
 MINISTRY OF EDUCATION

لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـج اللسعودية

MPosen

.
.

Stand dlar.
أسنآ الرup
0566664790

(hamil d hat

* Statistics:

 Is the science of conducting studies to collect, organize, النتائج summarize, analyze, and draw conclusions from the data.

Consists of:

- The collection,
- organization,
- summarization,
- Presentation of the data by the tables and graphs. -- Average - mean - median mode.
-

Consists of:

- Generalizing from sampling to population.
- Performing estimation.
- Determining relations between variables and making prediction.
- Soon - Maybe - next - Can - الحيث عن المسقلى على 2020 (التوقع) -

In each of these statements, tell whether descriptive or inferential statistics have been used.

يالتخفوا

(a) In the year 2020, 148 million Americans will be enrolled in an HMO.
(Inferential)

ضحليا المل

(b) Nine out of ten on- the - job fatalities are men
(Descriptive)

الإفا

(c) Expenditures for the cable industry were $\$ 5.66$ billion in 1996. (Descriptive)

(d)The median household income for people aged 25-34 is $\$ 35.888$.
(Descriptive)
علاج المسلسة
(e) Allergy therapy makes bees go away

(Inferential)

(f)Drinking decaffeinated coffee can raise cholesterol levels by 7\%
(Inferential)
منوسط الإفاق عل الأوبية الثخص الواحد
g) The national average annual medicine expenditure per person
is \$ 1052
(Descriptive)
الرهن القاري
(h) Experts say that mortgage rates may soon hit bottom.
(Inferential)

Name and define the two areas of statistics

- Descriptive statistics: describe the data set.
- Inferential statistics: use the data to draw conclusions about the population.

Data Collection

* Population: A set consists of all subjects.

* Example: Students grade (A , B , C , D , F)
- Sample: is a group of subjects selected from population.
- Sample \subset population.

Identify the sample and population in each of the following

statements:

اللموارئ

1. In order to study the response times for emergency 988
calls in Jeddah 50 calls are selected randomly over a six
month period and the response times are recorded.
** Population: all calls (988).
** Sample: 50 calls.
2. 1500 listeners to talk radio program of various types are selected.
** Population: all listeners to radio program.
** Sample: 1500 listeners.

Why we must use a sample Instead of population?

We must use a sample Instead of population because:
(1.) The size of population may be very large.
(2.) Study the whole population may be very expensive.

(Save Money)

(3.) Study the whole population may be need to a long time.
(Save Time)
(4.) Study the whole population may be destructive for the elements of population.

Type of Samples

:Random Sample المينة الهشوائية

* * فيها تكون كل حالة من حالات المجتمع لها غف فرصة الاختيار (لختيار عشولئي بدونشروط)
* All units of the population has the same chance of selecting.

:System sample المينة lallalal

فيها يقم المجتمع إله مجموعك عددها يساوي عدد أُفراد العينة المختارة.
 التي ترتيبها A A A كل المجموعت حق نكون العينة المطلوبة.
بعض الكلمت = التي تزل عليه ـ

:Stratified sample

الهية

فيها يقم المجتمع إله مجموعت غيرمقططعة (مسقلة) تسمطقفت (غيرمتدلخل ـة)
 :Cluster sample الd

فيها يكون المجتمع مقم إلى مجموعت رئيسية نختار من هـ ـه المجموء لـ بيه ض المحجوعلت ثِم نستخم جميع عناصر المجموعت المختارة.

Classify each sample as random, systematic, stratified, or

 cluster.
مدرسة كبيرة.قسمة إللمبالي

(a) In a large school district, all teachers from two buildings are interviewed to determine whether they believe the students have less homework to do now than in previous years.

(Cluster)

- لختيار مبنيين من مباني المدسِة - • • لختيار كل المدسسن من المبنين.
(b) Every seventh customer entering a shopping mall is asked to select her or his favorite store.
(Systematic)
Nursing supervisors are selected ysing random numbers in order to determine annual salaries.

(Random)

الرفم . " ا ومضايالته

(d) Every $10 \mathbf{1 0}^{\text {th }}$ hamburger manufactured is checked to determine its fat content.

(Systematic)

س
Mail carriers of a large city are divided into four groups according to gender (male or female) and according to whether they walk or ride on their routes. Then 10 are قالبالتهم selected from each group and interviewed to determine whether they have been bitten by a dog in the last year.

غسموا إل عـمجوعتحطفاً اللنوع
(Stratified)

Variables : Is quantity can taken different values.

Example : length , weight, age, coller, time,...............

Example: * Gender (Male, Female) \rightarrow category.

* Classes (2-5, 6-9, 10-13) \rightarrow classes.
* Qualitative variables are two types.

(a) Nominal Variables:

Gives names in which there is no order.

Example: * Types of blood.

* Name your country.
 Ranked (ordinal) Variables:
Classifies variables into categories that can be ranked.

Example: * Academic level. A, B,

* Level of the Hotel. *, **,, $* * * * *$

Quantitative It is the variables which takes numerical values

with measure scale and can be ordered or ranked.

Example: Age, height, weight,..........

* Quantitative variables are two types.

a Discrete Variables are can be count.

Example: * Number of student in class.

* Number of cars in park.

Continuous variables:

It is the variable which can take all possible numerical values in
a given interval.

Example: * Height of a student.

- Weight of a student.

Classify each variable as qualitative or quantitative.

a. Number of bicycles sold in 1 year by a large sporting goods Store.
(b. Colors of baseball caps in a store.

الزهن المسنغرق الخلع العثب
C. Times it takes to cut a lawn.

d. Capacity in cubic feet of six truck beds.
eria
e. Classification of children in a day-care center (infant روضة
toddler, preschool).

جحيرةجون

f. Weights of fish caught in Lake George. الحالة الاجماعية لأعضاء كليةف جلمعةك كبيرة
g. Marital statues of faculty members in a large university.

Solution

Classify each variable as discrete or continuous.

a. Number of doughnuts sold each day by doughnut Heaven.
رجة حرالرقست خمامالتسبالة
b. Water temperatures of six swimming pools in Pittsburgh
on a given day.

مالجأ للحيولنت

c. Weights of cats in a pet shelter.
الممر الفتراضي بالساعلت لعدد IT حجر جارية
d. Lifetime (in hours) of 12 flashlight batteries.
e. Number of cheeseburgers sold each day by a hamburger stand on a college campus.
f. Number of DVDs rented each day by a video store.

$$
\text { اللمهة بالجااونلك لحدد } 7 \text { خزلنال ماءفي مطلالة جفرسسهن }
$$

g. Capacity (in gallons) of six reservoirs in Jefferson County.

Solution

هي بيلنت ألممية غير رقمية (غيرمةلالعة) لـلمجموعة خصائص تميزها عن غيرها.
Example: * blood types (A, B, O, AB).

* gender (male, female)Ordinal level data
المقيلس الترتييج
هي بيانلت مقسة إلى مستونيت أو فئلت يمكن ترتيبها تصاعياً أو تنازليًا. Example: * Grade of course (A, B, C, D. F)

> * Rating scale (Poor, Fair, Good, Excellent).
> * Ranking of tennis players.

Interval level data

.

هي بيانات رقمية ثقلس بمقدار بعدها عن الصفر

Example: * Temperature

* I Q. test.

ممكن موجب أوسالب أوصفر
المفر لا يعني العدلم الالاماهرة
Ratio level data .

Example: * height, weight, time Salary, Age
 باليته صفر: ألي المفر له.معف وهو النحدلم الالامرة وبكون موجب ولا يكونسالب

Classify each as nominal - level, ordinal - level, interval level, or ratio - level measurement.

صفحت
دللا التلفونك

a Pages in the city of Cleveland telephone book.
(Ratio)
Zero صفحت دللل التالفهن تبدأمن ا الـلألي ليستسالبة ولا تبدأمن
b Rankings of tennis players.
(Ordinal)

C Weights of air conditioners.
(Ratio)
(d) Temperatures inside 10 refrigerators.
(Interval)
e. Salaries of the top five CEO in the United States.
(Ratio)

Ratings of eight local plays (Poor, Fair, Good, Excellent).
(Ordinal)
g) Times required for mechanics to do a turn-up.
(Ratio)
h Ages of students in a classroom.
(Ratio)

المرض الحالة الجتماعية

(i)Marital status of patients in a physician's office.
(Nominal)

محرك الجرال
(j) Horsepower of tractor engines.
(Ratio)

stawl dhat

0566664790

Discrete Probability Distributions

Probability Distributions

- A random variable is a variable whose values are determined by chance.
- Variables that can assume all values in the interval between any two given values are called continuous variables. For example, if the temperature goes from 60° to 70°.
- If a variable can assume only a specific number of values, such as the outcomes for the roll of a die or the outcomes for the toss of a coin, then the variable is called a discrete variable.
- For these Exercises, state whether the variable is discrete or continuous.

1. The speed of a jet airplane.
(Continuous)
2. The number of cheeseburgers a fast-food restaurant serves each day.
(Discrete)
3. The number of people who play the state lottery each day.
(Discrete)
4. The weight of a Siberian tiger.
(continuous)
5. The time it takes to complete a marathon.
(continuous)
6. The number of mathematics majors in your school. (Discrete)
7. The blood pressures of all patients admitted to a hospital
on a specific day.
(Discrete)

Example:

Construct a probability for rolling a single die.

Solution

Outcome x	1	2	3	4	5	6
Probability: $\mathrm{P}(\mathrm{x})$	1	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
	$\frac{1}{6}$					

Example:

Represent graphically the probability distribution for the sample space for tossing three coins.

Number of heads x	0	1	2	3
Probability: $\mathrm{P}(\mathrm{x})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

نيُ

Two Requirements For a Probability Distribution

1. The Sum of the probabilities of all the events in the sample space must be equal 1

$$
\sum \mathrm{P}(\mathrm{X})=1
$$

2. The probability of each event in the sample space must be between or equal to 0 and 1 .

$$
0 \leq \mathrm{P}(\mathrm{X}) \leq 1 .
$$

Example:

Determine whether each distribution is a probability distribution.
a

X	0	5	10	15	20
$\mathrm{P}(\mathrm{X})$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

Yes, it is a probability distribution.

(b)	X	0	2	4	6
$\mathrm{P}(\mathrm{X})$	-1.0	1.5	0.3	0.2	

No. It is not a probability distribution, since $P(x)$ cannot be 1.5 or - 1.0

c) | X | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{X})$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{16}$ | $\frac{9}{16}$ |

Yes, it is a probability distribution.

X	2	3	7
$\mathrm{P}(\mathrm{X})$	0.5	0.3	0.4

No, it is not, since $\sum \mathrm{P}(\mathrm{X})=1.2$

Mean, Variance, Standard Deviation, and Expectation

- Formula for the mean of a probability distribution

The mean of a random variable with a discrete probability distribution
$\mu=\mathbf{X}_{1} \cdot \mathbf{P}\left(\mathbf{X}_{1}\right)+\mathbf{X}_{2} \cdot \mathbf{P}\left(\mathbf{X}_{2}\right)+\mathbf{X}_{3} \cdot \mathbf{P}\left(\mathbf{X}_{3}\right)+\ldots \ldots \ldots \ldots \ldots+\mathbf{X}_{\mathrm{n}} \cdot \mathbf{P}\left(\mathbf{X}_{\mathrm{n}}\right)$
$\mu=\sum \mathbf{X . P (X)}$

- Formula for the variance of a probability distribution

$$
\sigma^{2}=\sum\left[\mathbf{X}^{2} \cdot \mathbf{P}(\mathbf{X})\right]-\mu^{2}
$$

- The standard deviation of a probability distribution is

$$
\sigma=\sqrt{\sigma^{2}} \quad \text { or } \quad \sqrt{\sum\left[\mathbf{X}^{2} \cdot \mathbf{P}(\mathbf{X})\right]-\mu^{2}}
$$

- The expected value:
$\mu=\mathbf{E}(\mathbf{X})=\sum \mathbf{X} . \mathbf{P}(\mathbf{X})$
- Remember that variance and standard deviation cannot be negative.

Example:

A pizza shop owner determines the number of pizza that are delivered each day. Find the mean variance, and standard deviation for the distribution shown. If the manager stated that 45 pizzas were delivered on one day. Do you think that this is a سِتجق تصنقه believable claim?

Number of deliveries X	35	36	37	38	39
Probability: P (X)	0.1	0.2	0.3	0.3	0.1

X	P (x)	X. P (x)	$\mathrm{X}^{2} . \mathrm{P}(\mathrm{x})$
35	0.1	3.5	122.5
36	0.2	7.2	259.2
37	0.3	11.1	410.7
38	0.3	11.4	433.2
39	0.1	3.9	152.1
		x. $\mathrm{P}(\mathrm{x})=37.1$	$\mathrm{x}^{2} \cdot \mathrm{p}(\mathrm{x})=1377.7$

- Mean: $\mu=\sum \quad \mathrm{x} \cdot \mathrm{p}(\mathrm{x})=37.1$
- Variance: $\sigma^{2}=\sum x^{2} \cdot p(x)-\mu^{2}$
$=1377.7-(37.1)^{2}$
$=1.29$
- Standard deviation: $\sigma=\sqrt{\sigma}=\sqrt{1.29}=1.1$

Example:

متجر بيع بالتجزئة

The number of suits sold per day at a retail store is shown in the table, with the corresponding probabilities. Find the mean, variance, and standard deviation of the distribution.

Number of suits sold X	19	20	21	22	23
Probability P (X)	0.2	0.2	0.3	0.2	0.1

If the manager of the retail store wants to be sure that he has enough suits for the next 5 days, how many should the manager purchase?

X	$\mathrm{P}(\mathrm{x})$	$\mathrm{X} . \mathrm{P}(\mathrm{x})$	$\mathrm{X}^{2} . \mathrm{P}(\mathrm{x})$
19	0.2	3.8	72.2
20	0.2	4	80
21	0.3	6.3	132.3
22	0.2	4.4	96.8
23	0.1	2.3	52.9

- Mean. $\mu=\sum \mathrm{x} \cdot \mathrm{p}(\mathrm{x})=20.8$
- Variance: $\sigma^{2}=\sum x^{2} \cdot p(x)-\mu^{2}$

$$
\begin{aligned}
& =434.2-(20.8)^{2} \\
& =1.56
\end{aligned}
$$

- Standard deviation: $\sigma=\sqrt{\sigma^{2}}=\sqrt{1.56}=1.2$
- The number of suits $=(20.8) \times(5)=104$ suits

Example:

From past experience, a company has found that in cartons of transistors, 92 \% contain no defective transistors, 3\% contain one defective transistor, 3% contain two defective transistors, and 2% contain three defective transistors. Find the mean, variance, and standard deviation. For the defective transistors.

About how many extra transistors per day would the company need to replace the defective ones if it used 10 cartons per day?

X	$\mathrm{P}(\mathrm{x})$	$\mathrm{X} . \mathrm{P}(\mathrm{x})$	$\mathrm{X}^{2} . \mathrm{P}(\mathrm{x})$
0	0.92	0	0
1	0.03	0.03	0.03
2	0.03	0.06	0.12
3	0.02	0.06	0.18

- Mean. $\mu=\sum$ x. $p(x)=0.15$
- Variance: $\sigma^{2}=\sum x^{2} \cdot p(x)-\mu^{2}$

$$
\begin{aligned}
& =0.33-(0.15)^{2} \\
& =0.3075
\end{aligned}
$$

- Standard deviation: $\sigma=\sqrt{\sigma^{2}}=\sqrt{0.3075}=0.555$
- Number of extra transistors $=(0.15) .(10)=1.5$ is $\cong 2$.

Example:

A person decides to invest $\$ 50.000$ in a gas well. Based on history, the Probabilities of the outcomes are as follows.

Outcome x	P (x)
$\$ 80.000$ (Highly successful)	0.2
$\$ 40.000$ (Moderately successful	0.7
-\$ 50.000 (Dry well)	0.1

لستثمار

- Find the expected value of the investment.

Would you consider this a good investment?

Solution

$\mathrm{E}(\mathrm{x})=\sum \mathrm{x} . \mathrm{P}(\mathrm{x})$

$$
\begin{aligned}
& =(80000)(0.2)+(40000)(0.7)+(-50000)(0.1) \\
& =\$ 39000
\end{aligned}
$$

This a good investment.

The Binomial Distribution

A binomial experiment is a probability experiment that satisfies the following four requirements:

1. There must be a fixed number of trials.
2. Each trial has only two outcomes: success or fail.
3. The outcomes of each trial must be independent of each other.
4. The probability of a success must remain the same for each trial.

Mean, Variance, and standard deviation for the binomial distribution

The mean, variance, and standard deviation of a variable that has the binomial distribution can be found by using the following formulas.

- Mean: $\mu=\mathrm{n} . \mathrm{p}$
- Variance: $\sigma^{2}=\mathrm{n} . \mathrm{p} . \mathrm{q}$
- Standard deviation: $\sigma=\sqrt{n \cdot p \cdot q}$

Example:

A dice is rolled 480 times. Find the mean, variance, and standard deviation of the number of 2 s that will be rolled.

Solution

Getting a 2 is a success and not getting a 2 is a failure:

- $\mathrm{n}=480, \mathrm{P}=\frac{1}{6}$, and $\mathrm{q}=\frac{5}{6}$
- $\mu=\mathrm{n} . \mathrm{p}=480 \cdot \frac{1}{6}=80$
- $\sigma^{2}=$ n.p.q $=480 \cdot\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)=66.7$
- $\sigma=\sqrt{\text { n.p.q }}=\sqrt{66.7}=8.2$

Example:

A coin is tossed 4 times. Find the mean, variance, and standard deviation of the number of heads that will be obtained.

Solution

The binomial distribution and
$\mathrm{n}=4$,
$\mathrm{p}=\frac{1}{2}$
and
$\mathrm{q}=\frac{1}{2}$
$\mu=\mathrm{n} \cdot \mathrm{p}=4 \cdot \frac{1}{2} \cdot \frac{1}{2}=1$
$\sigma^{2}=\mathrm{n} \cdot \mathrm{p} \cdot \mathrm{q}=4 \cdot \frac{1}{2} \cdot \frac{1}{2}=1$
$\sigma=\sqrt{1}=1$

Example:

If 3\% of calculators are defective, find the mean, variance, and standard deviation of a lot of 300 calculators.

Solution

$$
\begin{gathered}
\mathrm{n}=300 \quad \mathrm{p}=0.03 \quad \mathrm{q}=0.97 \\
\text { - } \mu=\mathrm{n} . \mathrm{p}=(300)(0.03)=9 \\
\text { - } \sigma^{2}=\mathrm{n} . \mathrm{p} \cdot \mathrm{q}=(300)(0.03)(0.97)=8.7 \\
\text { - } \sigma=\sqrt{\sigma^{2}}=\sqrt{8.73}=2.9 \cong 3
\end{gathered}
$$

Example:

In a restaurant, a study found that 42% of all patrons smoked.
If the seating capacity of the restaurant is 80 people, find the mean, variance, and standard deviation of the number of smokers. About how many seats should be available. For smoking customers?

Solution

$$
\begin{aligned}
& \mathrm{n}=80 \\
& \mathrm{p}=0.42 \\
& \mathrm{q}=0.58 \\
& \text { - } \mu=\mathrm{n} . \mathrm{p}=(80)(0.42)=33.6 \\
& \text { - } \sigma^{2}=\text { n.p.q }=(80)(0.42)(0.58)=19.5 \\
& \text { - } \sigma=\sqrt{\sigma^{2}}=\sqrt{19.5} \cong 4.4
\end{aligned}
$$

Note

- two outcomes: yes or no \rightarrow (binomial)
- more than two outcomes \rightarrow (not binomial)

Which of the following are binomial experiments or can be reduced to binomial experiments? صابون كثير الرغوة
a. Surveying 100 People to determine if they like sudsy soap.
(Binomial)
b. Tossing a coin 100 times to see how many heads occur
(Binomial)
c. Asking 1000 people which brand of cigarettes they smoke.
(Not binomial)
d. Testing one brand of aspirin by using 10 people to determine whether it is effective
(Binomial)
f. Asking 100 people if they smoke
(Binomial)
g. Checking 1000 applicants to see whether they were admitted to white Oak college.
h. Surveying 300 prisoners to see how many different crimes they were convicted of.
(Not binomial)
i. Surveying 300 prisoners to see whether this is their first offense.
(Binomial)

Binomial Probability Formula

In a binomial experiment, the probability of exactly X successes in n trials is

$$
\frac{n!}{(n-x)!x!} \times p^{x} \times q^{n-x}=\mathrm{nC}_{x} \times \mathrm{p}^{\mathrm{x}} \times \mathrm{q}^{\mathrm{n}-\mathrm{x}} \mathrm{P}(\mathrm{x})=
$$

Example:

A student takes a 20 - question, true/ false exam and guesses on each question. Find the probability of passing if the lowest passing grade is 15 correct out of 20 . Would you consider this event likely to occur? Explain your answer.
$\mathrm{n}=20$

$$
\mathrm{p}=\frac{1}{2} \quad \mathrm{q}=\frac{1}{2}
$$

$$
\mathrm{p} \text { (passing })=\mathrm{p}(\mathrm{x} \geq 15)
$$

$$
=p(x=15)+p(x=16)+p(x=17)+p(x=18)+p(x=19)+p(x=20)
$$

$$
=20 \mathrm{C}_{15}\left(\frac{1}{2}\right)^{15}\left(\frac{1}{2}\right)^{5}+20 \mathrm{C}_{16}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{4}
$$

$$
+20 \mathrm{C}_{17}\left(\frac{1}{2}\right)^{17}\left(\frac{1}{2}\right)^{3}+20 \mathrm{C}_{18}\left(\frac{1}{2}\right)^{18}\left(\frac{1}{2}\right)^{2}
$$

$$
+20 \mathrm{C}_{19}\left(\frac{1}{2}\right)^{19}\left(\frac{1}{2}\right)^{1}+20 \mathrm{C}_{20}\left(\frac{1}{2}\right)^{20}\left(\frac{1}{2}\right)^{0}
$$

$$
=0.015+0.005+0.001+\ldots . .=0.021<0.5
$$

There for P (passing) unlikely to occur.

Example:

If 80% of the people in a community have internet access from their homes, find these probabilities for a sample of 10 people. علذ الكثر
a. At most 6 have internet access.
b. Exactly 6 have internet access.
c. At least 6 have internet access.
d. Which event a, b, or c is most likely to occur? Explain why?

$\mathrm{n}=10$
$\mathrm{p}=0.8$
$\mathrm{q}=0.2$
(a) $\mathrm{P}($ at most 6$)=\mathrm{p}(\mathrm{x} \leq 6)$
$=p(x=6)+p(x=5)+p(x=4)+p(x=3)+p(x=2)+p(x=1)+p(x=0)$
$=10 \mathrm{C}_{6}(0.8)^{6}(0.2)^{4}+10 \mathrm{C}_{5}(0.8)^{5}(0.2)^{5}+10 \mathrm{C}_{4}(0.8)^{4}(0.2)^{6}$
$+10 \mathrm{C}_{3}(0.8)^{3}(0.2)^{7}+10 \mathrm{C}_{2}(0.8)^{2}(0.2)^{8}+10 \mathrm{C}_{1}(0.8)^{1}(0.2)^{9}$
$+10 \mathrm{C}_{0}(0.8)^{0}(0.2)^{10}=0.121$
(b) $\mathrm{P}(\mathrm{x}=6)=10 \mathrm{C}_{6}(0.8)^{6}(0.2)^{4}=0.088$
(c) $\mathrm{p}($ at least 6$)=\mathrm{p}(\mathrm{x} \geq 6)=\ldots \ldots \ldots . .$.
(d) Event c is most likely to occur because it's >0.5

Example:

A survey found that 86% of Americans have never been a جريمة العف
victim of violent crime. If a sample of 12 Americans is selected at random, find the probability that 10 or more have never been معقول victims of violent crime. Does it seem reasonable that 10 or more have never been victims of violent crime?

Solution

$\mathrm{n}=12$
$\mathrm{p}=0.86$
$\mathrm{q}=0.14$
$p(x \geq 10)=p(x=10)+p(x=11)+p(x=12)$
$=12 \mathrm{C}_{10}(0.86)^{10}(0.14)^{2}+12 \mathrm{C}_{11}(0.86)^{11}(0.14)^{1}+12 \mathrm{C}_{12}(0.86)^{12}(0.14)^{0}$
$=0.77>0.5$

Yes: it seem reasonable.

Chapter Quiz

Determine whether each statement is true or false. If the

statement is false explain why.

1) The expected value of a random variable can be thought of as
فترةطوبة a long - run average.
2. The number of courses a students is taking this semester is an example of a continuous random variable.
3. when the multinomial distribution is used, the outcomes must be dependent.
4. A binomial experiment has a fixed number of trials.

Complete these statements with the best answer:

5. Random variable values are determined by chance.
6. The mean for a binomial variable can be found be found by using the formula $\boldsymbol{\mu}=\mathbf{n} \cdot \mathbf{p}$.
7. One requirement for a probability distribution is that the sum of all the events in the sample space must equal 1.

Select the best answer:

8. What is the sum of the probabilities of all outcomes in a probability distribution?
a. 0

b. $1 / 2$
d. It cannot be determined.
9. How many outcomes are there in a binomial experiment?
a. 0
C. 2
b. 1
d. It varies

For questions 11 through 14, determine if the distribution represents a probability distribution. If not, state why.

13 | X | 50 | 75 | 100 |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{X})$ | 0.5 | 0.2 | 0.3 |\rightarrow yes

Observational and

Observational study كرالسة

The researcher

Observe only and not effect
ملاظة الحدث دون تـخل للتأثير فـ النتائج - مثل: ملاحظة عدد المرضم النين مُشَاؤهم aن مرض معين.

$$
\text { -Find - See..... } \quad \text { كلمك تل على هذا النوع }
$$

Experimental Study

The researcher
Effect and observe.
 التتل على نتائج الظاهره. - مثل: اعطاء المرض عقار معين مُملاظظة تأثير هذا العقار عله عدد مـ ن ت م .
.......Placed on - given....

Identify each study as being either observational or experimental:

a. Subjects were randomly assigned to two groups, and one اعثبطبيه
group was given än herb and the other group a placebo. After 6 months, the numbers of respiratory tract infections each group had were compared.

> قم التتل ف الدرلسه وذك بإططاء نوع معن من العلاج لكّل مجموعه
(Experimental)

وق مزه

b. A researcher stood at a busy intersection to see if the color of اللسيارة

الق قaودها للشخص للبرعة مرزبط + the automobile that a person drives is related to running red الاضضواء lights.

> يشاهد فتط بدون تحخل to see

(Observational)

C. A researcher find that people who are more hostile have higher total cholesterol levels than who are less hostile.
finds * بدون تتل

(Observational)

غنسوا عشوائيا أشخاص

e. Subjects are randomly assigned to four groups.

Each group is placed on one of four special diets - a low- fat diet, منظم a high- fish diet, a combination of low - fat diet, and a regular diet. After 6 months, the blood pressures of the groups are compared to see if diet has any effect on blood pressure.
تم التنل فى درلسة " تأثير الرجيم على ضغط الهم"

Each group is placed on diets
(Experimental)
$2 x+1=y$

* Independent

هومتغير مطل اهتملم البلهث (موضوع الدرلمه)

Another name:

Explanatory variable

Example: * number of study hours

* Room temperature
* Dependent variable
متغير غيرمسقل (تالع) y (متأثر)
هو نانج العمليت الق لجربت/عله المتغير المسڤل
Another name:
Outcome variable

Example: * Student score.

* Bacteria growth.

* Confounding

متغير لا يمكن فصله ءن المتغي ـر الم سسل

Interferes With other variables

Identify the independent variable and the dependent:

 variable for each of the studies in last Exercise:a- Independent var.: " type of pill "
b- Independent var.: " $\begin{gathered}\text { "type of pill } \\ \text { ty }\end{gathered}$
مؤثر

Dependent var.: " number of infections
متأثنر
C- Independent var.: " color of automobile
مؤثر
Dependent var. : "running red lights "
مـتألم
d- Independent var.: " level of hostility "
مؤثر

Dependent var. : "cholesterol level"
متأثر
e- Independent var. : " type of diet "
مؤثر

Dependent var. : " blood pressure "
متأل大

Summary

- The two major areas of statistics are descriptive and inferentia
- Descriptive statistics includes the collection. Organization, summarization and presentation of data.
- Inferential statistics includes making inferences from samples to populations, estimations, determining relationships and making predictions. Inferential statistics is based on probability theory.
- Since in most cases the populations under study are large, statisticians use subgroups called samples to get the necessary data for their studies. There are four basic methods used to obtain samples: random, systematic, stratified and cluster.
- Data can be classified as qualitative or quantitative. Quantitative data can be either discrete or continues, depending on the values they can assume. Data can also be measured by various scales the four basic levels of measurement are nominal, ordinal, interval and ratio.
- There are two basic types of statistical studies: observational studies and experimental studies.
- When conducting observational studies, researchers observe what is happening or what has happened and then draw conclusions based on these observations.

Chapter Quiz

Determine whether each statement is true or false if the
statement is false explain why.

1. Probability is used as a basis for inferential statistics \square
2. The height of president Lincoln is an example of variable (X)

Ratio لان الارناع غيرسالب
3. The highest level of measurement is the interval level

4- When the population of college professors is divided into
groups according to their rank (instructor, assistant Stratified
professor. etc.) and then several are selected from each قم القسيم اللىطقت גسب الدرجة
group to make up a sample, the sample is called cluster

5- The variable age is an example of a qualitative variable

6- The weight of pumpkins is considered be a continuous variable
7. The boundary of a value such as 6 inches would be 5.9-6.1 inches

Select the best answer.

8- The number of absences per year that a worker has is an example of what type of data?
a. nominal
b. Qualitative
C. Discrete
d. Continuous

9- What are the boundaries of $\mathbf{2 5 . 6}$ ounces?

a. 25-26 ounces
(b.) 25.55-25.65 ounces
c. $25.5-25.7$ ounces
d. 20-39 ounces

10- A researcher divided subjects into two groups according to gender and then selected members from each group for her sample. What sampling method was the researcher using?
a. Cluster
b. Random
c. Systematic
d.) Stratified
11. Data that can be classified according to color are measured on what scale?
a. Nominal
b. Ratio
c. Ordinal
d. Interval

يتضمن - يشمل

12- A study that involves no researcher intervention is called
a. An experimental study
b. A noninvolvement stud
C. An observational study
d. A quasi - experimental study
13. A variable that interferes with other variables in the study is called
a. An confounding variable.
b. An explanatory variable.
c. An outcome variable.
d. An interfering variable.

Use the best answer to complete these
14 Two major branches of statistics are descriptive and

Inferential.

15- Two uses of probability are Gambling and Insurance.
16- The group of all subjects under study is called a(n) population.
17. A group of all subjects selected from the group of all subjects under study is called (n) sample.

18- Three reasons why samples are used in statistics are a. save time b. save money c. when population is large.
19. The four basic sampling methods are....
a. Random
b. systematic
c. stratified d. cluster
20. A study that uses intact groups when it is not possible to شه randomly assign participants to the groups is called Quasi تجريبيب
Experimental study.
21 In a research study, participants should be assigned to groups random methods, if possible.
22. For each statement decide whether descriptive or inferential statistics is used.

المتوقع
a. The average life expectancy in New Zealand is 78.49 years. (descriptive).
b. A diet high in fruits and vegetables will lower blood pressure.
(Inferential)
الخسارة المقدرة
c. the total amoünt of estimated losses from hurricane Hougo was $\$ 4.2$ billion.
(Descriptive)
مرتط ب - أن
d. Researchers stated that the shape of a person's ear is related to the person's aggression.
(Inferential) ... يستل بشيء عليشيء لخر

خربجين

e. In 2020, the number of high school graduates will be 3.2 million students.

(Inferential)

23- Classify each as nominal level, ordinal level, or ratio level measurement

Rating of movies as PG. and R
(nominal)
بالملكبنة المباعة اعمدة للسكر(قوالب الحلوي)
b. Number of candy bars sold on a fund drive. (ratio)

c. Classification of automobiles as subcompact, compact, عادية فخمة
standard, and luxury
(ordinal)
d. Temperatures of hair dryers.
ai) (Interval).
e. Weights of suitcases on a commercial airline.

24- Classify each variable as discrete or continues. العمال العمار
a. Ages of people working in a large factory. (continuous)
b. Number of cups of coffee served at a restaurant.
(discrete)

المةقونه

c. The amount of drug injected into a guinea pig
(continuous)
d. The time it takes a student to drive to school. (continuous)
e. The number of gallons of milk sold each day at a grocery store.
25. Give the boundaries of each.
a. 48 seconds
b. 0.56 Centimeter
c. 9.1 quarts
d. 13.7 pounds
e. 7 feet

Solution

a $47.5-48.5$
(b) $0.555-0.565$

C $9.05-9.15$
d 13.65-13.75
(e) 6.5-7.5
H.W

Find the boundaries:
a) 6.1-8.32
b) $6.2-8.42$
C) $6-8.5$

السعدئ

Sxaul dha?

- sample space	فراغ إِينهـ	- Product	حاصل ضرب
- Experiment	تّجربه	- Certain occur	حادثّة مؤكدة
- probability	\|حّمال	- Never occur	حادثة مستحيلة
- Toss	(القّاء	- Complement	حادثة مكملة
- Coin		- Outcomes	نواتج (عناصر)
- Roll		- Empirical	تجريبي (مبني على الملاحظة
- Dice	حجر نرد	- Subjective	وهمي (مبني على التخمين)
- Tree diagram	الشثجرة البيابية	- Urn	صندوق
- Head		- Drawn	يسحب
- Tail		- Mutually exclusive	متتافية
- Event	حادثّه	- Recent Study	دراسةّ حديثّة
- Simple event	حادثٌ بسبطه	- Common	مشترك
- Odd number	عدد فردى	- Exactly	بالضبط
- Prime number	عدد أولى	- Contain	يحتوى على
- Even number	عدد زوجى	- Consists of	يتكون من
- Compound event	حـث هركب	- Select	يختار
- Random	عشّو	- At least	على الأقلّ
- Gender	نوع	- At most	على الأكثر

Sample Spaces and Probability

A probability experiment

A chance leads to defined results called outcomes

An outcome

Is the result of a single trial of a probability experiment.

A sample space

Is the set of all possible outcomes.

An event

Consists of a set of outcomes of a probability experiment.

Equally likely events

Are events that have the same probability of occurring.

Classical Probability

The probability of any event E
Number of outcomes in E
Is $P(E)=\frac{\text { Total number of outcomes in the sample space }}{}$ $P(E)=\frac{n(E)}{n(S)}$

Empirical probability

Based on observation

$P(E)=$
 Frequency for the class
 Total frequency in the distribution

Subjective probability
 Based on estimate and inexact information

Simple event

Is an event contain one outcome.

Compound event

Is an event contain more than one outcome.

Coin

- The number of outcomes in the sample space:
$\mathrm{n}(\mathrm{S})=2^{\mathrm{N}}$

Find the sample space for:

(2) Toss two coins $\rightarrow \mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\} \longrightarrow \mathrm{N}(\mathrm{s})=2^{2}=4$

Tree diagram

T

(3) Toss 3 Coins

Dice

The number of outcomes in the sample space.

$$
\begin{aligned}
& \text { n (S) }=6^{\mathrm{N}} \longrightarrow \text { عدد الرميات أو عدد القطع } \\
& \text { - Roll a dice } \rightarrow \mathrm{S}=\{1,2,3,4,5,6\}
\end{aligned}
$$

Tree diagram
A is even number $=\{2,4,6\}$
B is odd number $=\{1,3,5\}$
C is prime number $=\{2,3,5\}$
$D=\{4\}$ is simple event
A and B are mutually exclusive: where $\mathrm{A} \cap \mathrm{B}=\phi$
H.W

- Roll two dice $\rightarrow \mathrm{S}=$ \qquad $n(s)=\ldots \ldots$. Tree diagram

Probability Rules

For any event E

- The Range of the values of the probability $=[0,1]^{* * * * * *}$
- $P(E)=0 \quad$ where E can never occur.
- $P(E)=1 \quad$ where E certain occur.
- $\sum_{i=1}^{n} P(a i)=1$

The sum of the probabilities of all the outcomes in the sample space equal 1.

- $P\left(E^{\prime}\right)=1-P(E) \quad \rightarrow P(E)+P\left(E^{\prime}\right)=1$

Where E^{\prime} is the complement of E
If $s=\{1,2,3,4,5,6\}$
$A=\{1,2,3,4\} \rightarrow A^{\prime}=\{5,6\}$
$P(A)=\frac{4}{6} \rightarrow P\left(A^{\prime}\right)=\frac{2}{6}$
11.Classify each statement as an example of classical probability, empirical probability, or subjective probability.
a) The probability that a person will watch the $6 o^{\prime}$ clock evening news is 0.15
\rightarrow (Empirical)
b) The probability of winning at a Chuck-a-Luck game is $\frac{5}{36}$
\rightarrow (Classical)
c) The probability that a bus will be in an accident on a specific run is about 6\%
\rightarrow (Empirical)
d) The probability of getting a royal flush when five cards are selected at random is
\rightarrow (Classical)
e) The probability that a student will get a C or better in a statistics course is about 70%
\rightarrow (Empirical)
f) The probability that a new fast-food restaurant will be a success in Chicago is 35%
\rightarrow (Empirical)
g) The probability that interest rates will rise next 6 months is 0.50
in the
\rightarrow (Subjective)

10. A probability experiment is conducted. Which of these cannot be considered a probability of an outcome?
a. $\frac{1}{3}$
b. $-\frac{1}{5}$
c. 0.80
d. $\mathbf{- 0 . 5 9}$
e. 0
f. 1.45
g. 1
h. 33\%
i. 112\%

(b) $-\frac{1}{5}$
(d) -0.59
(f) 1.45
(i) $112 \%=1.12$

Are can not be considered a probability of an outcome.
Where $0 \leq \mathrm{P}(\mathrm{E}) \leq 1$
12. If a die is rolled one time, find these probabilities.
a. Of getting a 4.
b. Of getting an even number.
c. Of getting a number greater than 4.
d. Of getting a number less than 7.
e. Of getting a number greater than 0 .
f. Of getting a number greater than 3 or an odd number.
g. Of getting a number greater than 3 and an odd number.

Solution

$S=\{1,2,3,4,5,6\}$
(a) $\mathrm{a}=\{4\} \rightarrow \mathrm{P}(\mathrm{a})=\frac{1}{6}$
(b) $\mathrm{b}=\{2,4,6\} \rightarrow \mathrm{P}(\mathrm{b})=\frac{3}{6}=\frac{1}{2}$
(c) $\mathrm{c}=\{5,6\} \rightarrow \mathrm{P}(\mathrm{c})=\frac{2}{6}=\frac{1}{3}$
(d) $\mathrm{d}=\{1,2,3,4,5,6\} \rightarrow \mathrm{P}(\mathrm{d})=\frac{6}{6}=1 \longrightarrow$ certain occur
(e) $\mathrm{e}=\{1,2,3,4,5,6\} \rightarrow \mathrm{P}(\mathrm{e})=\frac{6}{6}=1 \longrightarrow$ certain occur
(f) $\mathrm{f}=\{4,5,6,1,3\} \rightarrow \mathrm{P}(\mathrm{f})=\frac{5}{6}$
(g) $\mathrm{g}=\{5\} \rightarrow \mathrm{p}(\mathrm{g})=\frac{1}{6}$

Example:

A couple has three children find each probability:
a) All boys
b) All girls or all boys
c) Exactly two boys or two girls.
D) At least one child of each gender.

$\mathrm{S}=\{\mathrm{bbb}, \mathrm{bbg}, \mathrm{bgb}, \mathrm{bgg}, \mathrm{gbb}, \mathrm{gbg}, \mathrm{ggb}, \mathrm{ggg}\}$
(a) \quad P $($ all boys $)=\frac{1}{8}$
(b) $\quad P($ all girls or all boy $)=\frac{2}{8}=\frac{1}{4}$
(c) $\quad \mathrm{P}($ Exactly two boys or two girls $)=\frac{6}{8}=\frac{3}{4}$
(d) $\mathrm{P}\left(\right.$ at least one child of each gender) $=\frac{6}{8}=\frac{3}{4}$
13. if two dice are rolled one time, find the probability of getting these results.
a. A sum of 6 .
b. Doubles.
c. A sum of 7 or 11 .
d. A sum greater than 9 .
e. A sum less than or equal to 4 .

Solution

$S=\{(1,1),(1,2)$
$(2,1),(2,2), \ldots \ldots \ldots \ldots \ldots,(2,6)$
$(6,1),(6,2), \ldots \ldots \ldots \ldots \ldots,(6,6)\}$
(a) $\mathrm{a}=\{(1,5),(2,4),(3,3)(4,2),(5,1)\}$
$P(a)=\frac{5}{36}$
(b) $\mathrm{b}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$P(b)=\frac{6}{36}=\frac{1}{6}$
(c) $\mathrm{c}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(5,6),(6,5)\}$

P $(\mathrm{c})=\frac{8}{36}=\frac{2}{9}$
(d) $\mathrm{d}=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
$P(d)=\frac{6}{36}=\frac{1}{6}$
(c) $\mathrm{c}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}$
$P(c)=\frac{6}{36}=\frac{1}{6}$

Roll two dice and multiply the number together.
a. Write out the sample space.
b. What is the probability that the product is a multiple of 6 ?
c. What is the probability that the product is less than 10 ?

Solution

a) $S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
b) $\mathrm{P}($ Product is multiple of 6$)=\frac{15}{36}$
c) $\mathrm{P}($ Product is less than 10$)=\frac{17}{36}$
19. For a recent year, 51% of the families in the United Slates had no children under the age of $18 ; 20 \%$ had one children 19% had two children; 7\% had three children; and 3% had four or more children. If a family is selected at random, find the probability that the family has:
a. Two or three children
b. More than one child
c. Less than three children
d. Based on the answers to parts a, b, and c, which is most likely to occur? Explain why.

Solution

Information's:

* $\mathrm{P}(0$ children $)=0.51$
* $P(1$ children $)=0.20$
* $\mathrm{P}(2$ children $)=0.19$
* $\mathrm{P}(3$ children $)=0.07$
* $\mathrm{P}(4$ children or more $)=0.03$
(a) P (2 or 3 children)
$=P(2)+P(3)$
$=0.19+0.07$
$=\underline{\underline{0.26}}$
(b) P (more than one children)
$=\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4$ children or more $)$
$=0.19+0.07+0.03$
$=\underline{\underline{0.29}}$
(c) P (less than three children)
$=\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)$
$=0.51+0.20+0.19$
$=0.90$
(d) In part c the event is most likely to occur.

Because the probability is greeter than any one.

The addition rules for

Two events are mutually exclusive events if they cannot occur at the same time they have no outcomes in common.

Addition Rule 1

When two events A and B are mutually exclusive, the probability that A or B will occur is
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

Addition Rule 2

If A and B are not mutually exclusive, then
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

In a hospital unit there are 8 nurses and 5 physicians; 7 nurses and 3 physicians are females. If a staff person is selected, find شخص the probability that the subject is a.
(1) Nurse or male.
(2) Physicians or females.

Solution

Staff	Females	Males	Total
Nurses	7	1	8
Physicians	3	2	5
Total	10	3	13

(1) P (Nurse or male)

$$
\begin{aligned}
& =P(\text { Nurse })+P(\text { male })-P(\text { nurse and male }) \\
& =\frac{8}{13}+\frac{3}{13}-\frac{1}{13}=\frac{10}{13}
\end{aligned}
$$

(2) P (Physician or female)

$$
=\mathrm{P}(\text { Physician })+\mathrm{P}(\text { female })-\mathrm{P}(\text { Physician and female })
$$

$$
=\frac{5}{13}+\frac{10}{13}-\frac{3}{13} \quad=\frac{12}{13}
$$

2. Determine whether these events are mutually exclusive:

a. Roll a die: Get an even number, and get a number less than 3 .
b. Roll a die: Get a prime number, and get an odd number.
c. Roll a die: Get a number greater than 3, and get a number less than 3 .
d. Select a student in your class: The student has blond hair, and the student has blue eyes.
e. Select a student in your college: the student is a تخصص تجارة sophomore, and the student is a business major.
f. Select any course: it is a calculus course, and it is an English course.
g. Select a registered voter: the voter is a Republican, and the voter is a democrat.

Solution

(a) $\mathrm{A}=\{2,4,6\}$
$B=\{1,2\}$
$\mathrm{A} \cap \mathrm{B}=\{2\} \rightarrow$ not mutually exclusive.
(b) $\mathrm{A}=\{2,3,5\}$
$\mathrm{B}=\{1,3,5\}$
$\mathrm{A} \cap \mathrm{B}=\{3,5\} \rightarrow$ not mutually exclusive.
(c) $\mathrm{A}=\{4,5,6\}$
$B=\{1,2\}$
$\mathrm{A} \cap \mathrm{B}=\phi \rightarrow \mathrm{A}$ and B mutually exclusive.
(d) A: blond hair
$\mathrm{B}=$ blue eyes
$\mathrm{A} \cap \mathrm{B} \neq \phi \rightarrow$ not mutually exclusive.
(e) A: sophomore
B: business major
$\mathrm{A} \cap \mathrm{B} \neq \phi \rightarrow$ not mutually exclusive.
(f) A: calculus course
B: English course
$\mathrm{A} \cap \mathrm{B}=\phi \rightarrow \mathrm{A}$ and B mutually exclusive
(g) A: Republican
B: Democrat
$\mathrm{A} \cap \mathrm{B}=\phi \rightarrow \mathrm{A}$ and B mutually exclusive

Example:

At a convention there are $\underline{\mathbf{7}}$ mathematics instructors, $\underline{\mathbf{5}}$ computer science instructors, $\underline{3}$ statistics instructors, and $\underline{4}$ science instructors. If an instructor is selected, find the probability of getting a science instructor or a math instructor.

Solution

Total instructors $=7+5+3+4=19$
P (science instructor or math instructor)
$=\mathrm{P}$ (science instructor) +P (math instructor)

$$
=\frac{4}{19}+\frac{7}{19}=\frac{11}{19}
$$

7. A recent study of $\mathbf{2 0 0}$ nurses found that of $\mathbf{1 2 5}$ female nurses, 56 had bachelor's degrees; and of 75 male nurses, 34 had bachelor's degrees. If a nurse is selected at random, find the probability that the nurse is
a. A female nurse with a bachelor's degree.
b. A male nurse.
c. A male nurse with a bachelor's degree.
d. Based on your answers to parts a, b, and c, Explain which is most likely to occur. Explain why.

Solution

	Male	Female
Bachelor's degree	34	56
Without bachelor degree	$75-34=41$	$125-56=69$
Total	75	125

(a) $\mathrm{P}(\mathrm{A})=\frac{56}{200}=0.28$
(b) $P(B)=\frac{75}{200}=0.38$
(c) $P(C)=\frac{34}{200}=0.17$
(d) Event B is most likely to occur

Because the probability is greeter than any one.
 football, 40 play basketball, and 8 play both.
What is the probability that a randomly selected male student?
a. Plays neither sport.
b. Plays (Football or Basketball).
c. Plays (Football and Basketball).

a. $P($ Play Neither sport $) \frac{110}{200}=0.55$
b. P (Play: Football or basketball)
$=\mathrm{P}(\mathrm{A}$ or B$)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{58}{200}+\frac{40}{200}-\frac{8}{200}=\frac{90}{200}=0.45$
c. P (Play: Football and basketball)
$=\frac{8}{200}=0.04$

مركز تجاري لمقايضة اللييارات
13. The Bargain Auto Mall has these cars in stock.

	SUV	سيارة صغيرة Compact	متوسطة الحمج Mid - Sized
أجنبي Foreign	20	50	20
داظلي - وطني	65	100	45

If a car is selected at random, find the probability that it is:
a. Domestic
b. Foreign and mid - sized
c. Domestic or an SUV.

Solution

Total cars $=20+50+20+65+100+45=300$
(a) $\quad P($ Domestic $)=\frac{65+10045}{300}=0.7$
(b) $\quad \mathrm{P}($ Foreign and mid - sized $)=\frac{20}{300}=0.07$
(c) P (Domestic or SUV)

$$
\begin{aligned}
& =\mathrm{P}(\text { Domestic })+\mathrm{P}(\text { SUV })-\mathrm{P}(\text { Domestic and SUV }) \\
& =\frac{65+100+45}{300}+\frac{20+65}{300}-\frac{65}{300}=0.77
\end{aligned}
$$

25. An urn contains 6 red balls, 2 green balls, 1 blue ball and 1 white ball. If a ball is drawn, find the probability of getting:
(a) Red or green.
(b) blue or white
(c) not green
(d) blue and white

Solution

Total balls $=6+2+1+1=10$
(a) $\mathrm{P}($ red or green $)=\mathrm{P}($ red $)+\mathrm{P}($ green $)=\frac{6}{10}+\frac{2}{10}=\underline{\underline{0.8}}$
(b) $\mathrm{P}($ blue or white $)=\mathrm{P}\left(\right.$ (blue) $+\mathrm{P}($ white $)=\frac{1}{10}+\frac{1}{10}=\underline{\underline{0.2}}$
(c) $\mathrm{P}($ not green $)=1-\mathrm{P}($ green $)=1-\frac{2}{10}=\underline{\underline{0.8}}$
(d) $\mathrm{P}($ blue and white $)=\mathrm{P}(\phi)=\underline{\underline{\mathbf{0}}}$

The Multiplication Rules and Conditional Probability

Two events A and B are independent events if:
A occurs does not affect the probability of B occurring.

Multiplication Rule 1

When two events are independent, the probability of both occurring is
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$

Example:

An urn contains 3 red balls, 2 blue balls, and 5 white balls.
A ball is selected and its color noted. Then it is replaced. A second ball is selected and its color noted. Find the probability of each of these.
a. Selecting 2 blue balls.
b. Selecting 1 blue ball and then 1 white ball.
c. Selecting 1 red ball and then 1 blue ball.

Solution

(a.) $\mathrm{P}($ blue and blue $)=\mathrm{P}($ blue $) \times \mathrm{P}($ blue $)=\frac{2}{10} \times \frac{2}{10}=\frac{4}{100}=\frac{1}{25}$
(b) $\mathrm{P}($ blue and white $)=\mathrm{P}($ blue $) \times \mathrm{P}($ white $)=\frac{2}{10} \times \frac{5}{10}=\frac{10}{100}=\frac{1}{10}$
C. $\mathrm{P}($ red and blue $)=\mathrm{P}($ red $) \times \mathrm{P}($ blue $)=\frac{3}{10} \times \frac{2}{10}=\frac{6}{100}=\frac{3}{50}$

Example:

Approximately 9% of men have a type of color blindness that prevents them from distinguishing between red and green. If 3 men are selected at random, find the probability that all of them will have this type of red-green color blindness.

Solution

Let C denote red-green color blindness. Then
$\mathrm{P}(\mathrm{C}$ and C and C$)=\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{C})$

$$
\begin{aligned}
& =(0.09)(0.09)(0.09) \\
& =0.000729
\end{aligned}
$$

Example:

A coin is flipped and a die is rolled. Find the probability of getting a head on the coin and a 4 on the die.

Solution

$\mathrm{P}($ head and 4$)=\mathrm{P}($ head $) \times \mathrm{P}(4)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}$

- IF $\mathbf{P}(\mathrm{A})<0.5$
A is unlikely to occur
- If $P(A) \geq 0.5$
A is likely to occur
- If $\mathbf{P}(A)=L$
$\rightarrow \mathrm{P}($ none A$)=1-\mathrm{L}$

Example:

If 28% of U.S. medical degrees are conferred to women, find the probability that 3 randomly selected medical school graduates are men. Would you consider this event likely or unlikely to occur? Explain your answer.

Solution

- $\mathrm{P}(\mathrm{W})=0.28$
- $\mathrm{P}(\mathrm{M})=1-\mathrm{P}(\mathrm{W})$

$$
\begin{aligned}
& =1-0.28=0.72 \\
& \mathrm{P}(3 \mathrm{M})=\mathrm{P}(\mathrm{M}) . \mathrm{P}(\mathrm{M}), \mathrm{P}(\mathrm{M}) \\
& =(0.72)(0.72)(0.72) \\
& =0.373
\end{aligned}
$$

The event is unlikely to occur because $\mathrm{P}(3 \mathrm{M})<0.5$

Example:

Eighty-eight percent of U.S. children are covered by some type of health insurance. If 4 children are selected at random, what is the probability that none are covered?

Solution

$\mathrm{P}($ covered $)=0.88$
$\mathrm{P}($ non covered $)=1-0.88=0.12$
$\mathrm{P}(4$ children are non covered $)=(0.12)(0.12)(0.12)(0.12)=$ 0.0002

Multiplication Rule 2

When two events are dependent, the probability of both occurring is
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})$

Example:

A person owns a collection of 30 CDs , of which 5 are country music. If 2 CDs are selected at random, find the probability that both are country music.

Solution

Since the events are dependent,
$\mathrm{P}\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{2}\right)=\mathrm{P}\left(\mathrm{C}_{1}\right) \times \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{C}_{1}\right)=\frac{5}{30} \times \frac{4}{29}=\frac{20}{870}=\frac{2}{87}$

Example:

In a civic organization, there are 38 members; 15 are men and 23 are women. If 3 members are selected to plan the July 4th parade, find the probability that all 3 are women. Would you consider this event likely or unlikely to occur? Explain your answer.

$=15$ men +23 women $=38$
$\mathrm{P}(3$ women $)=\frac{23}{38} \times \frac{22}{37} \times \frac{21}{36}=0.21 \quad<0.5$
There for: This event unlikely to occur.

Conditional probability

- $\mathrm{P}(\mathrm{A} / \mathrm{B})$

Probability that A occur
After B already occurred
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})} \rightarrow \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{A} / \mathrm{B})$
$\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{A})} \rightarrow \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})$

Example:

A recent survey asked 100 people if they thought women in the armed forces should be permitted to participate in combat. The results of the survey are shown.

Gender	Yes	No	Total
Male	32	18	50
Female	8	42	50
Total	40	60	100

Find these probabilities.
a. The respondent answered yes, given that the respondent was a female.
b. The respondent was a male, given that the respondent answered no.

Solution

Let: $\mathrm{M}=$ Male
F = Female
$Y=$ yes
$\mathrm{N}=\mathrm{No}$
a. $P(Y / F)=\frac{P(Y \text { and } F)}{P(F)}=\frac{\frac{8}{100}}{\frac{50}{100}}=\underline{\underline{0.16}}$ 18
b. $P(M / N)=\frac{P(M \text { and } N)}{P(N)}=\frac{\overline{100}}{\frac{60}{100}}=\underline{\underline{0.3}}$

Example:

An insurance company classifies drivers as low-risk, medium-risk, and high-risk. Of those insured, 60% are low-risk, 30% are mediumrisk, and 10% are high-risk. After a study, the company finds that during a 1 -year period, 1% of the low-risk drivers had an accident, 5% of the medium-risk drivers had an accident, and 9% of the high-risk drivers had an accident. If a driver is selected at random, find the probability that the driver will have an accident
 during the year.

Solution

P (have an accident)
$=\mathrm{P}($ low - risk and have an accident $) \quad \rightarrow(0.6)(0.01)$
$+\mathrm{P}($ medium - risk and have an accident $)$
$\rightarrow(0.3)(0.05)$
$+\mathrm{P}($ high - risk and have an accident $)$
$\rightarrow(0.1)(0.09)$
$=0.03$

Coin-1الة الـ

* 絈

Find the probability of getting at least one

- (1) A coin is tossed 3 times:

$$
\begin{aligned}
& \mathrm{N}(\mathrm{~s})=2^{3}=8 \\
& \therefore \mathrm{P}(\text { at least one tail })=\frac{\mathrm{N}(\mathrm{~s})-1}{\mathrm{~N}(\mathrm{~s})}=\frac{8-1}{8}=\frac{7}{8}
\end{aligned}
$$

- (2) A coin is tossed 5 times :
$\mathrm{N}(\mathrm{s})=2^{5}=32$
$\therefore \mathrm{P}($ at least one head $)=\frac{\mathrm{N}(\mathrm{s})-1}{\mathrm{~N}(\mathrm{~s})}=\frac{32-1}{32}=\frac{31}{32}$

هـالة الــنـسب المئويـة

Rule

- A: at least one
- $\mathrm{A}^{\prime}:$ no
- $\mathbf{P}\left(\mathrm{A}^{\prime}\right)=($) () ()........
- $\mathbf{P}(\mathrm{A})=1$ - $\mathbf{P}\left(\mathrm{A}^{\prime}\right)$

Example:

It has been found that 6% of all automobiles on the road have defective brakes. If 5 automobiles are stopped and checked by the state police, find the probability that at least one will have defective brakes.

Solution

A = at least one have defective brakes
$\mathrm{A}^{\prime}=$ no have defective brakes
$\mathrm{P}($ defective $)=\underline{0.06} \quad \mathrm{P}($ undefective $)=1-0.06=\underline{\underline{0.94}}$
$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=(0.94)(0.94)(0.94)(0.94)(0.94)=\underline{\mathbf{0 . 7 3 3 9}}$
$\mathrm{P}(\mathrm{A})=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-0.7339=\underline{\underline{\mathbf{0 . 2 6 6}}}$

Counting Rules

- Fundamental Counting rule:

In a sequence of n events in which the first one has k_{1} possibilities and the second event has k_{2} and the third has k_{3}, and so forth, the total number of possibilities of the sequence will be
$\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3} \times \ldots \ldots \ldots \times \mathrm{K}_{\mathrm{n}}$

Example:

A coin is tossed and a die is rolled. Find the number of outcomes for the sequence of events.

Solution

The number of outcomes $=(2)(6)=12$

Example:

The digits $0,1,2,3$, and 4 are to be used in a four-digit ID card.
How many different cards are possible if repetitions are permitted?

5	5	5	5

Solution

Since there are 4 spaces to fill and 5 choices for each space,
The number of cards $=5 \times 5 \times 5 \times 5=5^{4}=625$

Permutations

A permutation is an arrangement of n objects in a specific order.

Factorial Formulas

For any counting n
$n!=n .(n-1) \cdot(n-2) \ldots \ldots 1$
$5!=(5)(4)(3)(2)(1)=120$
$0!=1$

Permutation Rule

The arrangement of n objects in a specific order using r objects at a time is called a permutation of n objects taking r objects at a time. It is written as ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}$, and the formula is

$$
{ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!} \quad \bullet \text { order is important }
$$

$\begin{aligned}{ }_{5} \mathrm{P}_{3} & =\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5 \times 4 \times 3 \times \mathscr{Z} \times X}{\mathcal{X} \times X}=60 \\ { }_{5} \mathrm{P}_{5} & =\frac{5!}{(5-5)!}=\frac{5!}{0!}=\frac{5 \times 4 \times 3 \times \mathscr{Z} \times X}{X}=120\end{aligned}$
${ }_{5} P_{5}=5!$
$0!=1$

ممكن بالآلة بدون المك

Example:

How many different ways can a chairperson and an assistant chairperson be selected for a research project if there are seven scientists available?

Solution

${ }_{7} \mathrm{P}_{2}=\frac{7!}{(7-2)!}=\frac{7!}{5!}=42$

Example:

A store manager wishes to display 8 different brands of shampoo in a row. How many ways can this be done?

Solution

Numbers of ways
$=8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=8!=40320$

Example:

There are 2 major roads from city X to city Y and 4 major roads from city Y to city Z . How many different trips can be made from city X to city Z passing through city Y ?

Solution

Numbers of ways $=2 \times 4=8$

Example:

If 50 tickets are sold and 2 prizes are to be awarded.
Find the probability that one person will win 2 prizes if that person buys 2 tickets.

Solution

x , y النذكرتان

$\mathrm{P}(2$ prizes $)=\left(\frac{1}{50} \times \frac{1}{49}\right)+\left(\frac{1}{50} \times \frac{1}{49}\right)=\frac{1}{1225}$

Combination Rule

The number of combinations of robjects selected from n objects is denoted by ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ and is given by the formula:

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example:

In a club there are 7 'women and 5 men. A committee of 3 women and 2 men is to be chosen.
How many different possibilities are there?

Solution

${ }_{7} \mathrm{C}_{3} \times{ }_{5} \mathrm{C}_{2}=\frac{7!}{(7-3)!3!} \times \frac{5!}{(5-2)!2!}=350$

How many different tests can be made from a test bank of 20 questions if the test consists of 5 questions?

Solution

Number of tests $=20 \mathrm{C}_{5}=15504$

Example:

There are 7 women and 5 men in a department.

1. How many ways can a committee of 4 people be selected?
2. How many ways can this committee be selected if there must be 2 men and 2 women on the committee?
3. How many ways can this committee be selected if there must be at least 2 women on the committee?

Solution

1- number of committee $=12 \mathrm{C}_{4}=495$
2- number of committee $=7 \mathrm{C}_{2} \times 5 \mathrm{C}_{2}=210$
3- number of committee where at least 2 women

$=(21 \times 10)+(35 \times 5)+35=420$

Example:

How many ways can a dinner patron select 3 appetizers and 2 vegetables if there are 6 appetizers and 5 vegetables on the menu?

Solution

appetizers
vegetables
Number of ways $=6 \mathrm{C}_{3} \times 5 \mathrm{C}_{2}$

$$
=20 \times 10=200
$$

Example:

How many different ways can an instructor select 2 textbooks from a possible 17 ?

Solution

Number of ways $=17 \mathrm{C}_{2}=136$

Example:

A package contains 12 resistors, 3 of which are defective.
If 4 are selected, find the probability of getting
a. No defective resistors
b. 1 defective resistor
c. 3 defective resistors

Solution

(a.) $\mathrm{P}($ No defective $)=\frac{9 \mathrm{C}_{4}}{12 \mathrm{C}_{4}}=\underline{\underline{0.255}}$
(b.) $\mathrm{P}(1$ defective $)=\frac{3 \mathrm{C}_{1} \times 9 \mathrm{C}_{3}}{12 \mathrm{C}_{4}}=\underline{\underline{0.509}}$
(c. $\mathrm{P}(3$ defective $)=\frac{3 \mathrm{C}_{3} \times 9 \mathrm{C}_{1}}{12 \mathrm{C}_{4}}=\underline{\underline{0.018}}$

Example:

A box contains 24 transistors, 4 of which are defective.
If 4 are sold at random, find the following probabilities.
a. Exactly 2 are defective.
c. All are defective,
b. None is defective.
d. At least 1 is defective.

$\mathrm{P}($ exactly 2 defectives $)=\frac{{ }_{4} C_{2} \times{ }_{20} C_{2}}{{ }_{24} C_{4}}=\frac{1140}{10626}=\frac{190}{1771}$
b.
$\mathrm{P}($ no defectives $)=\frac{{ }_{20} \mathrm{C}_{4}}{24 \mathrm{C}_{4}}=\frac{4845}{10626}=\frac{1615}{3542}$
c.
$\mathrm{P}($ all defective $)=\frac{{ }_{4} \mathrm{C}_{4}}{{ }_{24} \mathrm{C}_{4}}=\frac{1}{10626}$
$\mathrm{P}($ at least 1 defective $)=1-\mathrm{P}($ no defectives $)$

$$
=1-\frac{{ }_{20} \mathrm{C}_{4}}{24 \mathrm{C}_{4}}=1-\frac{1615}{3542}=\frac{1927}{3542}
$$

Example:

A store has 6 TV Graphic magazines and 8 News time magazines on the counter. If two customers purchased a magazine, find the probability that one of each magazine was purchased.

Solution

$P(1$ TV Graphic and 1 News time $)=\frac{{ }_{6} \mathrm{C}_{1} \times{ }_{8} \mathrm{C}_{1}}{{ }_{14} \mathrm{C}_{2}}=\frac{6 \times 8}{91}=\frac{48}{91}$

Example:

Find the probability of randomly selecting 2 mathematics books and 3 physics books from a box containing 4 mathematics books and 8 physics books.

Solution

P $(2$ math and 3 phys. $)=\frac{{ }_{4} \mathrm{C}_{2} \times{ }_{8} \mathrm{C}_{3}}{{ }_{12} \mathrm{C}_{5}}=0.424$

Example:

An insurance sales representative select 3 policies to review. The group of policies she can select from contains 8 life policies, 5 automobile policies, and 2 homeowner policies.

Find the probability of selecting
a. All life policies
b. Both homeowner policies
c. All automobile policies
d. 1 of each policy
e. 2 life policies and 1 automobile policy

Solution

(a) $\quad \mathrm{P}($ All life $)=\frac{8 \mathrm{C}_{3}}{15 \mathrm{C}_{3}}=0.123$

(b) $\mathrm{P}($ Both homeowner $)=\frac{2 \mathrm{C}_{2} \times 13 \mathrm{C}_{1}}{15 \mathrm{C}_{3}}=0.029$
(c) $\mathrm{P}(3$ Auto $)=\frac{5 \mathrm{C}_{3}}{15 \mathrm{C}_{3}}=0.022$
(d) $\mathrm{P}(1$ of each policy $)=\frac{8 \mathrm{C}_{1} \times 5 \mathrm{C}_{1} \times 2 \mathrm{C}_{1}}{15 \mathrm{C}_{3}}=0.176$
(e) $\quad \mathrm{P}(2$ life and 1 Auto $)=\frac{8 \mathrm{C}_{2} \times 5 \mathrm{C}_{1}}{15 \mathrm{C}_{3}}=0.308$

Example:

There are $\underline{\mathbf{2} \text { math }}$ - students and $\underline{\mathbf{5} \text { stat }}$ - students in a class
How many ways can a group of $\mathbf{3}$ students be selected if there must be at least one math - student on this group?

Solution

At least 1 math - student

$=25$

Determine whether each statement is true or false. If the statement is false, explain why.

1. Subjective probability has little use in the real world.
2.Classical probability uses a frequency distribution to compute probabilities.
2. In classical probability, all outcomes in the sample space are equally likely.
3. When two events are not mutually exclusive,
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
4. If two events are dependent, they must have the same probability of occurring.
5. An event and its complement can occur at the same time.
6. The arrangement ABC is the same as BAC for combinations.
7. When objects are arranged in a specific order, the arrangement is called a combination,

Select the best answer.

9. The probability that an event happens is 0.42 .

What is the probability that the event won't happen?
a. -0.42
b. 0.58
c. 0
d. 1
10. When a meteorologist says that there is a 30% chance of showers, what type of probability is the person using?
a. Classical
c. Subjective
b. Empirical
d. b and c are correct
11. The sample space for tossing 3 coins consists of how many outcomes?
a. 2
b. 4
c. 6
12. The complement of guessing 5 correct answers on a 5 -question true/false exam is
a. Guessing 5 incorrect answers
b. Guessing at least 1 incorrect answer
$\mathrm{S}=\{(5 \mathrm{inc}),.(1 \mathrm{c}, 4 \mathrm{inc}),(2 \mathrm{c}, 3 \mathrm{inc}),(3 \mathrm{c}, 2 \mathrm{inc})$,
($4 \mathrm{c}, \mathrm{inc}$), (5c) $\}$
A: 5 correct answers
A^{\prime} : at least 1 incorrect answers
c. Guessing at least 1 correct answer
d. Guessing no incorrect answers
13. When two dice are rolled, the sample space consists of how many events?
a. 6
b. 12
c. 36
d. 54
14. What is nP_{0} ?
a. 0
c. n
b. 1
d. It cannot be determined.
15. What is the number of permutations of 6 different objects taken all together?
a. 0
c. 36
b. 1
d. 720
16. What is 0 !?
a. 0
c. Undefined
b. 1
d. 10
17. What is ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$?
a. 0
c. n
d. It cannot be determined.

Complete the following statements with the best answer.
18. The set of all-possible outcomes of a probability experiment is called the sample space 19. The probability of an event can be any number between and including 0 and $\boldsymbol{1}$
20. If an event cannot occur, its probability is 021 . The sum of the probabilities of the events in the sample space is $\mathbf{1}$
22. When two events cannot occur at the same time, they are said to be mutually exclusive

The Normal Distribution

- When the data values are evenly distributed about the mean, a distribution is said to be a symmetric distribution. (A normal distribution is symmetric.).
- When the majority of the data values fall to the right of the mean, the distribution is said to be a negatively or left-skewed distribution.

Mean Median Mode Negatively skewed

Mean < Median < Mode

Properties of a Normal Distribution

A normal distribution is a continuous, symmetric, bell-shaped distribution of a variable.

Summary of the Properties of the Theoretical Normal Distribution

1. A normal distribution curve is bell-shaped.
2. The mean, median, and mode are equal and are located at the center of the distribution.
3. A normal distribution curve is unimodal (it has only one mode).
4. The curve is symmetric about the mean
5. The curve is continuous, that is, there are no gaps or holes.
6. The curve never touches the x axis.
7. The total area under a normal distribution curve is equal to 1.00 , or 100%.
8. The area under the part of a normal curve that lies within 1 standard deviation of the mean is approximately 0.68 , or 68%; within 2 standard deviations, about 0.95 , or 95%; and within 3 standard deviations, about 0.997 , or 99.7%.

Finding the Area under the Standard Normal Distribution Curve

Example:

Find the area under the standard normal distribution curve between $\mathrm{z}=0$ and $\mathrm{z}=2.34$

Solution

Draw the figure and represent the area as shown in Figure

Area $=\mathrm{P}(0<\mathrm{z}<2.34)=0.4904$

> طريقة الكشف موضحة كما بـي:

** We use table \mathbf{E} in last Page to find the area.

Example:

Find the area to the left of $\mathrm{z}=-1.93$.

Example:

Find the area between:

Solution

(2) $\mathrm{z}=0$
and $\mathrm{z}=-1.69$

[^0](3) Find the area between
$$
\mathrm{Z}=1.69 \quad \text { and } \quad \mathrm{z}=2.24
$$

Solution

الحد ان فى جهه واحده: طرح

$$
\text { P }(1.69<\mathrm{z}<2.24)
$$

(4) Find the area between

$$
\mathrm{Z}=-1.69 \text { and } \mathrm{z}=-2.24
$$

Solution

$$
P(-2.24<z<-1.69)=P(1.69<z<2.24)
$$

As shown in number (3)

$$
=\ldots \ldots \ldots \ldots \ldots=0.033
$$

(5) Find the area between
$\mathrm{Z}=-1.56 \quad$ and $\quad \mathrm{z}=1.69$

Solution

الحدان فى جهتين مختلفتين نكثف عن الحدان ثم نجمع النتائج
P($-1.56<z<1.69)$

$=\mathrm{P}(0<\mathrm{z}<1.56)+\mathrm{P}(0<\mathrm{z}<1.69)$
$=0.4406+0.4545=0.8951$
6) Find the area to the right of $Z=1.69$

Solution

.. . التظليل طرفى
. . المساحة = 0.5 - الكشف من الجدول

$$
\begin{aligned}
& P(Z>1.69) \\
& \quad=0.5-p(0<Z<1.69) \\
& \quad=0.5-0.4545 \\
& \quad=0.0455
\end{aligned}
$$

(7) Find the area to the left of $\mathrm{Z}=-1.69$
Solution

$$
P(Z<-1.69)
$$

$$
=P(Z>1.69)
$$

$$
=0.5-0.4545=0.0455
$$

8) Find the area to the left $\mathrm{Z}=1.69$

Solution

$$
\text { P }(\mathrm{Z}<1.69)
$$

$$
=0.5+\mathrm{p}(0<\mathrm{Z}<1.69)
$$

$$
=0.5+0.4545
$$

$$
=0.9545
$$

(9) Find the area of the right $z=-1.69$

For Exercises 40 through 45, find the z
value that corresponds to the given area

0566664790

Applications of the Normal Distribution

The standard normal distribution
Is normal distribution with $\mu=0$ and $\sigma=1$

التوزيع الطبيعي المعياري
To solve problems by using the standard normal distribution, transform the original variable to a standard normal distribution variable by using the formula

$$
\text { - } \mathrm{z}=\frac{\text { value }- \text { mean }}{\mathrm{s} \tan \text { dard deviation }} \quad \text { or } \quad \mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma}
$$

$$
\text { - } \mathrm{P}\left(\mathrm{X}>\mathrm{X}_{0}\right)
$$

$$
=P\left(Z>\frac{x_{0}-\mu}{\sigma}\right)
$$

عنــ حسـاب الاحتمــال حـول المتغيـر x الــذي يتبعع
توزيع طبيعي. يحول إلى توزيع طبيعي معياري الات

$$
\mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma}
$$

Example:

The mean number of hours an American worker spends on the computer is 3.1 hours per workday, Assume the standard deviation is 0.5 hour. Find the percentage of workers who spend less than 3.5 hours on the computer. Assume the variable is normally distributed

Solution

$P(x<3.5)=p\left(z<\frac{3.5-3.1}{0.5}\right)=p(z<0.8)$

$$
=0.5+\mathrm{p}(0<\mathrm{z}<0.8)
$$

$$
=0.5+0.2881
$$

$$
=0.7881
$$

Therefore, 78.81% of the workers spend less than 3.5 hours per workday on the computer

Example:

A survey found that people keep their microwave ovens an average of 3.2 years. The standard deviation is 0.56 year. If a person decides to buy a new microwave oven.
Find the probability that he or she has owned the old oven for the following amount of time. Assume the variable is normally distributed:
a. Less than 1.5 year's
b. Between 2 and 3 years
c. More than 3.2 years

d. What percent of microwave ovens would be replaced if a الضمان
warranty of 18 months were given?

Solution

$\mu=3.2$

$$
\sigma=0.56
$$

(a) $\mathrm{p}(\mathrm{x}<1.5)=\mathrm{p}\left(\mathrm{z}<\frac{1.5-3.2}{0.56}\right)$

$$
=P(z<-3.04)
$$

- 3.04

$$
=0.5-0.4988=0.0012
$$

(b) $\mathrm{P}(2<x<3)=\mathrm{p}\left(\frac{2-3.2}{0.56}<\mathrm{z}<\frac{3-3.2}{0.56}\right)$

$$
=p(-2.14<z<-0.36)
$$

$$
=0.4838-0.1406=0.3432
$$

(c) $\mathrm{p}(\mathrm{x}>3.2)=\mathrm{p}\left(\mathrm{z}>\frac{3.2-3.2}{0.56}\right)$

$$
\begin{aligned}
& =p(z>0) \\
& =0.5
\end{aligned}
$$

(d) 18 months $=\frac{18}{12}=1.5$ years

Were μ and σ by years.

$$
\begin{aligned}
\mathrm{p}(\mathrm{x}<1.5)= & \mathrm{p}\left(\mathrm{z}<\frac{1.5-3.2}{0.56}\right) \\
= & \mathrm{p}(\mathrm{z}<-3.04) \\
= & 0.5-0.4988 \\
= & 0.0012 \\
& 0.0012 \times 100 \%=0.12 \% \text { of the ovens must be replaced. }
\end{aligned}
$$

Example:

The average time for a mail carrier to cover his routt is 380 minutes, and the standard deviation is 16 minutes. If one of these trips is selected at random, find the probability that the carrier will have the following route time. Assume the variable is normally distributed.
a. At least 350 minutes
b. At most 395 minutes

Solution

$\mu=380$

$$
\sigma=16
$$

(a) At least 350 minutes

$$
\begin{aligned}
P(x \geq 350) & =p\left(z \geq \frac{350-380}{16}\right) \\
& =p(z \geq-1.88) \\
& =0.5+0.4699 \\
& =0.9699
\end{aligned}
$$

(b) At most 395 minutes

$$
\begin{aligned}
\mathrm{P}(\mathrm{x} \leq 395) & =\mathrm{p}\left(\mathrm{z} \leq \frac{395-380}{16}\right) \\
& =\mathrm{p}(\mathrm{z} \leq 0.94) \\
& =0.5+0.3264 \\
& =0.8264
\end{aligned}
$$

Example:

The average age of Amtrak passenger train cars is 19.4 years. If the distribution of ages is normal and 20% of the cars are older than 22.8 years, find the standard deviation.

Solution

The average $\mu=19.4$
$\mathrm{P}\left(0<\mathrm{z}<\mathrm{z}_{1}\right)=0.5-0.2=0.3$

There for
Z_{1} corresponds to 0.3
$\mathrm{Z}_{1}=0.84$

$\mathrm{Z}_{1}=\frac{\mathrm{x}-\mu}{\sigma}$
$0.84=\frac{22.8-19.4}{\sigma}$
$0.84 \times \sigma=3.4$
$\sigma=\frac{3.4}{0.84}=4.048$

Example:

أحد أفراد الأسرة

ينفق
If a one-person household spends an average of $\$ 40$ per week on الققالة groceries, find the maximum and minimum dollar amounts spent per week for the middle 50% of one-person households. Assume that the standard deviation is $\$ 5$ and the variable is normally distributed.

Solution

The average $\mu=40$
and $\sigma=5$
$\mathrm{P}\left(0<\mathrm{z}<\mathrm{z}_{1}\right)=\frac{0.5}{2}=0.25$
Therefore $\mathrm{z}_{1}= \pm 0.67$

$z_{1}=\frac{x-\mu}{\sigma} \rightarrow \pm 0.67=\frac{x-40}{5}$

- $0.67=\frac{x-40}{5} \quad \bullet-0.67=\frac{x-40}{5}$
$\mathrm{x}-40=(0.67)(5)$
$\mathrm{x}=3.35+40$
$x=43.35$ max

$$
\begin{aligned}
& x-40=(-0.67)(5) \\
& x=-3.35+40 \\
& x=36.65 \text { min }
\end{aligned}
$$

Example:

> ساعة يب

The mean lifetime of a wristwatch is 25 months, with a standard deviation of 5 months. If the distribution is normal.

For how many months should a guafantee be made if the (manufacturer does not want to exchange more than $\mathbf{~ 1 0 \%}$ of the watches? Assume the variable is normally distributed.

$\mu=25$

$$
\sigma=5
$$

$\mathrm{P}\left(\mathrm{z}<\mathrm{z}_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{z}_{1}<\mathrm{z}<0\right)=0.4$

Therefore $z_{1}=-1.28$
$\frac{x-25}{5}=-1.28$
$X-25=(-1.28)(5)$
$\mathrm{X}=(-1.28)(5)+25=18.6$ month

Example:

In a certain normal distribution, 1.25% of the area lies to the left of 42 , and 1.25% of the area lies to the right of 48 .

Find μ and σ.

Solution

$\mu=\frac{42+48}{2}=\frac{90}{2}=45$

$$
\begin{aligned}
& 0.5-0.0125=0.4875 \\
& \mathrm{P}\left(0<\mathrm{z}<\mathrm{Z}_{1}\right)=0.4875 \\
& \mathrm{Z}_{1}=2.24 \\
& \text { There for } \mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma} \\
& 2.24=\frac{48-45}{\sigma} \\
& \sigma=\frac{48-45}{2.24}=1.34
\end{aligned}
$$

 The Central Limit Theorem

©
A sampling distribution of sample means is a distribution using the means computed from all possible random samples of a specific size taken from a population Properties of the Distribution of Sample Means

1. The mean of the sample means will be the same as the population mean.
2. The standard deviation of the sample means will be smaller than the standard deviation of the population, and it will be equal to the population standard deviation divided by the square root of the sample size.
3. $\mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma}$ Used to gain information about an individual data فيى حالة فرد
4. $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$ Used to gain information when applying the central

فیى حالة عبنـه n حصمها \quad variable is normally distributed

Example:

The mean weight of 15 -year-old males is 142 pounds, and the standard deviation is 12.3 pounds. If a sample of thirty-six 15-year-old males is selected, find the probability that the mean of the sample will be greater than 144.5 pounds. Assume the variable is normally distributed. Based on your answer, would you consider the group overweight?

$=P\left(z>\frac{144-142}{\frac{12.3}{\sqrt{36}}}\right)$

$=\mathrm{P}(\mathrm{z}>1.22)$
$=0.5-0.3888$
$=0.1112$
= 11.12%

- No: since the average weight is within 2 standard deviation of the mean.

Example:

The average age of chemical engineers is 37 years a standard deviation of 4 years. If an engineering firm employs 25 chemical engineers, find the probability that the average age of the group is greater than 38.2 years old. If this is the case, would it be safe to assume that the engineers in this group are generally much older than average?

Solution

$\mu=37 \quad, \quad \sigma=4 \quad$ and $n=25$

P ($x^{\prime}>38.2$)
$=\mathrm{p}\left(z>\frac{38.2-37}{\frac{4}{\sqrt{25}}}\right)$

$=p(z>1.5)$
$=0.5-0.4332$
$=0.0668$
= 6.68\%

Example:

The average annual salary in Pennsylvania was \$24,393 in 1992. Assume that salaries were normally distributed for a certain group of wage earners, and the standard deviation of this group was $\$ 4362$.
a. Find the probability that a randomly selected individual مكسبـ earned less than \$26,000.
b. Find the probability that, for a randomly selected sample of 25 individuals, the mean salary was less than $\$ 26,000$.
c. Why is the probability for part b higher than the probability for part a.

Solution

$$
\mu=24393
$$

$$
\sigma=4362
$$

(a) $p(x<26000)=p\left(z<\frac{26000-24393}{4362}\right)$

$=\mathrm{p}(\mathrm{z}<0.37)=0.5+\mathrm{p}(0<\mathrm{z}<0.37)$
$=0.5+0.1443=0.6443$
(b) $\mu=24393 \quad, \quad \sigma=4362 \quad$ and $\mathrm{n}=25$
$\mathrm{P}\left(\mathrm{x}^{\prime}<26000\right)=\mathrm{p}\left(z<\frac{26000-24393}{\frac{4362}{\sqrt{25}}}\right)$
$=\mathrm{p}(\mathrm{z}<1.84)=0.5+\mathrm{p}(0<\mathrm{z}<1.84)$

$=0.5+0.4671=0.9671$
(c) Sample means are less variable than individual data.

Example:

Assume that the mean systolic blood pressure of normal adults بالغ سن الرشد
is 120 millimeters of mercury (mm Hg) and the standard deviation is 5.6. Assume the variable is normally distributed.
(a.) If an individual is selected, find the probability that the individual's pressure will be between 120 and 121.8 mm Hg .
(b. If a sample of 30 adults is randomly selected, find the probability that the sample mean will be between 120 and 121.8 mm Hg .
C. Why is the answer to part a so much smaller than the answer to part b?

Solution

(a) $\mathrm{p}(120<x<121.8)=\mathrm{p}\left(\frac{120-120}{5.6}<z<\frac{121.8-120}{5.6}\right)$
$=p(0<z<0.32)=0.1255$

(b) $\mu=120$, $\sigma=5.6$ and $\mathrm{n}=30$
$\mathrm{P}\left(120<\mathrm{x}^{\prime}<121.8\right)=\mathrm{p}\left(\frac{120-120}{\frac{5.6}{\sqrt{30}}}<\mathrm{z}<\frac{121.8-120}{\frac{5.6}{\sqrt{30}}}\right)$
$=p(0<z<1.76)$
$=0.4608$

(c) Sample means are less variable than individual data .

Chapter Quiz

Determine whether each statement is true or false. If the statement is false, explain why.
(1) The total area under a normal distribution is infinite.

2. The standard normal distribution is a continuous distribution. (v)
(3.) All variables that are approximately normally distributed can be transformed to standard normal variables.
(4.) The z value corresponding to a number below the mean is always negative.

5. The area under the standard normal distribution to the left of $z=0$ is negative.
6. The central limit theorem applies to means of samples selected from different populations.

Select the best answer.

(7.)The mean of the standard normal distribution is
a. 0
b. 1
c. 100
d. variable
8. Approximately what percentage of normally distributed data values will fall within 1 standard deviation above or below the mean?
a. 68%
b. 95%
c. 99.7%
d. Variable
9. Which is not a property of the standard normal distribution?
a. It's symmetric about the mean.
b. It's uniform.
c. It's bell-shaped.
d. It's unimodal.
(10. When a distribution is positively skewed, the relationship of the mean, median, and mode from left to right will be:
a. Mean, median, mode
b. Mode, median, mean
c. Median, mode, mean
d. Mean, mode, median

11. The standard deviation of all possible sample means equals:

a. The population standard deviation.
b. The population standard deviation divided by the population mean.
c. The population standard deviation divided by the square root of the sample size.
d. The square root of the population standard deviation.

Complete the following statements with the best answer.
12. When one is using the standard normal distribution, $P(z<0)=0.5$.
13. The difference between a sample mean and a population mean is due to Sampling error.
14. The mean of the sample means equals Population mean.
15. The standard deviation of all possible sample means is called Standard error of the mean.

[^0]: $P(-1.69<z<0)=p(0<z<1.69)=0.4545$

