow \boxed{ \begin{array}{c} u_0 + 2r = 3 \end{array} }$ (1 $u_3 = u_0 +$

ياسر الساسة 0949198068

علاء رحال 0952480990

وائل زعترية 0933699123

11 رؤية شاملة في المتتاليات $\begin{array}{c} u_{10} = u_0 + 10r \\ u_{11} = u_0 + 11r \end{array} \Longrightarrow \begin{array}{c} u_{10} + u_{11} = 2u_0 + 21r \\ 40 = 2u_0 + 21r \end{array} \Longrightarrow \begin{array}{c} \boxed{2u_0 + 21r = 40} \end{array}$ (2 من 1) نجد $u_0 = 3 - 2r$ نعوض في 2): 2(3-2r)+21r=406 - 4r + 21r = 4017r = 34 $r=2 \Rightarrow u_0 = -1$ $S = u_0 + u_1 + u_2 + \dots + u_{30}$ 2. احسب المجموع u₀ = −1 لدينا ♦ نوجد u₃₀ : $u_n = u_0 + nr$ $\Rightarrow u_{30} = -1 + 30(2) = 59$ ♦ عدد الحدود 31 = 1 + 0 - 30 $S = 31\left(\frac{u_0 + u_{30}}{2}\right) = 31\left(\frac{-1 + 59}{2}\right) = 899$ ملاحظة: إذا كانت الأعداد c,b,a ثلاثة حدود متوالية من متتالية هندسية كان $b^2 = a.c$ وفي حالة الأعـداد c,b,a موجبة وتحقق المساواة a.c ثقول إن b هو وسط هندسي للعددين a و c والأعداد c,b,a ثلاثة حدود متوالية في متتالية هندسية. إثبات صحة مبرهنة أو خاصة بالتدريج (الاستقراء الرياضي): لير هان صحة خاصة P(n) متعلقة بعدد طبيعي n نتبع الخطوات الأتية: n . نثبت صحة الخاصة من أجل أول قيمة لـ nn يفرض أن الخاصة صحيحة من أجل أي عدد طبيعى 2n+1 نثبت صحة الخاصة من أجل. $\frac{3}{n}$ مشاعف للمدد n فإن المدد n^3-n مشاعف للمدد nn = 0 نثبت صحة الخاصة من أجل h = 0E(0): $(0)^3 - (0) = 0$ n=0 والعدد (0) مضاعف للعدد (3) فالخاصة صحيحية من أجل n=0♦ نفرض أن الخاصة صحيحة من أجل *n* أي: $\Rightarrow n^3 = 3k + n$ $E(n): n^3 - n = 3k$ ♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت: E(n+1): $(n+1)^3 - (n+1) = 3k_1$ $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$ $= 3k + n + 3n^{2} + 2n$ $= 3k + 3n^{2} + 3n = 3(k + n^{2} + n)$ n+1 فالخاصة صحيحة من اجل ^D $n \in N$ فالخاصة السابقة صحيحة من أجل حسان البيطار 0933756454

خلدون سيروان 0932791896

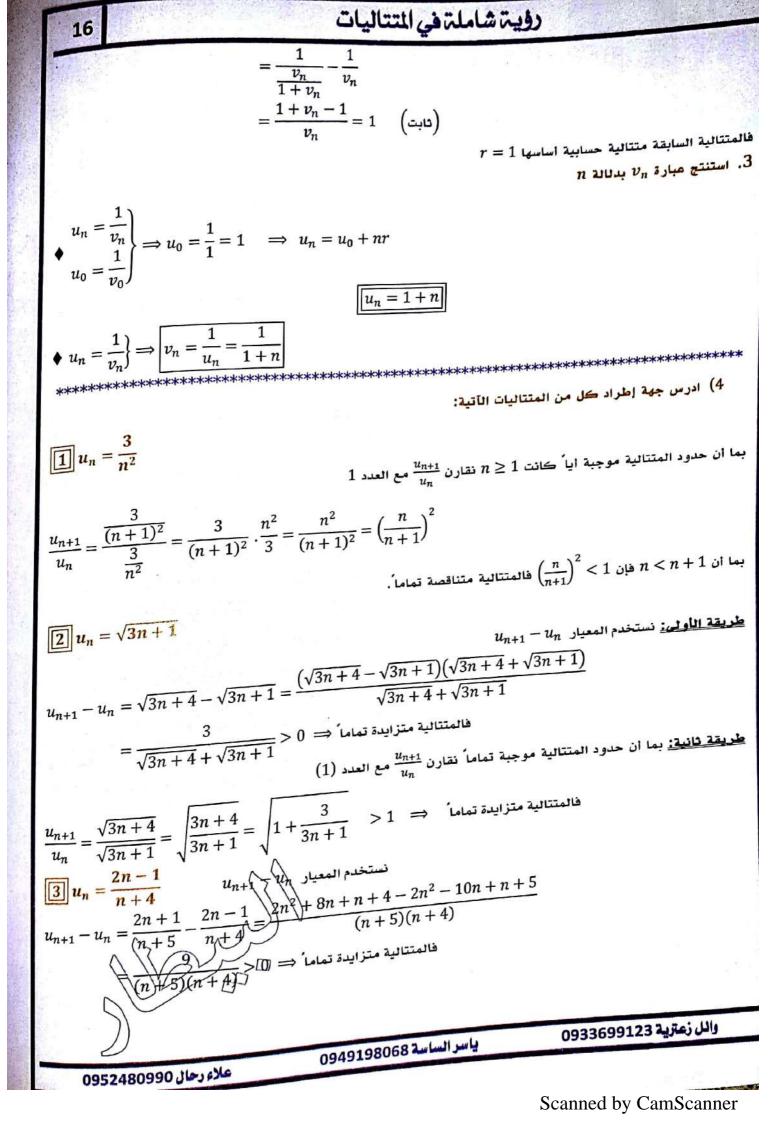
طارق سمد الدين 0955561648

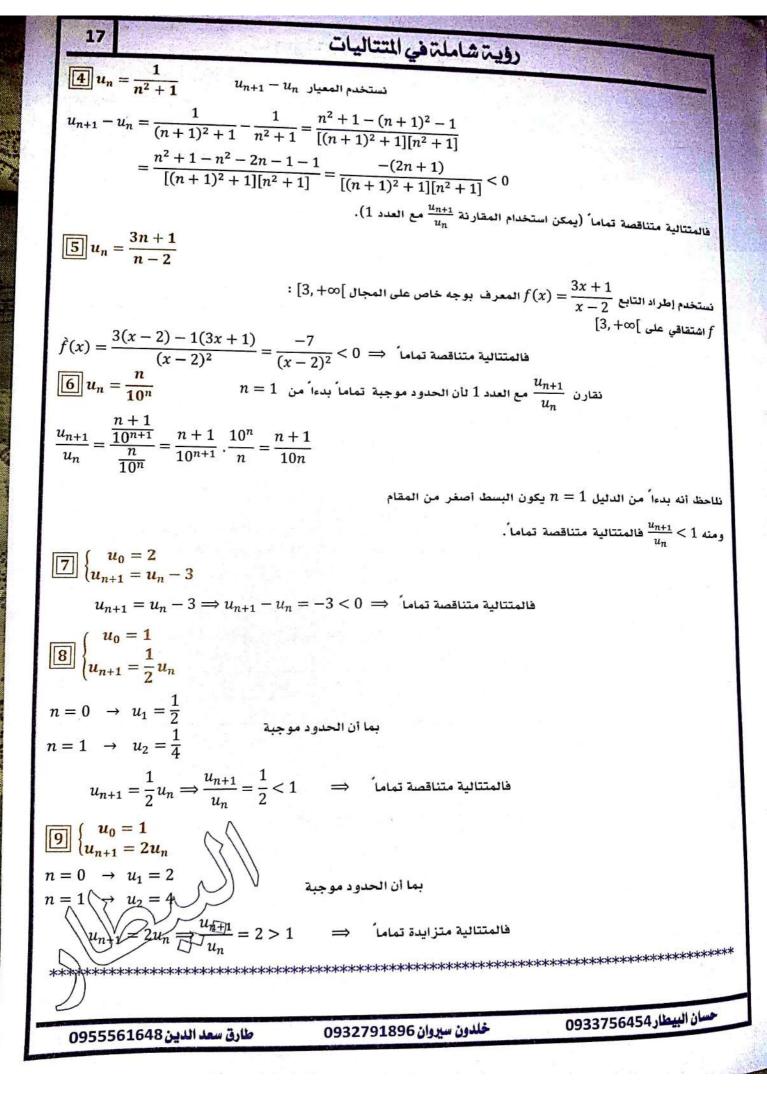
$$\begin{array}{l} n \geq 4 & \sum_{n=1}^{\infty} 2^n \sum_{n=1}^{\infty} 2^$$

$$\begin{array}{c} u_{30} = u_{10} q^{30-10} \\ u_{30} = \frac{25}{2197 (\frac{30}{13})}^{20} \\ u_{30} + u_{31} + u_{32} \\ u_{31} + u_{32} \\ u_{1} + u_{32} \\ u_{1} + u_{2} + \dots + u_{20} \\ u_{1} + u_{2} + \dots + u_{20} \\ u_{1} + u_{2} + \dots + u_{20} \\ u_{1} = u_{1} + (n - 1)^{r} \\ u_{n} = -2 + (n - 1)(3) \\ \end{array} \right\} = \underbrace{|u_{n} = 3n - 5| \\ u_{32} - 2 & (n - 1)(3) \\ \end{array} \\ \begin{array}{c} = u_{n} = 3n - 5 \\ u_{30} = 3(30) - 5 = 85 \\ u_{32} - 3(30) - 5 = 85 \\ u_{32} = 3(32) - 5 = 91 \\ \hline \\ & & & & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & & \\ & & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & \\ & & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} u_{n} = 3n - 5 \\ u_{20} = 3(20) - 5 = 55 \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{n} \cdot q^{n-m} \\ \end{array} \\ \begin{array}{c} u_{n} = u_{n} \cdot q^{n-m} \\ u_{n} = u_{n} \cdot q^{n-m} \\ & & \\ \end{array} \\ \begin{array}{c} s = (J_{3})(1 - q^{2}) \\ = (-2)\left(\frac{1 - q^{2}}{1 - q}\right) = (u_{1})\left(\frac{1 - q^{2}}{1 - q}\right) \\ = (-2)\left(\frac{1 - 3^{2}}{1 - 3}\right) = 1 - 3^{7} - 2186 \\ \end{array} \\ \begin{array}{c} S = u_{2} + u_{4} + \dots + u_{2n} \\ & & \\ S = u_{2} + u_{4} + \dots + u_{2n} \\ & & \\ S = u_{2} + u_{4} + \dots + u_{2n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{2} - 2(3) = -6 \\ v_{2} + u_{4} + \dots + v_{2n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{2} - 2(3) = -6 \\ v_{2} + u_{4} + \dots + v_{2n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{2} - 2(3) = -6 \\ v_{2} + u_{4} + \dots + v_{2n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{2} - 2(3) = -6 \\ v_{n} + u_{n} + v_{n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$
 \\ \begin{array}{c} u_{n} = u_{2} - 2(3) = -6 \\ v_{n} + u_{n} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{n} - 2(3) \\ & & \\ \end{array} \\ \begin{array}{c} u_{n} = u_{n} \\ & & \\ &

رؤية شاملة في المتتاليات $u_0 = -3$ وهيها r = -2 وهيها ($u_n)_{n \ge 0}$.5 $u_n = u_0 + nr$ $u_{25} + u_{26} + \dots + u_{125}$ $u_n = -3 - 2n$ ♦ عدد الحدود 101 = 1 + 25 - 25 $u_{25} = -3 - 50 = -53$ $:u_{125}$, u_{25} جساب حساب \blacklozenge $u_{125} = -3 - 2(125) = -253$ $S = \left(\frac{u_{25}+u_{125}}{2} \right) \left(\frac{u_{25}+u_{125}}{2} \right)$ $= 101\left(\frac{-53-253}{2}\right) = -15453$ $u_3+u_4+\dots+u_{10}$ متتالية هندسية أساسها 2 وفيها $u_0=1$ احسب $(u_n)_{n\geq 0}$.6 $u_n = u_0.q^n$ $u_n = 1.(2)^n$ ♦ عدد الحدود 8 = 1 + 3 - 10 $u_3 = (2)^3 = 8$ $S = \left(1 - q^{2} \right) \left(1 - q^{2} \right)$ (الحد الأول) $= 8\left(\frac{1-2^8}{1-2}\right) = (-8)(-255) = 2040$ $S = \frac{1}{2} + 1 + \frac{3}{2} + 2 + \frac{5}{2} + 3 + \dots + 10$.7 نلاحظ أن المجموع السابق يمثل مجموع حدود متتالية حسابية حدها الأول 1/2 وأساسها 2/2 ومنه: $\begin{array}{c} u_n = u_0 + nr \\ u_n = \frac{1}{2} + \frac{1}{2}n \end{array} \Longrightarrow \boxed{ \begin{array}{c} u_n = \frac{1}{2}(1+n) \end{array} }$ لحساب دليل الحد الذي قيمته 10 نجعل : $u_n = 10$ $\frac{1}{2}(1+n) = 10 \implies 1+n = 20 \implies n = 19$ $u_{19} = 10$ الحد الأول $u_0 = rac{1}{2}$ والحد $u_{19} = 10$ عدد الحدود 20 = 1 + 0 - 19 $S = \left(2 + u_{19}\right) \left(\frac{u_0 + u_{19}}{2}\right)$ $= (20)\left(\frac{\frac{1}{2}+10}{2}\right) = 10\left(\frac{21}{2}\right) = 105$ a + b + c = 36.75 دلانة حدود متوالية من متتالية هندسية احسبها علماً إن: c, b, aبما أن الحدود c , b , a حدود متوالية من متتالية هندسية فإن b وسط هندسي بين a و c أي: abc = 343 $b^{2} = ac$ abc = 343 $b^{3} = 343 = 7^{3}$ b = 7-b+c = 36.75abc = 343وائل زعترية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990

$a + 7 + c = 36.75$ $\implies a + c = 29.75$
a(7)c = 343) $ac = 49$
بالحل المشترك لهاتين المعادلتين نحصل على المعادلة:
$c^2 - 29.75c + 49 = 0$
باستخدام الدستور Δ نجد أن:
c = 28 $c = 1.75$
a = 1.75 $a = 28$
تمرين: c, b, a ثلاثة حدود متوالية من متتائية هندسية احسبها علماً ان:
abc = 512 , $a+b+c = 28$
بما ان الحدود $c,\ b,\ a$ حدود متوالية من متتالية هندسية فإن b وسط هندسي بين c , a اي:
$b^2 - ac$) $b^3 = 512$
$ \bullet \begin{array}{l} a+b+c=28\\ abc=512 \end{array} \right\} \implies \begin{array}{l} a+8+c=28\\ a(8)c=512 \end{array} \right\} \implies \begin{array}{l} a+c=20\\ \underline{ac=64} \end{array} $
بالحل المشترك لهاتين المعادلتين نحصل على المعادلة:
$c^2 - 20c + 64 = 0$
باستخدام الدستور Δ نجد أن:
c = 4 $c = 16$
a = 16 $a = 4$
*********************** *************
$v_0 = 1$
$\begin{cases} v_0 = 1 \\ v_{n+1} = \frac{v_n}{1+v_n} e^{\frac{v_n}{1+v_n}} e^{\frac{v_n}{1+v_n}} e^{\frac{v_n}{1+v_n}} e^{\frac{v_n}{1+v_n}} \end{cases} $ (3)
n تحقق ان $v_n > 0$ ايا ڪان العدد الطبيعي n
لنثبت أن $v_n > 0$ بالتدريج (الماستقراء الرياضي):
♦ نثبت صحة الخاصة من أجل n = 0:
$E(0)$: $v_0 = 1 > 0$
فالخاصة صحيحة من أجل $n=0$
. نفرض صحة الخاصة من أجل n أي: $v_n > 0$ نفرض صحة .
نثبت صحة الخاصة من أجل $1+1$ أي لنثبت: $v_{n+1} > 0$ أي لنثبت: $E(n+1): v_{n+1} > 0$
$v_{n+1} > 0 \Leftarrow \frac{v_n}{1+v_n} > 0 \Leftrightarrow \begin{cases} v_n > 0 \\ 1+v_n > 1 \end{cases}$
$n \in N$ فالخاصة صحيحة من أجل $n+1$ والخاصة السابقة صحيحة من أجل
د البت ان المتتالية $(u_n)_{n \ge 0}$ المعرفة بالعلاقة $u_n = \frac{1}{v_n}$ متتالية حسابية.
$u_{n+1} = v_{n+1} \longrightarrow u_{n+1} - u_n = \frac{1}{v_{n+1}} - \frac{1}{v_n}$
$u_n = \frac{1}{v_{n+1} - u_n} - \frac{v_n}{v_{n+1} - v_n}$
$\int v_n \int$





رؤية شاملة في المتتاليات

<u>تمرين:</u> أثبت أنه مهما كان العدد الطبيعي الموجب تماما[ً] n كان

$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

♦ نثبت صحة الخاصة من أجل n = 1

$$E(1) : \begin{cases} L_1 = 1^3 = 1 \\ L_2 = \frac{1(1+1)^2}{4} = 1 \end{cases} \implies L_1 = L_2$$

18

n=1 فالخاصة صحيحة من أجل

♦ نفرض صحة الخاصة من أجل n أي:

E(n) : $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$

♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت:

$$E(n+1): 1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \frac{(n+1)^{2}(n+2)^{2}}{4}$$

$$L_{1} = \underbrace{1^{3} + 2^{3} + \dots + n^{3}}_{E(n)} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3} = (n+1)^{2} \left[\frac{n^{2}}{4} + n + 1\right]$$

$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4} = L_{2}$$

$$n \in \mathbb{N}^{*} \text{ (ist) ist} \text{ is present integration}$$

<u>تدرب صفحة 21 رقم 1</u> $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$ المقدار $n \geq 1$ المقدار عدد طبيعي ا 1. احسب S_n , S₂ , S₁ بدائلة S₁ , S₂ , S₁ بدائلة 1. $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$ $S_2 = 1^2 + 2^2 = 5$ $S_1 = 1^2 = 1$ $S_3 = 1^2 + 2^2 + 3^2 = 14$ $S_4 = 1^2 + 2^2 + 3^2 + 4^2 = 30$ $S_{n+1} = \underline{1^2 + 2^2 + \dots + n^2} + (n+1)^2$ $S_{n+1} = S_n + (n+1)^2$ $S_n = rac{n(n+1)(2n+1)}{6}$ لدينا $n \geq 1$ لدينا $n \geq 2$. اثبت بالتدريج انه في حالة أية عدد طبيعي $n \geq 1$ نثبت صحة الخاصة من أجل n = 1: $L_1 = 1^2 = 1$ $L_2 \neq \frac{1(2)(3)}{2}$ $\int = L_1 \stackrel{\vee}{=} L_2$ n=1 فالخاصة صحيحة من أجل n=1E(1) : P ♦ نفر ض صحة الخاصة من أجل n أي: $r^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6} = S_{n}$ E(n)وائل زعارية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990

رؤية شاملة في المتتاليات نثبت صحة الخاصة من أجل n + 1 أي لنثبت: $E(n+1) : 1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{n}$ $S_{n+1} = S_n + (n+1)^2$: الدينا من الطلب 1 :

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

= $(n+1)\left[\frac{n(2n+1)}{6} + n + 1\right]$
= $(n+1)\left[\frac{2n^2 + n + 6n + 6}{6}\right]$
= $(n+1)\left(\frac{2n^2 + 7n + 6}{6}\right)$
= $\frac{(n+1)(n+2)(2n+3)}{6} = L_2$

$$\begin{array}{r}
2n+3\\
n+2\\
2n^2+7n+6\\
2n^2+4n\\
3n+6\\
3n+6\\
0\\
\end{array}$$

n+1 فالخاصة صحيحة من أجل

 $n \ge 1$ ومنه الخاصة السابقة من أجل

تدرب صفحة 21 رقم 2

E(n) ليكن 1-x في حالة عدد طبيعي n نرمز E(n) إلى المتراجحة x > -1 + nx في حالة عدد طبيعي المتراجحة x > -1محققة أيا كان العدد الطبيعي n

• نثبت صحة الخاصة من أجل n = 0:

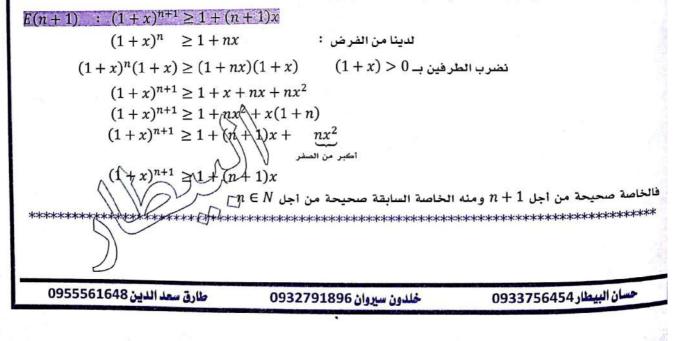
$$E(0) : \begin{cases} L_1 = (1+x)^0 = 1 \\ L_2 = 1+0 = 1 \end{cases} \Longrightarrow L_1 = L_2$$

n = 0 فالخاصة صحيحة من أجل

نفرض صحة الخاصة من أجل n أى:

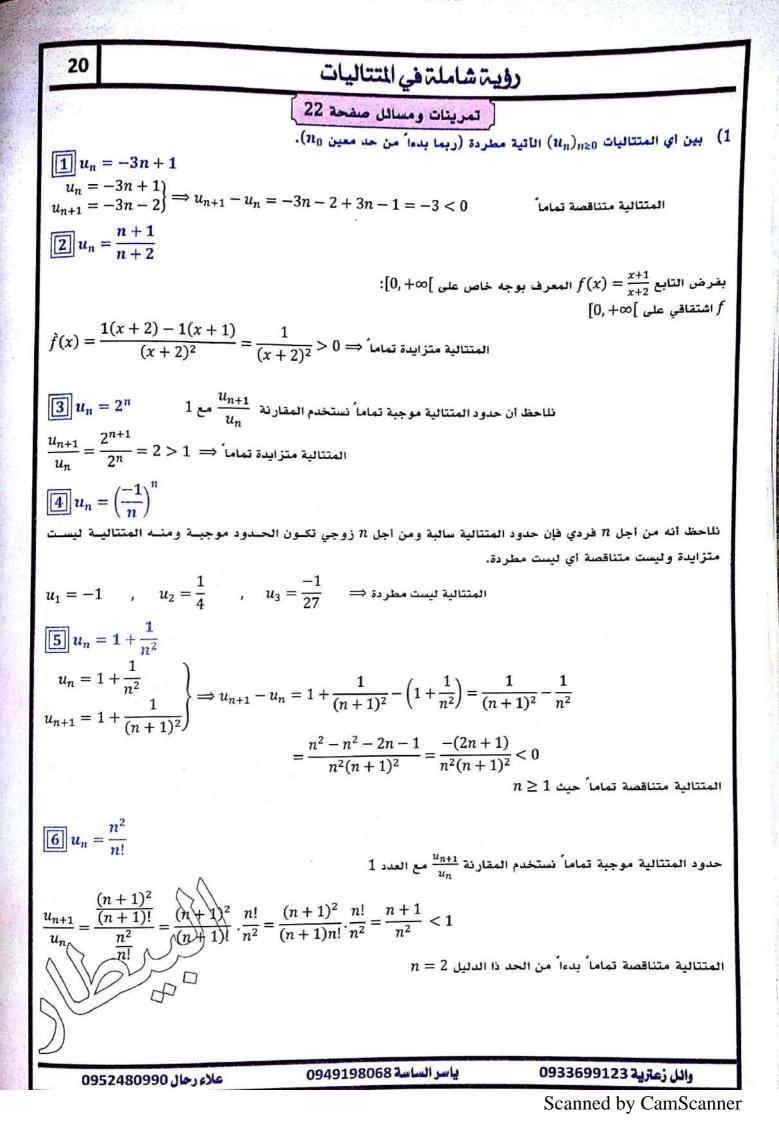
 $: (1+x)^n \ge 1 + nx$ E(n)àn

• نثبت صحة الخاصة من أجل n + 1 أى لنثبت:



Scanned by CamScanner

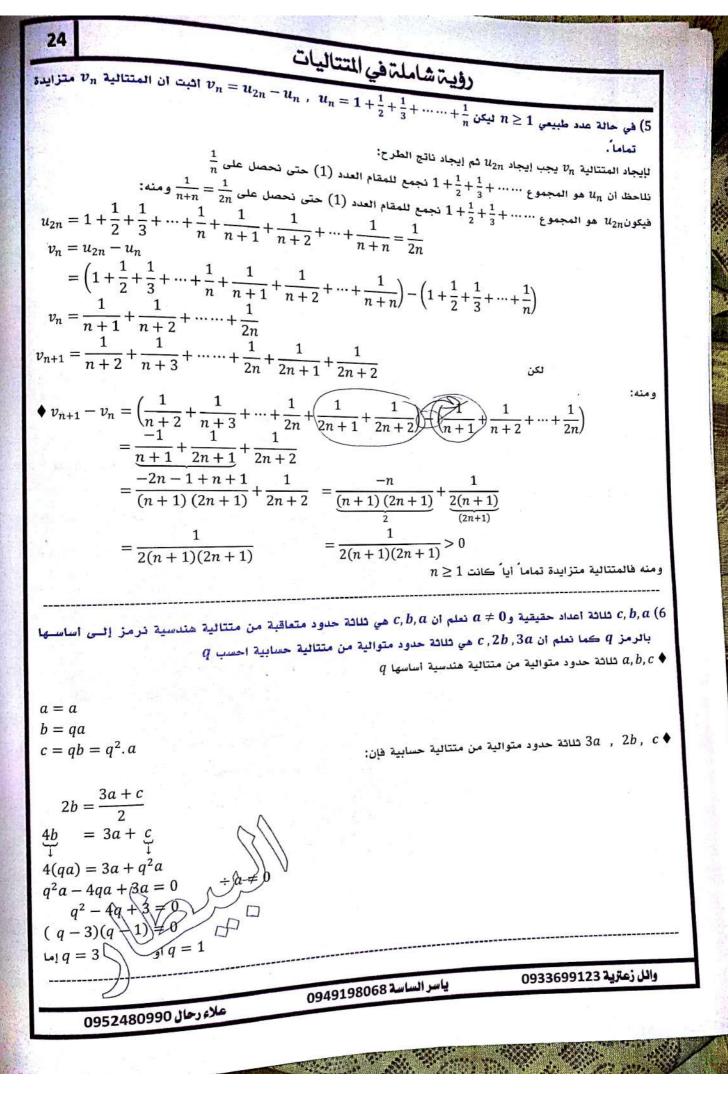
19



$$\frac{\left[\sum_{n=1}^{\infty} u_n = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} \\ u_n = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} \\ u_{n+1} = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} \right) \implies u_{n+1} - u_n = \frac{1}{2^{n+1}} > 0 \implies i_n = i_n =$$

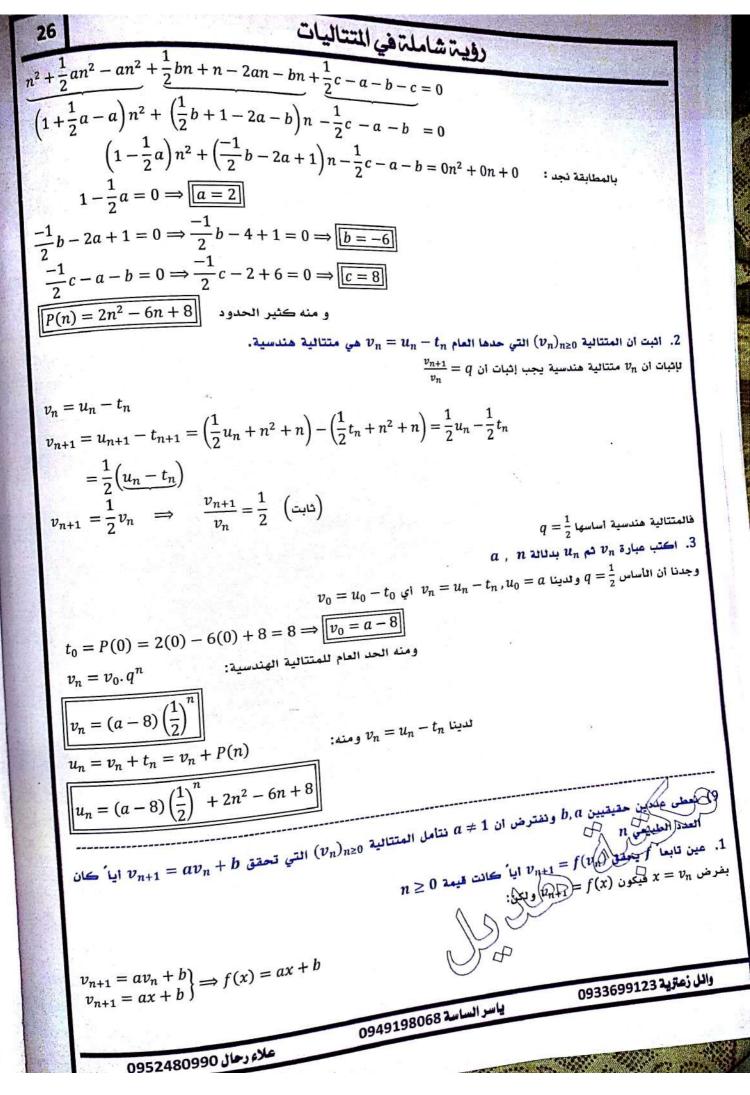
$$\begin{array}{c} u_{n} - u_{n+1} &= 2^{n} \\ u_{n} - (2u_{n} - 3) &= 2^{n} \\ -u_{n} + 3 &= 2^{n} & \hline \\ u_{n} = (2u_{n} - 3) &= 2^{n} \\ -u_{n} + 3 &= 2^{n} & \hline \\ u_{n} &= 3 - 2^{n} & n &= 0 \\ \end{array}$$

$$\begin{array}{c} \text{there are below and let below and let up in the l$$



Scanned by CamScanner

25			لتتاليات	ئاملة في ا	رويت		
هـدف فـي هـذا	،د طبيعسي n د	مند ک ل عد	$u_0 = 7$ $u_{n+1} = 10u_n$	ياً وفق 18 -	لمعرفة تدريج	ע (u _n) _{n≥0} ע	7) نتامل المتتال
			-11+11			التعبير عن n	
$u_1 = 10 u_0 -$	18 = 10(7)	- 18 = 70 -	- 18 = 52				المرين (ع
$u_2 = 10 u_1 -$				2			
$u_3 = 10 u_2 -$	market ward Reason						
$u_4 = 10 u_3 -$			1		_		1
n	0	1	2	3	4		n
un	7	52	502	5002	50002		
$u_n - u_{n+1}$	-45	-450	-4500	-45000	-450000		-45×10^{n}
$u_n - u_{n+1}$	•						
$u_n - (10u_n - $							
$u_n - 10u_n + $							
-	$-9u_n = -45$						
	$u_n = 5 \times$	$10^n + 2; n$	≥ 0				
					نقراء الرياضي:	لتخمين بالاسا	نثبت صحة علاقة ا
					n=0 أجل	ة الخاصة من	• نثبت صحا
$L_1 = u_0 = 7$ $L_2 = 5 \times 10^0$		_}=	$\Rightarrow L_1 = L_2$				
$L_2 = 5 \times 10^{6}$	$+2 = 5 \times 1$	+2 = 7)	-1 -2				
			2 CON		-	حة الخاصة مر	• نفرض ص
محيحة $u_n = 5 imes 10^n + 2$							
		$u_{n+1} =$	$= 5 \times 10^{n+1}$	لنثبت أن: 2+	أجل $n+1$ أي	ة الخاصة من	• نثبت صحا
$u_{n+1} = 10u_n - 18$							
$= 10(5 \times 10^{n} + 2) - 18$							
$= 5 \times 10^{n+1} + 20 - 18$							
u_{n+1}	$= 5 \times 10^{n+1}$	+ 2					
			.n	$\in N$ iجل ڪل	ڻي محققة من	n+1 وبالتا	أي محققة من أجل
	$\begin{cases} u_0 = a \\ u_{n+1} = \frac{1}{2}u_n + n^2 + n \end{cases}$ (8) نتامل المتتالية $(u_n)_{n \ge 0}$ المعرفة تدريجيا وفق:						
لاقة التدريجية	الد $t_n = P(n)$	ي حدها العام (ייד (t _n) _{n≥0} א	ث تحقق المتتال	الثانية P بحيا	ود من الدرجة	1. عين ڪئير حد
				n a	t _{n+1} ایا کان	$=\frac{1}{2}t_n+n^2$	نفسها اي n +
	0	~	P(n) =	$an^2 + bn + c$	الثانية هو [ود من الدرجة	بفرض كثير الحدو
	(11/2	$t_{n+1} = P$				ولدينا فرضا ُ (P(n
$\frac{1}{2}$ (t_n)	+ n2/+	n = a(n+1)	$)^{2} + b(n+1)$) + c			
$\frac{1}{1}$	apr		2n + 1) + br	50			
$\frac{1}{2}(an^2+bm)$ $\frac{1}{2}(an^2+bm)$ $\frac{1}{2}(an^2+bm)$	1		2n + 1) + br 2an + a + b				
2 2 2	2	. <i>n</i> – un T	sun + u + D	<i>μ</i> + <i>D</i> + <i>C</i>			
-					Scar	nned by Ca	amScanner



27

رؤية شاملة في المتتاليات

f(x) = x احسب f(x) حل المعادلة 2.

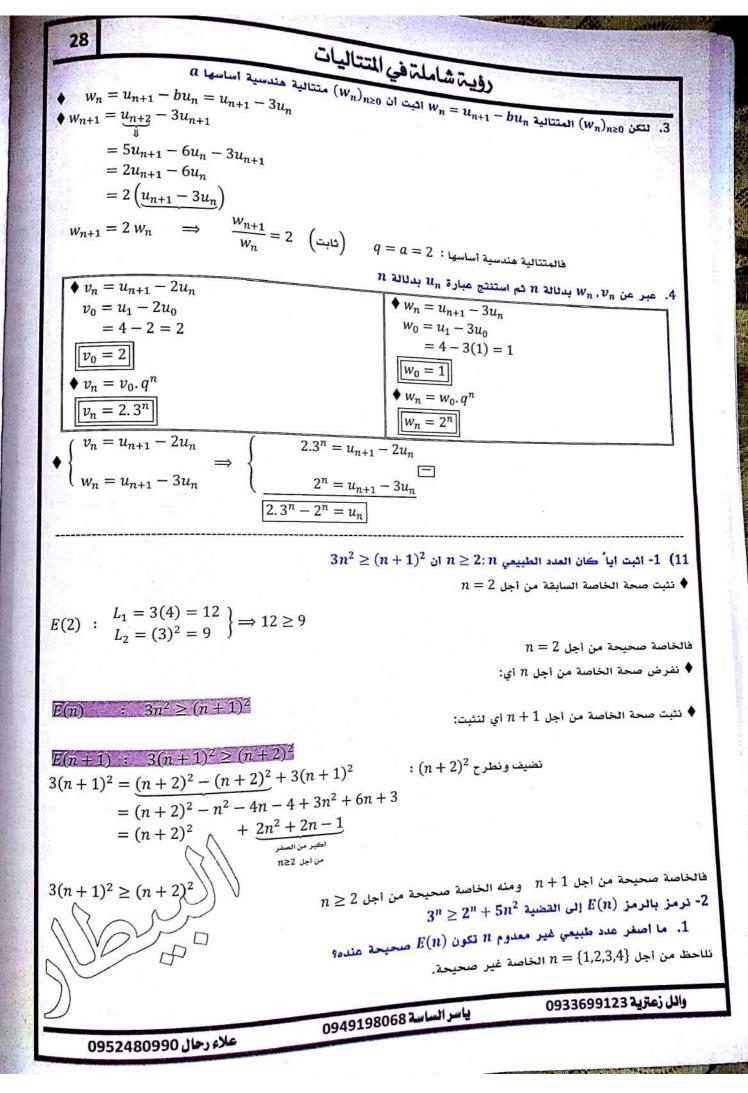
f(x) = xax + b = xax - x = -b(a - 1)x = -b $x = \frac{-b}{a - 1} = \ell$

 v_0 , b , a , متتالية هندسية واستنتج u_n حيث $u_n = v_n - \ell$ اثبت ان $u_n = u_n$ متتالية هندسية واستنتج u_n بدلالة v_n حيث n اثبت ان $n_n \ge 0$ متتالية مندسية واستنتج n_n بدلالة هذه المعاملات.

$$\begin{aligned} u_n &= v_n - \ell \qquad \qquad : \frac{u_{n+1}}{u_n} \\ u_{n+1} &= v_{n+1} - \ell \\ &= a \underbrace{v_n}_{\downarrow} + b - \ell \\ &= a(u_n + \ell) + b - \ell = au_n + a\ell + b - \ell \\ &= au_n + b + \underbrace{\ell}_{\downarrow} (a - 1) \\ &= au_n + b + \underbrace{\ell}_{\downarrow} (a - 1) \\ &= au_n + b + \underbrace{\left(\frac{-b}{a-1}\right)(a-1)}_{\downarrow} = au_n + b - b \\ u_{n+1} &= au_n \qquad \Longrightarrow \qquad \frac{u_{n+1}}{u_n} = a \quad (\texttt{itype}) \end{aligned}$$

q = a فالمتتالية هندسية أساسها

$$\begin{aligned} & u_0 = v_0 - \ell = v_0 + \frac{b}{a-1} \\ & u_n = u_0.q^n \implies u_n = \left(v_0 + \frac{b}{a-1}\right)a^n \\ & u_n = v_n - \ell \implies v_n = u_n + \ell \\ & = \left(v_0 + \frac{b}{a-1}\right)a^n + \frac{-b}{a-1} \\ & v_n = v_0a^n + \frac{ba^n}{a-1} - \frac{b}{a-1} \\ & \frac{u_0 = 1, u_1 = 4}{\left(u_{n+1} = 5u_n - 6u_{n-1} \right)a^n + \frac{-b}{a-1}} \\ & \frac{u_0 = 1, u_1 = 4}{\left(u_{n+1} = 5u_n - 6u_{n-1} \right)a^n + \frac{-b}{a-1}} \\ & \frac{u_0 = 1, u_1 = 4}{\left(u_{n+1} = 5u_n - 6u_{n-1} \right)a^n + \frac{-b}{a-1}} \\ & \frac{u_0 = 1, u_1 = 4}{\left(u_{n+1} = 5u_n - 6u_{n-1} \right)a^n + \frac{-b}{a-1}} \\ & b = 3, a = 2 \\ & b = 3, a = 2 \\ & b = 3, a = 2 \\ & b = 3, a = 2, S \\ & b = 3, a = 2,$$



29		التتاليات	رؤية شاملة في	
1000 TO 100				
		الذي يحمق السراف ف ٢	n المال كان العدد الطبيعي $n - 5$	2. اثبت ان E(n) صحيح
$F(5) \cdot I$	$L_1 = 3^5 = 243$	157 $\} \Longrightarrow 243 \ge 157$	<i>n</i> = 5	 نثبت صحة الخاصة من أجل
E(3).	$L_2 = 2^5 + 5(25) =$	$(157) \implies 243 \ge 157$		
2. ¹⁴		6. 		فالخاصة صحيحة من اجل 5 =
100		2	ل n أي:	فنفرض صحة الخاصة من اج
E(n)	$: 3^n \ge 2^n + 5n$			
			n = n + 1	فثبت صحة الخاصة من أجل
E(n+1)	$: 3^{n+1} \ge 2^{n+1}$	$+5(n+1)^2$	ا ۱۳۰۱ ی سبت.	 نثبت صحة الحاضة من أجن
	$3^n \ge 2^n +$	- 2	لدينا من ا	580 - C
	$3.3^n \ge 3(2^n)$			б. ,
	$3^{n+1} \ge 3(2)^n$	$n^{n} + 15n^{2}$: 2^{n+2}		نض
		$+5(n+1)^2 - 2^{n+1} - 5$	10 1040 10 30 540 1400 50	
	$3^{n+1} \ge 2^{n+1}$	$+5(n+1)^2 - 2.2^n + 3$	$2^n - 5(n^2 + 2n + 1) +$	15n ²
		$+5(n+1)^2+2^n-5n^2$		
	$3^{n+1} \ge 2^{n+1}$	$+5(n+1)^2 + 2^n + 10n$		
			هذا المقدار أكبر من أجل 5	
e - 1	$3^{n+1} \ge 2^{n+1}$	$+5(n+1)^2$		
	- * e > 56 (M		l to be	فالخاصة صحيحة من أجل n + 1
			$n \ge$	ومنه الخاصة صحيحة من أجل 5
E(n) E(0): E(1):	$ \begin{array}{c} L_1 \\ (3)^0 = 1 \\ (3)^1 = 3 \end{array} $	L_2 $(0+2)^2 = 4$ $(1+2)^2 = 9$ $(3+2)^2 = 25$		1
E(3):	$(3)^3 = 27$		خاصة صحيحة	-
E(4):	$(3)^4 = 81$	$(4+2)^2 = 36$		
E(3) :	n $(L_1 = 3^3 = 27)$ $(L_2 = (3 + 2)^2 = 1$		n	البت بالتدريج ان القضية (n) (n) البت بالتدريج ان القضية $(n)(n)$ البت محمد (من اجل $(n)لخاصة صحيحة من اجل (n)نفرض صحة الخاصة من أجل n$
			NS C.	نفرض صحة الخاصة من أجل أأ
		202	NPA	
E(n)	$: (3)^n \ge (n + $	4)7		and the second second
				حسان البيطار 0933756454
0955	ق سعد الدين 561648	09327918 طار	خلدون سيروان 396	
Contraction of the second second		and the second		

No.	30	en ver mer sige state series in so	نثبت صحة الخاصة من أجل n + 1 أي لنثبت أن:
	$(3)^{n+1} \ge (n+3)^{n+1}$)2	
	$(3)^n \ge (n+2)$	لدينا من الفر ض : 2 (
and the second	$3(3)^n \ge 3(n+2)$	$2)^2$ نضرب الطرفين بـ $3 - 2(2)$	
	(n+1) > 3(n+1)	$(2)^{2}$	(
	$(3)^{n+1} \ge (n+3)$	$n^{2} - (n+3)^{2} + 3(n+2)^{2}$	$(n+3)^2$ نظيف ونطرح $(n+3)$
	$(3)^{n+1} \ge (n+3)$	$n^{2} - (n^{2} + 6n + 9) + 3(n^{2} + 3n^{2} - n^{2} - 6n - 9 + 3n^{2} + 12)$	4n + 4) n + 12
	$(3)^{n+1} \ge (n+3)^{2}$ $(3)^{n+1} \ge (n+3)^{2}$	$n^{2} + 2n^{2} + 6n + 3$	
•	(3) = (اڪبر من الصفر من اجل 3≤n	
	$(3)^{n+1} \ge (n+3)^2$	1/10/23/2 - 21/24/22/2	
13	(3) = (فالخاصة صحيحة من أجل n + 1
			$n \ge 3$ ومنه الخاصة صحيحة من أجل $n \ge 3$
		أيا [ً] كان العدد الطبيعي n	13) أثبت بالتدريج صحة كل من الخواص الآتية
			0
			♦ نثبت صحة الخاصة من أجل n = 0
	$E(0)$: $(4)^0 + 5 = 1 + 5 =$	6	(6) editad (2)
	E(0) . (1) .	n = 0	(6) مضاعف للعدد (3) فالخاصة صحيحة من أجل ♦ نفرض صحة الخاصة من أجل n أي:
			و من اجل ١٣ اي:
	$E(n)$: $(4)^n + 5 = 3k$ =	$\Rightarrow 4^n = 3k = 5$	♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت:
	$E(n+1)$: $(4)^{n+1} + 5 = 3k_1$		
	$(4)^{n+1} + 5 = (4)^n \cdot (4) + 5$		
	$= (3k - 5) \cdot 4 + 5$ $= 12k - 20 + 5$		
	= 12k - 20 + 3 $= 12k - 15$		
	$=3\left(4k-5\right)$		
	$= 3\left(\underbrace{4}_{1}\underbrace{3}_{2}\right)^{2}$ = $3k_{1}$		فالخاصة صحيحة من أحال 1 ل n
		$n \in N$ لسابقة صحيحة من أجل	فالخاصة صحيحة من أجل n + 1 ومنه الخاصة ا
		2 ³ⁿ - 1 مضاعف للعدد 7	0
	~ ^	٢ - ٢ مصاعف للعلاد /	n=0 نثبت صحة الخاصة من أجل $n=0$
	$E(0)$: $(2)^0 - 1 = 1 + 1 = 0$		
		n = 0	(0) مضاعف للعدد (7) فالخاصة صحيحة من أجل ▲::
			♦نفرض صحة الخاصة من أجل n أي:
	E(n): (2) ³ⁿ - 1 = 7k =	$\Rightarrow 2^{3n} = 7k + 1$	♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت:
	Em + 1) (man amos		anes en 1977 - 1979 - 1979
	$0952492222 = 1 = 7k_1$	د الساسة 0949198068	والل زعارية 0933699123 ياس
and a	علاء، حال 0952480990	00-00-00-00-00-00-00-00-00-00-00-00-00-	

and the second second

9

Scanned by CamScanner

1.72

1.44

化医疗"

a latera

33

$$n \ge 0 \quad \text{if } u_{n+1} = \frac{3u_n+2}{2u_n+6} \quad n = 0 \quad \text{if } u_{n} \ge 0 \quad \text{if } u_{n+1} = \frac{3u_n+2}{2u_n+6} \quad \text{if } u_{n+1} = \frac{3u_n+2}{2u_n+6} \quad \text{if } u_{n+1} = \frac{3u_n+2}{2x+6}$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0 \quad \text{If } u_{n+1} = 0$$

$$1. \quad \text{If } u_{n+1} = 0$$

$$\hat{f}(x) = \frac{3(2x+6)-2(3x+2)}{(2x+6)^2} = \frac{14}{(2x+6)^2} > 0$$

$$f(x) = \frac{14}{(2x+6)^2} = 0$$

$$E(0) : \frac{1}{2} < u_0 = 1 \le 1$$

$$n=0$$
 فالخاصة صحيحة من أجل

♦ نفرض صحة الخاصة من أجل n أي:

 $E(n) \quad : \quad \frac{1}{2} < u_n \le 1$

♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت:

$$E(n+1)$$
 : $\frac{1}{2} < u_{n+1} \le 1$

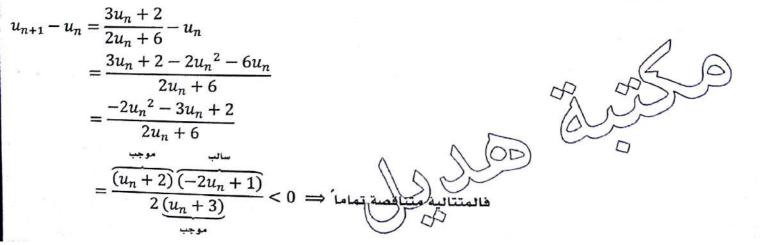
بما أن f متزايد تماماً على $]\infty+,0]$ فهو متزايد تماماً على $\left[1,rac{1}{2}
ight]$ ومنه:

$$\begin{aligned} \frac{1}{2} < u_n \leq 1 \quad \text{ii} \quad & f\left(\frac{1}{2}\right) < f(u_n) \leq f(1) \\ & \frac{3\left(\frac{1}{2}\right) + 2}{2\left(\frac{1}{2}\right) + 6} < u_{n+1} \leq \frac{3+2}{2+6} \\ & \frac{1}{2} < u_{n+1} \leq \frac{5}{8} \\ & \frac{1}{2} < u_{n+1} \leq 1 \end{aligned}$$

n+1 فالخاصة صحيحة من أجل

ومنه الخاصة صحيحة من أجل n عدد طبيعي.

. ונאי ווא ווא ווא $(u_n)_{n\geq 0}$. וואי ווא ווא 2



رؤية شامله في السالية $u_0 = 2\cos\theta$ $u_0 = 2\cos\theta$ $u_0 = 2\cos\theta$ $u_{n+1} = \sqrt{2 + u_n}$ $u_{n \ge 0}$ u_{u N 11, 12 Imme .1 $1 + \cos\frac{\theta}{2} = 2\cos^2\frac{\theta}{4}$ $1 + \cos\theta = 2\cos^2\frac{\theta}{2}$ $u_1 = \sqrt{2 + u_0} = \sqrt{2 + 2\cos\theta} = \sqrt{2(1 + \cos\theta)} = \sqrt{4\cos^2\frac{\theta}{2}} = 2\cos\frac{\theta}{2} \quad :\theta \in \left]0, \frac{\pi}{2}\right]$ $u_{2} = \sqrt{2 + u_{1}} = \sqrt{2 + 2\cos\frac{\theta}{2}} = \sqrt{2\left(1 + \cos\frac{\theta}{2}\right)} = \sqrt{4\cos^{2}\frac{\theta}{4}} = 2\cos\frac{\theta}{4} : \theta \in \left[0, \frac{\pi}{2}\right]$ $u_n = 2 \cos\left(rac{ heta}{2n}
ight)$ ائبت بالتدريج ان 2. اثبت ♦ تثبت صحة الخاصة من أجل n = 0 $E(0) : L_2 = 2\cos\theta$ $L_2 = 2\cos\left(\frac{\theta}{2^0}\right) = 2\cos\theta$ n=0 فالخاصة صحيحة من أجل ♦ نفرض صحة الخاصة من أجل n أي: E(n) : $u_n = 2\cos\left(\frac{\theta}{2^n}\right)$ ♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت: $E(n+1): u_{n+1} \stackrel{?}{\cong} 2\cos\left(\frac{\theta}{2^{n+1}}\right)$ $u_{n+1} = \sqrt{2 + u_n} = \sqrt{2 + 2\cos\left(\frac{\theta}{2^n}\right)} = \sqrt{2\left(1 + \cos\frac{\theta}{2^n}\right)} = \sqrt{4\cos^2\left(\frac{\theta}{2^n}\right)}$ $= 4\cos^2\left(\frac{\theta}{2^{n+1}}\right) = 2\cos\left(\frac{\theta}{2^{n+1}}\right)$ n+1 ومنه الخاصة صحيحة من اجل $n \in N$ صة صحيحة من أجل d d وائل زعارية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990

Scanned by CamScanner

-.1 5-1.1A- ... timett

رؤية شاملة في المتتاليات
له في مستو P محدث بمعلم متجانس، H هي مجموعة النقاط $M(x,y)$ التي تحقق إحداثياتها المعادلة (18
$\check{M}(9x+20y,4x+9y)$ هي المستوي P النقطـ $M(x,y)$ هي المستوي f النقطـ $x^2-5y^2=1$
اي $f(M)=\dot{M}$ لتكن S_0 النقطة التي إحداثياتها $(1,0)$ ثم لنتامل في المستوي P متتالية النقاط $(S_n)_{n\geq 0}$ المعرفة
وفق $S_{n+1}=f(S_n)$ اثبت أن S_n نقطة من المجموعة H وأن إحداثياتها أعداد صحيحة.
$x^2-5y^2=1$ مجموعة النقاط $M(x,y)$ التي تحقق H
$M(x,y) \longrightarrow \dot{M}(9x+20y,4x+9y)$ \dot{M} النقطة M بالنقطة M
$S_0(1,0)$ نقطة حيث $S_0(1,0)$
متتائية نقاط معرفة وفق $S_{n+1}=f(S_n)$ المطلوب إثبات ان S_n نقطة من المجموعة H وأن إحـداثياتها أعـداد $(S_n)_{n\geq 0}$
منحيحة.
<u>ىنېر ھن بالتدريج:</u>
♦ نثبت صحة الخاصة من أجل n = 0:
$E(0) : S_0(1,0) \in H$
$1^2 - 5.(0)^2 = 1$
n=0 فالخاصة صحيحة من أجل
نفرض أن $S_n \in H$ صحيحة من أجل n أي:
$E(n)$: $S_n(x,y) \in H$
♦ نثبت صحة الخاصة من أجل n + 1 أي لنثبت:
$E(n+1) : S_{n+1} = f(S_n) = (9x+20y, 4x+9y)$
$(9x + 20y)^2 - 5(4x + 9y)^2 = 81x^2 + 360xy + 400y^2 - 5(16x^2 + 72xy + 81y^2)$ = 81x ² + 360xy + 400y ² - 80x ² - 360xy - 405y ²
$= 51x^{-1} + 500x^{-1} + 400y^{-1} = 00x^{-1} + 100y^{-1}$
$S_{n+1} = (9x + 20y, 4x + 9y) \in H$
ومنه الخاصة صحيحة من أجل $n+1$. فالخاصة السابقة صحيحة أي S_n نقطة من H .
19) يرمز x إلى عدد حقيقي ويرمز n إلى عدد طبيعي غير معدوم نضع:
$S_n = \cos x + \cos(3x) + \cos(5x) + \dots + \cos((2n-1)x)$
l. باستعمال دساتیر مثلثاتیة تعرفها اثبت ان: 1
$\sin(2a) = 2\sin a \cdot \cos a g \sin a \cdot \cos b = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$
تذكرة ببعض القوانين المثلثية:
$\sin(a+b) = \sin a \cos b + \cos a \sin b , \sin(a-b) = \sin a \cos b - \cos a \sin b$
$\cos(a+b) = \cos a \cos b - \sin a \sin b , \cos(a-b) = \cos a \cos b + \sin a \sin b$
$\sin(a+b) = \sin a \cos b + \cos a \sin b$: نعلم آن
$\sin 2a = \sin(a + a) = \sin a \cos a + \cos a \sin a = 2 \sin a \cos a$
$\sin(a+b) = \sin a \cos b + \cos a \sin b$ in (a + b) = sin a cos b + cos a sin b
$\frac{\sin(a-b)}{\sin(a+b)} = \frac{\sin a \cos b}{\cos a \sin b} + \frac{\sin(a+b)}{\sin a \cos b} = \frac{\sin b}{\sin a \cos b} + \frac{\sin a \cos b}{\sin a \cos b} = \frac{\sin a \sin b}{\sin a \cos b} + \frac{\sin a \cos b}{\sin a \cos b} = \frac{\sin a \sin b}{\sin a \cos b} + \frac{\sin a \sin b}{\sin a \cos b} = \frac{\sin a \sin b}{\sin a \cos b} + \frac{\sin a \sin b}{\sin a \cos b} = \frac{\sin a \sin b}{\sin a \cos b} + \frac{\sin a \sin b}{\sin a \cos b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \frac{\sin a \sin b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b} = \sin a$
$\frac{\sin(a+b) + \sin(a-b)}{1 + 2} \sin a \cos b + 2$
$\frac{1}{2}\left[\sin(a+b)\right] + \sin(a-b) = \sin a \cos b$
2
حسان البيطار 0933756454 خلدون سيروان 0932791896 طارق سعد الدين 0933756454

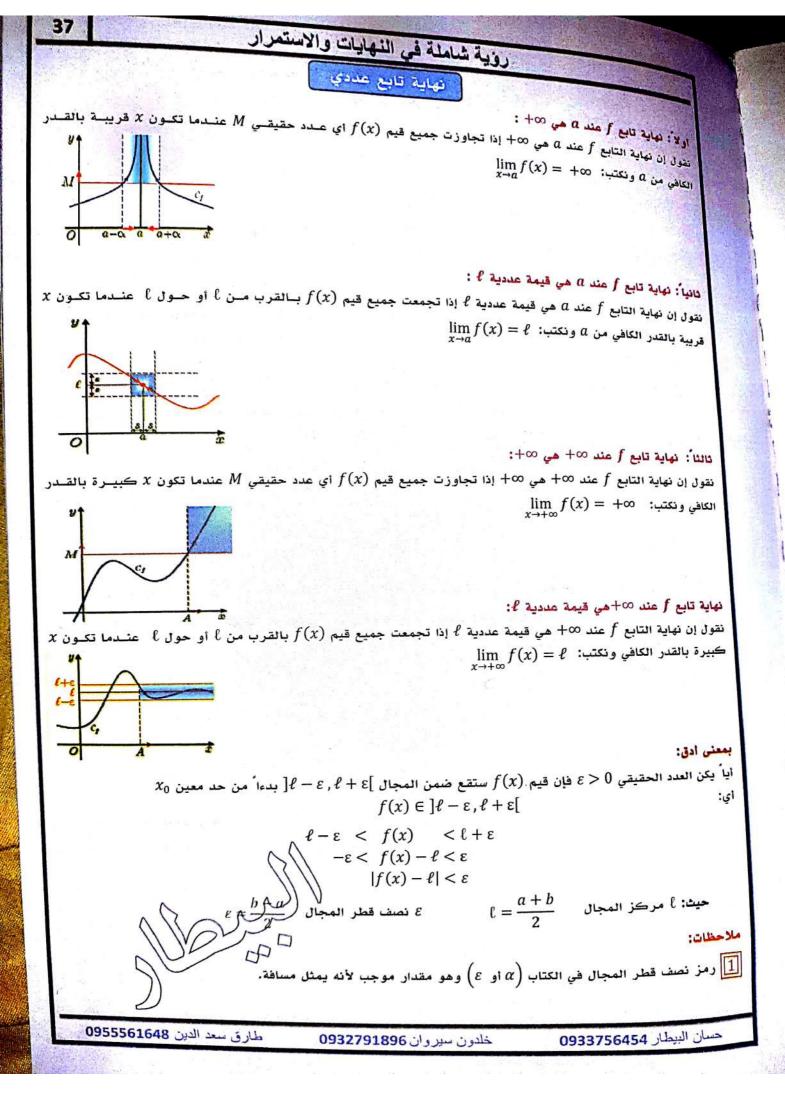
$$\frac{36}{(1 + 1)^{2}} \underbrace{\frac{3}{(1 + 1)^{2}} \underbrace{\frac{3$$

او دقہ الک

د ت ق

Scanned by CamScanner

. iii



$$\begin{aligned} \int_{|z|} e^{-\xi_{1}} \ell + \varepsilon[=]3 - 0.04, 3 + 0.04 [\Rightarrow I =]2.96, 3.04[\\ I =]2.96, 3.04[\\ I =]4.82, 5.18[Jext and the end of th$$

10.5

يتهايات والاستمرار	رونية شاملة في ال
يقة $f(x)=rac{5x-1}{x-1}$ مند $\infty+$ ثم أعط عدداً A يحقق الشرطة:	معضية 34 رقم 2: احسب نهاية التابع f المعطى بالعلا
]4.9, 5.1[في المجال $f(x)$ في المجال $x > A$
$\lim_{x\to+\infty}f(x)=5$	$\frac{4}{ x-1 } < \frac{1}{10}$
$\ell = \frac{4.9+5.1}{2} = 5$ نوجد مركز المجال ونصف قطره: $f = \frac{4.9+5.1}{2}$	$\begin{vmatrix} x-1 & 10 \\ 40 & < x-1 \end{vmatrix}$
$\varepsilon = \frac{5.1 - 4.9}{2} = 0.1 = \frac{1}{10}$	$x \to 1$ بما أن $\infty + \infty$ نهتم بالقيم الكبيرة لـ x أي $0 < x$
10 _ 10]f(x) ∈]4.9 , 5.1 إذا تحققت المتراجحة:	40 < x - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
$ f(x) - \ell < \varepsilon$	$41 < x \implies A = 41$
$\left \frac{5x-1}{x-1}-5\right < \frac{1}{10}$	$f(x) \in]5 - 0.1, 5 + 0.1[=]4.9, 5.1[$ ومنه]5.1 (
$\left \frac{x-1}{x-1}\right \leq \frac{10}{10}$	
անանան անդարդություն ու նույն է ու նույն է ու նույն դարարան անդարդությունները անդարդությունը անդարդությունը անդ Դանանան հայտարդությունը ու նույն է ու նույն է ու	***************************************
	قواعد في النهايات :
(1) $\frac{1}{\infty} = 0$, $\frac{1}{\infty} = 0$	
(2) $\frac{\infty}{0} = \infty$, $\frac{2\omega}{0} = \infty$, $\frac{2\omega}{0} = \infty$ (البسط)	(ندرس إشارة الصفر و ننتبه لإشارة
(انتبه لإشارات البسط و المقام) $\infty = \frac{\infty}{2}$	
	(انتبه للإشارات) ∞ = ∞ × ∞ (5)
	حالات عدم التعيين :
$\frac{\infty}{-}$ $\frac{0}{-}$	$0.\infty + \infty - \infty$
∞ 0	
	العمليات على النهايات :
$ (1) \lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) $	$ (2) \lim_{x \to x_0} (f.g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) $
$ (\widehat{3}) \lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} ; g(x) \neq 0 $	(4) $\lim (k f(x)) - k \lim f(x)$
$\lim_{x \to x_0} g ^{(x)} \lim_{x \to x_0} g(x)$	$(4) \lim_{x \to x_0} (k f(x)) = k \lim_{x \to x_0} f(x)$
	نهایات مرجعیة :
(1) $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \\ -\infty & -\infty \end{cases}$ فردي غير معدوم n	$(2) \lim_{\substack{x \to -\infty \\ x \to +\infty}} \frac{1}{x^n} = 0 \qquad ; n \in N^*$
(* (
$ \lim_{x \to +\infty} \sqrt{x} = +\infty $	$(4) \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$
$f(x) \rightleftharpoons \cos x$, $f(x) = \sin x$:	ملاحظة: بعض التوابع ليس لها نهاية عند 🕫 + أو 🗢 – , مثل
	ليس للتابعين السابقين نهاية عند ∞-,∞+ حيث :
بالتالي مجموعة قيم التابعين وحصورة في المجال [1,1].	$x \in R$ ايا ڪانت $-1 \le \cos x \le 1$, $-1 \le \sin x \le 1$
	نهاية التابع الثابت $f(x) = b$: إن نهاية التابع الثابت عن $f(x) = b$ مثال :
$\int \int f(x) = -3 ,$	$x \rightarrow -\infty$
	$x \rightarrow +\infty$

$$\frac{(1 + 1)}{(1 + 1)} = \frac{(1 + 1)}{(1 + 1)}$$

دها ناخا نخت تمر

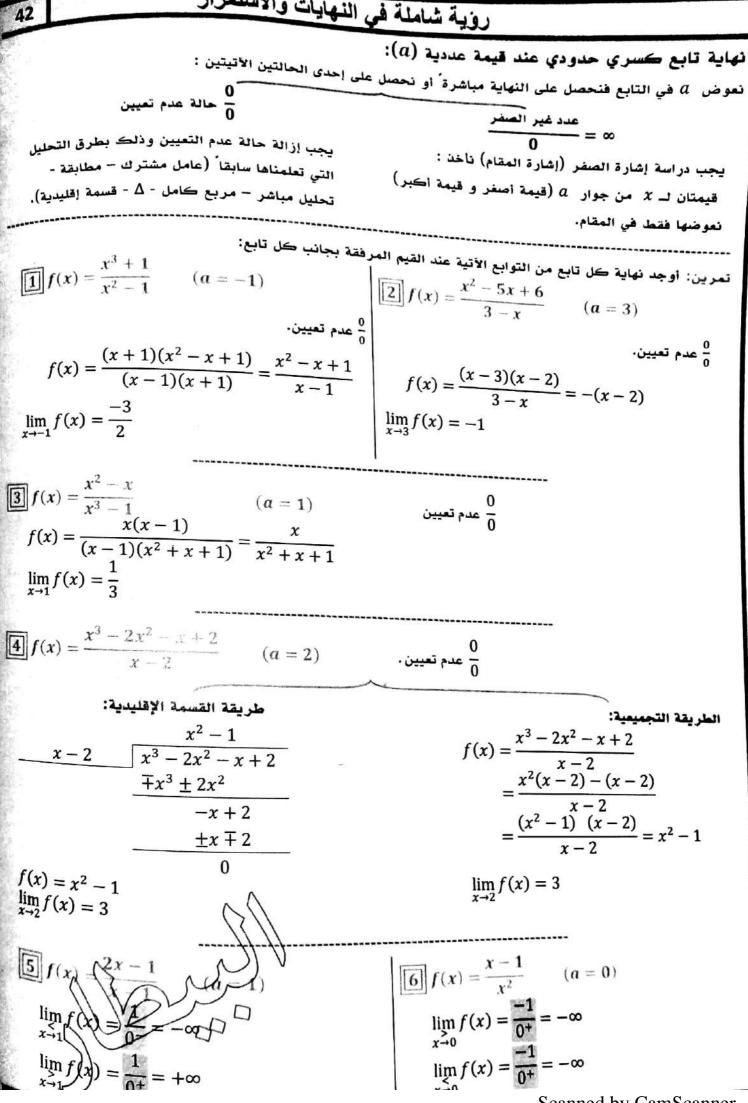
 $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$

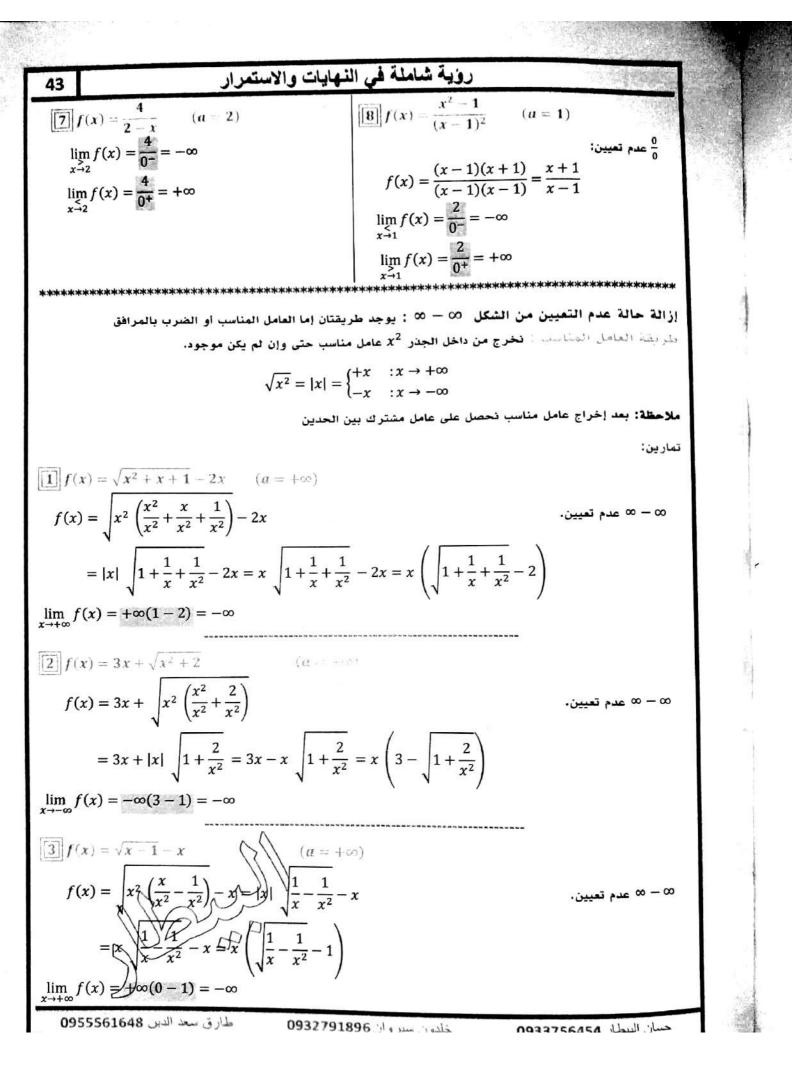
تذ 1 2

رؤية شاملة في النهايات والاستمر تهاية تابع ڪسري حدودي عند ∞± : ناخذ الحد الأكبر أساً بالبسط مع أمثاله وإشارته وناخذ الحد الأكبر أساً بالمقام مع أمثاله وإشارته. نختصر ثم نعوض ونوجد النهاية. تمرين: اوجد نهاية كل تابع عند ∞± $f(x) = \frac{2x-1}{x^2+1}$ $5f(x) = \frac{\sqrt{2}x - 1}{1 - 2x}$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{2x}{x^2}\right) = \lim_{x \to -\infty} \left(\frac{2}{x}\right) = \frac{2}{-\infty} = 0$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{\sqrt{2} x}{-2x} \right) = \lim_{x \to -\infty} \left(\frac{-\sqrt{2}}{2} \right) = \frac{-\sqrt{2}}{2}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2x}{x^2}\right) = \lim_{x \to +\infty} \left(\frac{2}{x}\right) = \frac{2}{+\infty} = 0$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{\sqrt{2} x}{-2x} \right) = \lim_{x \to +\infty} \left(\frac{-\sqrt{2}}{2} \right) = \frac{-\sqrt{2}}{2}$ $2f(x) = \frac{x^2 + 1}{1 - x^2}$ $[6] f(x) = \frac{1 - 2x^2}{x^3 - 1}$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x^2}{-x^2} \right) = -1$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{-2x^2}{x^3} \right)$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x^2}{-x^2} \right) = -1$ $=\lim_{x\to-\infty}\left(\frac{-2}{x}\right)=\frac{-2}{-\infty}=0$ $\boxed{3} f(x) = \frac{x^3 - x^2 + 1}{1 - x^2}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{-2x^2}{x^3} \right)$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x^3}{-x^2} \right)$ $=\lim_{x\to+\infty}\left(\frac{-2}{x}\right)=\frac{-2}{+\infty}=0$ $= \lim_{x \to -\infty} (-x) = -(-\infty) = +\infty$ $\overline{[7]}f(x) = \frac{x-1}{2x}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x^3}{-x^2} \right)$ $= \lim_{x \to +\infty} (-x) = -(+\infty) = -\infty$ $\lim_{x \to -\infty} f(x) = \frac{1}{3} \quad , \quad \lim_{x \to +\infty} f(x) = \frac{1}{3}$ $\left[\textcircled{\textbf{B}} \right] f(x) = \frac{1 - x^2}{1 - x}$ $\boxed{4} f(x) = \frac{6}{x^2 - 4}$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{6}{x^2}\right) = \frac{6}{4\infty} = 0$ $\lim_{x \to -\infty} f(x) = -\infty \quad , \quad \lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{6}{x^2}\right) = \frac{6}{+\infty} = 0$ تذكرة و ملاحظات: 1 من طرق تحليل كثير الحدود: العامل المشترك والتحليل المباشر والتج 2 المتطابقات التربيعية: 3 المتطابقات التكعيبية: $b^3 = (d \neq b)(a^2 + ab + b^2)$ $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ $a^2 - b^2 = (a - b)(a + b)$ $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ حسان البيطار 0933756454 طارق سعد الدين 0955561648 خلدون سير و ان 0932791896

Scanned by CamScanner

E

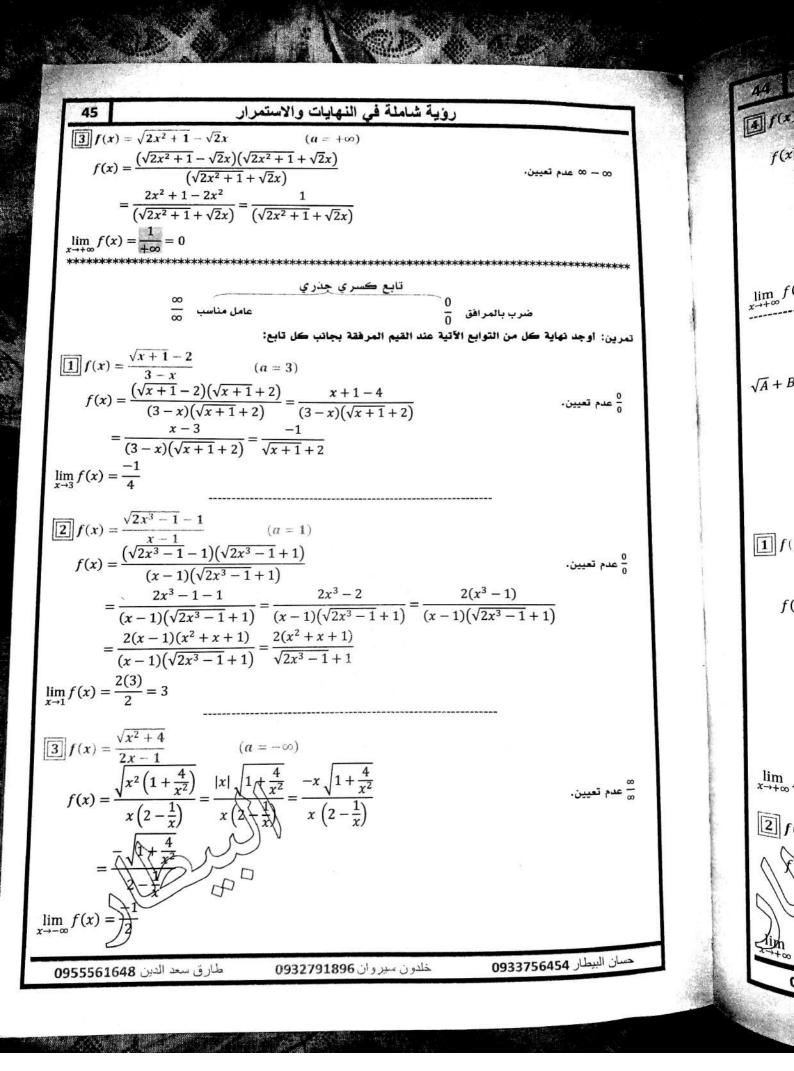


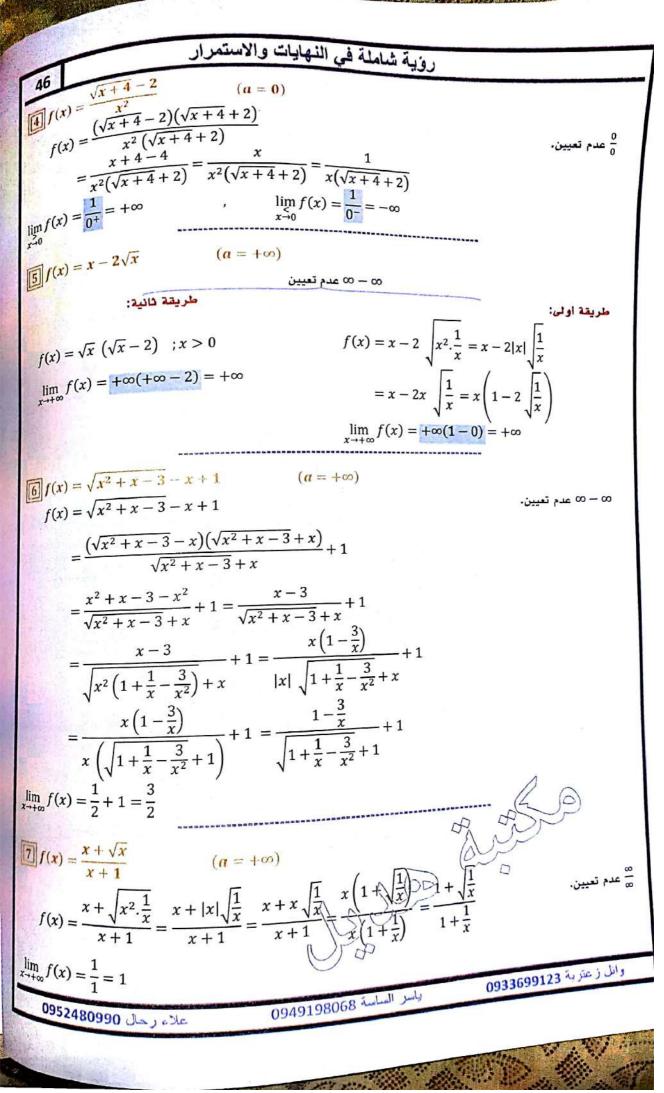


$$\begin{aligned} \int_{A}^{A} \int_$$

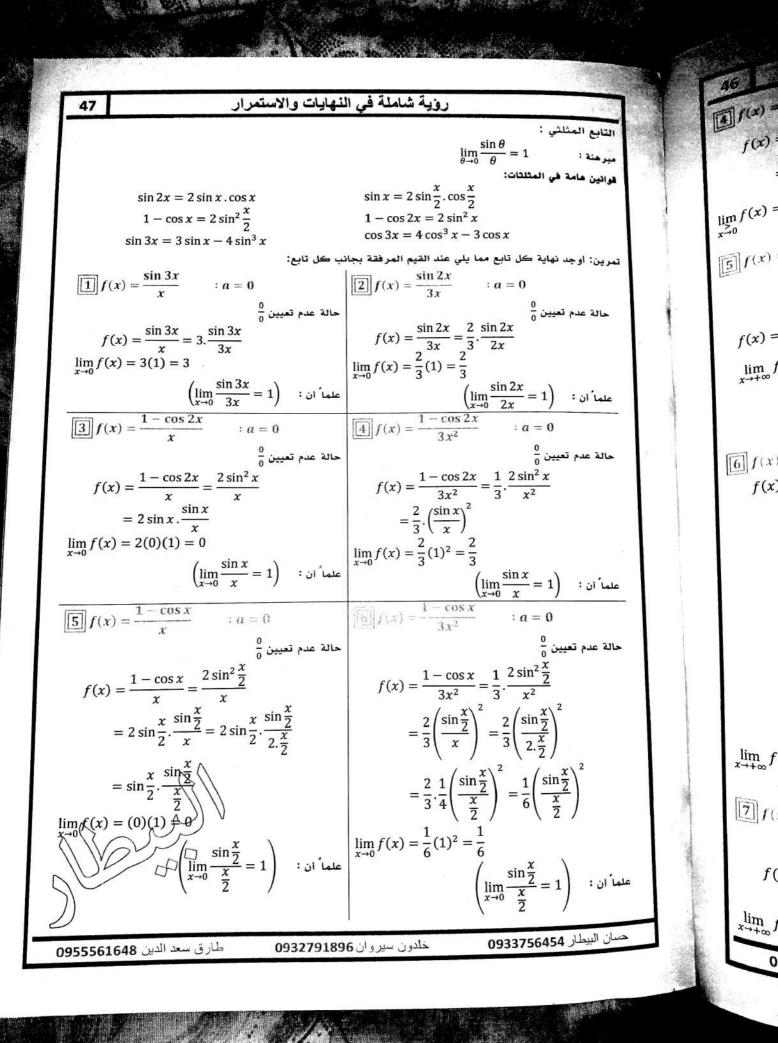
45

$$(2x^2 + 1 - \sqrt{2}x)$$
 $(a = +\infty)$
 $f(x) = \frac{(\sqrt{2x^2 + 1} - \sqrt{2x})(\sqrt{2x^2 + 1} + \sqrt{2x})}{(\sqrt{2x^2 + 1} + \sqrt{2x})}$
 $(\sqrt{2x^2 + 1} - \sqrt{2x})(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $g(x) = \frac{(\sqrt{2x^2 + 1} - \sqrt{2x})}{(\sqrt{2x^2 + 1} + \sqrt{2x})} = \frac{1}{(\sqrt{2x^2 + 1} + \sqrt{2x})}$
 $(\sqrt{2x^2 + 1} - \sqrt{2x})(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} - \sqrt{2x}) = \frac{1}{(\sqrt{2x^2 + 1} + \sqrt{2x})}$
 $(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} - \sqrt{2x}) = \frac{1}{(\sqrt{2x^2 + 1} + \sqrt{2x})}$
 $(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} - 2)$
 $(\sqrt{2x^2 + 1} + \sqrt{2x})$
 $(\sqrt{2x^2 + 1} - 2)$
 $(\sqrt{2x^2 + 1} - 2)$
 $(\sqrt{2x^2 - 1} - 2)$
 $(\sqrt{2x^2 + 1} - 2)$
 $(\sqrt{2x^2 - 1} - 1)$
 $(\sqrt{2x^2 - 1} - 1)$
 $(\sqrt{2x^2 - 1} - 1)$
 $(x - 1)(\sqrt{2x^2 - 1} - 1)(\sqrt{2x^2 - 1} + 1)$
 $(x - 1)(x)$
 $(x - 1)(x)$
 $(x - 1)(x)$
 $(x - 1)(\sqrt{2x^2 - 1} + 1)$
 $(x - 1)(\sqrt{2x^2 - 1} + 1)$
 $(x - 1)(x)$
 $(x - 1)(x)$
 $(x - 1)(x$





Scanned by CamScanner



مبرهنة (1) (الإحاطة): بفرض h,g,f ثلاثة توابع معرفة على مجال من الشكل $b,+\infty[=l=J$ ولنفرض أنه عند كل x من l تتحقق المتراجع $f(x) = \ell$ $\lim_{x \to +\infty} f(x) = \ell$ ثلاثة توابع معرفة على مجان من المعان h, g النهاية l ذاتها عند $\infty +$ عندئذ: $g(x) \le h(x)$ $g(x) \leq$ f(x)≤ h(x)ملخص المبرهنة: $\lim_{x\to+\infty}g(x)=\ell$ $\lim_{x \to +\infty} h(x) = \ell$ $\lim_{x\to+\infty}f(x)=\ell$ ♦ تبقى المبرهنة السابقة صحيحة على المجال]0,∞-[

ملاحظات هامة:

1. نطبق مبر هنة الإحاطة عندما نحصل على ∞ cos او sin ∞

$$-1 \leq \frac{\sin(g(x))}{\cos(g(x))}$$
 : نبدا الحل في مبر هنة الإحاطة: أيا يكن $x \in D$ فإن:
2. نبدا الحل في مبر هنة الإحاطة: أيا يكن $x \in D$ أو $1 \geq \frac{\sin^2(g(x))}{\cos^2(g(x))} \leq 1$

تغير جهة المتراجحة عندما نضرب أو نقسم على مقدار سالب أو عندما نأخذ مقلوب المتراجحة.

نهاية كل تابع من التوابع الآتية عند القيم المرفقة بجانب كل تابع:

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 + 1} \right) = 0$$

COSY

= 4)

 $\lim_{x\to -\infty} f(x) = 4$ الإحاطة () علاء رحال 0952480990 ياسر الساسة 0949198068 وانل ز عترية 0933699123

$$\frac{1}{12} \sum_{x \in x \in 1} \frac{1}{12} \operatorname{sinx}_{x \neq 1} \frac{1}{12} \sum_{x \to x \to x} \frac{1}{12} \sum_{x \to x$$

49	روية شاملة في النهايات والاستمرار
	مبرهنة (2) : بفرض g, f تابعين معرفين على المجال $[0, +\infty] = [l_0, +\infty] = l_0$ ولنفرض انه عند كل x من l تتحقق المتراجحة $g(x) \ge f(x) - \ell \le d$ لنفترض ان: $f(x) = \ell = l$ $g(x) = 0 \implies \lim_{x \to \infty} f(x) = \ell$ l = l = l h = 0 = 0 (x) $g(x) = 0$
	$\lim_{x \to +\infty} g(x) = 0 \left\{ \begin{array}{l} f(x) - \ell \le g(x) \\ \lim_{x \to +\infty} g(x) = 0 \end{array} \right\} \Longrightarrow \lim_{x \to +\infty} f(x) = \ell$
	$+\infty$ نمرین: بغرض f تابع یحقق $f(x) + 4 = f(x) + 4 $ ایا یکن $x > 0$ ما تهایة التابع f عند $+\infty$
	$ f(x) - (-4) \le \frac{-3}{x+4}$ $\lim_{x \to +\infty} \frac{-3}{x+4} = 0$ $\lim_{x \to +\infty} \frac{-3}{x+4} = 0$
	$+\infty$ عند f عند $x > 0$ تمرین: بفرض f تابع یحقق $\frac{1}{x^{2}+4} \ge f(x) - 2 \le \frac{x \sin^{2} x}{x^{2}+4}$ بفرض $\frac{n^{2} x}{x^{4}}$ بفرض : $\frac{n^{2} x}{x^{4}+4}$ بفرض : $1 \le x \le 1$: $x \le x \le x$
	$\frac{x}{4} \le \frac{x}{x^2 + 4}$
$\lim_{x \to +\infty} \left(\frac{x}{x^2 + 1} \right)$	$\frac{1}{4} = 0$ $(0) = 0$ $\lim_{x \to +\infty} g(x) = 0$
	$ f(x) - 2 \le \frac{x \sin^2 x}{x^2 + 4}$ $\lim_{x \to +\infty} \frac{x \sin^2 x}{x^2 + 4} = 0$ $\lim_{x \to +\infty} f(x) = 2$
	مبرهنة رقم (3) : بفرض g,f تابعين معرفين على المجال $[b,+\infty]$ عندئذ:
	$\lim_{x \to +\infty} f(x) = +\infty \iff \lim_{x \to +\infty} g(x) = +\infty \implies f(x) \ge g(x)$
-	$\lim_{x \to +\infty} f(x) = -\infty \iff \lim_{x \to +\infty} g(x) = -\infty \qquad \text{if } x \text{ and } f(x) \leq g(x) = -\infty$
$f(x) = \frac{-x}{3}$	
$\frac{1}{3}$	$\frac{-x}{3} + \cos \pi x \leq \frac{-x}{3} + 1$ $\int (x) = +\infty \xrightarrow{x \to \infty} f(x) = +\infty$ $3 \geq -3 \sin x \geq -3$ $2x + 3 \geq 2x - 3 \sin x \geq 2x - 3$ $\lim_{x \to +\infty} (2x - 3) = +\infty \xrightarrow{x \to +\infty} \lim_{x \to +\infty} f(x) = +\infty$
09555	حسان البيطار 0933756454 خلدون سيروان 0932791896 طارق سعد الدين 61648

50روب منهجة a رقم 1: المعطاة، ويمكن في حالة عند $\infty +$ وعند $\infty -$ وعند النقطة a المعطاة، ويمكن في حالة a تدريب صفحة 38 رقم 1: المعطاة، ويمكن في حالة aرؤية شاملة في النهايات والاستمرار $f(x) = \frac{x-3}{x-1} \quad \begin{pmatrix} +\infty \\ -\infty \end{pmatrix}$ $\boxed{2} f(x) = \frac{x^2 + 2}{x - 2} \quad \begin{pmatrix} +\infty \\ -\infty \end{pmatrix}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{x}\right) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x^2}{x} \right) = \lim_{x \to +\infty} (x) = +\infty$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x}{x}\right) = 1$ $\lim_{\substack{x \to -\infty \\ y \to 1^-}} f(x) = \frac{-2}{0^-} = +\infty , \quad \lim_{x \to 1^+} f(x) = \frac{-2}{0^+} = -\infty$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x^2}{x} \right) = \lim_{x \to -\infty} (x) = -\infty$ $\lim_{x \to 2^{-}} f(x) = \frac{+6}{0^{-}} = -\infty , \quad \lim_{x \to 2^{+}} f(x) = \frac{+6}{0^{+}} = +\infty$ $\boxed{4} f(x) = \frac{5x+1}{x+1} \quad \begin{pmatrix} +\infty \\ -\infty \\ -\infty \end{pmatrix}$ $\boxed{3} f(x) = \frac{2x-1}{x+1} \quad \begin{pmatrix} +\infty \\ -\infty \\ -\infty \end{pmatrix}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2x}{x}\right) = 2$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{5x}{x}\right) = 5$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{2x}{x}\right) = 2$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{5x}{x} \right) = 5$ $\lim_{x \to -1^{-}} f(x) = \frac{-4}{0^{-}} = +\infty , \lim_{x \to -1^{+}} f(x) = \frac{-4}{0^{+}} = -\infty$ $\lim_{x \to -0^{+}} f(x) = \frac{-3}{0^{-}} = +\infty, \quad \lim_{x \to -1^{+}} f(x) = \frac{-3}{0^{+}} = -\infty$ $\int f(x) = \frac{x+2}{(x-2)^2} \quad \begin{pmatrix} +\infty \\ -\infty \end{pmatrix}$ $\boxed{6} f(x) = 3x - 5 + \frac{2}{x+2} \quad \begin{pmatrix} +\infty \\ -\infty \end{pmatrix}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x+2}{x^2 - 4x + 4} \right)$ $\lim_{x \to +\infty} f(x) = +\infty - 5 + \frac{2}{+\infty} = +\infty$ $=\lim_{x\to \infty} \left(\frac{x}{x^2}\right) = \lim_{x\to \infty} \left(\frac{1}{x}\right) = 0$ $\lim_{x \to \infty} f(x) = -\infty - 5 + \frac{2}{-\infty} = -\infty$ $\lim_{x \to -2^{-}} f(x) = -11 + \frac{2}{0^{-}} = -\infty$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x}{x^2}\right) = \lim_{x \to -\infty} \left(\frac{1}{x}\right) = 0$ $\lim_{x \to 2^+} f(x) = \frac{+4}{0^+} = +\infty \quad , \quad \lim_{x \to 2^+} f(x) = \frac{+4}{0^+} = +\infty \quad \lim_{x \to -2^+} f(x) = -11 + \frac{2}{0^+} = +\infty$ تدريب صفحة 38 رقم 2 : جد نهاية التابع f المعين بالعلاقة $f(x)=rac{5x-1}{(x-1)^2}$ عند 1 ثم عين عدداً lpha يحقق الشرط: $f(x) > 10^3$ ينصراً من المجال $[\alpha, 1 + \alpha]$ مختلفاً عن 1 كان x عنصراً من المجال $\lim_{x \to 1^+} f(x) = \frac{+4}{0+} = +\infty$ $\lim_{x \to 1^{-}} f(x) = \frac{+4}{0+} = +\infty$ $\Delta = (-5)^2 - 4(10^3)(-4)$ = 25 + 16000 = 16025 $rac{5x-1}{(x-1)^2} > 10^3$ لدينا $f(x) > 10^3$ وهذا يكافئ $\sqrt{\Delta} = \sqrt{16025} \simeq 126.5$ $t_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-5) + 126.5}{2(1000)} = \frac{5 + 126.5}{2000}$ $=\frac{131.5}{2000}=0.06$ $t_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-5) - 126.5}{2(1000)} = \frac{5 - 126.5}{2000}$ = -121.5 2000 = -0.06علاء ر حال 0952480990 وانل ز عترية 0933699123 ياسر الساسة 0949198068

51		1	يات والاستمر	في الذي	وية شاملة	ر		
		Construction of the local division of	<u>, , , , , , , , , , , , , , , , , , , </u>	-0.06	and printer and a second s	0.06		+ 00
1037	$t^2 - 5t - 4$	00	+	0.00	_	0	+	
$10t^2 -$	-5t - 4 < 0		غير محققة		محققة		غبر محققة	
	$\alpha = 0.06$	وبالتالي	1 - 0.06 < x	< 1+	- 0.06		> 0.06 - نعوظ 7: لنکتب (f(x ب	
			$f(x) = \frac{5}{(x)}$ $f(x) > 1$ $\frac{A}{(x-1)^2} > 1$	رً∡ 0 ³ (مقلوب) (0 ³ ⇒ -				
	(4)		يقي A موجب تمام 5 في جوار معين ا	ىن عدد حق	10 	 A 0 ³ ر ^{فإن} البسط		
			$\frac{5x-1}{(x-1)^2}$ $\alpha = \sqrt{\frac{1}{10}}$	$> \frac{A}{(x-1)}$	-		A = 1. عندئد:	اصبح لدینا: إذا اخترنا 6
			وعند ∞– وعند ۱۱		مند a	من اليسار ه	مة 42 رقم 1 : ية من اليمين و	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
	$x) = \frac{2x^2}{(x-1)(x)}$ $f(x) = \lim_{x \to +\infty} \left(\frac{2}{x}\right)$			$\lim_{x\to -\infty}$	$f(x) = \frac{2x+1}{x^2-4}$ $f(x) = \lim_{x \to -\infty}$	$\left(\frac{2x}{x^2}\right) = \lim_{x \to \infty} \frac{1}{x^2}$	-	
	$f(x) = \lim_{x \to -\infty} \left(\frac{2}{x}\right)$ $(x) = \frac{2}{0+x} = +\infty$	~	$f(x) = \frac{2}{0^{-}} = -c$	$\int_{x\to -2^{-1}}^{\lim}$	1000	= +∞ , _x	$\lim_{x \to -2^{-}} f(x) = \frac{1}{0}$	
			$f_{0}(k) = \frac{8}{0^{+}} = +6$		$f(x) = \frac{3}{0^+} =$, ∞+= ,	$\lim_{x\to 2^-} f(x) = \frac{1}{0}$	<u>-</u> = −∞

خلدون سير و ان 0932791896

طارق سعد الدين 0955561648

「「「「「「」」」

Contract.

and the second sec

and the second s

Scanned by CamScanner

حسان البيطار 0933756454

$$\frac{1}{1+x} \int (x) = \frac{1}{1+x} \int (x) = \frac{1}{1+x}$$

1.76

$$\begin{array}{c} \textbf{53} \\ \hline \textbf{53} \hline \textbf{53} \\ \hline \textbf{53} \hline \textbf{53} \\ \hline \textbf{53} \hline \textbf{51} \\ \hline \textbf{51} \hline \textbf{51}$$

$$\begin{cases} \frac{1}{\sqrt{1+x}+\sqrt{1-x}} = (1 + 1) \\ \frac{1}{\sqrt{1+x}+\sqrt{1-x}} = (1$$

، ایا د

نه مب إذا م

5

تد

0

5

ن

Scanned by CamScanner

A

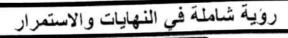
£1,

240

104

رؤية شاملة في النهايات والاستمرار 55 x>0 استنتج ان $rac{1}{2\sqrt{x}}\leq f(x)\leq rac{1}{2\sqrt{x}}$ ایا یکن x>0اياً يكن x > 0 فإن : $\sqrt{1+x} \ge \sqrt{x}$: نضيف \sqrt{x} للطرفين : نضيف $\sqrt{1+x}$ للطرفين $\sqrt{1+x} + \sqrt{x} \ge 2\sqrt{x}$ $2\sqrt{1+x} \ge \sqrt{1+x} + \sqrt{x}$ $\frac{1}{\sqrt{1+x}+\sqrt{x}} \le \frac{1}{2\sqrt{x}}$ $\frac{1}{2\sqrt{1+x}} \le \frac{1}{\sqrt{1+x} + \sqrt{x}}$ $f(x) \leq \frac{1}{2\sqrt{x}}$ $\frac{1}{2\sqrt{1+x}} \le f(x)$ $\frac{1}{2\sqrt{1+x}} \le f(x) \le \frac{1}{2\sqrt{x}} \quad : \quad e^{-\frac{1}{2\sqrt{x}}}$ 3. ما نهاية f عند ∞+ و $\lim_{x \to +\infty} \frac{1}{2\sqrt{1+x}} = 0$ $\lim_{x \to +\infty} \frac{1}{2\sqrt{x}} = 0$ $\lim_{x \to +\infty} \frac{1}{2\sqrt{x}} = 0$ نهاية تابع مركب : f(x) = (goh)(x) = g(h(x)) وبفرض h, g, f وبفرض لدينا ثلاثة توابع h, g, f $\lim_{x \to a} f(x) = c \quad : \quad \text{and} \quad g(x) = c \quad \text{and} \quad h(x) = b$ إذا كان سواء كانت المقادير c, b, a أعداد حقيقية منتهية أو مقادير لا نهائية. f(x) = (goh)(x) تُحقق $g(x) = x^2$ و h(x) = x + 1 و $f(x) = x^2 + 2x + 1$ مثال: بفرض $f(x) = x^2 + 2x + 1$ حسب قاعدة ربط g $(goh)(x) = g(h(x)) \quad \stackrel{\frown}{=} \quad g(x+1) \quad \stackrel{\frown}{=} \quad (x+1)^2 = x^2 + 2x + 1 = f(x)$ $\lim_{x \to 3} g(x) = 9$ نجد : $\lim_{x \to 2} h(x) = 3$ ومنه a = 2 نوضيع باخذ a = 2 $\lim_{x \to \infty} f(x) = 4 + 4 + 1 = 9$ وبالفعل نلاحظ أن a عند f عنه f ويطلب حساب نهاية f عنه f معرفاً على مجموعة D ويطلب حساب نهاية f عند fسنتبع في حل هذه التمارين طريقة تركيب التوابع: $\begin{array}{|c|c|c|c|c|c|c|} \hline \hline 1 & D =]5, +\infty[& f(x) = \sqrt{\frac{x+3}{x-5}} & a = 5 \\ \lim_{x \to 5^+} \hbar(x) = +\infty & X = \hbar(x) = \frac{x+3}{x-5} & \text{if } x = 5 \\ \lim_{x \to -\infty} \hbar(x) = 0 & X = \hbar(x) = \frac{-x+1}{x^2+1} & a = -\infty \\ \lim_{x \to -\infty} \hbar(x) = 0 & X = \hbar(x) = \frac{-x+1}{x^2+1} \\ \end{array}$ $\lim_{x\to 5^+} f(x) = \lim_{X\to +\infty} \sqrt{X} = +\infty$ $\lim_{x\to-\infty}f(x)=\lim_{X\to0}\sqrt{X}=0$ $\boxed{2} D = \left| -\infty, \frac{1-\sqrt{5}}{2} \right|$ $\boxed{4} D =]-1, 1[f(x) = \frac{1}{\sqrt{1-x^2}} \qquad a = 1$ $\int (x) = x^{3} + h^{2} + x \qquad a = -\infty$ $\lim_{x \to \infty} h(x) = +\infty$ $\lim_{x \to 1^-} h(x) = 0$ $X = h(x) = 1 - x^2$ نفرض $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 0^{+}} \frac{1}{\sqrt{y}} = +\infty$ $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} \sqrt{x} = +\infty$ طارق سعد الدين 0955561648 خلدون سير و ان 0932791896 حسان البيطار 0933756454

$$\frac{56}{|m|} = \frac{1}{(x) + cos} \frac{1}{x + (x - 1)^2} = a = 1 \\
\frac{1}{(x) + cos} \frac{1}{x + cos} \frac{x + A(x)}{x + acos} = \frac{1}{(x - 1)^2} \\
\frac{1}{(x) + cos} \frac{1}{x + acos} \frac{x + A(x)}{x + acos} = \frac{1}{(x - 1)^2} \\
\frac{1}{(x) + cos} \frac{1}{x + acos} \frac{1}{x + acos} \frac{1}{(x - 1)^2} \\
\frac{1}{(x) + cos} \frac{1}{x + acos} \frac{1}{x + acos} \frac{1}{x + acos} \frac{1}{x + acos} \\
\frac{1}{(x) + cos} \frac{1}{x + acos} \frac{1}{x + acos} \frac{1}{x + acos} \frac{1}{x + acos} \\
\frac{1}{(x) + cos} \frac{1}{x + acos} \frac{1}{x + acos$$



1949 (P. 1949)

تمريفه: يبكن f تابع معرف على المجال $[\infty, +\infty] = I$ وليكن C الخط البياني للتابع f وبفرض المستقيم $\Delta: y = ax + b$. نقول ان Δ مستقيم مقارب للخط C في جوار $(\infty+)$ إذا وفقط إذا تحقق: $\lim_{x \to +\infty} [f(x) - y_{\Delta}] = 0$ وإذا كان f تابع معرف على المجال $[0, \infty, b] = 1$ عندئذ:

ورد المعام مستقيم مقارب للخط C في جوار $(\infty-)$ إذا وفقط إذا تحقق: نقول أن Δ مستقيم مقارب للخط C

$$\lim_{x \to -\infty} [f(x) - y_{\Delta}] = 0$$

 $f(x)-y_\Delta$ ولمعرفة الوضع النسبي بين Δ, C ندرس إشارة المقدار f(x)

$$f(x) - y_{\Delta} \implies \begin{cases} f(x) - y_{\Delta} > 0 & : \Delta & D \\ g(x) - y_{\Delta} & = 0 & f(x) - y_{\Delta} < 0 & : \Delta & D \\ g(x) - g_{\Delta} & = 0 & f(x) - g_{\Delta} < 0 & D & D \\ g(x) - g_{\Delta} & = 0 & f(x) - g_{\Delta} < 0 & f(x) - g_{\Delta} < 0 & f(x) - g_{\Delta} < 0 \end{cases}$$

 $\Delta: y = x + 1$ وليكن C_f الخط البياني للتابع $f(x) = \frac{x^2 + 3x + 1}{x + 2}$ المعرف على $R \setminus \{-2\}$ وليكن المستقيم C_f المعرف أن يكن أن Δ مع Δ مع Δ مع Δ مع Δ

$$f(x) - y_{\Delta} = \frac{x^2 + 3x + 1}{x + 2} - (x + 1) = \frac{x^2 + 3x + 1 - x^2 - 2x - x - 2}{x + 2} = \frac{-1}{x + 2}$$

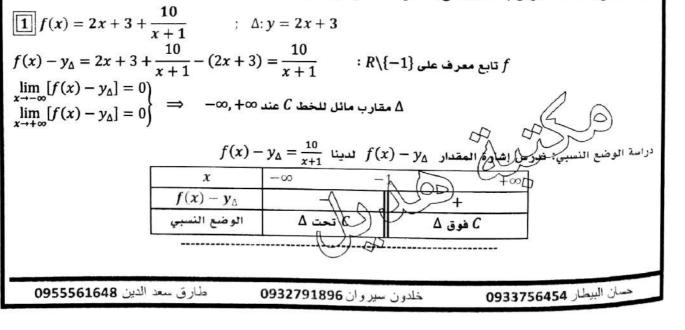
 $\lim_{x \to +\infty} [f(x) - y_{\Delta}] = 0 \implies +\infty$ مقارب مائل لـ $\Delta: y = x + 1$

57

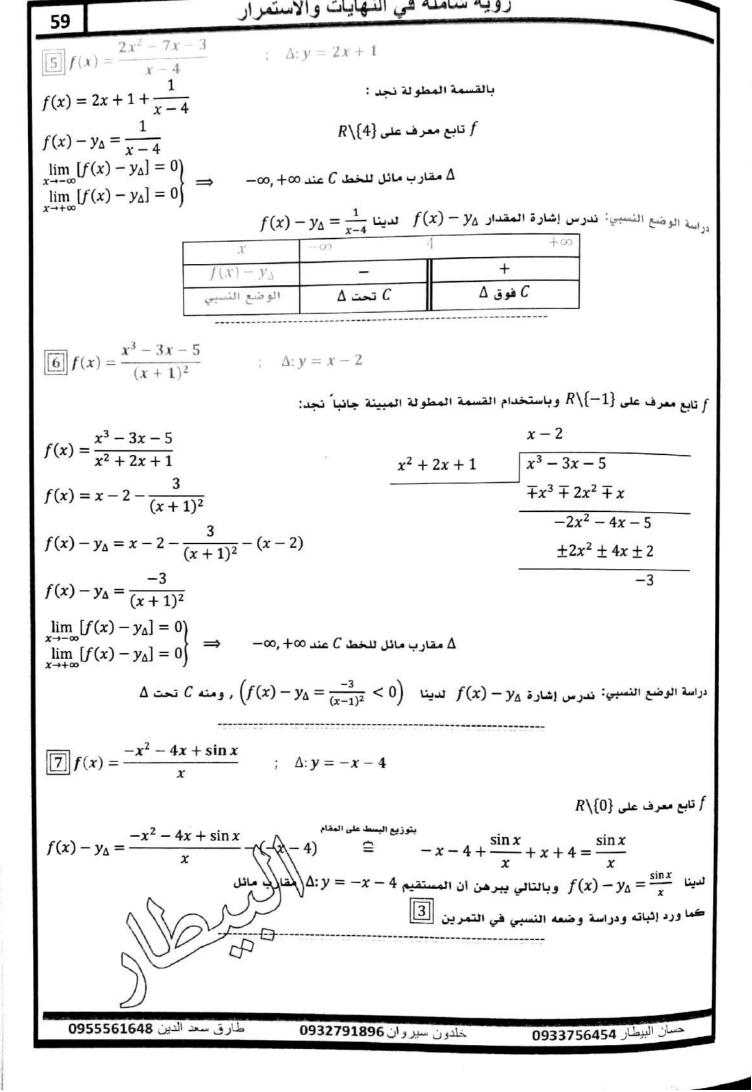
 $f(x) - y_{\Delta} = rac{-1}{x+2}$ لدينا $f(x) - y_{\Delta}$ فدرس إشارة $f(x) - y_{\Delta}$

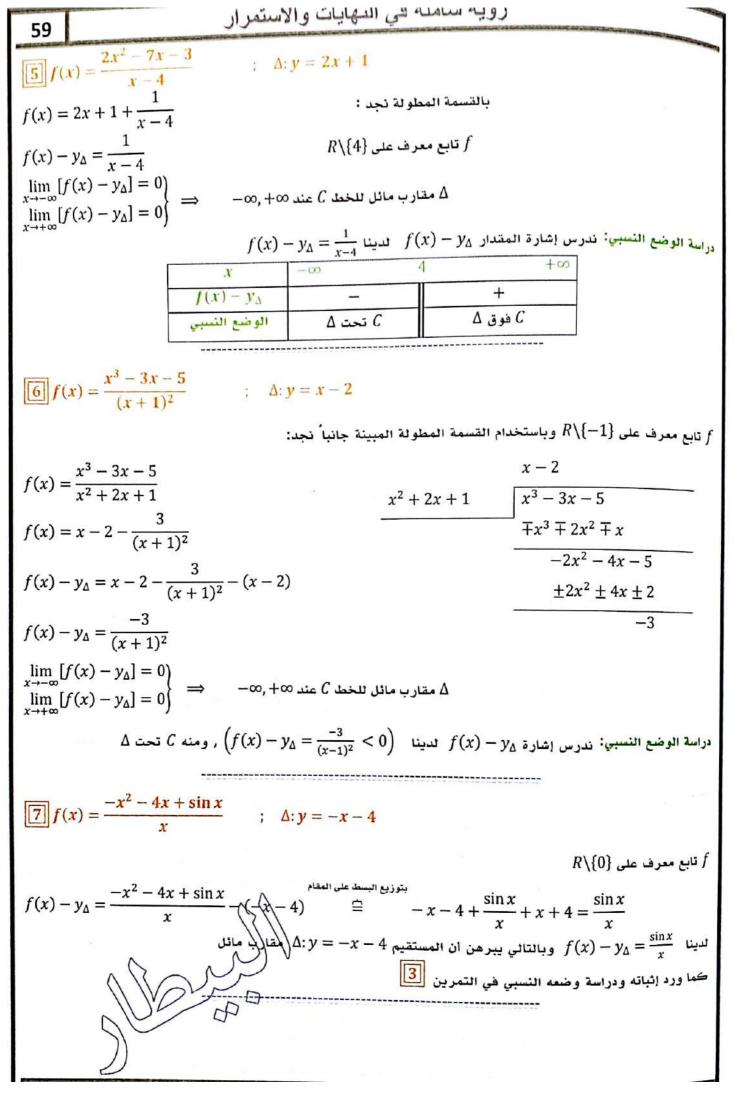
x		2 +00
$f(x) - y_{\Delta}$	+	_
الوضع النسبي	Ω فوق Δ	C تحت Δ

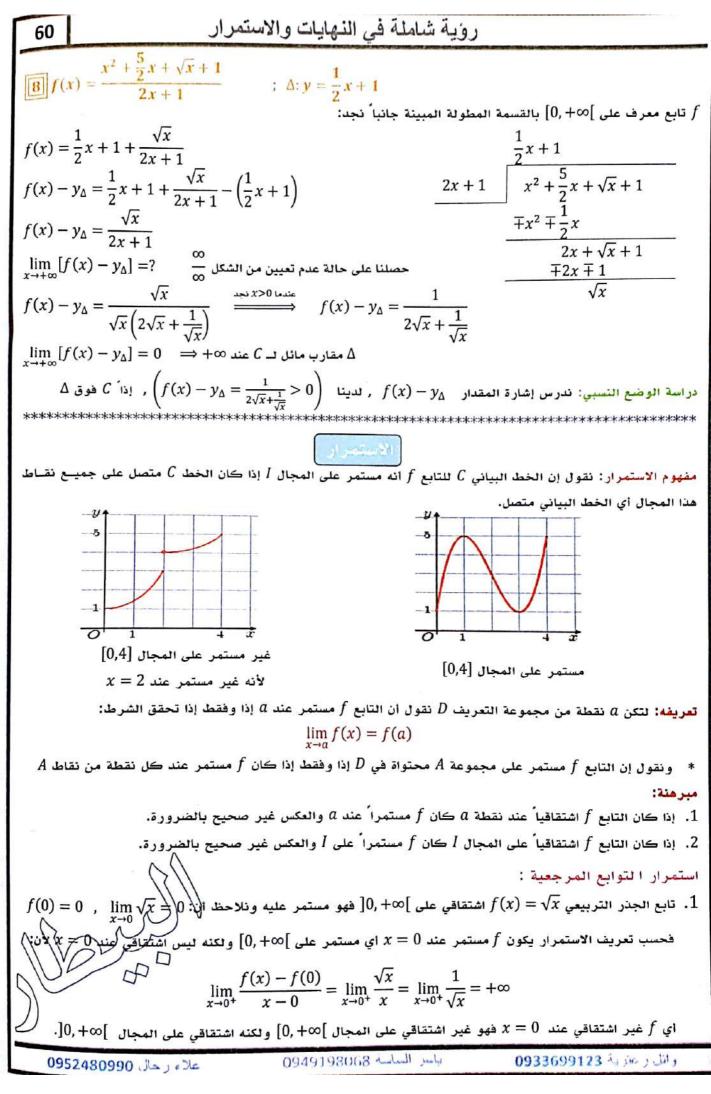
f تدريب صفحة 51 رقم 1 : فيما يأتي بين معللاً إجابتك إذا كان المستقيم Δ مقارباً للخط البياني C_f للتابع fعند $\infty+$ أو عند $\infty-$ ادرس بعدئذ الوضع النسبي للخط C_f ومقاربه Δ



2) $f(x) = -x + 1 - \frac{1}{x^2}$; $\Delta: y = -x + 1$ $\frac{\left[2\right] f(x)}{f(x) - y_{\Delta}} = -x + 1 - \frac{1}{x^2} - (-x + 1) = \frac{-1}{x^2} \qquad : R \setminus \{0\}$ $f(x) - y_{\Delta} = 0$ $\lim_{\substack{x \to -\infty \\ y \to +\infty}} [f(x) - y_{\Delta}] = 0$ $\lim_{x \to +\infty} [f(x) - y_{\Delta}] = 0$ $\Rightarrow -\infty, +\infty$ مقارب مائل للخط C عند Δ Δ در اسة الوضع النسبي: ندر س إشارة المقدار $f(x) - y_{\Delta} = \frac{-1}{x^2} < 0$ لدينا $f(x) - y_{\Delta}$ ومنه $f(x) - y_{\Delta}$ تحت $f(x) = x + \frac{\sin x}{x}$; $\Delta: y = x$ $\int_{f(x)^{-} y_{\Delta}} = x + \frac{\sin x}{x} - x = \frac{\sin x}{x}$ R^{st} تابع معرف على fالدراسة نهاية $f(x) - y_{\Delta}$ عند $\pm \infty \pm \infty$ نستخدم مبرهنة الإحاطة: و نميز حالتين : $x \in]0, +\infty[$ ای 0 < x ای $0, +\infty[$ $-1 \le \sin x \le +1$ $\frac{-1}{x} \le \frac{\sin x}{x} \le \frac{+1}{x}$ $(\div x)$ $\frac{x}{\lim_{x \to +\infty} \frac{-1}{x}} = 0 \begin{cases} x & x \\ \lim_{x \to +\infty} \frac{-1}{x} = 0 \end{cases} \xrightarrow{x} \lim_{x \to +\infty} \frac{\sin x}{x} = 0 \implies +\infty \implies \Delta$ $\lim_{x \to +\infty} \frac{1}{x} = 0 \xrightarrow{x} \lim_{x \to +\infty} \frac{\sin x}{x} = 0 \implies +\infty \implies \Delta$ $x \in (-\infty, 0[$ ای $\infty, 0 = 0$ ای 2. فی حالة 2 نلاحظ ان $rac{\sin x}{x}$ تابع زوجي على R^* اي $rac{\sin x}{x} = rac{-\sin x}{-x} = rac{\sin x}{-x}$ وبالتالي يمكننا ان نكتب: $\lim \frac{\sin x}{2} = 0 \implies -\infty$ مقارب مائل ٹے Δ $R \setminus \{0\}$ معرف على $\left(f(x) - y_{\Delta} = \frac{\sin x}{x}\right)$ در اسة الوضع النسبي: ندرس إشارة المقدار $f(x) - y_{\Delta}$, $f(x) - y_{\Delta}$ $f(x)-y_{\Delta}=0$ $x = \pi k ; k \in Z$ sin x - = 0 2π +00 π 0 $-\pi$ -2π x 0 + 0 0 + sinx 0 0 + + 0 Y Sinx 0 + 0 + 0 +0 + x C فوق C تحت C فوق الوضع C فوق C تحت C فوق Δ Δ Δ النصري Δ Δ Δ 4 f(x) = 3x + 7 -5 $\Delta : y = 3x + 7$ $\sqrt{|x|}$ $f(x) - y_{\Delta} = \frac{-5}{\sqrt{|x|}}$ f تابع معرف على **R* $\lim_{x \to \infty} [f(x)]$ Δ متارب مالل للخط C عند $\infty, +\infty$ $\Box = 0$ $\lim_{x\to+\infty} [f(x)]$ c دراسة الوضع النسبي: ندرس إشارة المقدار $f(x) - y_{\Delta} = rac{-5}{\sqrt{|x|}} < 0$ لدينا $f(x) - y_{\Delta} = \int_{1}^{\infty} \int_$ 0952480990 ياسر الساسة 0949198068 وانل ز عنرية 0933699123

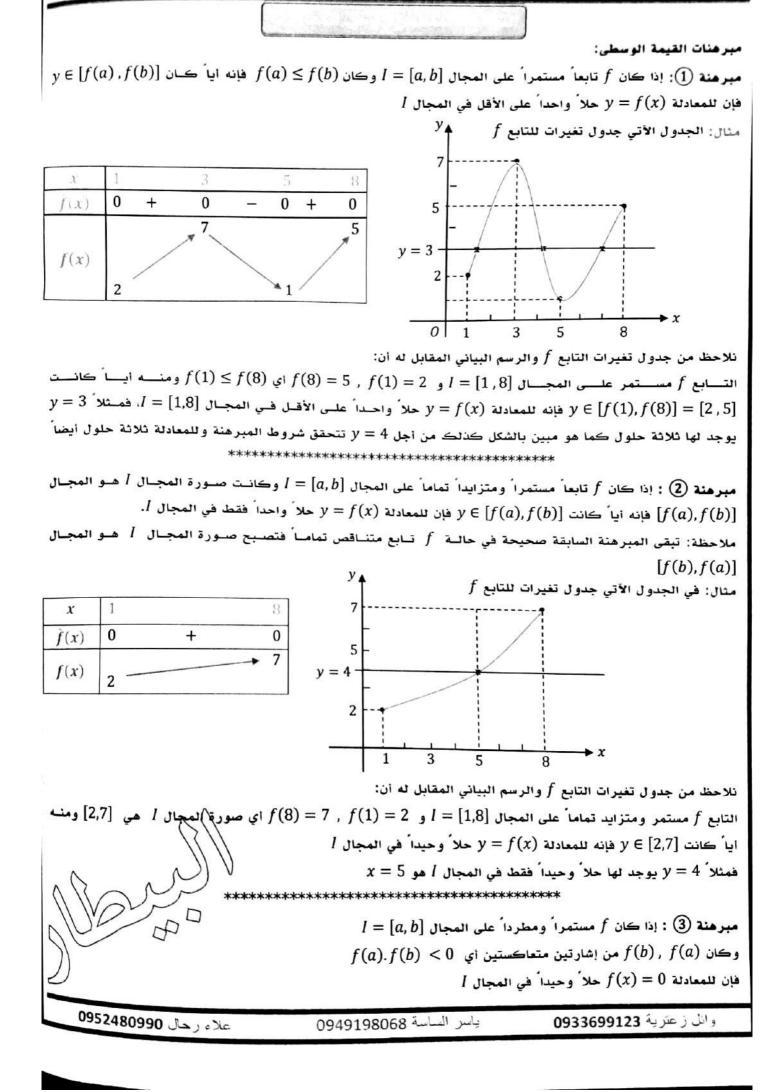


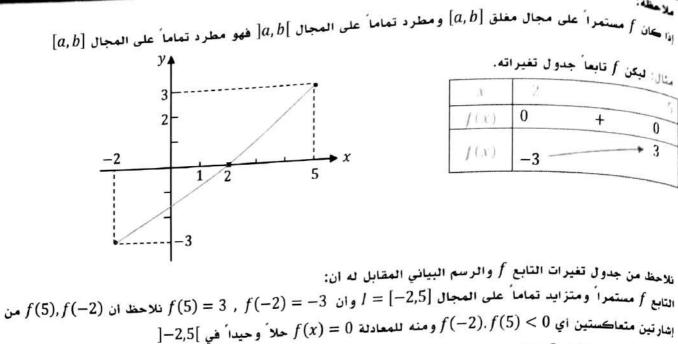




2. توابع ڪير. . 3. التوابع الكسرية اشتقاقية على مجموعة تعريفها D فهي مستمرة على D. . التابعان $x\mapsto \cos x$, $x\mapsto \sin x$ استقاقیان علی R فهما مستمران علی R $f(x) = \sqrt{1 - \cos x}$ وفق f المعطى وفق $f = \sqrt{1 - \cos x}$ إيرب صفحة 54 رقم f 1. ما مجموعة تعريف f f معرف عندما: $1 - \cos x \ge 0$ محققة دائما $1 \ge \cos x$ $D_f = R$ 2. ایکون f مستمراً علی مجموعة تعريفه 9 $h(x) = \sqrt{x}$, $T(x) = 1 - \cos x$ مبارة عن تركيب تابعين fR و منه f مستمر على مجموعة تعريف f اي مستمر على f(x) = (hoT)(x)دوراً له f دوراً له 3. بين ان التابع f زوجي و يقبل العدد π ايا يکن $x \in R$ فإن $x \in R$ ايا يکن $x \in R$ ايا يکن $f(-x) = \sqrt{1 - \cos(x)} = \sqrt{1 - \cos x} = f(x)$ 2π اي $f(x+2\pi) = \sqrt{1-\cos(x+2\pi)} = \sqrt{1-\cos x} = f(x)$ 4. ليكن g مقصور التابع f على المجال $[0,\pi]$, اثبت ان g اشتقاقي و ارسم خطه البياني 4 $f(x) = \sqrt{1 - \cos x} = \sqrt{2 \sin^2 \frac{x}{2}} = \sqrt{2} \cdot \sin \frac{x}{2}$ لدينا : $[0,\pi]$ اشتقاقي على R فإنه اشتقاقي على المجال $x o \sqrt{2} .\sinrac{x}{2}$ بما أن у و منه g اشتقاقي على المجال [0, π] نرسم الخط البياني للتابع f نقطياً على المجال $[0,\pi]$ $\sqrt{2}$ f(0) = 0 , $f\left(\frac{\pi}{2}\right) = 1$, $f(\pi) = \sqrt{2}$ \hat{f} ، استنتج الخط البياني للتابع f على المجال $[-2\pi,2\pi]$, ما مجموعة تعريف التابع \hat{f} $[-2\pi,2\pi]$ بما ان g تابع زوجي فإن خطه c متناظر بالنسبة لـ y () بنا من رسم g يمكن أن نستنتج رسم c_f على $[-2\pi,2\pi]$ حسب الزوجية والدورية: $\sqrt{2}$ $\hat{f}(x) = \frac{\sqrt{2}}{2} \cos \frac{x}{2}$ و منه R اشتقاقي على RR معرف على \hat{f} -2π 2π طارق سعد الدير. 0955561648 خانون سير و ان 0932791896 مسان البيطار 0933756454

مي مستمره على ٢.





ومن الشكل يكون الحل x = 2

f مبرهنة (Φ) : فيما يأتي $a \in b$ و d عنصران من المجموعة $\{m \cup \{-\infty, +\infty\}$ ونفترض أن a < b ونفترض أن التابع f تابع مستمر ومطرد تماماً على المجال I وأن J = f(I)

/ متناقص نماما	/ میزاید دماما	المحال
f(l) = [f(b), f(a)]	f(I) = [f(a), f(b)]	I = [a, b]
$f(l) = \left[f(b), \lim_{x \to a} f(x)\right]$	$f(I) = \left[\lim_{x \to a} f(x), f(b)\right]$	I = [a, b]
$f(l) = \left \lim_{x \to b} f(x), f(a) \right $	$f(I) = \left[f(a), \lim_{x \to b} f(x)\right]$	I = [a, b]
$f(I) = \lim_{x \to b} f(x), \lim_{x \to a} f(x) \Big[$	$f(l) = \lim_{x \to a} f(x), \lim_{x \to b} f(x) \Big[$	I = [a, b]

I ملاحظة مهمة (1) : إذا كان f تابعا مستمرا ومتزايدا تماما (أو متناقصا تماما) على المجال Iوكان $f(\alpha) = 0$ فإنه يوجد عدد حقيقي وحيد α من I يحقق $0 = f(\alpha)$ وإذا كان $(f(\alpha) \neq 0$ فإنه لا يوجد حل للمعادلة $f(\alpha) = 0$ في I

ملاحظية ② : الاستمرار يقتضي وجبود الحبل والاطبراد التبام للتبابع ƒ يضبمن وحدانيبة الحبل أمبا في حالبة الاطراد غير التام فقد نجد للمعادلة أكثر من حل.

$$f(x) = x^3 - 3x^2 + 2$$
 وفق R وفق $f(x) = x^3 - 3x^2 + 2$. ادرس تغیرات f ونظم جدولا کیا.

معرف ومستمر واشتقاقی علی المجال]∞+,
$$\infty-[$$

$$\lim_{x\to+\infty}f(x)=+\infty$$

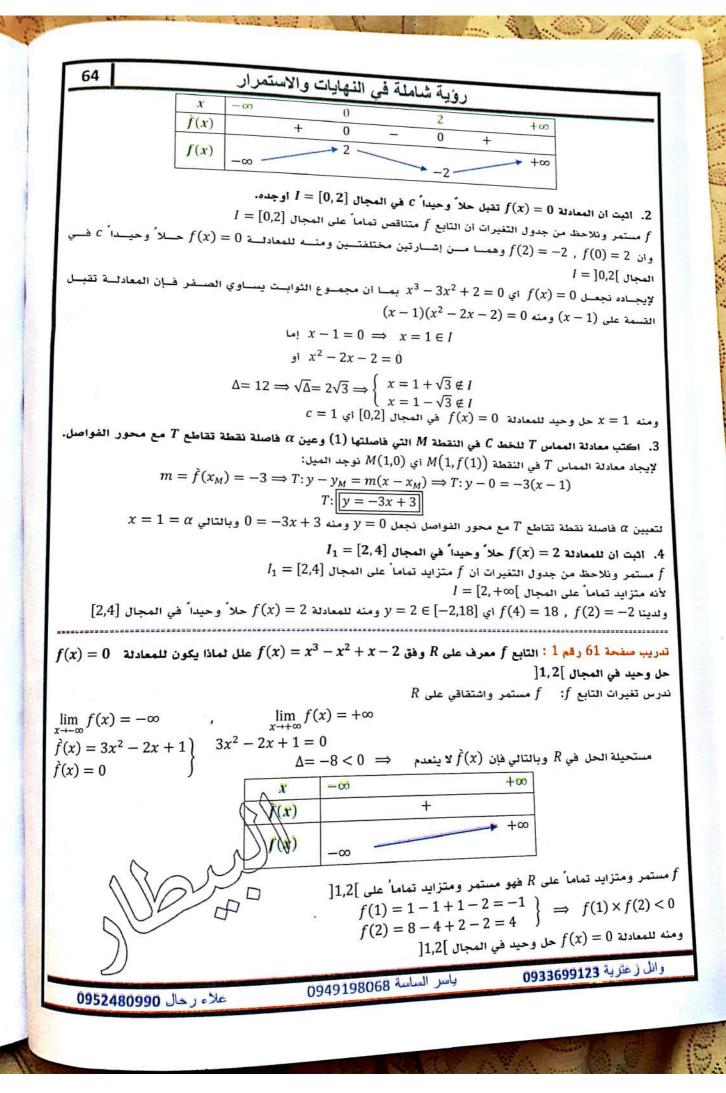
$$\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \begin{cases} \text{Let } x = 2 \\ \end{array} \Rightarrow f(2) = -2 \end{cases}$$

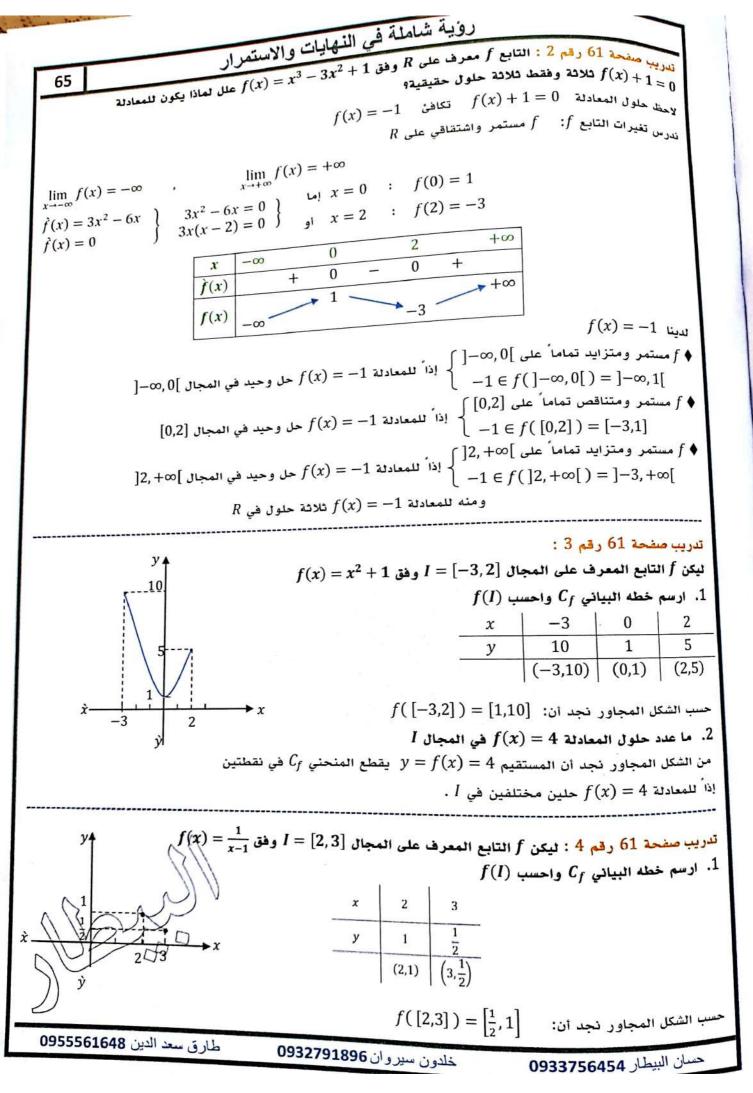
lin

 $\xrightarrow{\longrightarrow} \left(\begin{array}{c} x = 0 \end{array} \right) \Rightarrow f(0) = 2$

خلدون سيروان 0932791896 طارق سعد الدين 0955561648

بان البيطار 0933756454

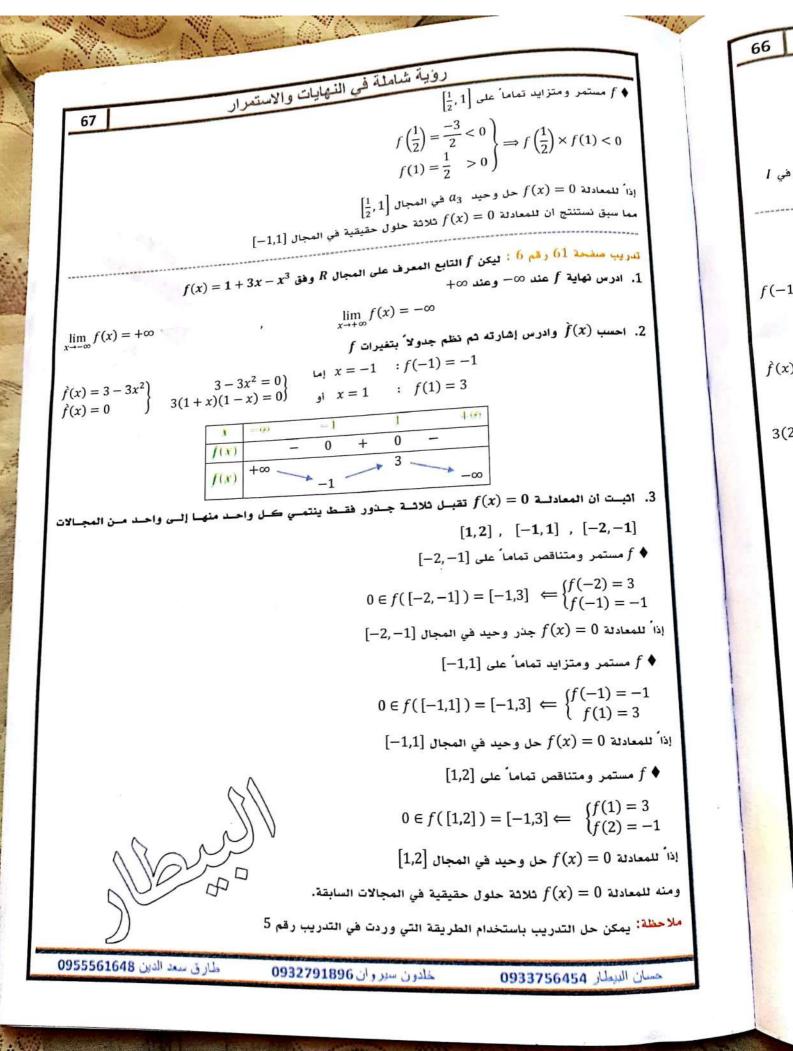




66 رؤية شاملة في النهايات والاستمرار I ما عدد حلول المعادلة $f(x)=rac{3}{4}$ في المجال 1. من الشكل المجاور نجد أن المستقيم $f(x)=rac{3}{4}$ يقطع المنحني \mathcal{C}_f في نقطة واحدة اذا للمعادلة $f(x) = \frac{3}{4}$ حل وحيد في f(x)I بطريقة اخرى: لدينا $f(x) = \frac{3}{4}$ وبالتالي f مستمر ومتناقص تماماً على [2,3] ومنه للمعادلة $f(x) = \frac{-1}{(x-1)^2} < 0$ لدينا $f(x) = \frac{-1}{(x-1)^2} < 0$ $\frac{3}{4} \in f([2,3]) = \begin{bmatrix} 1\\ 2 \end{bmatrix}, 1$ $f(x)=4x^3-3x-rac{1}{2}$ وفق R وفق R التابع المعرف على المجال f وفق f دلم f د المع61 وفق ff(1) , f(0) , $f\left(-rac{1}{2}
ight)$, f(-1) .1 $f(-1) = \frac{-3}{2}$, $f\left(\frac{-1}{2}\right) = \frac{1}{2}$, $f(0) = \frac{-1}{2}$, $f(1) = \frac{1}{2}$ $\left[-1,1
ight]$ تقبل ثلاثة حلول في المجال f(x)=0 2. استنتج أن المعادلة f(x)=0R التابع f مستمر واشتقاقي على $\hat{f}(x) = 12x^2 - 3$ $\implies \begin{cases} x = \frac{1}{2} \rightarrow f\left(\frac{1}{2}\right) = \frac{-3}{2} \\ x = \frac{-1}{2} \rightarrow f\left(\frac{-1}{2}\right) = \frac{1}{2} \end{cases}$ $\dot{f}(x) = 0$ $3(4x^2 - 1) = 0$ 3(2x - 1)(2x + 1) = 0نلاحظ من جدول التغيرات: $\left[-1, \frac{-1}{2}\right]$ مستمر ومتزاید تماماً علی $f \blacklozenge$ $\begin{cases} f(-1) = \frac{-3}{2} < 0\\ f\left(\frac{-1}{2}\right) = \frac{1}{2} > 0 \end{cases} \Rightarrow f(-1) \times f\left(\frac{-1}{2}\right) < 0$ $\left[-1, \frac{-1}{2}
ight]$ إذا للمعادلة f(x) = 0 حل وحيد a_1 في المجال f(x) $f \blacklozenge f$ مستمر ومتناقص تماما على $f = \frac{1}{2}, \frac{1}{2}$ $\begin{array}{c} f\left(\frac{-1}{2}\right) = \frac{1}{2} > 0 \\ f\left(\frac{1}{2}\right) = \frac{-3}{2} < 0 \end{array} \end{array} \right\} \Longrightarrow f\left(\frac{-1}{2}\right) \times f\left(\frac{1}{2}\right) < 0$ $\left[\frac{-1}{2}, \frac{1}{2}\right]$ حل وحيد a_2 هي المجال f(x) = 0وانل ز عترية 0933699123 ياسر الساسة 0949198068 علاء ر حال 0952480990

Scanned by CamScanner

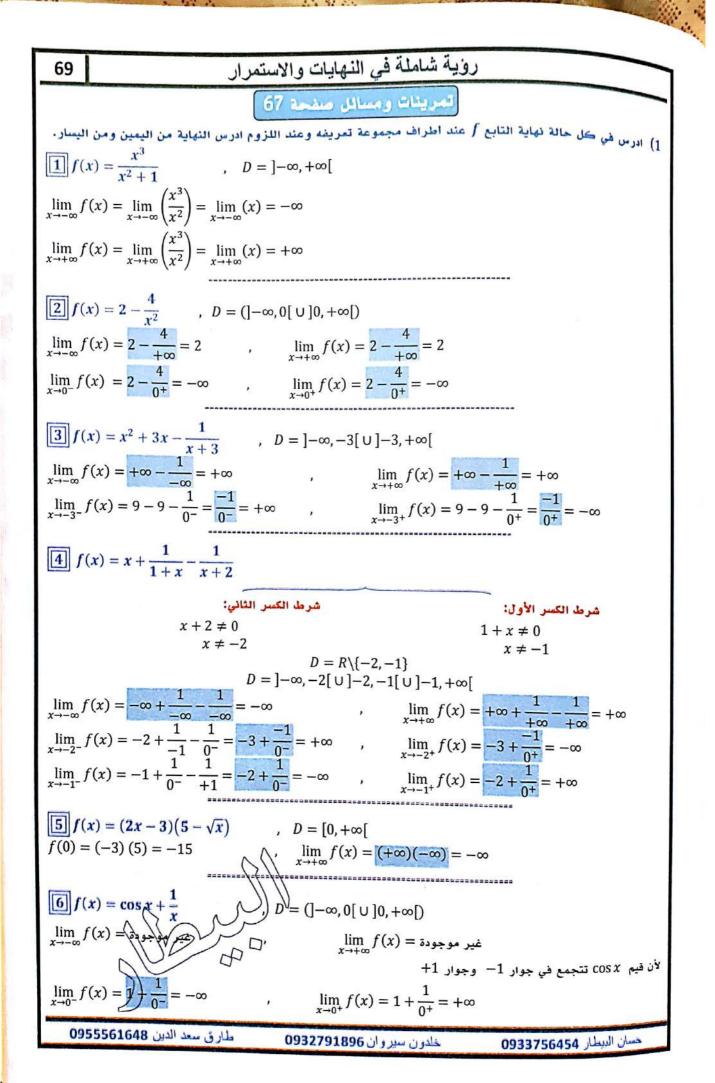
WANT Among WANT

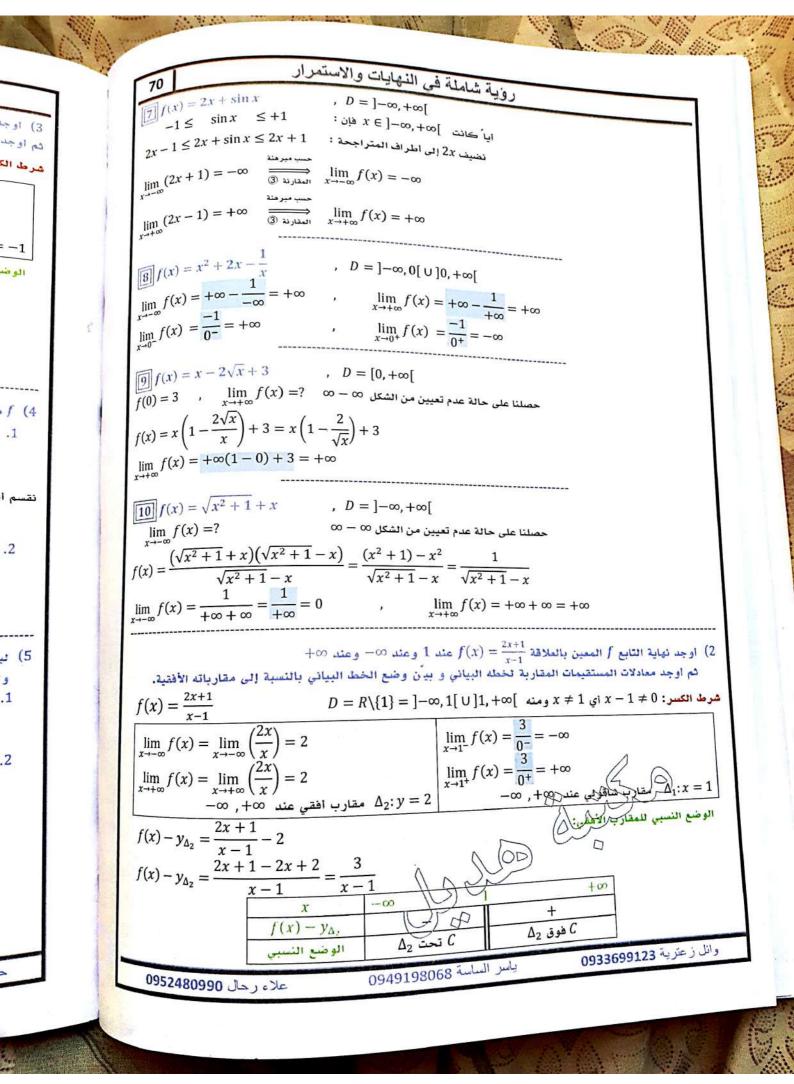


$$\begin{aligned} f(\alpha) &= 0 \quad \text{trading the set and a state in the set and a state in the set and a set of the set and a state in the set and th$$

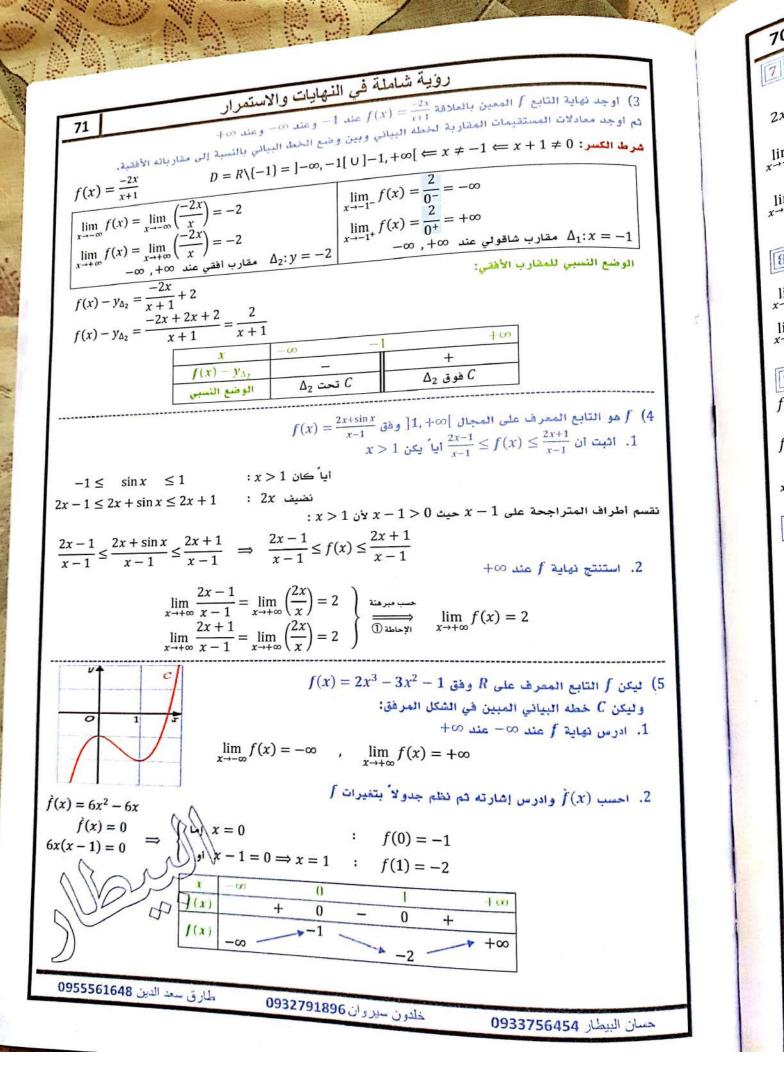
$$f(1) = 1 - \cos(1) > 0$$
 \implies $f(0) \times f(1) < 0$

]0,1[ومنه للمعادلة f(x)=0 حل وحيد lpha في المجال []0,1[





Scanned by CamScanner



$$\lim_{x \to +\infty} \frac{1}{x} = \frac{\sqrt{x^2 \left(2 + \frac{1}{x} + \frac{1}{x^2}\right)}}{x} = \frac{x \sqrt{2 + \frac{1}{x} + \frac{1}{x^2}}}{x} = \sqrt{2 + \frac{1}{x} + \frac{1}{x^2}}$$
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \sqrt{2} \implies a = \sqrt{2}$$

f(x) − ax المقدار b المقدار b

$$\begin{split} \lim_{x \to +\infty} (f(x) - \sqrt{2}x) &= \frac{1+0}{\sqrt{2} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} \implies b = \frac{\sqrt{2}}{4} \\ & \Delta: y = \sqrt{2}x + \frac{\sqrt{2}}{4} \implies b \text{ dist} (y \text{ list}(y \text{ list}(y$$

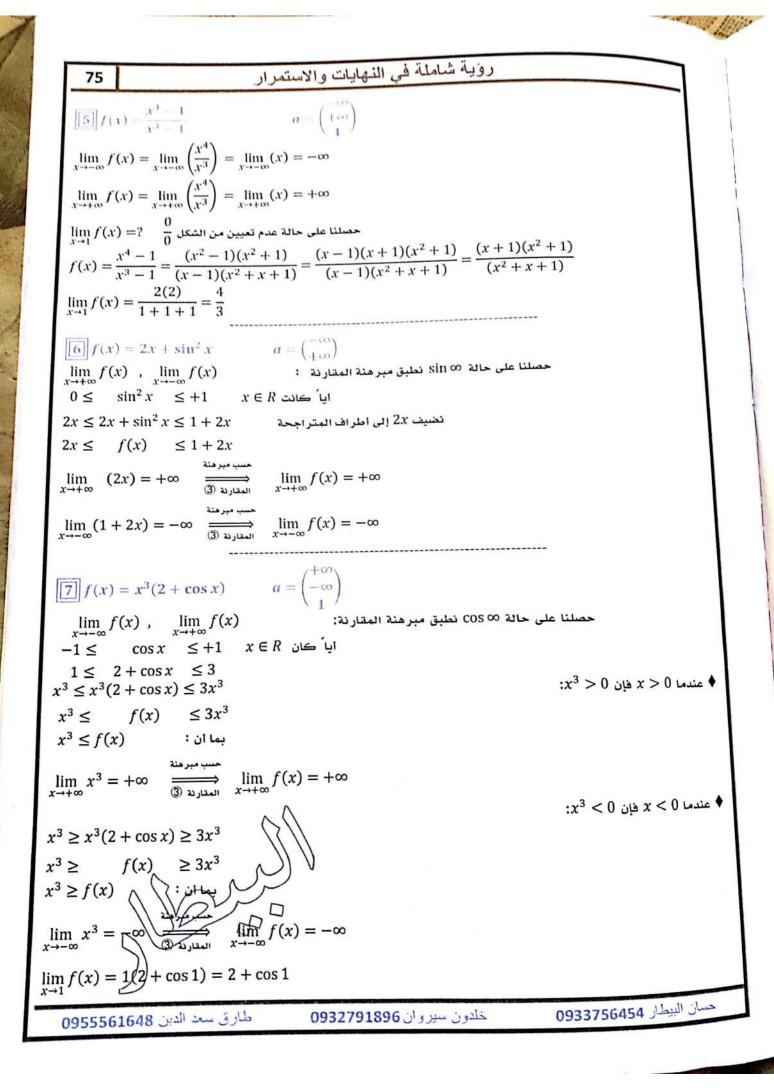
$$\begin{array}{c} 74\\ \hline \\ 75\\ \hline \\ 74\\ \hline \\ 74\\ \hline \\ 75\\ \hline \\ 74\\ \hline \\ 74\\ \hline \\ 75\\ \hline 75\\ \hline \\ 75\\ \hline \\ 75\\ \hline 75\\ \hline$$

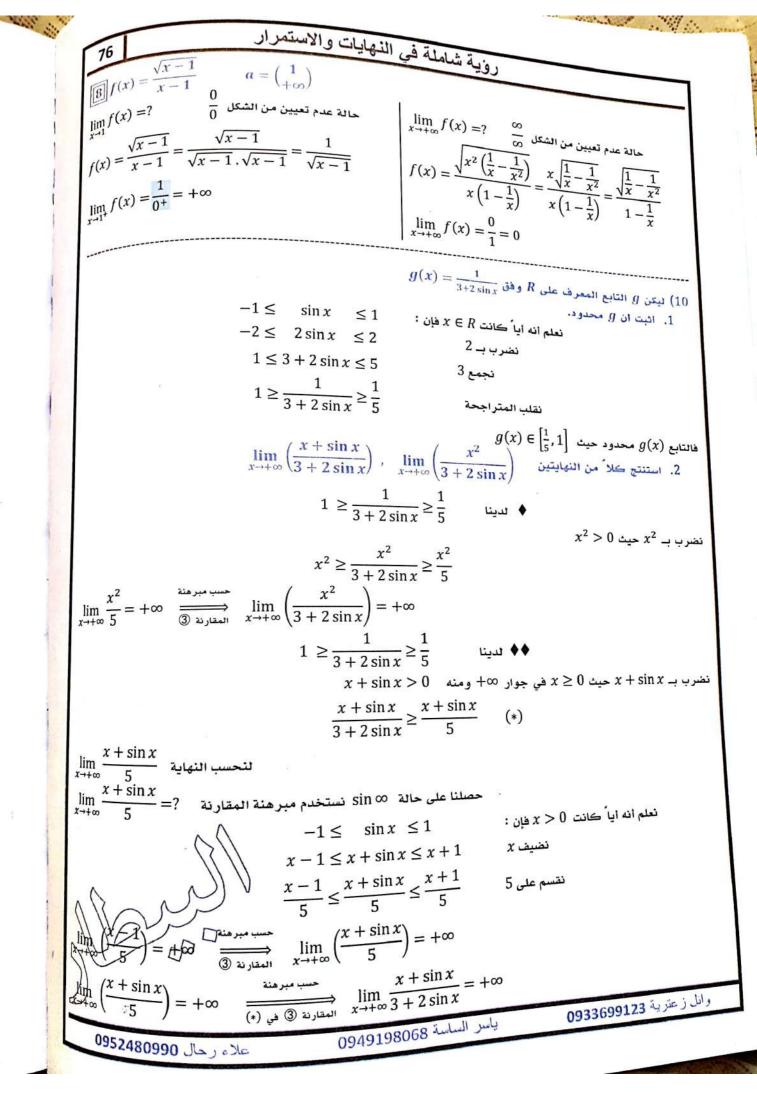
5.5

0952400000

du llui i opporte ul

والل زعترية 0933699123





1

-

نة

با

Y

Y

77 رؤية شاملة في النهايات والاستمرار $f(x) = rac{3x^2+6x}{x^2-x-2}$ التابع المعين بالعلاقة (11 عين D مجموعة تعريف f. $x \neq 2$, $x \neq -1$ ای $(x-2)(x+1) \neq 0$ ومنه $x \neq 2$ ومنه $(x-2)(x+1) = x^2 - x - 2 \neq 0$ $D =]-\infty, -1[\cup]-1, 2[\cup]2, +\infty[$ D_f التي تحقق $f(x) = a + \frac{b}{x+1} + \frac{c}{x-2}$ التي تحقق c, b, a اليا تكن .2 نقسم البسط على المقام (القسمة الإقليدية): $\begin{array}{r} 3\\ x^2 - x - 2 \\ \hline 3x^2 + 6x \\ \mp 3x^2 \pm 3x \pm 6 \\ 9x + 6 \end{array}$ $\begin{cases} f(x) = 3 + \frac{9x+6}{x^2 - x - 2} = 3 + \frac{9x+6}{(x+1)(x-2)} \end{cases}$ a=3 بالمقارنة مع الشكل $a+\frac{b}{x+1}+\frac{c}{x-2}$ نجد $\frac{9x+6}{(x+1)(x-2)} = \frac{b}{x+1} + \frac{c}{x-2} \quad \dots \quad \square$: x=-1 نضرب طرفي المعادلة بـ (x+1) ونجعل b $b + 0 = \frac{-9 + 6}{-3} = \frac{-3}{-3} = 1 \implies b = 1$ x = 2 الإيجاد x = 2 ونحعل (x - 2) ونحعل x = 2 $0 + c = \frac{18 + 6}{3} = 8$ \Rightarrow c = 8 $f(x) = 3 + \frac{1}{x+1} + \frac{8}{x-2}$ D_f ادرس نهاية f عند حدود المجالات الثلاثة التي تؤلف 3. $\lim_{x \to -\infty} f(x) = 3$ $\lim_{x \to +\infty} f(x) = 3$ $\lim_{x \to -1^{-}} f(x) = \frac{1}{0^{-}} = -\infty$ $\lim_{x \to -1^+} f(x) = \frac{1}{0^+} = +\infty$ $\lim_{x \to 2^{-}} f(x) = \frac{8}{0^{-}} = -\infty$ $\lim_{x \to 2^+} f(x) = \frac{8}{0^+} = +\infty$ $f(x) = \frac{x}{(x-1)^2}$ ليكن f التابع المعين بالعلاقة (12 1. ادرس نهایة f في جوار 1 $D =]-\infty, 1[\cup]1, +\infty[$ $x \neq 1$ ای $x \neq 1$ ای $(x-1)^2 \neq 0$ ومنه $(x-1)^2 \neq 0$ $\lim_{x \to 1^+} f(x) = \frac{1}{0^+} = +\infty$ $\lim_{x \to 1^{-}} f(x) = \frac{1}{0^{+}} = +\infty$ 2 $I \setminus \{1\}$ اوجد مجالاً I مركزه 1 ويحقق $f(x) > 10^6$ ايا ً تكن x من $I \setminus \{1\}$ $t_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + 2(10)^3}{2(10)^6}$ $f(x) > 10^6 \implies \frac{x}{(x-1)^2} > 10^6$ \Rightarrow $x > (x - 1)^2 10^6$ $10^6 (x - 1)^2 - x < 0$ المتراجحة المطلوبة $=\frac{2001}{2(10)^6}=\frac{1000.5}{(10)^6}\simeq 0.001$ $t_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - 2(10)^3}{2(10)^6}$ نعدم المتراجحة و ندرس إشارتها $10^6(x-1)^2 - x = 0$ $=\frac{-1999}{2(10)^6}=\frac{-9995}{(10)^6}=0.0009\simeq 0.001$ $10^6(x-1)^2 - x + 1 - 1 = 0$ $10^6(x-1)^2 - (x-1) - 1 = 0$: t = x - 1 الناخذ $t = x + 1 \in] = 0.001, +0.001[$ $10^6 t^2 - t - 1 = 0$ $\Delta = b^2 - 4ac = 1 - 4(10)^6(-1)$ €xE14-0.001,1+0.001[$= 1 + 4(10)^6 \simeq 4(10)^6 > 0$ $x \in [0.999, 1.001[$ للمعادلة حلان حقيقيان $\sqrt{\Delta} = 2(10)^3$ حسان البيطار 0933756454 خلدون سير وان 0932791896 طارق سعد الدين 0955561648

$$I = \sqrt{x^{2} + 2x - x} \qquad a = +\infty$$

$$I = \sqrt{x^{2} + 2x - x} \qquad a = +\infty$$

$$I = \sqrt{x^{2} + 2x - x} \qquad x = -\infty$$

$$I = \sqrt{x^{2} + 2x - x} \qquad x = \sqrt{x^{2} + 2x - x}$$

$$I = \sqrt{x^{2} + 2x - x} \qquad x = \sqrt{x^{2} + 2x - x} \qquad x = \sqrt{x^{2} + 2x + x} \qquad x = \frac{\sqrt{x^{2} + 2x + x}}{\sqrt{x^{2} + 2x + x}} = \frac{2x}{\sqrt{x^{2} + 2x + x}}$$

$$f(x) = \frac{\sqrt{x+1}-2}{x-3} = \frac{(\sqrt{x+1}-2)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)}$$

$$= \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)}$$

$$= \frac{(x-3)}{(x-3)(\sqrt{x+1}+2)}$$

$$= \frac{(x-3)}{(x-3)(\sqrt{x+1}+2)}$$

$$f(x) = \frac{1}{\sqrt{x+1}+2}$$

$$\lim_{x\to 3} f(x) = \frac{1}{2+2} = \frac{1}{4}$$

$$f(x) = \frac{2x}{\sqrt{x+1}-1} \qquad a = 0$$

$$\lim_{x\to 0} f(x) = ? \qquad 0 \\ \frac{1}{\sqrt{x+1}-1} = \frac{2x(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}$$

$$= \frac{2x(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)} = \frac{2x(\sqrt{x+1}+1)}{x}$$

$$f(x) = 2(\sqrt{x+1}+1)$$

$$\lim_{x\to 0} f(x) = ? \qquad 0 \\ \frac{1}{\sqrt{x+1}-1} = \frac{2x(\sqrt{x+1}+1)}{x}$$

$$f(x) = 2(\sqrt{x+1}+1)$$

$$\lim_{x\to 0} f(x) = 2(1+1) = 4$$

$$f(x) = \frac{-x+\sqrt{x}}{x-1} \qquad a = (\frac{1}{+\infty})$$

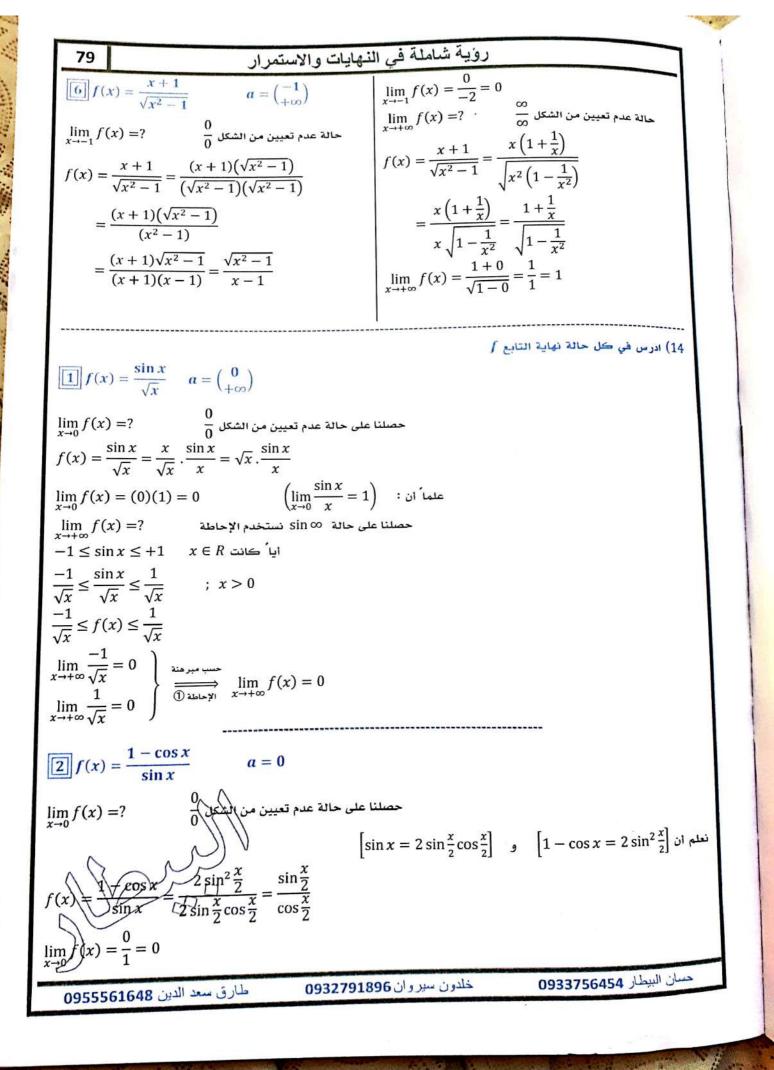
$$\lim_{x\to 1} f(x) = ? \qquad 0 \\ \frac{1}{\sqrt{x-1}} = \frac{(-x+\sqrt{x})(-x-\sqrt{x})}{(x-1)(-x-\sqrt{x})}$$

$$= \frac{x^2-x}{(x-1)(-x-\sqrt{x})} = \frac{x(x-1)}{(x-1)(-x-\sqrt{x})}$$

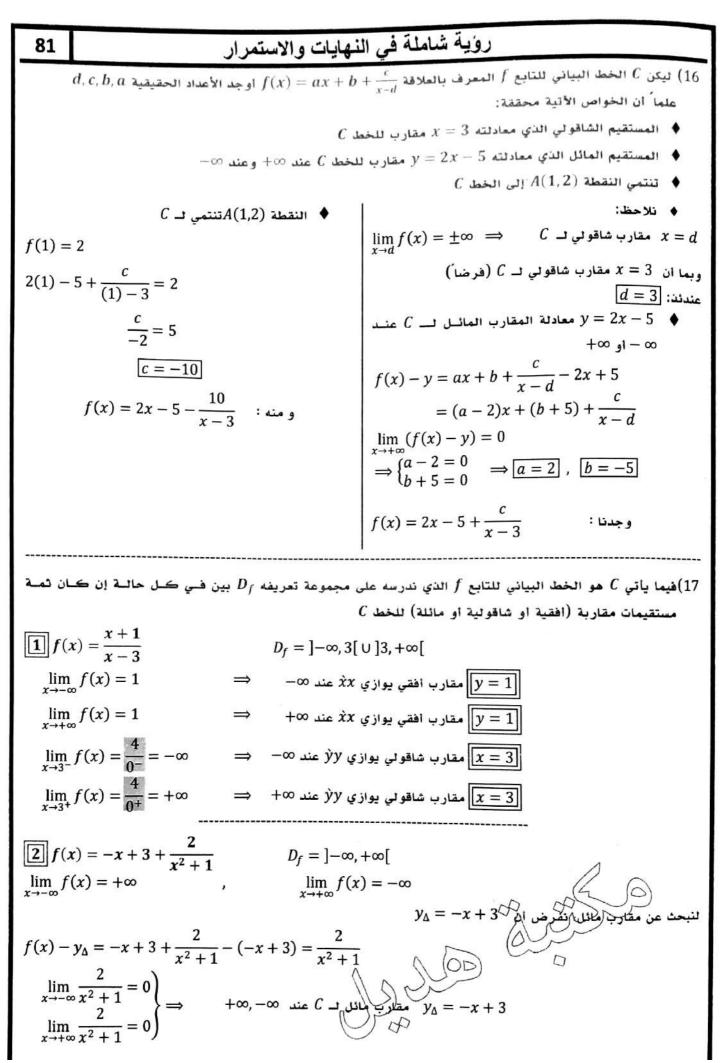
$$f(x) = \frac{1}{-x-\sqrt{x}}$$

$$\lim_{x\to 1} f(x) = \frac{1}{-1-1} = \frac{-1}{2}$$

$$\lim_{x\to +\infty} f(x) = ? \qquad \frac{\infty}{\infty}$$



$$\begin{aligned} \frac{8u}{||m|} f(x) &= \frac{x \sin x}{1 - \cos x} \qquad a = 0 \\ & \text{if } f(x) &= \frac{1}{1 - \cos x} = \frac{2x \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin \frac{x}{2}} = \frac{x \cos \frac{x}{2}}{\sin \frac{x}{2}} = \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} = \frac{\cos \frac{x}{2}}{\frac{1}{2} \cdot \frac{\sin \frac{x}{2}}{x^2}} \\ & \frac{1}{2} \cdot \frac{\sin x}{x}}{\frac{x}{2}} = \frac{2x \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin \frac{x}{2}} = \frac{\cos \frac{x}{2}}{\frac{1}{2} \cdot \frac{\sin x}{x^2}} \\ & \frac{1}{2} \cdot \frac{\sin x}{x}}{\frac{x}{2}} = \frac{\cos \frac{x}{2}}{\frac{1}{2} \cdot \frac{\sin x}{x^2}} \\ & \frac{1}{2} \cdot \frac{\sin x}{x}}{\frac{x}{2}} = \frac{1}{2} \cdot \frac{1}{x^2} \\ & \frac{1}{2} \cdot \frac{\sin x}{x}}{\frac{x}{2}} = \frac{1}{2} \cdot \frac{1}{x^2} \\ & \frac{1}{2} \cdot \frac{\sin x}{x^2}}{\frac{1}{2} \cdot \frac{\sin x}{x^2}} \\ & \frac{1}{2} \cdot \frac{\sin x}{x^2} \\ & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{x^2} \\ & \frac{1}{2} \cdot \frac{1}{x^2} \\ &$$



Scanned by CamScanner

$$\begin{array}{c}
 B2 \\
 f(x) = 1 - \frac{2}{x} + \frac{x}{2} \\
 b_{f} =] -\infty, 0[\cup] 0, +\infty[\\
 imm_{f}(x) = -\infty \\
 imm_{f}(x) = \frac{-\infty}{2} = +\infty \\
 imm_{f}(x) = \frac{-2}{2} = +\infty \\
 imm_{f}(x) = \frac{-2}{2} = -\infty \\
 imm_{f}(x) = -\frac{2}{2} = -\infty \\
 imm_{f}(x) = -\frac{2}{2} \\
 imm_{f}(x) = -\frac{2}{2} \\
 imm_{f}(x) = -\infty \\
 imm_{f}(x) = +\infty \\
 imm_{f}(x) = +\infty \\
 imm_{f}(x) = -\infty \\
 imm_{f}(x) = -\infty \\
 imm_{f}(x) = -x + \frac{3x}{x^{2} + 2} - (1 - x) = \frac{3x}{x^{2} + 2} \\
 imm_{f}(x) = -x + \frac{3x}{x^{2} + 2} - (1 - x) = \frac{3x}{x^{2} + 2} \\
 imm_{f}(x) = -x + \frac{3x}{x^{2} + 2} - (1 - x) = \frac{3x}{x^{2} + 2} \\
 imm_{f}(x) = -\infty \\
 imm_{f}(x) = \frac{4}{2} = -\infty \\
 imm_{f}(x) = \frac{4$$

85
 روزیة شامله فی الفهایات و الاستمرار

 (x)

$$\cong$$
 $3x - \frac{x+1}{x^2+1}$

 (x)
 $y_b = 3x - \frac{x+1}{x^2+1} - 3x = -\frac{x+1}{x^2+1}$
 $y_b = 3x$
 $y_b = 3x$
 $x + \frac{1}{x^2+1} = 0$
 $y_b = 3x$
 $y_b = 3x$
 $\frac{x+1}{x^2+1} = 0$
 $y_b = 3x$
 $y_b = 3x$
 $y_b = 3x$
 $y_b = 3x$
 $y_{a \to w}$
 $x + \frac{1}{x^2+1} = 0$
 $y_b = 3x$
 $y_{a \to w}$
 $x + \frac{1}{x^2+1} = 0$
 $y_b = 3x$
 $y_{a \to w}$
 $x + \frac{1}{x^2+1} = 0$
 $y_b = 3x$
 $y_{a \to w}$
 $x + \frac{1}{x^2+1} = 0$
 $(x - \frac{1}{x^2+1} = 0)$
 $f(x) = \sqrt{x^2+2x+4} = 0$
 $(x - \sqrt{x^2+2x+4} = 1)$
 $(x + 1)(x - (x + 1)) = \sqrt{x^2+2x+4} - (x + 1)$
 $y_{a \to w}$
 $(x + 1) = \sqrt{x^2+2x+4} - (x + 1)$
 $\sqrt{x^2+2x+4} + (x + 1)$
 $(x + \sqrt{x^2+2x+4} + x + 1)$
 $y_{a \to w}$
 $(x + 1)^2 + 2x + 4 - (x + 1)^2$
 $y_{a \to w}$
 $(x + \sqrt{x^2+2x+4} + x + 1)$
 $y_{a \to w}$
 $(x + \sqrt{x^2+2x+4} - (x + 1))^2$
 $(x + \sqrt{x^2+2x+4} + x + 1)$
 $(x + \sqrt{x^2+2x+4} + x + 1)$
 $y_{a \to w}$
 $(x + \sqrt{x^2+2x+4} + x + 1)^2$
 $(x + \sqrt{x})$
 $(x + \sqrt{x})$
 $(x + \sqrt{x})$
 $f(x) - (x + 1) = \sqrt{x^2+2x+4} - (x + 1)^2$
 $(x + \sqrt{x})$
 $(x$

$$\begin{aligned} \frac{86}{1} & \frac{1}{100} & \frac{$$

-

1.2

.3

مست

.2

Scanned by CamScanner

1.1

 $f(x) = x + \sqrt{x^2 + 1}$ وفق R وفق f المعرف على f وفق (20) يكن (20) ادرس فهاية f عند ⁰⁰ اشرح التأويل الهندسي لهذه النتيجة. $\lim_{x\to-\infty}f(x)=?$ ∞ + ∞ – عدم تعيين $f(x) = x + \sqrt{x^2 + 1} = \frac{\left(x + \sqrt{x^2 + 1}\right)\left(x - \sqrt{x^2 + 1}\right)}{x - \sqrt{x^2 + 1}} = \frac{x^2 - x^2 - 1}{x - \sqrt{x^2 + 1}} = \frac{-1}{x - \sqrt{x^2 + 1}}$ $\lim_{x \to -\infty} f(x) = \frac{-1}{-\infty} = 0$ $-\infty$ التاويل الهندسي: y = 0 مقارب أفقي منطبق على محور xx عند ∞ + ∞ النبت ان المستقيم Δ الذي معادلته y = 2x مقارب للخط C في جوار ∞ $f(x) - y_{\Delta} = x + \sqrt{x^2 + 1} - 2x = \sqrt{x^2 + 1} - x = \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$ $=\frac{x^2+1-x^2}{\sqrt{x^2+1}+x}=\frac{1}{\sqrt{x^2+1}+x}$ $\lim_{x \to +\infty} (f(x) - y_{\Delta}) = \frac{1}{+\infty} = 0 \implies +\infty \quad \text{if } x = 2x$ C. ادرس الوضع النسبي للمقارب △ والخط ○ $f(x) - y_{\Lambda} = \sqrt{x^2 + 1} - x$ $f(x) - y_{\Lambda} = 0 \implies \sqrt{x^2 + 1} - x = 0$ $\sqrt{x^2+1} = x$: x > 0 $\xrightarrow{i_{x,y}}$ $x^2+1 = x^2$ $\implies 1 = 0$ مستحيلة الحل ملاحظة هامة: أي معادلة مستحيلة الحل لها إشارة واحدة فقط إما موجبة دائما أو سالبة دائما لمعرفتها نأخذ قيمة ضمن $f(x) - y_{\Delta}$ مجموعة التعريف ونعوضها في $f(x) - y_{\Delta}$ والإشارة الناتجة هي إشارة . فوق $\Delta \Rightarrow x = 0 \Rightarrow f(x) - y_{\Delta} > 0 \Rightarrow C$ قيمة تجريبية C $f(x) = x + \sqrt{|4x^2 - 1|}$ وفق R وفق f المعرف على f المعرف البياني المعرف f المعرف على (21 1. ادرس نهایة f عند ∞ - وعند $\infty+$ $\lim_{x \to +\infty} f(x) = +\infty + \infty = +\infty$ $\lim_{x\to-\infty}f(x)=?$ حالة عدم تعيين من الشكل ∞ + ∞ $f(x) = x + \left| \left| x^2 \left(4 - \frac{1}{x^2} \right) \right| = x + |x| \left| 4 - \frac{1}{x^2} \right| = x - x \left| 4 - \frac{1}{x^2} \right|$ $= x \left(1 - \sqrt{\left| 4 - \frac{1}{x^2} \right|} \right)$ $\lim_{x\to\infty}f(x)=-\infty(1-2)=+\infty$ $\lim_{x\to+\infty} (f(x)-3x) = (a \cdot 2)^{-2}$ $f(x) - 3x = x + \sqrt{|4x^2 - 1|} - 3x = \sqrt{|4x^2 - 1|} - 2x$ $= \frac{\left(\sqrt{|4x^2 - 1|} - 2x\right)\left(\sqrt{|4x^2 - 1|} + 2x\right)}{\sqrt{|4x^2 - 1|} + 2x} = \frac{|4x^2 - 1| - 4x^2}{\sqrt{|4x^2 - 1|} + 2x}$ $= \frac{4x^2 - 1}{\sqrt{|4x^2 - 1|} + 2x} = \frac{-1}{\sqrt{|4x^2 - 1|} + 2x}$ $|4x^2 - 1| + 2x$ $|4x^2 - 1| = 4x^2 - 1$ $|4x^2 - 1| = 4x^2 - 1$ +2x $\sqrt{|4x^2 - 1|} + 2x$ $\lim_{x \to 0} (f(x) - 3x) = \frac{-1}{1-x}$ حسان البيطار 0933756454 طارق سعد الدين 0955561648 خلدون سير و ان 0932791896

$$\begin{aligned} & \lim_{y \to -\infty} (f(x) + x) = \lim_{y \to -\infty} (f(x) + x) \frac{||x|^2 - 1|| + x|}{||x|^2 - 1|| + 2x} = \frac{||x|^2 - 1|| - 2x}{||x|^2 - 1|| - 2x} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x|^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x||^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x||^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}} = \frac{||x||^2 - 1|| - 2x}{\sqrt{||x|^2 - 1|| - 2x}}} = \frac{||x||^2 - 1||x||^2 - 1||x|||^2 - 1||x||^2 - 1||x||^2 - 1||x|||x||^2 - 1||x||^2 - 1||x||^2 - 1||x|||^2 - 1||x||^2 - 1||x|$$

$$f(x) = \sqrt{4x^2 - 4x + 3} \text{ derived function of the state of the stat$$

$$\begin{cases} y = \frac{x}{\sqrt{x^2 + 9}} & = \frac{x}{\sqrt{x^2 + 9}} & = 1 \\ f(x) - y_h = \frac{x}{\sqrt{x^2 + 9}} & = 1 \\ f(x) - y_h = 0 \\ f(x) - y_h = 1 \\ f(x) - y_h = 0 \\ f(x) - y_h = 0$$

ł

đ

$$f\left(\frac{-3}{2}\right) = \frac{27}{4}, \lim_{x \to 1} f(x) = +\infty$$

$$f\left(\frac{-3}{2}, -1\right| \lim_{x \to 1} f(x) = +\infty$$

$$f\left(\frac{-3}{2}, -1\right| = \frac{1}{2}, -1|$$

$$f\left(\frac{-3}{2}, -1\right| = x^{2}(2x + 3) = 0 \Rightarrow \begin{cases} -1 + 1 + 1 + 1 \\ -1 + 2 \\ -1 + 2 \end{cases}$$

$$f\left(\frac{-3}{2}, -1\right| = x^{2}(2x + 3) = 0 \Rightarrow \begin{cases} -1 + 1 + 1 \\ -1 + 2 \\ -1 + 2 \\ -1 + 2 \end{cases}$$

$$f\left(\frac{-3}{2}, -1\right| = x^{2}(2x + 3) = 0 \Rightarrow \begin{cases} -1 + 1 + 1 \\ -1 + 2 \\ -1$$

$$P(x) = \left\{ egin{array}{c} \cos\left(egin{array}{c} x & x & x \\ 0 \end{array}
ight\} : x = 0 \ 0 \ x = 0 \ \end{array}
ight\}$$

$$1 \leq \cos \frac{1}{x} \leq 1 \qquad : x \in \mathbb{R}^{*} \text{ bits} = 1 \quad : x \in \mathbb{R}^{*}$$

3. هل f مستمر على المجال [0,2]

$$\lim_{x \to 1^-} \frac{f(x) = 1}{f(1) = 0} \Longrightarrow \lim_{x \to 1^-} f(x) \neq f(1)$$

[0,2] فهو غير مستمر على المجال x = 1 فهو غير مستمر على المجال f

[0, 2] إلى الجزء الصحيح للعدد الحقيقي x ليكن f التابع المعرف على المجال [2, 0] $f(x) = E(x) + (x - E(x))^2$ وفق $f(x) = E(x) + (x - E(x))^2$ (لا تحوى (E(x)).

 $\{0,1,2\}$ هي الجزء الصحيح للعدد الحقيقي x، و $[0,2] \in E(x)$ فإن E(x) تنتمي إلى E(x) أن ان E(x)

$$E(x) = \begin{cases} 0 & : x \in [0, 1[\\ 1 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [0, 1[\\ 1 + (x - 1)^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x \in [1, 2[\\ 2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = \begin{cases} x^2 & : x = 2 \end{cases} \implies f(x) = E(x) + (x - E(x))^2 = f(x) = E(x) = F(x) =$$

f تابع كثير الحدود على كل من المجالين [0,1] , [1,2] وهذه التوابع مستمرة على مجالات تعريفها ولنتحقق من استمرار f عند كل من 1 و 2

$$\lim_{x \to 1^{-}} f(x) = 1 \\f(1) = 1 \end{cases} \implies \lim_{x \to 1^{-}} f(x) = f(1) = 1 \qquad : x = 1 \text{ and } f$$

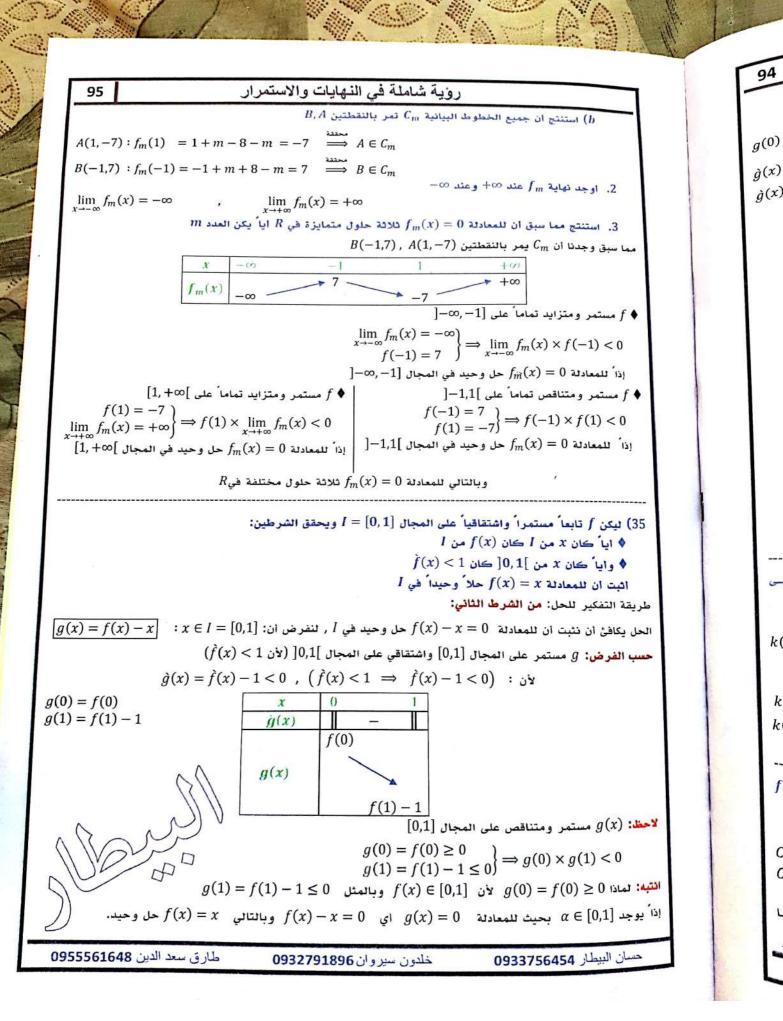
$$\lim_{x \to 2^{-}} f(x) = 2 \\f(2) = 2 \end{cases} \implies \lim_{x \to 2^{-}} f(x) = f(2) = 2 \qquad : x = 2 \text{ and } f$$

إذا التابع f مستمر على [0,2]

2

(32) هي معلم متجالس C هو الخطد البياني للتابع f المعرف على
$$[\pi, 0]$$
وفق $(x) = \sin x$ وفق $f(x) = \sin x$ وفق $(x) = \sin x$ وفق $(x) = \sin x$ $(x) = \sin x$ <

1



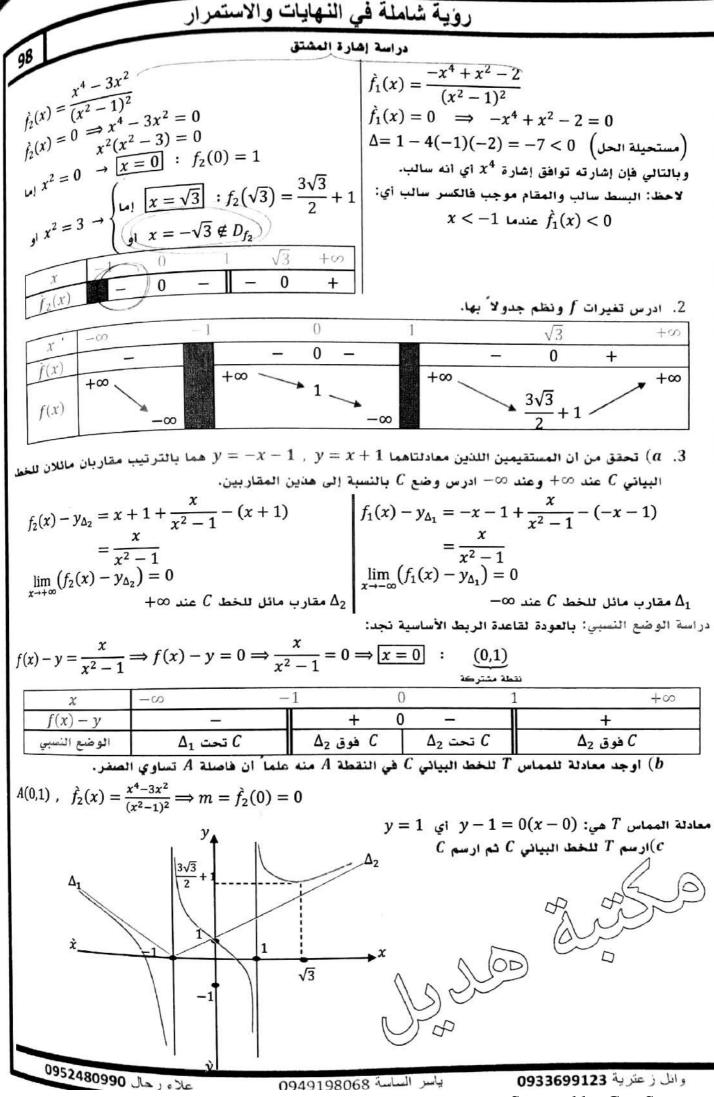
رويه شامله في الله - و (0;i,j) وليكن f التابع المعرف على R وفق $f(x)=\sqrt{1+x^2}$ وليكن f(x) خطه البياني في معلم متجانس ((0;i,j) $f(x) = \sqrt{1 + x^2} \quad : D_f = R$ 1. اثبت ان للخط C محور تناظر. $\bullet_{x} \in R \to -x \in R$ (محقق) $\int x \in \mathbb{R}$ $\int f(-x) = \sqrt{1 + (-x)^2} = \sqrt{1 + x^2} = f(x) \quad (arrow b)$ f(-x) = v ومن تحقق الشرطين السابقين نجد ان: f تابع زوجي ومنه فإن خطه البياني c متناظر بالنسبة لمحور التراتيب f(y)الذي معادلته x = 0 $-\infty$ ادرس نهایة f عند $+\infty$ و عند .2 $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to -\infty} f(x) = \frac{1}{x + \sqrt{1 + x^2}}$ البت ان $f(x) = \frac{1}{x + \sqrt{1 + x^2}}$ هي جوار $(x) = \frac{1}{x + \sqrt{1 + x^2}}$. اثبت ان أيت ان $f(x) = \frac{1}{x + \sqrt{1 + x^2}}$ d النسبي للخط C ومقاربه $f(x) - x = \sqrt{1 + x^2} - x = \frac{\left(\sqrt{1 + x^2} - x\right)\left(\sqrt{1 + x^2} + x\right)}{\sqrt{1 + x^2} + x} = \frac{1 + x^2 - x^2}{\sqrt{1 + x^2} + x}$ $f(x) - x = \frac{1}{\sqrt{1 + x^2} + x}$ $\lim_{x \to \infty} (f(x) - x) = \frac{1}{+\infty} = 0 \implies +\infty$ عند C عند d: y = x $x\in R$ ومنه C فوق d ڪون $f(x)-y=rac{1}{\sqrt{1+x^2}+x}>0$ آيا تکن $f(x)-y=rac{1}{\sqrt{1+x^2}+x}>0$ $H=C\cup \dot{C}$ وليكن \dot{C} الخط البياني للتابع g المعرف على R وفق R وفق g(x)=-f(x) وليكن \dot{C} $y^2 - x^2 = 1$ هي H هي اثبت ان معادلة Hg(x) = -f(x) لابنا y=g(x)=-f(x) النقطة M(x,y) تنتمي إلى H إذا وفقط إذا كان y=f(x) أو M(x,y) $y^{2} = (f(x))^{2} = (\sqrt{1+x^{2}})^{2} = 1+x^{2}$ او $y^2 = (-f(x))^2 = (-\sqrt{1+x^2})^2 = 1+x^2$ $y^2-x^2=1$ وهذا يكافئ قولنا أن $y^2=1+x^2$ ومنه معادلة H هي $y^2=x^2+x^2$ (x,y) و $\vec{u} = \frac{\sqrt{2}}{2}(-\vec{i}+\vec{j})$ و $\vec{u} = \frac{\sqrt{2}}{2}(\vec{i}+\vec{j})$ میث $(0;\vec{u},\vec{v})$ نقطـة (M نقطـة M نقطـة (x,y) نعتمد معلما جدیدا ($m{0}; m{ec{u}}, m{ec{v}})$ في المعلم ($m{0}; m{ec{u}}, m{ec{v}})$ وإحداثيتاها (X, Y) في المعلم ($m{0}; m{ec{l}}, m{ec{l}})$ $(0; \vec{u}, \vec{v})$ بدلالة H ارسم الخط H في المعلم Y, X اوجد y, x المعلم ($\vec{v} = \frac{\sqrt{2}}{2}(-\vec{i}+\vec{j})$, $\vec{u} = \frac{\sqrt{2}}{2}(\vec{i}+\vec{j})$ $M(x, y) : \overrightarrow{OM} = \overrightarrow{xi} + \overrightarrow{yj}$ $M(X,Y): \overrightarrow{OM} = X\overrightarrow{u} + Y\overrightarrow{v} = X\left(\underbrace{\sqrt{2}}_{2}\overrightarrow{i} + \frac{\sqrt{2}}{2}\overrightarrow{j}\right) + Y\left(\frac{-\sqrt{2}}{2}\overrightarrow{i} + \frac{\sqrt{2}}{2}\overrightarrow{j}\right)$ $\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{1}{2} \frac{$ $M(X,Y): \overrightarrow{ON} = \left(\frac{\sqrt{2}}{2}X - \frac{\sqrt{2}}{2}Y\right)\vec{\iota} + \left(\frac{\sqrt{2}}{2}X + \frac{\sqrt{2}}{2}Y\right)\vec{j}$ والل ز عترية 0933699123 ياسر الساسة 2006

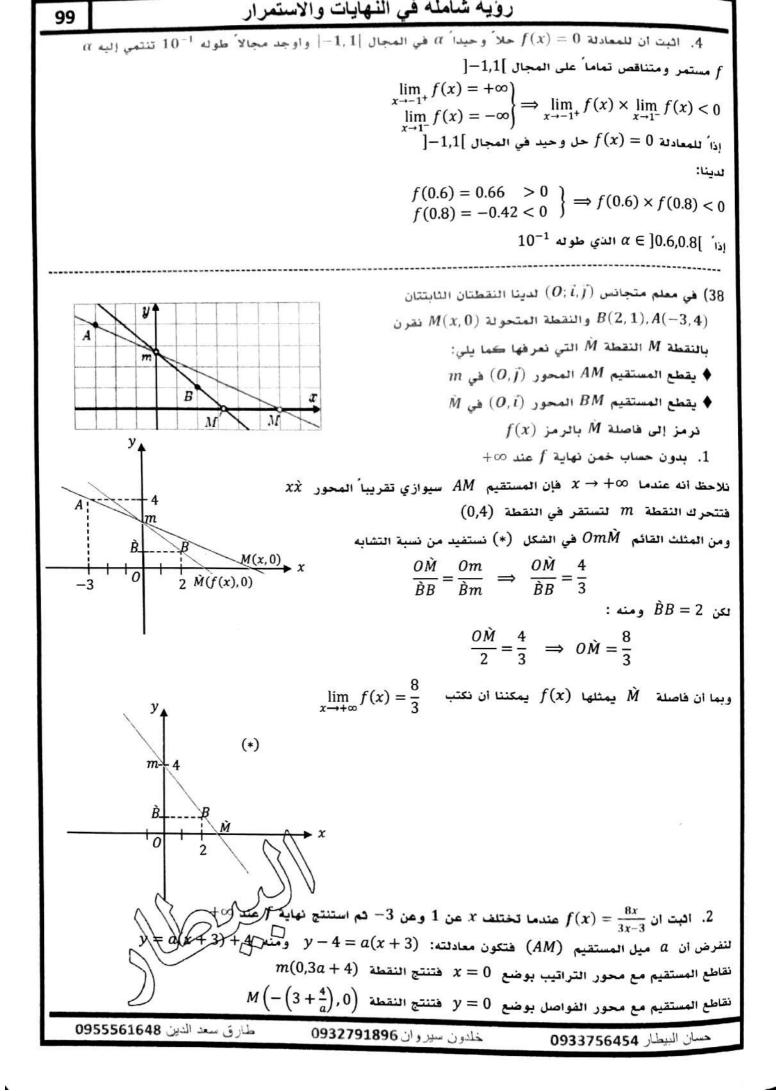
97

$$y = \frac{\sqrt{2}}{2} X + \frac{\sqrt{2}}{2} Y , x = \frac{\sqrt{2}}{2} X - \frac{\sqrt{2}}$$

0955561648 طارق سعد الدين 0955561648

مسان البيطار 0933756454 Scanned by CamScanner





m(0,3a+4) , B(2,1) حيث (Bm) حيث $(Bm) = \frac{3a+4-1}{0-2} = \frac{-3}{2}(a+1)$ ميل

$$y-1 = \frac{-3}{2}(a+1)(x-2)$$

$$\dot{M}$$
 يقطع المستقيم (Bm) محور الفواصل في النقطة
من م $X=0$:

(Bm)

معادلة المستقيم

$$0 - 1 = \frac{-3}{2}(a + 1)x + 3(a + 1)$$

$$\frac{3}{2}(a + 1)x = 3a + 4 \implies x = \frac{2}{3} \cdot \frac{3a + 4}{a + 1} ; a \neq -1$$

$$\hat{M}\left(\frac{2}{3} \cdot \frac{3a + 4}{a + 1}, 0\right)$$

$$x = -\left(3 + \frac{4}{a}\right) \implies ax = -3a - 4 \implies a(x + 3) = -4 \implies a = \frac{-4}{x + 3} ; x \neq -3$$

f(x) نعوض قيمة a في فاصلة النقطة \dot{M} التي تمثل f(x)

$$f(x) = \frac{2}{3} \cdot \frac{3a+4}{a+1} = \frac{2}{3} \cdot \frac{3\left(\frac{x+3}{x+3}\right)+4}{\frac{-4}{x+3}+1} = \frac{2}{3} \cdot \frac{4x}{x-1} = \frac{8x}{3x-3} \quad ; x \neq -3, x \neq 1$$

21-4)

$$\lim_{x\to+\infty}f(x)=\frac{1}{3}$$

$$f$$
 .3) ادرس نهاية f عند $\infty - \alpha$ ما التاويل الهندسي لهذه النتيجة ($x = \frac{8}{3} \implies x\dot{x}$ ادرس نهاية f عند $f(x) = \frac{8}{3} \implies y = \frac{8}{3}$ مقارب افقي يوازي المحور $\dot{x} = \frac{8}{3} \implies x\dot{x}$

$$\lim_{x \to 1^+} f(x) = +\infty \implies y\dot{y}$$
 عند $f = 1$ ما التاويل الهندسي نهاه العيبة ($x = 1$ مقارب شاقولي يوازي المحور $y\dot{y}$ المستقيم $x = 1$ المستقيم $f(x) = -\infty \implies y\dot{y}$ مقارب شاقولي يوازي المحور \dot{y} المستقيم $f(x) = -\infty \implies y\dot{y}$ مقارب شاقولي يوازي المحور \dot{y}

ب. عندما x=-3 يكون المستقيم AM موازيا (0, j) وتكون m "في اللانهاية" يمكن أن نقول في هذه الحالة ان 4 عندما 1 عندما x عن1 وفق (0, j) = f(x) عندما تختلف x عن1 Bm

$$g(-3) = 2$$
 ($g(-3) = 2$ مستمراً عند 3 $g(-3) = 2$ وعن $g(-3) = 2$ ($g(-3) = 2$ $(x) = -3, x \neq 1$

= -3

$$g(x) = \begin{cases} 2 & x \end{cases}$$

0952400

~~

 $\lim_{x \to -3} g(x) = \lim_{x \to -3} f(x) = 2 = g(-3)$ و نلاحظ ان و بالتالي يمکننا ان نکتب ان g مستمر عند x = -3 101

- and a second second

رؤية شاملة في الاشتقاق

قواعد الاهتقاق:

متقات بعض التوابع المألوفة:

	مشتقات بعض التوابع المألوفة:
التابع	التابع المشتق
f(x) = a	$\Rightarrow \hat{f}(x) = 0$
$\boxed{2} f(x) = ax + b \qquad ; \ a \neq 0$	$\Rightarrow \hat{f}(x) = a$
$f(x) = x^n$	$\Rightarrow \hat{f}(x) = n \cdot x^{n-1}$
$4 f(x) = \frac{1}{x^n}$	$\Rightarrow \hat{f}(x) = \frac{-n}{x^{n+1}}$
$[f(x) = [g(x)]^n$	$\Rightarrow \hat{f}(x) = n. [g(x)]^{n-1}. \hat{g}(x)$
f(x) = g(x). h(x)	$\Rightarrow \hat{f}(x) = \hat{g}(x).\hbar(x) + \hat{h}(x).g(x)$
$\boxed{7} f(x) = \frac{g(x)}{h(x)}$	$\Rightarrow \hat{f}(x) = \frac{\hat{g}(x).\hbar(x) - \hat{h}(x).g(x)}{\hbar^2(x)}$
$f(x) = \sqrt{g(x)}$	$\Rightarrow \hat{f}(x) = \frac{\hat{g}(x)}{2\sqrt{g(x)}}$
$9 f(x) = \sin x$	$\Rightarrow \hat{f}(x) = \cos x$
$\boxed{10} f(x) = \cos x$	$\implies \hat{f}(x) = -\sin x$
$\boxed{11} f(x) = \tan x$	$\Rightarrow \hat{f}(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$
$\boxed{12} f(x) = \cot x$	$\Rightarrow \hat{f}(x) = -(1 + \cot^2 x) = \frac{-1}{\sin^2 x}$
$\boxed{13} f(x) = \sin(g(x))$	$\Rightarrow \hat{f}(x) = \hat{g}(x) \cos(g(x))$
$\boxed{14} f(x) = \cos(g(x))$	$\Rightarrow \hat{f}(x) = -\hat{g}(x)\sin(g(x))$
$\boxed{15} f(x) = \tan(g(x))$	$\Rightarrow \hat{f}(x) = \hat{g}(x) [1 + \tan^2(g(x))]$
$\boxed{16} f(x) = \cot(g(x))$	$\Rightarrow \hat{f}(x) = -\hat{g}(x) [1 + \cot^2(g(x))]$
$\boxed{17} f(x) = e^x$	$\Rightarrow \tilde{f}(x) = e^x$
$\boxed{18} f(x) = e^{g(x)}$	$\Rightarrow \hat{f}(x) = \hat{g}(x) \cdot e^{g(x)}$
$\boxed{19} f(x) = \ln x$	$\Rightarrow \tilde{f}(x) = \frac{1}{x}$
$\boxed{20} f(x) = \ln(g(x))$	$\Rightarrow \hat{f}(x) = \frac{\hat{g}(x)}{g(x)}$
ملارق سمد الدين 0955561.648	حسان البيطار 0933756454 خلكون سيروان 0932791896

رؤية شاملة في الاشتقاق

و

ما مد

*ن*تا.

عند

....

لكتاب

تطبيقا

عنة:

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

$$102$$

THE FUT THE STAN

103

رؤيت شاملتافي الاشتقاق

مبرهند: بفرض v, u تابعين اشتقاقيين على مجال ما D و ليكن k عدد حقيقي عندئذ يكون كل من : اشتقاقیا على D ویکون u.v , u+v , k.u

, $(u+v) = \dot{u} + \dot{v}$, $(k.u) = k.\dot{u}$ $(u.v) = \dot{u}.v + \dot{v}.u$ وعندما 0 ≠ 1 يكون:

$$\left(\frac{u}{v}\right) = \frac{\dot{u}\,v - \dot{v}\,u}{v^2} \qquad , \qquad \left(\frac{1}{v}\right) = \frac{-\dot{v}}{v^2}$$

ملاحظة: من الممكن أن يكون الجداء U.V اشتقاقياً عند نقطة دون أن يكون U أو V اشتقاقياً في تلك النقطة. مثال توضيحي:

$$f(x) = x \cdot \sqrt{x} \quad : \quad D = [0, +\infty[$$

R استقاقي على x o xنلاحظ أن f جداء ضرب التابعين: $\left\{ x o x o x
ight\}$ استقاقي على $[\infty,+\infty[$ عندها f اشتقاقی علی]∞+ 10, t>.

$$g(x) = \frac{f(x) - f(0)}{x - 0} = \frac{x\sqrt{x} - 0}{x} = \sqrt{x}$$

$$\lim_{x \to 0} g(x) = 0 \implies \int f$$

$$f = f$$

معادلة مماس لخط بياني:

 $y - y_0 = m(x - x_0)$

لكتابة معادلة مماس يلزمنا نقطة (x₀,y₀) وميل m والجدول الأتي يبين كيفية إيجاد معادلة مماس في أي حالة:

المعلومات المعطاة	يتنتجة	ومات المس	المعلو
(1) x_0	نعوض في التابع لنجد ₄ 0	نشتق 	$\hat{f}(x_0) = m$
(2) y_0	نعوض في التابع لنجد X ₀	نشتق	$\hat{f}(x_0) = m$
(3) <i>m</i>	x_0 نجعل $\hat{f}(x) = m$ ننجد	\rightarrow	نعوض في التابع لنجد Y ₀
المماس يوازي مستقيم معلوم أ	ميل المماس = ميل المستقيم d	\rightarrow	نعود للحالة (3)
المماس يعامد مستقيم معلوم أ	$\frac{-1}{m_d} = $ ميل المماس	\rightarrow	نعود للحالة (3)
المماس أفقي	m = 0	→	نعود للحالة (3)
المماس في القيمة المحلية الصغر: م أو الكبرى	m = 0	\rightarrow	$y=y_0$ معادلته
(ممانه) يمر بنقطتين A, B	$m = \frac{y_B - y_A}{x_B - x_A}$	\rightarrow	نعود للحالة (3)
ا تماما على 4. با تماما على 1.	المشتق fُ عندئذ: ي مجال جزئي من I ، ڪان f متزايد ي مجال جزئي من I ، ڪان f متناقص	دم على أي	ي يقات الماشتقاق: نة: f تابع اشتقاقي على المجال الإذا كان $0 \leq \hat{f}$ على I ولا ينع إذا كان $0 \geq \hat{f}$ على I ولا ينع

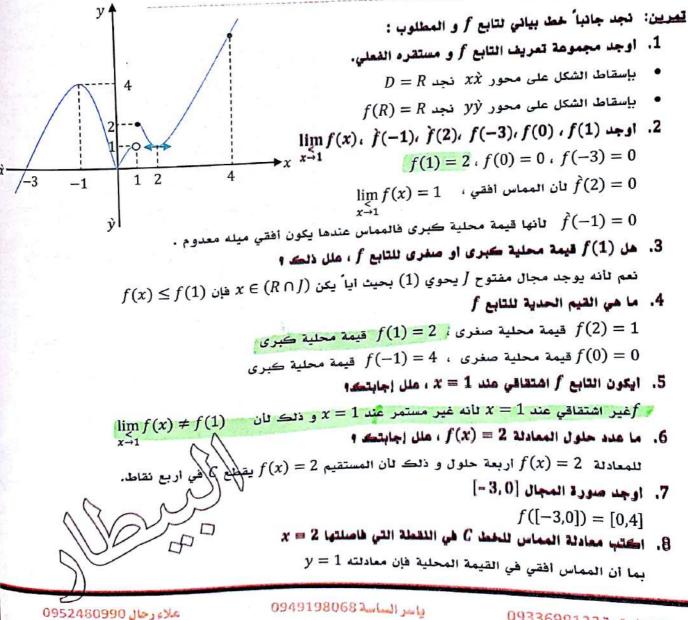
مسان البيطار 0933756454

القيم الحدية:

بفرض f تابع معرف على مجال ما l ، لتكن c نقطة من l عندئد:

- f تابع معرف على مبن f(c) = M قيمة كبرى محلياً للتابع f يبلغها عند c إذا وجد مجال مفتوح f يضم النقط f(c)
- بحيت آيا يمن f(c) = m قيمة صغرى محلياً للتابع f يبلغها عند c إذا وجد مجال مفتوح f يضم النقطة f(c)
 - نقول إن القيمة f(c) قيمة حدية للتابع f إذا كانت قيمة كبرى محلياً أو صغرى محلياً.
 - مبرهنة: ليكن f تابعاً اشتقاقياً على مجال مفتوح l ولتكن c نقطة من l :
 - $\hat{f}(c) = 0$ أقيمة كبرى (أو صغرى) محلياً للتابع f كان f(c) = 0
 - إذا انعدم \hat{f} عند c و غير إشارته عندها، كانت f(c) قيمة حدية (كبرى أو صغرى) محلياً للتابع f. **ملاحظة:** المماس في القيمة الحدية يكون مماساً أفقياً.

مبر هنة: ليكن f تابعا ً اشــتقاقيا ً على مجال I=[a,b] ولنفتر ض $\hat{f}(x)\geq 0$ على I ولا ينعدم على أي مجال جزئي من ا I=[a,b] عندئذ آيا كانت f(x)=k كان للمعادلة $k\in [f(a)\,,\,f(b)]$ حل وحيد في المجال



مالل، زعبرية 0933699123 Scanned by CamScanner

رؤية شاملة في الاشتقاق

-84 2-3 TL.

	ريب صفحة 84:			
لة المماس Cr في النقطة A من Cr التي فاصلتها (4).	1) فيما يأتي C _f هو الخط البياني للتابع f . اكتب معاد			
$1 f(x) = \frac{1}{r}$	$2 f(x) = x^2$			
$x = 4 \implies f(4) = \frac{1}{4} \implies \left(4, \frac{1}{4}\right)$	$x = 4 \implies f(4) = 16 \implies (4,16)$			
	$\hat{f}(x) = 2x$: $x = 4$ اشتقاقي عند f			
$\hat{f}(x) = \frac{-1}{x^2}$: $x = 4$ اشتقاقي عند f	$\dot{f}(4) = m = 2(4) = 8$			
$\hat{f}(4) = m = \frac{-1}{16}$	y - 16 = 8(x - 4)			
$\frac{y - \frac{1}{4} = \frac{-1}{16}(x - 4)}{16} \implies y = \frac{-1}{16}x + \frac{1}{2}$	$\Rightarrow y = 8x - 16$			
$3 f(x) = \sqrt{2x+1}$				
$x = 4 \implies f(4) = 3 \implies (4,3)$	$4 f(x) = \frac{1}{x+1}$			
f اشتقاقي عند $x = 4$ (4,3) f	$x = 4 \implies f(4) = \frac{1}{5} \implies \left(4, \frac{1}{5}\right)$			
$\hat{f}(x) = \frac{2}{2\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}$	اشتقاقي عند $x = 4$: 1			
$\hat{f}(4) = m = \frac{1}{\sqrt{8+1}} = \frac{1}{3}$	$\hat{f}(x) = \frac{-1}{(x+1)^2}$			
	$\hat{f}(4) = m = \frac{-1}{25}$			
$y-3 = \frac{1}{3}(x-4) \implies y = \frac{1}{3}x + \frac{5}{3}$	$y - \frac{1}{5} = \frac{-1}{25}(x - 4) \implies y = \frac{-1}{25}x + \frac{9}{25}$			
2) في الشكل المرافق <u>C</u> f هو الخط البياني لتابع f تأمل الشكل وأجب عن الأسئلة الآتية:				
	$(\hat{f}(2), \hat{f}(0), f(-1), f(2), f(0))$. عين ڪلا من 1			
$f(0) = 2$, $\hat{f}(0) = 2$	0) = 0			
f(2) = -1, $f(2) = -1$	$2) = \frac{-1-0}{2-0} = \frac{-1}{2} : (0,0), (2,-1)$			
$f(-1) = 1$, $\hat{f}(-1) = 1$	$(-1) = \frac{1-3}{-1-0} = 2 : (-1,1), (0,3)$			
f(x) = f(x) حيحين متتاليين يحصران كلاً من حلول المعادلة	f(x) = 0			
	2. ما عدد حلول المعادلة 0 = (م) ر. (
$x_2\in]-2,-1[$ والأخر $x_1\in]$	المعادية $f(x) = 0$ حلين مختلفين. أحدهما]1,2			
****	1			
مة التي تحسب المشتق عليها.	3) فيما باتر المسلم التابع المشتق للتابع f مبينا المجمود			
2 1 $\sqrt{2}$				
$\boxed{1}f(x) = \frac{2}{3}x^3 - \frac{1}{2}x^2 + x - \frac{\sqrt{2}}{3}$				
$\hat{f}(x) = 2x^2 - x + 1$: $D_f = 0$				
	- J W			

خلدون سيروان 0932791896

مسان البيطار 0933756454 Scanned by CamScanner

طارق سعد الذين 0955561648

رؤية شاملة في الاشتقاق 106 $Ef(x) = \frac{x^2 + 3x - 1}{4} = \frac{1}{4}(x^2 + 3x - 1)$ $\int_{j}^{4} (2x+3) = \frac{2x+3}{4}$ $\Im f(x) = x^4 - 2x\sqrt{x}$ $D_{i} = R$ $\begin{bmatrix} 3 \\ j \\ x \end{bmatrix} = 4x^3 - 2\left(\sqrt{x} + \frac{1}{2\sqrt{x}} \cdot x\right) = 4x^3 - 2\sqrt{x} - \sqrt{x} = 4x^3 - 3\sqrt{x}$ $:D_{\hat{f}}=[0,+\infty[$ $4f(x) = \frac{2}{x+1} - x$ $f(x) = \frac{1}{(x+1)^2} - 1$ $D_f = R \setminus \{-1\}$ $5f(x) = \frac{x^2}{x^2 - 4}$ $\int_{\hat{f}(x)}^{\infty} = \frac{1(x^2 - 4) - 2x(x - 1)}{(x^2 - 4)^2} = \frac{x^2 - 4 - 2x^2 + 2x}{(x^2 - 4)^2} = \frac{-x^2 + 2x - 4}{(x^2 - 4)^2} \qquad : D_f = R \setminus \{-2, 2\}$ $6f(x) = \frac{x+1}{\sqrt{x}}$ $\hat{f}(x) = \frac{1(\sqrt{x}) - \frac{1}{2\sqrt{x}}(x+1)}{x} = \frac{\sqrt{x} - \frac{x+1}{2\sqrt{x}}}{x} = \frac{\frac{2x - x - 1}{2\sqrt{x}}}{2\sqrt{x}} = \frac{x - 1}{2x\sqrt{x}}$ $D_f =]0, +\infty[$ $\overline{\mathcal{T}}f(x) = x\cos x$ $\overline{\hat{f}(x)} = \cos x + (-\sin x) x = \cos x - x \sin x$ $: D_{i} = R$ $\mathbb{B}f(x) = \frac{\sin x}{x}$ $\hat{f}(x) = \frac{(\cos x) (x) - 1(\sin x)}{x^2} = \frac{x \cos x - \sin x}{x^2}$ $: D_{f} = R^{*}$ $9f(x) = \frac{\sin x}{\cos x}$ $\hat{f}(x) = \frac{(\cos x) (\cos x) - (-\sin x)(\sin x)}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ $: D_{f} = R \setminus \left\{ \frac{\pi}{2} + \pi k; k \in Z \right\}$ $10 f(x) = \sin x \cos x$ $\hat{f}(x) = (\cos x) (\cos x) + (-\sin x)(\sin x) = \cos^2 x - \sin^2 x = \cos 2x$ $: D_{f} = R$ $\boxed{11} f(x) = \frac{\cos x}{\sin x - 1}$ $\hat{f}(x) = \frac{(-\sin x)(\sin x - 1) - \cos x(\cos x)}{(\sin x - 1)^2} = \frac{-\sin^2 x + \sin x - \cos^2 x}{(\sin x - 1)^2}$ $(\sin x - 1)^2$ $: D_f = R \setminus \left\{ \frac{\pi}{2} + 2\pi k; \ k \in \mathbb{Z} \right\}$ $=\frac{-(\sin^2 x + \cos^2 x) + \sin x}{(\sin x - 1)^2} = \frac{-1 + \sin x}{(\sin x - 1)^2} = \frac{1}{\sin x - 1}$ $(\sin x - 1)^2$ $1 + \sin x$ $12 f(x) = \frac{1}{2 + \cos x}$ $\hat{f}(x) = \frac{(\cos x)(2 + \cos x) - (-\sin x)(1 + \sin x)}{(-\sin x)(1 + \sin x)}$ (2 + cos x)2 $\frac{2\cos x + \cos^2 x + \sin x + \sin^2 x}{(2 + \cos x)^2} = \frac{2\cos x + \sin x + 1}{(2 + \cos x)^2}$ $: D_{\hat{f}} = R$ والل زعارية 0933699123 ياسر الساسة 0949198068 علاءر حال 0952480990

العمامی وا لیکن C الغط ولیکن T العم ان T هو العم معادلته تکتب

التقريب التأ يظهر الرسم A فإذا أردنا طريق المست

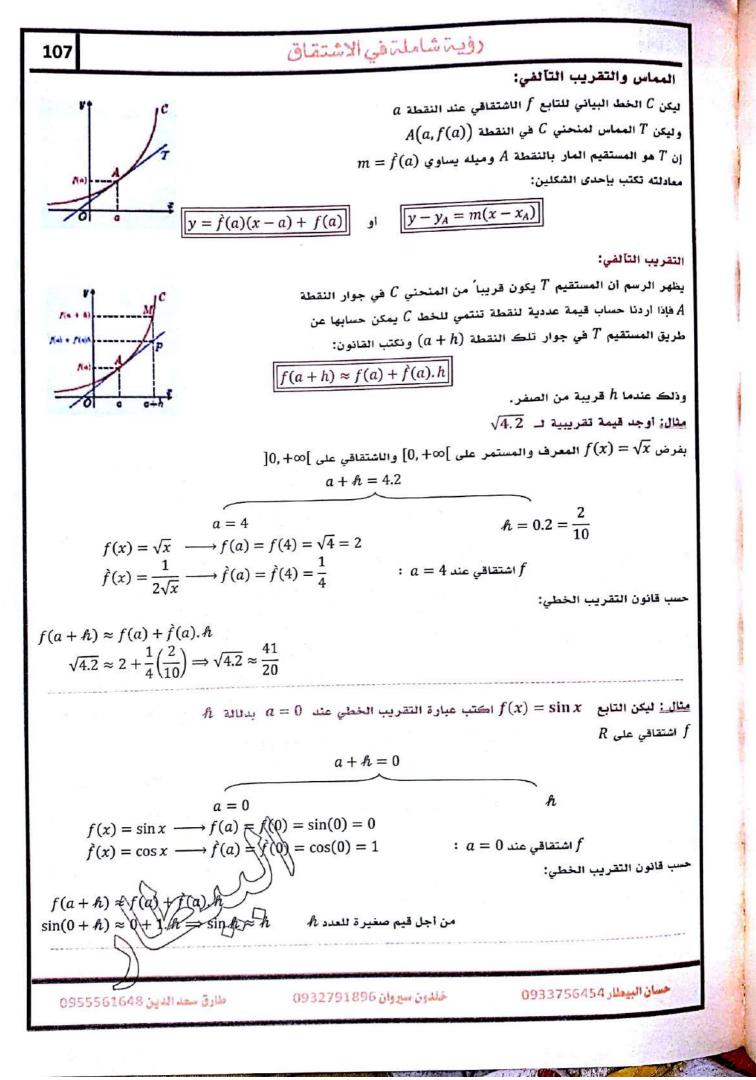
وذلڪ عندم مثال: اوجد بفرض xv

سب قانون

<u>مثال:</u> ليكر *f* اشتقاقي

مسب قانون

حسان ا



Scanned by CamScanner

$$\begin{aligned} \| \mathbf{M}^{\mathbf{X}} \|_{\mathbf{X} \in \mathcal{V}} & \mathbf{X} \in \mathbf{X} \\ \mathbf{M} \\$$

1) تعيين أ 2) تعيين

3) تعيين

4) تعيين

5) تعيين

نوجد

n_A شم

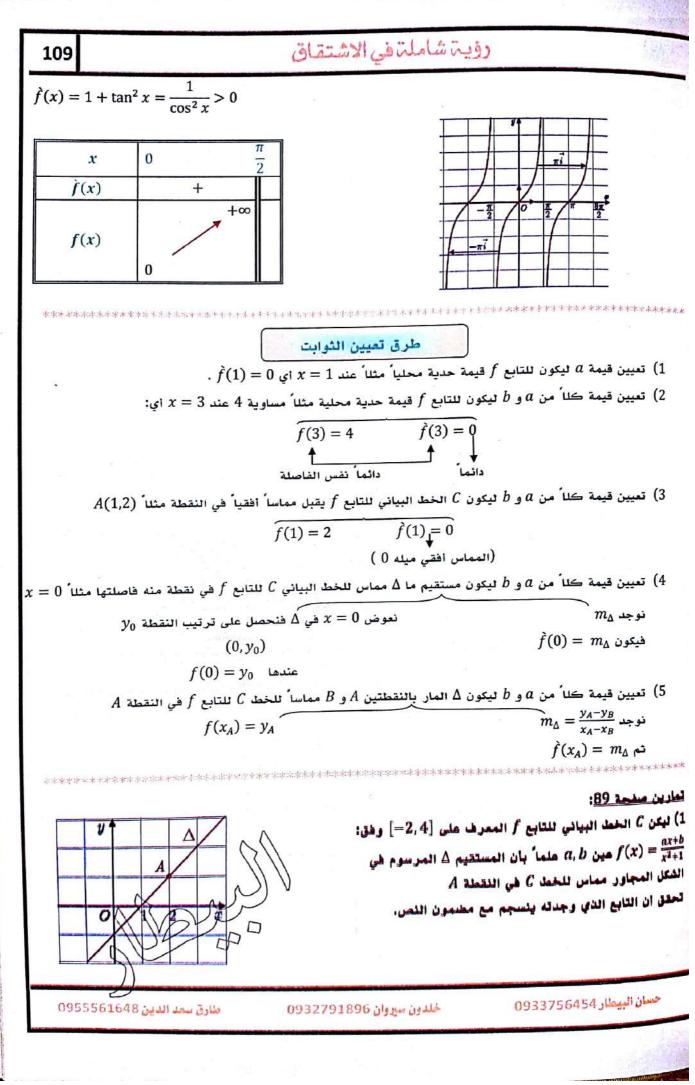
842.88

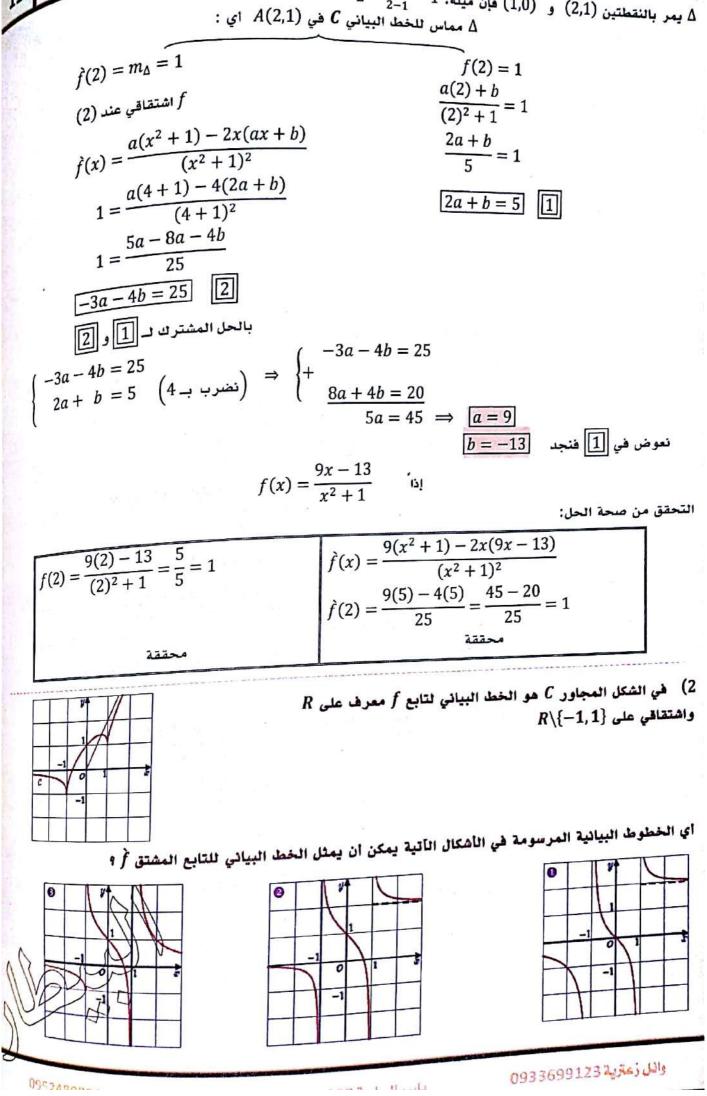
تعادين صفيعة

تعقق ان التاب

مسان البع

نوجد فيكون





111

رؤيت شاملة في الاشتقاق

 $f(x_0) = 0$ الخط البياني للتابع f أن هناك مماس أفقي في نقطة $[0,1] \in [x_0 \in X_0]$ اي $f(x_0) = 0$

. ومنه الخط البياني للتابع \hat{f} يجب أن يقطع $x \dot{x}$ في نقطة $]0,1[\in x_0 \in]$ فالشكل 1 مرفوض.

- $\lim_{x \to +\infty} (f(x) y_{\Delta}) = 0$ $\lim_{x \to +\infty} (f(x) - 2x) = 0$ $\lim_{x \to +\infty} \tilde{f}(x) = 2$
- اي للخط البياني للتابع f مقارب أفقي y=2 في جوار $\infty+$ فالشكل 3 مرفوض، إذا الخط البياني للتابع \hat{f} هو الشكل 2

ليكن f التابع المعرف على R وفق $x^2 + ax$ وفق $f(x) = x^3 - x^2 + ax$ عين العدد الحقيقي a ليكون للتابع f قيمة حدية x = 1 محلياً عند x = 1

التابع f اشتقاقي على R ومشتقه $x = 3x^2 - 2x + a$ و $\hat{f}(x) = 3x^2 - 2x + a$ و أشتقاقي على f قيمة حدية عندئذ:

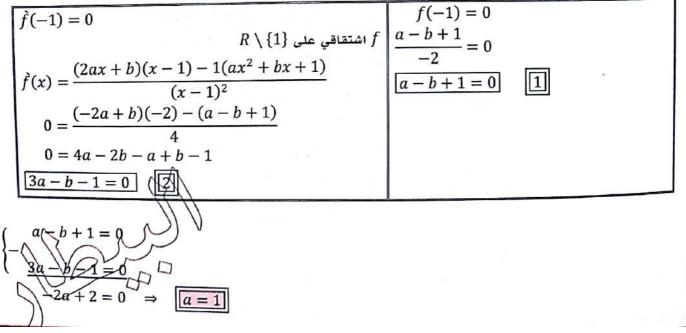
- قيمة حدية $\dot{f}(1) = 0$ $3 - 2 + a = 0 \implies \boxed{a = -1}$ $f(x) = x^3 - x^2 - x$
- b,a ليكن f التابع المعرف على $\{1\}$ وفق $R \setminus \{1\}$ وفق b,a حيث b,a عددان حقيقيان نهدف إلى البحث عن قيم $f(x) = \frac{ax^2 + bx + 1}{x 1}$ وفق وفق $r \to 1$
 - ♦ f(-1) قيمة حدية محليا للتابع.
 - هذه القيمة الحدية محلياً معدومة.

$$f(-1)=0$$
 , $\dot{f}(-1)=0$. 1. لماذا

. لأن المشتق عند القيمة الحدية ينعدم $\dot{f}(-1)=0$

أن القيمة الحدية معدومة فرضا f(-1)=0

عين b, a ثم تحقق أن التابع الذي حصلت عليه موافق لشروط المسألة.



$$1-b+1 = 0 \implies \boxed{b=2}$$

$$\Rightarrow f(x) = \frac{x^2 + 2x + 1}{x-1}$$

$$\Rightarrow f(x) = \frac{x^2 + 2x + 1}{x-1}$$
Intradic on one of the function of the

 $f(x) = x^3 - 3x + 5$ وفق R وفق $f(x) = x^3 - 3x + 5$ (5

- 1. ادرس تغيرات f ونظم جدوڻا بها.
- R معرف و مستمر و اشتقاقي على f

$$\lim_{\substack{x \to \infty \\ \hat{f}(x) = -\infty \\ \hat{f}(x) = 3x^2 - 3 \implies \hat{f}(x) = 0}, \qquad \lim_{x \to +\infty} f(x) = +\infty$$

$$3(x^2 - 1) = 0 \implies \begin{cases} \lim_{x \to +\infty} x = 1 \implies f(1) = 3 \\ \lim_{y \to +\infty} f(x) = 3x^2 - 3x^2 - 3x^2 = 0 \end{cases}$$

$$\int_{y}^{x = -1} x = 1 \implies f(-1) = 7$$

$$\boxed{x \qquad -\infty \qquad -1 \qquad 1 \qquad +\infty}$$

$$\boxed{f(x) \qquad -\infty \qquad 3}$$

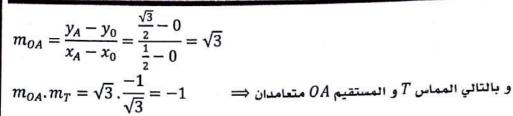
112

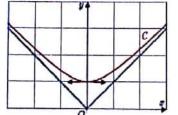
2. **EVALUATE:**
$$f(x) = 0$$
, $f(x) = 0$, f

$$133$$

$$(\frac{6}{2x}, \frac{6}{2x}, \frac{1}{2x}) = \frac{1}{2} (\frac{1}{2x}, \frac{1}{2x}) = \frac{1}{2x} = \frac{1}{$$

$$\begin{split} f(x) &= \sqrt{\cos x} , \quad D = \left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi$$





و هي الشكل المرافق نجد الخط البياني C للتابع f المعرف على R و (3)

د. تحقق ان f تابع زوجي.

$$-x \in R$$
 التابع $f \in R$ التابع $f (-x) = \sqrt{(-x)^2 + 1} = \sqrt{x^2 + 1} = f(x)$

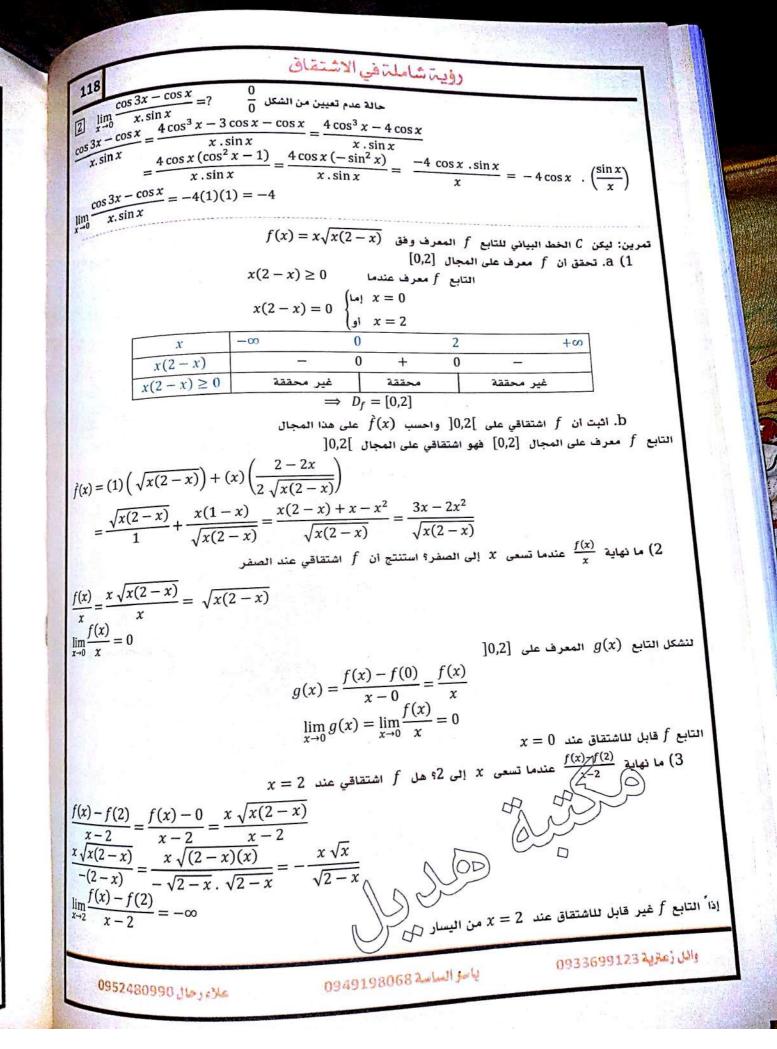
.2 احسب نهایة f عند ∞+ و عند ∞−.

$$\lim_{x \to -\infty} f(x) = +\infty$$
,
$$\lim_{x \to +\infty} f(x) = +\infty$$
,
$$\lim_{x \to +\infty} f(x) = +\infty$$
A subset of the second sec

$$\begin{aligned} f(x) - y_{\Delta} &= \sqrt{x^2 + 1 - x} \\ \lim_{x \to +\infty} (f(x) - y_{\Delta}) &= ? & \infty - \infty \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= ? & \infty - \infty \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{-x} \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{\sqrt{x^2 + 1} + x} \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} = 0 \implies +\infty$$
 is $2 x = 1 \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} = 0 \implies +\infty$ is $2 x = 1 \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} = 0 \implies +\infty$ is $2 x = 1 \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} = 0 \implies +\infty$ is $2 x = 1 \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} = 0 \implies +\infty$ is $2 x = 1 \\ \int_{x \to +\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\ \int_{x \to -\infty} (f(x) - y_{\Delta}) &= \frac{1}{+\infty} \\$

-

-

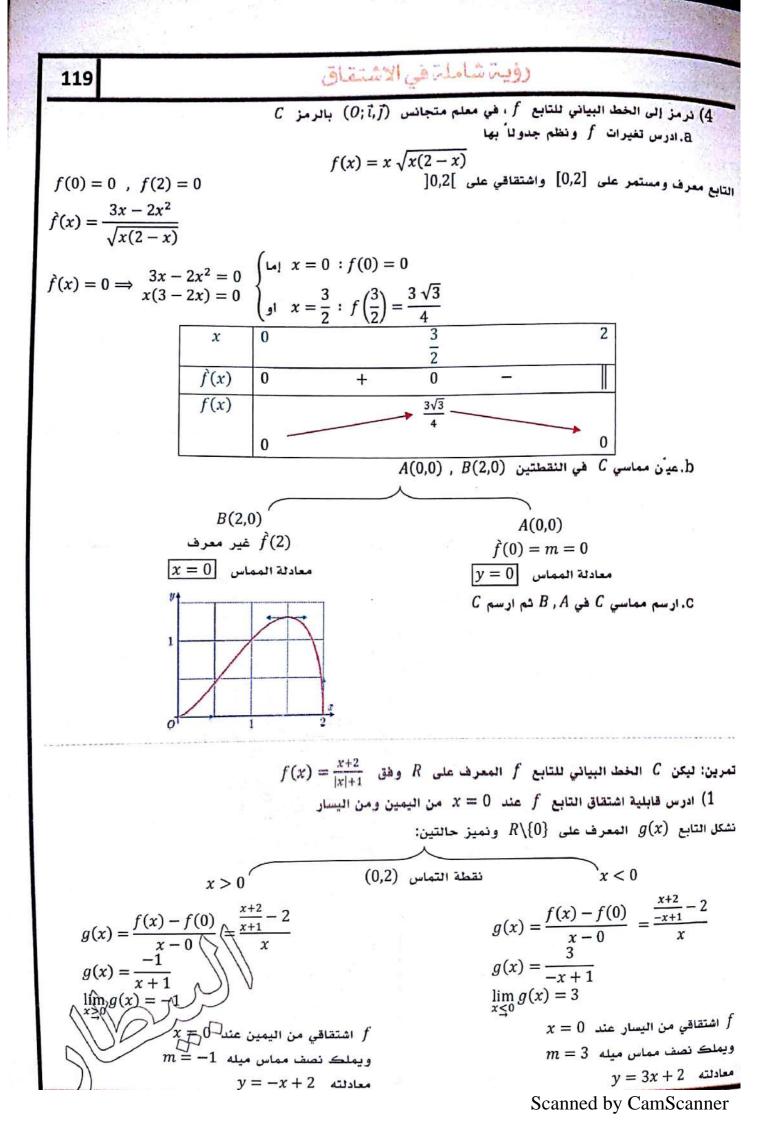


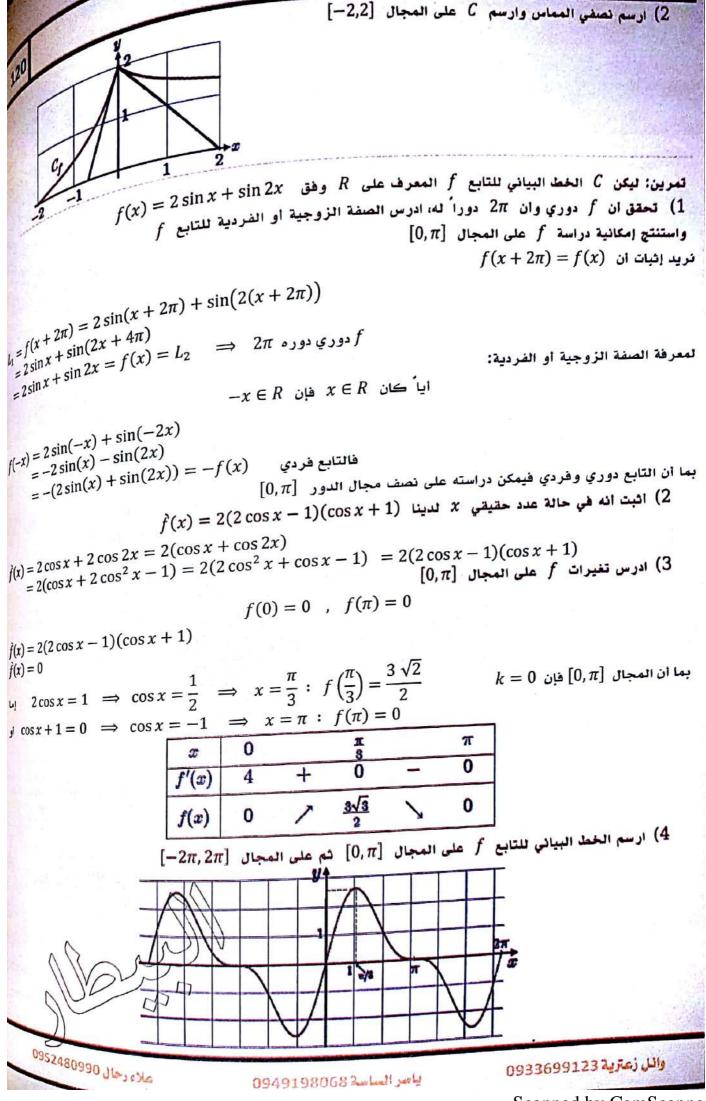
11

3

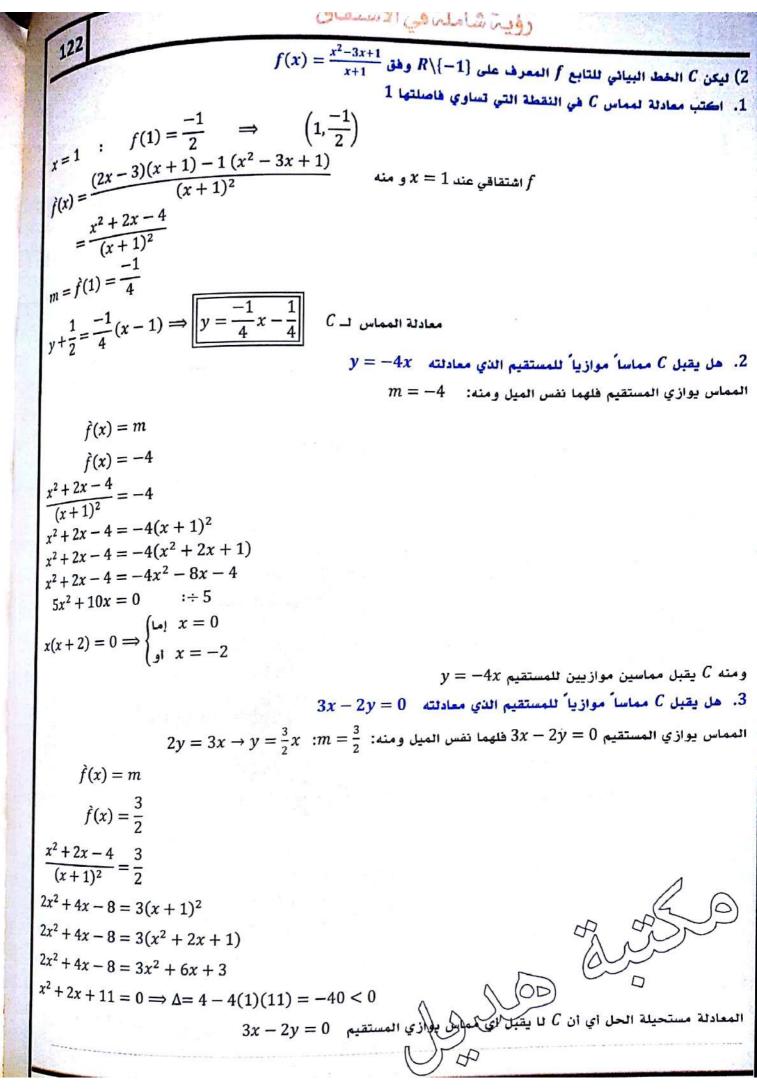
i

f





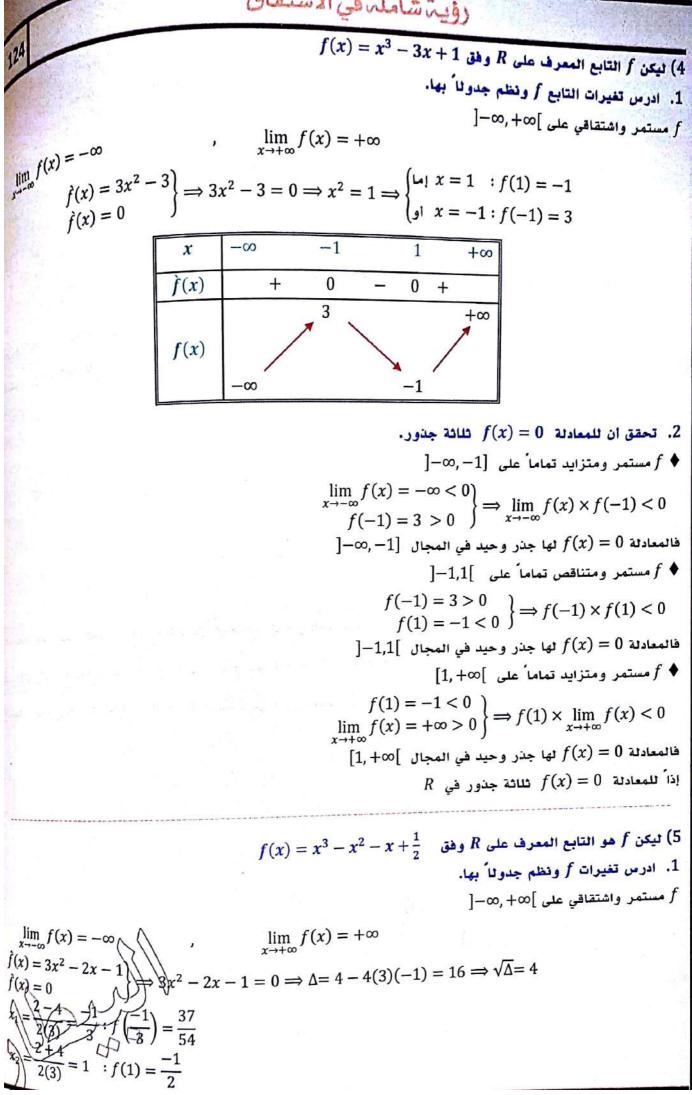
121	رؤية شاملة في الا	
تمرينات ومسائل الوحدة		
a a f		
	$\Box (a) = a \forall a (a = 1)$	
$a = x = 0 : f(0) = 0 \Longrightarrow (0,0)$ $a = x = 0 : x = 0 \text{areal} f$	$a = x = 1$: $f(1) = 1 \implies (1,1)$	
$\hat{f}(x) = 3x^2 + 2x - 3$	و منه $x = 1$ اشتقاقي عند $f = x$ و منه f	
$m=\dot{f}(0)=-3$	$\hat{f}(x) = \sqrt{x} + \frac{1}{2\sqrt{x}} \cdot x$	
y - 0 = -3(x - 0)	$m = \hat{f}(1) = 1 + \frac{1}{2} = \frac{3}{2}$	
y = -3x معادلة المماس	2 2	
	$y-1=\frac{3}{2}(x-1)$	
	$y = \frac{3}{2}x - \frac{1}{2}$ معادلة المماس	
$3 f(x) = \frac{x}{x^2 + 1} \qquad : a = 0$	$4 f(x) = \frac{x}{x-1} \qquad : a = 0$	
$a = x = 0 : f(0) = 0 \Longrightarrow \qquad (0,0)$	a = a = 0 (0) 0	
اشتقاقي عند $x = 0$ و منه f	$\begin{aligned} u = x = 0 & : f(0) = 0 \implies (0,0) \\ f (minor for a state of $	
$\hat{f}(x) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2}$	$\hat{f}(x) = \frac{x - 1 - x}{(x - 1)^2} = \frac{-1}{(x - 1)^2}$	
$=\frac{1-x^2}{(x^2+1)^2} \ m=\check{f}(0)=1$	$m = \hat{f}(0) = -1$ y - 0 = -1(x - 0)	
y - 0 = 1(x - 0)	y = -x معادلة المماس	
y = x معادلة المماس		
$5 f(x) = \cos x \qquad \qquad : a = 0$	$6 f(x) = x \cos x \qquad : a = \frac{\pi}{4}$	
$a = x = 0$: $f(0) = \cos(0) = 1$	4	
\Rightarrow (0,1)	$a = x = \frac{\pi}{4}$: $f\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\cos\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\cdot\frac{\sqrt{2}}{2}$	
$\hat{f}(x) = -\sin x$ و منه x	$=\frac{\pi}{4\sqrt{2}}$	
f اشتقاقي عند 0 =	$\Rightarrow \left(\frac{\pi}{4}, \frac{\pi}{4\sqrt{2}}\right)$	
$m = \dot{f}(0) = 0$	(1 $4\sqrt{2})$ اشتقاقي عند $\frac{\pi}{4}$ و منه f	
y-1=0(x-0)	اشتقاقي عند $\frac{1}{4} = x$ و منه $\hat{f}(x) = \cos x - x \sin x$	
y=1 valets Itaalm	$m = \hat{f}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} - \frac{\pi}{4}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}\left(1 - \frac{\pi}{4}\right)$	
	$y - \frac{\pi}{4\sqrt{2}} = \frac{\sqrt{2}}{2} \left(1 - \frac{\pi}{4}\right) \left(x - \frac{\pi}{4}\right)$	
	$y = \left(\frac{1}{\sqrt{2}} - \frac{\pi}{4\sqrt{2}}\right)x + \frac{\pi^2}{16\sqrt{2}}$	



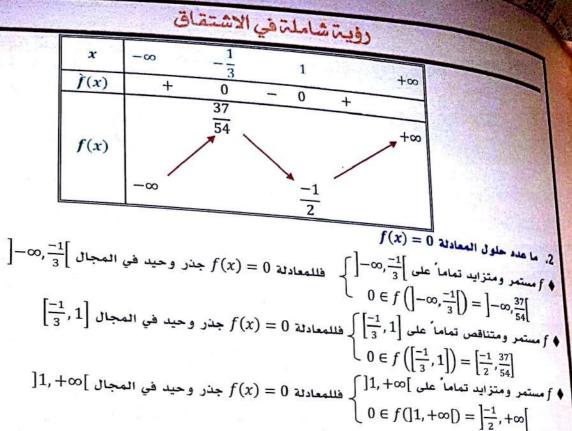
Scanned by CamScanner

(1) أعط معادلة لمماس C في النقطة التي تساوي فاصلتها (1) r4+2 - -(3) ليكن C المحصا البياسي x=1 : $f(1)=\frac{1}{3}$ \Rightarrow $\left(1,\frac{1}{3}\right)$ $\hat{f}(x) = \frac{x^2 + 2 - 2x^2}{(x^2 + 2)^2} = \frac{2 - x^2}{(x^2 + 2)^2}$ اشتقاقي عند x = 1 و منه f $m=\dot{f}(1)=\frac{1}{9}$ $y - \frac{1}{3} = \frac{1}{9}(x - 1) \Longrightarrow \qquad y = \frac{1}{9}x + \frac{2}{9} \qquad C$ $y = \frac{-1}{4}x$ مماسا موازيا للمستقيم الذي معادلته C مماسا .2 $m=rac{-1}{4}$ المماس يوازي المستقيم فلهما نفس الميل ومنه: $\dot{f}(x) = m$ $\hat{f}(x) = \frac{-1}{4}$ $\frac{2-x^2}{(x^2+2)^2} = \frac{-1}{4}$ $8 - 4x^2 = -(x^2 + 2)^2$ $8 - 4x^2 = -x^4 - 4x^2 - 4$ $x^4 + 12 = 0 \Longrightarrow x^4 = -12$ $y=rac{-1}{4}x$ المعادلة مستحيلة الحل أي أن C لا يقبل أي مماس يوازي المستقيم 4x - y = 0 مماساً موازياً للمستقيم الذي معادلته C مماساً موازياً عمادته 3 m=4 المماس يوازي المستقيم 4x-y=0 فلهما نفس الميل ومنه: m=4 $\hat{f}(x) = m$ $\dot{f}(x) = 4$ $\frac{2-x^2}{(x^2+2)^2} = 4$ $2-x^2 = 4(x^2+2)^2$ $2 - x^2 = 4(x^4 + 4x^2 + 4)$ $2 - x^2 = 4x^4 + 16x^2 + 16$ $4x^4 + 17x^2 + 14 = 0 \implies \Delta = 289 - 4(4)(14) = 65$ $x_1^2 = \frac{-17 - \sqrt{65}}{2(4)} < 0$ (مرفوضة) $x_2^2 = \frac{-17 + \sqrt{65}}{2(4)} < 0$

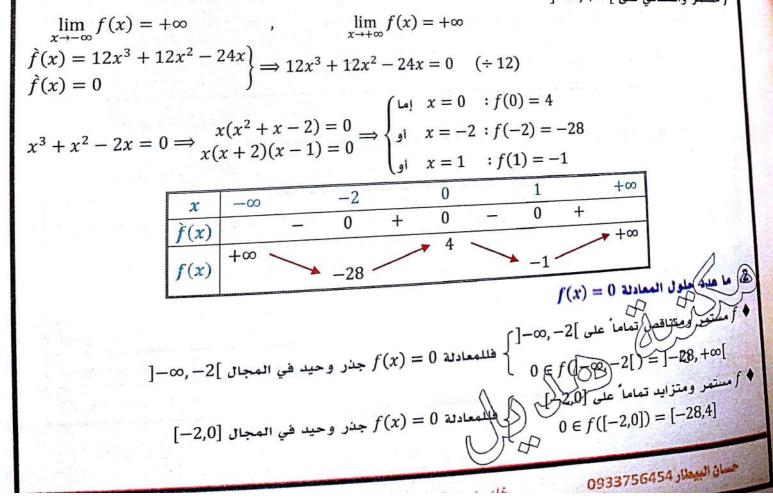
4x-y=0 اي أن \hat{C} ئا يقبل أي مماس موازياً المستقيم



125



1. ادرس تغيرات f ونظم جدو لا بها. $-\infty, +\infty$ مستمر واشتقاقي على $-\infty, +\infty$



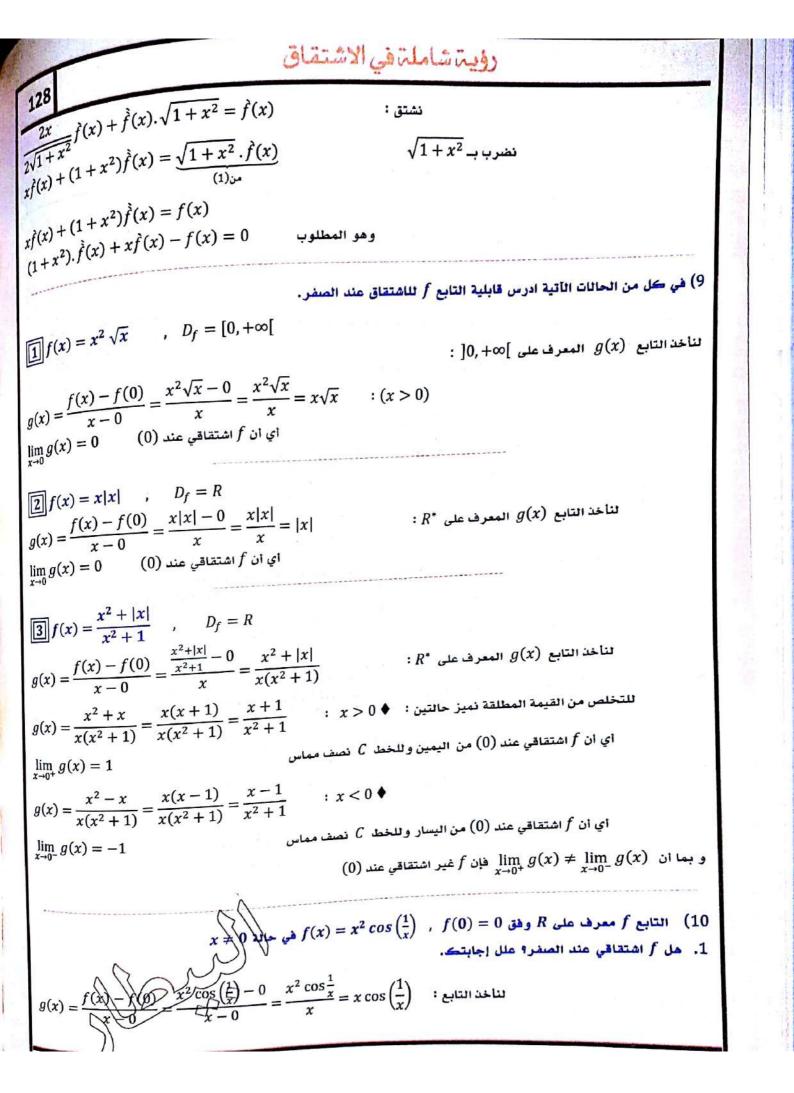
رؤيت شاملتافي الاشتقاق ♦ ƒ مستمر ومتناقص تماما على]0,1[المحادلة f(x) = 0 جذر وحيد في المجال]0,1[المحال]0,1] 126 $0 \in f([0,1[) =]-1,4[$ $[1,+\infty[$ مستمر ومتزايد تماماً على $[1,+\infty]$ فللمعادلة f(x)=0 جذر وحيد في المجال f(x)=0 $0 \in f([1, +\infty[) = [-1, +\infty[$. R إذا للمعادلة f(x) اربعة جذور في 7) في كل حالة من الحالات الآتية احسب المشتقات من المراتب 3, 2, 1 للتابع f المعرف بالعلاقة المشار إليها وحدد في $\prod f(x) = x^3 - \frac{1}{2}x^2 + x - 1$ R تابع صحيح فهو اشتقاقي على f $\dot{f}(x) = 3x^2 - x + 1$ R تابع صحيح فهو اشتقاقي على f $\dot{f}(x) = 6x - 1$ R تابع صحيح فهو اشتقاقي على \hat{f} $\dot{\tilde{f}}(x)=6$ $\boxed{2} f(x) = x \cdot \sqrt{x}$ $\hat{f}(x) = 1\sqrt{x} + \frac{1}{2\sqrt{x}}x = \sqrt{x} + \frac{1}{2}\sqrt{x} = \frac{3}{2}\sqrt{x}$ f تابع اشتقاقي على]∞+,0] $[0, +\infty]$ تابع اشتقاقي على f $\dot{\tilde{f}}(x) = \frac{3}{4\sqrt{x}}$ $[0,+\infty]$ تابع اشتقاقي على $]\infty+0[$ $\hat{f}(x) = \frac{-\frac{1}{2\sqrt{x}}(3)}{4x} = \frac{-3}{8x\sqrt{x}}$ $f(x) = \frac{1}{x-1}$ $R \setminus \{1\}$ تابع اشتقاقي على f $\hat{f}(x) = \frac{-1}{(x-1)^2}$ $R \setminus \{1\}$ تابع اشتقاقي على f $\dot{\tilde{f}}(x) = \frac{-2(x-1)(1)(-1)}{(x-1)^4} = \frac{2}{(x-1)^3}$ 2 $R \setminus \{1\}$ تابع اشتقاقي على $\{1\}$ $\tilde{\tilde{f}}(x) = \frac{-3(x-1)^2(1)(2)}{(x-1)^6} = \frac{-6}{(x-1)^4}$

$4 f(x) = \cos 2x + \sin 2x$	R تابع اشتقاقي على f
$\frac{f(x) = -2\sin 2x}{f(x) = -4\cos 2x} + 2\cos 2x$	\hat{f} تابع اشتقاقي على \hat{f}
$f(x) = -4\cos 2x - 4\sin 2x$	\hat{f} تابع اشتقاقي على R
P P P P P P P P P P P P P P P P P P P	

$$\begin{split} \hline \left[\boxed{B} \right] f(x) &= \frac{1}{\cos x} \qquad \left(\cos x = 0 \qquad x = \frac{\pi}{2} + \pi k \; ; k \in \mathbb{Z} \right) : \text{ Less L} \\ \hline f(x) &= \frac{(-\sin x)(1)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} \qquad R \setminus \left\{ \frac{\pi}{2} + \pi k ; k \in \mathbb{Z} \right\} \; \text{ output of } \\ \hline f(x) &= \frac{\cos x (\cos^2 x) - 2 \cos x (-\sin x)(\sin x)}{\cos^4 x} \qquad R \setminus \left\{ \frac{\pi}{2} + \pi k ; k \in \mathbb{Z} \right\} \; \text{ output of } \\ = \frac{\cos x (\cos^2 x + 2 \sin^2 x)}{\cos^4 x} = \frac{1 - \sin^2 x + 2 \sin^2 x}{\cos^3 x} \\ = \frac{1 + \sin^2 x}{\cos^3 x} = \frac{1 - \sin^2 x + 2 \sin^2 x}{\cos^5 x} \\ = \frac{1 + \sin^2 x}{\cos^5 x} = \frac{1 - \sin^2 x + 2 \sin^2 x}{\cos^5 x} \\ = \frac{2 \sin x \cos^4 x + 3 \cos^2 x \sin x (1 + \sin^2 x)}{\cos^5 x} \\ = \frac{\sin x \cos^2 x (2 \cos^2 x + 3 + 3 \sin^2 x)}{\cos^5 x} \\ = \frac{\sin x \cos^2 x (2 \cos^2 x + 3 + 2 \sin^2 x + \sin^2 x)}{\cos^5 x} \\ = \frac{\sin x (2 \cos^2 x + 3 + 2 \sin^2 x + \sin^2 x)}{\cos^4 x} = \frac{\sin x (5 + \sin^2 x)}{\cos^4 x} \\ \hline f(x) &= \frac{-\cos x}{\sin^2 x} \qquad (\sin x = 0 \qquad x = \pi k \; ; k \in \mathbb{Z}) : \text{ to use } \\ \hline f(x) &= \frac{-\cos x}{\sin^2 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ \hline f(x) &= \frac{\sin x (\sin^2 x) - 2 \sin x (\cos x)(-\cos x)}{\sin^4 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ \hline f^2(x) &= \frac{\sin x (\sin^2 x) - 2 \sin x (\cos x)(-\cos x)}{\sin^4 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ = \frac{\sin x (\sin^2 x + 2 \cos^2 x)}{\sin^4 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ = \frac{\sin x (\sin^2 x + 2 \cos^2 x)}{\sin^4 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ \hline f^2(x) &= \frac{2 \cos x (-\sin x) \sin^3 x - 3 \sin^2 x (\cos x)}{\sin^4 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ = \frac{-2 \cos x \sin^4 x - 3 \sin^2 x \cos^2 x}{\sin^5 x} = \frac{1 + \cos^2 x}{\sin^5 x} \qquad R \setminus \{\pi k : k \in \mathbb{Z}\} \; \text{ output of } \\ \hline f^2(x) &= \frac{-\cos x (2 \sin^2 x + 3 + 3 \cos^2 x)}{\sin^5 x} = \frac{-\cos x (5 + \cos^2 x)}{\sin^4 x} \qquad R \setminus \{\pi k : x \in \mathbb{Z}\} \; \text{ output of } \\ = \frac{-\cos x (2 \sin^2 x + 3 + 2 \cos^2 x + \cos^2 x)}{\sin^4 x} = \frac{-\cos x (2 \sin^2 x + 3 + 3 \cos^2 x)}{\sin^4 x} \qquad R \setminus \{x \in \mathbb{Z} = 1 \ x \in \mathbb{Z} \ x = \pi x \quad x$$

.8 استنتج أن
$$f(x) = (x) + x\hat{f}(x) + x\hat{f}(x) - f(x) = 0$$
 أيا يكن x من R .

لدينا من (1) :



رؤية شاملة في الاشتقاق

$$\begin{vmatrix} x \cos \frac{1}{x} \end{vmatrix} = |x| \left| \cos \frac{1}{x} \right| \qquad : \left| \cos \frac{1}{x} \right| \le 1$$
$$\begin{vmatrix} x \cos \frac{1}{x} \end{vmatrix} \le |x| (1)$$
$$|g(x) - 0| \le |x|$$

بما ان $b = \lim_{x \to 0} |x| = 0$ فالتابع f اشتقاقي عند الصفر $\lim_{x \to 0} g(x) = 0$ (2) بما ان f = 0 ملى $\lim_{x \to 0} f(x)$ ملى f(x)

$$\hat{f}(x) = 2x \cos \frac{1}{x} + \left[-\left(\frac{-1}{x^2}\right) \sin\left(\frac{1}{x}\right) \right] x^2$$
 R^* اشتقاقي على f
 $\hat{f}(x) = 2x \cos \frac{1}{x} + \sin \frac{1}{x}$

11) محل هندسي:

نعلم أن :

في معلم متجانس $(0; \vec{i}, j)$ ، M هي النقطة التي إحداثياتها (m, 0) حيث $S \ge m \ge 0$ و N = 0 و N هي النقطة التي إحداثياتها (n, 0) حيث $0 \ge m \ge 0$ و M ، $(0; \vec{i}, j)$ تحقق (n, n) حيث $0 \ge n$ ، النقطتان M و N تحققان S = MN، وأخيرا J هي نقطة من القطعة المستقيمة [MN] تحقق (n, n) حيث MJ = 2. MJ = 2. MJ = 2. ديدف إلى تعيين المحل الهندسي L للنقطة J عندما تتحول m هي المجال [0, 3] ورسمه. لدينا: النقطة (m, 0) حيث $S \ge m \ge 0$

$$MN=3$$
 والنقطة $N(0,n)$ حيث أن $n\geq 0$ و $n\geq N(0,n)$

$$\overrightarrow{Mj} = 2\overrightarrow{JN} \iff NJ = 1$$
 إذا $MJ = 2$ حيث $[MN]$ حيث $J(x, y)$ والنقطة $J(x, y) = 2 \begin{pmatrix} x-m \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0-x \\ 0 \end{pmatrix}$

$$\begin{pmatrix} x-m\\ y-0 \end{pmatrix} = \begin{pmatrix} 0-2x\\ 2n-2y \end{pmatrix} \Longrightarrow \begin{pmatrix} x-m=-2x\\ y=2n-2y \end{pmatrix} \stackrel{3x=m}{3y=2n} \Longrightarrow \begin{pmatrix} x=\frac{m}{3}\\ y=\frac{2n}{3} \end{pmatrix}$$

 $J\left(\frac{m}{3},\frac{2n}{3}
ight):$ إذا إحداثيات النقطة Jهي: $J\left(\frac{m}{3},\frac{2n}{3}
ight)$

 $n = \sqrt{9 - m^2} \quad \Leftarrow \quad n^2 = 9 - m^2 \quad \Leftarrow \quad m^2 + n^9 = 9$ نجد: 0MN نجد: 0MN من المثلث 0MN من المثلث $m^2 + n^9 = 9$

$$x = \frac{m}{3}$$

$$y = \frac{2}{3}\sqrt{9 - m^2} \begin{cases} J\left(\frac{m}{3}, \frac{2\sqrt{9 - m^2}}{3}\right) & J(x, y) \\ J(x, y) & g \end{cases}$$

وللحصول على معادلة المحل الهندسي نكتب العلاقة بين x و y فنجد:

$$0 \le m \le 3 : x \le 1$$

$$y = \frac{2}{3}\sqrt{9 - (3x)^2}$$

$$y = \frac{2}{3}\sqrt{9 - (3x)^2}$$

$$y = \frac{2}{3}\sqrt{9 - 9x^2}$$

$$y = \frac{2}{3}\sqrt{9(1 - x^2)}$$

$$y = 2\sqrt{1 - x^2}$$

$$y = 2\sqrt{1 -$$

حسان البيطار 0933756454

Scanned by CamScanner

طارق سعد الدين 0955561648

خلدون سيروان 0932791896

129

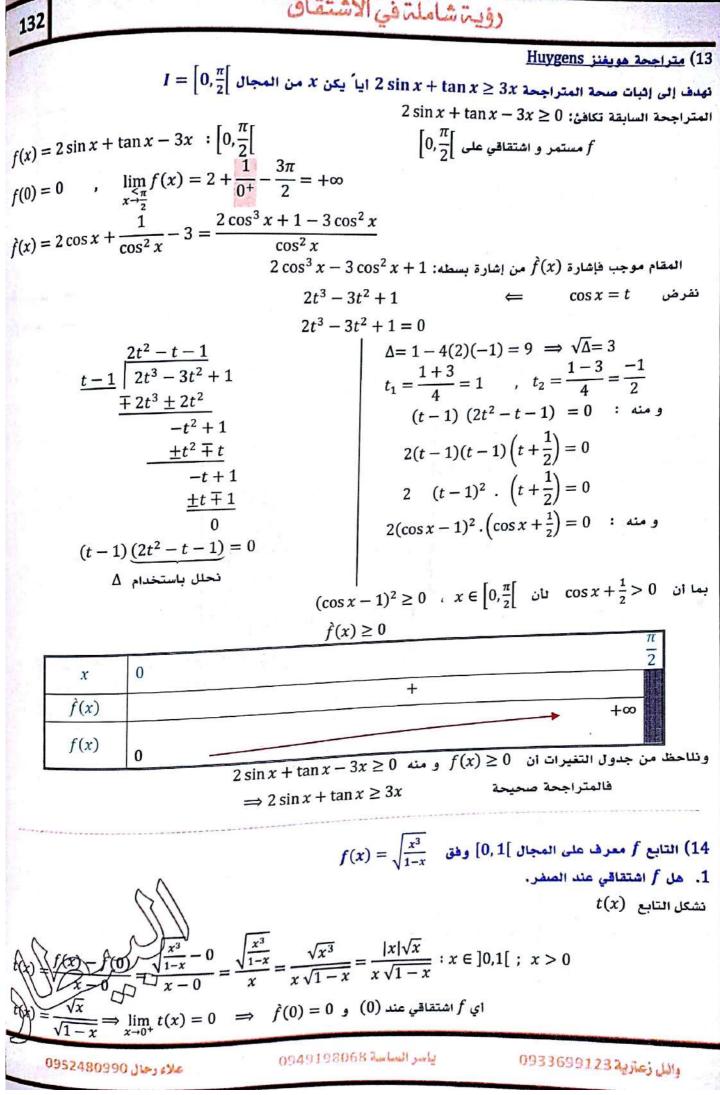
n

m

ادرس تغيرات f وادرس قابلية اشتقاقه عند (1) مع الرسم $f(x) = 2\sqrt{1-x^2}$ [0,1[معرف ومستمر على المجال [0,1] واشتقاقي على ff(0) = 2 , f(1) = 0 $\hat{f}(x) = 2 \frac{(-2x)}{2\sqrt{1-x^2}}$ $\dot{f}(x) = \frac{-2x}{\sqrt{1-x^2}}$ $\dot{f}(x) = 0 \implies x = 0 \implies f(0) = 2$ 0 1 x $\hat{f}(x)$ 2 f(x)دراسة قابلية الاشتقاق عند x = 1 : لنأخذ التابع: $t(x) = \frac{f(x) - f(1)}{x - 1} \Longrightarrow t(x) = \frac{2\sqrt{1 - x^2} - 0}{x - 1}$ $t(x) = \frac{2\sqrt{(1-x)(1+x)}}{-(1-x)}$ $t(x) = -2\sqrt{\frac{(1+x)}{(1-x)}}$ $\lim_{x\to 1^-} t(x) = -2(+\infty) = -\infty$ x=1 ایس اشتقاقیا عند f $x^2 - 2x + 4y^2 = 3$ نرمز بالرمز ${\cal B}$ إلى مجموعة النقاط M(x,y) التي تحقق M(x,y) التي تحقق M(x,y) التي تحقق (12 ${\cal E}$ نهدف إلى إثبات أن المجموعة ${\cal B}$ هي اجتماع خطين بيانيين ${\cal C}_2, {\cal C}_1$ لتابعين ${f}_2, {f}_1$ ثم رسم $x^2 - 2x + 4y^2 = 3$ $4y^2 = -x^2 + 2x + 3$ $y^{2} = \frac{1}{4}(-x^{2} + 2x + 3)$ $-x^{2} + 2x + 3 = 0$ -(x2 - 2x

130

رؤيت شاملتفي الاشتقاق 131 $(x-3)(x+1) = 0 \Longrightarrow \begin{cases} \text{Let } x = 3 \\ \end{array}$ x = -13 -1-00 +00 $-x^2 + 2x + 3$ 0 + 0 $-x^2 + 2x + 3 \ge 0$ غير محققة محققة حققة غير م $\int y = \frac{1}{2}\sqrt{-x^2 + 2x + 3} = f_1(x) : x \in [-1,3] , y \ge 0$ $y = \frac{-1}{2}\sqrt{-x^2 + 2x + 3} = f_2(x) : x \in [-1,3] , y \le 0$ $f_1(x) = \frac{1}{2} \sqrt{-x^2 + 2x + 3}$: f_1 : f_1 is a structure of the function of the fun مستمر على [1,3-1,3 واشتقاقي على [-1,3] $f_1(-1) = 0$, $f_1(3) = 0$ $\hat{f}_1(x) = \frac{1}{2} \cdot \frac{-2x+2}{2\sqrt{-x^2+2x+3}} = \frac{-x+1}{2\sqrt{-x^2+2x+3}} \bigg\} \Longrightarrow -x+1 = 0 \Longrightarrow \boxed{x=1} : f_1(1) = 1$ $\dot{f}_1(x)=0$ x 3 $\hat{f}_1(x)$ + 0 1 $f_1(x)$ x x 0 $\oint f_2(x) = \frac{-1}{2} \sqrt{-x^2 + 2x + 3}$ $D = [-1,3] \quad : y \le 0$ ŷ وهنا لا داعي لدراسة التغيرات للتابع f₂ لأننا نلاحظ: $f_2(x) = -f_1(x) : x \in [-1,3]$ xx نظير C₁ بالنسبة لـ xx 3 ومنه فإن المجموعة ٤ هي اجتماع خطين بيانين :للتابعين f_2, f_1 ويكون الشكل C_2, C_1 4

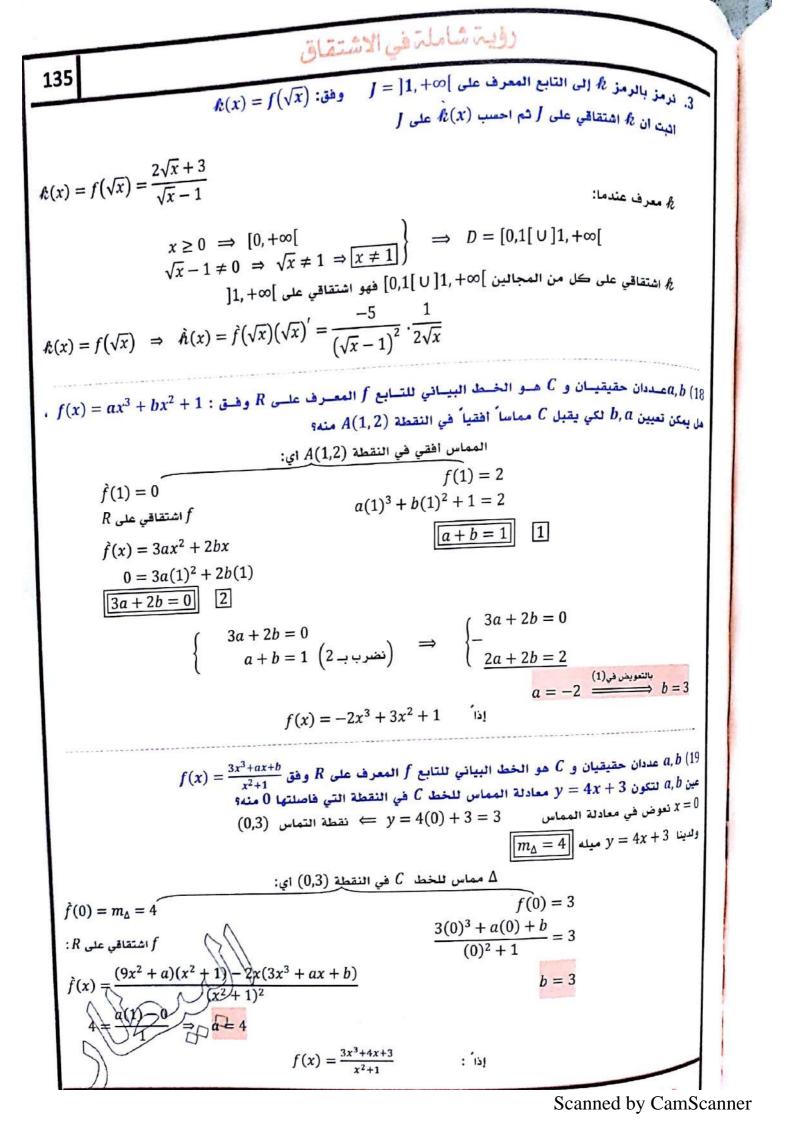


	a marca (mid)
$\hat{f}(x) = \frac{\frac{3x^2(1-x)+x^3}{(1-x)^2}}{2\sqrt{\frac{x^3}{1-x}}} = \frac{3x^2 - 3x^3 + x^3}{2\sqrt{\frac{x^3}{1-x}(1-x)^4}}$ $= \frac{-2x^3 + 3x^2}{2\sqrt{x^3(1-x)^3}} = \frac{x^2(-2x+3)}{2x(1-x)\sqrt{x(1-x)}} = \frac{3-2x^2}{2(1-x)\sqrt{x(1-x)}}$]0, 1[ملی $f(x)$ علی]2, 1 2. احسب $\frac{2x}{-x} \cdot \sqrt{\frac{x}{1-x}}$
$f(x)$ $\hat{f}(x) = \frac{2x(x-1) - 1(x^2 + 1)}{(x-1)^2} = \frac{2x^2 - 2x - x^2 - 1}{(x-1)^2} = \frac{\frac{x^2 - 2x + 1 - 2}{(x-1)^2}}{(x-1)^2} = \frac{\frac{(x-1)^2 - 2}{(x-1)^2}}{(x-1)^2} = \frac{\frac{(x-1)^2 - 2}{(x-1)^2}}{(x-1)^2} = \frac{2}{(x-1)^2}$	$= \frac{x^{2}+1}{x-1}$: وهق $R \setminus \{1\}$ وهق f المعرف على $R \setminus \{1\}$ وهق (15) (15) . <i>f</i> التابع المشتق للتابع <i>f</i> (15) . <i>f</i> اشتقاقي على $R \setminus \{1\}$ $= \frac{x^{2}-2x-1}{(x-1)^{2}}$
: نفرض $u(x) = \sqrt{x}$ عندند: $g(x) = \frac{u^2(x) + 1}{u(x) - 1} = f(u(x))$ $\dot{g}(x) = \dot{f}(u(x)) \dot{u}(x)$	2- استنتج مشتق کل من التوابع الآتية: $2 [2] h: x \to \frac{x^4 + 1}{x^2 - 1}$ $(x) = x^2$ $(x) = x^2$ $(x) = \frac{u^2(x) + 1}{u(x) - 1} = f(u(x))$ $\hat{k}(x) = \hat{f}(u(x)).\dot{u}(x)$ $= \left[1 - \frac{2}{(u(x) - 1)^2}\right].\dot{u}(x)$ $= \left[1 - \frac{2}{(x^2 - 1)^2}\right].2x$
$3 \ell: x \to \sqrt{\frac{x^2 + 1}{x - 1}}$ $\ell(x) = \sqrt{f(x)}$ $\dot{\ell}(x) = \frac{\dot{f}(x)}{2\sqrt{f(x)}} = \frac{1 - \frac{2}{(x - 1)^2}}{2\sqrt{\frac{x^2 + 1}{x - 1}}}$	[4] $K: x \to \frac{\sin^2 x + 1}{\sin x - 1}$: : :: :: :: :: :: :: :: :: :: :: :: ::

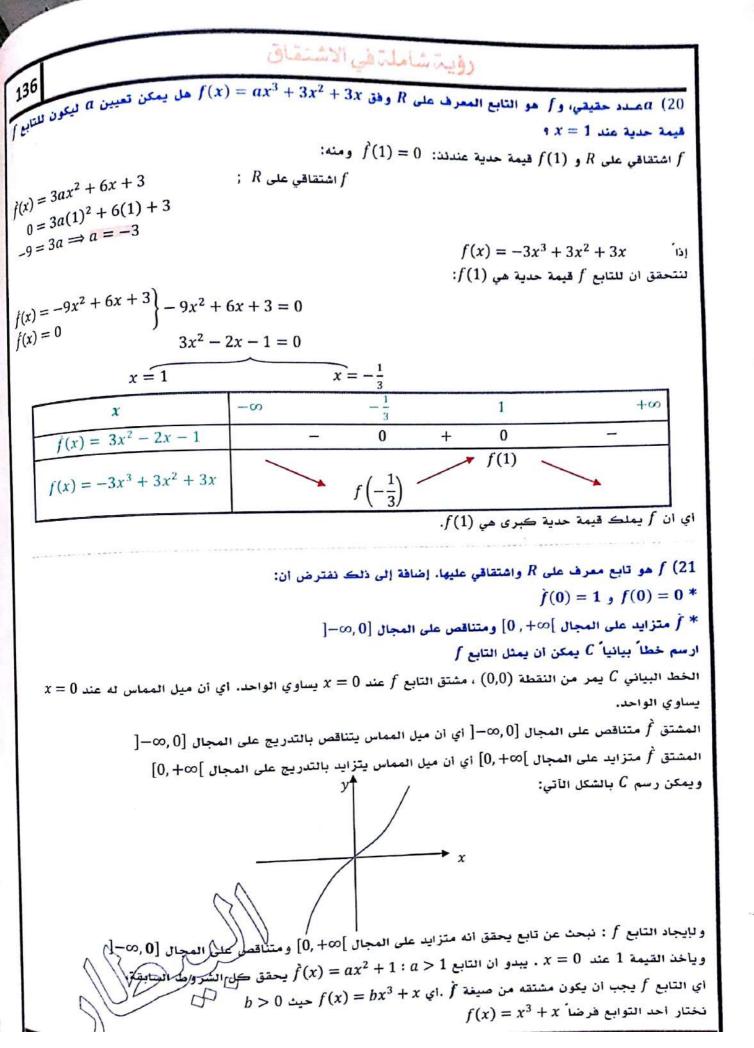
روية شاملة في الاشتقاق 16) هيما بالى، اوجد التابع المشتق للتابع / محددا المجموعة التي تنجز عليها الاهتقاق: 134 $2 f(x) = stn^3 2x$ $f(x) = \cos^2 3x$ / معر ف و اشتقاقي على R / معر ف واشتغاقی علی *ا* $j'(x) = 2\cos 3x \cdot (-3\sin 3x)$ $f(x) = 3 \sin^2 2x \cdot (2 \cos 2x)$ $= 6 \sin^2 2x \cos 2x$ $= -6\cos 3x\sin 3x$ [4] $f(x) = \frac{1}{\cos^3 2x}$ $3 f(x) = \overline{\sin^2 3x}$ $sin^2 3x \neq 0$: $sin^2 3x \neq 0$ $\cos^3 2x \neq 0$: (and the second secon $\cos 2x \neq 0$ $\sin 3x \neq 0$ $2x \neq \frac{\pi}{2} + \pi k ; k \in \mathbb{Z} \Rightarrow x \neq \frac{\pi}{4} + \frac{\pi k}{2} ; k \in \mathbb{Z}$ $3x \neq \pi k$; $k \in \mathbb{Z} \Rightarrow x \neq \frac{\pi k}{3}$; $k \in \mathbb{Z}$ $D = R \setminus \left\{ \frac{\pi}{4} + \frac{\pi k}{2} \right\}; k \in \mathbb{Z}$ $D = R \setminus \left\{ \frac{\pi k}{3} \right\} \; ; k \in \mathbb{Z}$ $R \setminus \left\{ \frac{\pi}{4} + \frac{\pi k}{2} \right\}; k \in \mathbb{Z}$, $k \in \mathbb{Z}$ $R \setminus \left\{ \frac{\pi k}{3} \right\}; k \in \mathbb{Z}$, $k \in \mathbb{Z}$ $\hat{f}(x) = \frac{-3\cos^2 2x(-2\sin 2x)}{\cos^6 2x}$ $f(x) = \frac{-2\sin 3x (3\cos 3x)}{\sin^4 3x}$ $=\frac{6\sin 2x}{\cos 42x}$ $=\frac{-6\cos 3x}{\sin^3 3x}$ $f(x) = rac{2x+3}{x-1}$: ليكن التابع f المعرف على $\{1\} \, R \setminus \{1\}$ وفق (17 عين التابع المشتق أ للتابع]. $\hat{f}(x) = \frac{2(x-1) - 1(2x+3)}{(x-1)^2} = \frac{-5}{(x-1)^2}$: $R \setminus \{1\}$ (1) $g(x)=f(\sin x)$ وفق $I=\left|-rac{\pi}{2},rac{\pi}{2}
ight|$ وفق (g إلى التابع المعرف على 2. نرمز بالرمز gI البت ان g اشتقالی علی I تم احسب $\dot{g}(x)$ علی I $g(x) = f(\sin x) = \frac{2\sin x + 3}{\sin x - 1}$

وائل زعارية 123 093 093

in as a near 2 . Lall and



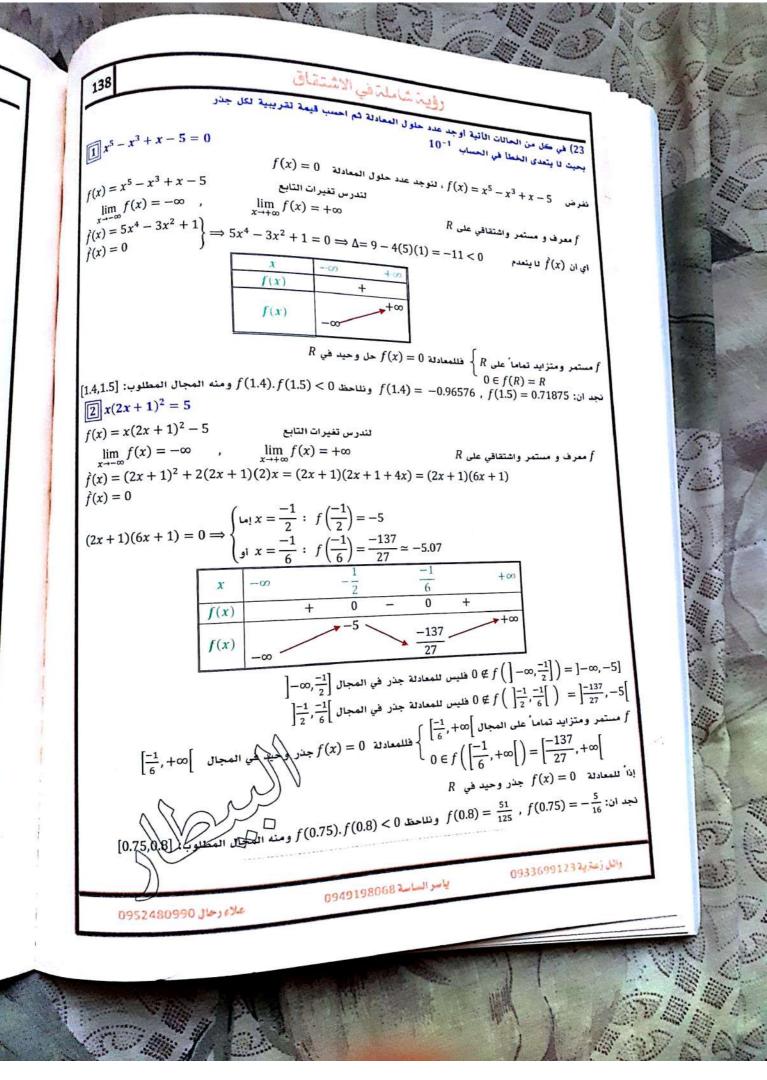
a bille



روية شاملة في الاشتقاق 137 ري في حال من الحالات الآتية احسب في حال وجودها نهاية التابع f عند a المشار إليها . $\boxed{1} f(x) = \frac{\cos x - 1}{x} \quad : a = 0$ $\lim_{x \to 0} f(x) = ?$ حصلنا على حالة عدم تعيين من الشكل 🗧 $g(x) = \cos x - 1 \implies g(0) = 0$: a = 0 عند g $\dot{g}(x) = -\sin x \implies \dot{g}(0) = 0$ ر مسب تعريف العدد المشتق نجد : $\lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \hat{g}(0) \implies \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$ $2 f(x) = \frac{\tan x}{x} \quad : a = 0$ $\lim_{x\to 0} f(x) = ?$ حصلنا على حالة عدم تعيين من الشكل $\frac{0}{n}$ $g(x) = \tan x \qquad \implies g(0) = 0$ $\dot{g}(x) = 1 + \tan^2 x \implies \dot{g}(0) = 1$ نفرض: : a = 0 اشتقاقي عند gو حسب تعريف العدد المشتق نجد : $\lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \dot{g}(0) \implies \lim_{x \to 0} \frac{\tan x}{x} = 1$ $\boxed{3} f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1} \quad : a = 1$ $\lim_{x \to 1} f(x) = ?$ حصلنا على حالة عدم تعيين من الشكل 🚡 $g(x) = \sqrt{x+1} - \sqrt{2} \implies g(1) = 0$ نفرض: $\hat{g}(x) = \frac{1}{2\sqrt{x+1}} \implies \hat{g}(1) = \frac{1}{2\sqrt{2}}$ g اشتقاقی عند a = 1 : وحسب تعريف العدد المشتق نجد : $\lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = \dot{g}(1) \implies \lim_{x \to 1} \frac{\sqrt{x + 1} - \sqrt{2}}{x - 1} = \frac{1}{2\sqrt{2}}$ $4 f(x) = \frac{\sqrt{x^2 + x + 2} - 2}{x - 1} \quad : a = 1$ $\lim_{x \to 1} f(x) = ?$ $rac{0}{0}$ حصلنا على حالة عدم تعيين من الشكل $g(x) = \sqrt{x^2 + x + 2} - 2 \implies g(1) = 0$ لفرض : $\hat{g}(x) = \frac{2x+1}{2\sqrt{x^2+x+2}} \implies \hat{g}(1) = \frac{3}{4} : a = 1$ الحسب تعريف العدد المشتق نجد : $\begin{array}{c} g(x) \neq g(1) \\ y = 1 \end{array} \stackrel{(1)}{=} \hat{g}(1) \Longrightarrow \lim_{x \to 1} \frac{\sqrt{x^2 + x + 2} - 2}{x - 1} = \frac{3}{4}
\end{array}$ lim

طارق سعد الدين 0955561648

مسان البيطا، 0932756454 Scanned by CamScanner



00

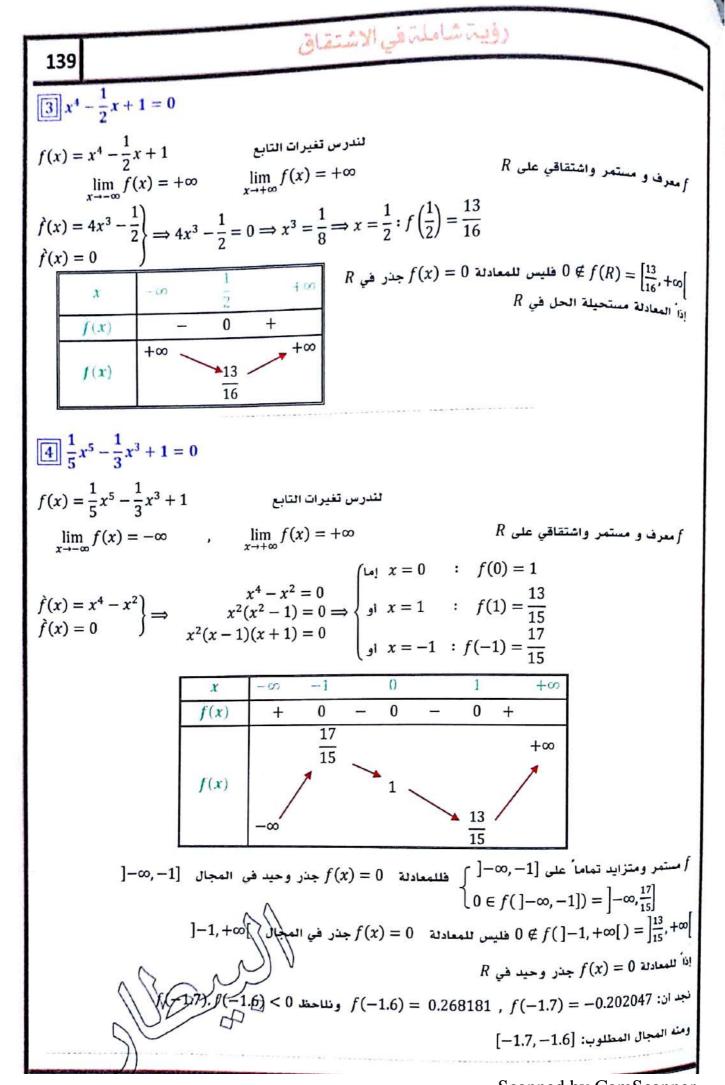
إذا

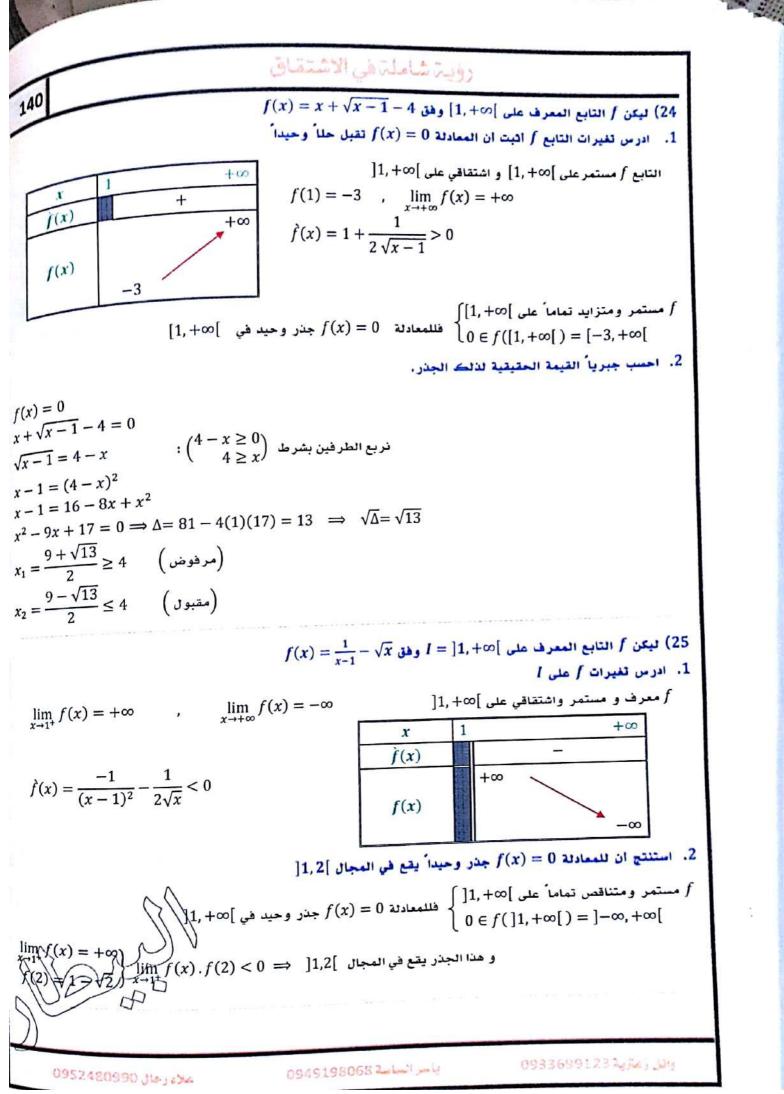
f

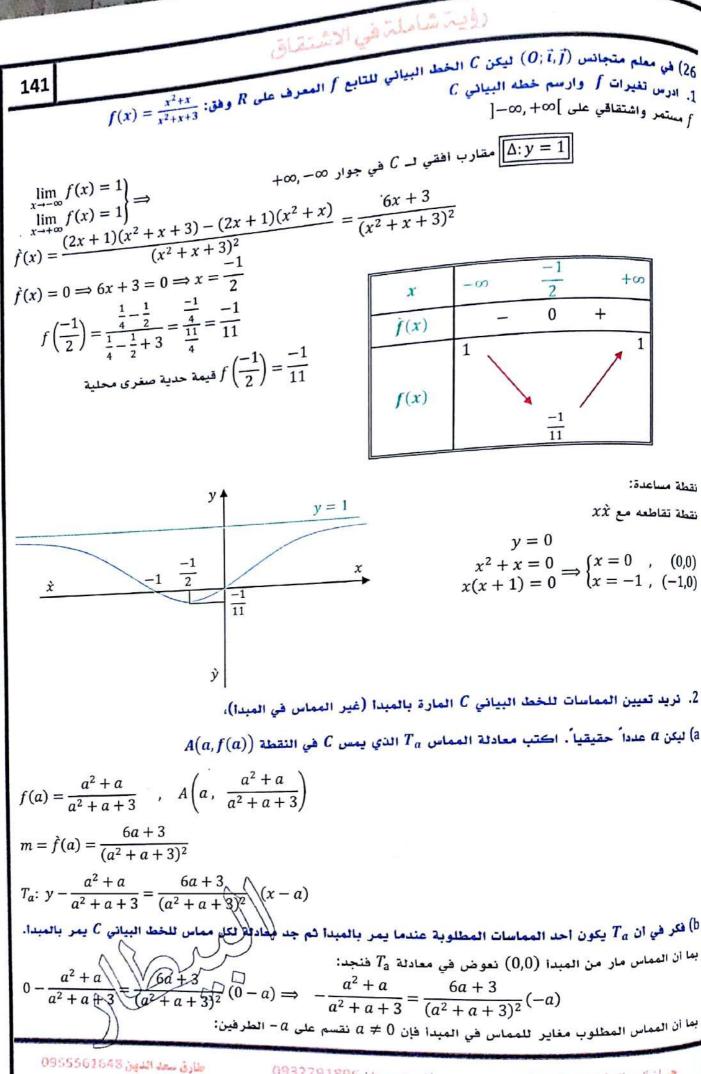
P[

1

ذ

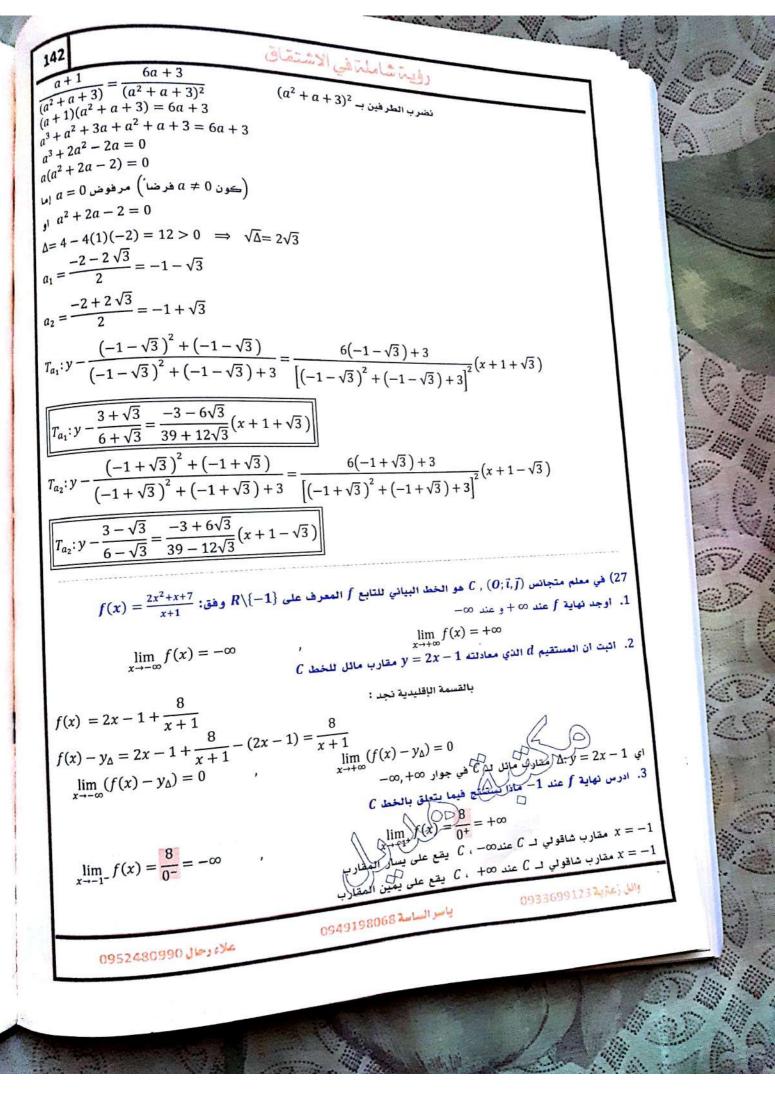


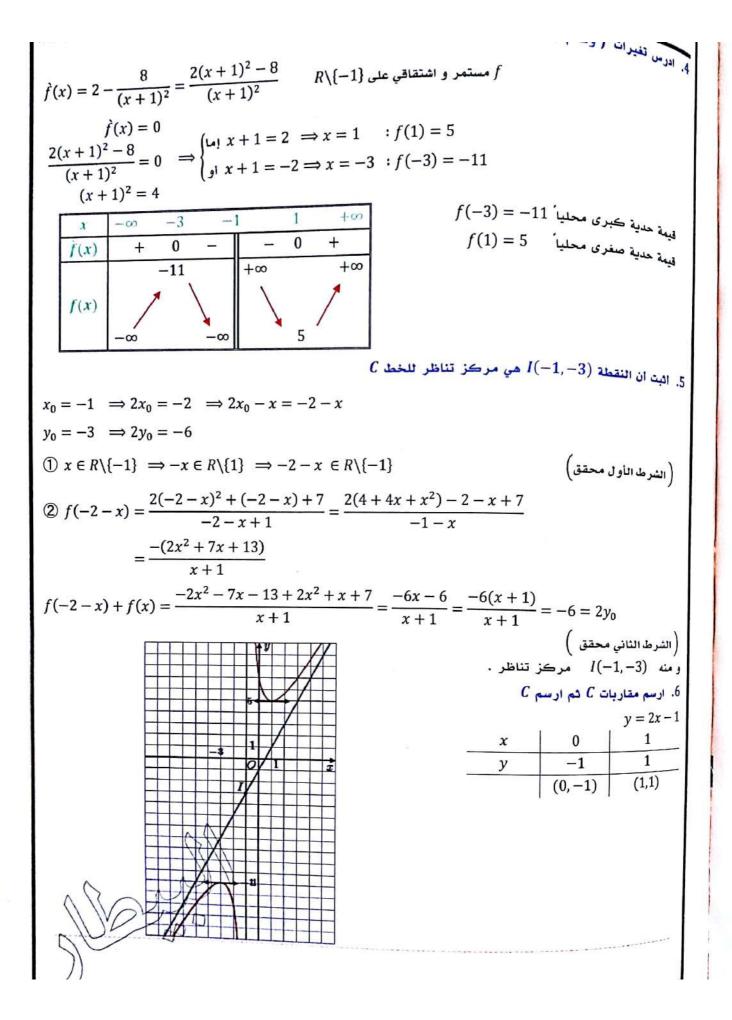


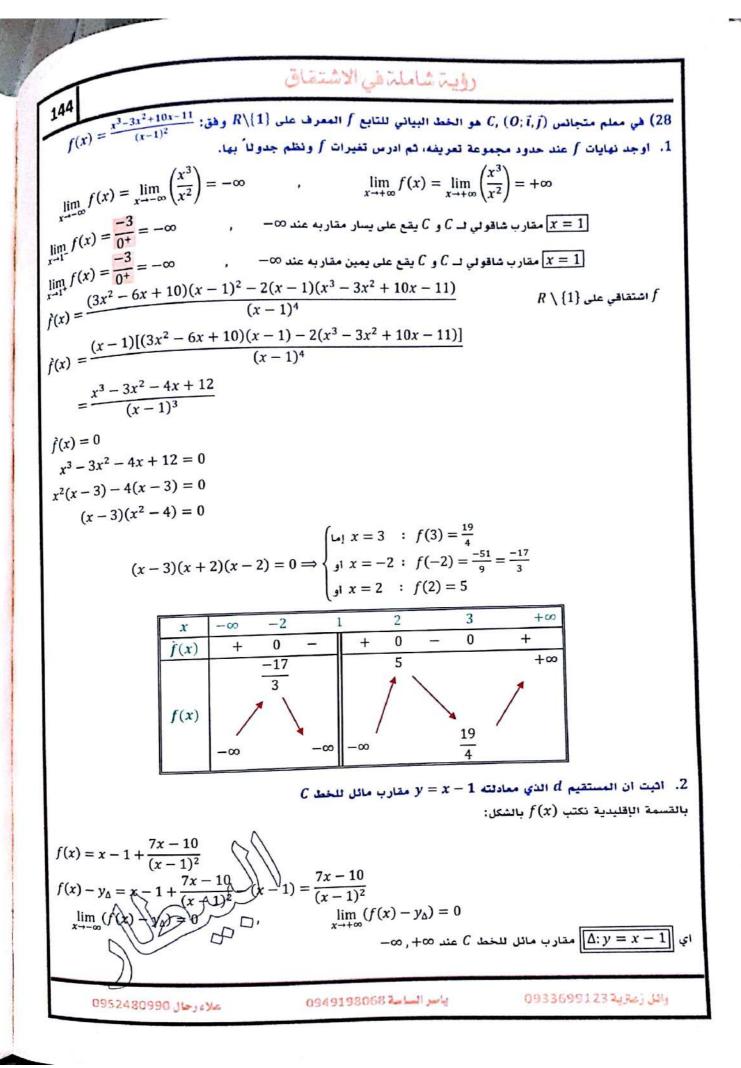


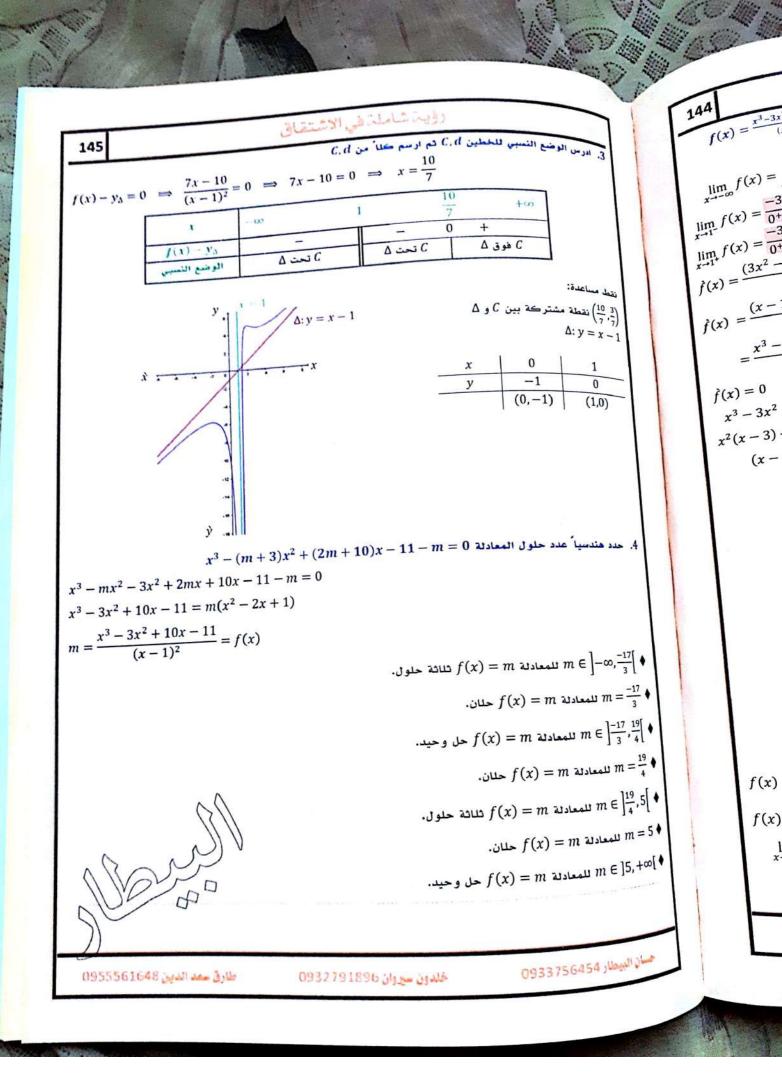
خلدين سروان 0932791896

مسان السطار Scanned by CamScanner







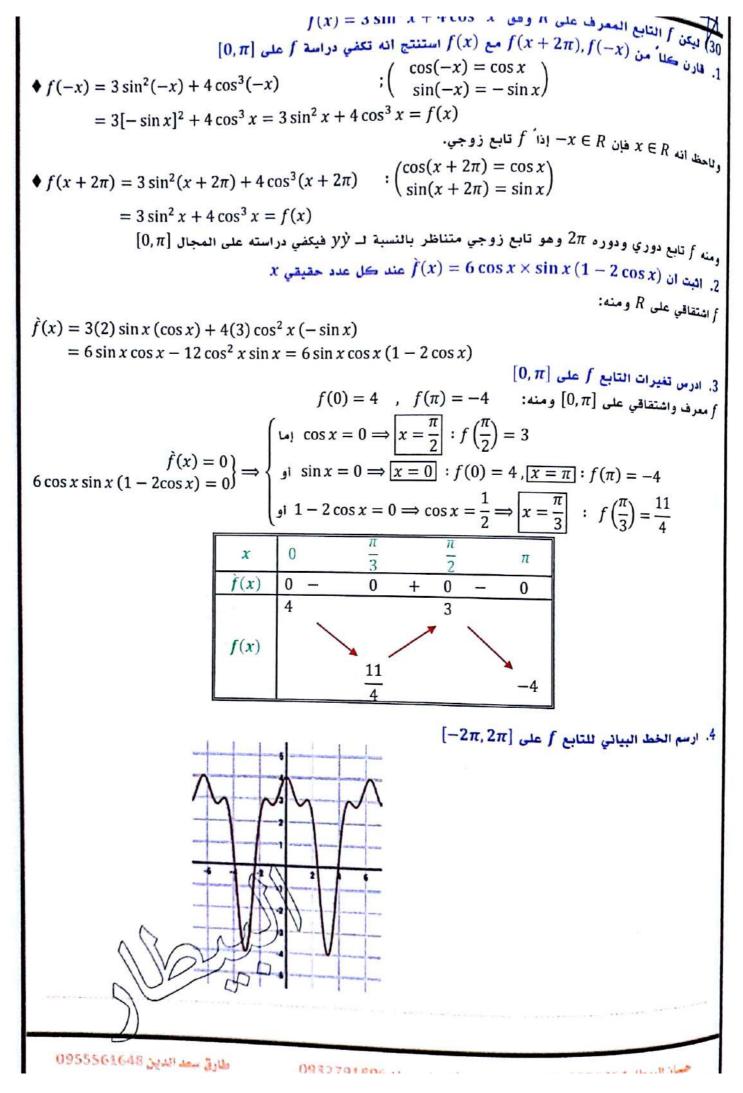


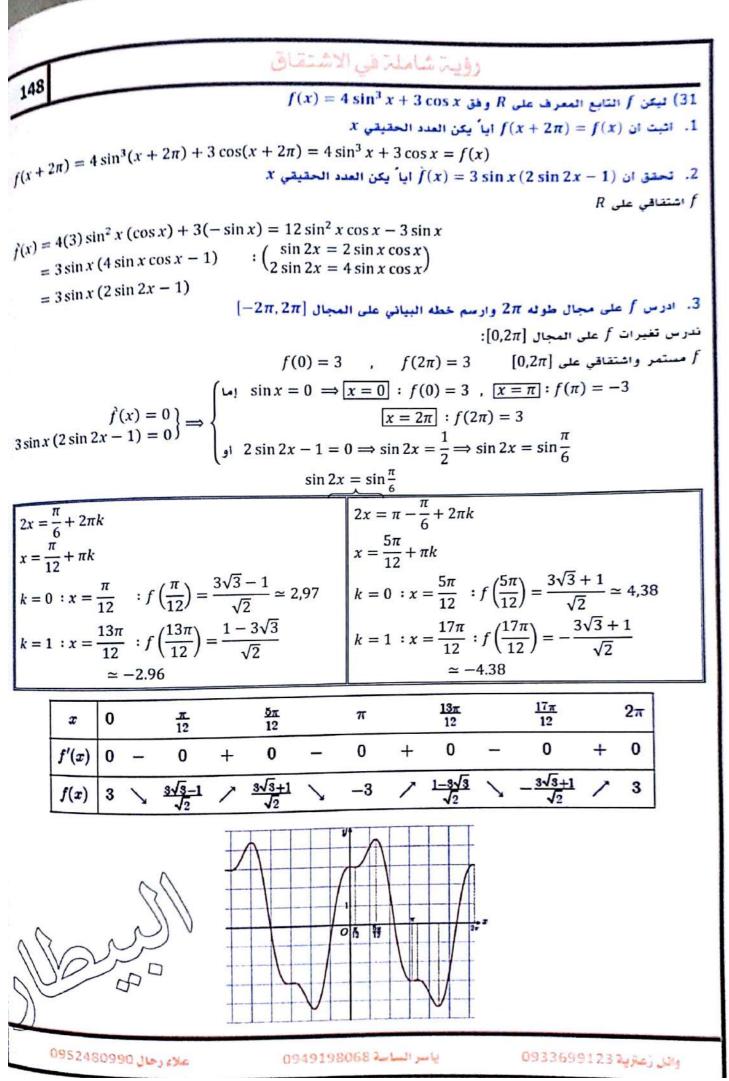
رؤية شاملة في الاشتقاق 146 $f(x) = x - \sqrt{x^2 + 8}$: هي معلم متجانس ($C(0; \vec{i}, \vec{j})$ هو الخط البياني للتابع f المعرف على R وفق (29) احسب نهایة / عند ٥٥ - و عند ∞+ هل یقبل C مقارباً افتیاً و $\lim_{x \to -\infty} f(x) = -\infty - \infty = -\infty$ $\lim_{x\to+\infty}f(x)=?$ حصلنا على حالة عدم تعيين من الشكل 00 - 00 $\int_{x^{-+\infty}}^{x^{-+\infty}} \frac{(x-\sqrt{x^2+8})(x+\sqrt{x^2+8})}{x+\sqrt{x^2+8}} = \frac{x^2-(x^2+8)}{x+\sqrt{x^2+8}} = \frac{-8}{x+\sqrt{x^2+8}}$ $\lim_{x \to +\infty} f(x) = \frac{-8}{\infty} = 0$ $+\infty$ مقارب افقي منطبق على $x\dot{x}$ عند y=0C تحقق أن المستقيم d الذي معادلته y = 2x مقارب للخط 2. $f(x) - y_{\Delta} = x - \sqrt{x^2 + 8} - 2x = -x - \sqrt{x^2 + 8}$ $\lim_{x \to \infty} (f(x) - y_{\Delta}) = -\infty - \infty = -\infty$ $\lim_{x\to\infty}f(x)=?$ حصلنا على حالة عدم تعيين من الشكل 00 - 00 $f(x) - y_{\Delta} = \frac{\left(-x - \sqrt{x^2 + 8}\right)\left(-x + \sqrt{x^2 + 8}\right)}{-x + \sqrt{x^2 + 8}} = \frac{x^2 - (x^2 + 8)}{-x + \sqrt{x^2 + 8}} = \frac{-8}{-x + \sqrt{x^2 + 8}}$ $\lim_{x \to -\infty} (f(x) - y_{\Delta}) = \frac{-8}{-\infty} = 0$ $-\infty$ وبالتالي فإن $\Delta: y = 2x$ مقارب مائل فقط عند $-\infty$. نظم جدو لاً بتغيرات f $\hat{f}(x) = 1 - \frac{2x}{2\sqrt{x^2 + 8}} = 1 - \frac{x}{\sqrt{x^2 + 8}} = \frac{\sqrt{x^2 + 8} - x}{\sqrt{x^2 + 8}}$ f اشتقاقی علی F $\dot{f}(x) \neq 0$ $y_{\Delta} = 2x$: interval in the second secon X 0 0 $I(\mathbf{x})$ v (0,0)(1,2)x = 0 $y\dot{y}$ as $y\dot{y}$ is a standard for $y\dot{y}$ f(x) $y = f(0) = -2\sqrt{2}$ -00 $(0, -2\sqrt{2})$ 4. ارسم مقاربات C ثم ارسم C 2xy = 0x 200 (00 8

ياسر الساسة 0949198068

ملاء رحال 0952480990

والل زعترية 0933699123



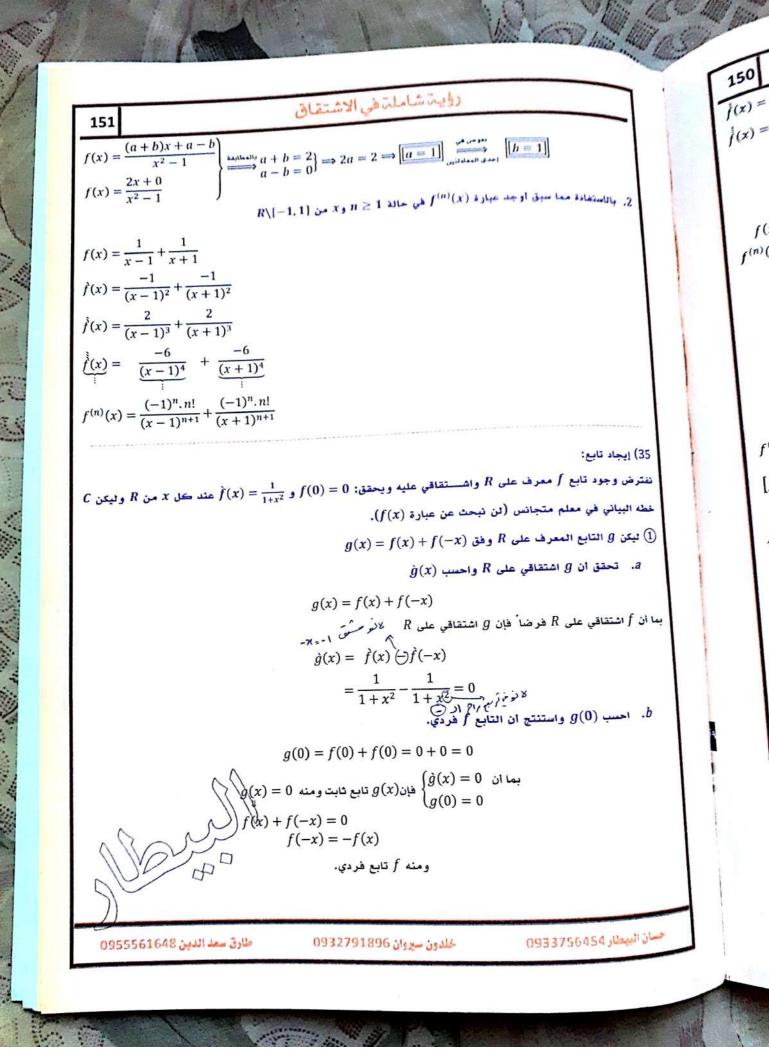




$$\begin{aligned} 19 \\ (x) = -\sin x - (\sin x + x \cos x) = -2 \sin x - x \cos x \\ (x) = -2 \cos x - (\cos x + x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\cos x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\cos x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\cos x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\cos x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\cos x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (\sin x - x \sin x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (x - x - x) = -3 \cos x + x \sin x \\ (x) = -2 \cos x - (x - x) = -3 \cos x - x \sin x = -3 \sin x + \cos x = -3 \cos x + 2 \sin x + \cos x = -3 \sin x + \sin x + 3 \sin x = -3 \sin x + \sin x = -3 \sin x + \sin x + 3 \sin x = -3 \sin x + \sin x = -3 \sin x + \sin x = -3 \sin x + \sin x$$

ياسر الساسة 0949198068

ملاء رحال 0952480990 ملاء رحال

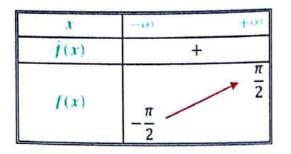


رؤية شاملة في الاشتقاق

 $f_{I}(x) = f(x) + f\left(\frac{1}{x}\right)$ وفق: $I = [0, +\infty]$ التابع المعرف على $f_{I}(x) = I$ وفق: (2) . تحقق ان h اشتقاقي على l واحسب $\hat{h}(x)$ على l . • f(x) اشتقاقي على R فرضاً فهو اشتقاقي على $I = [0, +\infty[$ اشتقاقي على f(x) استقاقي على $f(\frac{1}{x})$ $\hat{h}(x) = \hat{f}(x) - \frac{1}{r^2} \cdot \hat{f}\left(\frac{1}{r}\right)$ $=\frac{1}{1+x^2}-\frac{1}{x^2}\left(\frac{1}{1+\frac{1}{x^2}}\right)=\frac{1}{1+x^2}-\frac{1}{x^2+1}=0$. اثبت ان k(x) = 2f(1) ایا یکن x من I. $k(x) = f(x) + f\left(\frac{1}{x}\right)$ k(1) = f(1) + f(1) = 2f(1) $\hat{k}(x)=2f(1)$ بما ان $\hat{k}(x)=0$ فهو تابع ثابت وبما ان $\hat{k}(1)=2f(1)$ فإنه مهما يكن x من l فإن $\hat{k}(x)=0$ 2f(1) استنتج ان نهایة التابع f عند $\infty +$ تساوی .C $k(x) = f(x) + f\left(\frac{1}{x}\right)$ لدينا: $\lim_{x \to +\infty} \pounds(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} f\left(\frac{1}{x}\right)$ $2f(1) = \lim_{x \to +\infty} f(x) + f(0)$ $\boxed{2f(1) = \lim_{x \to +\infty} f(x)}$ f(0) = 0d. ماذا تستنتج بشأن الخط البياني C ؛ بما أن $\lim_{x \to +\infty} f(x) = 2f(1)$ فإن: y = 2f(1) مقارب أفقي للخط $x \dot{x} / C$ بجوار $\infty +$ $k(x) = f(\tan x) - x$ وفق: $J = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ وفق: k التابع المعرف على (3) ak. احسب (x) ماذا تستنتج بشان التابع ak. $\dot{k}(x) = (1 + \tan^2 x) \cdot \dot{f}(\tan x) - 1$ $= (1 + \tan^{2} x) \cdot \underbrace{\frac{1}{1 + \tan^{2} x}}_{1 + \tan^{2} x} - 1 = 1 - 1 = 0$ $k(x) = 0 \quad \text{if } k(x) = 0$ $k(0) = f(\tan(0)) - 0 = f(0) - 0 = 0 \Longrightarrow k(x) = 0$ f(1)b $k(x) = f(\tan x) - x$ $x = \frac{\pi}{4} \Longrightarrow k\left(\frac{\pi}{4}\right) = f\left(\tan\frac{\pi}{4}\right) - \frac{\pi}{4} \qquad x \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[$ $0 = f(1) - \frac{\pi}{4} \Rightarrow f(1) = \frac{\pi}{4}$. دنظم جدولاً بتغيرات / على R. , $\hat{f}(x) = \frac{1}{1+x^2} > 0$ نلاحظ ان $\lim_{x \to +\infty} f(x) = 2f(1) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$ 0952480990 ملاء رحال والل زعترية 0933699123 ياسر الساسة 0949198068

رؤيت شاملة في الاشتقاق

وہنا ان f تابع فردي فإن $\frac{\pi}{2} = -\frac{\pi}{2}$ ومنه:



- d. ارسم المستقيمات المقاربة للخط C وارسم مماساته في النقاط التي فواصلها 1 و 0 و 1 ثم ارسم C.
 - المماس في النقطة التي فاصلتها x = 1

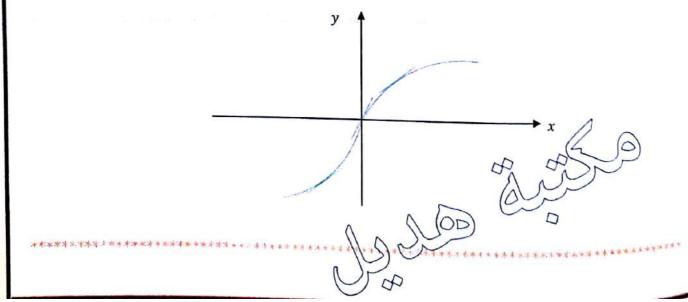
$f(1) = \frac{\pi}{4}$: (1	$\left(,\frac{\pi}{4}\right)$
$\dot{f}(1) = m =$	$\frac{1}{1+1}$	$=\frac{1}{2}$
$y - \frac{\pi}{4} = \frac{1}{2}(x)$	- 1)	
4 4		6.8.2

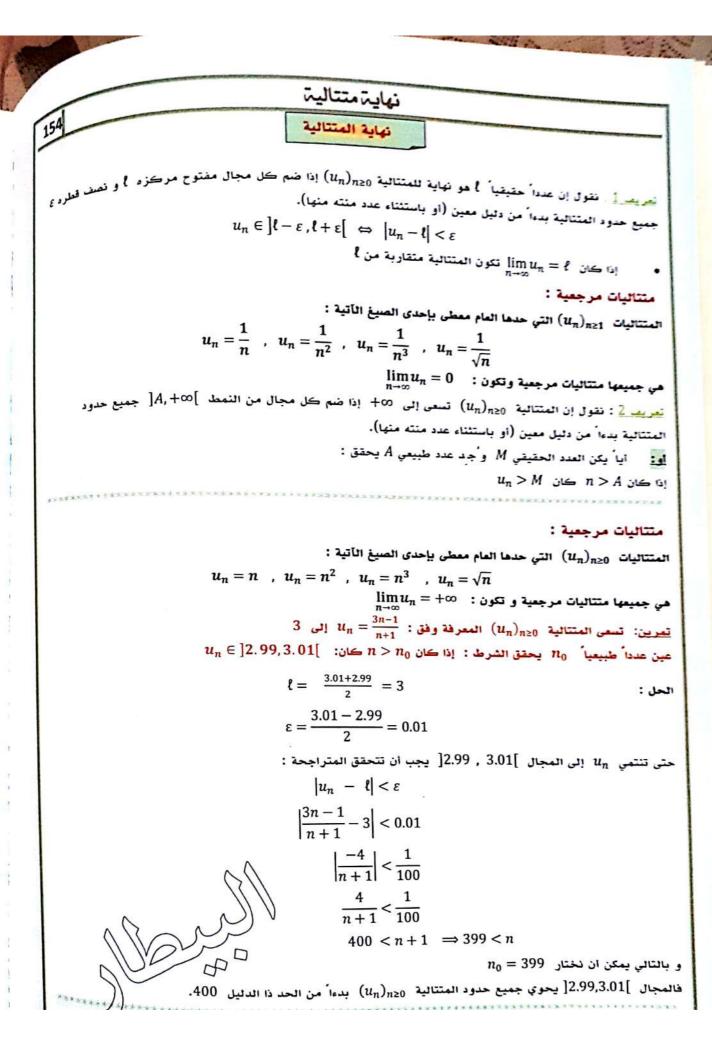
المماس في النقطة التي فاصلتها x = -1:

* نان
$$f$$
 تابع فردي» $f(-1) = -\frac{\pi}{4}$: $(-1, -\frac{\pi}{4})$
 $\hat{f}(-1) = \frac{1}{1+1} = \frac{1}{2}$
 $y + \frac{\pi}{4} = \frac{1}{2}(x+1)$

المماس في النقطة التي فاصلتها 0 = x:

$$f(0) = 0 : (0,0)$$
$$\dot{f}(0) = \frac{1}{1+0} = 1$$
$$\boxed{y = x}$$





المتتالية المندسية. مر منذ : ليكن p عدد حقيقي عندلذ : q = 1 فإن: q = 0 فإن: q = 0 q = 1 فإن: q = 0 فإن: q = -1 q = 1 فإن: q = -1 فإن: q = -1 q = -1 فإن: q = -1 فإن المتتالية نهاية. q = 1 فإن المتتالية $q^n = (q^n)$ فابتة وجميع حدودها تساوي 1 و $1 = q^n$

تمارين :

$$-1 < q = rac{1}{3} < 1$$
 المتتالية الهندسية المعرفة وفق $u_n = \left(rac{1}{3}
ight)^n$ متقاربة من الصفر $\left(\lim_{n o\infty}q^n=0
ight)$ نان $1 < q = rac{1}{3}$ $*$

$$q=3>1$$
 المتتالية الهندسية المعرفة وفق $n=3^n$ متباعدة $u_n=3^n$ متباعدة $u_n=3^n$ تان

: المتتالية الهندسية:
$$u_n=rac{5^n-4^n}{5^n-1}$$
 متقاربة من الواحد لأن n

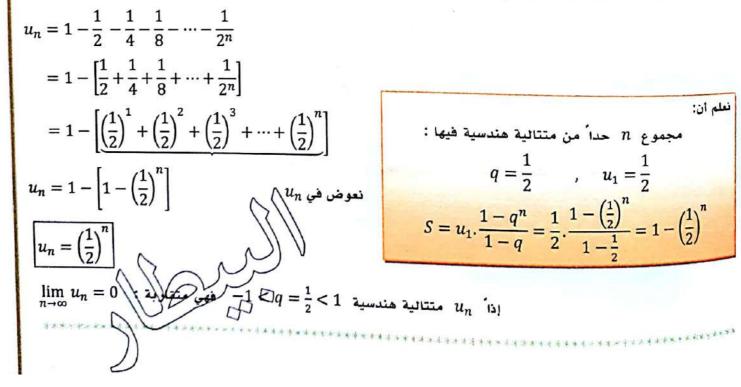
$$u_n = \frac{5^n \left[1 - \left(\frac{4}{5}\right)^n \right]}{5^n \left[1 - \left(\frac{1}{5}\right)^n \right]} = \frac{1 - \left(\frac{4}{5}\right)^n}{1 - \left(\frac{1}{5}\right)^n}$$

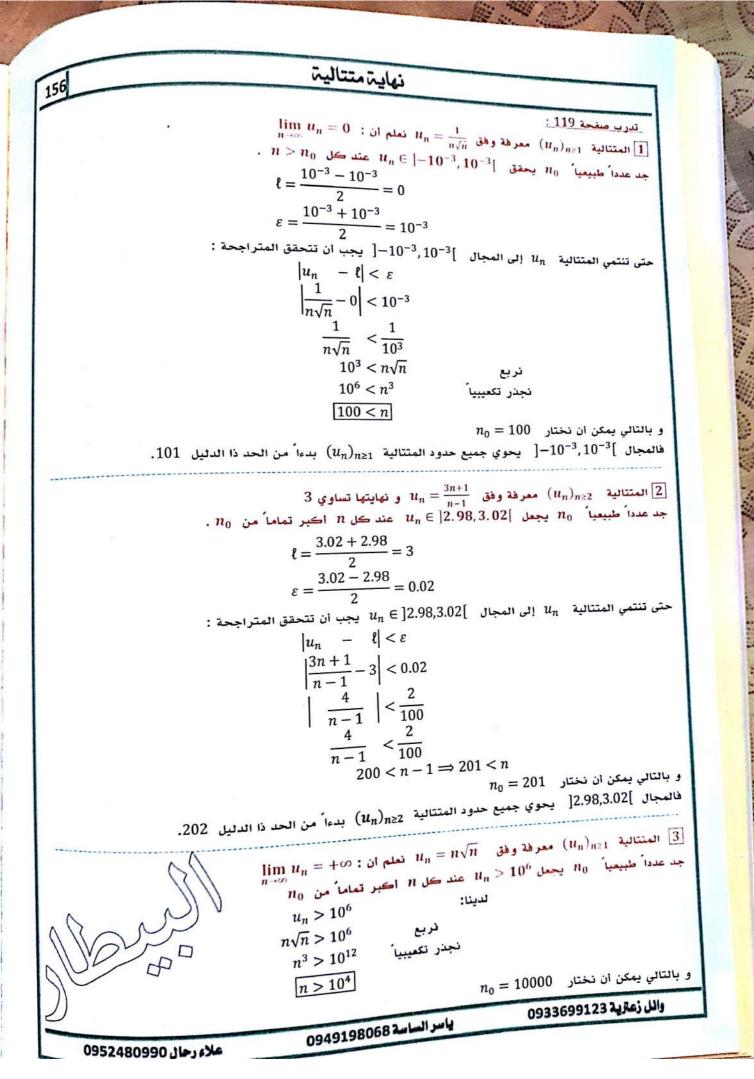
 $\lim_{n \to \infty} u_n = 1 : \lim_{n \to \infty} \left(\frac{1}{5}\right)^n = 0 \quad e \quad \lim_{n \to \infty} \left(\frac{4}{5}\right)^n = 0$

تمرين هام :

 $u_n = 1 - rac{1}{2} - rac{1}{4} - rac{1}{8} - \dots - rac{1}{2^n}$: المتتالية $(u_n)_{n \ge 1}$ معرفة وفق $(u_n)_{n \ge 1}$

ائبت ان (u_n)_{n≥1} متقاربة و احسب نهايتها.





$$157 iter (x_n)_{n=0} (y_n)_{n=0} (y_n)_{$$

3

5L

$$\frac{158}{y_{0} = x_{0} + 3}$$

$$y_{0} = x_{0} + 3$$

$$= 3 + 3 = 6$$

$$y_{n} = y_{0} \cdot q^{n}$$

$$y_{n} = x_{n} + 3$$

$$x_{n} = \delta\left(\frac{1}{2}\right)^{n} = x_{n} + 3$$

$$x_{n} = \delta\left(\frac{1}{2}\right)^{n} - 3$$

$$x_{n} = y_{0} + y_{1} + \dots + y_{n} + x_{n}$$

$$x_{n} = \delta\left(\frac{1}{2}\right)^{n} - 3$$

$$x_{n} = y_{0} + y_{1} + \dots + y_{n} + x_{n}$$

$$x_{n} = y_{0} + y_{1} + \dots + y_{n}$$

$$y_{0} = 6 \quad x_{0} + x_{1} + \dots + x_{n}$$

$$y_{0} = 6 \quad x_{0} + x_{1} + \dots + y_{n} - 3$$

$$y_{0} = 6 \quad x_{0} + \frac{1}{3}$$

$$y_{0} = 6 \quad x_{0} + \frac{1}{3}$$

$$y_{0} + y_{1} + \dots + y_{n} + (-3 - 3 - \dots - 3)$$

$$y_{0} = 6 \quad x_{0} + \frac{1}{3}$$

$$y_{0} = 9 \left[1 - \left(\frac{1}{3}\right)^{n+1}\right] - 3(n + 1)$$

$$x_{n} = 1$$

$$y_{0} + y_{1} + \dots + y_{n} + (-3 - 3 - \dots - 3)$$

$$y_{0} = 6 \quad x_{0} + \frac{1}{3}$$

$$y_{0} = 9 \left[1 - \left(\frac{1}{3}\right)^{n+1}\right] - 3(n + 1)$$

$$x_{n} = 1$$

$$y_{0} + y_{1} + \dots + y_{n} + (-3 - 3 - \dots - 3)$$

$$y_{0} = 0 \quad x_{0} \quad x_{1} \quad x_{2} \quad x_{1} + 1$$

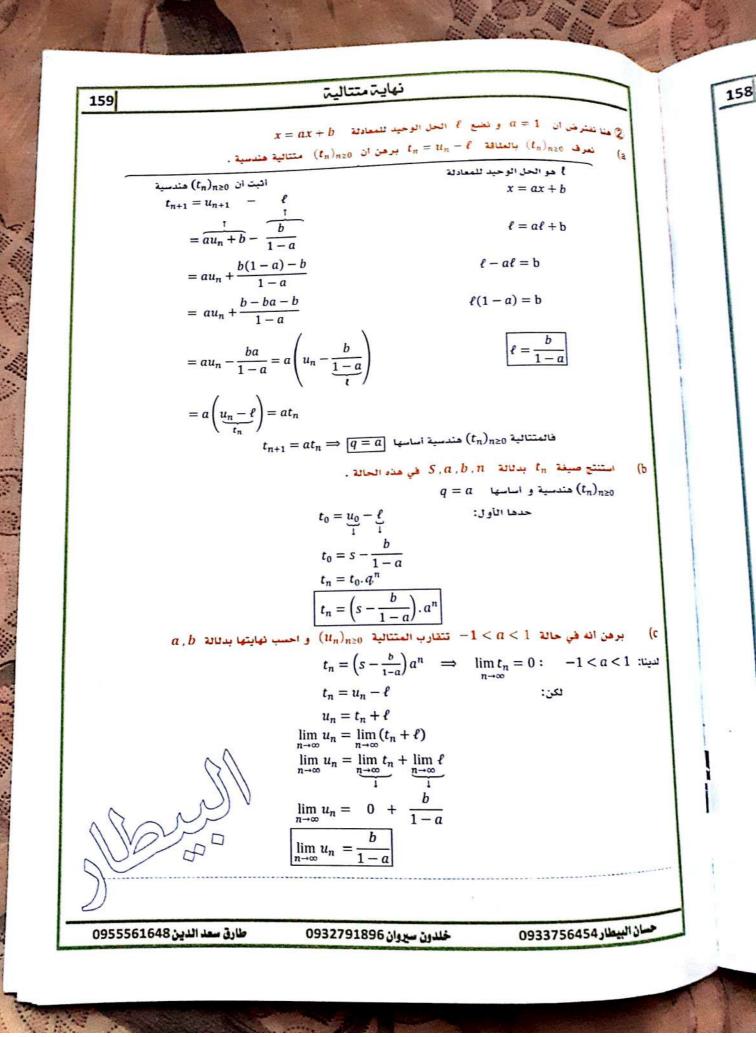
$$x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{1} + 1$$

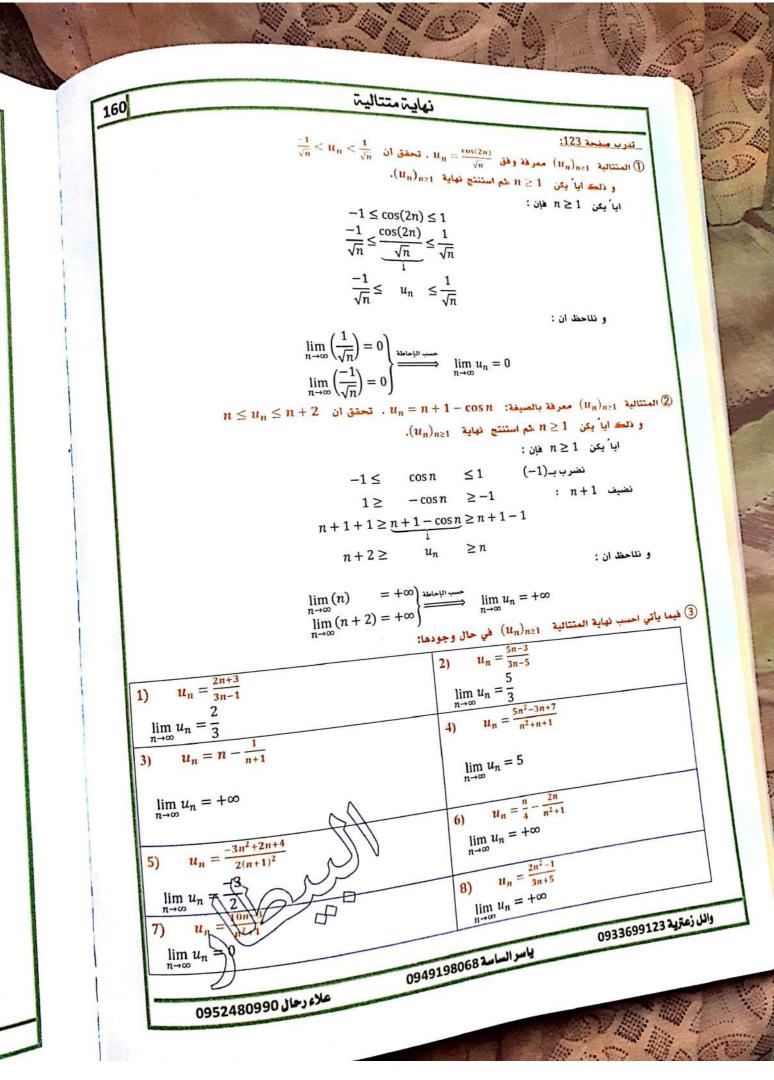
$$(5_{n})_{n=20} \quad (n + 1) \quad x_{1} = 0 \quad x_{1}$$

$$(1 \quad x_{1})_{n=20} \quad x_{1} \quad x_{2} \quad x_{1} = 0$$

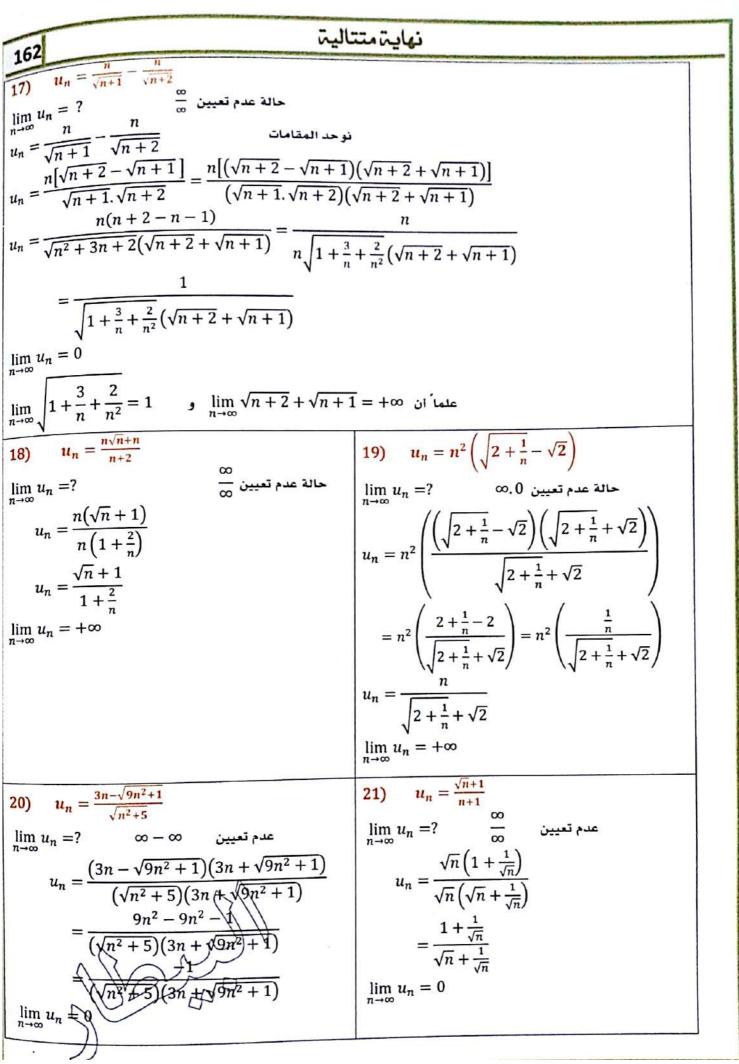
$$y_{0} = x_{1} \quad x_{1} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{1} = 0$$

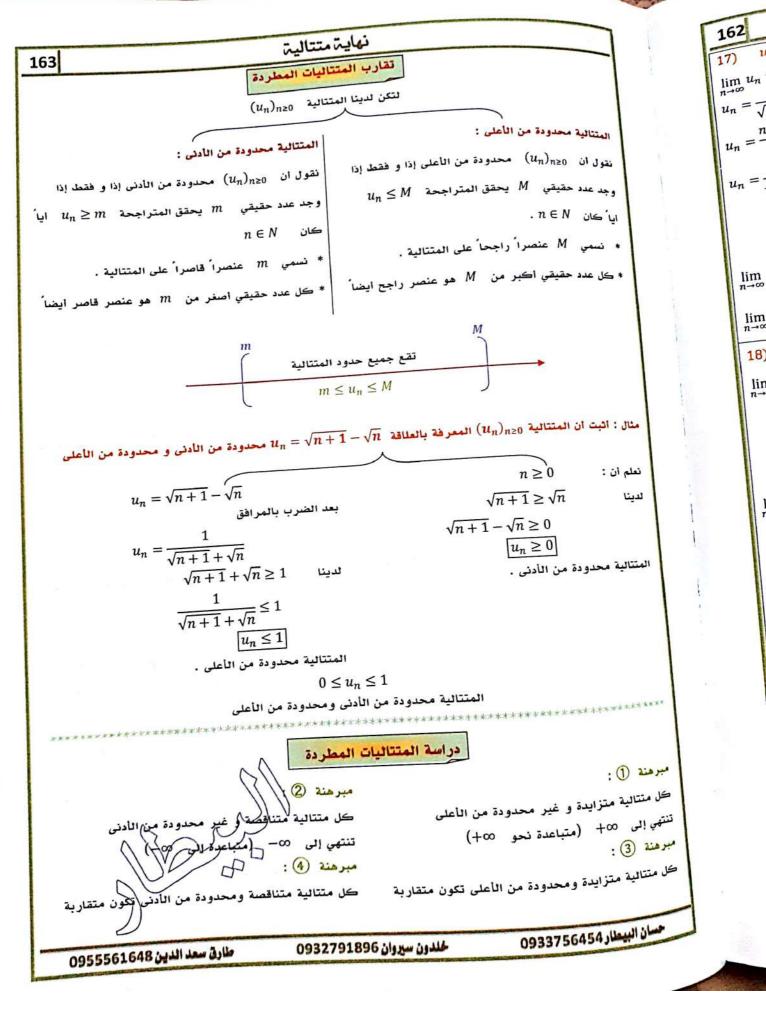
$$y_{0} = x_{1} \quad x_{1} \quad x_{2} \quad y_{1} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{2} \quad x_{1}$$



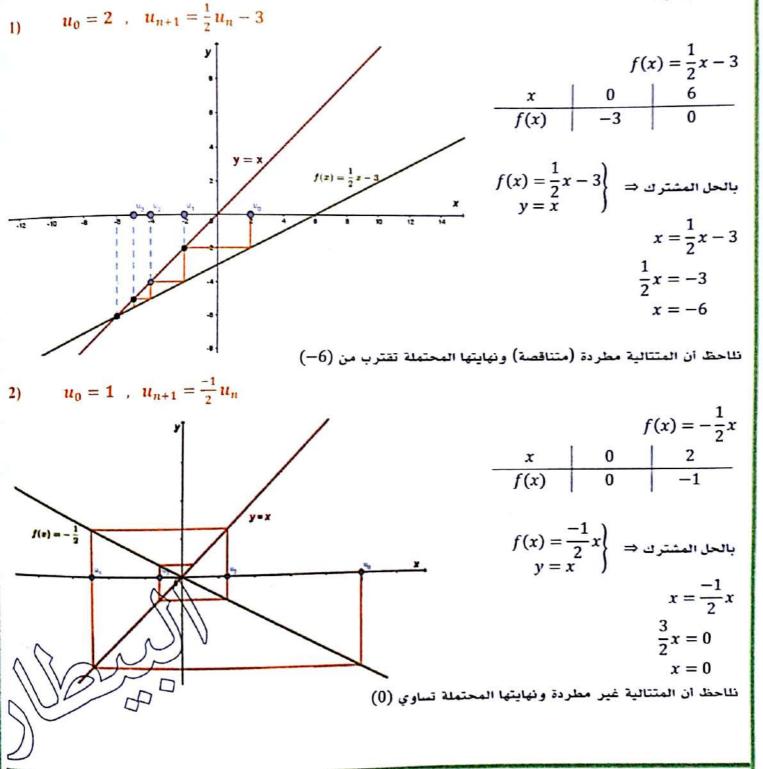


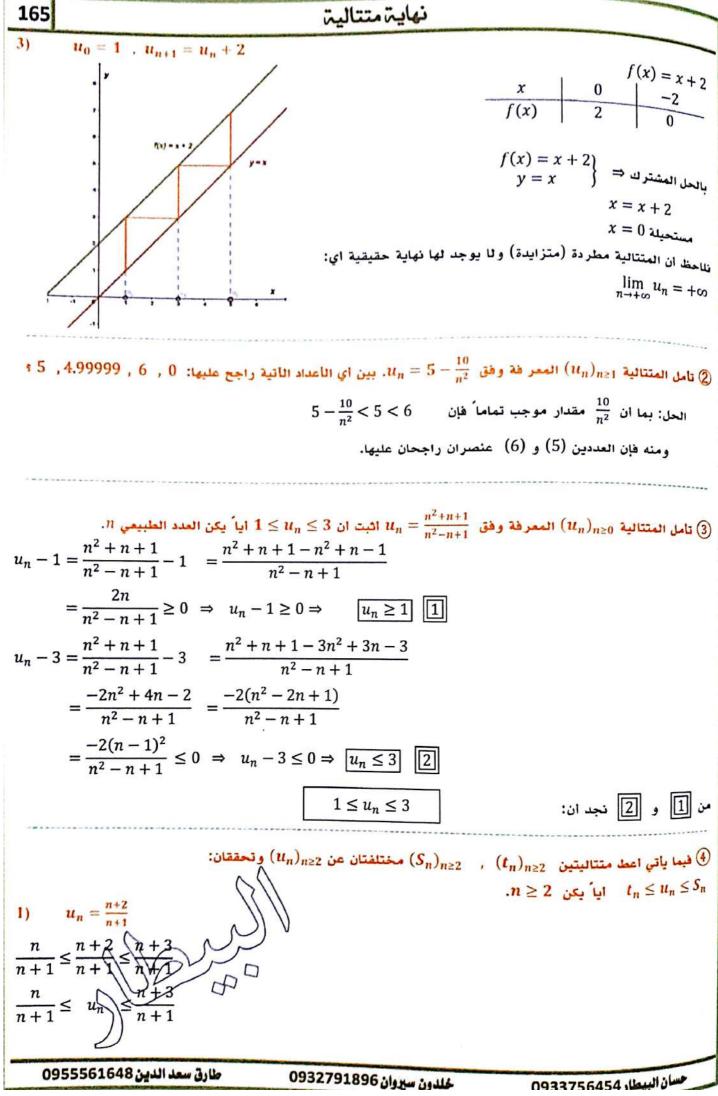
مسان البيطار 0933756454 Scanned by CamScanner

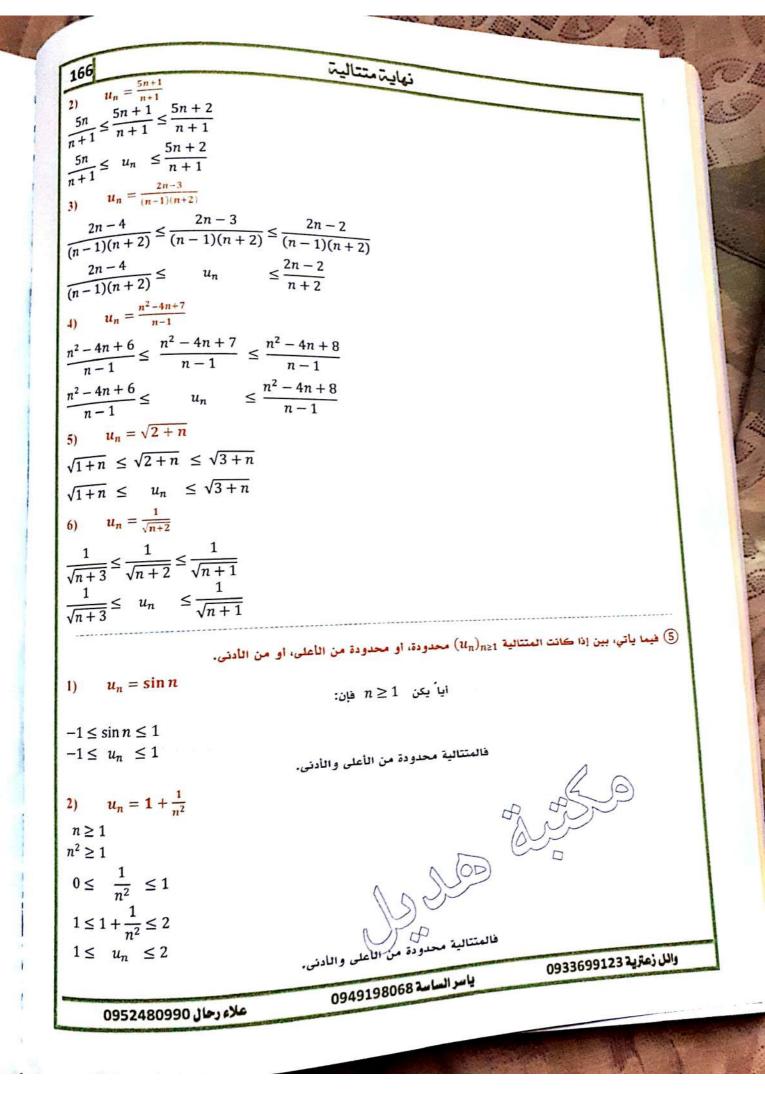




أ في كل من الحالات الأتية، مثل هندسياً الحدود الأولى من المتتالية (u_n)، ثم خمن جهة إطرادها إذا كانت مطردة ونهايتها المحتملة.

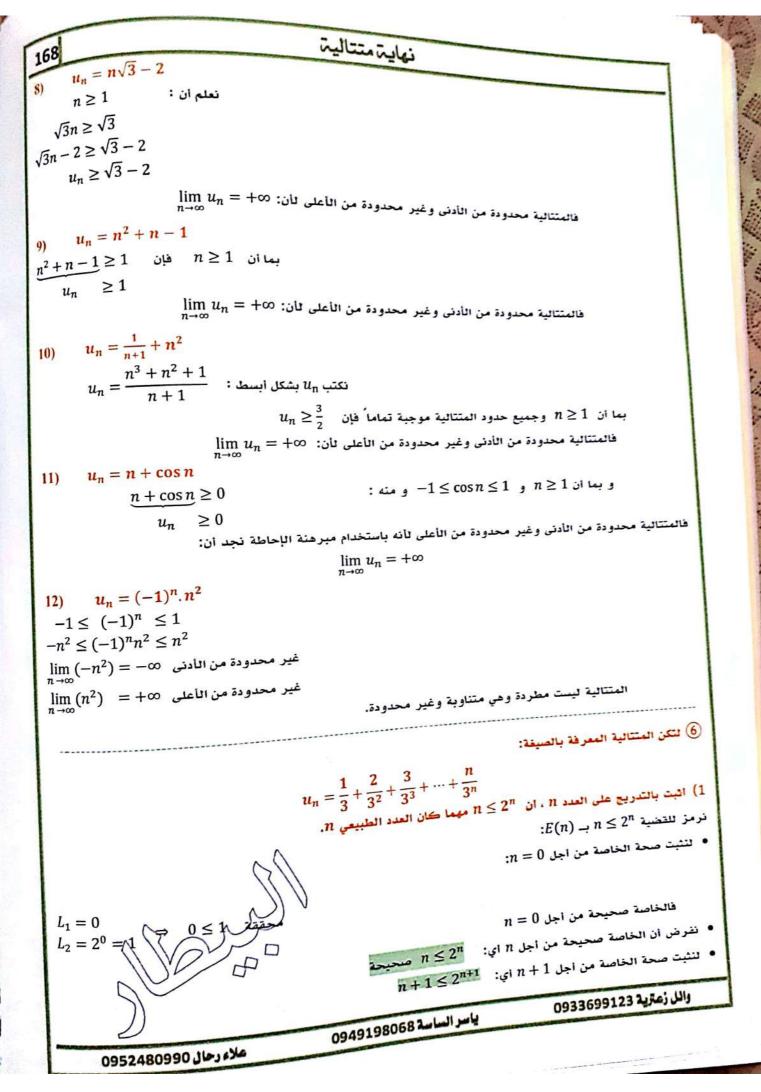






Scanned by CamScanner

67	نهاية متتالية	
Statement of the local division of the local		
) u	$n = \frac{1}{n+2}$	
n +	$2 \ge 3$ بما ان $1 \ge n \ge 1$ فإن	
1 < -1	$\overline{12} \leq \frac{1}{3}$	
$0 \leq u_r$	$\leq \frac{1}{3}$	
	فالمتتالية محدودة من الأدنى والأعلى.	
) 1	$t_n = \frac{1}{1+n^2}$	
	$n^2 \ge 1$ بما ان $1 \ge n$ فإن $n \ge 1$	
	$n^2 \ge 2$	
	$\frac{1}{n^2} \leq \frac{1}{2}$	
$0 \leq \iota$	$n \leq \frac{1}{2}$	
	فالمتتالية محدودة من الأعلى والأدنى.	
5)	$u_n = \frac{n}{\sqrt{n^2 + 1}}$	
	$\sqrt{n^2+1}$ نعلم أن n^2	
	$n = \frac{1}{2}$ بالجذر $n \leq 1$	
	$1 \ge \frac{n}{\sqrt{n^2 + 1}} \ge 0 \qquad \qquad \div \sqrt{n^2 + 1}$	
	$1 \ge u_n \ge 0$	
	فالمتتالية محدودة من الأدنى والأعلى.	
6)	$u_n = \sqrt{\frac{n^2 - 1}{n^2 + 1}}$	
n	2	
	$0 \le \frac{n^2 - 1}{n^2 + 1} \le 1 \qquad \div (n^2 + 1)$	
	<i>n</i>	
	$0 \leq \sqrt{rac{n^2-1}{n^2+1}} \leq 1$ نجذر 1	
	$0 \leq u_n \leq 1$ فالمتتالية محدودة من الأدنى والأعلى.	
7)	$u_n = \frac{-2}{\sqrt{2n+3}}$	
7)		
	$n \ge 1$ نعلم أن $n \ge 1$	
	$2n \ge 2$ $2n + 3 \ge 5$	
	$\sqrt{2n+3} \ge \sqrt{5}$	
(9)		
5	$\frac{1}{\sqrt{2n+3}} = \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}}$ نضرب ب -2	
	$u_n \geq rac{-2}{\sqrt{5}}$ فالمتتالية محدودة من الادنى والأعلى.	
-	حسان البيطار 0933756454 خلاون سيروان 0932791896 طارق سعد الدين 955561648	-



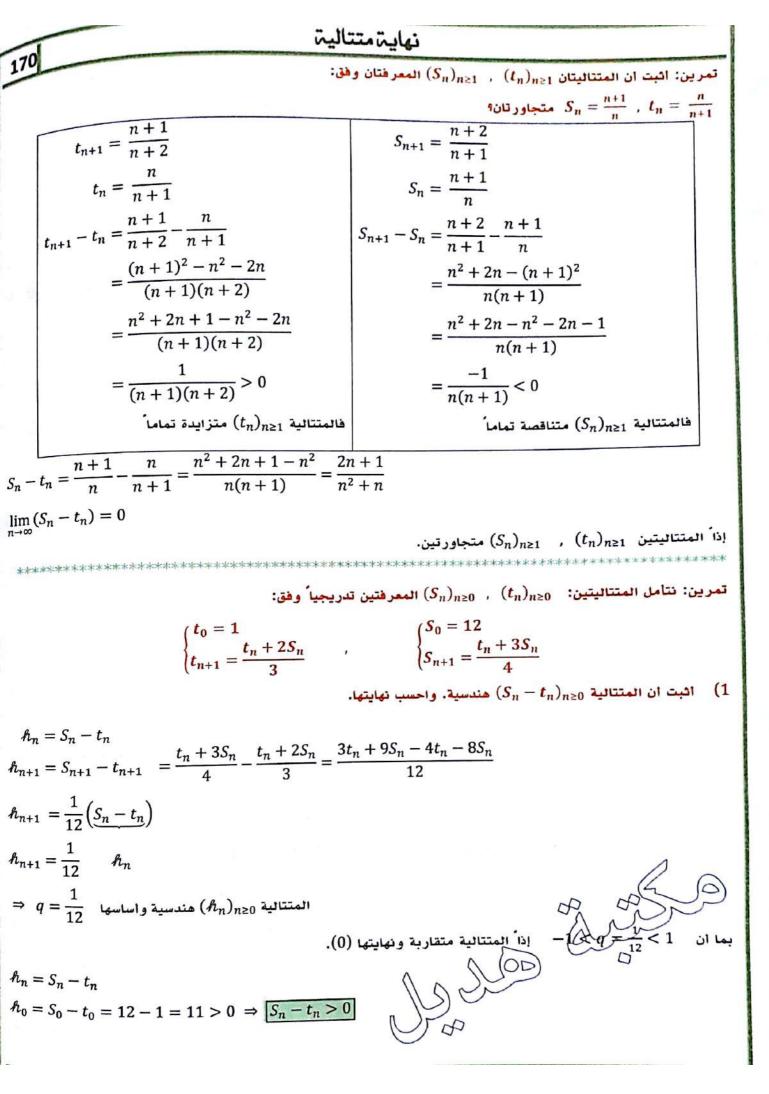
• من الفرض لدينا: $n \leq 2^n$ $2n \leq 2^n, 2$ نضرب بالعدد 2 $n+1+\underbrace{n}{} \leq 2^{n+1}$ $n+1 \le 2^{n+1}$ n+1 فالخاصة صحيحة من أجل $n \in N$ فالخاصة السابقة صحيحة من أجل . (u_n) استنتج مما سبق عنصرا راجحا على المتتالية (2) $u_n = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n}$ بما أن $u_n \leq \frac{2}{3} \cdot \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = \frac{2}{3} \cdot \frac{1 - \left(\frac{2}{3}\right)^n}{\frac{1}{2}} = 2\left[1 - \left(\frac{2}{3}\right)^n\right]$ $u_n \leq 2 \underbrace{-2\left(\frac{2}{3}\right)^n}_{n \leq 2}$ فالمتتالية محدودة من الأعلى بالعدد (2) وهو عنصر راجح عليها. متتاليات متجاورة

- تعريف: نقول إن المتتاليتين $(t_n)_{n\geq 0}$, $(S_n)_{n\geq 0}$ متجاورتان إذا وفقط إذا تحقق:
 - إحداهما متزايدة والأخرى متناقصة.
 - تقارب المتتالية $(S_n t_n)_{n>0}$ من الصفر.
 - مبرهنة: نتأمل متتاليتين متجاورتين $(t_n)_{n \ge 0}$, $(t_n)_{n \ge 0}$ عندند:
 - . تكون المتتاليتان $(S_n)_{n \ge 0}$, $(t_n)_{n \ge 0}$ متقاربتين (1
 - . يكون للمتتاليتين $(t_n)_{n \ge 0}$, $(t_n)_{n \ge 0}$ النهاية نفسها.

حسان البيطاد 0933756454 Scanned by CamScanner

خلدون سيروان 0932791896

طارق سعد الدين 0955561648



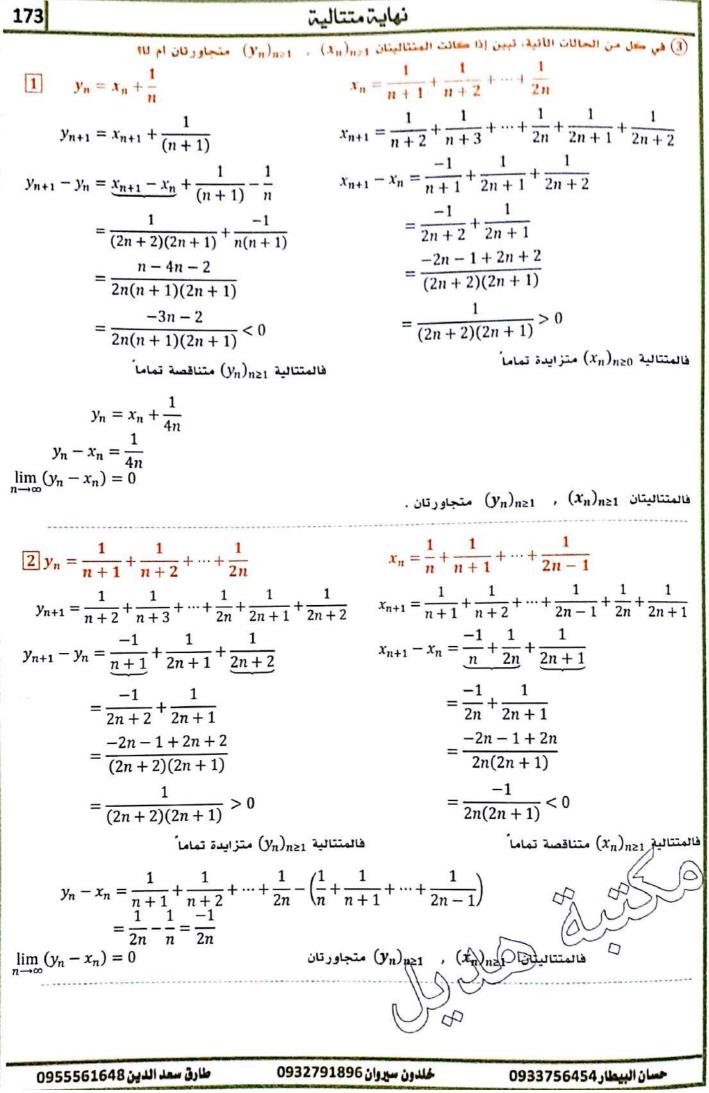
172 نهاية متتالية $t_{n+1} - t_n = \frac{-1}{2n+6} + \frac{1}{2n+4}$ $S_{n+1} - S_n = \frac{1}{n+2} - \frac{1}{n+1}$ $= \frac{-2n-4+2n+6}{(2n+6)(2n+4)}$ $= \frac{n+1-n-2}{(n+1)(n+2)}$ $= \frac{2}{(2n+6)(2n+4)} > 0$ $= \frac{-1}{(n+1)(n+2)} < 0$ $= \frac{2}{(2n+6)(2n+4)} > 0$ $= \frac{-1}{(n+1)(n+2)} < 0$ sharrilus right <math>sharrilus right <math>sharril

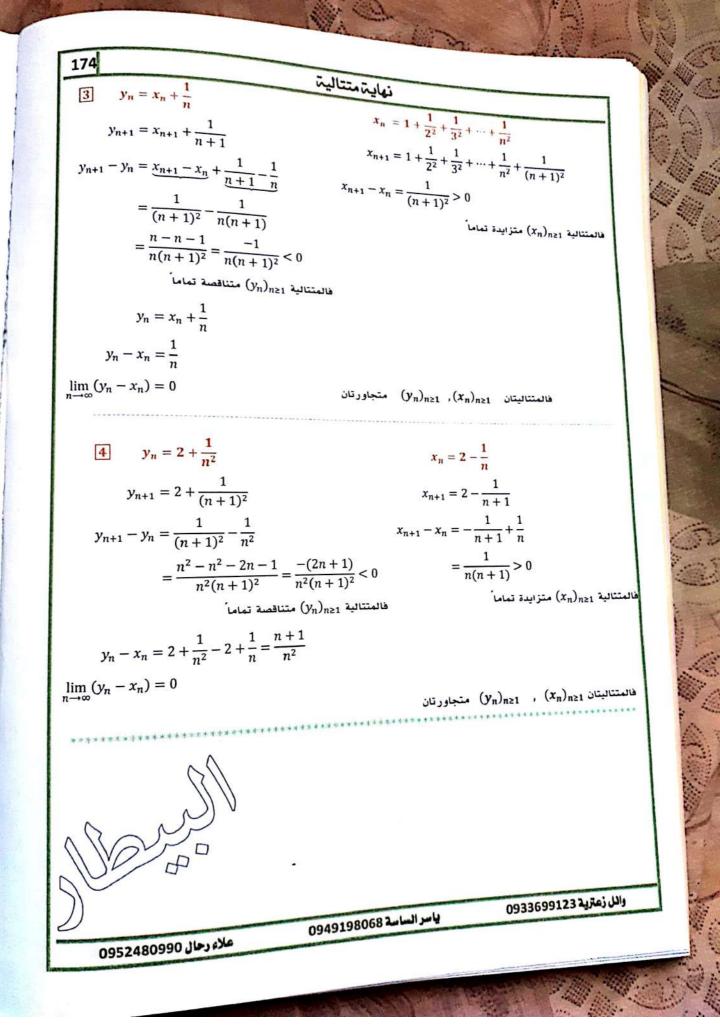
$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} S_n = 0$$

. $S_n = 1 + rac{1}{n^2}$ و $t_n = rac{n-1}{n}$ و فق: $t_n = rac{n-1}{n}$ و $(S_n)_{n \ge 0}$, $(t_n)_{n \ge 0}$ (2) بتكن 20 $(t_n)_{n \ge 0}$

اثبت انهما متجاورتان ثم عين نهايتهما المشتركة.

$$\begin{split} S_n &= 1 + \frac{1}{n^2} & t_n = \frac{n-1}{n} \\ S_{n+1} &= 1 + \frac{1}{(n+1)^2} & t_{n+1} = \frac{n}{n+1} \\ S_{n+1} - S_n &= 1 + \frac{1}{(n+1)^2} - 1 - \frac{1}{n^2} & t_{n+1} - t_n = \frac{n}{n+1} - \frac{n-1}{n} \\ &= \frac{n^2 - n^2 - 2n - 1}{n^2(n+1)^2} & t_{n+1} - t_n = \frac{n}{n+1} - \frac{n-1}{n} \\ &= \frac{n^2 - n^2 + 1}{n^2(n+1)^2} & = \frac{1}{n(n+1)} \\ &= \frac{-(2n+1)}{n^2(n+1)^2} < 0 & = \frac{1}{n(n+1)} > 0 \\ & \text{isour f}_n = 1 + \frac{1}{n^2} - \frac{n-1}{n} \\ &= 1 + \frac{1}{n^2} - 1 + \frac{1}{n} \\ &= \frac{1+n}{n^2} \\ \lim_{n \to \infty} t_n = \lim_{n \to \infty} S_n = 1 \end{split}$$

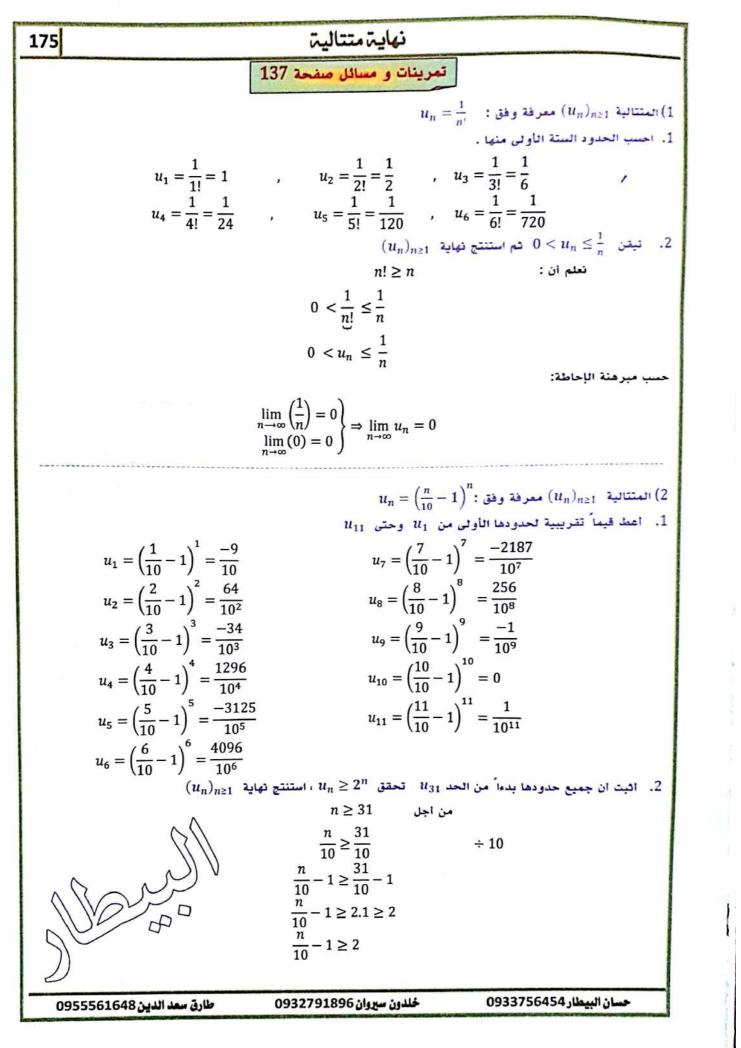


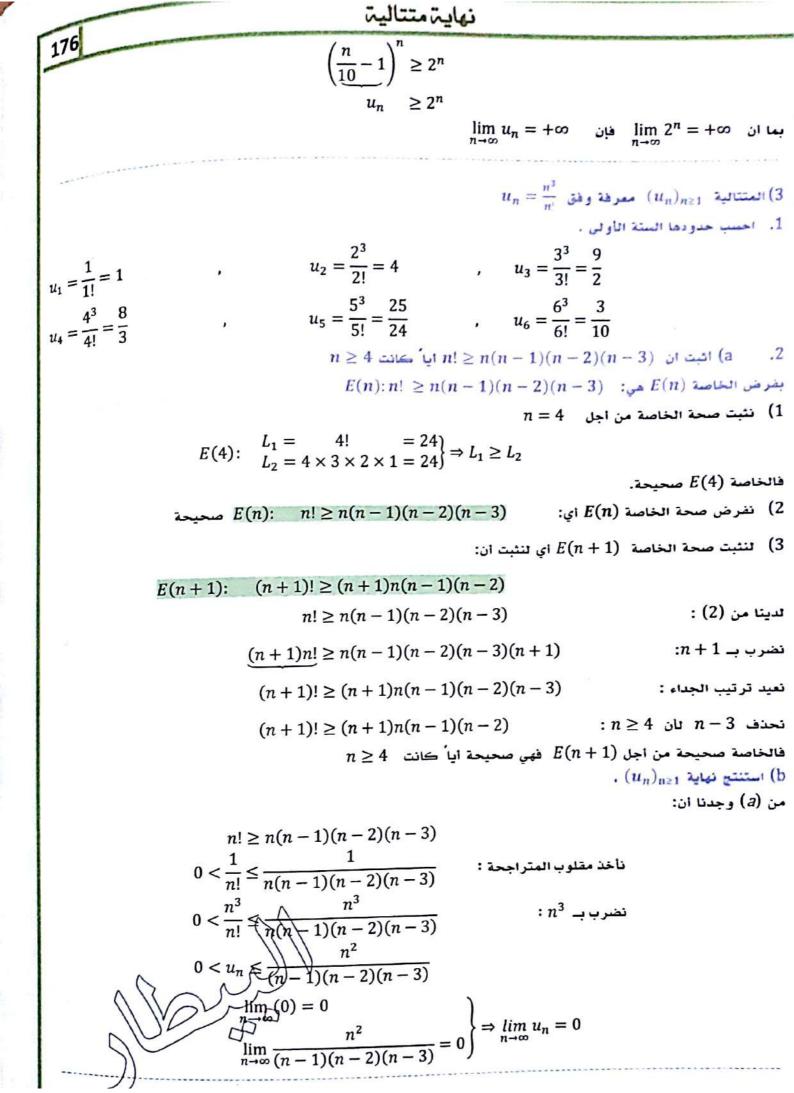


1(1

.1

.2





نهايت متتاليت 177 $x_n = \frac{n^2 + 1}{n + 1}$, $y_n = \frac{x_n}{n}$, $w_n = x_n - n$, $t_n = \frac{y_n - 1}{w_n - 1}$ لنكتب أو لا جميع المتتاليات بدلالة n : $x_n = \frac{n^2 + 1}{n+1}$, $y_n = \frac{x_n}{n} = \frac{\frac{n^2 + 1}{n+1}}{n} = \frac{n^2 + 1}{n^2 + n}$ $w_n = x_n - n = \frac{n^2 + 1}{n+1} - n = \frac{n^2 + 1 - n^2 - n}{n+1} = \frac{1 - n}{n+1}$ $t_n = \frac{y_n - 1}{w_n - 1} = \frac{\frac{n^2 + 1}{n^2 + n} - 1}{\frac{1 - n}{n + 1} - 1} = \frac{\frac{n^2 + 1 - n^2 - n}{n^2 + n}}{\frac{1 - n - n - 1}{n + 1}} = \frac{\frac{1 - n}{n(n + 1)}}{\frac{-2n}{n + 1}} = \frac{n - 1}{2n^2}$ $\lim_{n \to \infty} x_n = +\infty \quad , \quad \lim_{n \to \infty} y_n = 1 \quad , \quad \lim_{n \to \infty} w_n = -1 \quad , \quad \lim_{n \to \infty} t_n = 0$: أوجد نهاية كل من المتتاليات $(x_n)_{n\geq 1}, (y_n)_{n\geq 1}, (w_n)_{n\geq 1}, (t_n)_{n\geq 1}$ المعرفة وفق (5 $x_n = \frac{\sqrt{n}}{n+1}$, $y_n = x_n \sqrt{n}$, $w_n = x_n - \frac{1}{\sqrt{n}}$, $t_n = \frac{y_n}{w_n}$ لنكتب أو لا¹ جميع المتتاليات بدلالة n $x_n = \frac{\sqrt{n}}{n+1}$ $, \qquad y_n = x_n \sqrt{n} = \frac{\sqrt{n}}{n+1} \sqrt{n} = \frac{n}{n+1}$ $w_n = x_n - \frac{1}{\sqrt{n}} = \frac{\sqrt{n}}{n+1} - \frac{1}{\sqrt{n}} = \frac{-1}{\sqrt{n}(n+1)} , \qquad t_n = \frac{y_n}{w_n} = \frac{\frac{n}{n+1}}{\frac{-1}{\sqrt{n}(n+1)}} = -n\sqrt{n}$ $\lim_{n \to \infty} x_n = 0 \quad , \quad \lim_{n \to \infty} y_n = 1 \quad , \quad \lim_{n \to \infty} w_n = 0 \quad , \quad \lim_{n \to \infty} t_n = -\infty$: أوجد نهاية كل من المتتاليات $(u_n)_{n\geq 1}, (u_n)_{n\geq 1}, (u_n)_{n\geq 1}$ المعرفة وفق (6 $x_n = \frac{3n^2 - 4}{n+1}$, $y_n = \frac{x_n}{n}$, $u_n = x_n - 3n$ لنكتب أو لااً جميع المتتاليات بدلالة n : $y_n = \frac{\frac{3n^2 - 4}{n+1}}{n} = \frac{3n^2 - 4}{n^2 + n}$ $x_n = \frac{3n^2 - 4}{n+1}$ $u_n = x_n - 3n = \frac{3n^2 - 4}{n+1} - 3n = \frac{3n^2 - 4 - 3n^2 - 3n}{n+1} = \frac{-3n - 4}{n+1}$ $\lim_{n \to \infty} x_n = +\infty \qquad , \qquad \lim_{n \to \infty} y_n = 3 \qquad , \qquad \lim_{n \to \infty} u_n = -3$ $u_n = \sqrt{n+1} - \sqrt{n}$ المتتالية $(u_n)_{n \ge 0}$ معرفة بالصيغة (7 n المبت ان $1 \leq u_n \leq 1$ اياً يكن .1 $u_{n} = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $u_{n} \ge 0 \Leftrightarrow \sqrt{n+1} - \sqrt{n} \ge 0$ $(n \ge 0) \Leftrightarrow \sqrt{n+1} + \sqrt{n} \ge 1$ $(n \ge 0) \Leftrightarrow \sqrt{n+1} + \sqrt{n} \ge 1$ $0 \le \sqrt{n+1} + \sqrt{n} \ge 1$ ومنه : 1 ≥ u_n ≤ 1 ومنه :

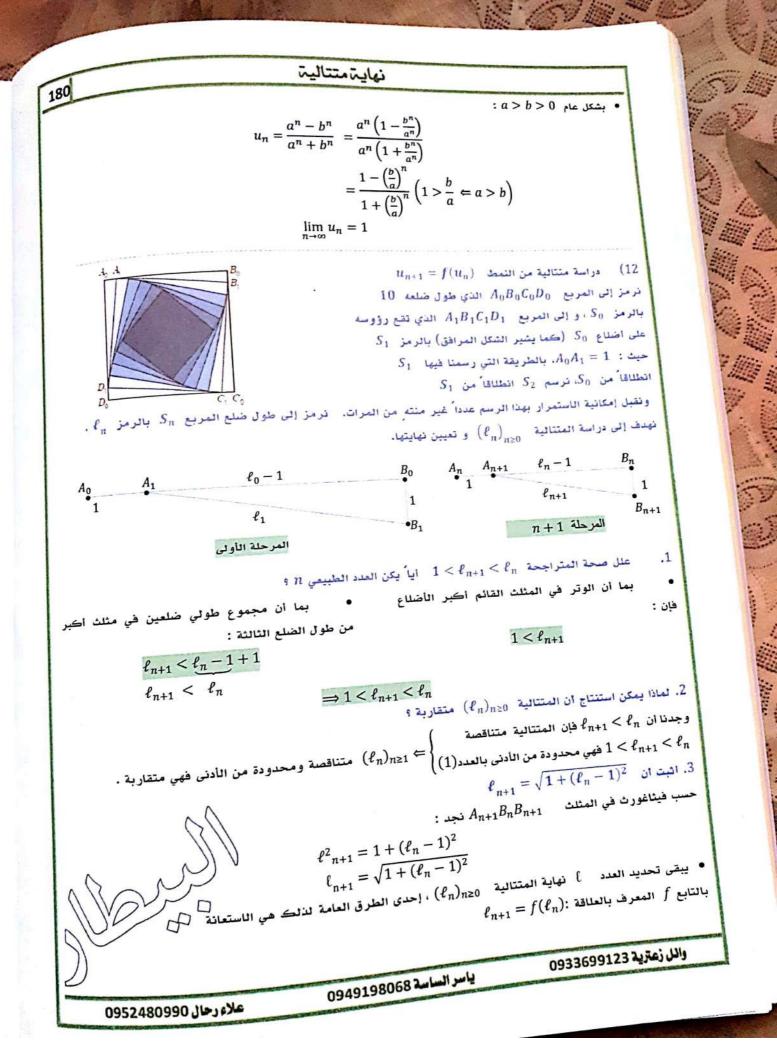
حسان البيطار 0933756454 خلدون سيروان 0932791896

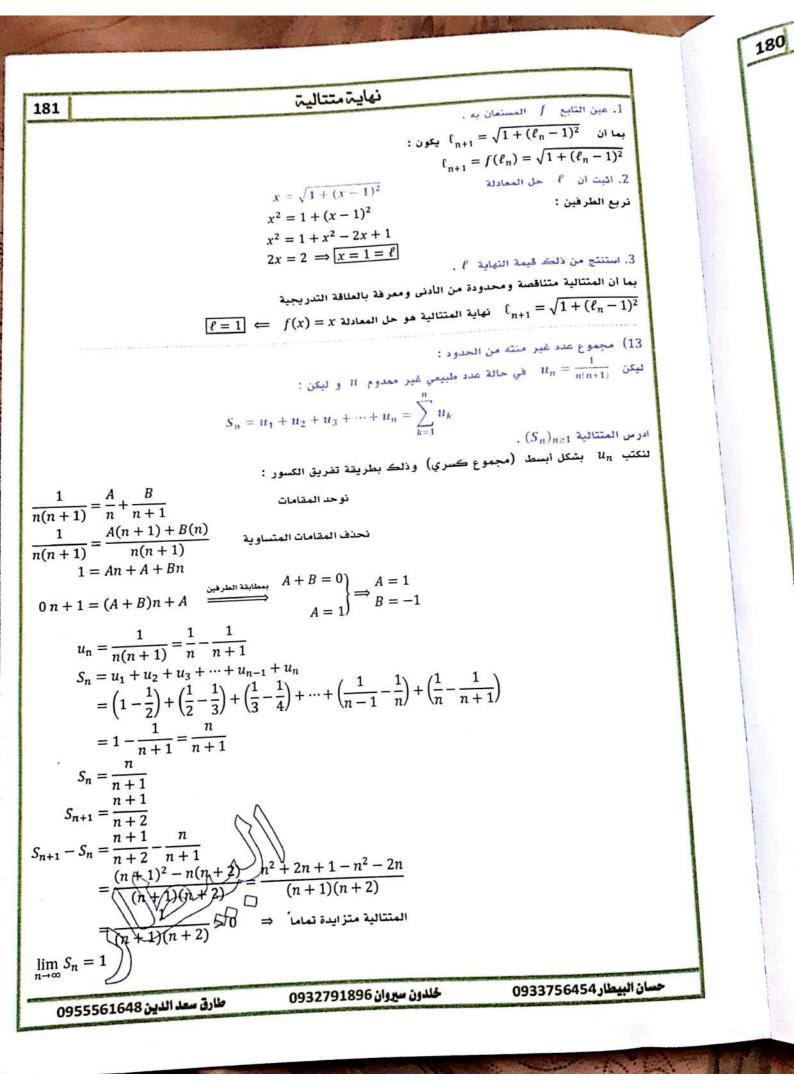
طارق سعد الدين 0955561648

178

نهاية متتالية $0 < u_n < 10^{-2}$ کان $n > 10^4$ کان (a.2 $\sqrt{n+1} + \sqrt{n} > 10^2$ $\sqrt{n} > 10^2$ نعلم ان : $n > 10^4$ فإن $n > 10^2$ $0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{10^2} \Leftarrow \left\{ \right.$ $\sqrt{n+1} + \sqrt{n} > \sqrt{n}$: نعلم ان 0 < < 10⁻² $\sqrt{n+1} + \sqrt{n} > 10^4$ ادبت انه إذا ڪان $n > 10^8$ ڪان (b $\sqrt{n} > 10^4$ بما ان $n > 10^8$ فإن $\sqrt{n} > 10^4$ نعلم ان : $\sqrt{n} > \sqrt{n} + 1 + \sqrt{n} > \sqrt{n}$ $0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{10^4} \Leftarrow \left\{$. < 10⁻⁴ 0 < • $\mathfrak{su}_n < 10^{-8}$ کيف نختار n ڪي نحصل على (c $u_n < 10^{-8}$ نختار $n > 10^{16}$ ئنجمىل على ۶ (u_n)_{n≥0} ما نهایة .3 $u_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $\lim u_n = 0$ $x_n = \frac{1}{\sqrt{n^2+1}}$, $y_n = \frac{1}{n}$: معرفتان وفق $(x_n)_{n \ge 1}, (y_n)_{n \ge 1}$ (8) المتتاليتان (8) $(x_n)_{n\geq 1}$ راجح على (1) راجع على 1. : $n \ge 1$ ايا يکن $n \ge 1$ $n^2 + 1 \ge 1$ $\sqrt{n^2+1} \ge 1$ $0 < \frac{1}{\sqrt{n^2 + 1}} \le 1$ $0 < x_n \leq 1$ $(x_n)_{n\geq 1}$ العدد (1) راجح على (1 $n \geq 1$ البت ان $x_n \leq y_n$ ایا یکن 2: $n \ge 1$ ايا ُيكن $n^2 + 1 \ge n^2$ $\sqrt{n^2+1} \ge n$ $0 \le \frac{1}{\sqrt{n^2 + 1}} \le \frac{1}{n}$ $x_n \leq y_n$ النتيجتين السابقتين أكثر إثارة للاهتمام ؟ $\lim_{n o\infty} x_n=0$ النتيجة (2) اكثر إثارة للاهتمام لأنها تفيدنا في إثبات ان: (2) حس Ly the

$$\begin{array}{c} 179 \\ \hline x_n = \frac{2n^2(5n+3)}{2n+1}, \ y_n = 5n : (x_n)_{n \ge 1}, (y_n)_{n \ge$$



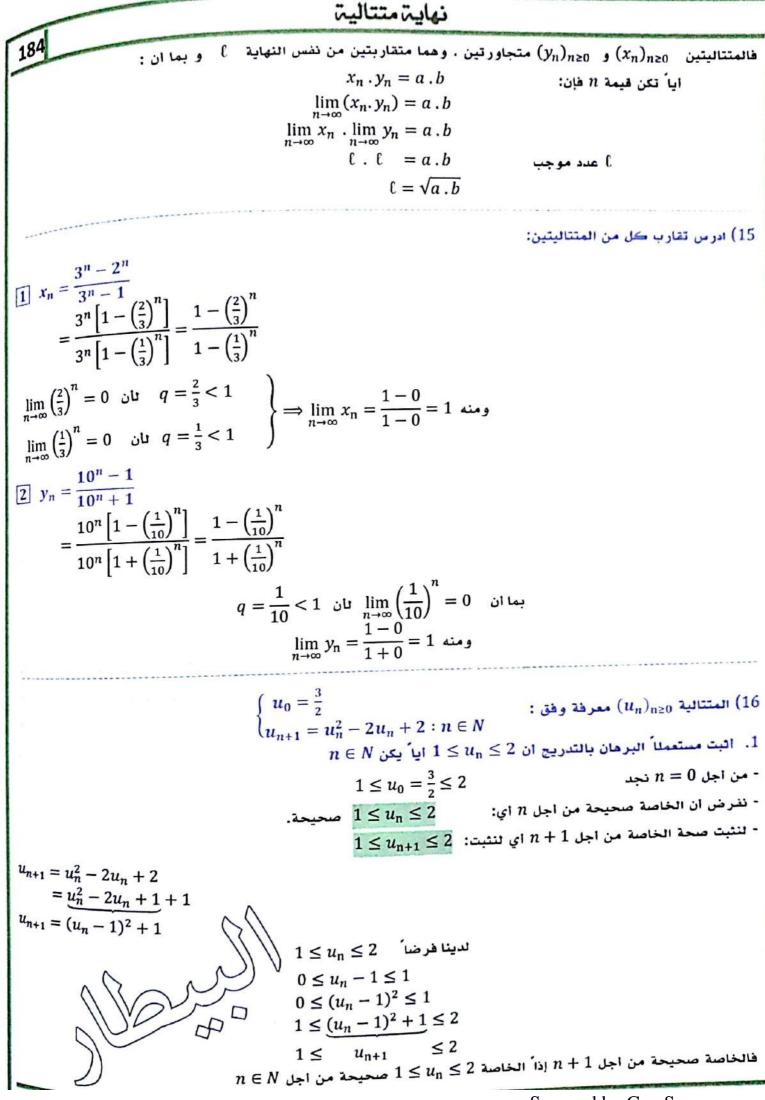


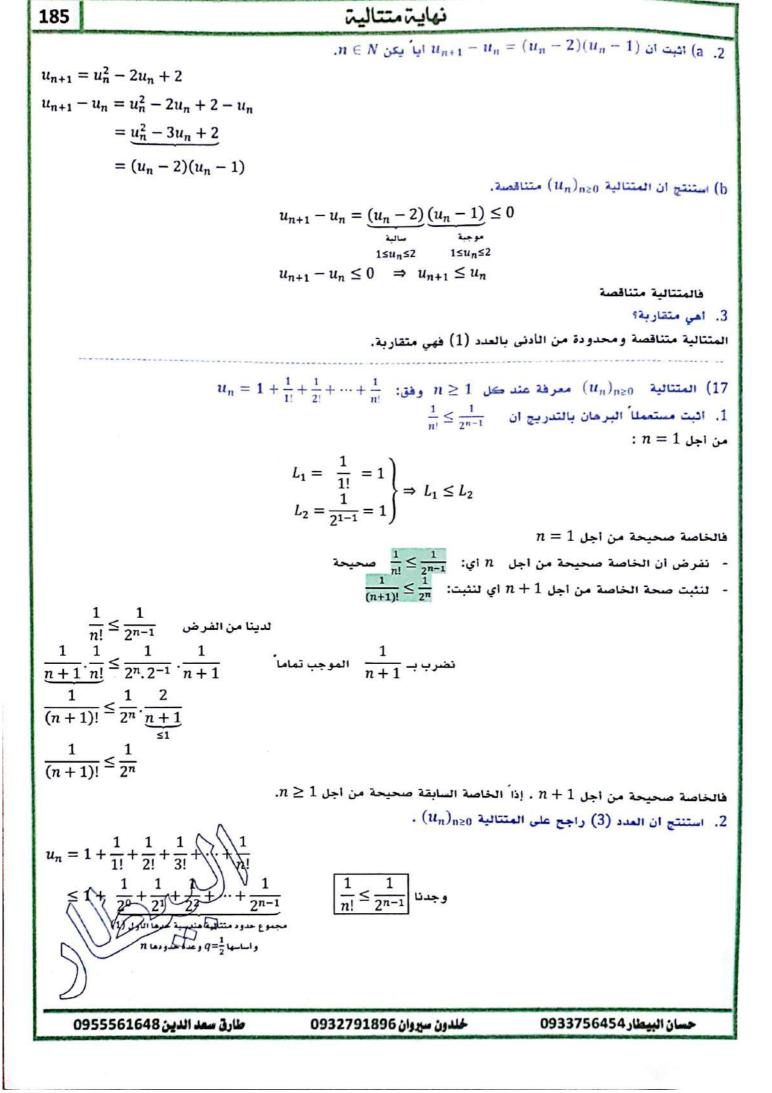
182

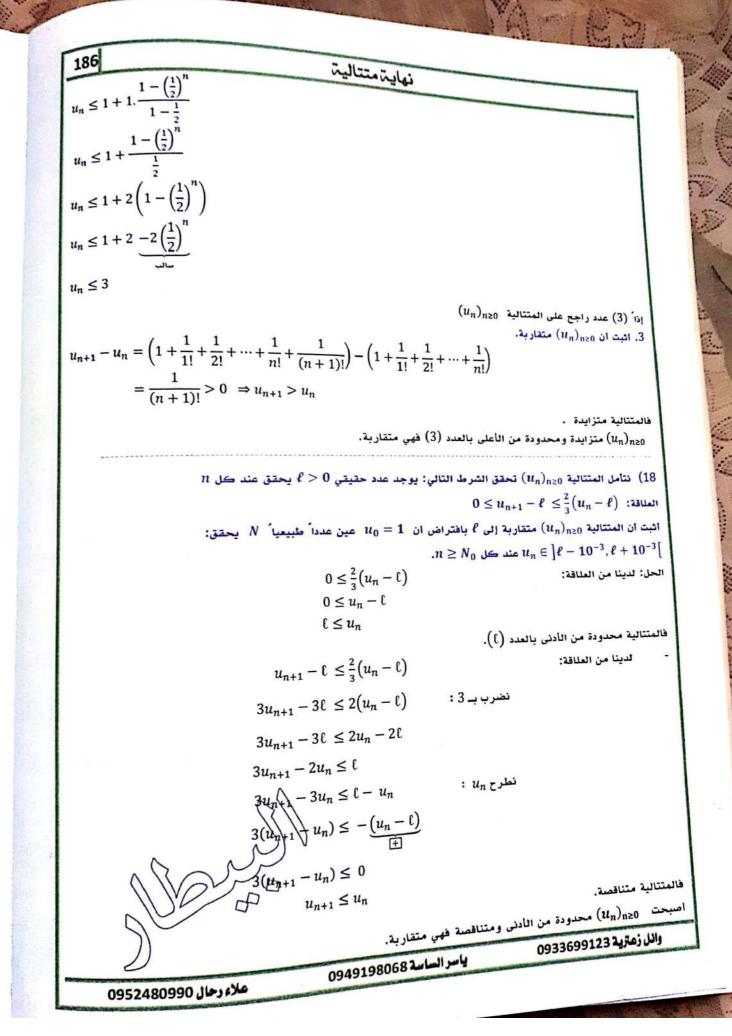
14) دراسة متتاليتين في أن واحد ي دراسة مسابيتين من $(y_n)_{n \ge 0}$ و لنتامل المتتاليتين $(x_n)_{n \ge 0}$ و $(x_n)_{n \ge 0}$ المعرفتين وفق: a و a < b عددين يحققان a < b و لنتامل المتتاليتين a. مند ڪل مدد طبيعي $\begin{cases} y_0 = b \\ y_{n+1} = \frac{x_n + y_n}{2} \end{cases}$ مند ڪل مدد طبيعي $x_{n+1} = \frac{2x_n \cdot y_n}{x_n + y_n}$ نهدف إلى دراسة المتتاليتين $(x_n)_{n \ge 0}$ و $(y_n)_{n \ge 0}$ في آن معا و ذلڪ كما يلي : $t_n = x_{n+1} \cdot y_{n+1}$: نشكل المتتالية $(t_n)_{n \ge 0}$ المعرفة وفق(1. y_{n+1} و ذلك بملاحظة ان مقام x_{n+1} يساوي بسط $t_n = x_{n+1} \cdot y_{n+1} = \frac{2x_n \cdot y_n}{x_n + y_n} \cdot \frac{x_n + y_n}{2} = x_n \cdot y_n$ $\implies t_n = x_{n+1} \cdot y_{n+1} = x_n \cdot y_n$ ومنه المتتالية (t_n)_{n≥0} ثابتة . a.b حدها الاول : $t_0 = x_0 \, . \, y_0 = a \, . \, b$ و منه فإن جميع الحدود متساوية و تساوي العدد $x_n\,.\,y_n>0$ بما ان $a\,.\,b>0$ فإن $a\,.\,b>0$ اي $a\,.\,b>0$. بالتدريج $y_n > 0$ و $y_n > 0$ بالتدريج (2 • نثبت صحة الخاصة من اجل n = 0 . n=0 و $y_0=b>0$ فالخاصة صحيحة من أجل $x_0=a>0$ نفرض أن الخاصة صحيحة من أجل n أي : $x_n \cdot y_n > 0$ و $y_n > 0$ صحيحة و عندها يكون $x_n + y_n > 0$ و $x_n > 0$ نثبت صحة الخاصة من اجل n+1 اى لنثبت : $y_{n+1} > 0$ و $x_{n+1} > 0$ $y_{n+1} = \frac{x_n + y_n}{2} > 0$ g $x_{n+1} = \frac{2x_n \cdot y_n}{x_n + y_n} > 0$ n+1 فالخاصة صحيحة من أحل و منه الخاصة السابقة صحيحة من أجل . n $y_n - x_n \leq rac{1}{2^n}(y_0 - x_0)$ اثبت أن المتتاليتين $(x_n)_{n \geq 0}$ و $(y_n)_{n \geq 0}$ متجاورتين و ذلك بعد إثبات صحة الخاصة: $(x_n)_{n \geq 0}$ $x_{n+1} - x_n = \frac{2x_n \cdot y_n}{x_n + y_n} - x_n$ $y_{n+1} - y_n = \frac{x_n + y_n}{2} - y_n$ $=\frac{1}{2}(x_n-y_n)$ $=\frac{2x_ny_n-x_n^2-x_n,y_n}{x_n+y_n}$ $=\frac{x_n y_n - x_n^2}{x_n + y_n}$ $=\frac{x_n}{x_n+y_n}(y_n-x_n)$ $-\frac{y_n-x_n}{x_n+y_n}$ - $\frac{y_n-x_n}{x_n+y_n}$ و نوجد ذلك y_n-x_n و نوجد ذلك y_n-x_n و نوجد ذلك y_n-x_n

 $-x_{n+1} = \frac{x_n + y_n}{2} - \frac{2x_n y_n}{x_n + y_n} = \frac{(x_n + y_n)^2 - 4x_n y_n}{2(x_n + y_n)}$

$$\begin{aligned} y_{n+1} - x_{n+1} &= \frac{x_n^2 + 2x_n y_n + y_n^2 - 4x_n y_n}{2(x_n + y_n)} \\ &= \frac{x_n^2 - 2x_n y_n + y_n^2}{2(x_n + y_n)} = \frac{(x_n - y_n)^2}{2(x_n + y_n)} \geq 0 \\ y_{n+1} - x_{n+1} \geq 0 \Rightarrow \boxed{y_n - x_n \geq 0} \Rightarrow \boxed{x_n - y_n \leq 0} \\ y_{n+1} - y_n = \frac{1}{2} (x_n - y_n) \leq 0 \qquad x_{n+1} - x_n = \frac{x_n}{x_n + y_n} (y_n - x_n) \geq 0 \\ y_{n+1} - y_n = \frac{1}{2} (x_n - y_n) \leq 0 \qquad x_{n+1} \geq x_n \\ utility & (x_n)_{n \geq 0} = \frac{x_{n-1}}{x_n + y_n} (y_n - x_n) \geq 0 \\ y_{n+1} - y_n = \frac{1}{2} (x_n - y_n) \leq 0 \qquad x_{n+1} \leq x_n \\ utility & (x_n)_{n \geq 0} = \frac{x_n - y_n}{x_n + y_n} (y_n - x_n) \geq 0 \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (x_n - y_n) = 0 \\ utility & y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) = 0 \\ y_{n+1} - x_{n+1} \leq \frac{x_n + y_n}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{x_n + y_n}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{x_n + y_n}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{x_n + y_n}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{x_n + y_n}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{y_{n+1}}{2} - x_n \\ y_{n+1} - x_{n+1} \leq \frac{y_{n+1}}{2} (y_n - x_n) = 0 \\ \vdots n = 0 \\ u_{n+1} = y_0 - x_0 = b -a \\ y_n - x_n \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) \\ y_{n+1} - x_{n+1} \leq \frac{1}{2n} (y_n - x_n) = 0 \\ y_{n+1} = \frac{1}{2n} (y_{n-1} - x_n) = 0 \\ y_{n+1} = \frac{1}{2n} (y_{n-1} - x_n) \\ y_{n+1} = \frac{1$$







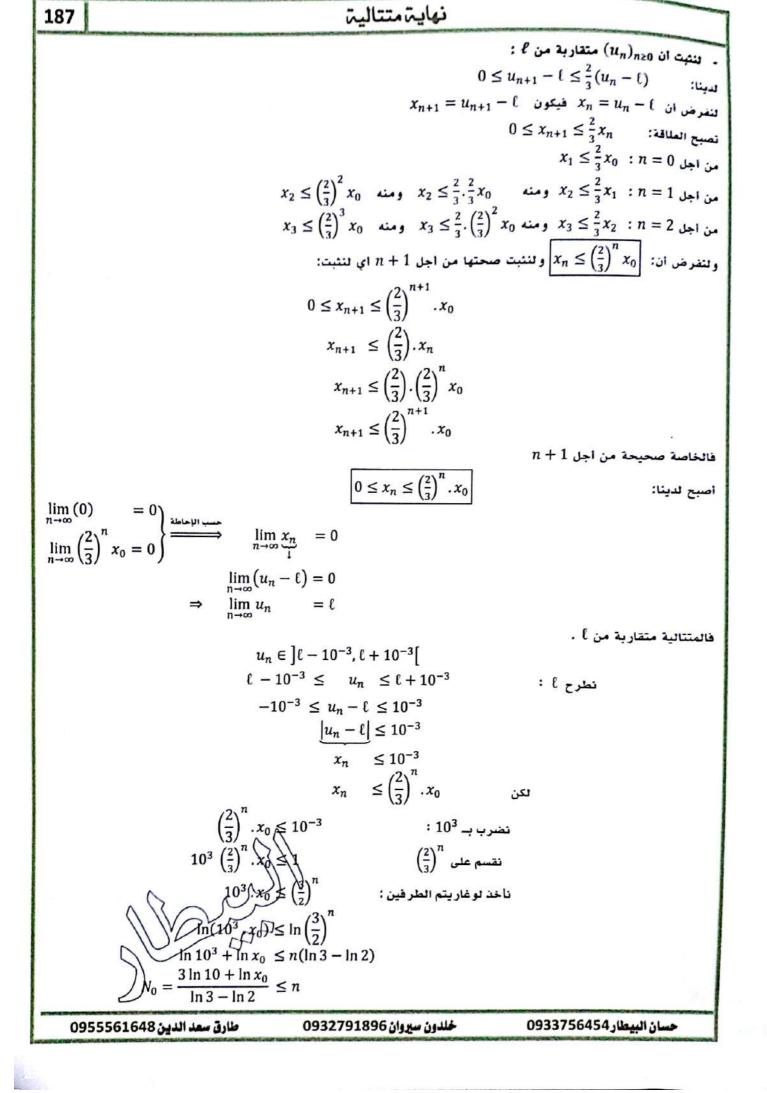
S L E

-

.

4

و



تهايت متتاليت 188 $u_n = \sqrt{n+1} - \sqrt{n}$ (u_n) (u_n) (19) $u_n = \sqrt{n+1} - \sqrt{n}$. اثبت آن $\frac{1}{(n+1+\sqrt{n})} = \frac{1}{(n+1+\sqrt{n})}$ آن $(M_n)_{n=0}$ آن $M_n = \frac{1}{(n+1+\sqrt{n})}$. اثبت آن $\frac{1}{(n+1+\sqrt{n})}$ $u_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $\sqrt{n+1} + \sqrt{n} \ge 1$ يما ان : $0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} \le 1$ $0 < u_n$ ≤ 1 فالمتتالية محدودة. $u_{n+1} - u_n = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $=\frac{\sqrt{n+1}+\sqrt{n}-\sqrt{n+2}-\sqrt{n+1}}{(\sqrt{n+2}+\sqrt{n+1})(\sqrt{n+1}+\sqrt{n})}$ $=\frac{\sqrt{n}-\sqrt{n+2}}{(\sqrt{n+2}+\sqrt{n+1})(\sqrt{n+1}+\sqrt{n})}<0$ $u_{n+1} - u_n < 0 \quad \Rightarrow \quad u_{n+1} < u_n$ فالمتتالية متناقصة. بما أن المتتالية محدودة من الأدنى ومتناقصة فهي متقاربة ويكون: $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$: المتتالية $(v_n)_{n\geq 1}$ معرفة عند كل $1\geq n$ وفق $n\geq 1$ $v_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n - 1} + \sqrt{n}}$ a) استفد من عبارة u_n بصيغتيها الواردتين لاستنتاج عبارة بسيطة للحد v_n بدلالة n. وجدنا ان : $u_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $v_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n - 1} + \sqrt{n}}$ $= 1 + \frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n - 1}}$ $= 1 + (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + \dots + (\sqrt{n} - \sqrt{n - 1})$ بالاختزال نجد : (b) استنتج نهاید المتنائید (va). $v_n = \sqrt{n}$ $v_n = \lim_{n \to \infty} \sqrt{n} = +\infty$ \Box والل زعارية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990

نهاية متتالية $u_n = \sqrt{n+1} - \sqrt{n}$ نهاية متتالية $u_n = \sqrt{n+1} - \sqrt{n}$ معرفة وفق: $u_n = \sqrt{n+1} - \sqrt{n}$ (19) 1. اثبت ان $\frac{1}{\sqrt{n+1} + \sqrt{n}} = u_n$ ثم منتنج ان $u_n = \sqrt{n}$ (u_n) منتارية نحو الصفر. $u_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $\sqrt{n+1} + \sqrt{n} \ge 1$ 1 $0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} \le 1$ $0 < u_n \le 1$

فالمتتالية محدودة.

$$u_{n+1} - u_n = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{\sqrt{n+1} + \sqrt{n} - \sqrt{n+2} - \sqrt{n+1}}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})}$$
$$= \frac{\sqrt{n} - \sqrt{n+2}}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})} < 0$$
$$u_{n+1} - u_n < 0 \implies u_{n+1} < u_n$$

188

- Alexandre

فالمتتالية متناقصة.

بما أن المتتالية محدودة من الأدني ومتناقصة فهي متقاربة ويكون:

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

$$2. |u_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}}$$

$$v_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}}$$

$$u_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$v_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}}$$

$$= 1 + \frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n-1}}$$

$$= 1 + (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + \dots + (\sqrt{n} - \sqrt{n-1})$$

$$v_n = \sqrt{n}$$

$$(v_n)_{n \ge 1} = 1 + \frac{1}{\sqrt{n}}$$

$$(v_n)_{n \ge 1} = 1 + \frac{1}{\sqrt{n}}$$

$$(b)$$

$$(b$$

نهاية متتالية

 $u_n = \sqrt{n+1} - \sqrt{n}$ (19) معرفة وفق: $u_n = \sqrt{n+1} - \sqrt{n}$. الثبت ان $\frac{1}{n_{2}+3} = u_{n} = u_{n}$ ثم استنتج ان $u_{n \geq 0}$ متقاربة نحو الصفر. $u_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $\sqrt{n+1} + \sqrt{n} \ge 1$ بما أن :

 $0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} \le 1$ $0 < u_n \leq 1$

فالمتتالية محدودة.

$$u_{n+1} - u_n = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{\sqrt{n+1} + \sqrt{n} - \sqrt{n+2} - \sqrt{n+1}}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})}$$
$$= \frac{\sqrt{n} - \sqrt{n+2}}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})} < 0$$
$$u_{n+1} - u_n < 0 \quad \Rightarrow \quad u_{n+1} < u_n$$

فالمتتالية متناقصة.

بما أن المتتالية محدودة من الأدنى ومتناقصة فهي متقاربة ويكون:

 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$

 $\lim_{n\to\infty}\sqrt{n}=$

188

: المتتالية $n \ge 1$ معرفة عند كل $n \ge 1$ وفق $(v_n)_{n \ge 1}$ وفق $n \ge 1$

$$v_n = 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n - 1} + \sqrt{n}}$$

.n استفد من عبارة u_n بصيغتيها الواردتين لاستنتاج عبارة بسيطة للحد v_n بدلاله (a

$$\begin{split} u_n &= \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ v_n &= 1 + \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}} \\ &= 1 + \frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n-1}} \\ &= 1 + (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + \dots + (\sqrt{n} - \sqrt{n-1}) \\ \hline v_n &= \sqrt{n} \end{split}$$

بالاختزال ذ

(vn) استنتج نهابة المتتالية (b)

(2) ما العبارات الصحيحة وما العبارات غير الصحيحة فيما بأنية تحقق من إجابتك في كل حالة. ا، إذا كانت $(u_n)_{n \geq 0}$ متتالية متقاربة من عدد حقيقي f وكانت $(v_n)_{n \geq 0}$ متتالية ليس لها نهاية حقيقية. مندلد ليس للمتثالية $(u_n + v_n)_{n \geq 0}$ ثهاية حقيقية.

المبارة صحبحة :

لنضرض جدلاً ان

188

 u_{n+1}

un

lin

 $\lim v_n = \mp \infty$

$$\lim_{n \to \infty} u_n = (, \prod_{n \to \infty} v_n + v_n) = (, \dots + v_n) = (, \dots$$

وهذا يناقض كون ليس للمتتالية (V_n)n20) نهاية حقيقية، إذا الفرض الجدلي خاطئ.

2. إذا كانت المتتالية $(u_n)_{n\geq 0}$ متقاربة من عدد حقيقي I وكانت $(v_n)_{n\geq 0}$ متتالية ليس لها نهاية حقيقية عندلد ليس للمتتالية (u_n. v_n)_{n≥0} نهاية حقيقية.

العبارة غير صحيحة:

$$u_n.v_n = \frac{(-1)^n}{n+1} \Leftarrow \begin{cases} \lim_{n \to \infty} u_n = 0 \quad \text{(a)} \quad u_n = \frac{1}{n+1} \\ v_n = (-1)^n \quad \text{(b)} \quad v_n = (-1)^n \end{cases}$$

$$\lim (u_n, v_n) = 0 \quad (u_n, v_n) = 0$$

 $\lim_{n \to \infty} v_n = 0 \quad \lim_{n \to \infty} u_n = +\infty \quad \lim_{n \to \infty} u_n \cdot v_n = \ell \quad \text{if } u_n \cdot v_n = \ell$ العبارة صحيحة:

: بما ان
$$u_n = \lim_{n \to \infty} \frac{1}{u_n} = 0$$
 فإن $\lim_{n \to \infty} u_n = +\infty$ عندند

$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} \left[\underbrace{(u_n, v_n)}_{(\iota)} \cdot \frac{1}{u_n} \right]$$
$$= (\iota)(0) = 0$$

189

 إذا كان المتتالية عنصر قاصر عنها، كان لها عنصر راجح عليها. العبارة غير صحيحة: ليس بالضرورة أن يكون لمتتالية عنصر قاصر أن يكون لها عنصر راجح. مثلاً : المتتالية $(u_n)_{n \ge 0}$ حيث $u_n = n+1$ يكون العدد (1) قاصر عنها وليس لها عنصر راجع.

المتتالية $(u_n)_{n \ge 1}$ معرفة عند كل $1 \ge n$ وفق: (21

. البت ان المتتالية $(u_n)_{n\geq 1}$ متزايدة.

فالمتتالية متز ايدة.

حسان البيطار 0933756454

خلدون سيروان 0932791896

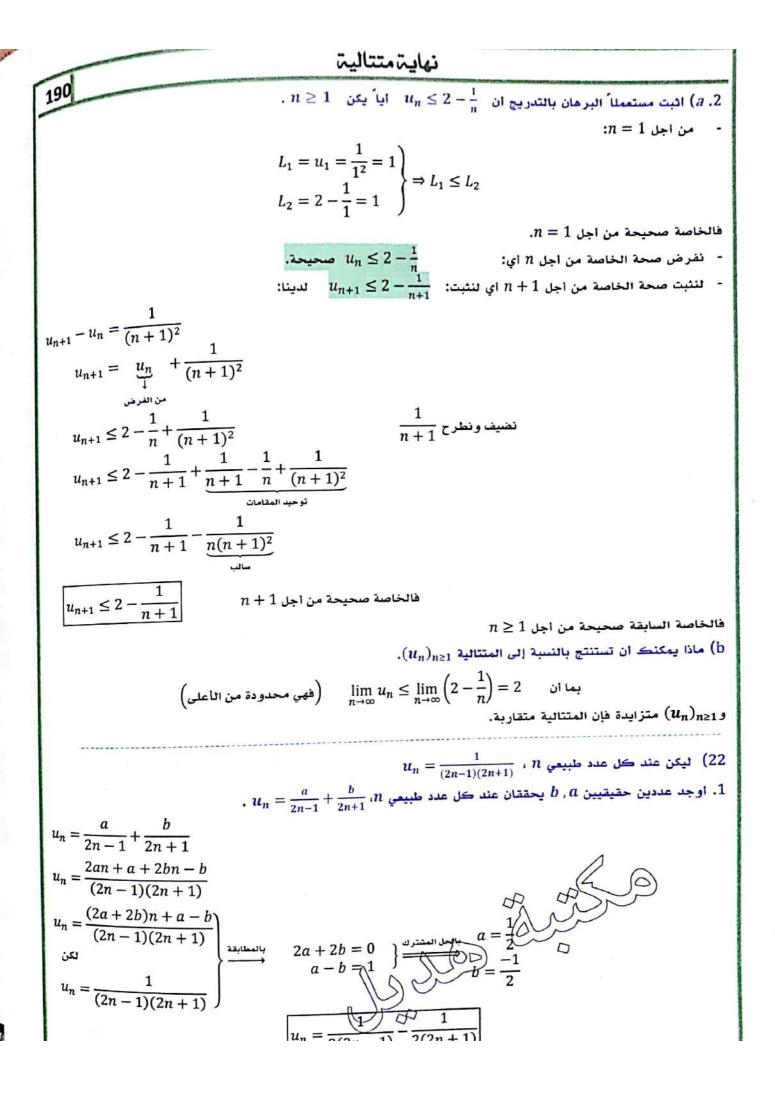
 $u_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$

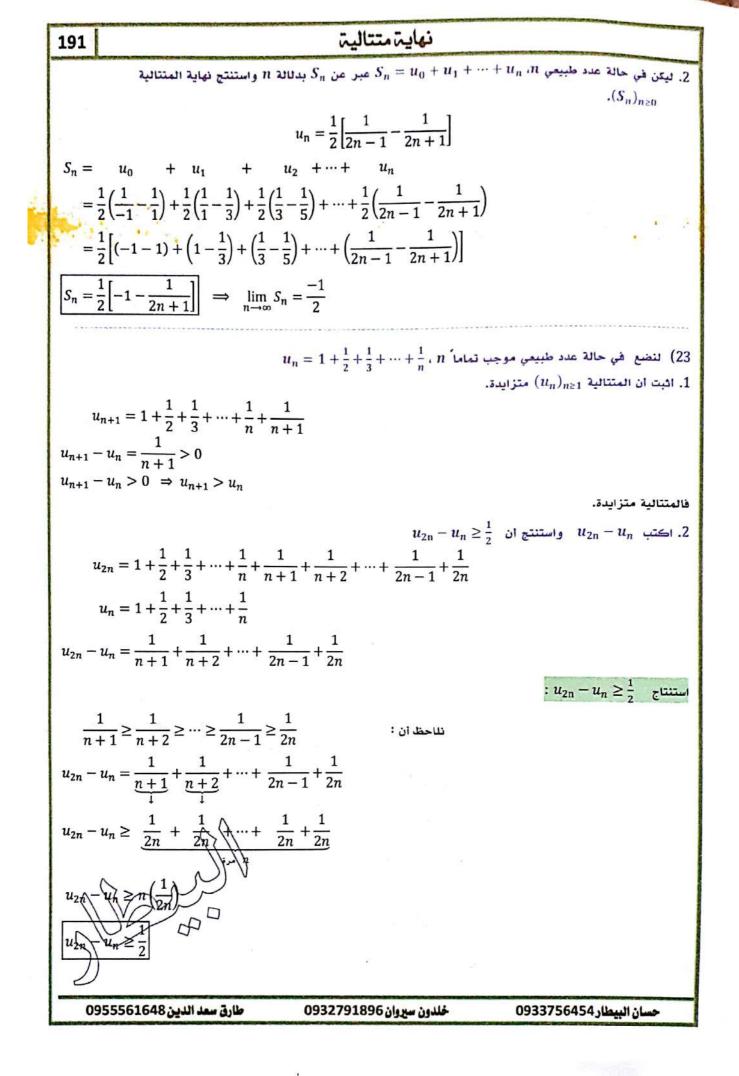
طارق سعد الدين 0955561648

 $u_{n+1} - u_n > 0$

 $u_{n+1} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}$ $u_{n+1} - u_n = \frac{1}{(n+1)^2} + \frac{1}{(n+1)^2}$

 $\Rightarrow u_{n+1} > u_n$





193

$$u_{n} = \frac{n}{\frac{n^{2}+1}{1}} + \frac{n}{\frac{n^{2}+2}{1}} + \dots + \frac{n}{n^{2}+n}$$

$$u_{n} \le \frac{n}{\frac{n^{2}+1}{1}} + \frac{n}{n^{2}+1} + \dots + \frac{n}{n^{2}+1}$$

$$\le n \left(\frac{n}{n^{2}+1}\right)$$

$$u_{n} \le \frac{n^{2}}{n^{2}+1} \qquad (2)$$

$$\frac{n^2}{n^2+n} \le u_n \le \frac{n^2}{n^2+1}$$
 :من (1) و (2) نجد: (2) نجد: (1) ما نهایتها (2) استنتج تقارب المتتالیة $(u_n)_{n\ge 1}$ ما نهایتها

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n} = 1$$
$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1$$
$$\Rightarrow \lim_{n \to \infty} u_n = 1$$

المتتالية $(u_n)_{n\geq 1}$ معرفة عند كل عدد طبيعي $1\leq n$ وفق: (25

$$u_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$
$$.n \ge 1 \quad \text{if } u_n \le u_n \le \frac{n}{\sqrt{n^2 + 1}} \quad \text{if } u_n \le \frac{n}{\sqrt{n^2 + 1}} \quad \text{if } u_n \le \frac{n}{\sqrt{n^2 + 1}} \quad \text{if } u_n \le \frac{n}{\sqrt{n^2 + 1}}$$

$$\frac{1}{\sqrt{n^2+n}} \frac{1}{\sqrt{n^2+1}} = \frac{1}{\sqrt$$

$$u_n \ge \frac{1}{\sqrt{n^2 + n}} + \frac{1}{\sqrt{n^2 + n}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

$$u_{n} \ge n\left(\frac{1}{\sqrt{n^{2}+n}}\right)$$

$$u_{n} \ge \frac{n}{\sqrt{n^{2}+n}}$$

$$u_{n} = \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+2}} + \dots + \frac{1}{\sqrt{n^{2}+n}}$$

$$u_{n} \le \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+1}} + \dots + \frac{1}{\sqrt{n^{2}+1}}$$

$$u_{n} \le \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+1}} + \dots + \frac{1}{\sqrt{n^{2}+1}}$$

1

خلدون سيروان 0932791896

حسان البيطار 0933756454

من (1) و (2) نجد:

 $\frac{n}{\sqrt{n^2+n}} \le u_n \le \frac{n}{\sqrt{n^2+1}}$

Scanned by CamScanner

طارق سعد الدين 0955561648

$$\frac{194}{(2)}$$

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + 1}}\right) = \lim_{n \to \infty} \left(\frac{1}{\sqrt{1 + \frac{1}{n^2}}}\right) = 1$$

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + 1}}\right) = \lim_{n \to \infty} \left(\frac{1}{\sqrt{1 + \frac{1}{n^2}}}\right) = 1$$

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + n}}\right) = \lim_{n \to \infty} \left(\frac{1}{\sqrt{1 + \frac{1}{n^2}}}\right) = 1$$

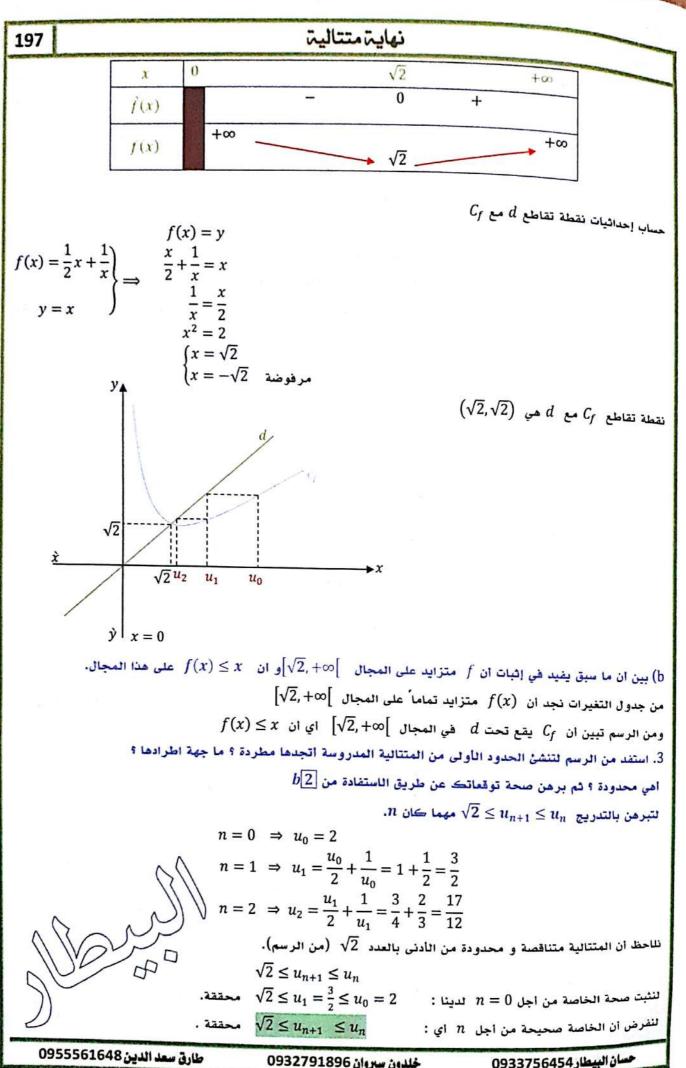
$$= \lim_{n \to \infty} u_n = 1$$

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + n}}\right) = \lim_{n \to \infty} \left(\frac{1}{\sqrt{1 + \frac{1}{n^2}}}\right) = 1$$

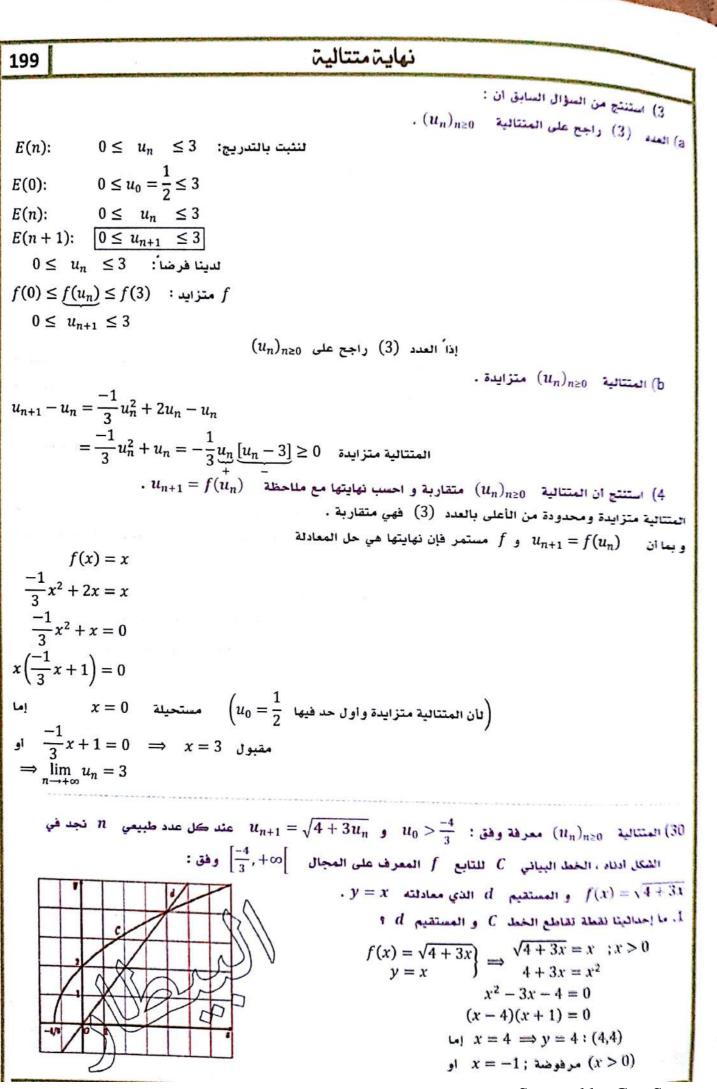
$$= \lim_{n \to \infty} u_n = 1$$

$$\sum_{n \to \infty} (n) = 1$$

196 نهاية متتالية $t_n u_n - u_n = -2t_n - 1$ $u_n(t_n-1)=-2t_n-1$ $u_n = \frac{-2t_n - 1}{t_n - 1}$ $\lim_{n \to \infty} u_n = \frac{-1}{-1} = 1 \qquad \left(\lim_{n \to \infty} t_n = 0 \quad (2) \right)$ اصبح لدينا $0 > u_n > 0$ ولها نهاية حقيقية فهي متقاربة. (28) المتتالية $(u_n)_{n \ge 0}$ معرفة وفق: $u_0 = 2$ $\left\{u_{n+1}=\frac{u_n}{2}+\frac{1}{u_n}\quad :n\in N\right.$ 1) البت 0 < un ايا يكن n . لنثبت صحة الخاصة من اجل n = 0 لدينا: $u_0 = 2 > 0$ محققة -. محيحة u_n > 0 نفرض أن الخاصة صحيحة من أجل n أي:
</u> $u_{n+1} > 0$:- لنثبت صحة الخاصة من أجل n+1 أي لنثبت: $0 < u_{n+1}$ لدينا من الفرض: $0 > u_n > 0$ عندند: $\frac{u_n}{\underbrace{2}} + \frac{1}{u_n} > 0 : : = 0$ $u_{n+1} > 0$ فالخاصة صحيحة من أجل n+1. إذا الخاصة السابقة صحيحة من أجل n. $]0,+\infty[$ المتالية معرفة بالصيغة من النمط $u_{n+1}=f(u_n)$ عين التابع f المعرف على 2. d: y = x و مقارباته و ارسم على الشكل نفسه مستقيم f و مقارباته و ارسم على الشكل نفسه مستقيم (a بعد ان تحسب إحداثيتا نقطة تقاطع d مع cf . $f:]0, +\infty[\to R$: $f(x) = \frac{1}{2}x + \frac{1}{x}$ معرف و اشتقاقي على] $\infty+\infty[$. $+\infty$ مقارب شاقوني نـ C_f منطبق على \dot{y} بجوار $\infty+$ $\lim_{x \to \infty} f(x) = +\infty$ x→0 $\lim_{x \to +\infty} f(x) = +\infty$ Here and $\hat{f}(x) = \frac{1}{2} - \frac{1}{r^2} = \frac{x^2 - 2}{2r^2}$ $\dot{f}(x) = 0 \qquad \Rightarrow x^2 = 2$ $x = \sqrt{2}$: $f(\sqrt{2}) = \frac{\sqrt{2}}{2} + \frac{1}{\sqrt{2}} = \sqrt{2}$ مرفوض]∞+,0[€ 10,−∞ او والل زمارية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990



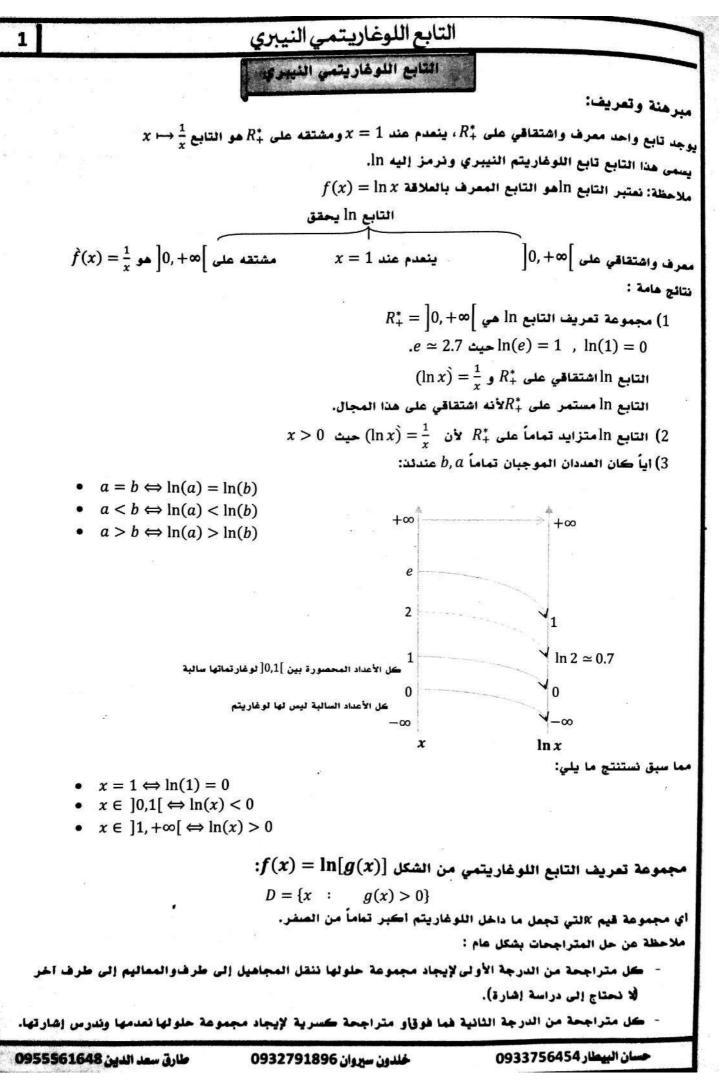
خلدون سيروان 0932791896

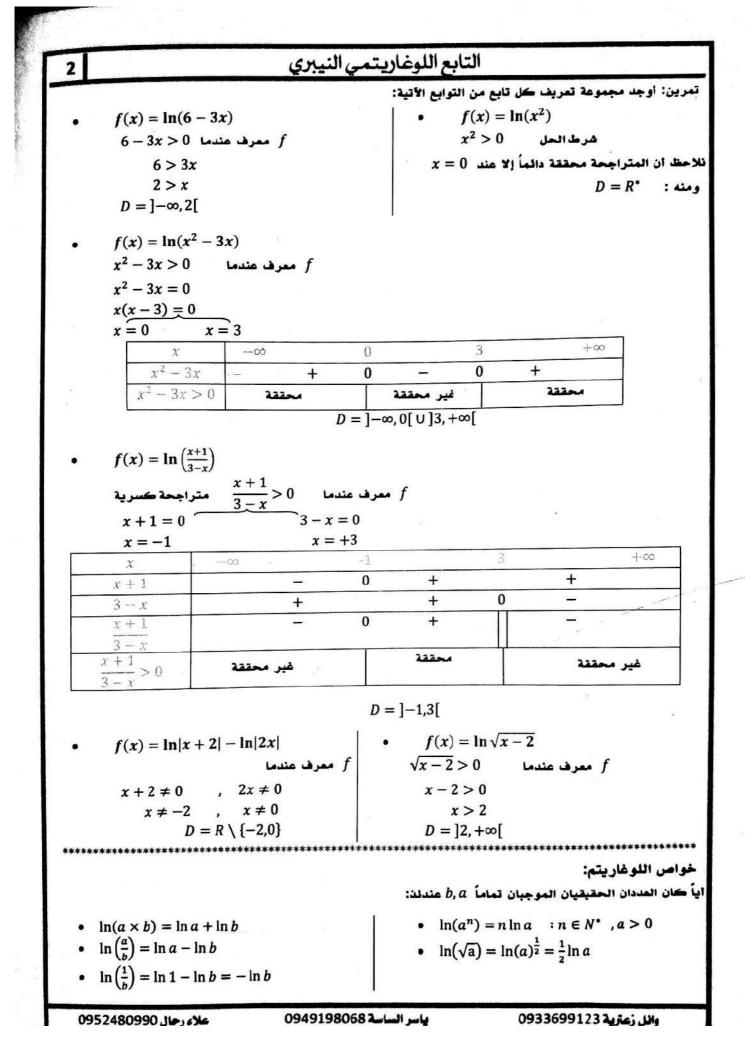


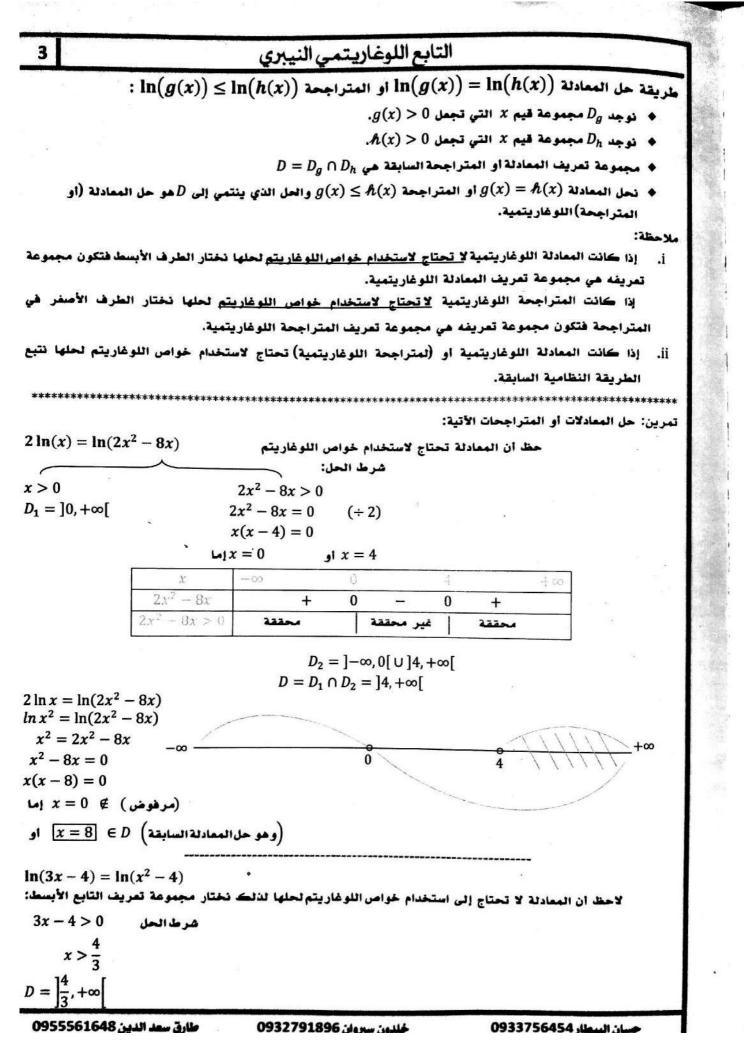
نهايت متتالية

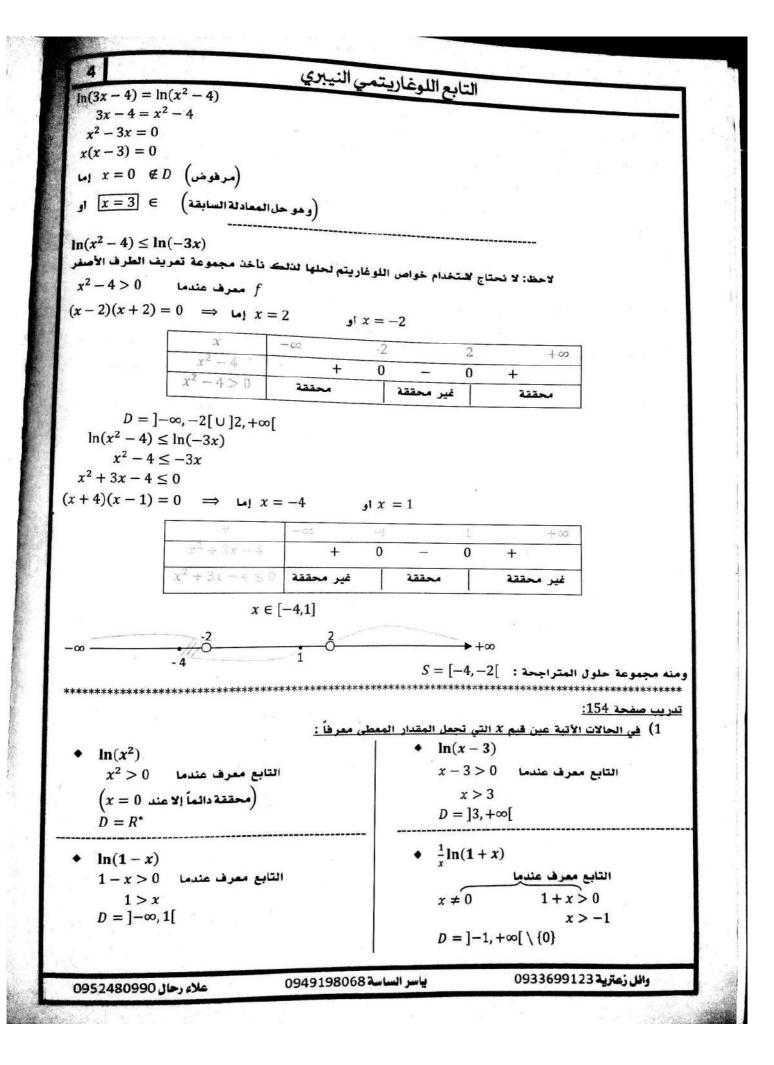
 $u_0 = 6$ نفتر ض في هذا السؤال أن 2 = 0a) اثبت أن المتثالية (u_n)_{n \ge 0) محدودة من الأدنى . . $(u_n)_{n\geq 0}$ ادرس اطراد المتتالية (b نلاحظ من الشكل المجاور أن الخط البياني يتقاطع مع منصف الربع الأول في نقطة فاصلتها (4) و $f(x) \leq f(x)$ على المجال]00+ 4 مما ان C تحت المنصف أي: $4 \le u_{n+1} \le u_n$ و لنثبت هذه الخاصة بالتدريج . $u_0 = 6$ n = 0 لنثبت صحة الخاصة من اجل $u_1 = \sqrt{4 + 3(6)} = \sqrt{22} \implies 4 \le \sqrt{22} \le 6$ محيحة $4 \leq u_{n+1} \leq u_n$ نفرض أن الخاصة صحيحة من أجل n أي : $4 \leq u_{n+2} \leq u_{n+1}$: اي لنثبت صحة الخاصة من أجل n+1 أي لنثبت $u_{n+2} \leq u_{n+2}$ $4 \leq u_{n+1} \leq u_n$ لدينا فرضاً: $f(4) \leq f(u_{n+1}) \leq f(u_n)$: $i = \left| \frac{-4}{3}, +\infty \right|$ and $j = f(u_{n+1}) \leq f(u_n)$ $4 \leq u_{n+2}$ $\leq u_{n+1}$. n فالخاصة صحيحة من اجل 1+n. و بالتالي الخاصة السابقة صحيحة من أجل . فالمتتالية متناقصة تماماً ومحدودة من الأدنى بالعدد (4) . . استنتج ان المتتالية $(u_n)_{n\geq 0}$ متقاربة و احسب نهايتها (C المتتالية (u_n)_{n≥0} متناقصة و محدودة من الأدنى فهي متقاربة . $\ell = f(\ell)$ ن ا $u_{n+1} = f(u_n)$ و بما أن f مستمر على المجال السابق نستنتج من المساواة f $\lim_{n \to \infty} u_n = 4$ و منه $\ell = 4$ و العدد) هو فاصلة تقاطع C مع منصف الربع الأول أي $\ell = 4$ و منه

200





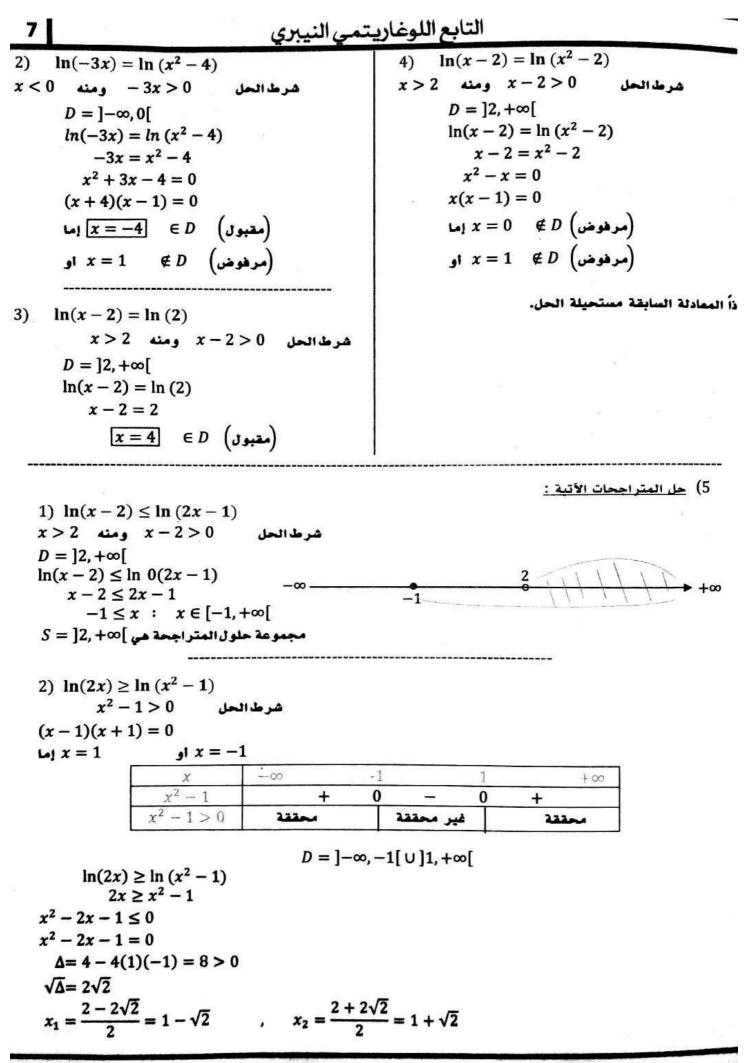




		بتمي النيبري	بع اللوغاري	التاه		
$\frac{1}{\ln x}$		دما	نابع معرف هذ	ונו		
$ \ln x \neq 0 \\ x \neq 1 \\ D $	$x > 0$ $=]0, +\infty[\setminus \{1\}$	0				
$\ln(x^2 + 4x)$ $x^2 + 4x$		التابع معرف				
x(x + 4)	= 0					
= 0	y = -4					г
	x	85 d	4	0	+∞	-
	$x^2 + 4x$	+ 1) –	0	+	-
	$x^2 + 4x > 0$	محققة	ير محققة	<u> </u>	محققة	
$D = 1 - \alpha$	o, −4[∪]0, +∞[
- 1 ~	·······					
$\ln(x^2-3)$						
$x^2 - 3x - 3$		التابع معرف عندما				
2010 - AR (A	(x-1) = 0					
= 2	x = 1		1	2	+00	1
	$\frac{x}{x^2 - 3x + 2}$) –	0	+	1
	$x^2 - 3x + 2 >$		ير محققة		محققة	1
			L	I		J
$D =]-\infty$	o, 1[∪]2, +∞[
$\ln x+1 $	$-\ln x-1 $					
			نابع معرف عذ	15		
x+1≠(-1≠0				
x≠-	-	$x \neq 1$				
D	$P = R \setminus \{-1,1\}$					
$\ln\left(\frac{x-3}{2-x}\right)$						
	x-3	ف عندما 0 < -				
	-	•				
x - 3 = ($0 \Rightarrow x = 3$,	$2 - x = 0 \Rightarrow$		3	11	
	$\frac{x}{x-3}$. –	<u> </u>	+ 00	
	2 - x	+ () –	-	-	
	$\frac{x-3}{2-x}$	-	+	0	-	
	$\frac{x-3}{x-3} > 0$	غير محققة	مننة	Τ	غير محققة	
	2-1	D –]2,3[

$$\begin{cases} 1 \\ (z) = 1$$

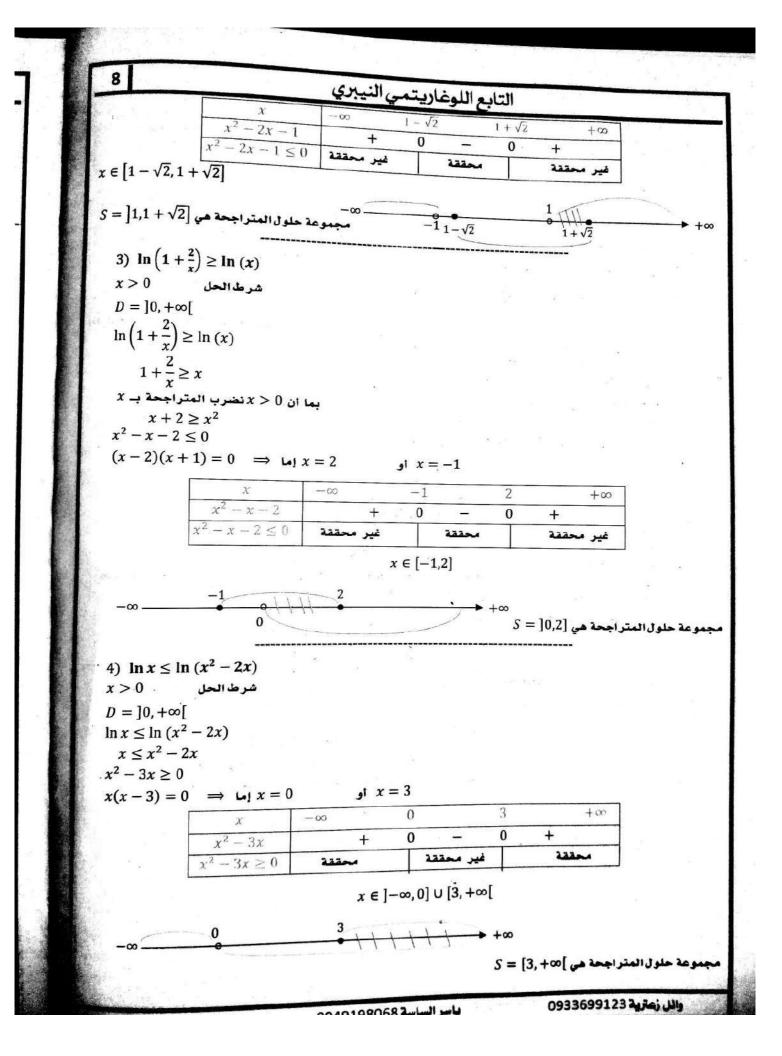
isj



طارق سعد الدين 0955561648

خلدون سيروان 0932791896

0933756454 مسان البيطار Scanned by CamScanner

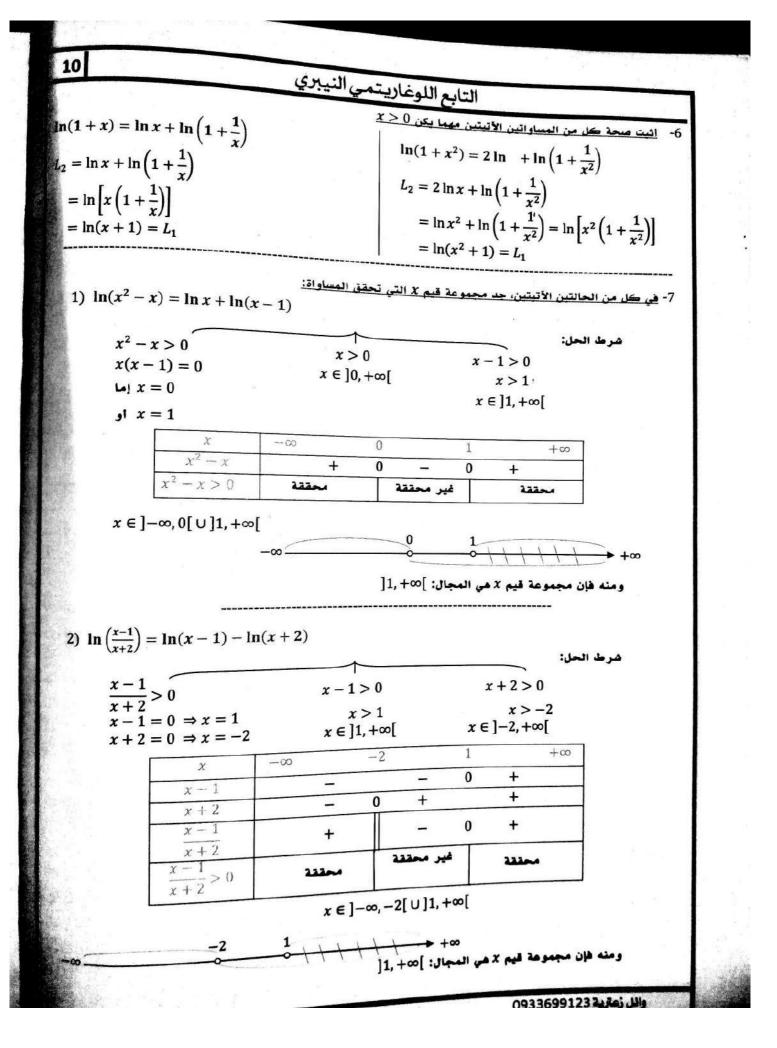


التابع اللوغاريتمي النيبري 9 تدريب صفحة 157: 1- يسط كتابة الأعداد الأتية: 3) $c = \frac{1}{2} \ln \sqrt{2}$ 1) $a = \ln 3 + \ln \frac{1}{2}$ 2) $b = \ln \frac{1}{16}$ $= \ln 3 + \ln 1 - \ln 3 = 0$ $= \ln 1 - \ln 16$ $=\frac{1}{2}\ln(2)^{\frac{1}{2}}=\frac{1}{4}\ln 2$ $= 0 - \ln 2^4 = -4 \ln 2$ 2- اكتب كلاً من الأعداد الأتية بدلالة In 2 :ln $a = \ln 50$ $b = \ln \frac{16}{25}$ $c = \ln 250$ $= \ln(25 \times 2)$ $= \ln(125 \times 2)$ $= \ln 16 - \ln 25$ $= \ln 25 + \ln 2$ $= \ln 125 + \ln 2$ $= \ln(2)^4 - \ln(5)^2$ $= \ln(5)^2 + \ln 2$ $= \ln(5)^3 + \ln 2$ $= 4 \ln 2 - 2 \ln 5$ $= 2 \ln 5 + \ln 2$ $= 3 \ln 5 + \ln 2$ $l(2+\sqrt{3}) + ln(2-\sqrt{3}) = 0$ افست ان -3 $L_1 = \ln(2 + \sqrt{3}) + \ln(2 - \sqrt{3})$ $= \ln[(2 + \sqrt{3})(2 - \sqrt{3})]$ $= \ln(4 - 3) = \ln(1) = 0 = L_2$ في كل من الحالتين الآتيتين، قارن بين العددين *Y*, X دون استعمال آلة ح 1) $x = \ln 5$ $y = \ln 2 + \ln 3$ 2) $x = 2 \ln 3$, $y = 3 \ln 2$ $x = \ln 5$ $x = 2\ln 3 = \ln(3)^2 = \ln 9^{\circ}$ $\Rightarrow x < y$ $\Rightarrow x > y$ $y = 3\ln 2 = \ln(2)^3 = \ln 8$ $y = \ln 2 + \ln 3 = \ln(2.3) = \ln 6$ فيما يلي يسط كتابة كل من b, a: -5 $a = \ln 567 - \ln 72 - \ln \frac{7}{9} + \ln \frac{1}{27}$ $b = \ln\sqrt{216} + \ln\sqrt{75} - \ln 15 - \ln\sqrt{27}$ $= \ln\sqrt{216} - \ln\sqrt{27} + \ln\sqrt{75} - \ln 15$ $a = \ln 567 + \ln \frac{1}{27} - \left(\ln 72 + \ln \frac{7}{8} \right)$ $= \ln \left| \frac{216}{27} + \ln \sqrt{25 \times 3} - \ln 15 \right|$ $= \ln\left(\frac{567}{27}\right) - \ln\left(72 \times \frac{7}{8}\right)$ $= \ln\sqrt{8} + \ln 5\sqrt{3} - \ln 15$ $= \ln(21) - \ln(63)$ $=\frac{1}{2}\ln 8 + \ln\left(\frac{5\sqrt{3}}{15}\right)$ $=\ln\left(\frac{21}{62}\right)$ $=\frac{1}{2}\ln(2)^3 + \ln\left(\frac{1}{\sqrt{2}}\right)$ $=\ln\left(\frac{1}{2}\right)$ $=\frac{3}{2}\ln 2 - \ln \sqrt{3}$ $= \ln 1 - \ln 3$ $=\frac{3}{2}\ln 2 - \frac{1}{2}\ln 3$ $= -\ln 3$

طارق سعد الدين 0955561648

خلدون سيروان 0932791896

حسان البيطار 0933756454



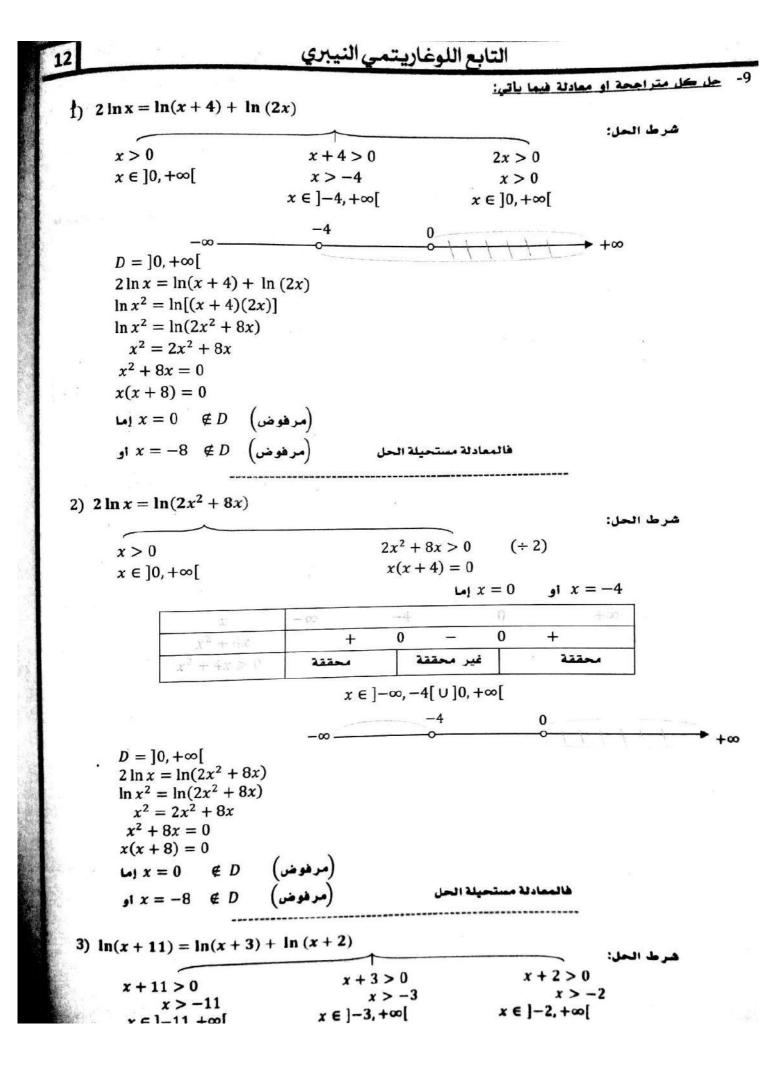
Scanned by CamScanner

11

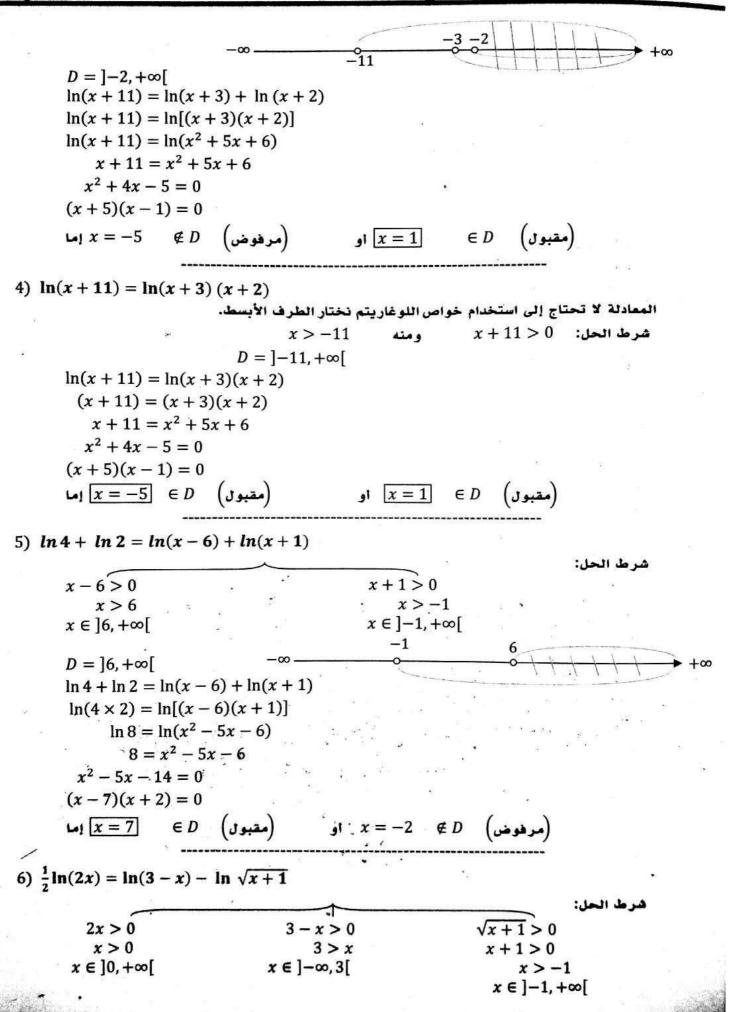
التابع اللوغاريتمي النيبري

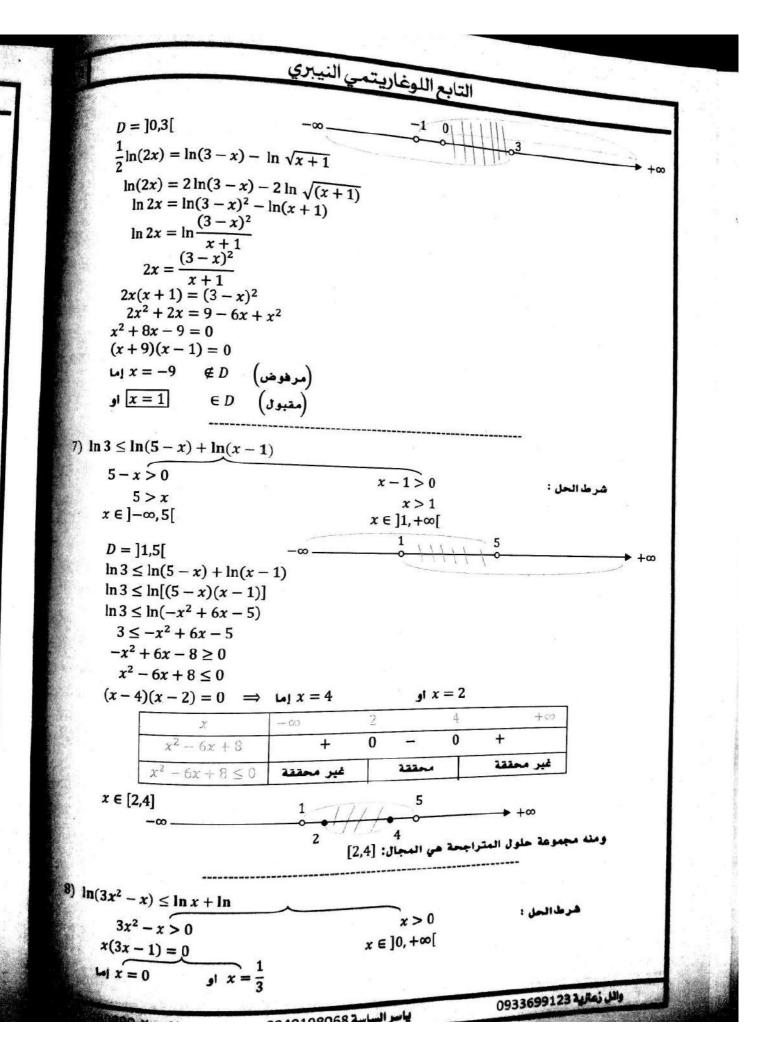
ملاحظة: في التمرين السابق نستطيع إيجاد مجموعة تعريف الطرف الأيمن لأن الطرف الأيمن هو مقصور الطرف الأيسر بعد استخدام خواص اللوغاريتم. 8- في كل حالة مما يأتي: جد مجموعة قيم العدد الطبيعي n التي تحقق المتراجحة المع 1) $2^n \le 100$ 2) $\left(\frac{1}{3}\right)^n \le 10^{-2}$ $\ln 2^n \le \ln 100$ ناخذ لوغاريتم الطرفين : $\left(\frac{1}{3}\right)^n \leq \frac{1}{100}$ ناخذ لوغاريتم الطرفين : $n \ln 2 \leq \ln 100$ $n \leq \frac{\ln 100}{\ln 2}$ $\ln\left(\frac{1}{3}\right)^n \le \ln\frac{1}{100}$ $n \le \frac{\ln(2^2 \times 5^2)}{\ln 2}$ $-n \ln 3 \leq -\ln 100$ $n \ge \frac{-\ln 100}{-\ln 3}$ $n \ge \frac{\ln(2^2 \times 5^2)}{\ln 3}$ $n \le \frac{2\ln 2 + 2\ln 5}{\ln 2} \qquad \begin{pmatrix} \ln 2 \approx 0.7\\ \ln 5 \approx 1.6 \end{pmatrix}$ (حيث : $n \le \frac{2(0.7) + 2(1.6)}{0.7}$ $\left(\begin{array}{c}
\ln 2 \approx 0.7 \\
\ln 5 \approx 1.6
\end{array} \right)$ $n \ge \frac{2\ln 2 + 2\ln 5}{\ln 3}$ $n \le \frac{1.4 + 3.2}{0.7}$ $\ln 3 \approx 1.1$ $n \ge \frac{2(0.7) + 2(1.6)}{1.1}$ n ≤ 6.57 $n \ge 4.18$ عدد طبيعي ومنه مجموعة قيم العدد n هيnعدد طبيعي ومنه مجموعة قيم العدد n هي n{0,1,2,3,4,5,6} {5,6,7,} 3) $0.2 \ge \left(\frac{2}{5}\right)^n$ 4) $\left(1+\frac{3}{100}\right)^n \ge 2$ $\frac{2}{10} \ge \left(\frac{2}{5}\right)^n$: $i \neq 0$ $\left(\frac{103}{100}
ight)^n \ge 2$: ناخذ لوغاريتم الطرفين نا $\ln\left(\frac{103}{100}\right)^n \ge \ln 2$ $\ln\left(\frac{2}{10}\right) \ge \ln\left(\frac{2}{5}\right)^n$ $\ln\left(\frac{2}{10}\right) \ge n \ln\frac{2}{5}$ $n\ln\frac{103}{100} \ge \ln 2$ $n \ge \frac{\ln 2}{\ln 103 - \ln 100} \quad ; \begin{pmatrix} \ln 2 \approx 0.7 \\ \ln 5 \approx 1.6 \\ \ln 103 \approx 4.63 \end{cases}$ $\frac{\ln\left(\frac{2}{10}\right)}{\ln\left(\frac{2}{r}\right)} \le n$ $n \ge \frac{0.7}{4.63 - 4.60}$ $n \ge \frac{0.7}{0.03}$ $\frac{\ln 2 - \ln 2 - \ln 5}{\ln 2 - \ln 5} \le n$ $\frac{\ln 5}{\ln 5 - \ln 2} \le n \qquad \begin{pmatrix} \ln 2 \approx 0.7 \\ \ln 5 \approx 1.6 \end{cases}$ $n \ge 23.33$ $\frac{1.6}{0.9} \le n$ عدد طبيعي ومنه مجموعة قيم العدد n هى $1.77 \le n$ {24,25,26,} n عدد طبيعي ومنه مجموعة قيم العدد n هي {2,3,4,}

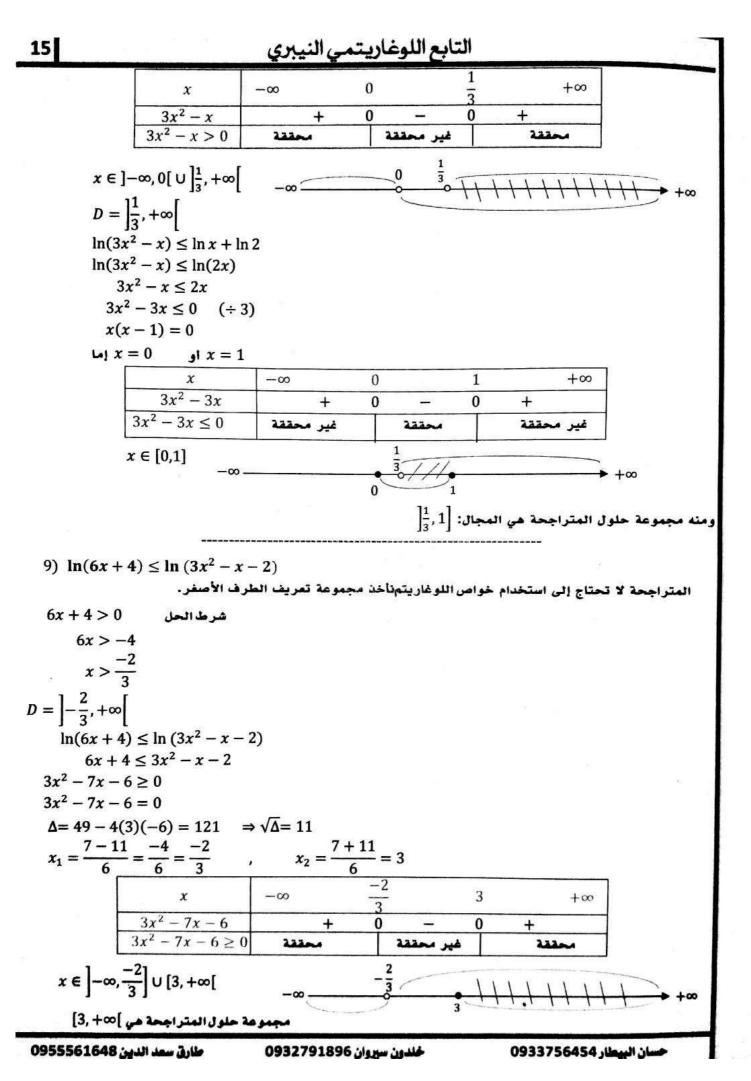
حسان البيطار 0933756454

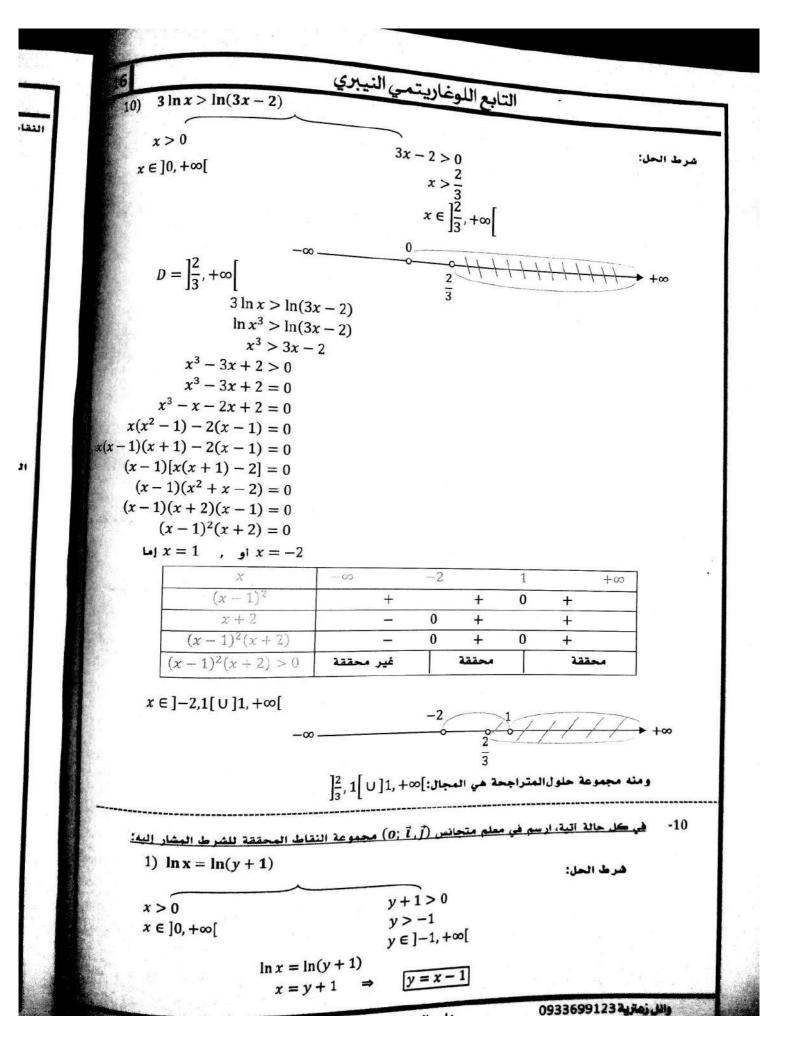


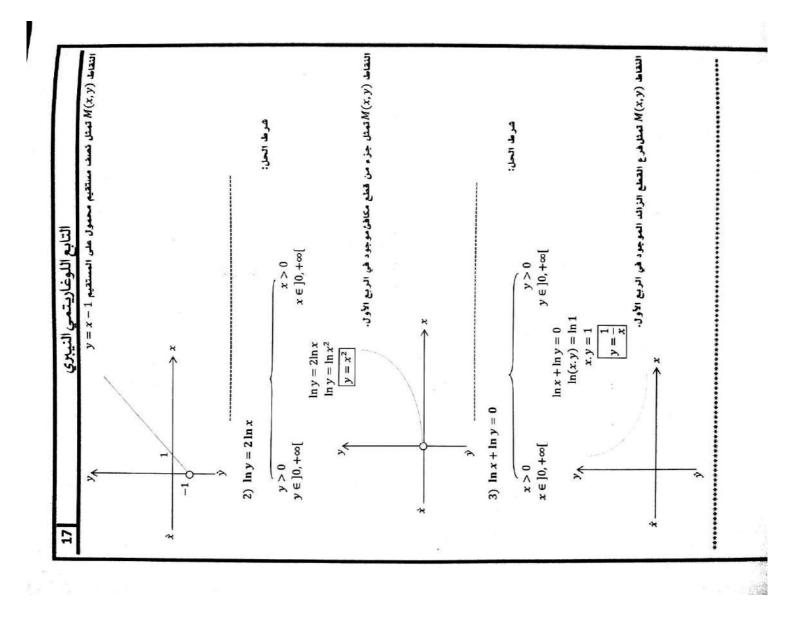
13

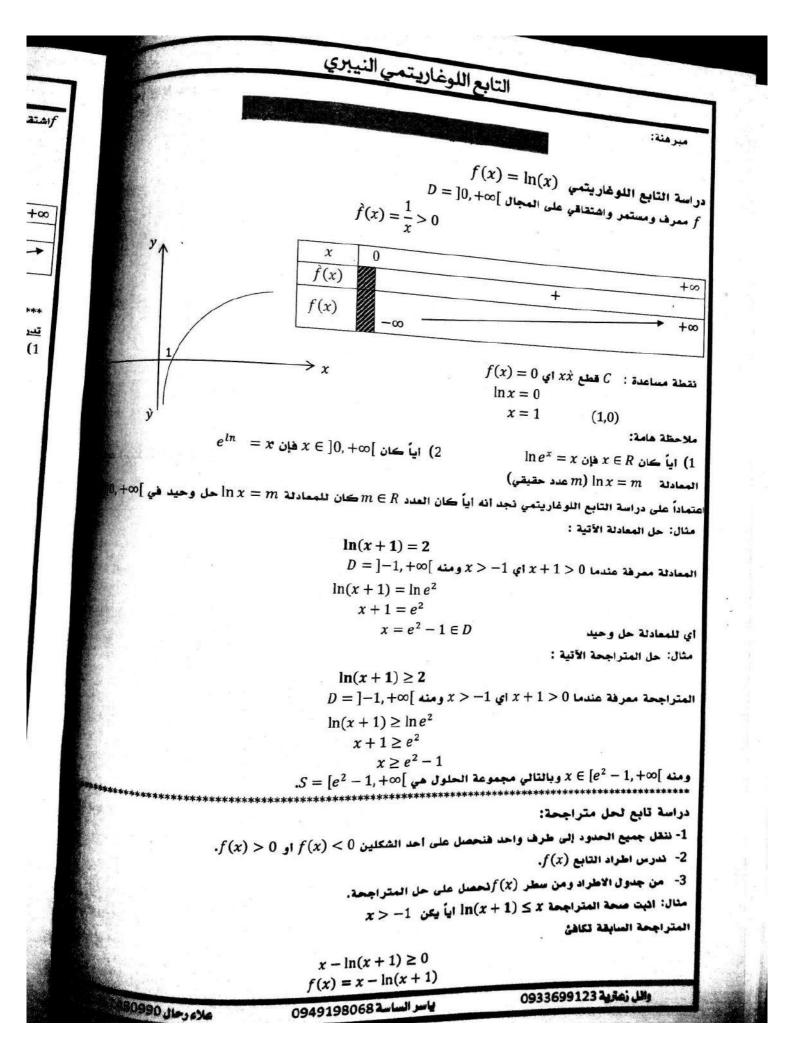


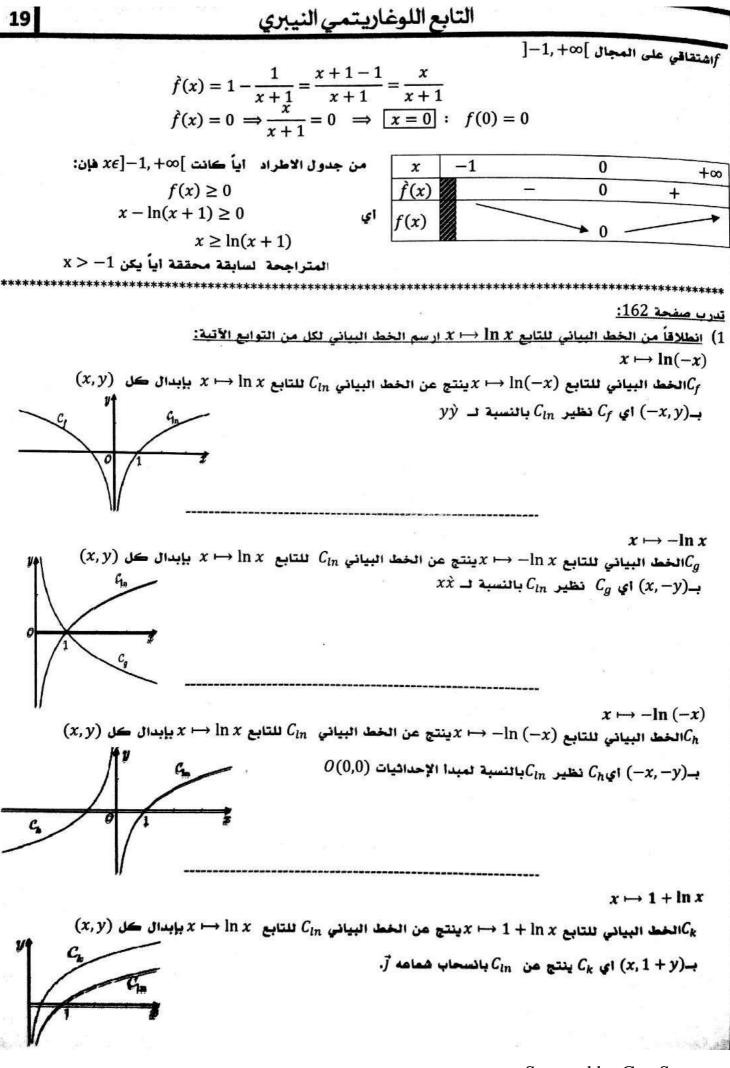


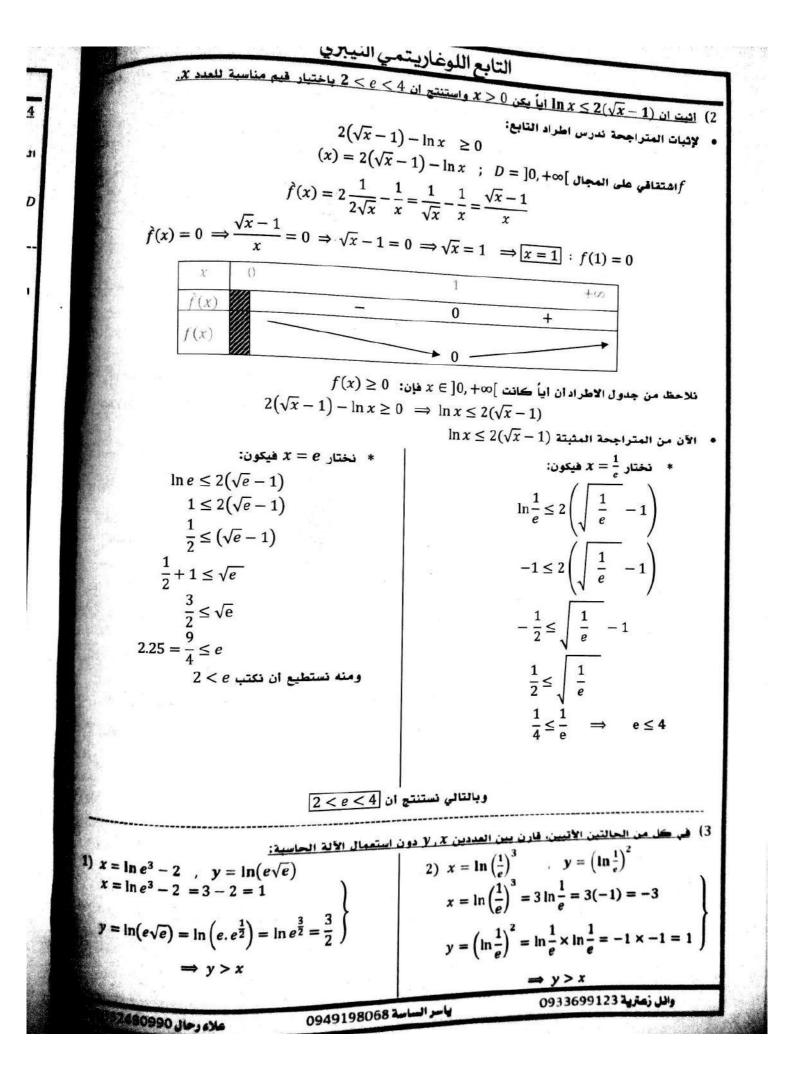












4) $(\ln x - 1)(\ln x + 2) = 0$ 1) $\ln(1-x) = -2$ $D = [0, +\infty[$: المعادلة معرفة عندما 0 < x اى [x > 0]المعادلة معرفة عندما 0 < x - 1 ومنه x > 1 اى : $D =]-\infty, 1[$ $\ln x - 1 = 0 \Rightarrow \ln x = 1 \Rightarrow x = e \in D$ $\ln(1-x) = -2$ $\ln x + 2 = 0 \Rightarrow \ln x = -2 \Rightarrow x = e^{-2} \in D$ $\ln(1-x) = \ln e^{-2} \implies 1-x = e^{-2}$ $S = \{e^{-2}, e^2\}$ وبالتالي مجموعة الحلول هي $x = 1 - \frac{1}{a^2} = \frac{e^2 - 1}{a^2} \in D$ $x=rac{e^2-1}{e^2}$ اي للمعادلة حل وحيد 2) $\ln(x-2) - \ln(x+1) = 2$ $(x-2>0) \cap (x+1>0)$ المعادلة معرفة عندما ($(x > -1) \cap (x > 2)$ $D = [2, +\infty)$ $\ln(x-2) - \ln(x+1) = 2$ $\ln\left(\frac{x-2}{x+1}\right) = 2$ $\ln\left(\frac{x-2}{x+1}\right) = \ln e^2$ $\frac{x-2}{x+1} = e^2$ $x - 2 = e^2(x + 1)$ $x - 2 = e^2 x + e^2$ $x - e^2 x = e^2 + 2$ $x(1-e^2) = e^2 + 2$ $x = rac{e^2 + 2}{1 - e^2} < 0 \notin D$ المعادلة مستحيلة الحل 3) $(\ln x)^2 = 16$ $D = \left] 0, +\infty
ight[$: المعادلة معرفة عندما x > 0 ال $(\ln x)^2 = 16$; e aire i $\ln x = 4 \Rightarrow x = e^4 \in D$ $\ln x = -4 \Rightarrow x = e^{-4} \in D$ $S = \{e^{-4}, e^4\}$ وبالتالى مجموعة الحلول هي $S = \{e^{-4}, e^4\}$

5) $\ln(2-x) \ge 1$: المتراجحة معرفة عندما x < 2 ومنه x < 2 المتراجحة معرفة عندما المتراجحة معرفة المتراجحة عندما المتراجحة معرفة المتراجحة متراجحة المتراجحة متراجحة المتراجحة المتراجحة متراجحة المتراجحة متراجحة المتراجحة المتراجحة المتراجحة المتراجحة متراجحة المتراجحة المتراجحة المتراجحة المتراجحة المتراجحة متراجحة متراجحة المتراجحة المتراجحة المتراجحة المتراجحة متراجحة المتراجحة متراجحة متراجحة متراجحة متراجحة متراجحة متراجحة المتراجحة متراجحة المتراجحة المتراجحة المتراجحة متراجحة مت $D =]-\infty, 2[$ $\ln(2-x) \ge 1$ $\ln(2-x) \ge \ln e^1$ $2-x \ge e$ x < 2 - e $x \in (-\infty, 2 - e]$ is $S =]-\infty, 2 - e]$ وبالتالي مجموعة الحلول هي [$S =]-\infty, 2 - e$ 6) $\ln \frac{1}{2} > 2$ المتراجحة معرفة عندما $0 < \frac{1}{x}$ اي : $D =]0, +\infty[$ $\ln\left(\frac{1}{x}\right) > 2$ $\ln\left(\frac{1}{r}\right) > \ln e^2$ $\frac{1}{r} > e^2$ $x < \frac{1}{a^2}$ منه $-\infty, \frac{1}{a^2}$ وبالتالي مجموعة الحلول هي : $x \in \left[-\infty, \frac{1}{a^2}\right]$ $S = \left[0, \frac{1}{n^2}\right]$ ln[g(x)] مشتق التابع إذا كان وتابعاً اشتقاقياً على المجال أوموجباً تماماً على أ ، عندئذٍ :

l التابع $x\mapsto \ln[g(x)]$ هو تابعه المشتق على l ، و $rac{\dot{g}(x)}{g(x)}$ ، $x\mapsto \ln[g(x)]$ التابع المشتق على ا

مسان البيطار 0933756454

خلدون سيروان 0932791896

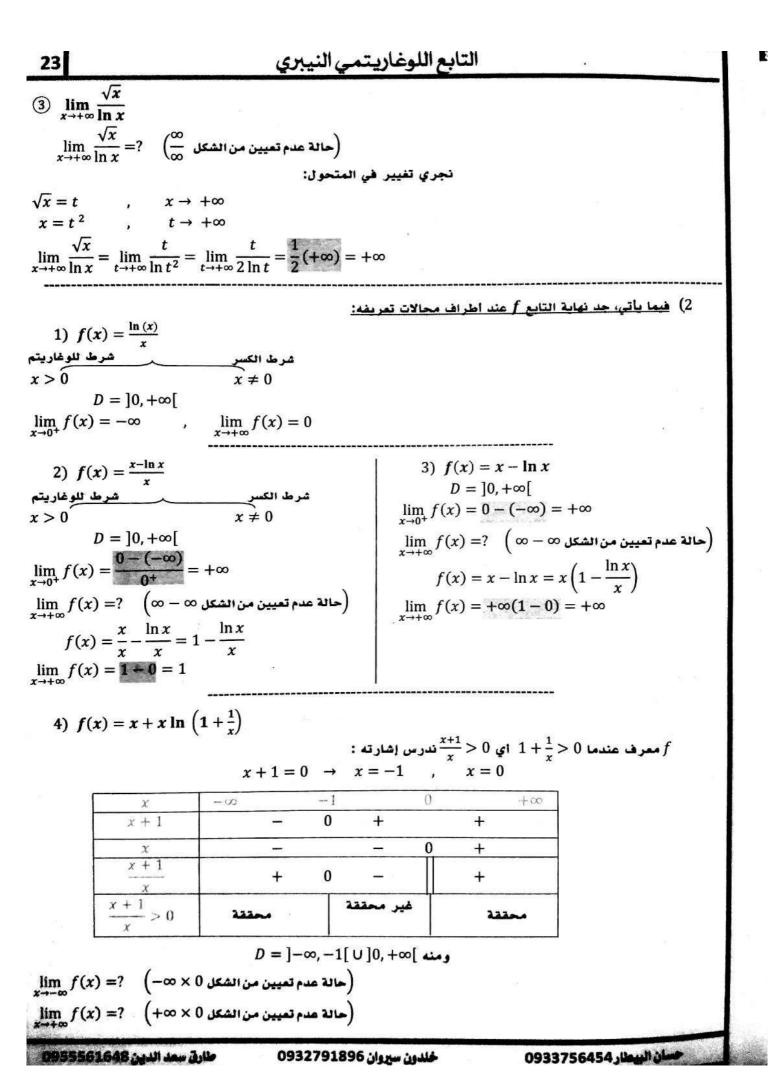
طارق سعد الدين 0955561648

4) حل متراجحة أو معادلة مما يلي:

التابع اللوغاريتمي النيبري تمرين: في حل مما يلي البت أن التابع / اشتقافي على المجال / ثم احسب /. $f(x) = \ln x - \ln(x+1)$: $D =]0, +\infty[$ D اشتقاقي على $x \mapsto \ln x$ ومنه : D ومنه $z\mapsto x$ اهتقاقي وموجب تماماً على $x\mapsto x$ D ومنه : $\ln(x+1) \mapsto \ln(x+1)$ ومنه : D ومنه : $x \mapsto x+1$ اشتقاقي على $x \mapsto x+1$ D وبما ان fمجموع تابعين اهتقاقيين على فإن f اهتقاقي على D $\hat{f}(x) = \frac{1}{x} - \frac{1}{x+1} = \frac{x+1-x}{x(x+1)} = \frac{1}{x^2+x}$ $f(x) = \ln(1 - x^2)$: D =]-1, 1[.D اشتقاقي وموجب تماماً على D ومنه : f اشتقاقي على D. $\hat{f}(x) = \frac{-2x}{1-x^2}$ $f(x) = \ln(\frac{x+1}{3-x})$: D =]-1,3[D اشتقاقي وموجب تماماً على $\overset{D}{D}$ ومنه f اشتقاقي على $x\mapstorac{x+1}{3-x}$ $\dot{f}(x) = \frac{\frac{1(3-x)-(-1)(x+1)}{(3-x)^2}}{\frac{x+1}{3-x}} = \frac{3-x+x+1}{\frac{(x+1)}{(3-x)}(3-x)^2} = \frac{4}{(x+1)(3-x)}$ $f(x) = \ln(x + \sqrt{x^2 + 1})$: D = RD اشتقاقي وموجب تماماً على D ومنه : f اشتقاقي على D . $\hat{f}(x) = \frac{1 + \frac{2x}{2\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$ مبرهنات في نهايات التابع اللوغاريتمي: $\lim_{x \to 0} \ln x = -\infty , \qquad \lim_{x \to +\infty} \ln x = +\infty$ $\lim_{x \to +\infty} \frac{\ln x}{x} = 0 , \qquad \lim_{x \to +\infty} \frac{x}{\ln x} = +\infty$ $\lim_{x \to 0} x \ln x = 0 , \qquad \lim_{x \to 0} x^n \ln x = 0 ; \quad n \in N^*$ $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 , \qquad \lim_{x \to 0} \frac{x}{\ln(1+x)} = 1$ $\lim_{x\to 0}\ln x = -\infty$ $\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$ $\lim_{x \to 1} \frac{x-1}{\ln x} = 1$ تمرينات صفحة 165: عد كلاً من النهايات الأتية: in x (2) $\lim_{x\to 0} ((x^2 - x) \ln x)$ $\lim_{x \to 0} ((x^2 - x) \ln x) = \lim_{x \to 0} ((x - 1)x \ln x)$ $= \lim_{x \to +\infty} \left(\frac{\ln x}{x} \cdot \frac{1}{x} \right) = 0$ = 0والل زمترية 0933699123 ياسر الساسة 0949198068

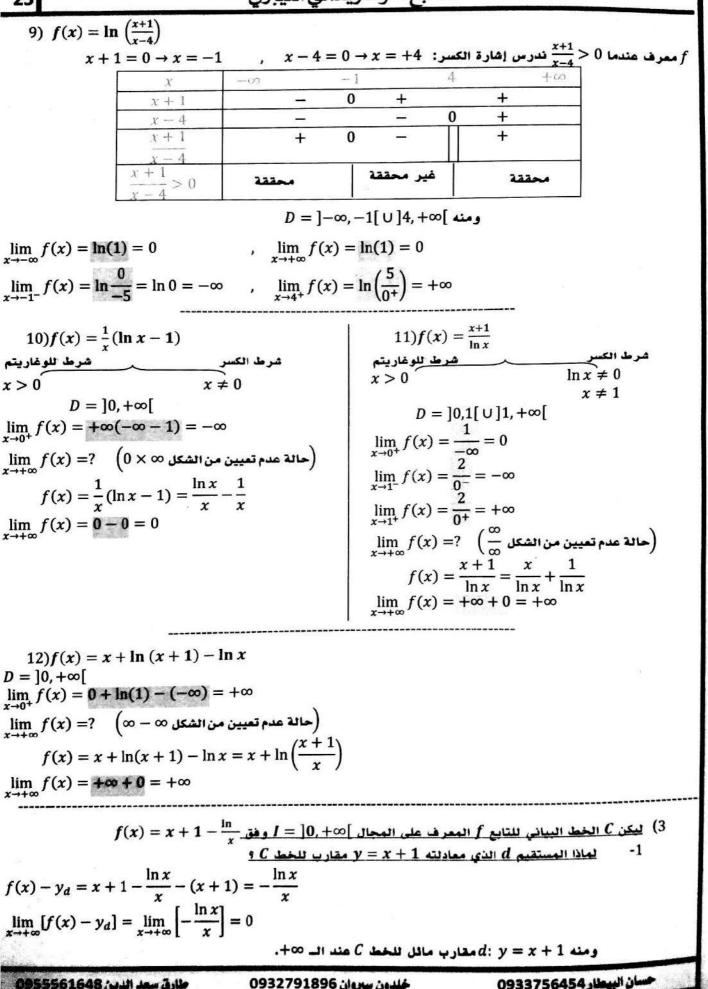
(2

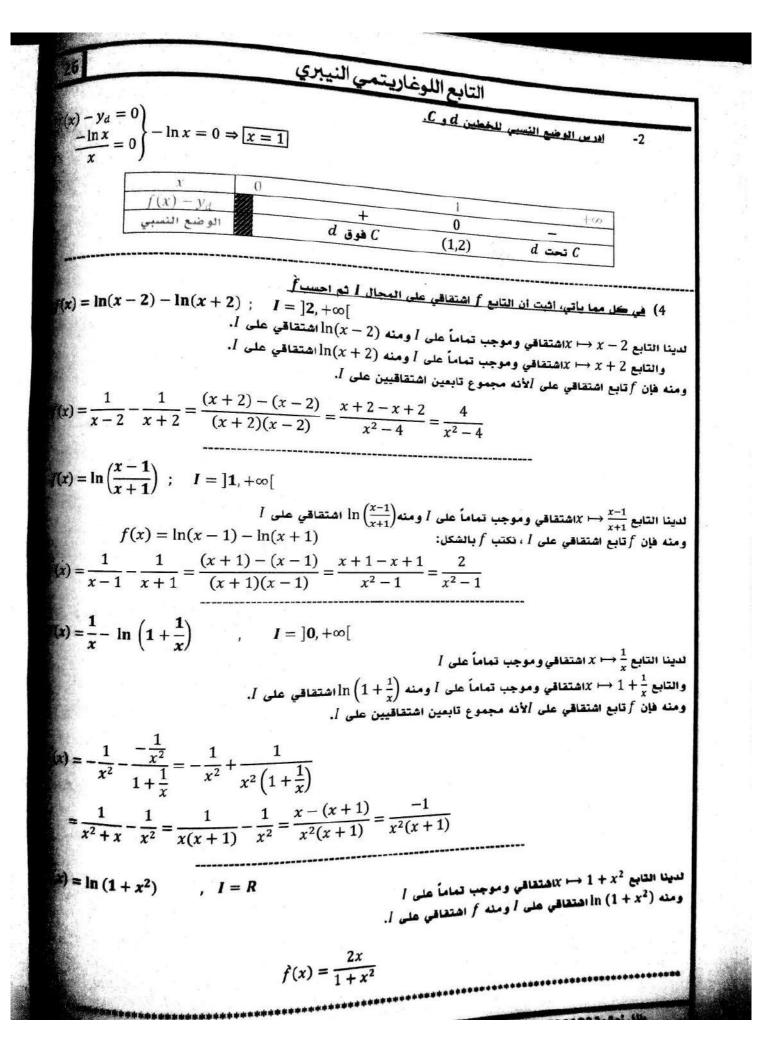
(حا

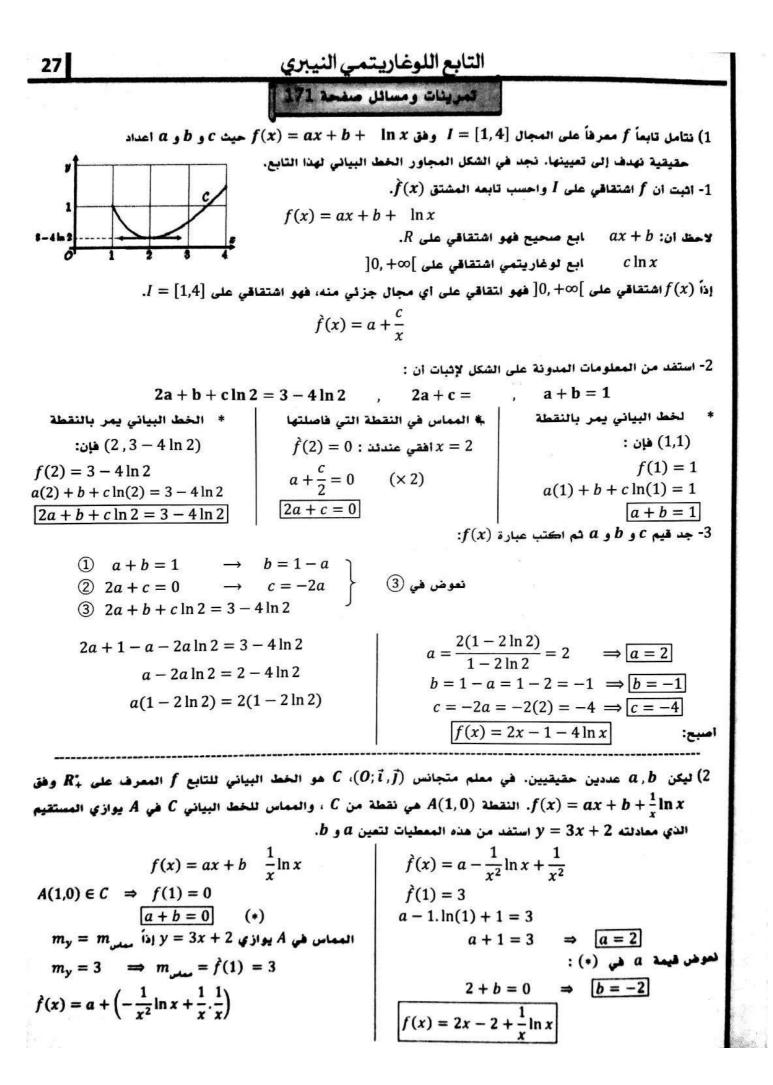


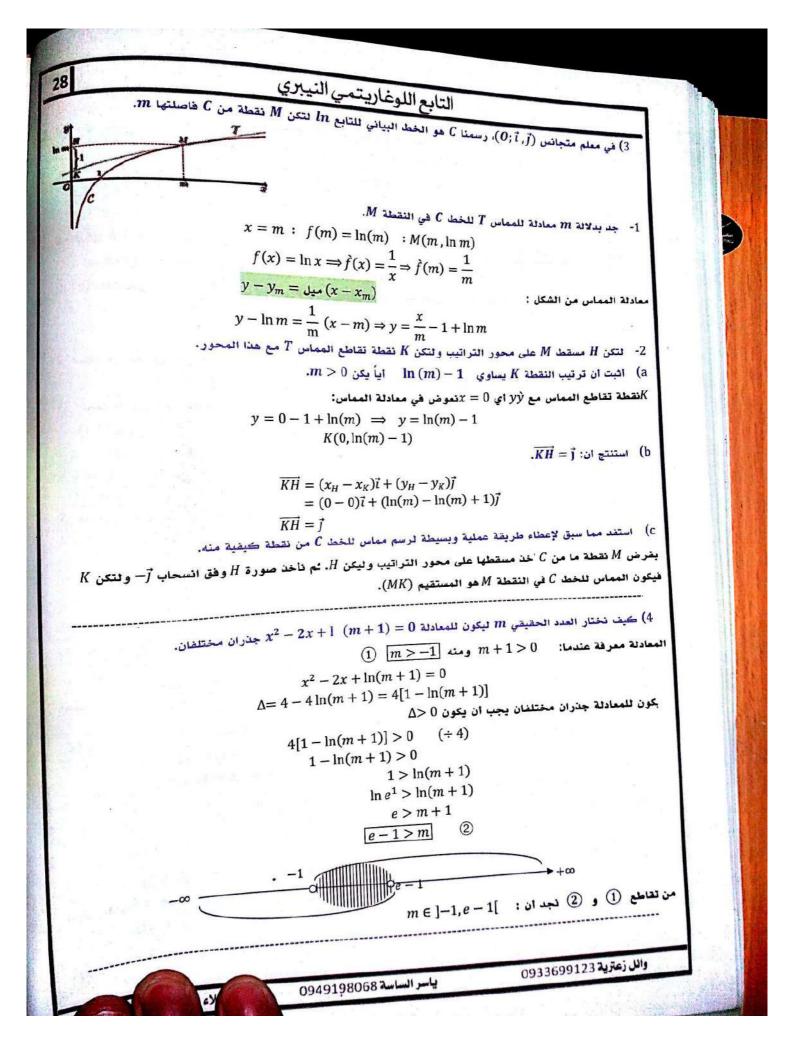
$$x = \frac{1}{t}; x_{1}, x_{2} = \frac{1}{t}; x_{2}, x_{3} = \frac{1}{t}; x_{2}, x_{3} = \frac{1}{t}; x_{3}, x_{3}, x_{3} = \frac{1}{t}; x_{3}, x_{3}, x_{3} = \frac{1}{t}; x_{3}, x_{3}, x_{3}, x_{3} = \frac{1}{t}; x_{3}, x_{3},$$

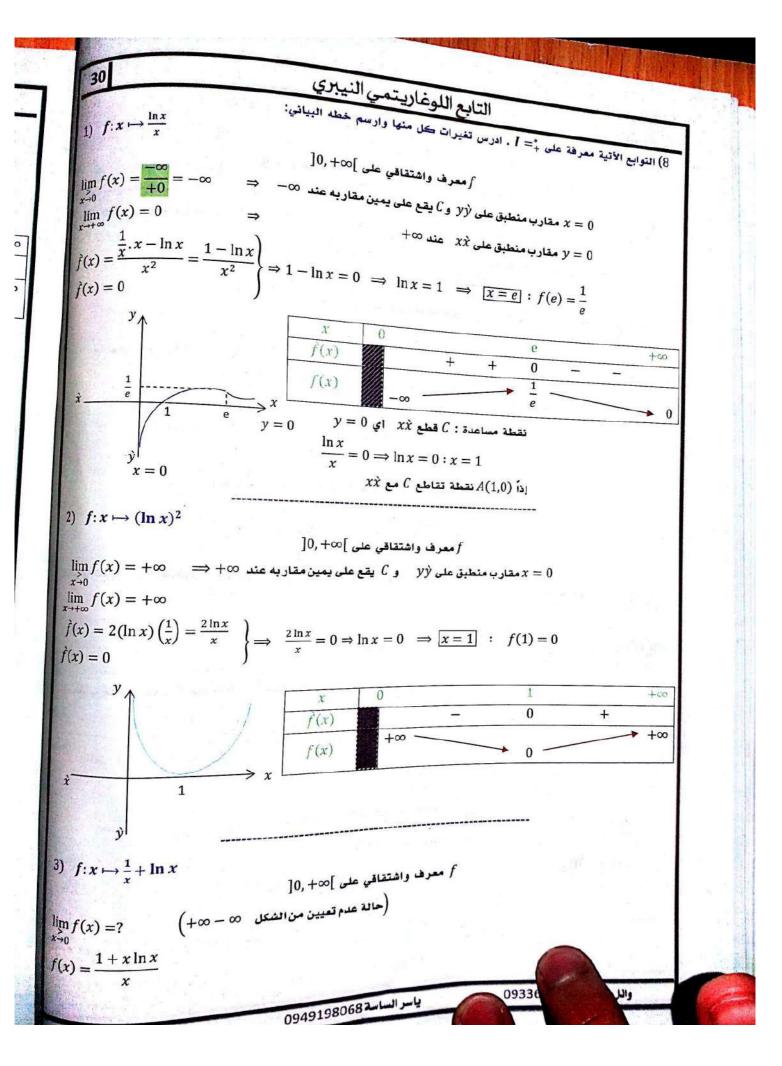
التابع اللوغاريتمي النيبري

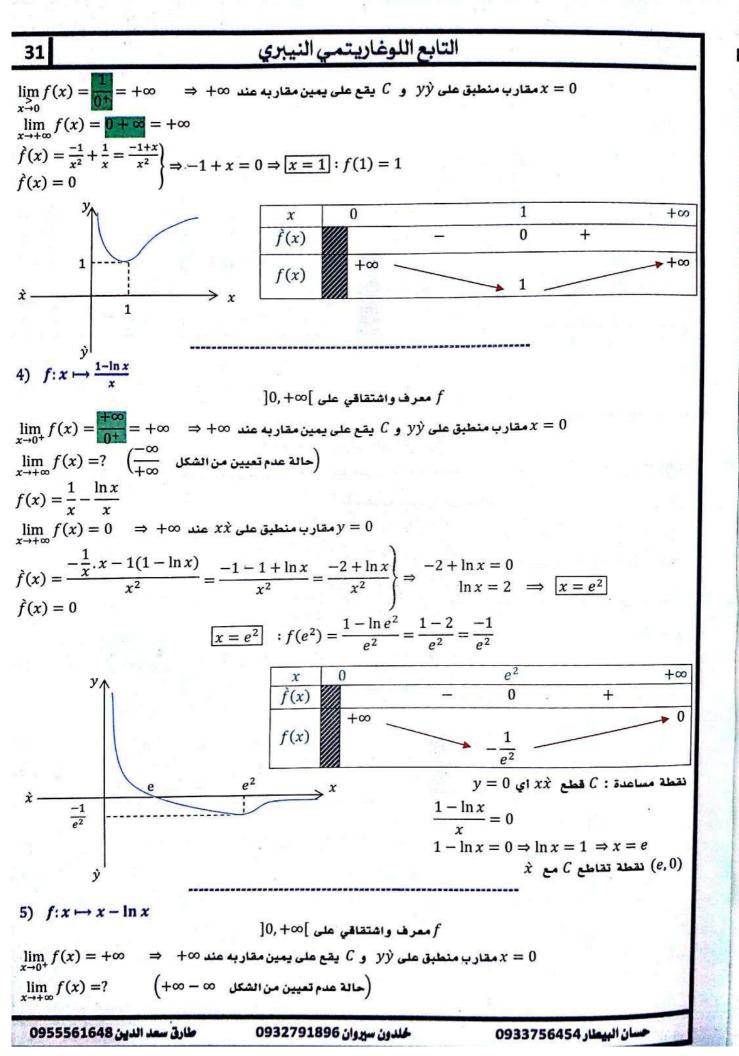




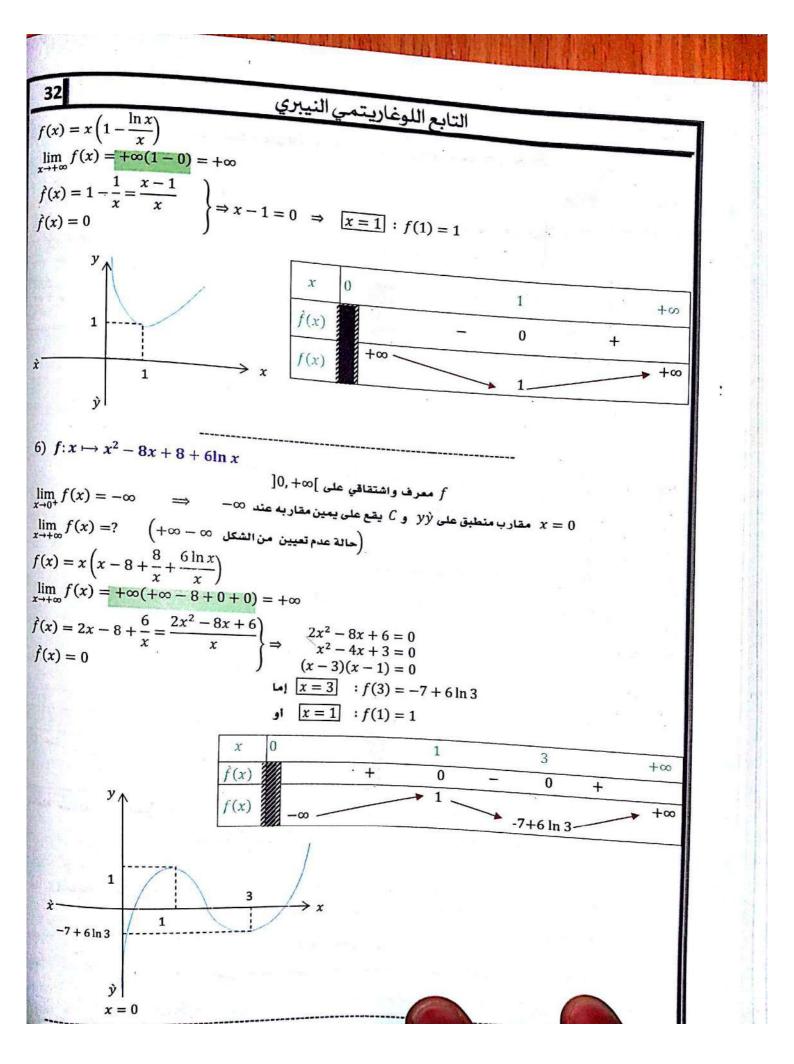








Scanned by CamScanner



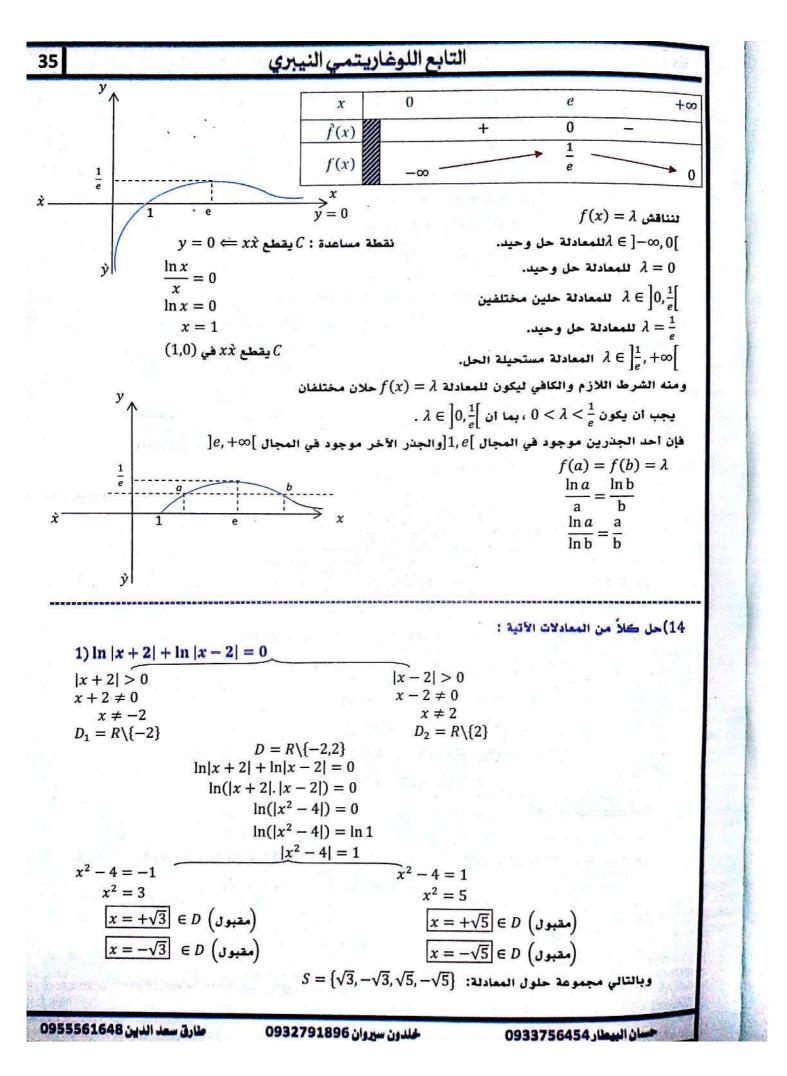
0955561648

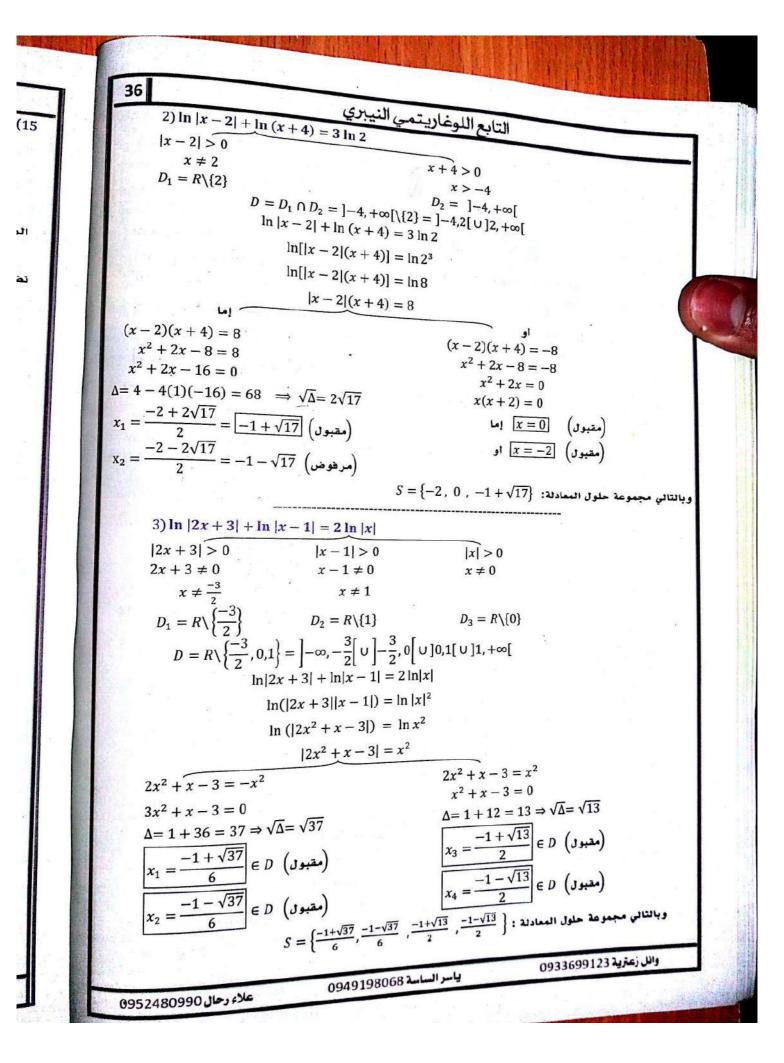
Scanned by CamScanner

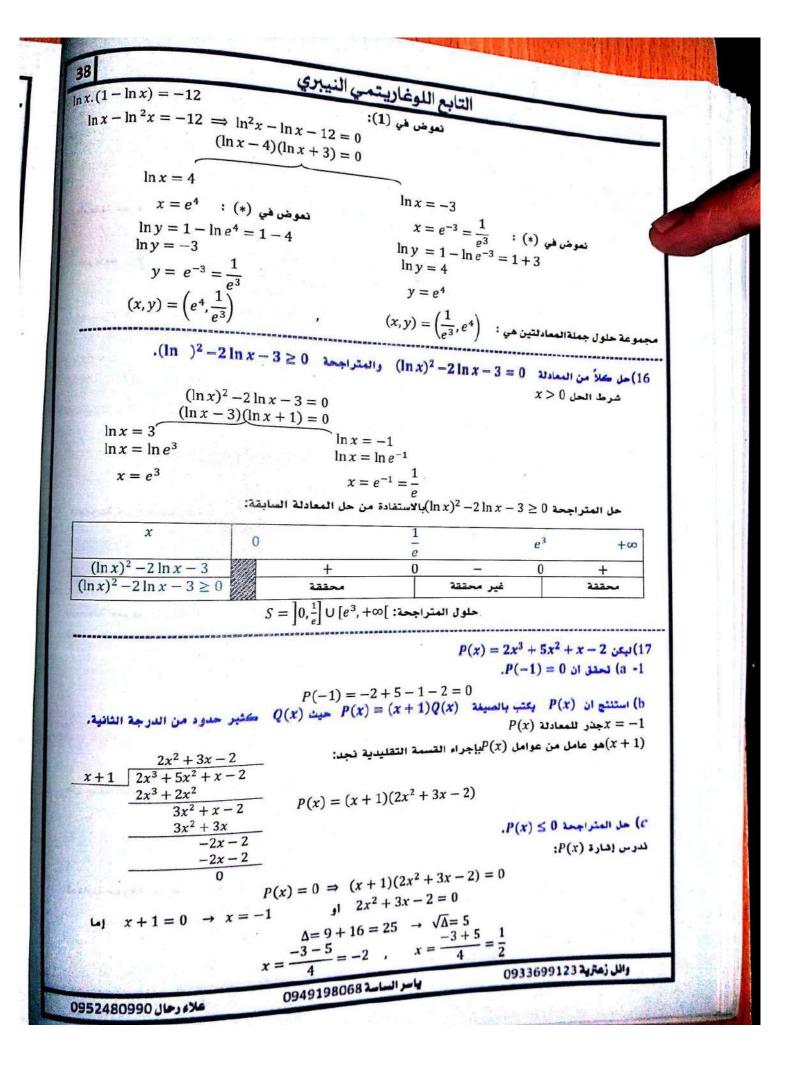
....

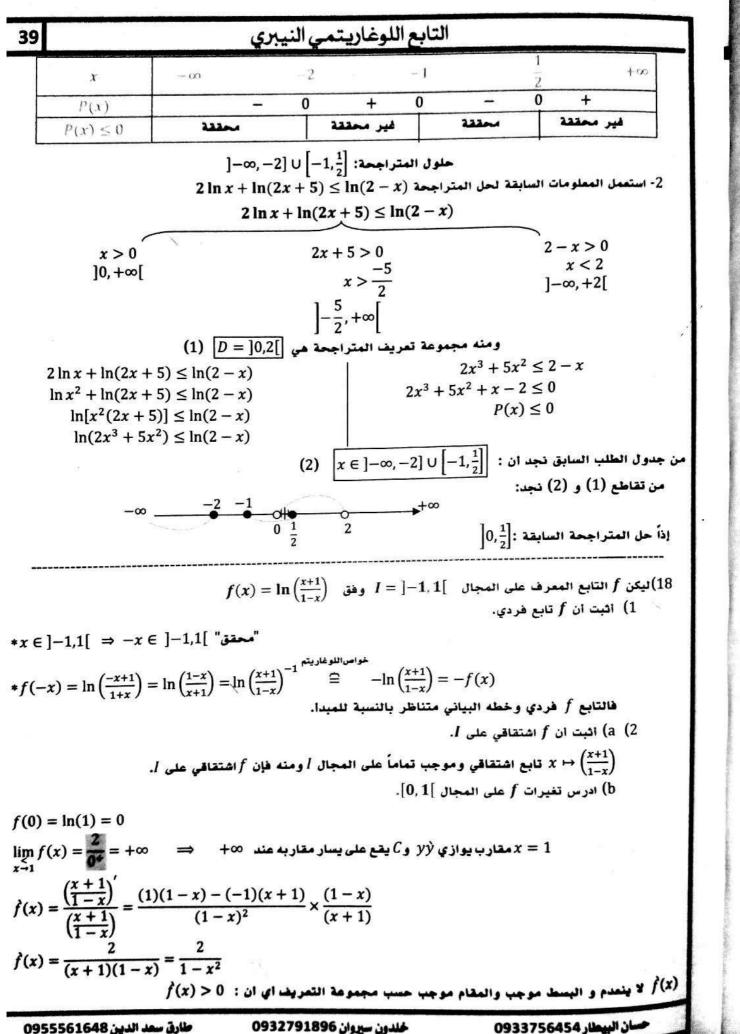
1

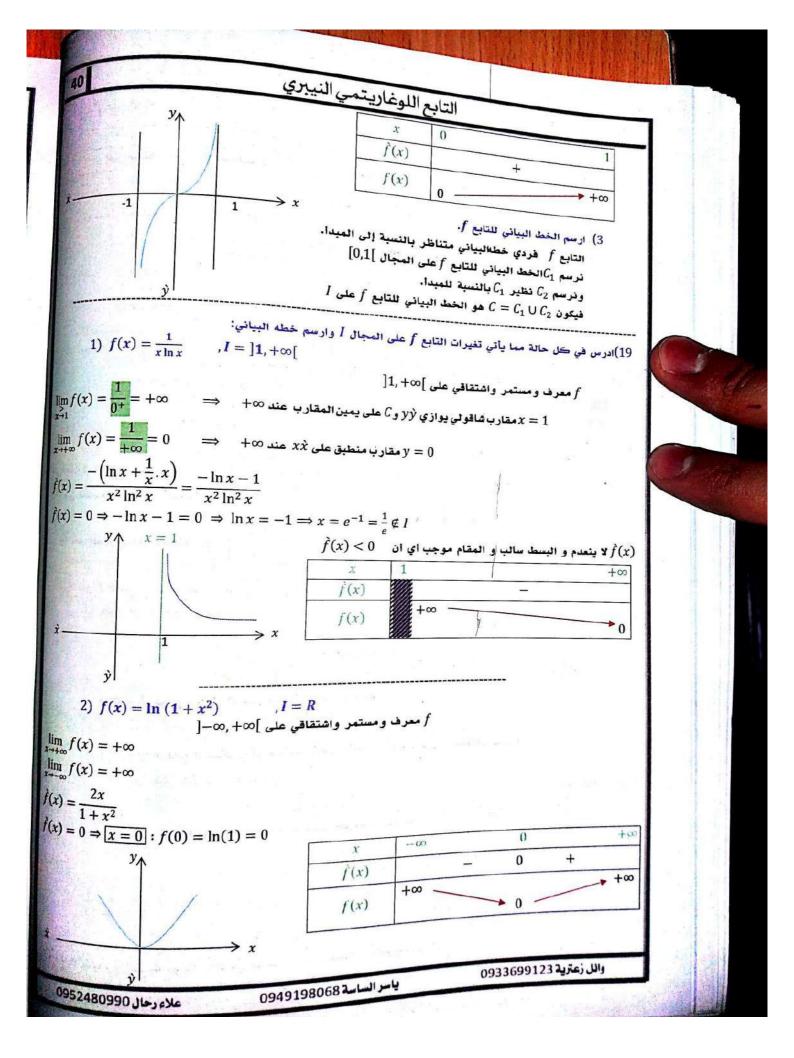
$$\frac{34}{(\pi^{2} \times \pi^{2})} \frac{1}{(\pi^{2} \times \pi^{2}$$

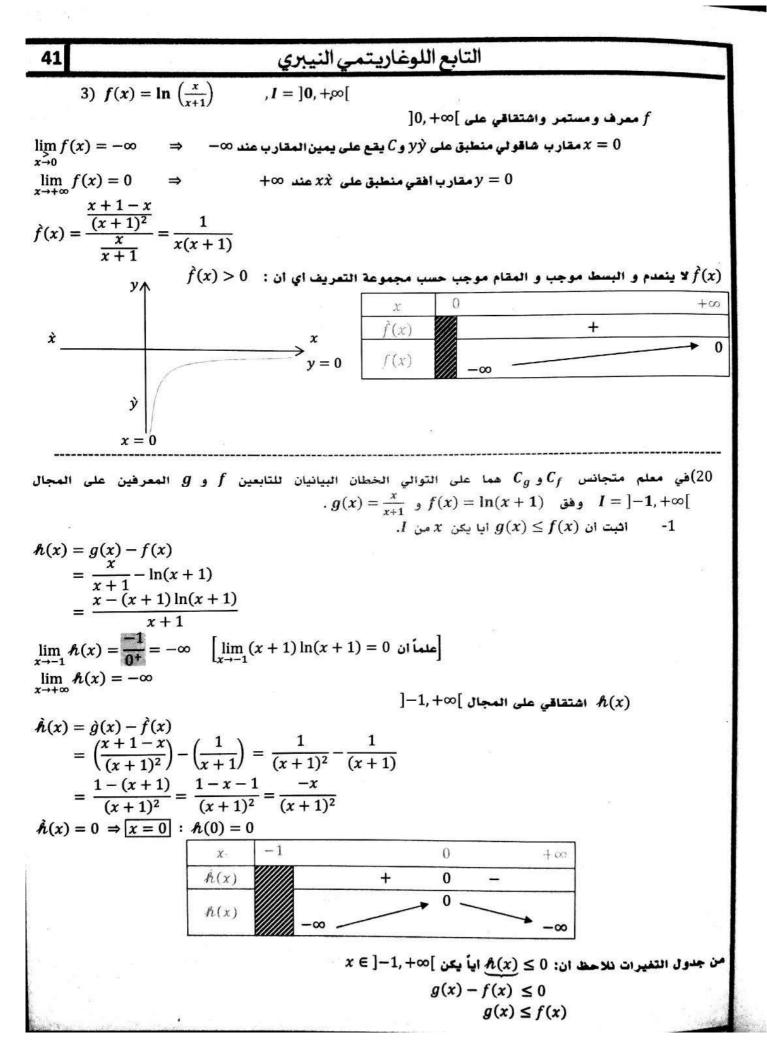


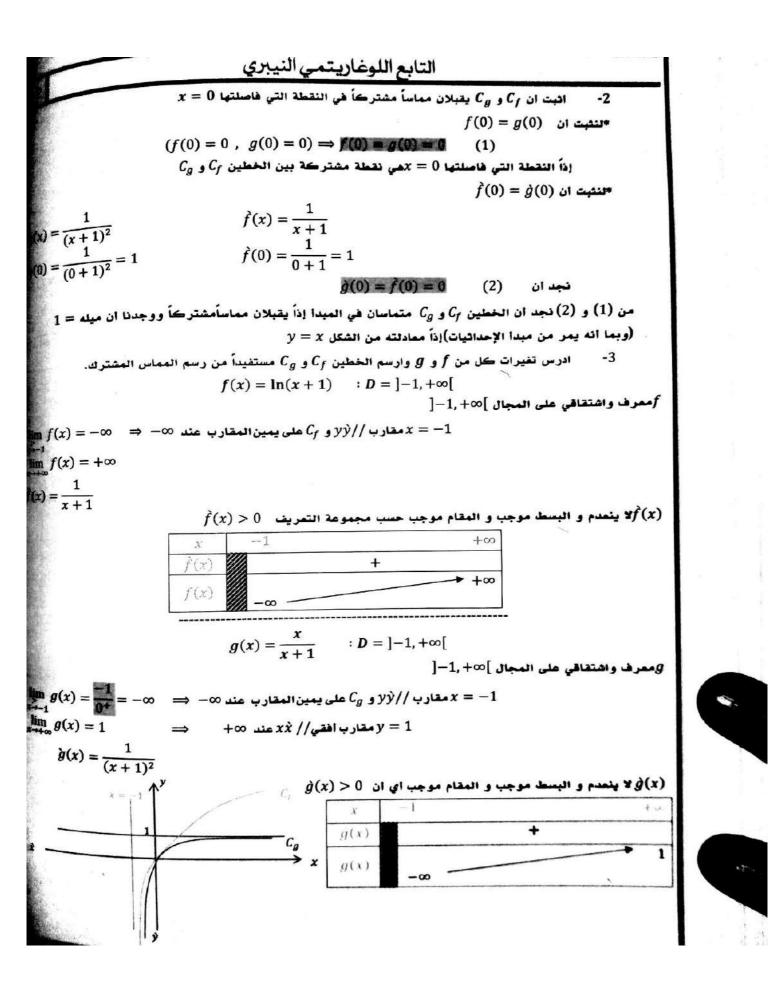


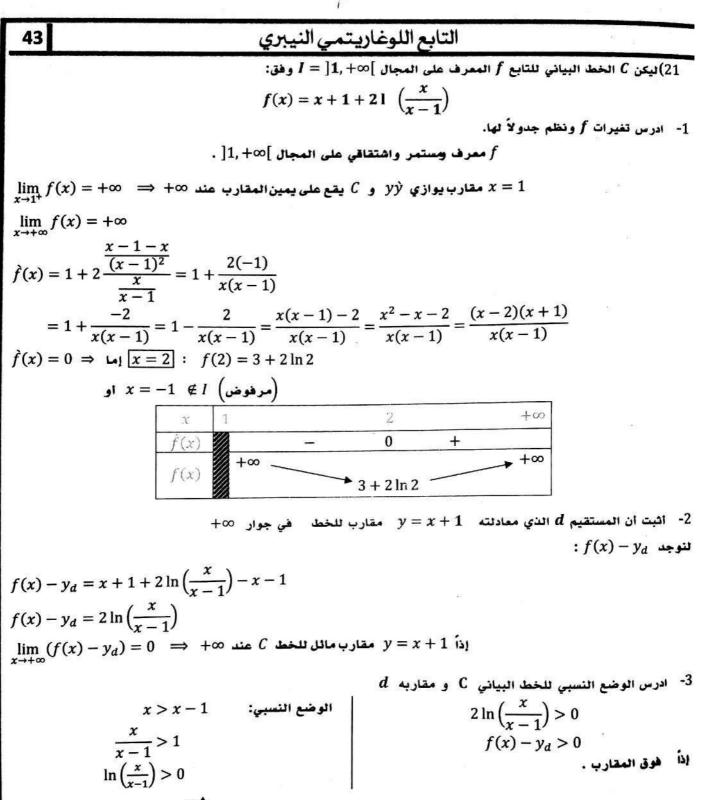




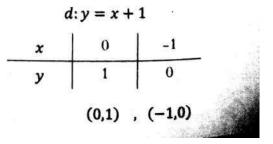




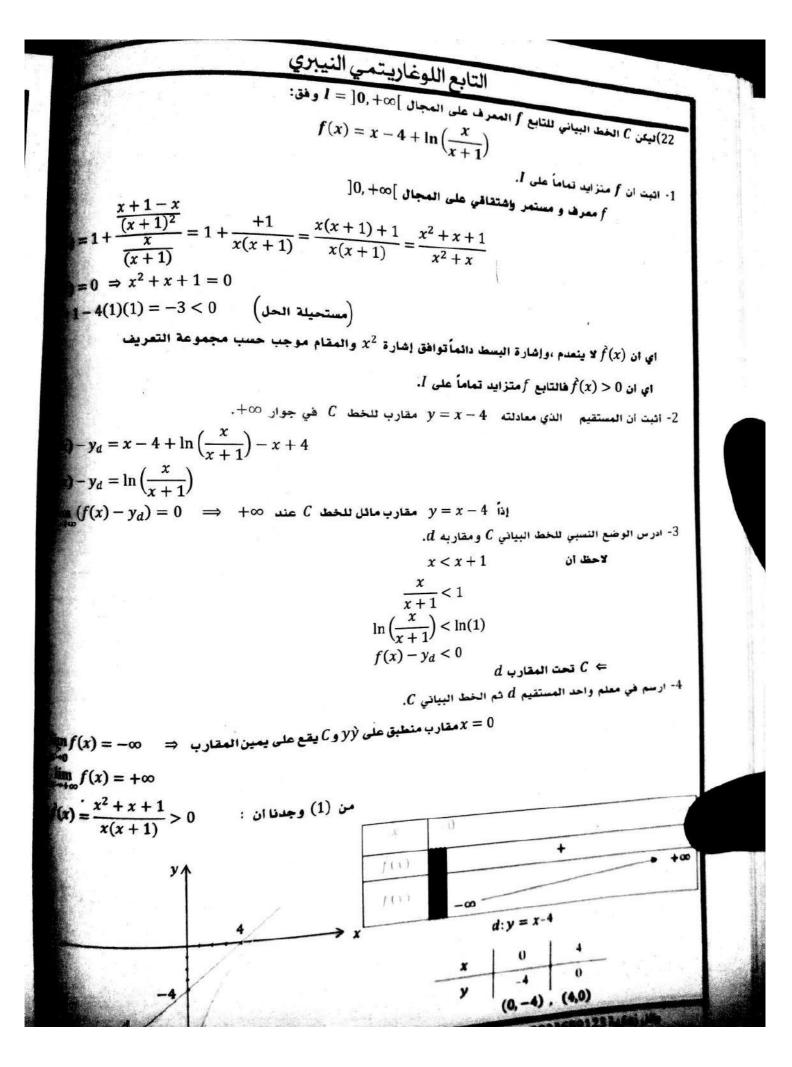


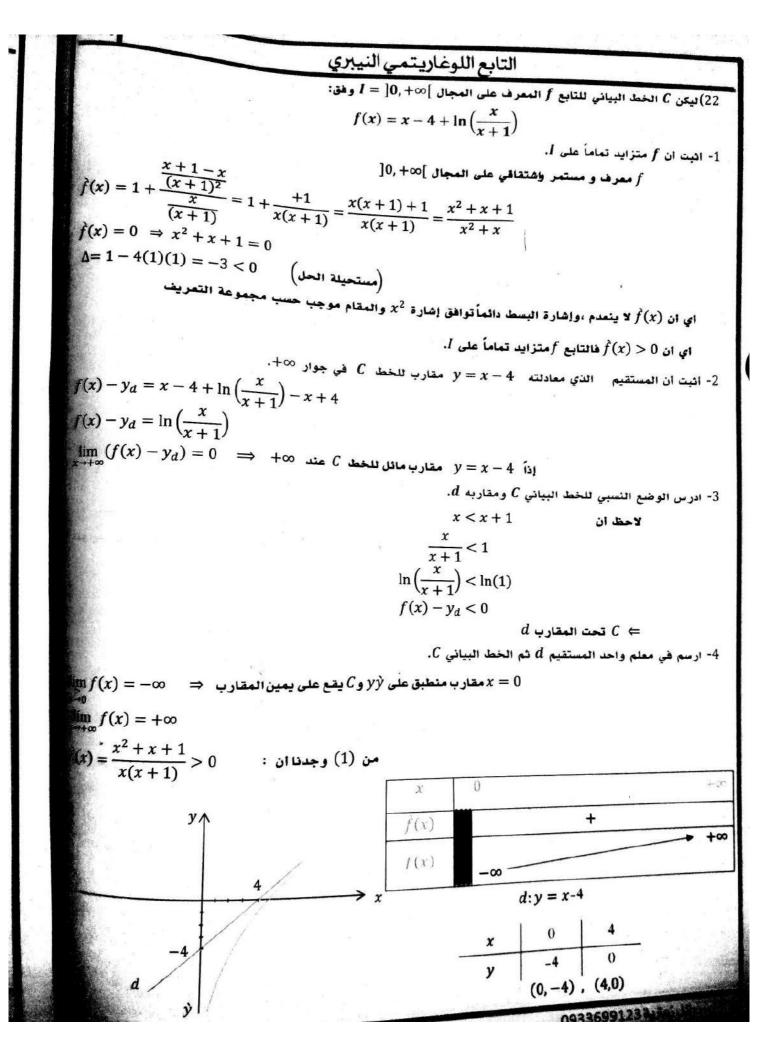


⁴ ارسم في معلم واحد المستقيم d ثم الخط البياني C لرسم المقارب:



 $\frac{\overline{x-1} > 1}{\ln\left(\frac{x}{x-1}\right) > 0}$ y $3 + 2 \ln 2$ x d y x = 1





التابع اللوغاريتمي النيبري
23) ليكن
$$C$$
 الخط البياني للتابع f المعرف على المجال $[0, +\infty]$ وفق :
 $f(x) = x - \ln\left(2 + \frac{1}{x}\right)$

1. ادرس تغیرات f ونظم جدو لا بها.

fمعرف واشتقاقي على المجال]∞+,0[

$$\lim_{x \to 0} f(x) = -\infty \implies x$$
مقارب منطبق على (y) و C على يمين المقارب $x = 0$

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\hat{f}(x) = 1 - \frac{-\frac{1}{x^2}}{2 + \frac{1}{x}} = 1 + \frac{1}{2x^2 + x} = \frac{2x^2 + x + 1}{2x^2 + x}$$

$$\hat{f}(x) = 0 \to 2x^2 + x + 1 = 0$$

$$\Delta = 1 - 4(1)(2) = -7 < 0 \qquad (\text{Aminor large transformation})$$

45

 $\hat{f}(x) > 0$ اي ان $\hat{f}(x)$ لا ينعدم وإشارة البسط دائماً توافق إشارة x^2 والمقام موجب حسب مجموعة التعريف أي ان

X	- £)		$+\infty$
$\hat{f}(x)$		+	
f(x)			+∞

2. اثبت ان المستقيم d الذي معادلته $y = x - \ln 2$ مقارب للخط $f(x) - y_d = x - \ln \left(2 + \frac{1}{x}\right) - x + \ln 2$ $= \ln 2 - \ln \left(2 + \frac{1}{x}\right)$ $\lim_{x \to +\infty} (f(x) - y_d) = 0 \implies +\infty \text{ ait } t = 0$ $d: y = x - \ln 2$ 3.

$$f(x) - y_{d} = \ln 2 - \ln \left(2 + \frac{1}{x}\right)$$

$$= \ln 2 - \ln \left(\frac{2x + 1}{x}\right)$$

$$= \ln \left(\frac{2}{2x + 1}\right) = \ln \left(\frac{2x}{2x + 1}\right)$$

$$2x < 2x + 1 \qquad : \text{if } (2x + 1)$$

$$\ln \left(\frac{2x}{2x + 1} < 1 \qquad \div (2x + 1)\right)$$

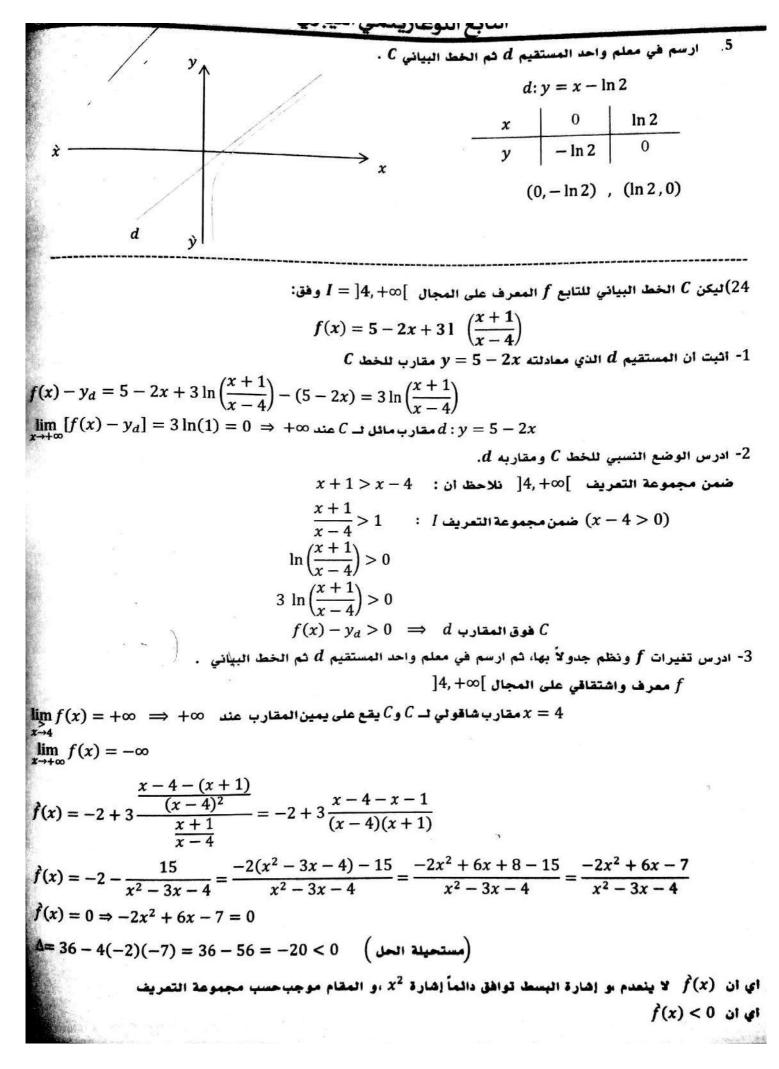
$$\ln \left(\frac{2x}{2x + 1}\right) < 0$$

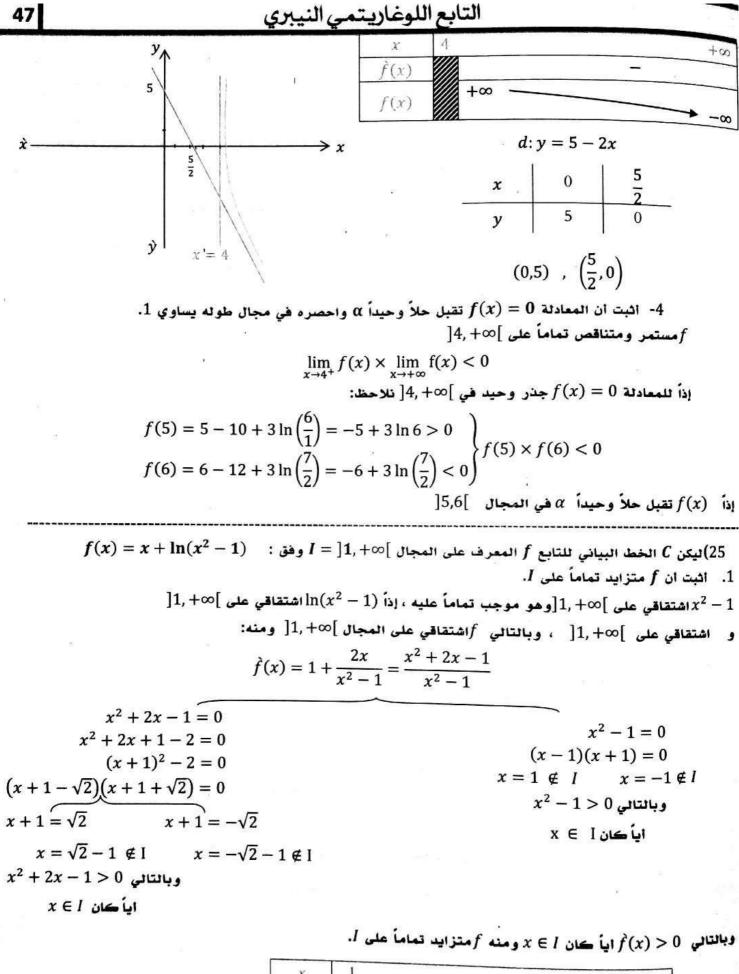
$$f(x) - y_{d} < 0 \implies d \qquad \text{if } (x) = 0 \text{ and } (x) = 0$$

$$f(x) - y_{d} < 0 \implies d \qquad \text{if } (x) = 0$$

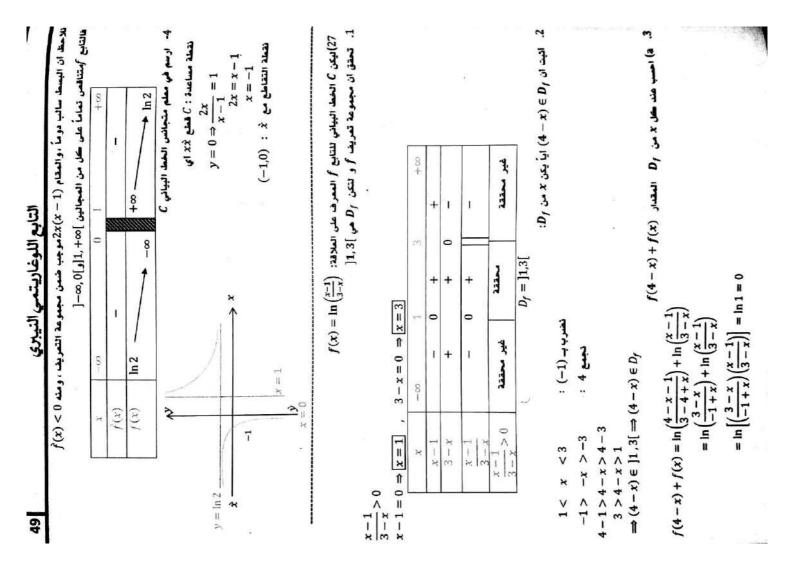
$$f(x) - y_{d} < 0 \implies d \qquad \text{if } (x) = 0$$

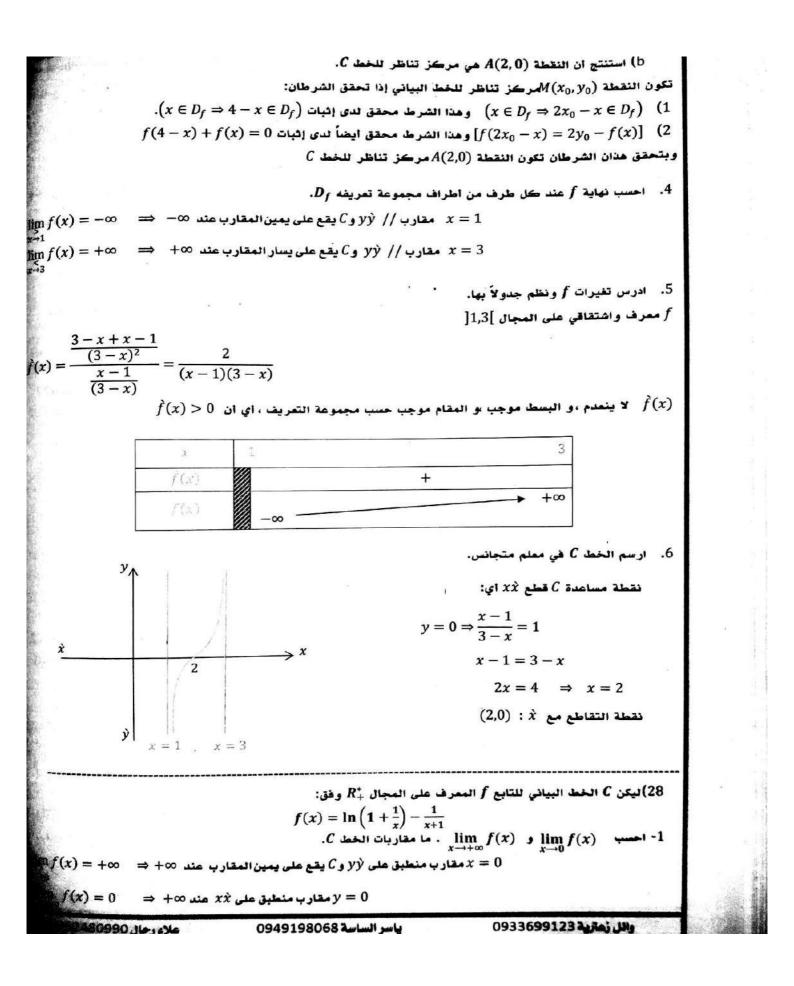
$$f(x) = 0 \implies f(x) = 0$$





X 1	+0
f(x)	+
f(x)	+0

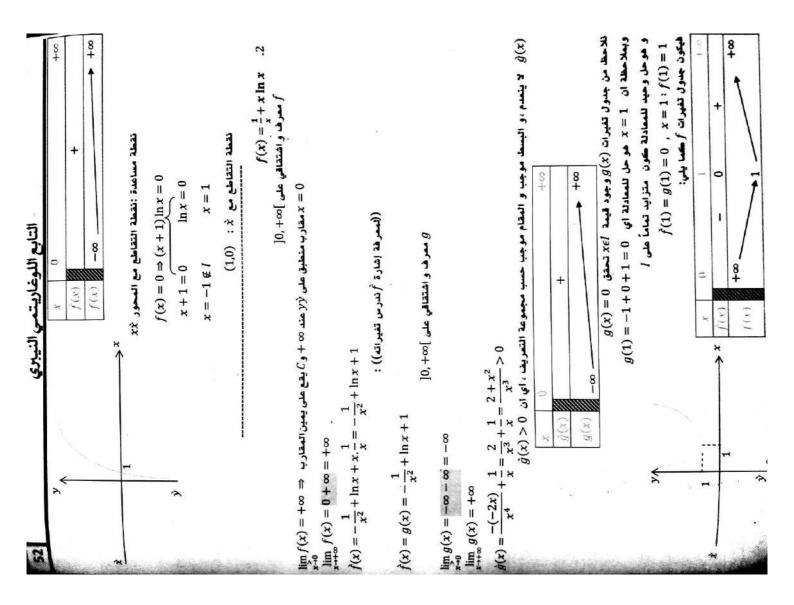




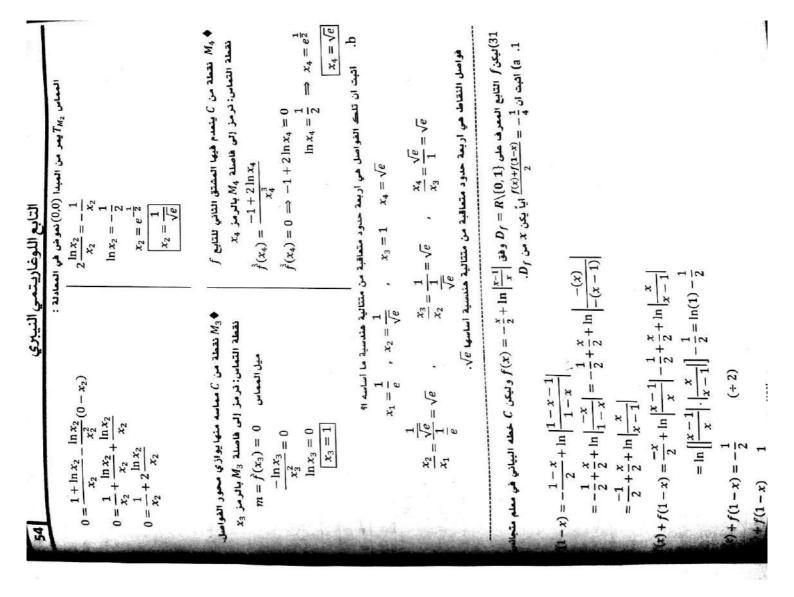
51

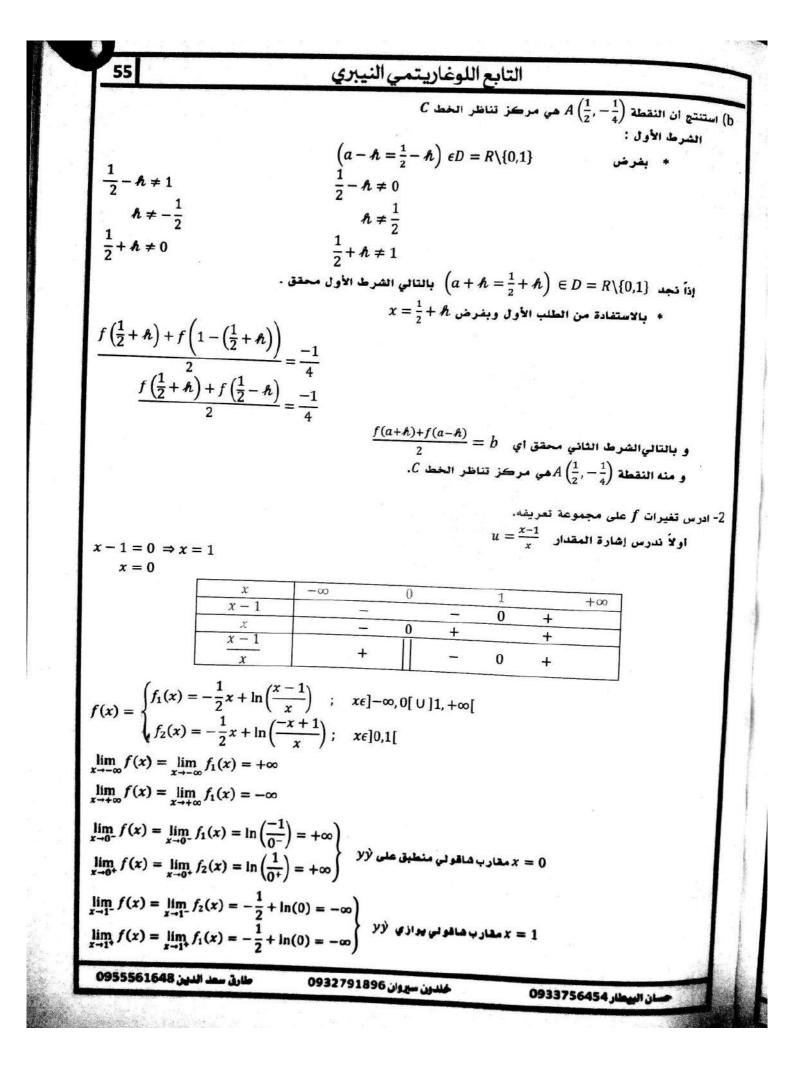
2- ادرس تفيرات f ونظم جدو لأ بها ثم ارسم الخط C. $]0, +\infty[$ معرف واشتقاقى على المجال $[\infty+\infty]$ $\dot{f}(x) = \frac{\frac{-1}{x^2}}{1 + \frac{1}{x}} + \frac{1}{(x+1)^2} = \frac{-1}{x^2 + x} + \frac{1}{(x+1)^2} = \frac{-1}{x(x+1)} + \frac{1}{(x+1)^2}$ $\hat{f}(x) = \frac{-x - 1 + x}{x(x+1)^2} = \frac{-1}{x(x+1)^2}$ $y \wedge \hat{f}(x) < 0$ (يف، اي ان $\hat{f}(x) < 0$ لا ينعدم ،و البسط سالب f(x)X +00 +00 x 0 y = 0x = 0ŷ C في كل من الحالتين الآتيتين، ادرس التابع f على $I = R_+^*$ وارسم خطه البيائي $I = R_+^*$ $f(x) = (x+1)\ln x$.1 $[0, +\infty]$ معرف و اشتقاقی علی $[\infty+, 0]$ $\lim_{x \to 0} f(x) = -\infty \Rightarrow x$ مقارب منطبق على $y\dot{y}$ عند $\infty - e^{2}$ يقع على يمين المقارب x = 0 $\lim_{x\to+\infty}f(x)=+\infty$ $\hat{f}(x) = \ln x + \frac{1}{r}(x+1) = \ln x + 1 + \frac{1}{r}$: ((haa, \hat{f} in the term (haa, \hat{f} is the term)) : $\hat{f}(x) = g(x) = \ln x + 1 + \frac{1}{r}$ $[0, +\infty]$ معرف ومستمر واشتقاقي على $[\infty, +\infty]$ $\lim_{\substack{x \to 0}} g(x) = ? \quad \left(-\infty + \infty \right)$ حالة عدم تعيين من الشكل $g(x) = \frac{1}{x}(x\ln x + x + 1)$ $\lim_{\substack{x \to 0 \\ x \to 0}} g(x) = +\infty(0+0+1) = +\infty$ $\lim_{x\to+\infty}g(x)=+\infty$ $\hat{g}(x) = \frac{1}{r} - \frac{1}{r^2} = \frac{x-1}{r^2}$ $\dot{g}(x) = 0 \Rightarrow x - 1 = 0 \Rightarrow \boxed{x = 1} : g(1) = 2$ $+\infty$ g(x)0 + +00 +00 q(x)

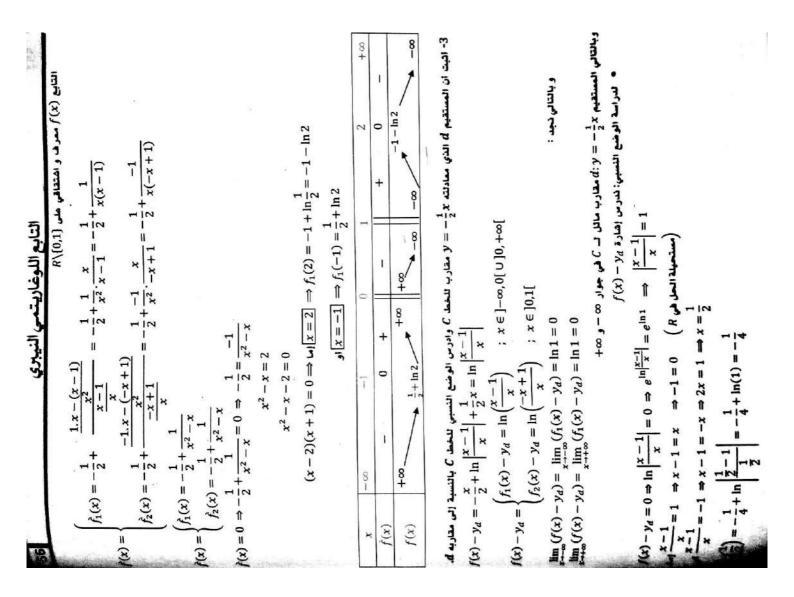
> $x \in]0, +\infty[$ التغیرات دلاحظ ان g(x) = g(x)موجب تماماً ایا کان $[\infty+,\infty]$ موجب تماماً ایا کان $[\infty+,\infty]$ ما یلی : Scanned by CamScanner

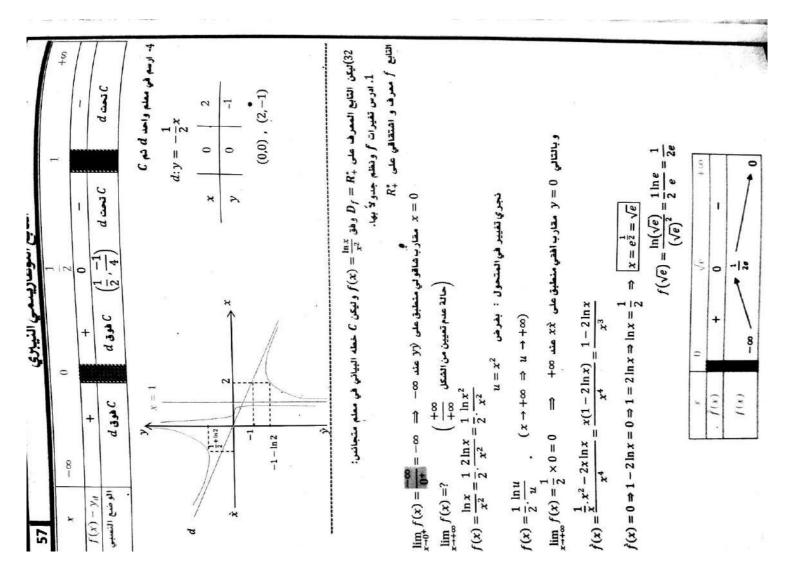


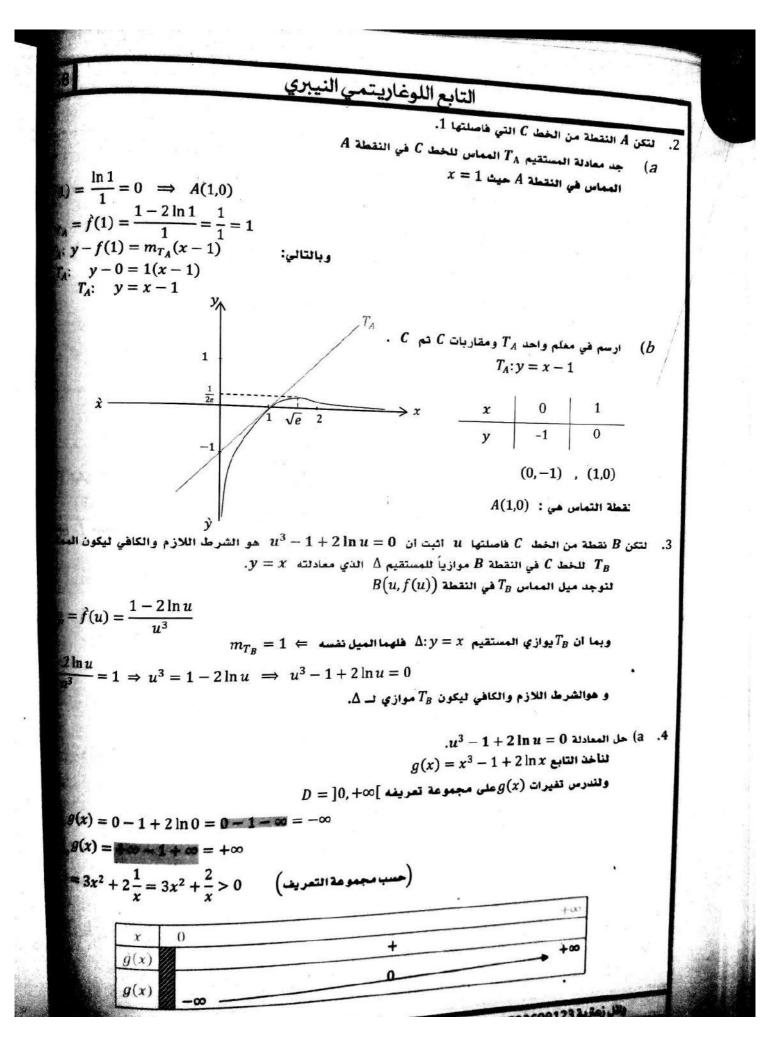
	التابع اللوغاريتمي النيبري 30)ليكن C الغط البياني للتابع f المعرف على المجال]∞+,0[= I وفق :
	$f(x) = \frac{1 + \ln x}{x}$
	-1 احسب $f(x) = \lim_{x \to +\infty} f(x)$. ما مقاربات الخط C.
	$\lim_{x \to 0^+} f(x) = \frac{-\infty}{0^+} = -\infty \Rightarrow x = 0$
	$\lim_{x \to +\infty} f(x) = ?$ $\left(\frac{\infty}{\infty} \right)$ حالة عدم تعيين من الشكل
	$f(x) = \frac{1}{x} + \frac{\ln x}{x}$
	$\begin{array}{ccc} x & x \\ \lim_{x \to +\infty} f(x) = 0 & \Rightarrow +\infty \text{ and } x x \text{ and } y = 0 \end{array}$ مقارب منطبق على $x \hat{x}$ عند $x + \infty$
	$x \to +\infty$ $x \to \infty$. f ونظم جدولاً بها ثم ارسم الخط C .
	2- اورس ليراب رويسم بيلو - به عم السم العلي 5. f معرف واشتقاقي على المجال]∞+.0[
	$\hat{f}(x) = \frac{\left(\frac{1}{x}\right)(x) - (1)(1 + \ln x)}{x^2} = \frac{-\ln x}{x^2}$
	$\hat{f}(x) = 0 \Rightarrow \ln x = 0$
	y_{\uparrow} $x = 1$: $f(1) = 1$
	f(x) + 0 -
	$\dot{x} \xrightarrow{1} f(x)$
	1 y = 0 - 3
	ن تتكن M_1 و M_2 و M_3 و M_3 النقاط المعرفة كما يأتي :
	نقطة تقاطع C مع محور الفواصل. M1 نقطة تقاطع C مع محور الفواصل.
	x = 0 نقطة من C مماسه منها يمر بمبدأ الإحداثيات. M ₂
	M ₃ نقطة من C مماسه منها يوازي محور الفواصل.
	f_4 نقطة من C ينعدم فيها المشتق الثاني للتابع f_4
	a. احسب فواصل هذه النقاط.
	$f(x) = 0$ فقطة تقاطع C مع محور الفواصل أي $M_1 igstarrow M_1$
	$f(x_1) = 0 \implies \frac{1 + \ln x_1}{x_1} = 0$
	$1 + \ln x_1 = 0$
	$\ln x_1 = -1$
	$x_1 = e^{-1} \implies x_1 = \frac{1}{e}$
	$x_1 = e^{-1} \implies \begin{bmatrix} x_1 = -e \end{bmatrix}$
	♦ M₂ نقطة من Cمماسه منها يمر بمبدأ الإحداثيات انكتب معادلة المماس في النقطة M₂
	تقطد التماس: نرمز إلى فاصلة M ₂ بالرمز x ₂ فيكون :
	$f(x_2) = \frac{1 + \ln x_2}{x_2}$
	$M_{-}\left(x-\frac{1+\ln x_2}{2}\right) = 1 = 1 = 2 = 2$
	$M_2\left(x_2, \frac{1+\ln x_2}{x_2}\right)$ فتكون نقطة التماس: $M_2\left(x_2, \frac{1+\ln x_2}{x_2}\right)$
	$m = \hat{f}(x_2) = \frac{-\ln x_2}{x_2^2}$ $y - f(x_2) = m(x - x_2)$ $: T_{M_2}$
	$x_{\overline{2}} = m(x - x_{0})$
	$y = \frac{1 + \ln x_2}{x_2} - \frac{\ln x_2}{x_2^2} (x - x_2)$
ĺ	x ₂ x ₂

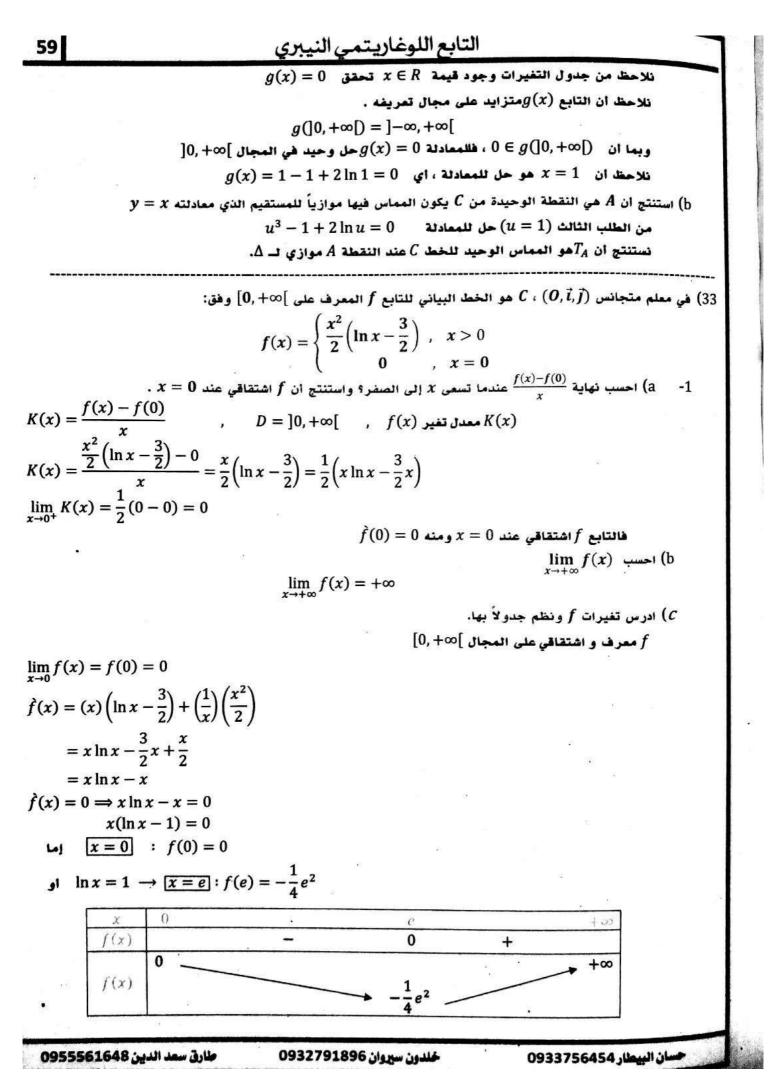


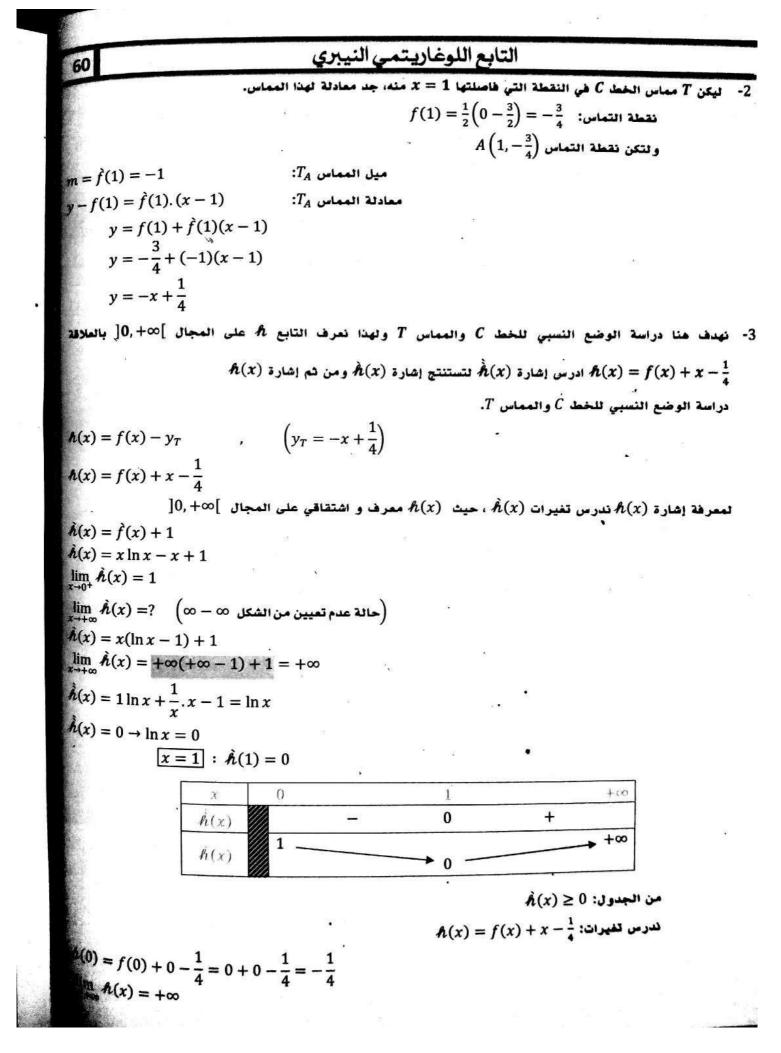












التابع اللوغاريتمي النيبري

نكتب جدول التغيرات:

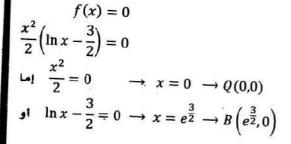
+0		1		0	X
+00	+	Ó	+	1	$\hat{h}(x)$
+ + α		0		1	h(x)
*				$-\frac{1}{4}$	h(x)

 ${\mathcal T}$ تحت ${\mathcal C}$ ومنه 0,1[ومنه $\hbar(x) < 0$

T فوق C المجال $[1,+\infty[$ المجال h(x)>0

اكتب معادلات مماسات C في نقاط تقاطعه مع محور الفواصل.

• نقاط تقاطع الخط البياني مع محور الفواصل:



61

• معادلة المماس في النقطة (0,0) : $m_{T_Q}=\hat{f}(0)=0$ ميل المماس: $y - f(0) = m_{T_Q}(x - 0)$: T_Q معادلة نصف المماس : T_Q

 $:B\left(e^{rac{3}{2}},0
ight)$ ، معادلة المماس في النقطة • ميل المماس:

 $y - f\left(e^{\frac{3}{2}}\right) = m_{T_B}\left(x - e^{\frac{3}{2}}\right)$ $y = \frac{1}{2} \left(e^{\frac{3}{2}} x - e^3 \right)$

y = 0

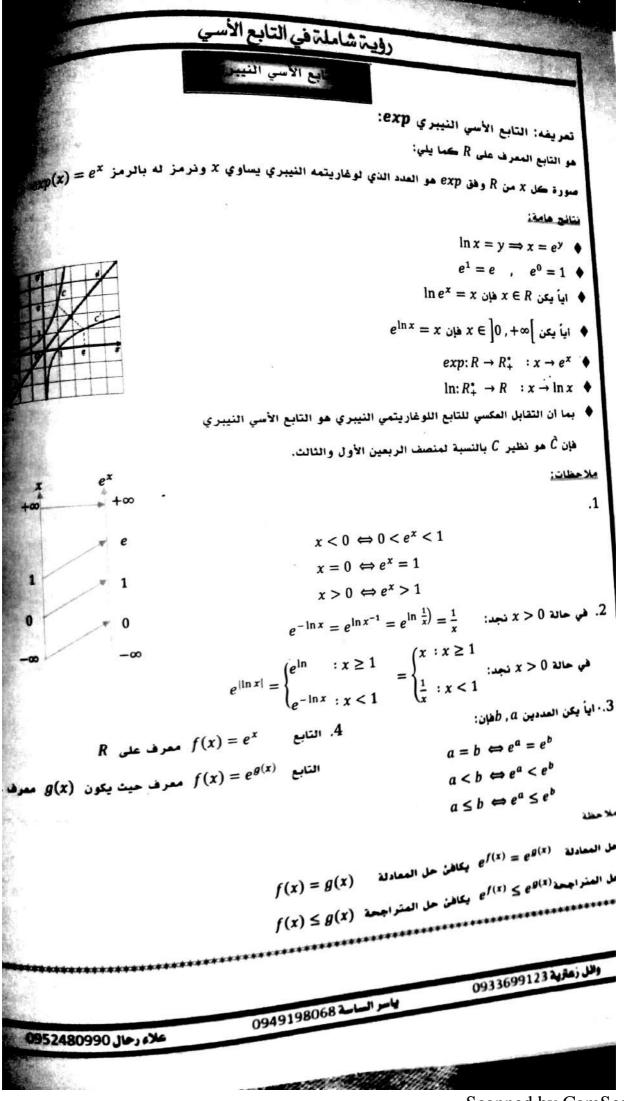
 $m_{T_B} = \dot{f}\left(e^{\frac{3}{2}}\right) = \frac{1}{2}e^{\frac{3}{2}}$

: T_B معادلة المماس

5- ارسم مماسات C التي وجدتها ثم ارسم الخط C في المعلم ذاته. \mathcal{T}_{B} و \mathcal{T}_{A} و \mathcal{T}_{Q} נעשה ונהחושוד $\hat{f}(x)$ ثم نرسم المماس الأفقي ${\mathcal T}_{_{M}}$ في النقطة Mig(e,f(e)ig)التي ينعدم فيها TAK

طارق سعد الدين 0955561648

0932791896 Manu Analia



Scanned by CamScanner

3 (~~	رؤية شاملة في التابع الأسي		
$1 A = e^{\ln 2} + e^{\ln 3}$ $= 2 + 3 = 5$ $3 C = \ln e^{-3} + e^{\ln 5}$ $= -3 + 5 = 2$	<u>معندمة 186:</u> عندمة 186: من الأعداد الآتية:		

المحتب بابسط ما يمكن كلاً من العبارات الآتية مبيناً المجموعة التي تكون معرفة عليها.

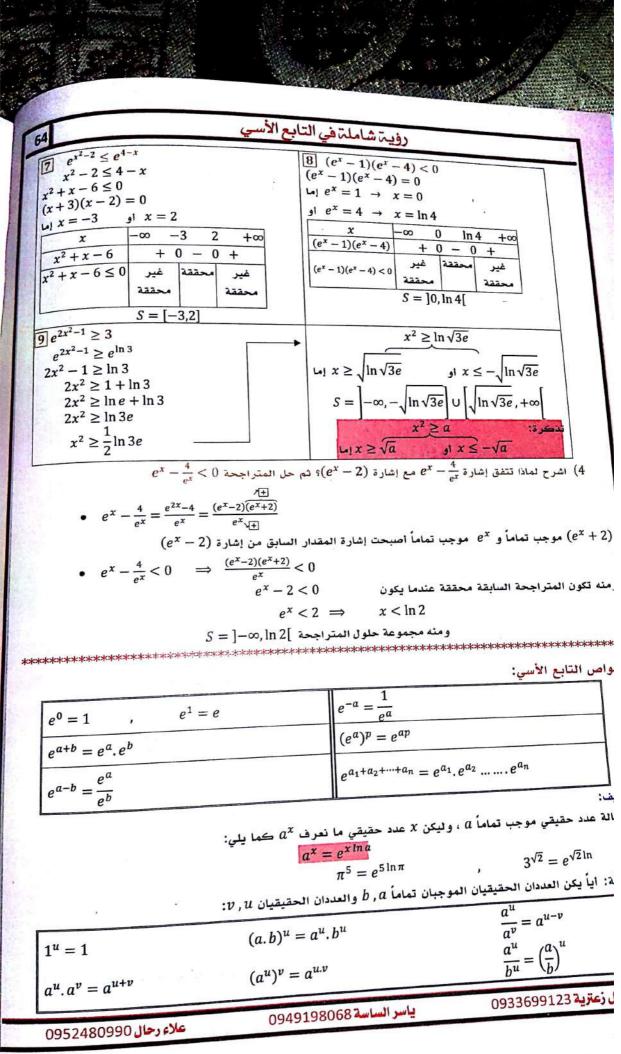
d a low	(2) اعتسان بشخا
$ 1 A = e^{\ln x} - \ln(2e^{x}) = x - (\ln 2 + \ln e^{x}) = x - \ln 2 - x = - \ln 2 $: شرط التعريف $x > 0$ $2e^x > 0$ $D =]0, +\infty[$
2 B = $e^{\ln(x-1) - \ln x} + \frac{1}{x}$ = $e^{\ln(\frac{x-1}{x})} + \frac{1}{x}$ = $\frac{x-1}{x} + \frac{1}{x} = 1$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ x - 1 > 0 \\ \end{array} \\ x - 1 > 0 \\ \end{array} \\ \begin{array}{c} \end{array} \\ x > 0 \\ \end{array} \\ \begin{array}{c} \end{array} \\ x \neq 0 \\ \end{array} \\ D = \left] 1, + \infty \right[\end{array} $
3 C = ln $(e^{\frac{1}{x}}) + e^{-\ln x}$ = $\frac{1}{x} + \frac{1}{x} = \frac{2}{x}$: شرط التعريف $e^{\frac{1}{x}} > 0$ $x > 0$ $x \neq 0$ $D = \left[0, +\infty\right[$

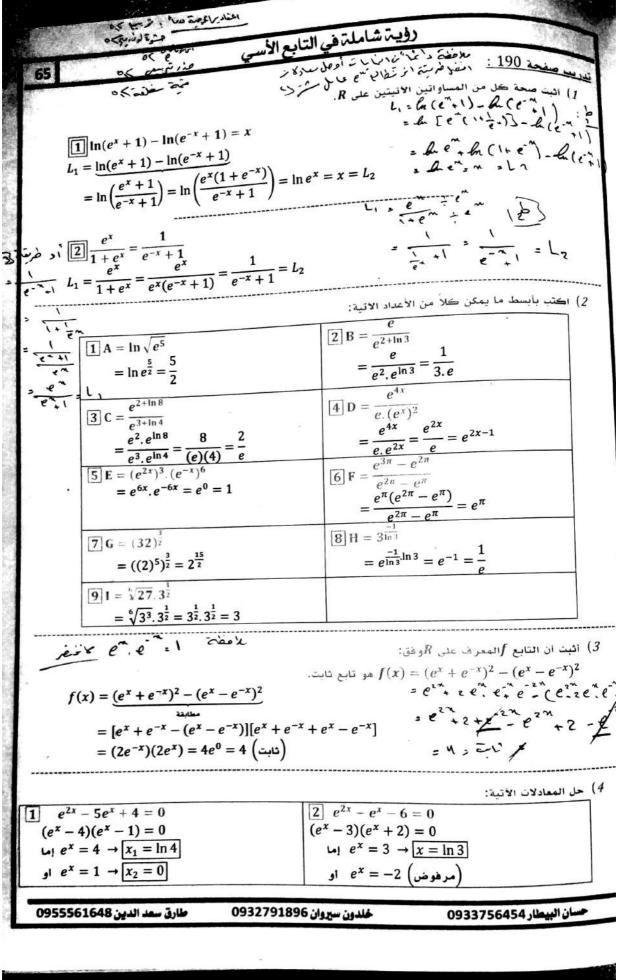
3) حل المعادلات أو المتراجحات الأتية:

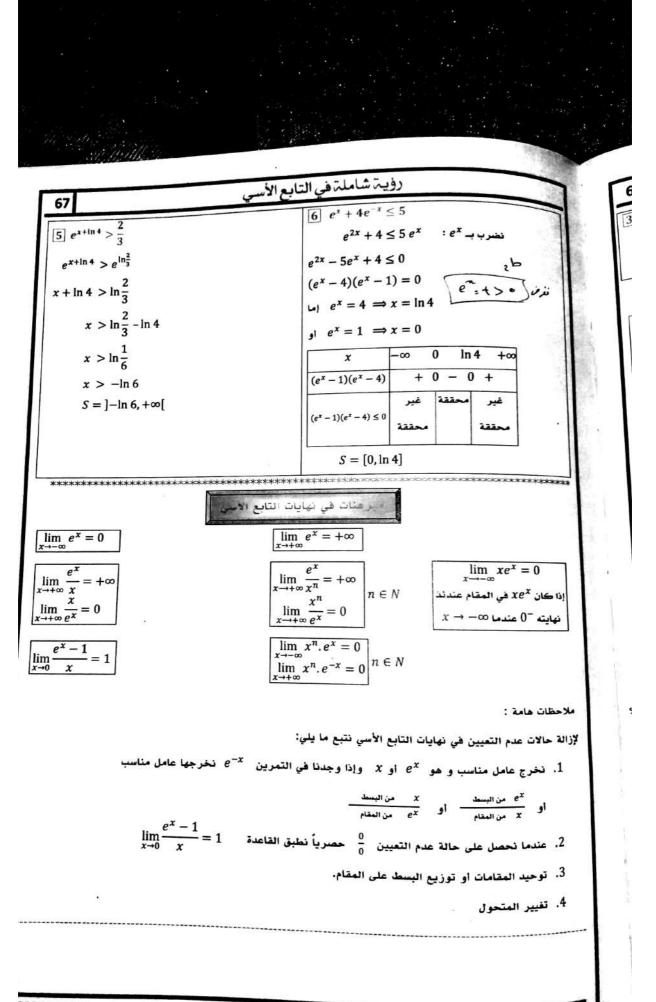
$$\begin{bmatrix}
2 & e^{2x^2+3} = e^{7x} \\
2x^2+3 = 7x \\
2x^2+3 = 7x \\
2x^2-7x+3 = 0 \\
\Delta = 49 - 24 = 25 \\
\Box_j : x_1 = \frac{7-5}{4} = \frac{1}{2} \Rightarrow \boxed{x_1 = \frac{1}{2}} \\
\beta : x_2 = \frac{7+5}{4} = 3 \Rightarrow \boxed{x_2 = 3} \\
\end{bmatrix}$$

$$\begin{bmatrix}
3 & e^x \\
1-2e^x = 5 \\
e^x = 5 - 10e^x \\
11e^x = 5 \\
e^x = 5 \\
11e^x = 5 \\
e^x = \frac{5}{11} \Rightarrow \boxed{x = \ln \frac{5}{11}} \\
\begin{bmatrix}
4 & 2e^{-x} = \frac{1}{e^x + 1} \\
2e^x + 2e^x \\
e^x = -2 \\
(1-2e^x) \ge 3 \\
\ln(2-e^x) \ge 3 \\
\ln(2-e^x) \ge 1ne^3 \\
e^x - 2 \ge e^3 \\
e^x = e^3 + 2 \\
x = \ln(e^3 + 2)
\end{bmatrix}$$

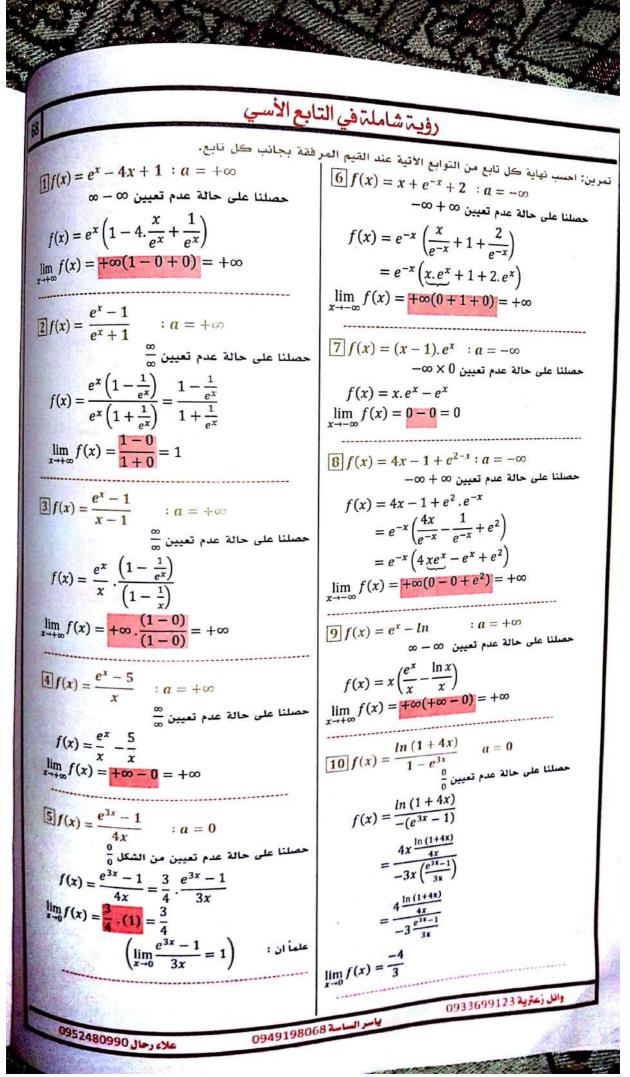
$$\begin{bmatrix}
6 & \ln(2-e^x) \ge 3 \\
\ln(2-e^x) \ge 1ne^3 \\
2-e^x \ge e^3 \\
2$$



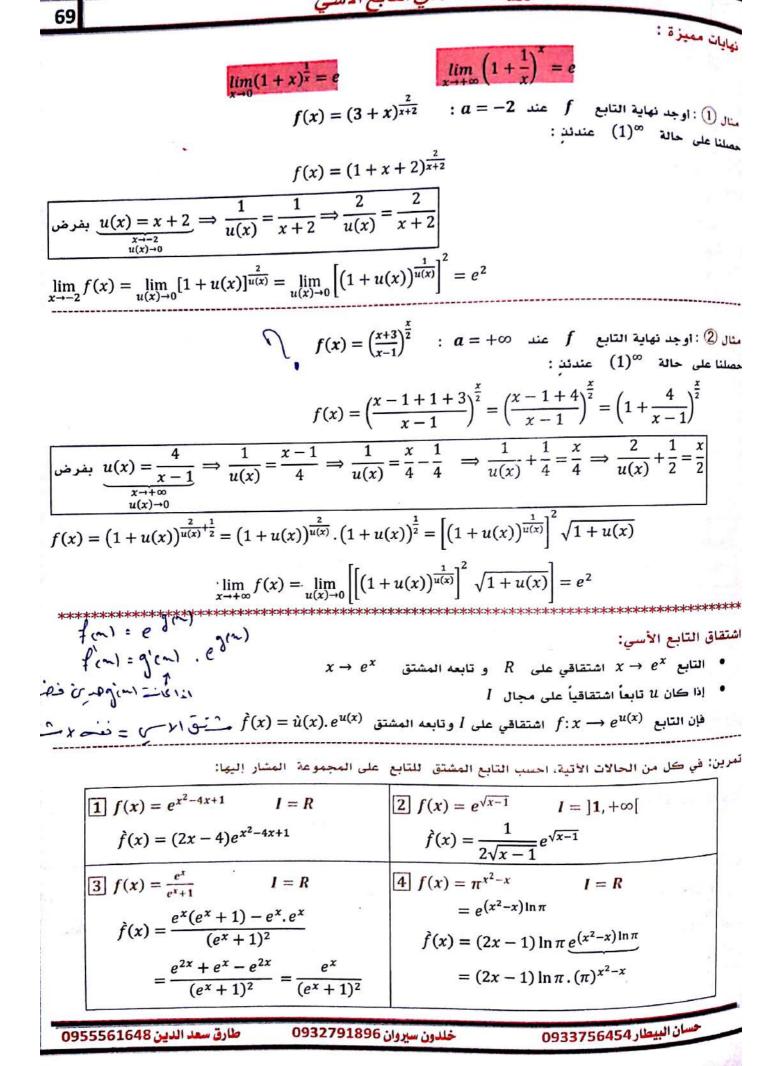




0932791806 طارق سعد الدين 0932791806



Scanned by CamScanner

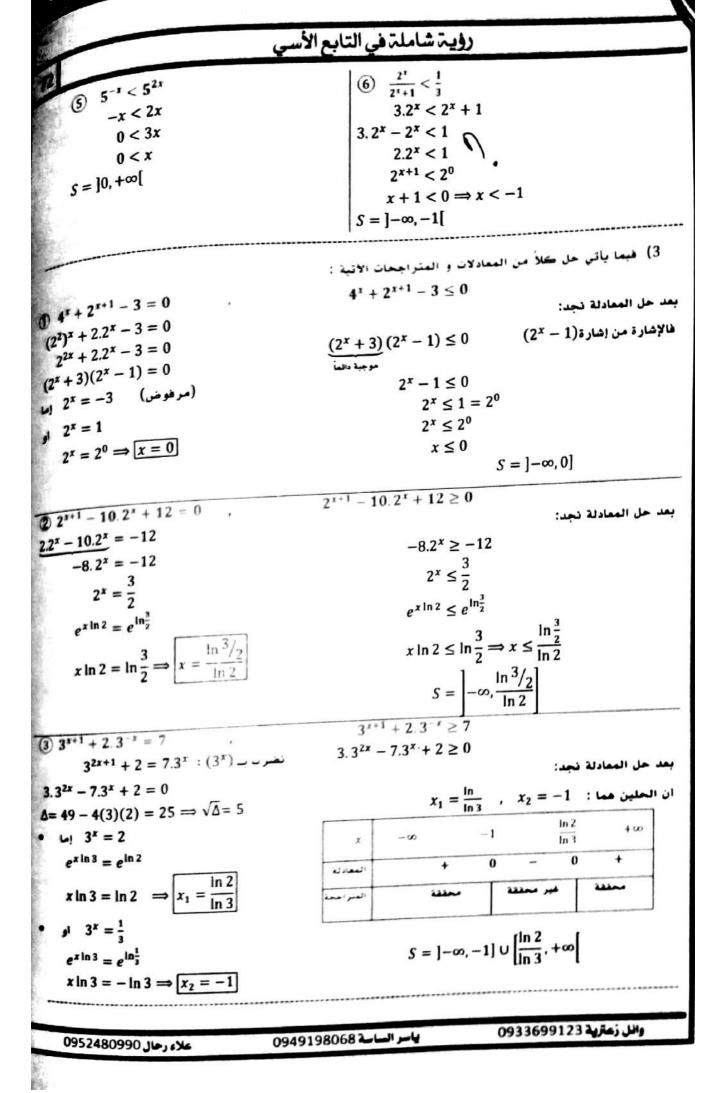


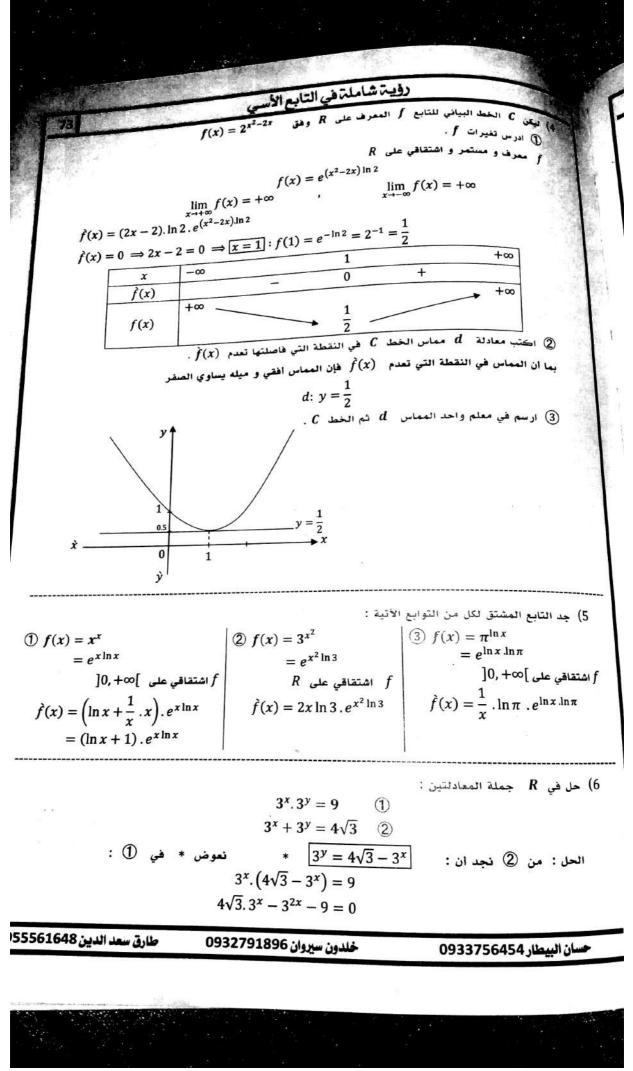
N

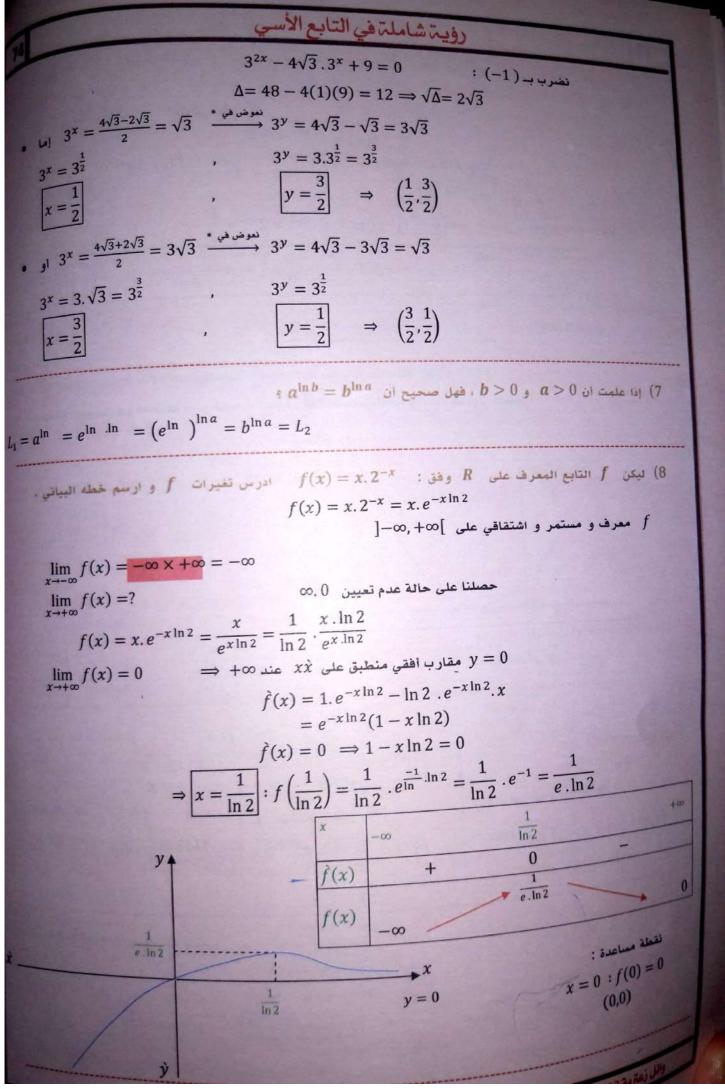
Scanned by CamScanner

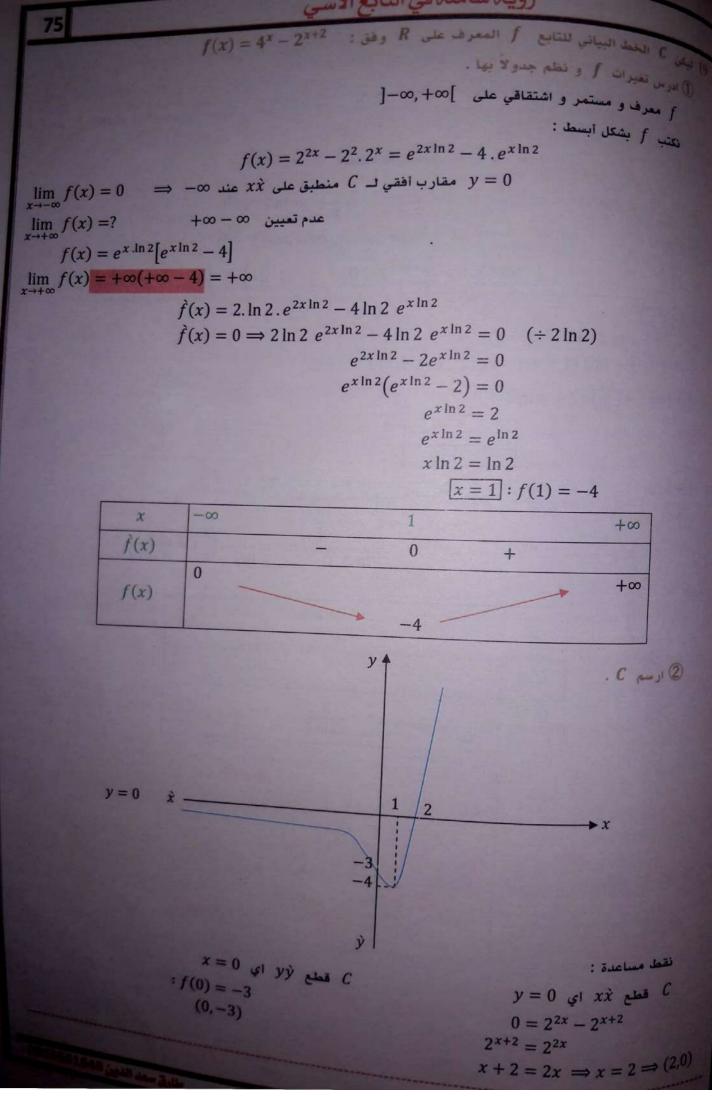
71
(1)
$$f(x) = \ln(e^x + 2)$$

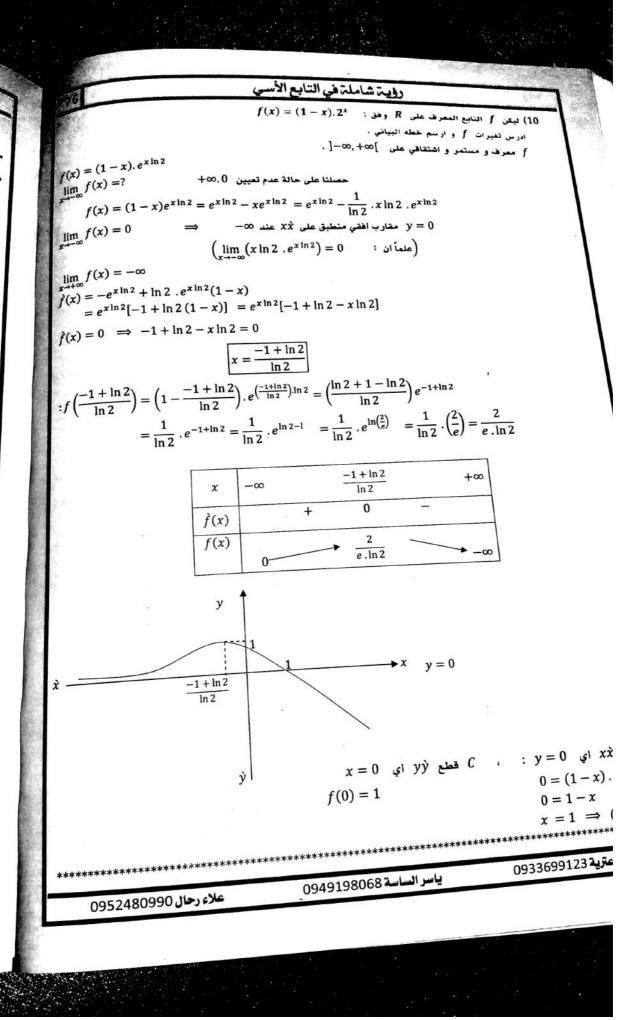
 $f(x) = \ln 2$
 $f(x) = \ln 2$
 $f(x) = \pi 2$
 $f(x) = \pi 2$
 $f(x) = \frac{1}{x}$
 $f(x) = 1n^2$
 $f(x) = \frac{1}{x}$
 $f(x) = \frac{1}{x}$











Scanned by CamScanner

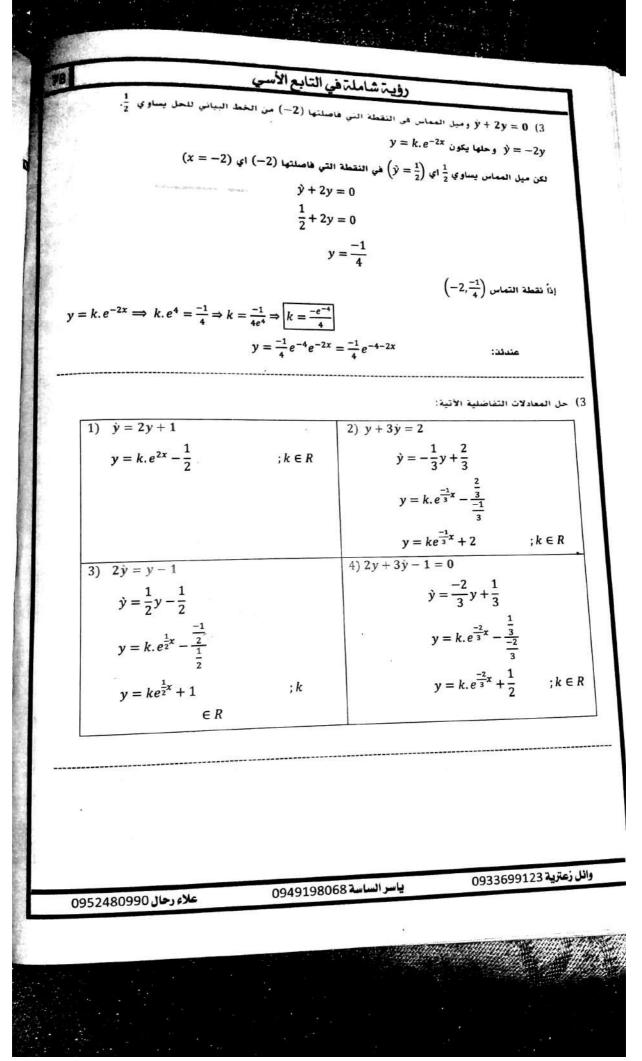
77معادلات تفاضلية بسيطةمعادلات تفاضلية بسيطةمعادلات تفاضلية بسيطةمجرمانة ال معادلة التفاضلية
$$0 \neq ay : a \neq 0$$
مجرمانة ال معادلة التفاضلية $0 \neq ay : a \neq 0$ مجرمانة ال معادلة التفاضلية $0 \neq ay : a \neq 0$ مجرمانة ال معادلة التفاضلية $0 \neq ay : a \neq 0$ مجرمانة ال معادلة التفاضلية $0 \neq ay : a \neq 0$ مجرمانة ال معادلة التفاضلية $0 \neq ay : a \neq 0$ مجرمانة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة ال معادلة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة ال معادلة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة ال معادلة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ال معادلة ال معادلة ال معادلة التفاضلية ($a \neq 0, b \in R$)مجرمانة ($a \neq 0,$

تدريب صفحة 205:

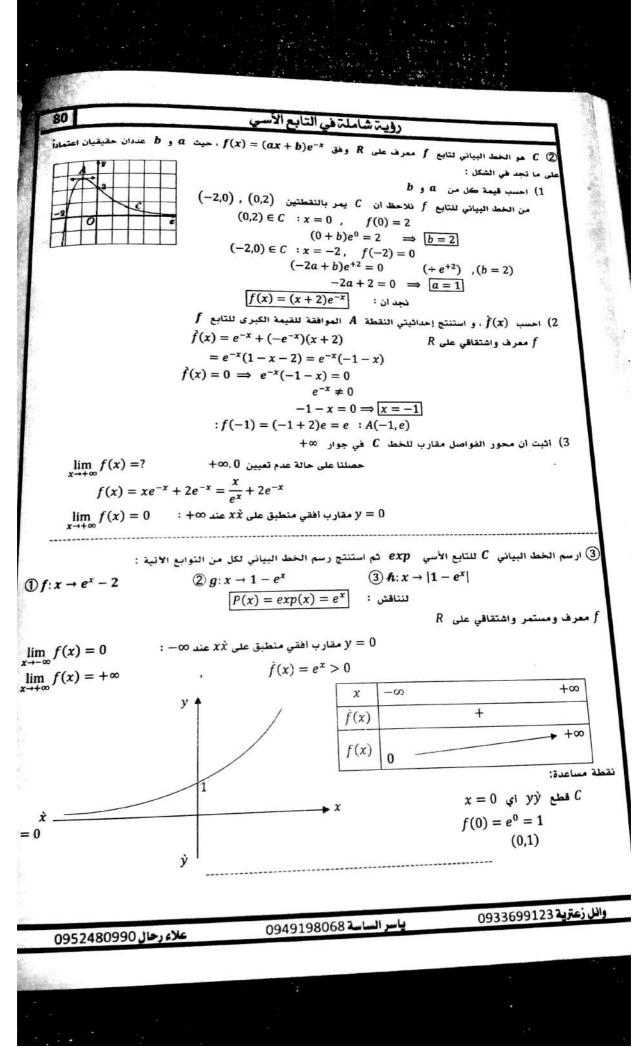
1) حل المعادلات التفاضلية الآتية:

1) $\dot{y} = 3y$	2) $\dot{y} + 2y = 0$
$y = k.e^{3x}$; $k \in R$	$\dot{y} = -2y$
	$y = k. e^{-2x}$; $k \in R$
$3) 3\dot{y} = 5y$	$(4) 2\dot{y} + 3y = 0$
$\dot{y} = \frac{5}{3}y$	$\dot{y} = \frac{-3}{2}y$
$y = k \cdot e^{\frac{5}{3}x} ; k \in \mathbb{R}$	$y = k \cdot e^{\frac{-3}{2}x} ; k \in \mathbb{R}$

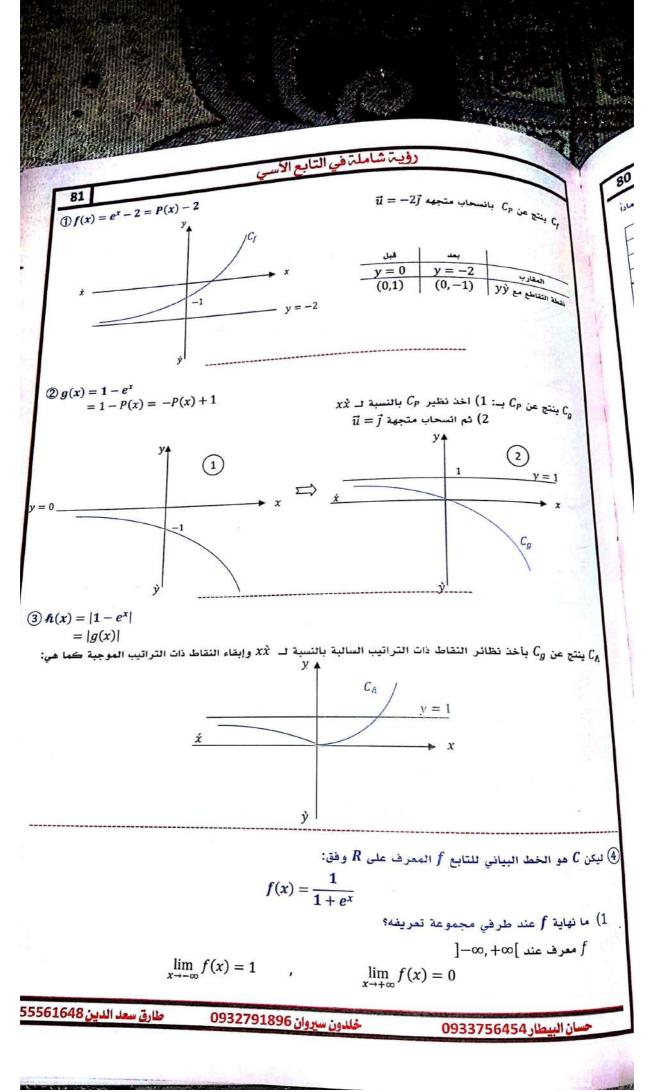
(2) في كل حالة عين حل المعادلة التفاضلية الذي يحقق الشرط المعطى: $f(0) = \dot{f}(0) = f(0)$ أي نعوض $(1 = \dot{f}(0) = f(0)$ ($x = 0 = \dot{f}(0) = f(0)$ (x = 0 = 0) f(0) = f(0) = f(0) (x = 0 = f(0) = f(0) (x = 0 = 0) f(0) = f(0) = f(0) (x = 0 = 0) f(0) = f(0) = f(0) (x = 0 = 0) f(0) = f(0) = f(0) g(0) = g(0) g(0) = g(0)g(

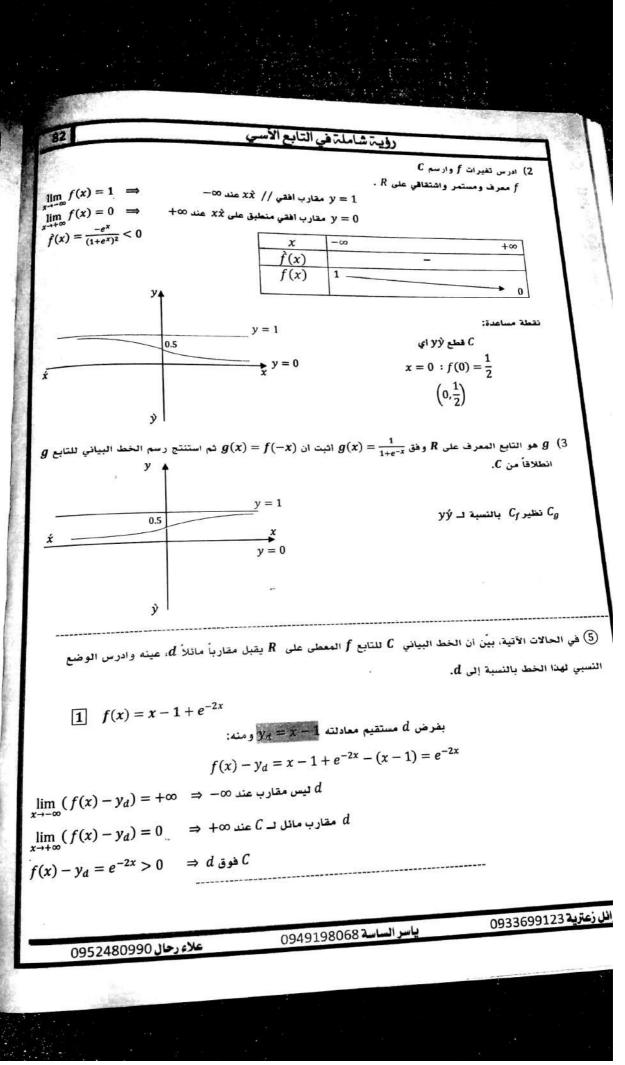


Scanned by CamScanner



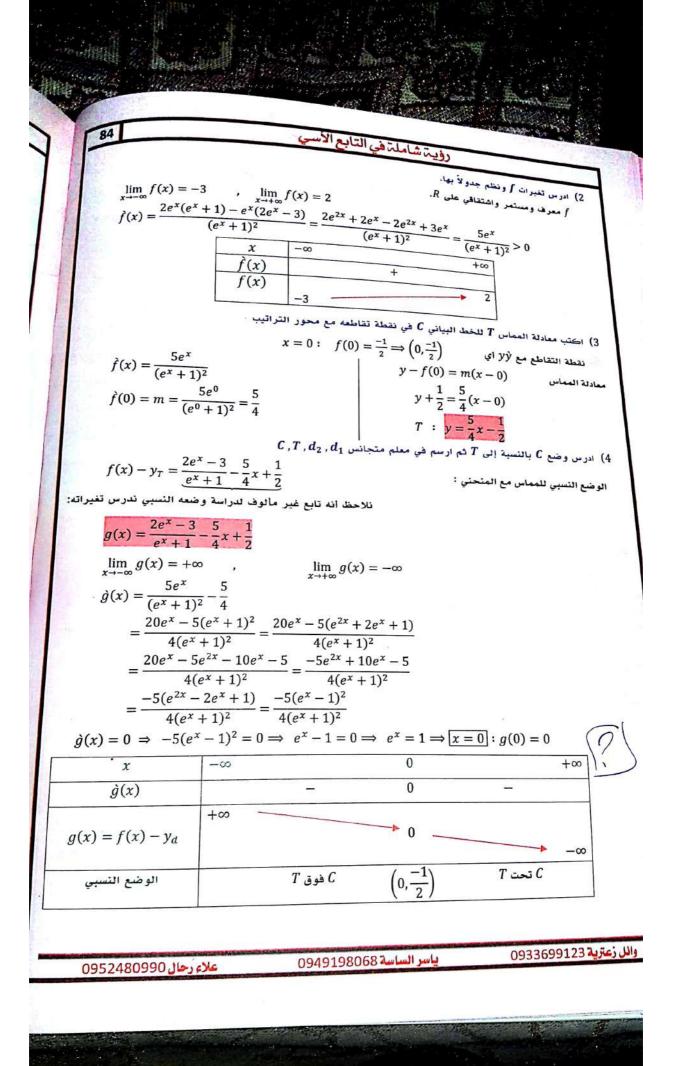
Scanned by CamScanner

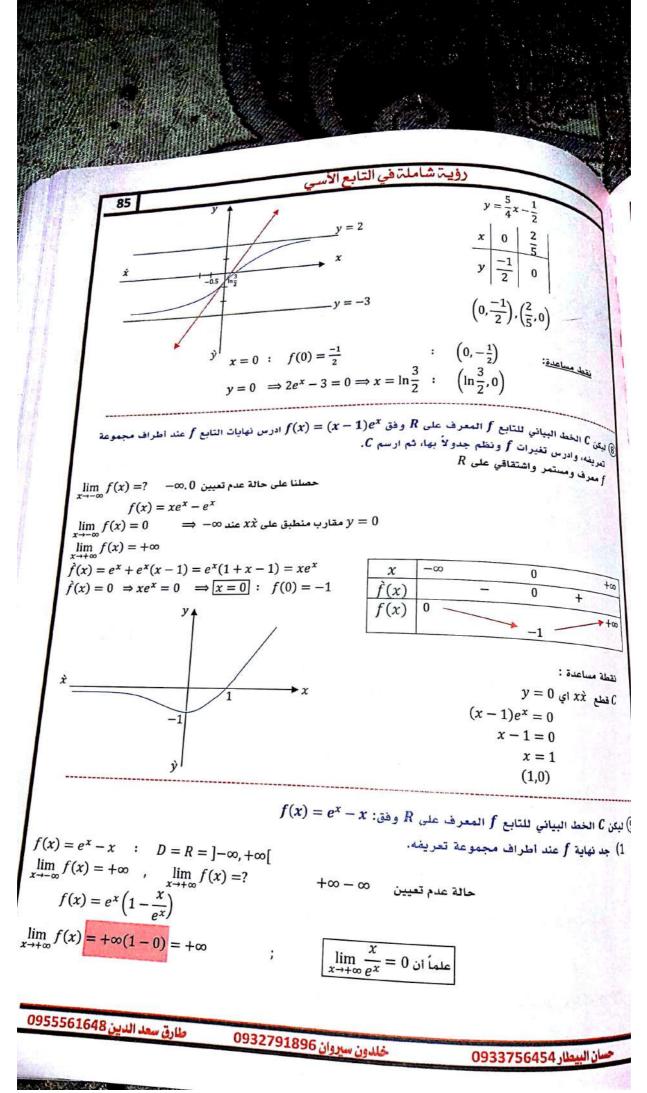


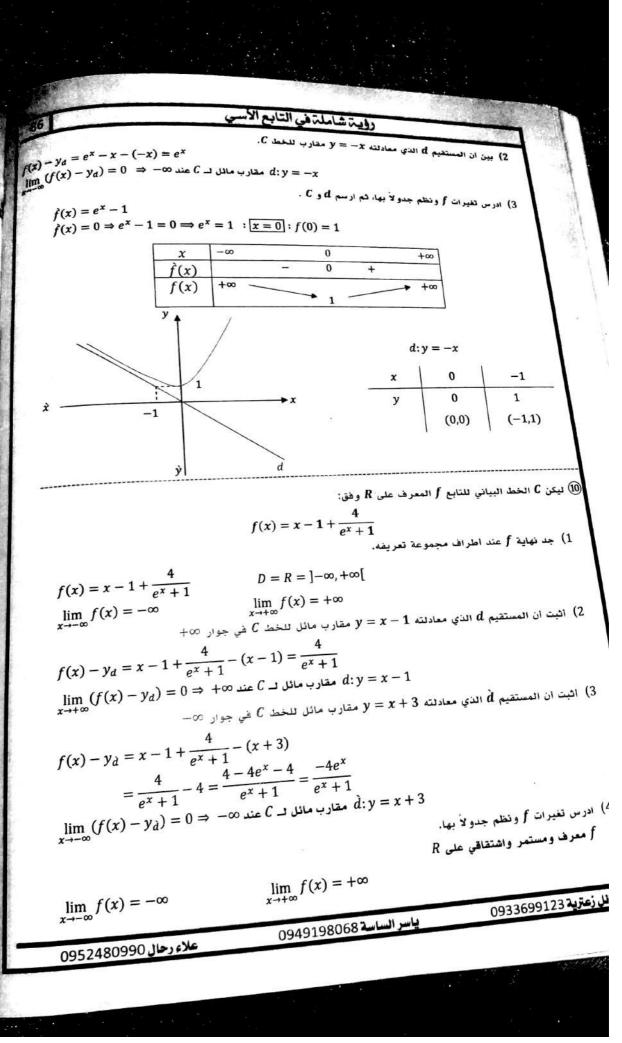


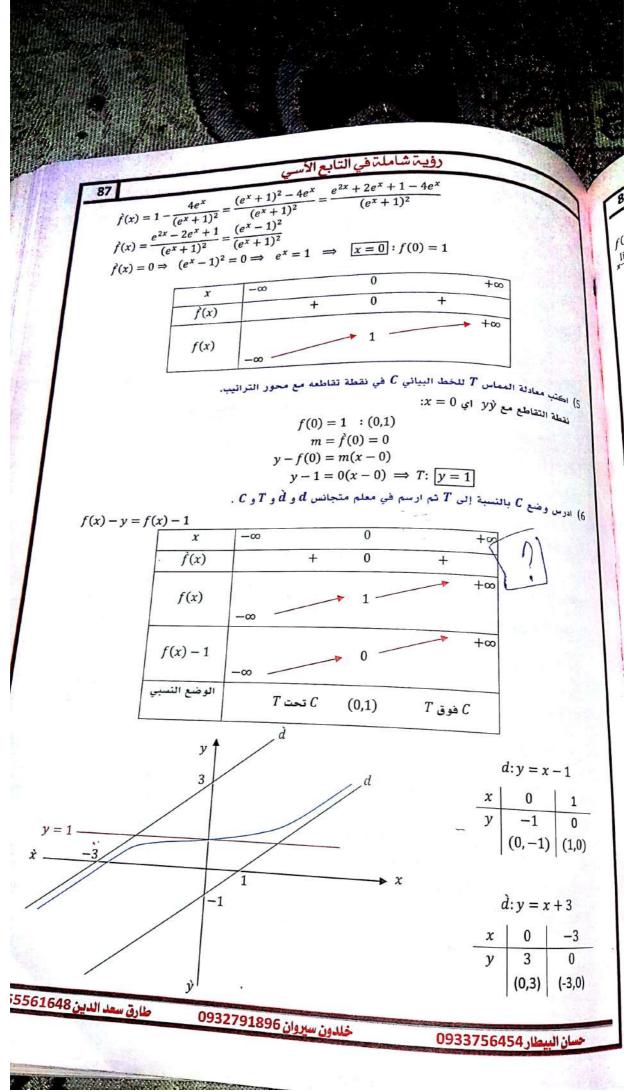
Scanned by CamScanner

$$\frac{\mathbf{3}}{(x_{1}, y_{2})} = \frac{\mathbf{3}}{(x_{1}, y_{2})} = \frac{\mathbf{3}}{(x_{1},$$









$$f(x) = 2e^{x} - 1 = 0$$

$$f(x) = e^{x} \left(2e^{x} - \frac{2}{e^{x}} - \frac{2}{e^{x}}\right)$$

$$f(x) = e^{x} \left(2e^{x} - \frac{1}{e^{x}} - \frac{2}{e^{x}}\right)$$

$$f(x) = e^{x} \left(1e^{x} - \frac{1}{e^{x}} - \frac{1}{e^{x}}\right)$$

$$f(x) = 2e^{x} - 1 = 0$$

$$e^{x} = \frac{1}{2}$$

$$f(x) = 2e^{x} - 1 = 0$$

$$e^{x} = \frac{1}{2}$$

$$f(x) = 2e^{x} - 1 = 0$$

$$e^{x} = \frac{1}{2}$$

$$f(x) = 2e^{-1\ln 2} + \ln 2 - 2 = 1 + \ln 2 - 2 = -\ln 2$$

$$f(x) = 2e^{-\ln 2} + \ln 2 - 2$$

$$f(-\ln 2) = 2e^{-\ln 2} + \ln 2 - 2$$

$$f(-\ln 2) = 2e^{-\ln 2} + \ln 2 - 2 = 1 + \ln 2$$

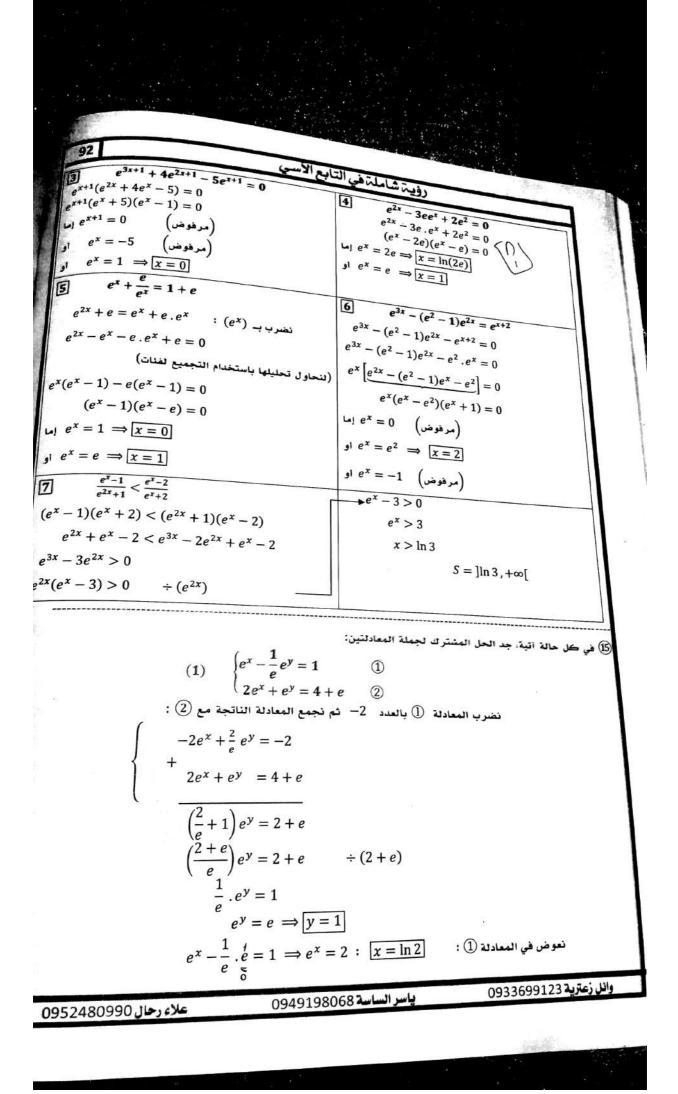
$$\frac{1}{\frac{f(x)}{f(x)}} + \frac{1}{e^{x}} - \frac{1}{e^{x}} + \frac{1}{e^{x}}$$

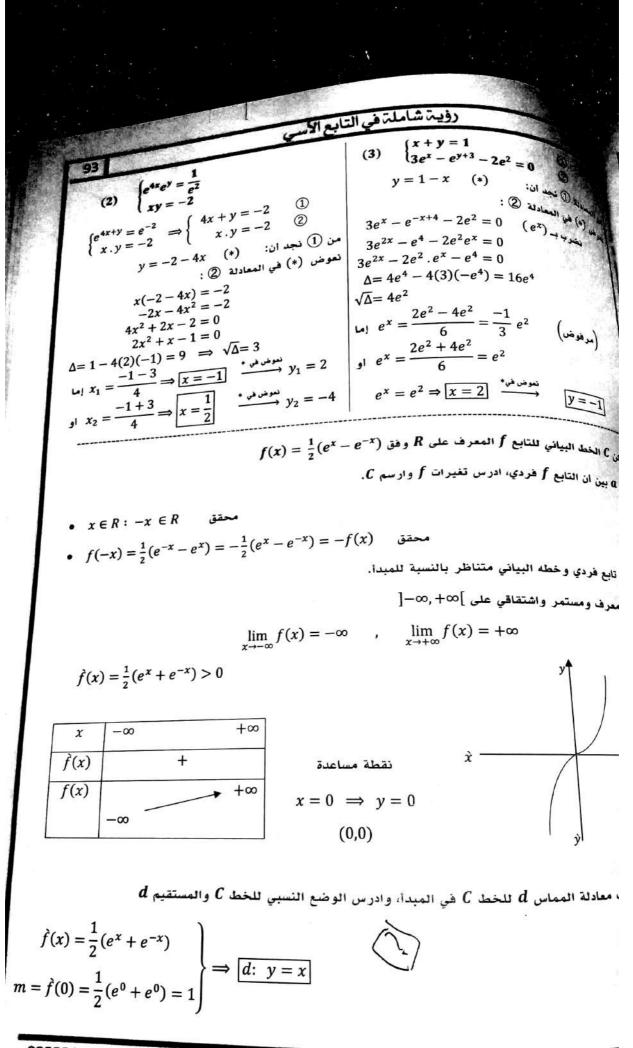
$$f(x) = e^{-1} + \ln 2$$

$$\begin{cases} -\ln 2, +\infty[-\ln 2] = \int_{-\pi}^{\pi} f(x) = 0 \\ = \int_{-\pi}^{\pi$$

رؤية شاملة في التابع الأسي يانيان للتابع exp واللوغاريتمي In بالترتيب ايقبل هذان الخطان معاسات مشتر حة؟ 89 ماس المفعلة CE في النقطة B حيث: $g(x) = e^x$ $f(x) = \ln x$ Te مماس الخط وC في النقطة A حيث $x = b : g(b) = e^b : B(b, e^b)$ $x = a : f(a) = \ln a : A(a, \ln a)$ $\dot{g}(x) = e^x$ lim $\hat{f}(x) = \frac{1}{x}$ $m_E = \dot{g}(b) = e^b$ $m_\ell = f(a) = \frac{1}{a}$ $T_{\ell}: y_A - \ln a = \frac{1}{a}(x - a)$ $T_E: y_B - e^b = e^b(x)$ $y_A = \frac{1}{a}x - 1 + \ln a$ $(m_{\ell} = m_E)$ يمسهما على التوالي هي A, B لكان المماسين منطبقين اي C_{ℓ}, C_E $T_E: y_B - e^b = e^b (x - b)$ $y_B = e^b x - b e^b + e^b$ لإمطان إذا وجد مماس ومنه بالحل المشترك لهما: $y_A = y_B$ (*) $\frac{1}{a}x - 1 + \ln a = e^b x - be^b + e^b$: $\frac{1}{a} = e^{b}$ (1) فان $m_{\ell} = m_{E}$ نان $a = \frac{1}{e^{b}} \Longrightarrow a = e^{-b} \Longrightarrow \boxed{\ln a = -b}$ (2) نيوض (1) و (2) في * فنجد: $e^{b}x - 1 - b = e^{b}x - be^{b} + e^{b}$ -1 - b = e^{b}(-b+1) $\div (-b+1)$ $\frac{-1 - b}{-b+1} = e^{b}$ $\frac{-(b+1)}{-(b-1)} = e^{b}$ $\frac{b+1}{b-1} = e^b$ $-e^b + \frac{b+1}{b-1} = 0$ اللحظ ان حل هذه المعادلة جبرياً صعبة جداً على الطالب وصعب إيجاد حلولها فلذلك نلجا لتحويلها إلى تابع وندرس تغيراته: $f(x) = -e^x + rac{x+1}{x-1}$; $R \setminus \{1\}$ مستمر واشتقاقي على المجالين $[0, +\infty[$ ومنه: $\lim_{x \to -\infty} f(x) = 1 \qquad , \quad \lim_{x \to +\infty} f(x) = -\infty$ $\lim_{x \to 1^{-}} f(x) = -\infty , \quad \lim_{x \to 1^{+}} f(x) = +\infty$ $x) = -e^{x} + \frac{x - 1 - x - 1}{(x - 1)^{2}} = -e^{x} - \frac{2}{(x - 1)^{2}} < 0$ -00 +00 نلاحظ من تغیرات f ان للمعادلة f(x) = 0 جذرین مختلفین :) حدهما $(b_2 = a_2 > 1)$ والآخر $(b_1 = a_1 < 1)$ وبالتالى:) 1. +00 _ . C_ℓ, C_E يوجد مماسان مشتركان للخطين 0 - - 0 $(b_2, e^{b_2}), (b_1, e^{b_1})$ احدهما يمس C_E في النقطتين $(a_2, \ln a_2), (a_1, \ln a_1)$ والأخر يمس C_{ℓ} في النقطتين طارق سعد الدين 5561648 خلدون سيروان 0932791896 حسان البيطار 0933756454

$$\begin{aligned} \left| \begin{array}{c} \mathbf{y} \\ \mathbf{y}$$





طارق سعد الدين 0955561648

خلدون سيروان 0932791896

ر 0933756454

$$f(x) - y_{x} = \frac{1}{2} (e^{x} - e^{-x}) - x$$

$$f(x) - y_{x} = \frac{1}{2} (e^{x} - e^{-x}) - x$$

$$g(x) = \frac{1}{2} (e^{x} - e^{-x} - 2x)$$

$$g(x) = \frac{1}{2} (e^{x} - e^{-x} - 2x)$$

$$g(x) = \frac{e^{x}}{2} (\frac{e^{x}}{e^{-x}} - 1 - \frac{2x}{e^{-x}})$$

$$g(x) = \frac{e^{x}}{2} (\frac{e^{x}}{e^{-x}} - 1 - 2xe^{x})$$

$$g(x) = \frac{e^{x}}{2} (e^{(x-1)-2xe^{x}})$$

$$g(x) = \frac{e^{x}}{2} (e^{(x-1)-2xe^{x}})$$

$$g(x) = \frac{1}{2} (e^{x} + e^{-x} - 2)$$

$$g(x) = 0 \Rightarrow (e^{x} - 1)^{2} = 0$$

$$e^{x} = 1 \Rightarrow x = 0 : g(x) = 0$$

$$\frac{1}{2} (e^{x} (e^{x} - 1)^{2})$$

$$g(x) = 0 \Rightarrow (e^{x} - 1)^{2} = 0$$

$$e^{x} = 1 \Rightarrow x = 0 : g(x) = 0$$

$$\frac{1}{2} (e^{x} - e^{x})$$

$$g(x) = \frac{1}{2} (e^{x} + e^{x})$$

$$g(x) = \frac{1}{2} (e^{x} + e^{x})$$

$$g(x) = 0 \Rightarrow (e^{x} - 1)^{2} = 0$$

$$e^{x} = 1 \Rightarrow x = 0 : g(x) = 0$$

$$\frac{1}{2} (e^{x} - e^{x}) = n$$

$$\frac{e^{x} - 1}{e^{x}} = 2m \cdot (e^{x})$$

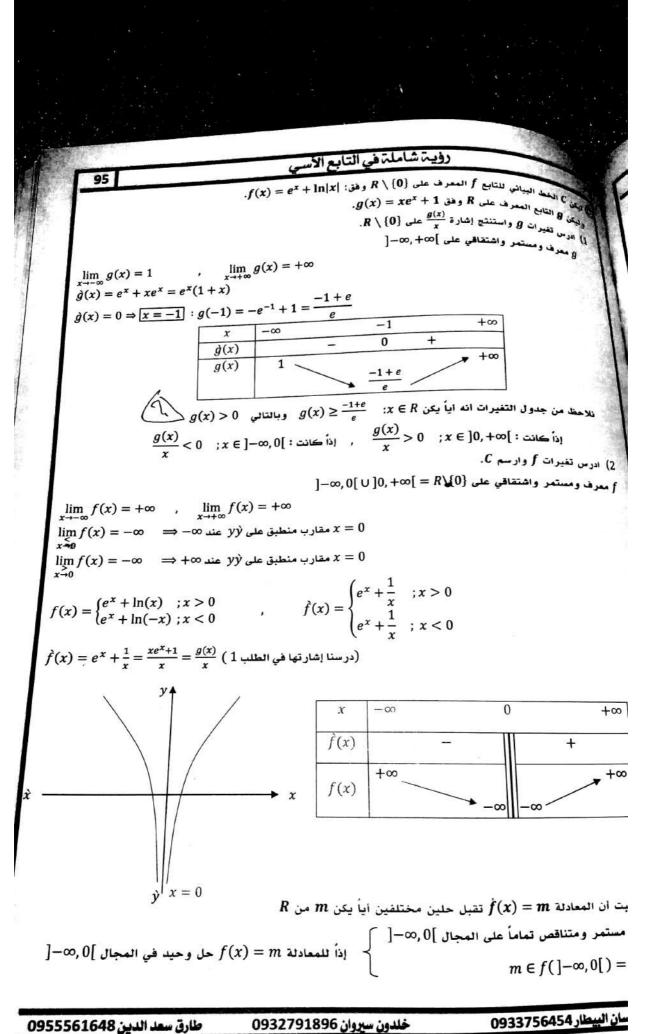
$$\frac{1}{\sqrt{a} - 2\sqrt{m^{2} + 1}} = m + \sqrt{m^{2} + 1} \Rightarrow x = 1 = (n(m + \sqrt{m^{2} + 1)) = 1$$

$$\frac{1}{2} (e^{x} - e^{x}) = n$$

$$\frac{1}{2} (e^{x} - e^{x}) = 1$$

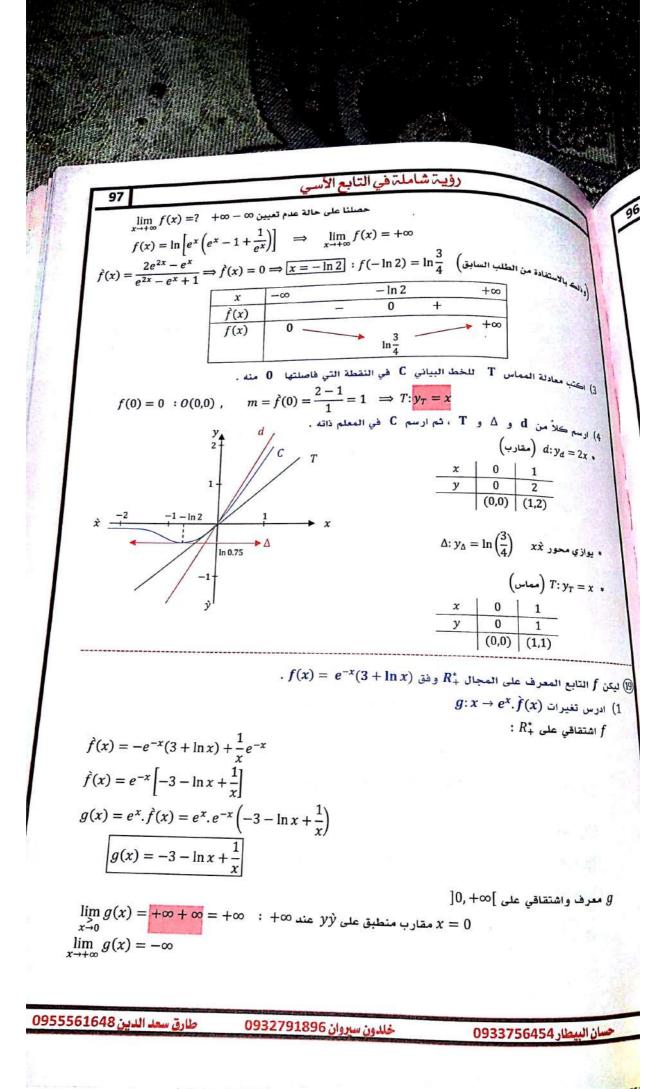
$$\frac{1}{2}$$

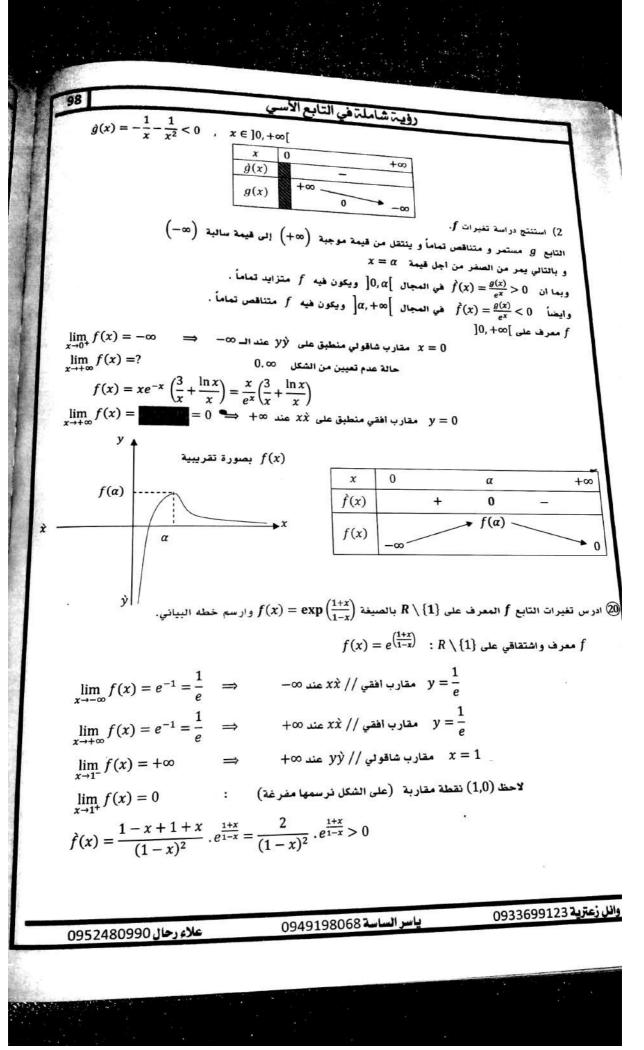
 $m = m - \sqrt{m^2 + 1} < 0$ (مرفوض)



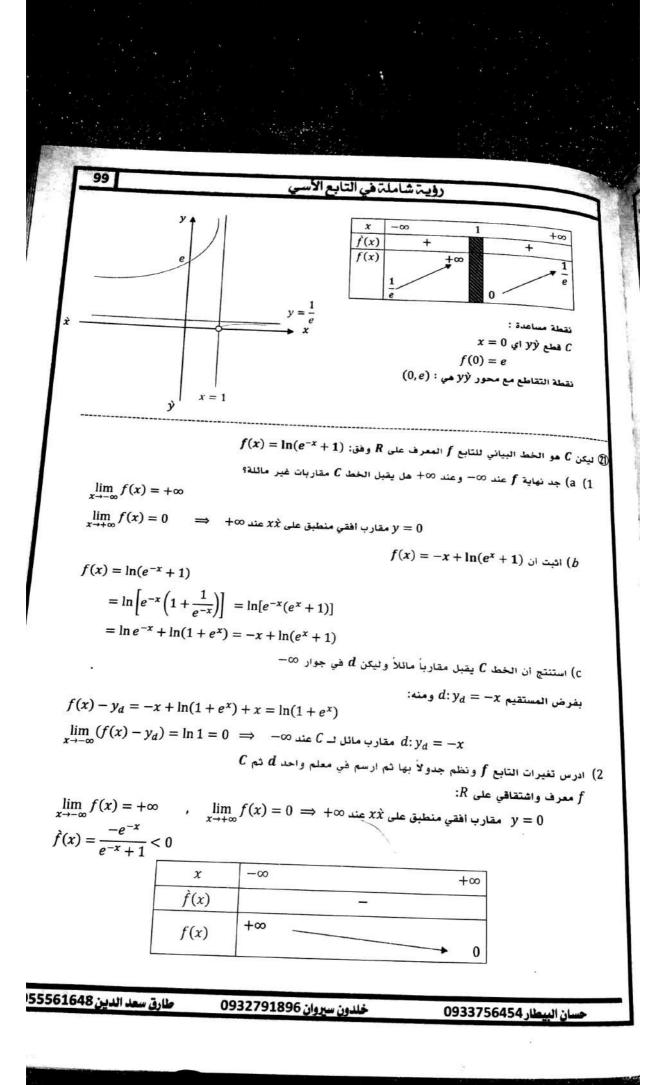
خلدون سيروان 0932791896

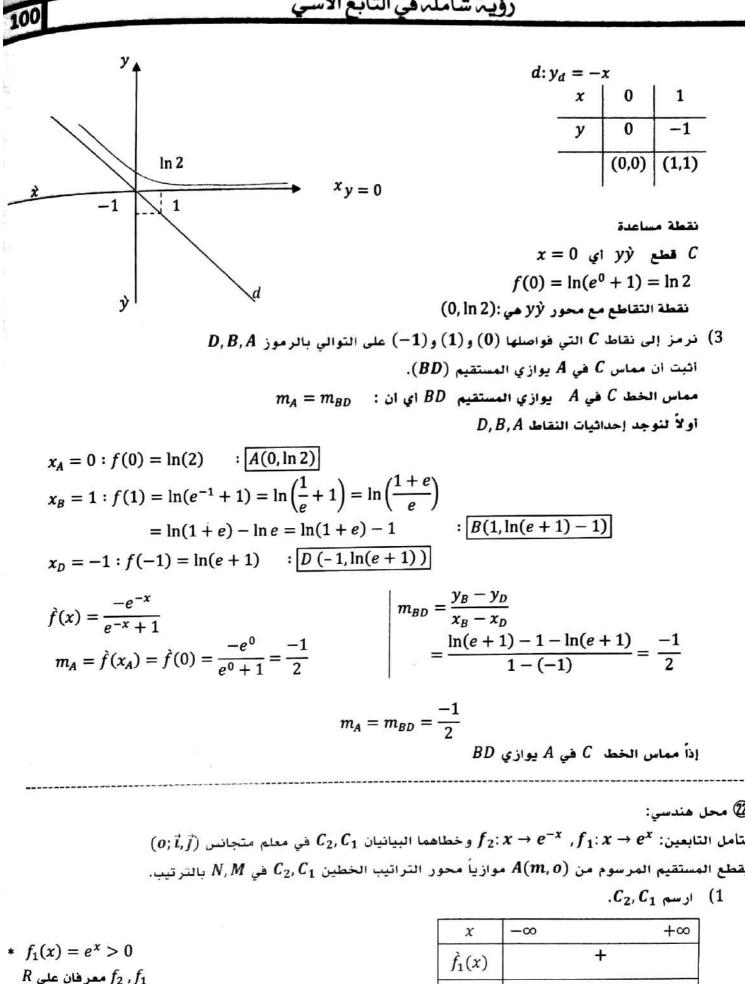
f مستمر ومتزايد تماماً على المجال]∞+,0[اذاً للمعادلة f(x) = m حل وحيد في المجال $[0, +\infty]$ $m \in f(]0, +\infty[) = R$ $R \setminus \{0\}$ ومنه للمعادلة f(x) = m حلين مختلفين في $f(x) = \ln(e^{2x} - e^x + 1)$ ليكن C الخط البياني للتابع f المعرف وفق: C 1) تحقق من كل من المقولات الأتية: R معرف على f(a $e^{2x} - e^{x} + 1 > 0$ شرط اللوغاريتم $e^{2x} - e^x + 1 = 0$ نفر ض $\Delta = 1 - 4(1)(1) = -3 < 0$, $\left($ مستحیلة الحل $\right)$ D=R إذا فهي توافق إشارة e^{2x} اي $(e^{2x}-e^x+1>0)$ محققة دوماً) إذا e^{2x} $f(x) = 2x + \ln(1 - e^{-x} + e^{-2x})$ يكتب f(x) بالصيغة (b $f(x) = \ln(e^{2x} - e^x + 1) = \ln[e^{2x}(1 - e^{-x} + e^{-2x})]$ $f(x) = \ln(e^{2x}) + \ln(1 - e^{-x} + e^{-2x}) = 2x + \ln(1 - e^{-x} + e^{-2x})$.c المستقيم d الذي معادلته y = 2x مقارب مائل للخط (c $f(x) - y_d = 2x + \ln(1 - e^{-x} + e^{-2x}) - 2x$ $= \ln(1 - e^{-x} + e^{-2x})$ $\lim_{x \to -\infty} (f(x) - y_d) = ?$ حالة عدم تعيين $\infty + \infty$ $f(x) - y_d = \ln[e^{-x}(e^x - 1 + e^{-x})]$ $\lim_{x \to -\infty} (f(x) - y_d) = +\infty \Rightarrow -\infty$ لیس مقارب مائل عند d $\lim_{x \to +\infty} (f(x) - y_d) = 0 \quad \Rightarrow +\infty$ مقارب مائل لـ C عند d. + ∞ مقارب مائل لـ c عند $+\infty$. الخط C يقبل مماساً وحيداً Δ موازياً محور الفواصل (d. $m=0 \Leftrightarrow$ المماس يوازي محور الفواصل m=0 $\hat{f}(x) = \frac{2e^{2x} - e^x}{e^{2x} - e^x + 1}$ f اشتقاقی علی F $\hat{f}(x_0) = m = 0$ مث عن نقطة x_0 بحيث: $\hat{f}(x_0) = m = 0$ $\dot{f}(x_0) = 0 \Longrightarrow 2e^{2x_0} - e^{x_0} = 0$ $e^{x_0}(2e^{x_0}-1)=0$ $2e^{x_0} - 1 = 0 \implies e^{x_0} = \frac{1}{2} \implies x_0 = \ln \frac{1}{2} = -\ln 2$ $: f(-\ln 2) = \ln(e^{2(-\ln 2)} - e^{-\ln 2} + 1)$ $= \ln\left(\frac{1}{a^{2}\ln^{2}} - \frac{1}{a\ln^{2}} + 1\right) = \ln\left(\frac{1}{4} - \frac{1}{2} + 1\right) = \ln\left(\frac{3}{4}\right) \implies A\left(-\ln 2, \ln\frac{3}{4}\right)$ $\Delta: y_{\Delta} = \ln\left(\frac{3}{2}\right) \quad : \text{ all for a set of } A \quad \text{ and } A \quad \text$ 2) ادرس تغيرات f ونظم جدو لأ بها. R معرف و مستمر و اشتقاقی علی f $\lim_{x o -\infty} f(x)=0 \;\; \Rightarrow \;\; -\infty$ مقارب افقي منطبق على $x\dot{x}$ عند y=0



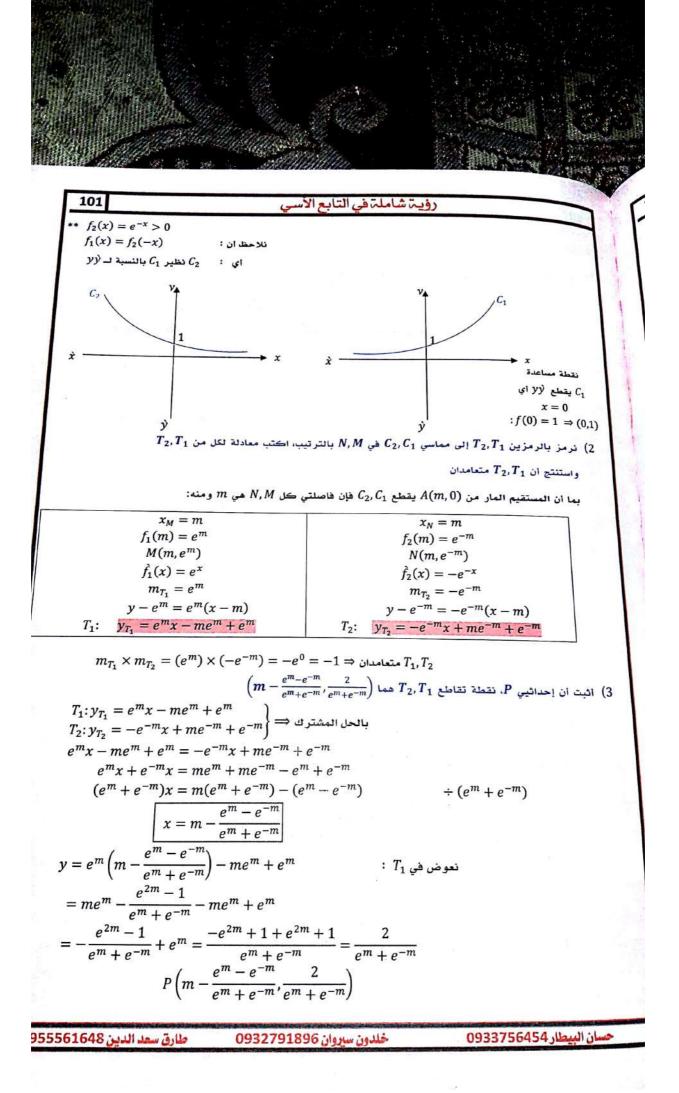


Scanned by CamScanner





 $f_1(x) = 0 \implies -\infty$ مقارب منطبق على xx عند x = 0 $f_1(x) = 0 \implies -\infty$ $f_1(x) = 0$ $f_1(x) = +\infty$ $f_1(x) = +\infty$ $f_1(x) = e^x > 0$



شاملة في التابع $M(m, e^{m}) , N(m, e^{-m})$ $I\left(\frac{m+m}{2}, \frac{e^{m}+e^{-m}}{2}\right) \Rightarrow I\left(m, \frac{e^{m}+e^{-m}}{2}\right)$ التعملة / منتصف القطعة [MN]. a) احسب بدلالة m إعدائين النقطة l. $y = \frac{e^m + e^{-m}}{2}$ ($m, \frac{e^m + e^{-m}}{2}$) فمعادلة المحل الهندسي ٢ للنقطة / هي: $y = \frac{e^m + e^{-m}}{2}$ b) جد ٢ المحل الهندسي للنقطة 1 عندما تتحول m هي R. $f_{I}(x) = rac{1}{2}(e^{x} + e^{-x})$ المعرف على R وفق: f(x) البياني للتابع f(x) المعرف على FC) ارسم مجموعة النقاط / في المعلم الذي رسمت فيه الخطين C2 , C1 . $f(x) = \frac{1}{2}(e^{x} + e^{-x})$ $\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x\to+\infty}f(x)=+\infty$ $\begin{cases} \hat{f}(x) = \frac{1}{2}(e^{x} - e^{-x}) \\ \hat{f}(x) = 0 \end{cases} \Rightarrow \frac{1}{2}(e^{x} - e^{-x}) = 0 \end{cases}$ R معر ف واشتقاقي على f $e^x - e^{-x} = 0$ $e^x = e^{-x} \implies x = 0 : f(0) = 1$ x -00 0 $\hat{f}(x)$ +00 0 + f(x)+00 +00 لسهو لة الرسم: 1 سنرسم نقط المحل الهندسي للنقطة / فقط ورسمنا سابقاً C₂, C₁ . ŷ a (5) احسب بدلالة m، مركبات الشعاعين (a (5 A(m,0) , $P\left(m-\frac{e^m-e^{-m}}{e^m+e^{-m}},\frac{2}{e^m+e^{-m}}\right)$, $I\left(m,\frac{e^m+e^{-m}}{2}\right)$ $\overrightarrow{AP} = \left(m - \frac{e^m - e^{-m}}{e^m + e^{-m}} - m\right)\vec{\iota} + \left(\frac{2}{e^m + e^{-m}} - 0\right)\vec{j}$ $= \left(-\frac{e^m - e^{-m}}{e^m + e^{-m}}\right)\vec{i} + \left(\frac{2}{e^m + e^{-m}}\right)\vec{j}$ $\overrightarrow{IP} = \left(m - \frac{e^m - e^{-m}}{e^m + e^{-m}} - m\right)\vec{\iota} + \left(\frac{2}{e^m + e^{-m}} - \frac{e^m + e^{-m}}{2}\right)\vec{j}$ $= \left(-\frac{e^{m} - e^{-m}}{e^{m} + e^{-m}}\right)\vec{i} + \left(\frac{4 - (e^{m} + e^{-m})^{2}}{2(e^{m} + e^{-m})}\right)\vec{j}$ $= \left(-\frac{e^{m} - e^{-m}}{e^{m} + e^{-m}}\right)\vec{i} + \left(\frac{2 - e^{2m} - e^{-2m}}{2(e^{m} + e^{-m})}\right)\vec{j}$

علاء رحال 0952480990

ياسر الساسة 0949198068

والل زعترية 0933699123

$$\begin{split} f(x) &= (x^2 + x - 1)^{(n)} (x_1) = (x_1 + x - 1)^{(n)} (x_2 + (x_1 + x_1)^{(n)} + (x_2 + x_2)^{(n)})^{(n)} = x_1 + x_2 + x_1 + x_1 + x_1 + x_1 + x_1)^{(n)} = x_1 + x_1 +$$

زية 0933699123

ياسر الساسة 0949198068

علاء رحال 0952480990

دؤيرة شاملة في التابع الأسي 105 3) هي هذا السؤال نريد كتابة an و bn بدلاله . an اثبت أن المتتالية (an) حسابية ، استنتج كتابة an بدلالة (a $a_{n+1} = a_n + 2$ $a_{n+1} - a_n = 2$ (ثابت) فهي متتالية حسابية أساسها 2 = r وحدها الأول $a_1 = 3$. دستور الحد العام في المتتالية الحسابية : $a_n = a_m + (n - m)r$ $: \begin{cases} a_1 = 3 \\ r = 2 \end{cases}$ $a_n = a_1 + (n-1)r$ = 3 + (n - 1)(2)= 3 + 2n - 2 = 2n + 1 $a_n = 2n + 1$ n تحقق من ان $b_n = a_{n-1} + a_{n-2} + \dots + a_2 + a_1$ (ایا یکن $b_n = a_{n-1} + a_{n-2} + \dots + a_2 + a_1$ (b $b_{n+1} = a_n + b_n$ $b_n = a_{n-1} + b_{n-1}$ و منه $=a_{n-1}+a_{n-2}+b_{n-2}$ $= a_{n-1} + a_{n-2} + a_{n-3} + b_{n-3}$ $= a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4} + b_{n-4}$ $b_n = a_{n-1} + \dots + a_2 + a_1$ (n-1-1+1=n-1) و عدد حدودها $a_1=3$ و عدد حدودها $a_1=1$ و عدد متوالية من متتالية حسابية حدها الأول $a_{n-1} = 2(n-1) + 1$ ، فيكون حدها الأخير $a_n = 2n+1$ ، لدينا الدينا الم = 2n - 2 + 1 = 2n - 1 $b_n = S = (n-1)\left(\frac{2n-1+3}{2}\right) = (n-1)\left(\frac{2n+2}{2}\right) = (n-1)\left(\frac{2(n+1)}{2}\right) = (n-1)(n+1)$ $b_n = (n-1)(n+1)$ و منه نکتب معادلة تفاضلية : . (E) لتكن (E) المعادلة التفاضلية $y = 0 = 2\dot{y} + 3y = 0$ عين جميع حلول (E) . $\dot{y} = \frac{-3}{2} y$ $k \in R$: $y = f_k(x) = k \cdot e^{-\frac{3}{2}x}$: $x = -\frac{3}{2}$ $2\dot{y}+3y=x^2+1$ المعادلة التفاضلية (\dot{E}) لتكن (\dot{E} . (\check{E}) عين كثير حدود من الدرجة الثانية f يحقق المعادلة (a $y = ax^2 + bx + c$ ليكن كثير الحدود من الدرجة الثانية $2\dot{y} + 3y = x^2 + 1$ لدينا

طارق سعد الدين 955561648

حسان البيطار 0933756454

خلدون سيروان 0932791896

$$f(x) = \int (x) + y(x) + y(x)$$

خلدون سيروان 0932791896

مسان البيطار 0933756454 Scanned by CamScanner

$$\begin{aligned} \frac{1}{2} \int_{(-1)}^{1-1} \frac{1}{2} \int_{(-1)}^{$$

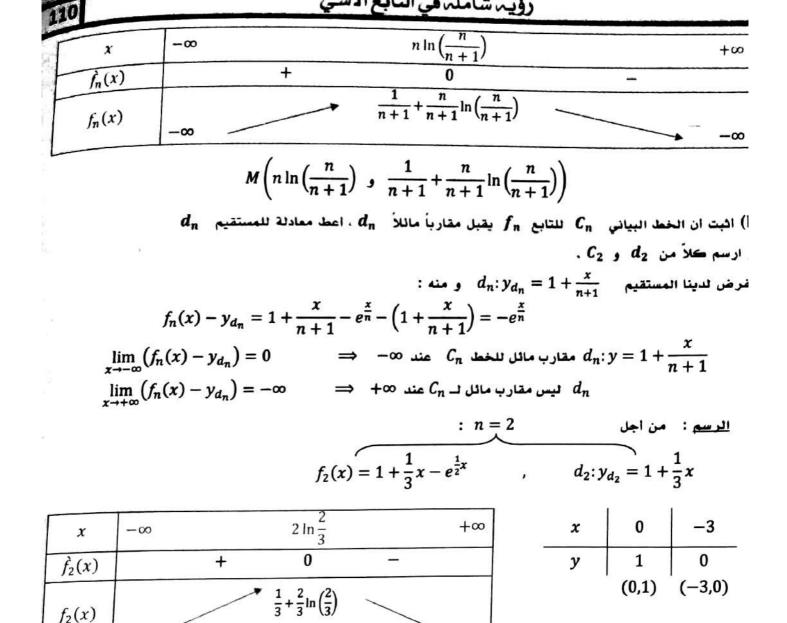
والل زعارية 0933699123 ياسر الساسة 0949198068 علاء رحال 0952480990

Scanned by CamScanner

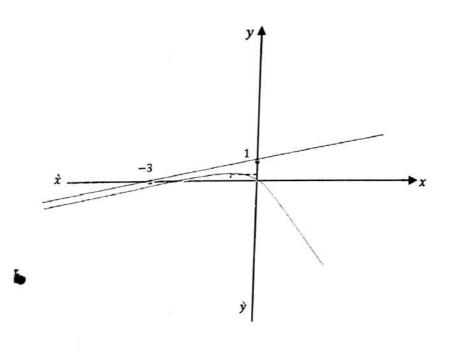
رؤية شاملة في التابع الأسى 109 بستنتج من ذلك حلول المعادلة (2). . (2) حل للمعادلة التفاضلية $g(x) = \frac{1}{n+1}x + 1$ حل للمعادلة التفاضلية (1) . $y = ke^{\frac{1}{n}x}$ y حل للمعادلة التفاضلية (2) إذا كان y-g هو حل للمعادلة التفاضلية (1): $y-g(x)=ke^{\frac{1}{n}x}$ $: k \in R$ $y = ke^{\frac{1}{n}x} + g(x)$ $y = ke^{\frac{1}{n}x} + \frac{1}{n+1}x + 1$ (1) f(0)=0 و من بينها عين تلك الحلول f التي تحقق 3 $0 = ke^0 + 0 + 1$ نعوض في (1) : k = -1 $y = -e^{\frac{1}{n}x} + \frac{1}{n+1} \cdot x + 1$ $f_n(x) = 1 + rac{x}{n+1} - e^{rac{x}{n}}$: بالعلاقة R بالعلاقة (2 f_n ادرس إشارة $\hat{f}_n(x)$ واستنتج جدول تغيرات التابع (a اثبت على الخصوص أن التابع f_n يبلغ قيمة كبرى M موجبة يطلب تعيينها : R معرف و مستمر و اشتقاقي على $f_n(x)$ $\lim_{x\to -\infty} f_n(x) = -\infty$ $(n \ge 2)$ $\lim_{x \to -\infty} f_n(x) = ? \qquad +\infty - \infty$ $f_n(x) = x \left(\frac{1}{x} + \frac{1}{n+1} - \frac{e^{\frac{x}{n}}}{x} \right) = x \left(\frac{1}{x} + \frac{1}{n+1} - \frac{e^{\frac{x}{n}}}{n} \right)$ $\lim_{n \to +\infty} f_n(x) = +\infty \left(0 + \frac{1}{n+1} - \infty \right) = -\infty$ $\hat{f}_{n}(x) = \frac{1}{n+1} - \frac{1}{n} e^{\frac{x}{n}}$ $\hat{f}_{n}(x) = 0$ $\begin{cases} \frac{1}{n} e^{\frac{x}{n}} = \frac{1}{n+1} \\ e^{\frac{x}{n}} = \frac{n}{n+1} \\ \ln e^{\frac{x}{n}} = \ln\left(\frac{n}{n+1}\right) \Longrightarrow \boxed{x = n \ln\left(\frac{n}{n+1}\right)} \end{cases}$ $f_n\left(n\ln\left(\frac{n}{n+1}\right)\right) = 1 + \frac{n\ln\left(\frac{n}{n+1}\right)}{n} - e^{\frac{n\ln\left(\frac{n}{n+1}\right)}{n}}$ $=1+\frac{n}{n+1}\ln\left(\frac{n}{n+1}\right)-e^{\ln\left(\frac{n}{n+1}\right)}$ $=1+\frac{n}{n+1}\ln\left(\frac{n}{n+1}\right)-\frac{n}{n+1}$ $= \frac{n+1-n}{n+1} + \frac{n}{n+1} \ln\left(\frac{n}{n+1}\right) = \frac{1}{n+1} + \frac{n}{n+1} \ln\left(\frac{n}{n+1}\right)$ طارق

خلدون سيروان 0932791896

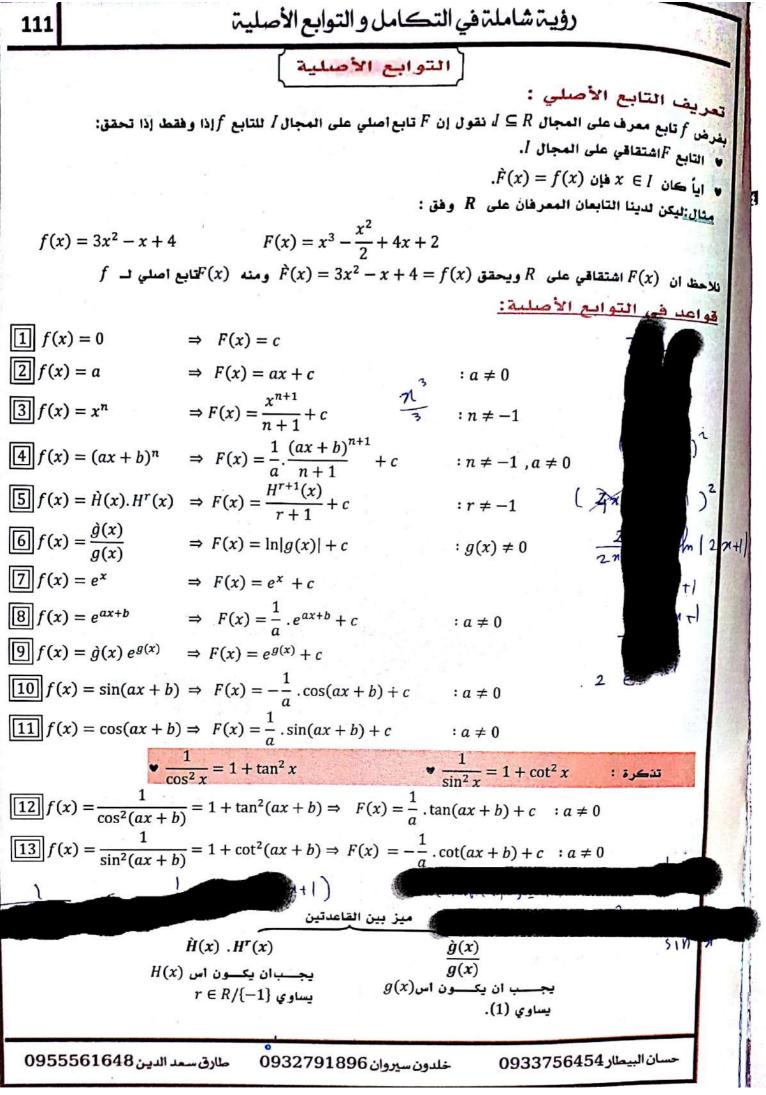
حسان البيطار 0933756454

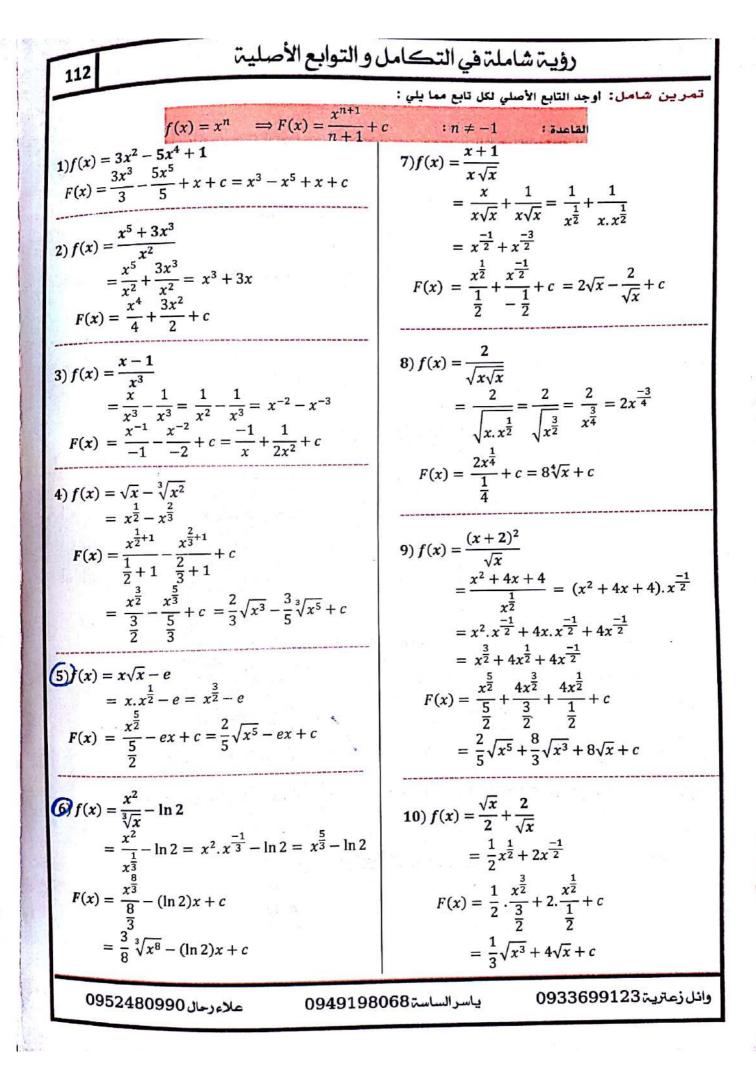


00



-00





$$f(x) = (ax + b)^n \implies F(x) = \frac{1}{a} \cdot \frac{(ax + b)^{n+1}}{n+1} + c \qquad (n \neq -1) \qquad (a \neq 0)$$
11) $f(x) = (2x - 3)^4$
 $F(x) = \frac{1}{2} \cdot \frac{(2x - 3)^5}{5} + c$
 $= \frac{1}{10} \cdot (2x - 3)^5 + c$
12) $f(x) = \frac{3}{(1 - x)^3}$
 $= \frac{1}{10} \cdot (2x - 3)^5 + c$
 $12) f(x) = \frac{3}{(1 - x)^{-3}}$
 $F(x) = \frac{3}{(1 - x)^{-2}} + c$
 $= \frac{3}{2(1 - x)^{-2}} + c$
 $= \frac{3}{2} \sqrt{(3x - 2)^{\frac{3}{2}}} + c$
 $= \frac{2}{3} \sqrt{(2x - 1)^2} + c$
 $f(x) = \frac{1}{1} \cdot \frac{(x - 1)^{\frac{5}{2}}}{2} + 2(x - 1)^{\frac{3}{2}} + c$
 $= \frac{5}{14} \sqrt[3]{(2x - 1)^2} + c$
 $16) f(x) = x\sqrt{x + 1}$
 $f(x) = \frac{1}{1} \cdot \frac{(x + 1)^{\frac{3}{2}}}{2} - (x + 1)(x + 1)^{\frac{3}{2}}} - \frac{1}{1} \cdot \frac{(x + 1)^{\frac{3}{2}}}{2} + c$
 $= \frac{2}{3} \sqrt{(x + 1)^{5}} - \frac{1}{3} \cdot \frac{(x + 1)^{\frac{3}{2}}}{2} + c$
 $= \frac{2}{3} \sqrt{(x + 1)^{5}} - \frac{2}{3} \sqrt{(x + 1)^{3}} + c$
 $\int (x - 2)(x - 2)^{\frac{3}{2}} + 2(x - 2)^{\frac{3}{2}} + c$
 $= (x - 1)(x - 1)^{\frac{3}{2}} + 5(x - 1)^{\frac{3}{2}} + c$
 $= \frac{2}{3} \sqrt{(x - 1)^{\frac{3}{2}}} + c$
 $= \frac{2}{3}$

j .

La la

115
 31)
$$f(x) = \frac{1}{\sqrt{x + x\sqrt{x}}}$$
 $= \frac{1}{\sqrt{x}(1 + \sqrt{x})} = \frac{1}{\sqrt{x} \sqrt{1 + \sqrt{x}}}$
 $= \frac{1}{\sqrt{x} \sqrt{1 + \sqrt{x}}}$
 $= \frac{1}{\sqrt{x}(1 + \sqrt{x})}^{\frac{1}{2}}$
 $= \frac{1}{\sqrt{x}(1 + \sqrt{x})}^{\frac{1}{2}}$
 $= \frac{1}{\sqrt{x}} (1 + \sqrt{x})^{\frac{1}{2}}$
 $= 2 \cdot \frac{1}{2\sqrt{x}} (1 + \sqrt{x})^{\frac{1}{2}}$
 $= 2 \cdot \frac{1}{2\sqrt{x}} (1 + \sqrt{x})^{\frac{1}{2}}$
 $= 2 \cdot \frac{1}{2\sqrt{x}} (1 + \sqrt{x})^{\frac{1}{2}}$
 $= 2 \sin x \cdot \cos x \cdot \sin x$
 $= 2 \cdot \frac{1}{\sqrt{x} + x} \cdot \frac{1}{\pi^{n}}$
 $= 2 \sin x \cdot \cos x \cdot \sin x$
 $= 2 \cdot \frac{1}{\sqrt{x} + x} \cdot \frac{1}{\pi^{n}}}$
 $= 2 \sin x \cdot \cos x \cdot \sin x$
 $= 2 \cdot \frac{1}{\sqrt{x + x}} \cdot \frac{1}{\pi^{n}}}$
 $= 2 \sin x \cdot \cos x \cdot \sin x$
 $= 2 \cdot \frac{1}{\sqrt{x + x} + c}$
 $= 2 \sin x \cdot \cos x \cdot \sin x$
 $= 2 \cdot \frac{1}{\sqrt{x + x} + c}$
 $= 3 \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}}$
 $= \sqrt{x + x} = \frac{1}{1x^2} \cdot \sqrt{x - 1}$
 $\frac{1}{x^2}$
 $= \frac{1}{x^2} \cdot \sqrt{1 - \frac{1}{x}} = \frac{1}{\frac{x^2}{x}} \cdot (1 - \frac{1}{x})^{\frac{1}{x}}$
 $= \frac{1}{\cos^2 x} = \frac{1}{\cos^2 x} = \frac{1}{\cos^2 x} \cdot \frac{1}{\cos^2 x}$
 $f(x) = \frac{\sin^2 x}{\frac{1}{2}} + c = \frac{2}{3} \sqrt{(1 - \frac{1}{x})^3} + c$
 $= \frac{1}{\cos^2 x} \cdot (1 - \sin^2 x) \cdot (\cos x)$
 $30)f(x) = \frac{\cos x}{\sin^2 x}$
 $= \frac{1}{\sin^2 x} \cdot \frac{1}{\pi^2}$
 $F(x) = \frac{1}{2} \cdot \frac{\sin^2 x}{-1} + c = \frac{-1}{\sin x} + c$
 $= \sin x - \sin x \cdot \cos^2 x$
 $30)f(x)$

حسان البيطار 0933756454

كل تابع كسري حدودي درجة بسطه أكبر أو تناوي درجة مقامه لإيجاد تابعه الأصلي أو لأنقسم البسط على المقام ثم نكامل.

39)
$$f(x) = \frac{2x-3}{x-1}$$
 : $x \in]1, +\infty[$
 $f(x) = 2 - \frac{1^{y^g}}{(x-1)_{y_g}}$
 $F(x) = 2x - \ln|x-1| + c = 2x - \ln(x-1) + c$
 $x - 1$
 $2x - 3$
 $\pm 2x + 2$
 -1
 $2x - 3$
 $\pm 2x \pm 2$
 -1
 $2x - 3$
 $\pm 2x \pm 2$
 -1

$$40) f(x) = \frac{x^2 + 2x + 1}{x - 1} \qquad : x \in]-\infty, 1[\qquad x + 3 = x + 3 + 4 + \frac{1^{y^{0}}}{(x - 1)_{y_{g}}} \qquad x + 3 = x + \frac{1}{2} + 3x + 4 \ln|x - 1| + c = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x + 3}{2} = x \\ F(x) = \frac{x^2}{2} + 3x + 4 \ln|x - 1| + c = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{2} + 3x + 4 \ln(-x + 1) + c \qquad x + 3 = \frac{x^2}{4} + \frac{x^2}{4} +$$

ï

$$41) f(x) = \frac{e^{x^{2}\theta}}{(e^{x}+1)_{y_{g}}} : x \in R$$

$$F(x) = \ln|e^{x}+1| + c = \ln(e^{x}+1) + c$$

$$43) f(x) = \frac{e^{x}-1}{e^{x}+1} : x \in R$$

$$= \frac{e^{x}}{e^{x}+1} - \frac{1}{e^{x}+1} = \frac{e^{x}}{e^{x}+1} - \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{(e^{x})^{2}\theta}{(e^{x}+1)_{y_{g}}} + \frac{(-e^{-x})^{2}\theta}{(1+e^{-x})_{y_{g}}}$$

$$F(x) = \ln|e^{x}+1| + \ln|1+e^{-x}| + c$$

$$= \ln(e^{x}+1) + \ln(1+e^{-x}) + c$$

$$F(x) = -2\ln|1 + e^{-x}| + c$$

= -2ln(1 + e^{-x}) + c

ياسرالساسة0949198068

وائل زعترية 0933699123

ملاحظة:

علاء رحال 0952480990

$$54) f(x) = \frac{e^{\frac{x-1}{x^2}}}{e^{\frac{x-1}{x^2}}} - \frac{6}{x^2} = \left(\frac{1}{x^2}\right)_{xy} e^{\left(1 - \frac{1}{2}\right)^{xy}} - 6x^{-2}$$

$$F(x) = e^{1 - \frac{1}{x}} - \frac{6x^{-1}}{-1} + c = e^{\frac{x-1}{x}} + \frac{6}{x} + c$$

$$F(x) = e^{1 - \frac{1}{x}} - \frac{6x^{-1}}{-1} + c = e^{\frac{x-1}{x}} + \frac{6}{x} + c$$

$$f(x) = cos(ax) \implies \Rightarrow F(x) = -\frac{1}{a}cos(ax) + c \qquad : a \neq 0$$

$$f(x) = cos(ax) \implies \Rightarrow F(x) = \frac{1}{a}sin(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{cos^2(ax)} = 1 + cot^2 x \implies F(x) = -\frac{1}{a}cot(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{sin^2(ax)} = 1 + cot^2 x \implies F(x) = -\frac{1}{a}cot(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{sin^2(ax)} = 1 + cot^2 x \implies F(x) = -\frac{1}{a}cot(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{sin^2(ax)} = 1 + cot^2 x \implies F(x) = -\frac{1}{a}cot(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{sin^2(ax)} = 1 + cot^2 x \implies F(x) = -\frac{1}{a}cot(ax) + c \qquad : a \neq 0$$

$$f(x) = \frac{1}{2}x + \frac{1}{2}sin 2x + \frac{9}{2}cos 3x + c = \frac{1}{2} + \frac{1}{2}cos 2x = \frac{1}{2}x + \frac{1}{2}sin 2x + c = \frac{1}{2}x + \frac{1}{4}sin 2x + c = \frac{1}{2}x + \frac{1}{4}sin 2x + c = \frac{1}{2}x + \frac{1}{4}sin 2x + c$$

$$f(x) = sin 3x \cdot cos 2x = \frac{1}{2}[cos(x + y) + cos(x - y)]$$

$$(• sin x \cdot sin y = -\frac{1}{2}[cos(x + y) - cos(x - y)]$$

$$(• sin x \cdot sin y = -\frac{1}{2}[sin(x + y) - sin(x - y)]$$

$$f(x) = \frac{1}{2}(sin 5x + sin x) = \frac{1}{2}sin 5x + sin x]$$

$$f(x) = \frac{1}{2}(sin 5x + sin x) = \frac{1}{2}sin 5x + sin x]$$

$$f(x) = \frac{1}{2}(sin 5x + sin x) + cos(x - 2x) = \frac{1}{2}[sin 5x + sin x]$$

$$f(x) = \frac{1}{2}(sin 5x + sin x) + cos(x - 2x) = \frac{1}{2}[sin 5x + sin x]$$

$$f(x) = \frac{1}{2}(sin 5x + sin x) + cos(x - 2x) = \frac{1}{2}[sin 5x + sin x]$$

$$f(x) = \frac{1}{2}(-\frac{1}{5}cos 5x - cos x) + c$$

$$O952480990 J_{xx}cos 2a = 0949198068 z$$

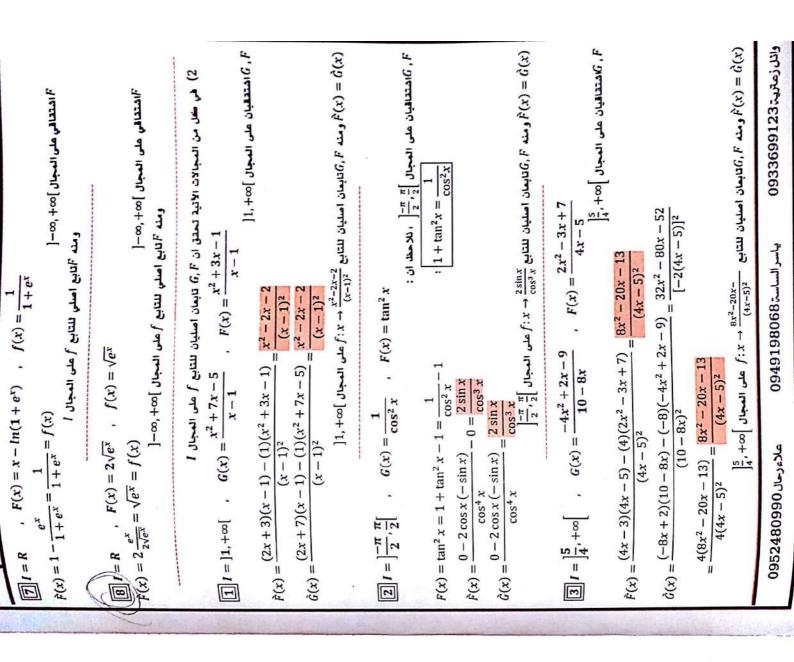
Π

1 i

119
 119
 119

 59)
$$f(x) = \cos 4x$$
. $\cos 2x$
 $= \frac{1}{2} [\cos (4x + 2x) + \cos (4x - 2x)] = \frac{1}{2} [\cos 6x + \cos 2x]$
 $F(x) = \frac{1}{2} [\frac{1}{6} \sin 6x + \frac{1}{2} \sin 2x] + c$
 110

 I Ure observed in the equation of t



$$\begin{split} \boxed{|\mathbf{d}||} I = R , \quad f(x) = \frac{5 + 3x^2}{2(1 + x^2)} , \quad F(x) = \frac{1}{x^2 + 1} \\ \hat{F}(x) = \frac{0 - (2x)(1)}{(x^2 + 1)^2} = \frac{-2x}{(x^2 + 1)^2} \qquad] -\infty, +\infty[\text{ Jacula of } G, F \\ \hat{f}(x) = \frac{(6x)(2(1 + x^2)) - (4x)(5 + 3x^2)}{4(1 + x^2)^2} = \frac{-2x}{(x^2 + 1)^2} \\ \hat{f}(x) = \frac{(6x)(2(1 + x^2)) - (4x)(5 + 3x^2)}{4(1 + x^2)^2} = \frac{-2x}{(x^2 + 1)^2} \\ \hat{f}(x) = \frac{1}{(x^2 + 1)^2} = \frac{1}{(x^2 + 1)^2} \\ \hat{f}(x) = \frac{1}{(x^2 + 1)^2} = \frac{1}{(x^2 + 1)^2} \\ \hat{f}(x) = \frac{1}{(x^2 + 1)^2} = \frac{1}{(x^2 + 1)^2} \\ \hat{f}(x) = 2\sin x \cos x \\ \hat{f}(x) = 2\sin x - 3\sin^3 x , \quad F(x) = \sin(3x) - 2\sin x \\ \hat{f}(x) = \cos x - 9\sin^2 x \cos x = \cos x - 9(1 - \cos^2 x) \cos x \\ = \cos x - 9\sin^2 x \cos x = \cos x - 9(1 - \cos^2 x) \cos x \\ = \cos x - 9\sin^2 x \cos x = 3(4\cos^3 x - 3\cos x) - 2\cos x \\ \hat{f}(x) = \cos x - 9\sin^2 x \cos x = 3(4\cos^3 x - 3\cos x) - 2\cos x \\ \hat{f}(x) = 3\cos 3x - 2\cos x = 3(4\cos^3 x - 3\cos x) - 2\cos x \\ \hat{f}(x) = 3\cos 3x - 2\cos x = 3(4\cos^3 x - 3\cos x) - 2\cos x \\ \hat{f}(x) = 3\cos^3 x - 3\cos x - 2\cos x = 3(4\cos^3 x - 3\cos x) - 2\cos x \\ \hat{f}(x) = \cos^2 x - 11\cos x \\ \hat{f}(x) = \frac{1}{x^4} + 6\frac{x^3}{3} - 2\frac{x^2}{2} + 3x + c \\ \boxed{[2]} I =]0, +\infty[, f(x) = \frac{1}{x^4} \\ f(x) = x^4 \\ \hat{f}(x) = x^4 \\$$

$$\frac{124}{(\frac{1}{2}e^{2} + \frac{1}{2}e^{-2}) - (\frac{1}{2} + \frac{1}{2})} = \frac{1}{2}e^{-2} + \frac{1}{2}e^{-2} - \frac{1}{2}e^{-2} + \frac{1}{2}e^{-2}$$

$$\frac{1}{\left|\frac{1}{2}\sum_{i=1}^{n} \frac{1}{2}\sum_{i=1}^{n} \frac{1}$$

$$\begin{split} \| \mathbf{M} \| = \int_{0}^{n} e^{x} \cos x \, dx \\ \| \mathbf{M} \| = \int_{0}^{n} e^{x} \cos x \, dx \\ \| \mathbf{M} \| = \int_{0}^{n} e^{x} \cos x \rightarrow v(x) = \sin x \\ \psi(x) &= \cos x \rightarrow v(x) = \sin x \\ \mathbf{M} &= \left[e^{x} \sin x \right]_{0}^{\pi} - \int_{0}^{\pi} e^{x} \sin x \, dx \\ \mathbf{M} &= \left[e^{x} \sin x \right]_{0}^{\pi} - \int_{0}^{\pi} e^{x} \sin x \, dx \\ \mathbf{M} &= \left[e^{x} \sin x \right]_{0}^{\pi} - T \quad \textcircled{N} \\ \mathbf{M} &= \left[e^{x} \sin x \, dx \quad \because \psi(x) = e^{x} \\ \psi(x) &= \sin x \rightarrow v(x) = -\cos x \\ \psi(x) &= \sin x \rightarrow v(x) = -\cos x \\ \psi(x) &= \sin x \rightarrow v(x) = -\cos x \\ \psi(x) &= \sin x \rightarrow v(x) = -\cos x \\ \mathbf{M} &= \left[-e^{x} \cos x \right]_{0}^{\pi} + \int_{0}^{\pi} e^{x} \cos x \, dx \\ = \left[-e^{x} \cos x \right]_{0}^{\pi} + \int_{0}^{\pi} e^{x} \cos x \, dx \\ = \left[-e^{x} \cos x \right]_{0}^{\pi} + M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} - \left[-e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \cos x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} \sin x \right]_{0}^{\pi} + \left[e^{x} \sin x \right]_{0}^{\pi} - M \\ 2M &= \left[e^{x} (e^{\pi} + 1) \right] \\ M &= \frac{1}{2} (e^{\pi} + 1) \\ \end{array} \right\}$$

$$\boxed{1} I = R , \quad f(x) = x \cos \mathcal{A}$$

$$f(t) = t \cos t \quad : \text{ is } x = t \text{ or } y$$

$$u(t) = t \quad \rightarrow \hat{u}(t) = 1$$

$$\hat{v}(t) = \cos t \rightarrow v(t) = \sin t$$

$$\int_{0}^{x} t \cos t \, dt = \begin{bmatrix} t \cdot \sin t \end{bmatrix}_{0}^{x} - \int_{0}^{x} \sin t \, dt$$

$$= \begin{bmatrix} t \cdot \sin t + \cos t \end{bmatrix}_{0}^{x}$$

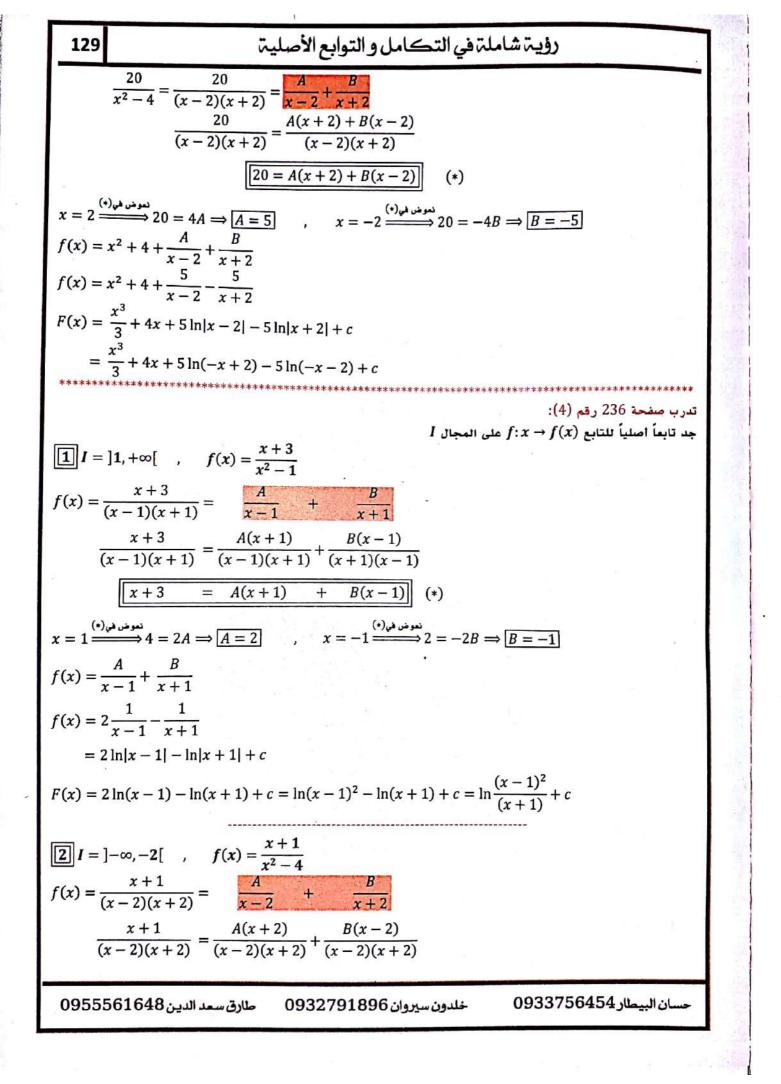
$$= (x \sin x + \cos x) - (0 + 1)$$

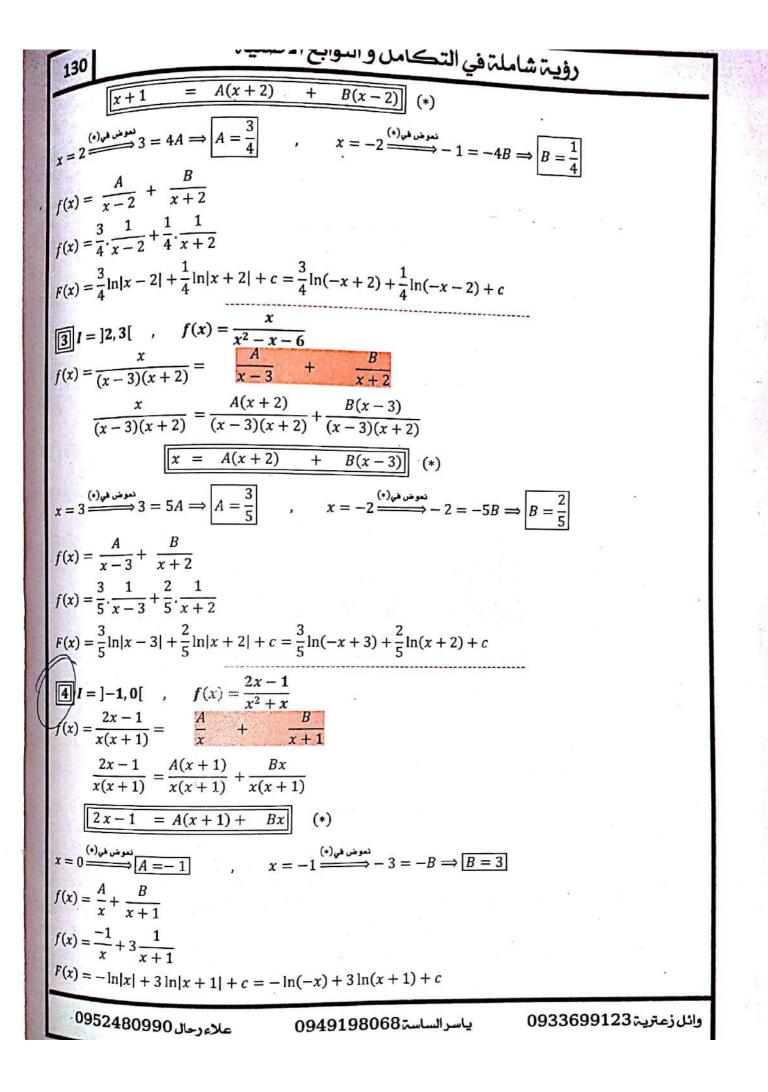
$$F(x) = x \sin x + \cos x - 1$$

$$\begin{array}{c} x \cos \gamma (x) = x \cos \gamma (x) \\ x = x \cos \gamma (x) \\ x = x \sin \gamma (x) \\ y = x \sin \gamma (x)$$

$$\begin{split} \boxed{\boxed{3}} I = R \qquad f(x) = x^2 e^x \\ f(t) = t^2 e^t \qquad is_{11} x = t \qquad is_{12} x = i \\ f(t) = t^2 - \dot{u}(t) = 2t \\ \dot{v}(t) = e^t \rightarrow v(t) = e^t \\ \hline{\int}_0^t t^2 e^t dt = \begin{bmatrix} t^2 e^t \end{bmatrix}_0^x - \int_0^t 2t e^t dt \\ u(t) = 2t \rightarrow \dot{u}(t) = 2t \qquad is_{12} x = i \\ \dot{v}(t) = e^t \rightarrow v(t) = e^t \\ \hline{\int}_0^t t^2 e^t dt = \begin{bmatrix} t^2 e^t \end{bmatrix}_0^x - \begin{bmatrix} 2t e^t \end{bmatrix}_0^x - \int_0^t 2t e^t dt \\ u(t) = 2t \rightarrow \dot{u}(t) = 2t \qquad is_{12} x = i \\ \dot{v}(t) = e^t \rightarrow v(t) = e^t \\ \hline{\int}_0^t t^2 e^t dt = \begin{bmatrix} t^2 e^t \end{bmatrix}_0^x - \begin{bmatrix} 2t e^t \end{bmatrix}_0^x - \int_0^t 2t e^t dt \\ = \begin{bmatrix} -1 t^2 \cos 2t t \end{bmatrix}_0^x + \begin{bmatrix} 1 t^2 \sin 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x - \begin{bmatrix} 1 t^2 \sin 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x = \frac{1}{2} \frac{1}{2} \sin 2t dt \\ = \begin{bmatrix} -1 t^2 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x + \begin{bmatrix} 1 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x = \frac{1}{2} \frac{1}{2} \sin 2t dt \\ = \begin{bmatrix} -1 t^2 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x + \frac{1}{4} \cos 2t \end{bmatrix}_0^x - \begin{bmatrix} 1 t^2 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x = \frac{1}{2} \frac{1}{2} \sin 2t dt \\ = \begin{bmatrix} -1 t^2 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x + \frac{1}{4} \cos 2t \end{bmatrix}_0^x - \begin{bmatrix} 1 t^2 t^2 \cos 2t t \\ -1 t^2 \cos 2t t \end{bmatrix}_0^x = \frac{1}{2} \frac{1}{2} \sin 2t dt \\ = \begin{bmatrix} -1 t^2 t^2 \cos 3t t \\ -1 t^2 \cos 3t t \end{bmatrix}_0^x + \begin{bmatrix} 1 t^2 t^2 \sin 2t t \\ -1 t^2 \cos 3t t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \cos 3t dt \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \cos 3t dt \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \cos 3t dt \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \cos 3t dt \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \cos 3t dt \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 \sin 3t \end{bmatrix}_0^x + \begin{bmatrix} 2 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 t^2 t \end{bmatrix}_0^x + \begin{bmatrix} 1 t^2 t \sin 3t t \\ -1 t^2 t^2 t^2 t \end{bmatrix}_0^x + \begin{bmatrix}$$

$$\begin{array}{c} 128 \\ \hline \\ (\underline{e}\underline{v}, \vec{u}, h L, \vec{v}, \vec{v}, \vec{v}, k) \in \mathbb{R}^{2} \\ (\underline{e}\underline{v}, \vec{v}, h L, \vec{v}, k) \in \mathbb{R}^{2} \\ (\underline{e}\underline{v}, k) \\ (\underline{e}\underline{v}, k) \in \mathbb{R}^{2} \\ (\underline{e}\underline{v}, k) \\ (\underline{e}\underline{v},$$





5
$$I =]2, +\infty[$$
, $f(x) = \frac{x^3}{x^2 - x - 2}$

د المسط أكبر من درجة المقام، بإجراء القسمة الإقليدية:

$$f(x) = x + 1 + \frac{3x + 2}{x^2 - x - 2}$$

$$\frac{3x + 2}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$$

$$\frac{3x + 2}{(x - 2)(x + 1)} = \frac{A(x + 1)}{(x - 2)(x + 1)} + \frac{B(x - 2)}{(x - 2)(x + 1)}$$

$$\frac{3x + 2}{(x - 2)(x + 1)} = \frac{A(x + 1)}{(x - 2)(x + 1)} + \frac{B(x - 2)}{(x - 2)(x + 1)}$$

$$(*)$$

$$x = 2^{\binom{1}{2}} \otimes 8 = 3A \Rightarrow \boxed{A = \frac{8}{3}} \quad x = -1^{\binom{1}{2}} \otimes 4x + \frac{1}{2}$$

$$f(x) = x + 1 + \frac{A}{x - 2} + \frac{B}{x + 1}$$

$$f(x) = x + 1 + \frac{A}{x - 2} + \frac{B}{x + 1}$$

$$f(x) = x + 1 + \frac{8}{3} \cdot \frac{1}{x - 2} + \frac{1}{3} \cdot \frac{1}{x + 1}$$

$$F(x) = \frac{x^2}{2} + x + \frac{8}{3} \ln|x - 2| + \frac{1}{3} \ln|x + 1| + c = \frac{x^2}{2} + x + \frac{8}{3} \ln(x - 2) + \frac{1}{3} \ln(x + 1) + c$$

$$\boxed{[6]} I =] -\infty, -2[\quad f(x) = \frac{2x - 1}{(x + 2)^2}$$

$$f(x) = \frac{2x - 1 + 4 - 4}{x^2 + 4x + 4} = \frac{2x + 4}{x^2 + 4x + 4} - \frac{5}{(x + 2)^2} = \frac{2x + 4}{x^2 + 4x + 4} - 5(x + 2)^{-2}$$

$$F(x) = \ln|x^2 + 4x + 4| - \frac{5(x + 2)^{-1}}{-1} + c = \ln(x^2 + 4x + 4) + \frac{5}{x + 2} + c$$

$$f(x) = \frac{2x - 1}{(x + 2)^2} = \frac{A}{(x + 2)} + \frac{B}{(x + 2)^2}$$

$$(*)$$

$$x = -2^{\binom{1}{2}} (\frac{A(x + 2)}{(x + 2)^2} + \frac{B}{(x + 2)^2}$$

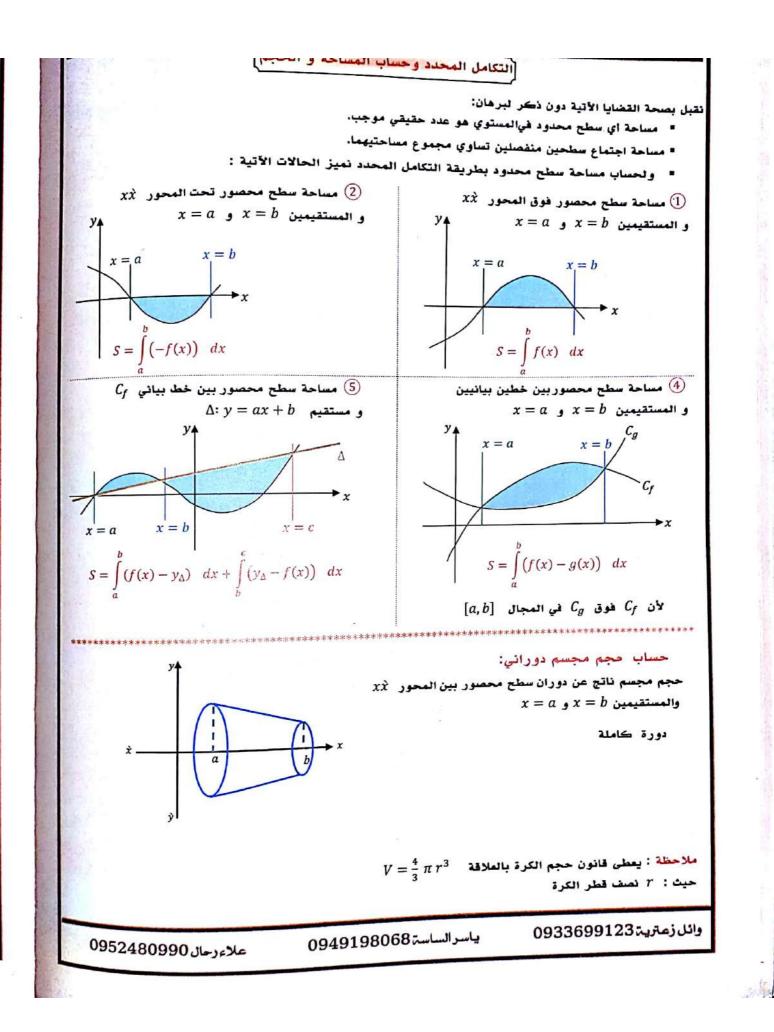
$$f(x) = \frac{A}{(x + 2)} + \frac{B}{(x + 2)^2}$$

$$f(x) = \frac{A}{(x + 2)} + \frac{B}{(x + 2)^2}$$

$$f(x) = \frac{A}{(x + 2)} + \frac{B}{(x + 2)^2}$$

$$f(x) = 2\ln|x + 2| + \frac{5}{(x + 2)^2} = 2\ln|(-x - 2) + \frac{5}{x + 2} + c$$

$$9933756454 \lim_{x \to 1} \frac{B(x - 2)}{A(x - 2)} + \frac{B(x - 2)}{A(x - 2)}$$



I في كل حالة من الحالات الآتية، جد تابعاً أصلياً F للتابع f على المجال (2

 $\boxed{1} f(x) = \cos x \left(\sin^2 x - 3 \sin x \right) \qquad : I = R \qquad \boxed{2} f(x) = \frac{1}{x - 1} \qquad :]4, +\infty[$ $f(x) = \underbrace{\cos x}_{\hat{H}} \underbrace{\sin^2 x}_{H^r} - 3 \underbrace{\cos x}_{\hat{H}} \underbrace{\sin x}_{H^r}$ $F(x) = \ln|x-1| + c$ $= \ln(x-1) + c$ $F(x) = \frac{\sin^3 x}{3} - \frac{3\sin^2 x}{2} + c$

خلدون سيروان 0932791896 طارق سعد الدين 0955561648

حسان البيطار 0933756454

$$134$$

$$134$$

$$f(x) = \frac{1}{\cos^2 x} - 1 \quad :]0, \frac{\pi}{2}[$$

$$f(x) = \frac{1}{x-4} \quad :]-\infty, 4[$$

$$F(x) = \ln(x-4) + c$$

$$F(x) = 2 \tan(x) - x + c$$

$$F(x) = -2 \tan(x) - x + c$$

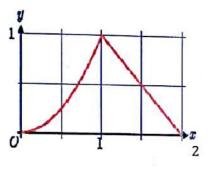
ياسرالساسة 0949198068 ملامدمال 0952480990

وائل زعترية 0933699123

$$\begin{aligned} & \boxed{\mathbf{f}(x) = \frac{-1}{3-x} \quad : F(1) = +1} \\ & F(x) = \ln|3-x| + c \\ & F(x) = \ln(3-x) + c \\ & * F(1) = 1 \\ \ln 2 + c = 1 \Rightarrow \boxed{c = 1 - \ln 2} \\ & F(x) = \ln(3-x) + 1 - \ln 2 \end{aligned}$$

$$\begin{aligned} & \boxed{\mathbf{f}(x) = \frac{x}{(x^2 - 1)^2} \quad : F(0) = 0} \\ & f(x) = x(x^2 - 1)^{-2} \\ & = \frac{1}{2} \cdot \frac{2x}{h} \left(\frac{x^2 - 1}{h^r} \right)^{-2} \\ & F(x) = \frac{1}{2} \cdot \frac{(x^2 - 1)^{-1}}{-1} + c \\ & = \frac{-1}{2(x^2 - 1)} + c \\ & * F(0) = 0 \\ & \frac{1}{2} + c = 0 \Rightarrow \boxed{c = \frac{-1}{2}} \\ & F(x) = \frac{-1}{2(x^2 - 1)} - \frac{1}{2} \end{aligned}$$

4) نرمز عادة بالرمز $(a,b) \mod [t_{2}]$ الن أصغر العددين b,a تحقق10) ان الخط البياني C_{f} للتابع f المعرف على المجال [0,2]10) الخط البياني f(x) = m11) بالصيفة $(x^{2}, 2 - x)$ 11) بالصيفة (x, 2 - x)11) الشكل المجاور،11) المكامل f(x) = f(x)12) المسب التكامل dx13) ماذا يمثل هذا العدد.14) عندما $f_{1}(x) = x^{2}$ 16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن16) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16) مؤن16) مؤن16) مؤن17) مؤن16) مؤن16



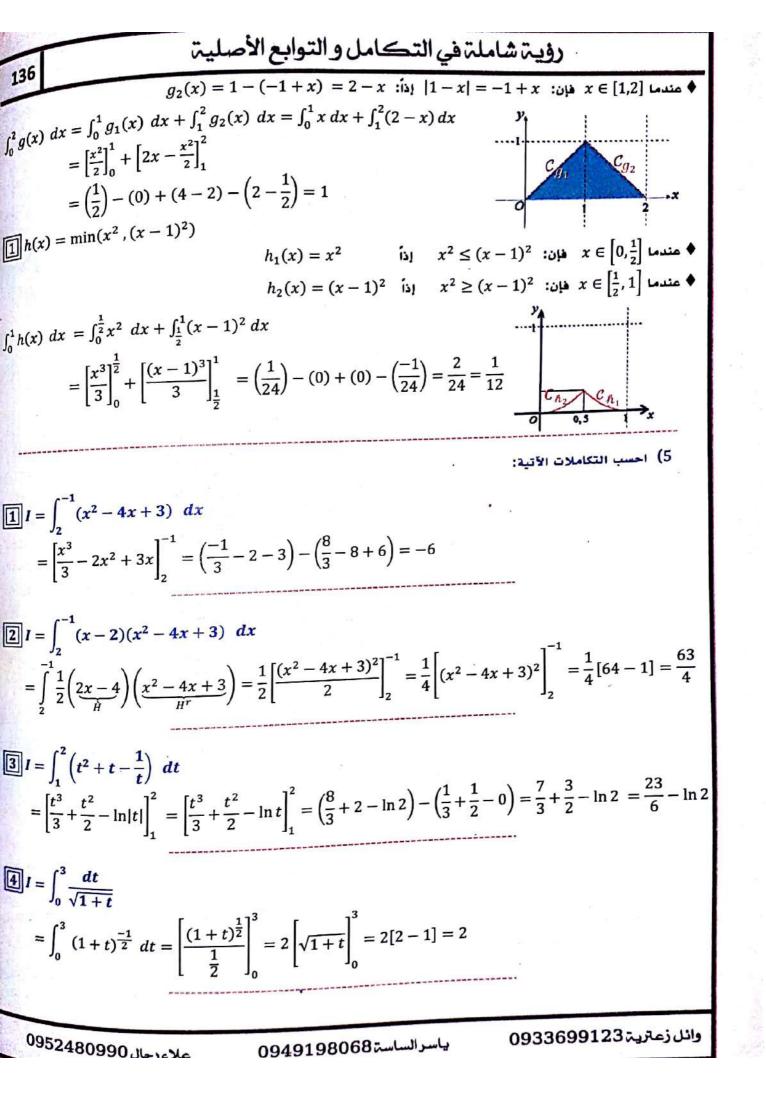
$$\int_{0}^{2} f(x) dx = \int_{0}^{1} f_{1}(x) dx + \int_{1}^{2} f_{2}(x) dx$$
$$= \int_{0}^{1} x^{2} dx + \int_{1}^{2} (2-x) dx = \left[\frac{x^{3}}{3}\right]_{0}^{1} + \left[2x - \frac{x^{2}}{2}\right]_{1}^{2}$$
$$= \left(\frac{1}{3}\right) - (0) + (4-2) - \left(2 - \frac{1}{2}\right) = \frac{5}{6}$$

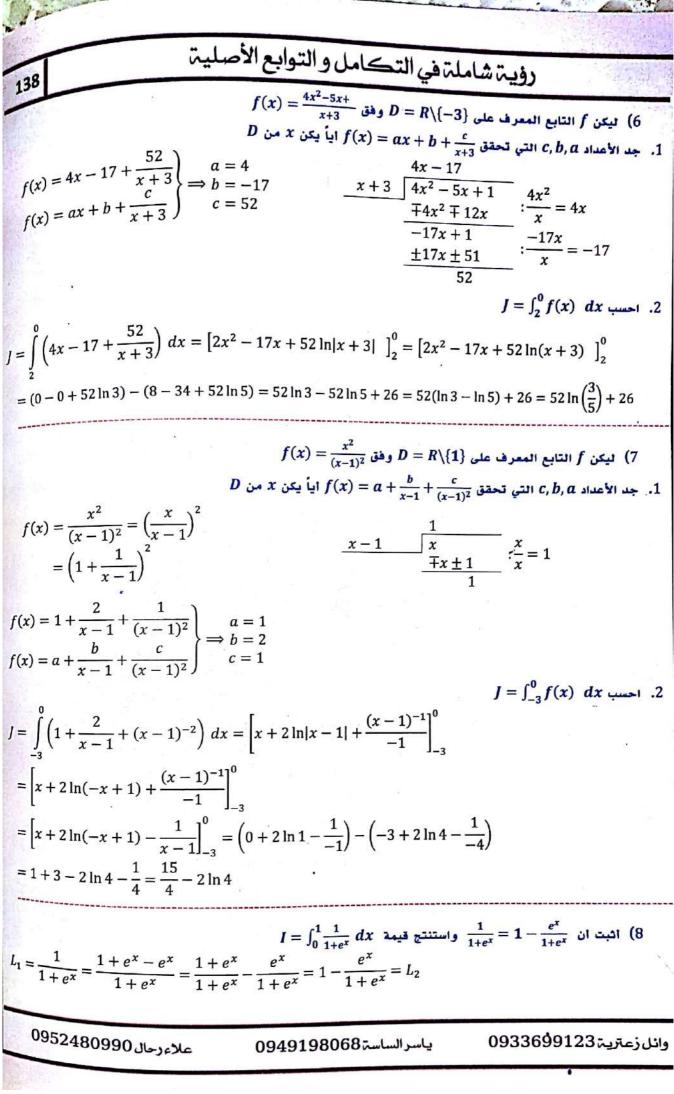
 $x\dot{x}$ ومحور f ويمثل :ا العدد مساحة السطح المحدد بالخط البياني للتابع f ومحور.

احسب بالمثل h(x) dx , $\int_0^2 g(x) dx$ في حالة: |x - 1 - x|

 $f_2(x) = 2 - x$ (i) $x^2 \ge 2 - x$ (i) $x \in [1,2]$

 $\begin{array}{l} h(x) = \min(x^2, (x-1)^2) &, \quad g(x) = 1 - |1-x| \\ \hline 1 g(x) = 1 - |1-x| \\ g_1(x) = 1 - (1-x) = x \\ \end{array} \quad \text{ is } \quad |1-x| = 1 - x \\ f(x) = 1 - (1-x) = x \\ \end{array}$





139الحقيق المنتقي التكامل و التوابع الأصليين
$$I = \int_{0}^{1} \frac{1}{1+e^{x}} dx = \int_{0}^{1} (1 - \frac{e^{x}}{1+e^{x}}) dx = \left[x - \ln|1 + e^{x}|\right]_{0}^{1} = \left[x - \ln(1 + e^{x})\right]_{0}^{1}$$
 $I = (1 - \ln(1 + e)) - (0 - \ln 2) = 1 - \ln(1 + e) + \ln 2 = 1 + \ln\left(\frac{2}{1+e}\right)$ $I = 1 \int_{0}^{\pi} \sin^{4} x \, dx$ $I = 0$ $I = 0$

 $= \left[(-2x - 1)e^{-x} - 2e^{-x} \right]_{0}^{1}$

 $=\frac{-5}{e}+3$

 $= (-3e^{-1} - 2e^{-1}) - (-1 - 2) = -5e^{-1} + 3$

Scanned by CamScanner

 $= \left[\frac{1}{2}(t-2)e^{2t} - \frac{1}{4}e^{2t}\right]_{1}^{2}$

 $=-\frac{1}{4}e^{4}+\frac{3}{4}e^{2}$

 $= \left(0 - \frac{1}{4}e^4\right) - \left(\frac{-1}{2}e^2 - \frac{1}{4}e^2\right)$

رؤية شاملة في التكامل و التوابع الأصلية

141

11) إثبات متر اجحة: نفترض ان b,a عددان حقيقيان وان $\pi \leq a < b \leq a$ اثبت صحة المتراجحة المتراجحة $\cos - \cos b \ge \frac{1}{2}(b-a)\sin b$ فلاحظ انه من تطبيقات التكامل (حساب المساحات) يجب علينا الاستفادة من فكرة التكامل لإثبات صحة المتراجحة. ≥ المساحة المحصورة لخط بيائي 2 مبورة لخط بياني C₁ المساحة المح $[0,\pi]$ نلاحظ أن التابع الذي يعطينا الطرف الأيسر من المتراجحة هو $\sin x$ ومجال الدراسة من وخطه البياني الموضح بالشكل: :131 ♦مساحة السطح المحصور بين C والمحور xx والمستقيمين :يعطى x = b, x = a0 $S_{c} = \int f(x) dx = \int \sin x dx = \left| -\cos x \right| = -\cos b + \cos a$ $S_c = \cos a - \cos b$ وهو الطرف الأول من المتراجحة x = ax = b♦ مساحة شبه المنحرف ABCD تعطى: $S_{ABCD} = \frac{1}{2} (AD + BC) \times DC$ $A(a, \sin a)$, $B(b, \sin b)$, D(a, 0), C(b, 0) $DA = \sqrt{(a-a)^2 + (\sin a - 0)^2} = \sin a$ $f(x) = \sin x$ لحسابها $CB = \sqrt{(b-b)^2 + (\sin b - 0)^2} = \sin b$ $A \in C \Longrightarrow x_A = a : f(a) = \sin a : A(a, \sin a)$ $DC = \sqrt{(b-a)^2 + (0-0)^2} = b - a$ $B \in C \Longrightarrow x_B = b : f(b) = \sin b : B(b, \sin b)$ $S_{ABCD} = \frac{1}{2} (\sin a + \sin b)(b - a)$ $=\frac{1}{2}(b-a)\sin a+\frac{1}{2}(b-a)\sin b$ $b > a \stackrel{2}{\Rightarrow} b - a > 0$ $\left. \Rightarrow \frac{1}{2}(b-a)\sin a \ge 0 \right.$ $\sin x \ge 0 \ ; \ x \in [0,\pi]$ $\Rightarrow S_{ABCD} \ge \frac{1}{2} (b-a) \sin b$ ن الرسم : $S_C \geq S_{ABCD}$ $S_C \geq \frac{1}{2}(b-a)\sin b$ $\cos a - \cos b \ge \frac{1}{2}(b-a)\sin b$ ووجدنا: $S_{ABCD} \geq \frac{1}{2}(b-a)\sin b$ 12) البحث عن تابع اصلي: fليكن التابع f المعرف على R وفق r $\sin x$ وفق $f(x) = e^{2x} \sin x$ عين تابعاً اصلياً f للتابع بما ان f مستمر على Rفله تابع اصلى ومنه: $F(x) = \int f(x) \, dx = \int e^{2x} \sin x \, dx$ طارق سعد الدين 0955561648 خلدون سيروان 0932791896 حسان البيطار 0933756454

$\begin{aligned} P(x) &= -x^3 - 4x^2 - 9x - 10 \\ &: x^3 + x^2 = (-x^3 - 4x^2 - 9x - 10), e^{-x} \\ &: F(x) &= (-3x^2 - 8x - 9)e^{-x} - e^{-x}(-x^3 - 4x^2 - 9x - 10) \\ &= e^{-x}(-3x^2 - 8x - 9)e^{-x} - e^{-x}(-x^3 - 4x^2 - 9x - 10) \\ &= e^{-x}(-3x^2 - 8x - 9)e^{-x} - e^{-x}(-x^3 - 4x^2 - 9x - 10) \\ &= e^{-x}(x^3 + x^2 + x + 1) = f(x) \end{aligned}$ $I(x) &= (-3x^2 - 8x - 9)e^{-x} - e^{-x}(-x^3 - 4x^2 - 9x - 10) \\ &= e^{-x}(x^3 + x^2 + x + 1) = f(x) \end{aligned}$ $I(x) &= (1 - 2x)(2x^2 - 2x + 1)^{-3} \\ &= \frac{-1}{2}(\frac{4x - 2}{2x^2 - 2x + 1})^{-3} \\ &= \frac{-1}{2}(\frac{4x - 2}{2x^2 - 2x + 1})^{-3} \\ &= \frac{-1}{2}(\frac{4x - 2}{2x^2 - 2x + 1})^{-2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{4(2x^2 - 2x + 1)^2} + c \\ &= \frac{1}{2} \cdot \frac{\sin x}{\cos x} + \frac{2\cos^2 x}{2\sin x \cos x} \\ &= \frac{1}{2} \cdot \frac{\sin x}{\cos x} + \frac{2}{2} \cdot \frac{\cos x}{\sin x} \\ &= \frac{-1}{2} \cdot \frac{-\sin x}{\cos x} + \frac{1}{2} \cdot \frac{\cos x}{\sin x} \\ &= \frac{-1}{2} \cdot \frac{-\sin x}{\cos x} + \frac{1}{2} \cdot \frac{\cos x}{\sin x} \\ &= \frac{-1}{2} \ln(\cos x) + \frac{1}{2} \ln \sin x + c \\ &= \frac{-1}{2} \ln(\cos x) + \frac{1}{2} \ln \sin x + c \\ &= \frac{-1}{2} \ln(\cos x) + \frac{1}{2} \ln \sin x + c \\ &= \frac{-1}{2} \ln(\cos x) + \frac{1}{2} \ln \sin x + c \\ &= \frac{-1}{2} \ln(\cos x) + \frac{1}{2} \ln(\sin x) + c \\ \hline \\$
$ \begin{array}{ $
$F(x) = \frac{-1}{2} \cdot \frac{(x^2 - 2x - 2)^{\frac{1}{2}}}{\frac{1}{2}} + c$ $= -\sqrt{x^2 - 2x - 2} + c$ $F(x) = \frac{1}{2} \cdot \frac{2}{x^2} \cdot e^{\frac{-2}{x}} \qquad I = R_+^*$ $f(x) = \frac{1}{2} \cdot \frac{2}{x^2} \cdot e^{\frac{-2}{x}} \qquad \left(\frac{-2}{x}\right)' = \frac{2}{x^2} : e^{\frac{-2}{x}}$ $F(x) = \frac{1}{2} \cdot e^{\frac{-2}{x}} + c$ $F(x) = \frac{1}{2} \cdot e^{\frac{2-3x}{x}} \qquad I = R$ $F(x) = \frac{2}{-3} \cdot e^{2-3x} + c$

$$\frac{144}{[m]}$$

$$\frac{144}{[m]}$$

$$\frac{1}{[m]} f(x) = \frac{\sin x - 1}{x^2} \quad I = R;$$

$$f(x) = \frac{1}{x^2} \ln x - \frac{1}{x^2},$$

$$g(x) = \frac{1}{x^2} \sin x - \frac{1}{x} \cos x = \frac{x^{-2} \sin x}{y(x)} = \frac{x^{-1}}{x^{-1}} = \frac{-1}{x},$$

$$g(x) = x^{-2} \Rightarrow v(x) = \frac{x^{-1}}{x^{-1}} = \frac{-1}{x},$$

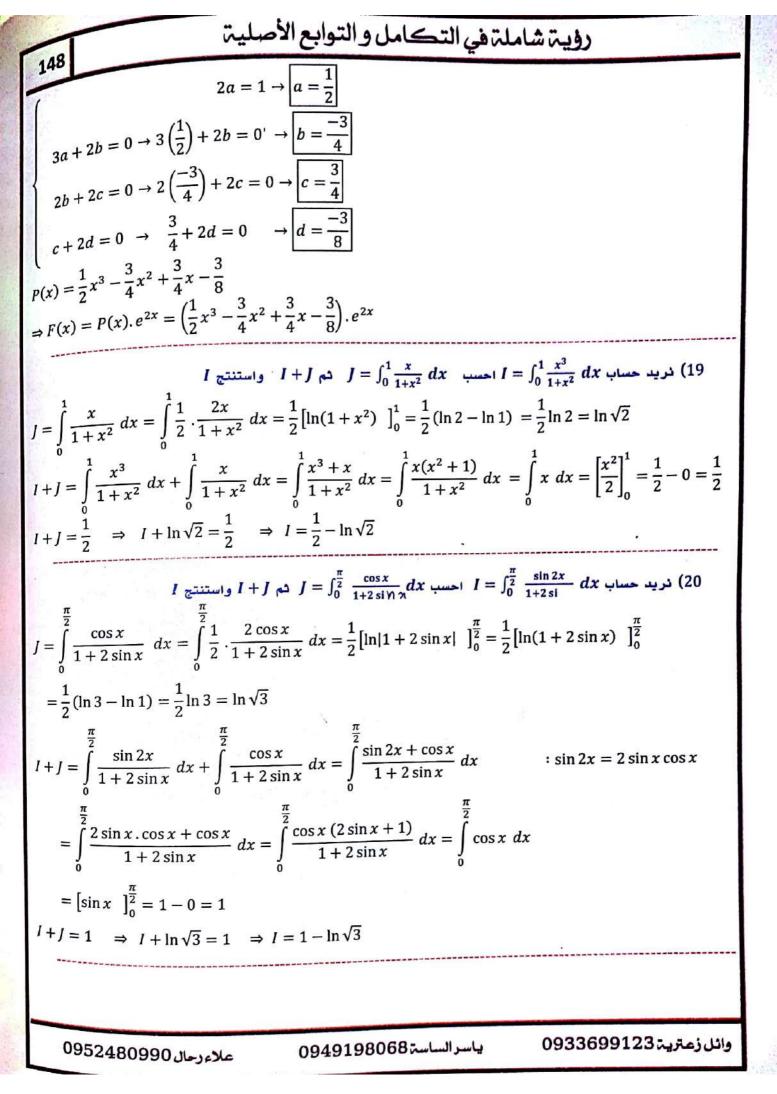
$$g(x) = x^{-2} \sin x,$$

$$g(x) = x^{-2} \sin x$$

$$\begin{split} \boxed{2} I = \int_{0}^{2} \frac{4x-5}{2x+1} dx \\ &= \int_{0}^{2} \left(2 - \frac{7}{2x+1}\right) dx = \int_{0}^{2} \left(2 - \frac{7}{2} \cdot \frac{2}{2x+1}\right) dx \\ &= \left[2x - \frac{7}{2} \ln[2x+1]\right]_{0}^{2} = \left[2x - \frac{7}{2} \ln(2x+1)\right]_{0}^{2} \\ &= \left[2x - \frac{7}{2} \ln[3x] - \left(0 - \frac{7}{2} \ln 1\right) = 4 - \frac{7}{2} \ln 5 \\ &= \left(4 - \frac{7}{2} \ln 5\right) - \left(0 - \frac{7}{2} \ln 1\right) = 4 - \frac{7}{2} \ln 5 \\ &= \left[\ln|x^{2} - 9|\right]_{-1}^{2} = \left[\ln(-x^{2} + 9)\right]_{-1}^{2} = \ln 5 - \ln 8 = \ln \frac{5}{8} \\ \hline \boxed{4x - 5} \\ &= \left[\ln|x^{2} - 9|\right]_{-1}^{2} = \left[\ln(-x^{2} + 9)\right]_{-1}^{2} = \ln 5 - \ln 8 = \ln \frac{5}{8} \\ \hline \boxed{4x - 5} \\ &= \left[\ln|x^{2} - 9|\right]_{-1}^{2} = \left[\ln(-x^{2} + 9)\right]_{-1}^{2} = \ln 5 - \ln 8 = \ln \frac{5}{8} \\ \hline \boxed{4x - 5} \\ &= \int_{0}^{3} \left(x + 2\right) \left(x + 1\right)^{-4} dx \\ &= \int_{0}^{3} (x + 2)(x + 1)^{-4} dx = \int_{0}^{3} \left[(x + 1) + 1\right](x + 1)^{-4} dx \\ &= \int_{0}^{3} (x + 2)(x + 1)^{-4} dx = \left[\frac{(x + 1)^{-2}}{-2} + \frac{(x + 1)^{-2}}{-3}\right]_{0}^{3} \\ &= \left[\frac{-1}{(2x + 1)^{2}} - \frac{1}{3(x + 1)^{3}}\right]_{0}^{3} = \left(\frac{-1}{22} - \frac{1}{3(64)}\right) - \left(\frac{-1}{2} - \frac{1}{3}\right) \\ &= \frac{-7}{3(64)} + \frac{5}{6} = \frac{-7 + 160}{192} = \frac{153}{192} \\ \hline \hline \boxed{5x - 4} \\ &= \int_{0}^{1} \left(2x^{2} + 4x + 5 + 6\frac{1}{x - 2}\right) dx \\ &= \left[\frac{2x^{3}}{3} + 2x^{2} + 5x + 6\ln|x - 2|\right]_{0}^{1} \\ &= \frac{x - 2}{(2x^{3} - 3x - 4)} \\ &= \left[\frac{2x^{3}}{3} + 2x^{2} + 5x + 6\ln|x - 2|\right]_{0}^{1} \\ &= \frac{x - 2}{(2x^{3} - 3x - 4)} \\ &= \left(\frac{2}{3} + 2x^{2} + 5x + 6\ln|x - 2|\right]_{0}^{1} \\ &= \frac{x - 2}{(2x^{3} - 3x - 4)} \\ &= \left(\frac{2}{3} + 2x^{2} + 5x + 6\ln|x - 2|\right)_{0}^{1} \\ &= \frac{x - 2}{(2x^{3} - 3x - 4)} \\ &= \left(\frac{2}{3} + 2x^{2} + 5x + 6\ln|x - 2|\right)_{0}^{1} \\ &= \frac{x - 2}{(2x^{3} - 3x - 4)} \\ &= \frac{2}{3} - 6\ln 2 \\ \hline \begin{array}{c} 0933756454 \\ 0933756454 \\ 0933756454 \\ 0 \\ \end{array}$$

$$\begin{bmatrix} \frac{146}{4x^2 - 1} & \frac{1}{4x^2 - 1} &$$

147(أليت شاملة في التكامل و التوابع الأصلية
$$f(x) = \sin^4 x \, \omega_5 \, R$$
 وهذي R وفق $x^6 \, r^6 \, R$ ومكر $r^6 \, r^6 \, r^$



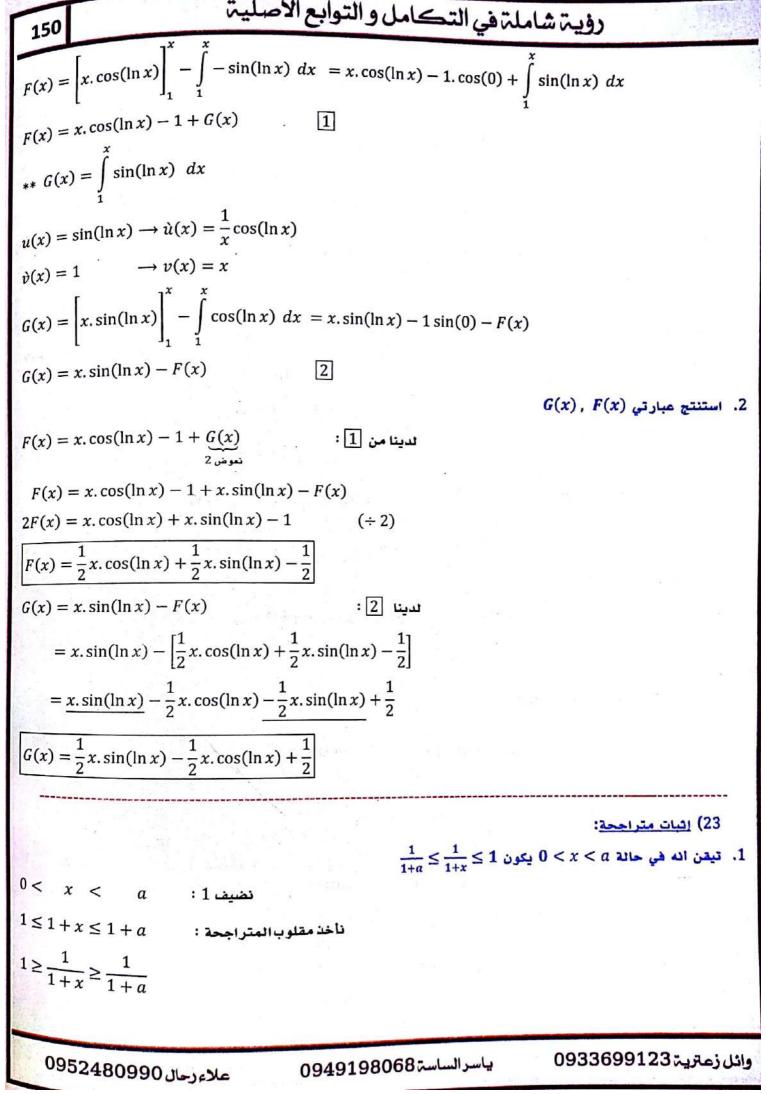
 $u(x) = \cos(\ln x) \rightarrow \dot{u}(x) = \frac{-1}{x}\sin(\ln x)$ $\dot{v}(x) = 1 \qquad \rightarrow v(x) = x$

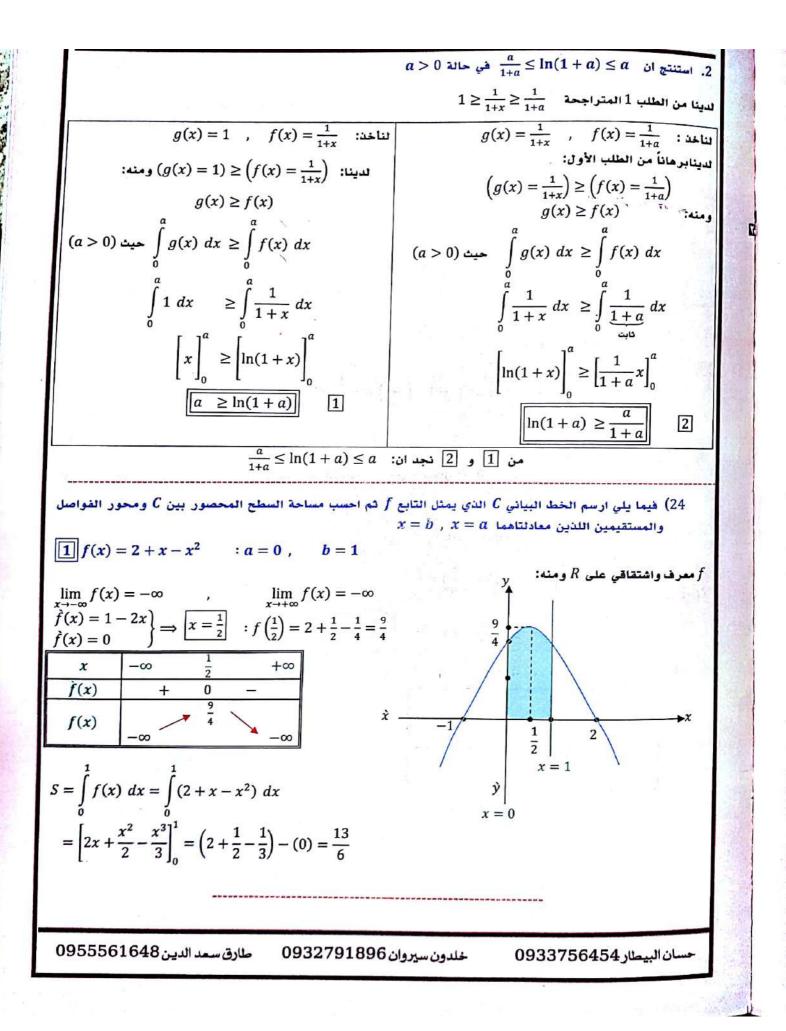
あたち

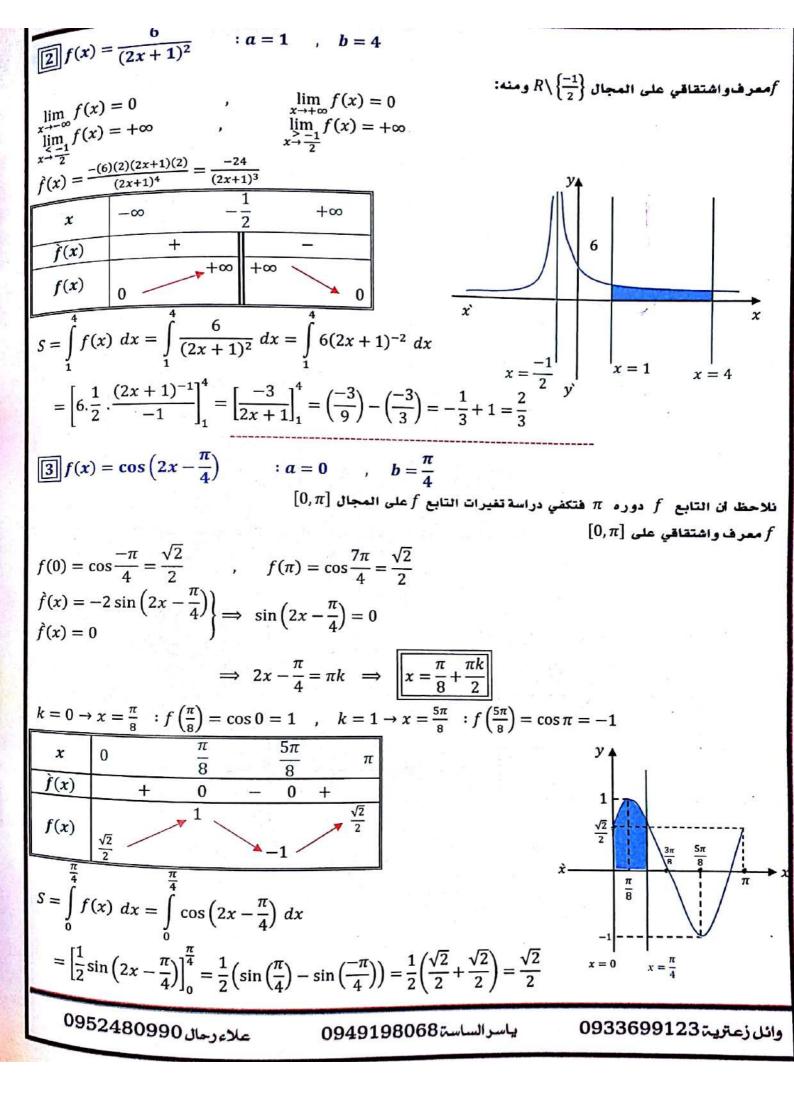
「「「「「「「「「」」」

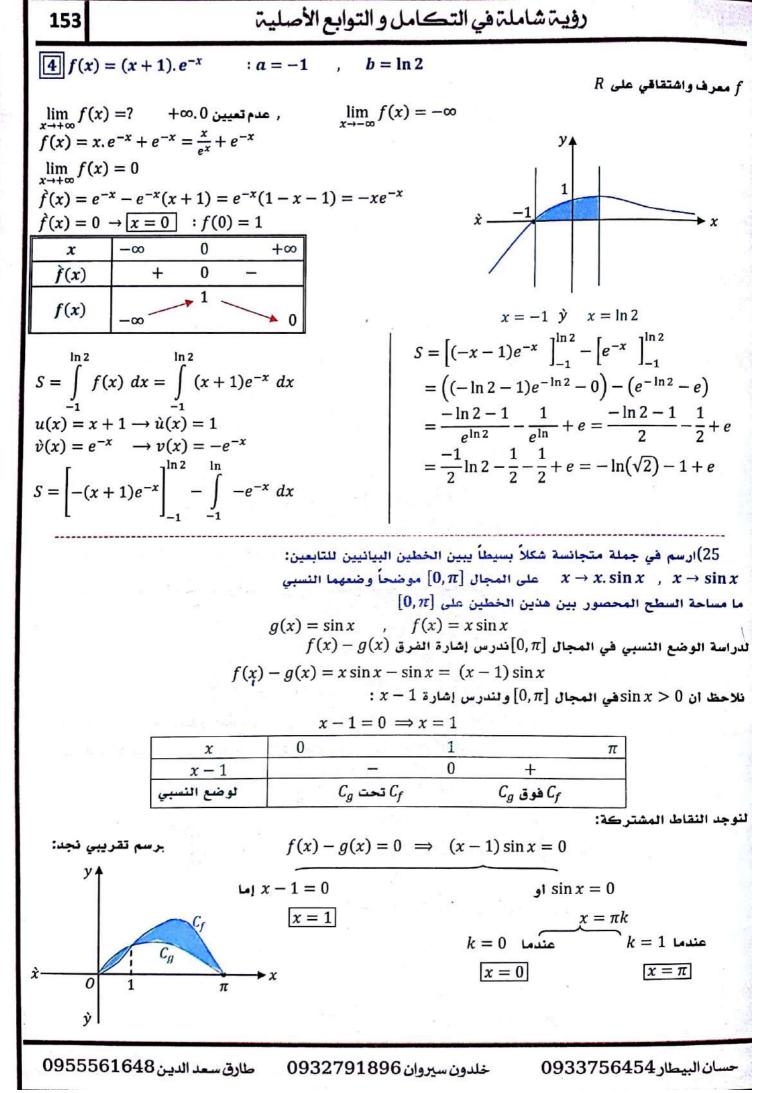
حسان البيطار 0933756454

خلدون سيروان 0932791896 طارق سعد الدين 0955561648









$$S_{2} = \int_{0}^{1} (g(x) - f(x)) dx + \int_{0}^{\pi} (f(x) - g(x)) dx$$

$$S_{1} = \int_{0}^{1} (\sin x - x \cdot \sin x) dx$$

$$S_{2} = \int_{0}^{1} (\sin x - x \cdot \sin x) dx$$

$$= \int_{0}^{1} (1 - x) \sin x dx$$

$$u(x) = 1 - x \rightarrow \dot{u}(x) = -1$$

$$\psi(x) = \sin x \rightarrow v(x) = -\cos x$$

$$S_{1} = \left[-(1 - x) \cos x \right]_{0}^{1} - \int_{0}^{1} \cos x dx$$

$$= \left[(-1 + x) \cos x - \sin x \right]_{0}^{1}$$

$$= (-\sin 1) - (-1 - 0) = 1 - \sin 1$$

$$S_{1} = \int_{0}^{1} (1 - x) \sin x dx$$

$$S_{2} = \left[-(x - 1) \cos x \right]_{1}^{\pi} - \int_{0}^{\pi} -\cos x dx$$

$$= \left[(-x + 1) (-1) + 0 \right] - (0 + \sin 1) = \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = \int_{0}^{1} (1 - x) \sin x dx$$

$$S_{2} = \left[-(x - 1) \cos x \right]_{1}^{\pi} + \frac{\pi}{2} = (-\pi + 1)(-1) + 0 - (0 + \sin 1) = \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = S_{1} + S_{2} \Rightarrow S = 1 - \sin 1 + \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{2} = \int_{0}^{1} (x - 1) \sin x dx$$

$$S_{1} = \int_{0}^{1} (1 - x) \cos x dx$$

$$= \left[(-x + 1) (-1) + 0 \right] - (0 + \sin 1) = \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = S_{1} + S_{2} \Rightarrow S = 1 - \sin 1 + \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = S_{1} + S_{2} \Rightarrow S = 1 - \sin 1 + \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = S_{1} + S_{2} \Rightarrow S = 1 - \sin 1 + \pi - 1 - \sin 1$$

$$= \pi - 2 \sin 1$$

$$S_{1} = S_{1} + S_{2} = S_{1} + S_{2} = S_{1} + S_{2} + S_{2} = S_{2} + S_$$

 $f(x)=(2-x)e^x$ الخط البياني للتابع f المعرف على R وفق: f وفق (27 وليكن C خطه البياني في جملة متجانسة: 1. ادرس تغیرات *f* وارسم C f معرف واشتقاقي على $\infty + \infty = 0$ $\lim_{x\to-\infty}f(x)=?$ 0.∞ + عدمتعيين $f(x) = 2e^x - xe^x$ $\lim_{x\to\infty}f(x)=0$ $\lim_{x\to+\infty}f(x)=-\infty$ $\hat{f}(x) = -e^x + e^x(2-x) = e^x(-1+2-x) = e^x(1-x)$ $\hat{f}(x) = 0 \rightarrow 1 - x = 0 \rightarrow x = 1$: f(1) = e-00 1 +00 x 0 + f(x)f(x)0

x = 2, x = 0 الجزء من الخط البياني C المحصور بين المستقيمين اللذين معادلتاهما C_1 2.

S وليكن S السطح المحصور بين C_1 ومحور الفواصل . احسب مساحة S

$$S = \int_{0}^{2} f(x) dx = \int_{0}^{2} (2-x) e^{x} dx$$

$$u(x) = 2 - x \rightarrow \dot{u}(x) = -1$$

$$\dot{v}(x) = e^{x} \rightarrow v(x) = e^{x}$$

$$S = \left[(2-x)e^{x} \right]_{0}^{2} - \int_{0}^{2} -e^{x} dx$$

$$= \left[(2-x)e^{x} + e^{x} \right]_{0}^{2} = (0 + e^{2}) - (2 + 1) = e^{2} - 3$$

$$V = V = 0$$

$$V =$$

 $x o (f(x))^2$ عين الأعداد c, b, a حتى يكون التابع $c, b, a = G: x o (ax^2 + bx + c). e^{2x}$ تابعاً اصلياً للتابع c, b, a عين الأعداد $\hat{G}(x) = (f(x))^2$ عندئذ:

 $(2ax+b)e^{2x} + 2e^{2x}(ax^2 + bx + c) = (2-x)^2 \cdot e^{2x}$

 $(2ax + b + 2ax^{2} + 2bx \quad 2c)e^{2x} = (4 - 4x + x^{2}) \cdot e^{2x}$ $[2ax^{2} + (2a + 2b)x + (b + 2c)]e^{2x} = (x^{2} - 4x + 4)e^{2x}$

 $\begin{cases} 2a = 1 \quad \rightarrow \qquad \qquad \boxed{a = \frac{1}{2}} \\ 2a + 2b = -4 \quad \rightarrow 1 + 2b = -4 \quad \rightarrow \boxed{b = \frac{-5}{2}} \\ b + 2c = 4 \quad \rightarrow \frac{-5}{2} + 2c = 4 \quad \rightarrow \boxed{c = \frac{13}{4}} \\ G(x) = \left(\frac{1}{2}x^2 - \frac{5}{2}x + \frac{13}{4}\right)e^{2x} \end{cases}$

خلدون سيروان 0932791896 طارق سعد الدين 0955561648

حسان البيطار 0933756454

b) استنتج قيمة V

$$V = \pi \int_{0}^{\pi} \underbrace{\left(f(x)\right)^{2}}_{(f(x))^{2} \downarrow} dx$$

$$V = \pi \left[\left(\frac{1}{2}x^{2} - \frac{5}{2}x + \frac{13}{4}\right)e^{2x} \right]_{0}^{2}$$

$$= \pi \left[\left(2 - 5 + \frac{13}{4}\right)e^{4} - \frac{13}{4} \right] = \frac{\pi}{4}(e^{4} - 13)$$

28) مسالة مركبة:

 Γ, C في معلم متجانس رسمنا الخطين البيانيين (1) لتابعين اشتقاقيين على R نعلم أن أحدهما

مشتق للآخر، لذلك يمكن أن نرمز إليهما g و \dot{g} .

بين معللاً أي هذين الخطين هو الخط البياني للتابع g وأيهما لمشتقه.

- المخط
$$C$$
 متناقص تماماً في المجال $-\infty, -1$ فمشتقه سالب.
وهذا ما بيبنه الخط Γ في المحال -1 , $\infty-$ وهو واقع تحت xx .

- الخط
$$C$$
 متزايد نماماً في المجال $[-1,1]$ فمشتقه موجب

- وهذا ما يبينه الخط Γ في المجال [-1,1] وهو فوق $x\dot{x}$.
- الخط C متناقص تماماً في المجال $[0, +\infty)$ فمشتقه سالب.
- وهذا ما يبينه الخط Γ في المجال $]\infty+1, [$ وهو واقع تحت $x\dot{x}$.
- \hat{g} إذاً C الخط لبياني للتابع Γ , gهو الخط البياني للتابع -
- ما ميل المماس للخط C في النقطة التي فاصلتها 0? ميل لمماس في نقطة فاصلتها (0) هو $\hat{g}(0)$ ومن الشكل نجد أن $\hat{f}=(0)\hat{g}(0)$

(E): $\dot{y} + y = 2(x+1)e^{-x}$: نتامل المعادلة التفاضلية (2)

(E) هو حل للمعادلة التفاضلية $f_0 = y = (x^2 + 2x)e^{-x}$ $f_0 = y = (x^2 + 2x)e^{-x}$ $\hat{f}_0 = \dot{y} = (2x + 2)e^{-x} - e^{-x}(x^2 + 2x)$ $= e^{-x}(2x + 2)e^{-x} - e^{-x}(x^2 + 2x)$ $= (2x + 2)e^{-x}$ $= (2x + 2)e^{-x}$ $= (2x + 2)e^{-x}$ $= (2x + 2)e^{-x} = 2(x + 1)e^{-x} = L_2$

إذاً f_0 حل للمعادلة التفاضلية (E).

2. تتكن
$$(\hat{E})$$
 المعادلة التفاضلية $y = 0$
البت ان $f = 0$ حل للمعادلة (\hat{E}) » يكافئ $(f = f - f_0$ حل للمعادلة (\hat{E}) »
تم حل (\hat{E}) واستنتج صيغة (x) عندما يكون f حلاً للمعادلة (E) .
ثم حل (\hat{E}) واستنتج صيغة (x) عندما يكون f حلاً للمعادلة (E) .
 $f = (f - f_0)$ \Leftrightarrow $(f - f_0) = y + y = 2(x + 1)e^{-x}$
 $(f - f_0) + (f - f_0) = 0$ \Leftrightarrow $\hat{f} + f = 2(x + 1)e^{-x}$

• بفرض
$$f = 0$$
 $u = f - f_0$ $u = (f - f_0)$ (f)
 $f + f = 2(x + 1)e^{-x}$
 $\dot{f} + f = 2(x + 1)e^{-x}$
 $\dot{f} + f = 2(x + 1)e^{-x}$
 $\dot{f} - f_0 = 0$
 $\dot{f} - f_0 + f - f_0 = 0$
 $\dot{f} - f_0 + f - f_0 = 0$
 $\dot{f} - f_0 + f - f_0 = 0$
 $\dot{f} + f = (f) - (f_0 + f_0) = 0$
 $\dot{f} + f = 2(x + 1)e^{-x}$
 $\dot{f} + f = 2(x + 1)e^{-x}$

$$(E)$$
 - استنتاج صيغة $f(x)$ عندما يكون f حلا للمعادلة (E) يكافئ عندما يكون $(u = f - f_0)$ حل للمعادلة $u(x) = f(x) - f_0(x)$
وبما أن $f(x) = u(x) + f_0(x)$
 $f(x) = u(x) + f_0(x)$
 $f(x) = k.e^{-x} + (x^2 + 2x)e^{-x}$

(E) . إذا علمت أن التابع g من الجزء (1) هو حل للمعادلة (E) فاعط صيغة g(x) بدلالة x . g حل للمعادلة (E) فهو من الشكل: $g(x) = k.e^{-x} + (x^2 + 2x)e^{-x}$ الخط البياني للتابع g يمر بالنقطة (0,1):

$$g(0) = 1$$

$$k + 0 = 1 \implies k = 1$$

$$\implies g(x) = e^{-x} + (x^2 + 2x)e^{-x}$$

$$= \underbrace{(1 + x^2 + 2x)}_{x^2} e^{-x}$$

$$g(x) = \underbrace{(x + 1)^2 e^{-x}}_{x^2}$$

$$x = 0 \quad \text{and} \quad \text{figure} \quad \text{for all it is an equation of } x = 0$$

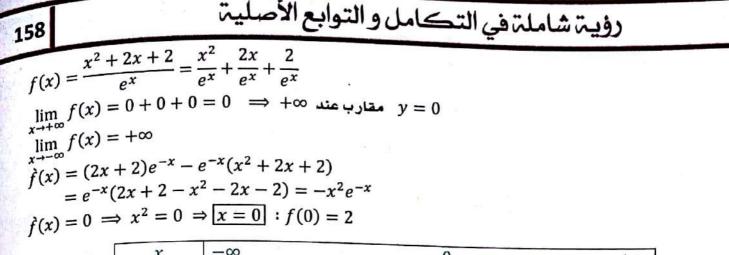
حل للمعادلة (E) فهو من الشكل: h

$$h(x) = k \cdot e^{-x} + (x^2 + 2x)e^{-x}$$

$$h(x) = (k + x^2 + 2x)e^{-x}$$

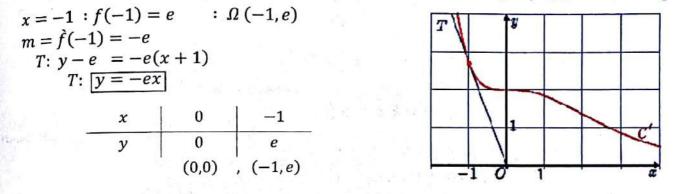
المماس افقي عند x=0 اي h(x)= h(x) ومنه:

$$\begin{split} \hbar(x) &= (2x+2)e^{-x} - e^{-x}(k+x^2+2x) \\ \tilde{h}(x) &= e^{-x}(2x+2-k-x^2-2x) \\ \tilde{h}(x) &= e^{-x}(-k-x^2+2) \\ \tilde{h}(0) &= 0 \end{split} \qquad \begin{cases} -k+2 &= 0 \implies \boxed{k=2} \\ h(x) &= (2+x^2+2x)e^{-x} \\ f(x) &= (x^2+2x+2)e^{-x} \\ f(x) &= (x^2+2x+2)e^{-x} \\ f(x) &= (-\infty) \\ e^{-x} \\ f(x) &= (-\infty) \\ f(x)$$



x	-00	0		$+\infty$
$\hat{f}(x)$		 0	-	
f(x)	+∞	 22		

 Ω ليكن \dot{C} الخط البيائي الذي يمثل f في معلم متجانس، اكتب معادلة للمماس T للخط \dot{C} في النقطة Ω . التي فاصلتها 1– وارسم \dot{C} و T



على R على F على $F: x \to (ax^2 + bx + c)e^{-x}$ عين الأعداد c, b, a حتى يكون التابع e^{-x} معاد $F: x \to (ax^2 + bx + c)e^{-x}$ على R ثم احسب $A(\alpha)$ مساحة السطح المحصور بين محور الفواصل و \check{C} والمستقيمين اللذين معادلتاهما $A(\alpha)$ $x = \alpha, x = 0$ على F نابع اصلى للتابع f إذاً:

$$F(x) = f(x)$$

$$(2ax + b)e^{-x} - e^{-x}(ax^{2} + bx + c) = (x^{2} + 2x + 2)e^{-x}$$

$$(2ax + b - ax^{2} - bx - c)e^{-x} = (x^{2} + 2x + 2)e^{-x}$$

$$(-ax^{2} + (2a - b)x + (b - c))e^{-x} = (x^{2} + 2x + 2)e^{-x}$$

$$\begin{cases}
-a = 1 \rightarrow \boxed{a = -1} \\
2a - b = 2 \rightarrow \boxed{b = -4} \\
b - c = 2 \rightarrow \boxed{c = -6}
\end{cases}$$

$$F(x) = (-x^{2} - 4x - 6)e^{-x} \quad \text{is}$$

$$F(x) = (-x^{2} - 4x - 6)e^{-x} \quad \text{is}$$

$$= (-\alpha^{2} - 4\alpha - 6)e^{-\alpha} - (-6)$$

$$= (-\alpha^{2} - 4\alpha - 6)e^{-\alpha} - (-6)$$