المملك العربية السعودية المملك المراكز التي لكل المهتمين و المهتمات بدروس و مراجع الجامعية مدونة المناهج السعودية eduschool40.blog Protactinium 90 Uranium 93 94 95 #### **King Abdulaziz University** **Faculty of Science - Chemistry Department** Chem-110, First Exam Thursday 16 /02 /1440 Time: 90 minutes | Name: | Number: | Section: | |---------------------------|---|----------| | •Useful information: | | | | Speed of light, | $C = 3.0 \times 10^8 \text{ m/s}$ | | | Planck's const., | $h = 6.626 \times 10^{-34} \text{ J.s}$ | | | Avogadro's No., | $N_{av} = 6.022 \times 10^{23} \text{ mol}^{-1}$ | | | Rydberg const. for H atom | $R_{\rm H} = 2.18 \times 10^{-18} \rm J$ | | | Mass of the electron, | $m_e = 9.11 \times 10^{-31} \text{ kg}$ | | | Cas constant | $R = 0.082 \text{ L. atm } K^{-1} \text{ mol}^{-1}$ | | Curium 96 Californium 97 Nobelium 102 100 101 | C-1 In | the process | of dissolving 2.5 g of pota | ssium nitrate in | 140 ml of benzene, t | he | |-----------------------------------|---|--|---|--|------------------| | b | enzene is re | ferred to as the: | | | | | a) precip | pitate | b) solution | c) solute | d) solvent | | | C-2 Th | e correct n | ame for PdCl ₂ is : | | | | | a) palladium | dichloride | b) palladium (II) chloride | c) palladium (I) | chloride d) pallad | ium chloride | | C-3 Th | e systemati | c name for P ₂ S ₅ is: | | | | | a) phosphorus po | entasulfide | b) phosphorus (V) sulfide | c) diphosphorus | pentasulfide d) ph | osphorus silfide | | C-4 TI | he formula | for potassium sulfite is: | | | | | a) K ₂ SO | 3 | b) K(SO ₃) ₂ | c) K ₂ S | d) K ₂ SO ₄ | | | C-5 W | hich pair of | the following have the sar | ne empirical for | mula : | | | a) C ₁₀ H ₅ | 5O ₁₅ , C ₂₀ H ₈ O | O_{12} | b) C ₁₀ H ₁₂ O ₆ , C | ₁₅ H ₁₈ O ₉ | | | c) C ₁₀ H ₅ | 5O ₁₅ , C ₁₆ H ₈ 0 | O_{20} | d) C ₉ H ₃ O , C ₉ H | $_{3}O_{6}$ | | | C-6 NI | H ₃ can be cla | assified as | | | | | a) comp | ound | b) molecule | c) mixture | d) compound and r | nolecule | | C-7 An | example o | f monatomic ion is | | | | | a) N ³⁻ | | b) O | c) P | d) CN ¹⁻ | | | С-8 Но | ow many mo | oles of chlorine atoms are | in 2.1 × 10 ²⁴ chlo | orine molecules (Cl ₂) | ? | | a) 35.2 | mol | b) 1.26x10 ⁴⁸ mol | c) 6.97 mol | d) 3.49 mol | | | C-9 W | hat is the po | ercent of oxygen (O) in Mg | g ₃ (PO ₄) ₂ ? | | | | a) 22.53 | % | b) 48.85 % | c) 64.65 % | d) 61.83 % | | | C-10 An analysis | s of unknown compound | l gives the following pe | ercentage: 19.25% C, 0.53% | |--|---|-------------------------------------|-------------------------------------| | | .21% As, what is the em | | | | a) C ₃ HAs ₂ | b) C ₂ H ₄ As | c) CH ₂ As | d) C ₂ H ₆ As | | C-11 What is the | molecular formula for | the compound in the a | bove question (q10) if the | | molar ma | ss of the unknown comp | oound is 374 g/mole? | | | a) C ₉ H ₃ As ₆ | b) C ₄ H ₁₂ As ₂ | c) $C_2H_4As_2$ | d) $C_6H_2As_4$ | | C-12 After balan | cing the following hypo | thetical reaction, the c | oefficient of AC2 is | | | $\mathbf{A}_{3}\mathbf{I}$ | $B_6 + C_2 \rightarrow AC_2 + B_2C$ | | | a) 1 | b) 9 | c) 6 | d) 2 | | C-13 Manganese | metal can be prepared | by the thermite proces | 88: | | | 4Al(s) + 3M | $nO_2(s) \rightarrow 3Mn(l) + 2A$ | $Al_2O_3(s)$ | | If 203 g of | Al and 672 g of MnO ₂ | are mixed, which is the | e limiting reactant? | | a) Al ₂ O ₃ | b) Mn | c) MnO ₂ | d) Al | | C-14 What is the | theoretical yield (in gr | ams) of Mn that can be | e produced when the | | quantities | in the above question (| q13) are mixed? | | | a) 320.6 g | b) 265.7 g | c) 310.2 g | d) 298.4 g | | C-15 If 254 g of 1 | Mn are actually obtaine | d from the reaction in | question 13, what is the | | percent yi | eld? | | | | a) 81.88 % | b) 95.6 % | c) 85.1 % | d) 79.2 % | | C-16 You have 2 | 50 mL of a 0.34 M HCl | solution and you want | to dilute it to exactly | | 0.12 M. H | ow much water should | you add? | | | a) 708.3 L | b) 0.46 L | c) 0.71 L | d) 458.3 L | | C-17 3.4 g of Na ₂ S solution wil | SO ₄ is dissolved in 200 n
ll be: | al water the concentra | ntion of the resulting | |--|---|--------------------------|------------------------------| | a) 0.02 M | b) 17 M | c) 0.12 M | d) 1.2x10 ⁴⁻ M | | C-18 The correct | formula of a compound | consists of P and K: | | | a) K ₃ P | b) KP | c) KP ₃ | d) K_3P_2 | | C-19 Which of the | e following statement is | the correct description | on for the compound in the | | above quest | tion (q18) ? | | | | a) A diaton | nic molecule containing | atoms of different elem | ients | | b) A polya | tomic molecule containir | ng atoms of different el | ements. | | c) A polyat | tomic molecule containing | ng atoms of the same el | ement. | | d) A diator | mic molecule containing | atoms of the same elen | nent. | | C-20 40 ml of 0.32 | M CaCl2 are mixed wi | th 10 ml of 0.12 M Na | Cl. calculate the | | concentrati | on of chlorine ion (Cl) i | n the resulting solution | on? | | a) 0.73 M | b) 0.44 M | c) 0.54 M | d) 0.28M | | C-21 What is the | mass of single atom of T | Гі ? | | | a) 2.89×10^{25} g | b) 2.7x10 ²³⁻ g | c) 48 g | d) 7.97 x10 ²³⁻ g | | C-22 The element | (As) is classified as | | | | a) metalloid | b) metal | c) nonmetal | d) transition metal | | C-23 An element of | can change from one to | another by changing | the number of | | a) Proton | b) Electron | c) Neutron | d) atomic mass | | C-24 An object wi | th a mass of 5.7 g and d | lensity of 1.3g/ml was | added to a beaker | | containing | water, the water level r | aised to 120 ml calcul | ate the volume of water was | | in the beak | er before the addition o | f the object? | | c) 4.38 ml a) 124.38 ml b) 115.6 ml d) 7.41 ml | C-25 2.4x10 ³⁻ Ma | m equal to 2.4 ? | | | | | | |------------------------------|--------------------------|---------------------------|-----------------------------|--|--|--| | a) µm | b) km | c) mm | d) pm | | | | | C-26 Which of the | ne following prefixes eq | ual to 10 ¹² ? | | | | | | a) mili | b) kilo | c) nano | d) tera | | | | | C-27 The SI unit | for time is | | | | | | | a) second | b) minutes | c) hour | d) millisecond | | | | | | | | nclude the charge if the | | | | | species is | not neutral (5 protons, | 6 neutrons, 2 electron | s): | | | | | a) C | b) B ³⁺ | c) B | d) Na | | | | | C-29 An atom co | ontaining which one of | the following is an isot | tope of oxygen? | | | | | a) 7 protons and 6 | 5 neutrons | b) 5 protons and | b) 5 protons and 8 neutrons | | | | | c) 8 protons and 5 | 5 neutrons | d) 6 protons and | d) 6 protons and 7 neutrons | | | | | C-30 Pure silver | coin can be classified a | s | | | | | | a) Heterogenous | mixture b) Homogenou | us mixture c) compou | and d) element | | | | | above | اعلى | classify | صنف | |-------------------|----------------------------|---------------------|-----------------------| | According | وفقاً | Mixture | خليط | | Anion | ايون سالب | molecules | جزيء | | Calculate | احسب | molecular | <u>جزيئي</u> ه | | chemical identity | هویه کیمیانیه | Identify | حدد . | | classified | صنف | theoretical yield | الناتج النظري | | Cocktail juice | عصير كوكتيل | periodic table | <u>ج</u> دول دوري | | Coefficient | معامل | rise | ، وه روي
تقع | | combination | اتحاد | molarity | المولاريه | | complete reaction | تفاعل كامل | commercial process | عملیه تجاریه | | composed of | يتكون من | Heterogeneous | غير متجانس | | consists of | تحتوي على | object | شيء | | containing | يحتوى | Nonmetal | ش <i>يء</i>
لا فلز | | density | يحتو <i>ي</i>
كثافه | process | عملية | | Derived units | وحدات مشتقه | graduated cylinder | مخبار مدرج | | Determine | | Present | موجود | | diluted | اوجد
خفف | Percent yield | نسبة الناتج | | Empirical | اولی | represent | يمثل | | enough | كأفية | respectively | على التوالي | | Equation | معادله | required | مطلوب | | Example | مثال | metalloid | شبه فلز | | Expressed | عبر عنه | abundant | نسبة الوفره | | Following | التالي | homogenous | متجانس | | Form | يكُونَ | solution | محلول | | formula | صيغه | substances | مواد | | fruits salad | سلطة فواكه | sugar | سكر | | Liquid | سائل | pellet | حبوب | | Mass number | رقم الكتله (الكتله الذريه) | symbol | رمز | | Quantities | كميات | percent composition | نسبة التركيب | | Question | سؤال | metal | فلز | | raising | ارتفاع | species | اصناف | | another | غير | beaker | وعاء | | neutral | متعادل | breathe | تنفس | | referred to | يشار اليه | hypothetical | افتراضي | | thermite | ثيرمت | exactly | بالضبط | **Faculty of Science - Chemistry Department** Chem-110, First Exam Thursday 16 /02 /1440 Time: 90 minutes Name: Number: **Section:** •Useful information: $C = 3.0 \times 10^8 \text{ m/s}$ Speed of light, $h = 6.626 \times 10^{-34} \text{ J.s}$ Planck's const., $N_{av} = 6.022 \times 10^{23} \ mol^{-1}$ Avogadro's No., $R_{\rm H} = 2.18 \times \! 10^{-18} \ J$ Rydberg const. for H atom $m_e = 9.11 \times 10^{-31} \text{ kg}$ Mass of the electron, $R = 0.082 L atm K^{-1} mol^{-1}$ Gas constant, | O tak | Const | , | | | | | 2 attill 1 | 1110 | | | | | | | | | | |----------------------|-----------------------|----------------------|---------------------|---------------------|------------------------|-----------------------|-----------------------|---------------------|-----------------------|--------------------|------------------|-----------------|-----------------|----------------------|----------------------|---------------------|---------------------| | 1A | | | | | | | | | | | | | | | | | 8A | | 1
H | | | | | | PE | ERIC | ODIO | C T | ABL | E | | | | | | 4
He | |
Hydrogen
1 | 2A | 1 | Ke | y | | > | | e atom | | | | 3A | 4A | 5A | 6A | 7A | Helium 2 | | Li
Lithium | Be
Beryllium | | _ | | 2 | | | whole | numb | er | | 11
B | C Carbon | Nitrogen | Oxygen | Flourine | Ne
Neon | | 3 | 4 | | | Car | bon | → Syn | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | 23
Na | 24
Mg | | | (| 5 | → Ato | mic n | umber | | | | 27
Al | 28
Si | 31
P | 32
S | 35.5
Cl | 40
Ar | | Sodium | Magnesium
12 | | | | | | | | | | | Aluminum
13 | Silicon
14 | Phosphorus
15 | Sulfur
16 | Chlorine
17 | Argon
18 | | 39 | 40 | 45
C | 48 | 51 | 52 | 55 | 56 | 59 | 59 | 63.5 | 65 | 70 | 72.5 | 75 | 79
C | 80 | 84 | | K
Potassium
19 | Ca
Calcium
20 | Sc
Scandium
21 | Ti Titanium 22 | V
Vanadium
23 | Cr
Chromium
24 | Mn
Manganese
25 | Fe
Iron
26 | Co
Cobalt
27 | Ni
Nickel
28 | Cu
Copper
29 | Zn
Zinc
30 | Gallium
31 | Germanium 32 | As
Arsenic
33 | Se
Selenium
34 | Br
Bromine
35 | Kr
Krypton
36 | | 85.5 | 86 | 89 | 91 | 93 | 96 | (96) | 101 | 103 | 106 | 108 | 112 | 115 | 119 | 122 | 128 | 127 | 131 | | Rb
Rubidium
37 | Sr
Strontium
38 | Y
Yttrium
39 | Zr Zirconium 40 | Nb Niobium 41 | Mo
Molybdenum
42 | Tc Technetium 43 | Ru
Ruthenium
44 | Rh
Rhodium
45 | Pd
Palladium
46 | Ag
Silver
47 | Cd Cadmium 48 | In Indium 49 | Sn
Tin
50 | Sb
Antimony
51 | Te Tellurium 52 | I
Iodine
53 | Xe
Xenon
54 | | 133 | 137 | 139 | 178.5 | 181 | 184 | 186 | 190 | 192 | 195 | 197 | 201 | 204 | 207 | 209 | (210) | (210) | (222) | | Cs | Ba
Barium | La
Lanthanum | Hf
Hafnium | Ta
Tantalum | W
Tungsten | Re | Os
Osmium | Ir
Iridium | Pt
Platinum | Au | Hg
Mercury | Tl
Thallium | Pb
Lead | Bi
Bismuth | Po
Polonium | At
Astatine | Rn | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | (223) | (226) | (227) | (261) | (262) | (266) | (264) | (265) | (268) | | | | | | | | | | | Fr
Francium | Ra
Radium | Ac
Actinium | Rf
Rutherfordium | Db
Dubnium | Sg
Seaborgium | Bh
Bohrium | Hs
Hassium | Mt
Meitnerium | | | | | | | | | | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | | | 140 | 141 | 144 | 145 | 150 | 152 | 157 | 159 | 162.5 | 165 | 167 | 169 | 173 | 175 | | | | | | Ce | Pr | Nd | Pm | Sm | En | Gd | Tb | Dv | Ho | Er | Tm | Yb | Lu | | | | 58
232 | Praseodymium 59 231 | Neodymium
60
238 | Promethium 61 237 | 62
244 | 63
(243) | (247) | 65 (247) | Dysprosium 66 (251) | 67 (252) | 68 (257) | Thulium 69 (258) | 70 (259) | 71 (262) | D | |---------------------|---------------------|------------------------|-----------------------|-----------------------|-----------------|--------------------|-----------------------|---------------------|-------------------|---------------|--------------------------|-----------------------|-------------------------|------| | Th
Thorium
90 | Pa
Protactinium | Uranium
92 | Np
Neptunium
93 | Pu
Plutonium
94 | Am Americium 95 | Cm
Curium
96 | Bk
Berkelium
97 | Cf Californium 98 | Es
Einsteinium | Fm
Fermium | Md
Mendelevium
101 | No
Nobelium
102 | Lr
Lawrencium
103 | Page | a) 7 protons and 6 neutrons D-1 An atom containing which one of the following is an isotope of boron? b) 5 protons and 8 neutrons | ntrons | |-------------------------------| | | | | | d) element | | of water, the potassium | | | | d) solvent | | | | chloride d) manganese chlorid | | | | d) sulfur
hexafluoride | | | | d) LiNO ₂ | | : | | 24 | | | | | | compound and molecule | | | | D-9 An example o | of monatomic ion is | | | |------------------------------------|-------------------------------------|---|-------------------------------------| | a) N ³⁻ | b) O | c) P | d) CN ¹⁻ | | D-10 How many m | oles of chlorine atom | s are in 5.3×10^{23} chlori | ne molecules (Cl ₂)? | | a) 3.2x10 ⁴⁷ mol | b) 1.76 mol | c) 327.9 mol | d) 0.88 mol | | D-11 An element ca | an change from one t | o another by changing t | he number of | | a) Proton | b) Electron | c) Neutron | d) atomic mass | | D-12 An object wit | h a mass of 2.5 g and | density of 1.3g/ml was | added to a beaker | | containing v | vater, the water level | raised to 120 ml calcula | te the volume of water was | | in the beake | r before the addition | of the object? | | | a) 123.25 ml | b) 3.25 ml | c) 1.92 ml | d) 118.1 ml | | D-13 2.4x10 ³⁻ Gm 6 | equal to 2.4 ? | | | | a) µm | b) Tm | c) Mm | d) pm | | D-14 Which of the | following prefixes eq | ual to 10 ⁹⁻ ? | | | a) mili | b) kilo | c) nano | d) tera | | D-15 The SI unit fo | or temperature is | | | | a) candela | b) Celsius | c) kelvin | d) Fahrenheit | | D-16 Select the syn | abol that identifies th | e following species. Inc | lude the charge if the | | species is no | t neutral (13 protons, | , 14 neutrons, 10 electro | ns): | | a) Al ³⁺ | b) N | c) Co | d) Ne | | D-17 What is the p | ercent of calcium (Ca | a) in Ca ₃ (PO ₄) ₂ ? | | | a) 38.7 % | b) 45.98 % | c) 43.01 % | d) 65.9 % | | D-18 An analysis of | f unknown compound | d gives the following per | centage: 23.3% C, 3.88% | | H, and 72.82 | 2% As, what is the en | pirical formula of the c | compound? | | a) C ₃ HAs ₂ | b) C ₂ H ₄ As | c) CH ₂ As | d) C ₂ H ₆ As | | D-19 What is the | molecular formula for | r the compound in the a | above question (q18) if the | |---|--|---|--| | molar mas | s of the unknown comp | oound is 309 g/mole? | | | a) C ₆ H ₁₂ As ₃ | b) C ₆ H ₂ As ₄ | c) C ₆ H ₁₈ As ₃ | d) C ₂ H ₄ As ₂ | | D-20 After balan | cing the following hypo | othetical reaction, the co | oefficient of B2Cis | | | A_3l | $B_6 + C_2 \rightarrow AC_2 + B_2C$ | | | a) 5 | b) 2 | c) 1 | d) 6 | | D-21 The correct | formula of a compoun | d consists of N and Sr : | | | a) Sr_3N_3 | b) SrN | c) Sr_2N_3 | d) Sr ₃ N ₂ | | D-22 Which of th | e following statement i | s the correct descriptio | n for the compound in the | | above ques | stion (q21) ? | | | | a) A diato | mic molecule containing | g atoms of different elem | ents | | b) A polya | atomic molecule contain | ing atoms of different ele | ements. | | c) A polya | atomic molecule contain | ing atoms of the same el | ement. | | d) A diato | mic molecule containing | g atoms of the same elem | nent. | | D-23 50 ml of 0.3 | 2 M CaCl ₂ are mixed w | vith 10 ml of 0.12 M Na | Cl. calculate the | | concentrat | ion of chlorine ion (Cl) | in the resulting solution | on? | | a) 0.36 M | b) 0.55 M | c) 0.29 M | d) 0.44 M | | D-24 What is the | mass of single atom of | Pd? | | | a) 1.8x10 ²²⁻ g | b) 6.4×10^{25} g | c) 106 g | d) 4.3 x10 ²³ - g | | D-25 The element | t (Ge) is classified as | | | c) nonmetal a) metalloid b) metal d) transition metal D-26 Manganese metal can be prepared by the thermite process: $4Al (s) + 3MnO_2 (s) \rightarrow 3Mn (l) + 2Al_2O_3 (s)$ If 203 g of Al and 272 g of MnO₂ are mixed, which is the limiting reactant? a) Al_2O_3 b) Mn c) MnO_2 d) Al_2O_3 D-27 What is the theoretical yield (in grams) of Mn that can be produced when the quantities in the above question (q26) are mixed? a) 159.2 g b) 171.95 g c) 254.8 g d) 298.4 g D-28 If 136 g of Mn are actually obtained from the reaction in question 26, what is the percent yield? a) 91.1 % b) 56.9 % c) 48.6 % d) 79.2 % D-29 You have 156 mL of a 0.3 M HCl solution and you want to dilute it to exactly 0.2 M. How much water should you add? a) 0.078 L b) 78 L c) 234 L d) 0.2L D-30 3.4 g of MgSO₃ is dissolved in 200 ml water the concentration of the resulting solution will be: a) 1.6x10⁴⁻ M b) 0.16 M c) 0.32 M d) 3.4 M | above | اعلى | classify | صنف | |-------------------|----------------------------|---------------------|------------------------------------| | According | وفقاً | Mixture | خليط | | Anion | ايون سالب | molecules | جزيء | | Calculate | احسب | molecular | جَزيئيه | | chemical identity | هویه کیمیائیه | Identify | حدد | | classified | صنف | theoretical yield | الناتج النظري | | Cocktail juice | عصير كوكتيل | periodic table | جدول دوري | | Coefficient | معامل | rise | تقع | | combination | اتحاد | molarity | المولاريه | | complete reaction | تفاعل كامل | commercial process | عمليه تجاريه | | composed of | يتكون من | Heterogeneous | غير متجانس | | consists of | تحتوي على | object | شيء
لا فلز | | containing | يحتوي
كثافه | Nonmetal | لا فَلز | | density | | process | عمليه | | Derived units | وحدات مشتقه | graduated cylinder | مخبار مدرج
موجود
نسبة الناتج | | Determine | اوجد
خفف | Present | موجود | | diluted | خفف | Percent yield | نسبة الناتج | | Empirical | اولي | represent | يمثل | | enough | كافيه | respectively | على التوالي | | Equation | معادله | required | مطلوب | | Example | مثال | metalloid | شبه فلز | | Expressed | عبر عنه | abundant | نسبة الوفره | | Following | التالي | homogenous | متجانس | | Form | يكّون | solution | محلول | | formula | صيغه | substances | مواد | | fruits salad | سلطة فواكه | sugar | سكر | | Liquid | سائل | pellet | حبوب | | Mass number | رقم الكتله (الكتله الذريه) | symbol | رمز | | Quantities | كميات | percent composition | حبوب
رمز
نسبة التركيب | | Question | سؤال | metal | فاز
اصناف | | raising | ارتفاع | species | | | another | غير | beaker | وعاء | | neutral | متعادل | breathe | تنفس | | referred to | يشار اليه | hypothetical | افتراضي | | thermite | ثيرمت | exactly | بالضبط | **Faculty of Science - Chemistry Department** Chem-110, First Exam Thursday 16 /02 /1440 Time: 90 minutes | Name: | Number: | Section: |
|---------------------------|--|----------| | •Useful information: | | | | Speed of light, | $C = 3.0 \times 10^8 \text{ m/s}$ | | | Planck's const., | $h = 6.626 \times 10^{-34} \text{ J.s}$ | | | Avogadro's No., | $N_{av} = 6.022 \times 10^{23} \text{ mol}^{-1}$ | | | Rydberg const. for H atom | $R_{\rm H} = 2.18 \times 10^{-18} \rm J$ | | | Mass of the electron, | $m_e = 9.11 \times 10^{-31} \text{ kg}$ | | | Gas constant | $R = 0.082 L atm K^{-1} mol^{-1}$ | | | B-1 | You have 18 | 3 mL of a 0.41 M HC | l solution and you want | to dilute it to exactly | |------------|---------------|-------------------------------------|-----------------------------------|---------------------------| | | 0.24 M. Ho | w much water should | you add? | | | a) 12 | 29.6 L | b) 0.31 L | c) 0.13L | d) 312.6 L | | B-2 | 3.4 g of MgS | SO ₄ is dissolved in 200 | ml water the concentrat | tion of the resulting | | | solution wi | ll be: | | | | a) 5. | $7x10^{3-}$ M | b) 0.028 M | c) 1.4x10 ⁴⁻ M | d) 0.14 M | | B-3 | The correct | formula of a compou | nd consists of N and Ca | : | | a) C | a_3N_3 | b) Ca ₂ N ₃ | c) Ca ₃ N ₂ | d) CaN | | B-4 | Which of the | e following statement | is the correct description | n for the compound in the | | | above ques | tion (q3) ? | | | | | a) A diator | mic molecule containin | g atoms of different eleme | ents | | | b) A polya | tomic molecule contain | ning atoms of different ele | ements. | | | c) A polya | tomic molecule contain | ning atoms of the same ele | ement. | | | d) A diator | mic molecule containin | g atoms of the same elem | ent. | | B-5 | The SI unit | for mass is | | | | a) gı | ram | b) pound | c) kilogram | d) milligram | | B-6 | Select the sy | mbol that identifies tl | ne following species. Inc | lude the charge if the | | | species is n | ot neutral (8 protons, | 8 neutrons, 10 electrons |): | | a) S | | b) O | c) Ne | d) O ²⁻ | | | | | | | | B-/ An atom contain | ning which one of the fol | nowing is an isotope of | nitrogen? | |--------------------------------------|------------------------------------|------------------------------------|-----------------------------| | a) 7 protons and 6 neu | itrons | b) 5 protons and 8 neu | trons | | c) 8 protons and 5 neu | itrons | d) 6 protons and 7 neu | trons | | B-8 Pure gold coin o | can be classified as | | | | a) Heterogenous mixtu | ure b) Homogenous mix | ture c) compound | d) element | | B-9 In the process o | f dissolving 1 g of sodiu | n chloride in 100 ml o | f ethanol, the ethanol is | | referred to as | the: | | | | a) precipitate | b) solution | c) solute | d) solvent | | B-10 The correct nam | ne for VCl ₃ is : | | | | a) Vanadium (III) chloride | b) Vanadium chloride | c) Vanadium trichloride | e d) Vanadium (II) chloride | | B-11 The systematic | name for IF5 is: | | | | a) Iodine (V) fluoride | b) Iodine pentafluoride | c) Iodine fluoride | d) monoiodine fluoride | | B-12 The formula fo | r sodium sulfate is: | | | | a) Na(SO ₄) ₂ | b) Na ₂ SO ₃ | c) Na ₂ SO ₄ | d) Na ₂ S | | B-13 An element can | change from one to ano | ther by changing the r | number of | | a) Proton | b) Electron | c) Neutron | d) atomic mass | | B-14 An object with a | a mass of 1.2 g and dens | ity of 1.3g/ml was add | ed to a beaker | | containing wat | ter, the water level raise | d to 120 ml calculate t | he volume of water was | | in the beaker b | pefore the addition of the | e object? | | | a) 120.9 ml | b) 0.92 ml | c) 119.01 ml | d) 1.56 ml | | B-15 2.4x10 ³⁻ mm eq | ual to 2.4 ? | | | | a) µm | b) Mm | c) Tm | d) pm | | B-16 Which of the fo | llowing prefixes equal | to 10 ³ ? | | |---|--|---|-------------------------------------| | a) mili | b) kilo | c) nano | d) tera | | B-17 Which pair of t | he following have the s | ame empirical forn | nula : | | a) C ₁₀ H ₅ O ₁₅ , C ₂₀ H ₈ O ₂ | 24 | b) C ₁₀ H ₁₅ O ₅ , C ₁₆ | H_8O_{24} | | c) $C_{10}H_5O_{15}$, $C_{16}H_8O_{15}$ | 20 | d) C ₂₇ H ₉ O ₉ , C ₉ H | I_3O_3 | | B-18 K ₂ O can be class | ssified as | | | | a) compound | b) molecule | c) mixture | d) compound and molecule | | B-19 An example of | monatomic ion is | | | | a) N ₂ | b) OH ¹⁻ | c) O ²⁻ | d) C | | B-20 How many mol | es of chlorine atoms ar | e in 3×10^{22} chlorin | ne molecules (Cl ₂)? | | a) 1.81x10 ⁴⁶ mol | b) 9.96x10 ²⁻ mol | c) 218.6 mol | d) 4.9x10 ²⁻ mol | | B-21 What is the per | cent of phosphorus (P) | in Mg ₃ (PO ₄) ₂ ? | | | a) 23.66 % | b) 43.7 % | c) 11.8 % | d) 18.5 % | | B-22 An analysis of u | ınknown compound gi | ves the following pe | ercentage: 13.5% C, 2.25% | | H, and 84.27% | 6 As, what is the empir | ical formula of the | compound? | | a) C ₃ HAs ₂ | b) C ₂ H ₄ As | c) CH ₂ As | d) C ₂ H ₆ As | | B-23 What is the mo | olecular formula for the | e compound in the | above question (q22) if the | | molar mass of | the unknown compou | nd is 267 g/mole? | | | a) $C_6H_2As_4$ | b) C ₄ H ₈ As ₂ | c) C ₃ H ₆ As ₃ | d) $C_2H_4As_2$ | | B-24 After balancing | the following hypothe | tical reaction, the c | coefficient of C2 is | | | $A_3B_6 +$ | $C_2 \rightarrow AC_2 + B_2C$ | | | a) 1 | b) 9 | c) 2 | d) 6 | | B | -25 | Manganese | metal can | be pre | pared by | the the | rmite p | rocess: | |---|-----|-----------|-----------|--------|----------|---------|---------|---------| | | | | | | | | | | $$4Al(s) + 3MnO_2(s) \rightarrow 3Mn(l) + 2Al_2O_3(s)$$ If 130 g of Al and 320 g of MnO₂ are mixed, which is the limiting reactant? - a) Al_2O_3 - b) Mn - c) MnO₂ - d) Al #### B-26 What is the theoretical yield (in grams) of Mn that can be produced when the quantities in the above question (q25) are mixed? - a) 198.6 g - b) 202.3 g - c) 220.2 g - d) 163.2 g #### B-27 If 154 g of Mn are actually obtained from the reaction in question 25, what is the percent yield? - a) 76.1 % - b) 77.54 % - c) 69.9 % - d) 94.4 % #### B-28 30 ml of 0.32 M CaCl2 are mixed with 10 ml of 0.12 M NaCl. calculate the concentration of chlorine ion (Cl) in the resulting solution? - a) 0.51 M - b) 0.27 M - c) 0.44 M - d) 0.2 M #### B-29 What is the mass of single atom of Zn? - a) 4.98x10²³- g b) 1.08x10²²- g - c) 65 g - d) 3.9×10^{25} g #### B-30 The element (B) is classified as - a) metalloid - b) metal - c) nonmetal - d) transition metal | above | اعلى | classify | صنف | |-------------------|----------------------------|---------------------|-----------------------| | According | وفقاً | Mixture | خليط | | Anion | ايون سالب | molecules | جزيء | | Calculate | احسب | molecular | <u>جزيئي</u> ه | | chemical identity | هویه کیمیانیه | Identify | حدد . | | classified | صنف | theoretical yield | الناتج النظري | | Cocktail juice | عصير كوكتيل | periodic table | <u>ج</u> دول دوري | | Coefficient | معامل | rise | ، وه روي
تقع | | combination | اتحاد | molarity | المولاريه | | complete reaction | تفاعل كامل | commercial process | عملیه تجاریه | | composed of | يتكون من | Heterogeneous | غير متجانس | | consists of | تحتوي على | object | شيء | | containing | يحتوى | Nonmetal | ش <i>يء</i>
لا فلز | | density | يحتو <i>ي</i>
كثافه | process | عملية | | Derived units | وحدات مشتقه | graduated cylinder | مخبار مدرج | | Determine | | Present | موجود | | diluted | اوجد
خفف | Percent yield | نسبة الناتج | | Empirical | اولی | represent | يمثل | | enough | كأفية | respectively | على التوالي | | Equation | معادله | required | مطلوب | | Example | مثال | metalloid | شبه فلز | | Expressed | عبر عنه | abundant | نسبة الوفره | | Following | التالي | homogenous | متجانس | | Form | يكُونَ | solution | محلول | | formula | صيغه | substances | مواد | | fruits salad | سلطة فواكه | sugar | سكر | | Liquid | سائل | pellet | حبوب | | Mass number | رقم الكتله (الكتله الذريه) | symbol | رمز | | Quantities | كميات | percent composition | نسبة التركيب | | Question | سؤال | metal | فلز | | raising | ارتفاع | species | اصناف | | another | غير | beaker | وعاء | | neutral | متعادل | breathe | تنفس | | referred to | يشار اليه | hypothetical | افتراضي | | thermite | ثيرمت | exactly | بالضبط | **Faculty of Science - Chemistry Department** Chem-110, Second Exam Wednesday 13 /03 /1440 H Time: 90 minutes Number: **Section:** Name: •Useful information: $C = 3.0 \times 10^8 \text{ m/s}$ Speed of light, $h = 6.626 \times 10^{-34} \text{ J.s}$ Planck's const., $\begin{aligned} N_{av} &= 6.022 \times 10^{23} \text{ mol}^{-1} \\ R_{H} &= 2.18 \times 10^{-18} \text{ J} \end{aligned}$ Avogadro's No., Rydberg const. for H atom $m_e = 9.11 \times 10^{-31} \text{ kg}$ $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Mass of the electron, | 1A | | | | | | | | | | | | | | | | | 8A | |-----------------------------|----------------------------------|-------------------------------|--|-----------------------------|--|-----------------------------|--------------------------------------|----------------------------|---------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------------|---------------------|-------------------------------|--------------------------------------|-----------------------------| | $\frac{1}{H}$ | | | | | | PF | ERIC | DIC | C T/ | \BL | F | | | | | | 4
He | | Hydrogen | Heli | | | | | | | | | | Helium
2 | | | | | | | | 7
Li | 9
Be | | | 12 | ·
 | | _ | nearest | | | | 11
B | 12
C | 14
N | 16
O | 19
F | 20
Ne | | Lithium
3 | Beryllium
4 | | | C- | | Symb | | | | | | Boron
5 | Carbon
6 | Nitrogen
7 | Oxygen
8 | Flourine
9 | Neon
10 | | Na
Sodium |
Mg
Magnesium
12 | | | 6 - | Al Si P S Cl Aluminum Silicon Phosphorus Sulfur Chlorine A | | | | | | | 40
Ar
Argon
18 | | | | | | | 39
K Potassium 19 | 40
Ca
Calcium
20 | 45
Sc
Scandium
21 | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron
26 | 59
Co
Cobalt
27 | 59
Ni
Nickel
28 | 63.5
Cu
Copper
29 | 65
Zn
Zinc
30 | 70
Ga
Gallium | 72.5
Ge
Germanium
32 | 75 As Arsenic 33 | 79
Se
Selenium
34 | 80
Br
Bromine
35 | 84
Kr
Krypton
36 | | 85.5
Rb | 86
Sr | 89
Y | 91
Zr | 93
Nb | 96
Mo | (96)
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In | 119
Sn | 122
Sb | 128
Te | 127
I | 131
Xe | | Rubidium
37 | Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium 43 | Ruthenium
44 | Rhodium
45 | Palladium
46 | Silver
47 | Cadmium
48 | Indium
49 | Tin
50 | Antimony
51 | Tellurium
52 | Iodine
53 | Xenon
54 | | Cs
Cesium
55 | 137
Ba
Barium
56 | La
La
Lanthanum
57 | 178.5
Hf Hafnium 72 | Ta
Ta
Tantalum
73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192
Ir
Iridium
77 | 195
Pt
Platinum
78 | 197
Au
Gold
79 | Hg
Mercury
80 | 204
Tl
Thallium
81 | 207
Pb Lead 82 | Bi
Bismuth
83 | (210)
Po
Polonium
84 | (210)
At
Astatine
85 | (222)
Rn Radon 86 | | (223) Fr Francium 87 | (226)
Ra
Radium
88 | (227)
Ac
Actinium
89 | (261)
Rf
Rutherfordium
104 | (262) Db Dubnium 105 | (266)
Sg
Seaborgium
106 | (264) Bh Bohrium 107 | (265)
Hs
Hassium
108 | (268) Mt Meitnerium 109 | | | | | | | | | | | 140 | 141 | 144 | 145 | 150 | 152 | 157 | 159 | 162.5 | 165 | 167 | 169 | 173 | 175 | |--------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|----------------| | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | 62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | Holmium
67 | Erbium
68 | Thulium
69 | Ytterbium
70 | Lutetium
71 | | 232 | 231 | 238 | 237 | 244 | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | Thorium 90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium 103 | # A | A-1 | If the press | sure of a gas sample is d | loubled and the absolut | e temperature is tripled, by | |-------------------|---|---|---|---| | | what facto | r does the volume of the | e sample change? | | | a) 2 | | b) 1.5 | c) 0.6 | d) 3 | | A-2 | - | asses of O ₂ (g) and HBr(gure, which one of the fo | <u>-</u> | iners of equal volume and ue? | | b) The | e pressure in t
e pressure in t | the O ₂ container is greate
the HBr container is greathe HBr container could be
both gases are the same. | ter than that in the O_2 cope greater or smaller than | ntainer. | | A-3 | converted t | he following chemical ed
to N_2O_4 gas under the sa
$NO_2(g) \rightarrow N_2O_4(g)$ | | | | a) 12. | | b) 37.5 mL | c) 25 mL | d) 50 mL | | A-4 a) 0.4 | added to the pressure in Assume a contract of the | e same container and t | he temperature is incre
v many moles of gas we | re of 400 torr. Some gas is ased to 50 °C. If the re added to the container? d) 4.27 mol | | A-5 a) 0.0 | completely reacted? 4 | _ | of aluminum. What is th | xygen gas at STP to react
ne mass of aluminum (Al)
d) 3.2 g | | A-6 | For a fixed volume at o | amount of gas increasi | ng the temperature will | resulted inin | | a) a di | iminish | b) an increase | c) a decrease | d) no change | | A-7 | | he molar mass of unkno
684 mmHg ? | own gaseous compound | with a density of 0.8 g/L at | | a) 33. | 9 g/mol | b) 0.03 g/mol | c) 2.6 g/mol | d) 22.45 g/mol | | A-8 | | of the following statem
hat is 500 m below sea l | | the atmospheric pressure | | a) gra | ter than 1 | b) less than 1 | c) equal to 1 | d) 0 | | A-9 | _ | | $ m H_4$, 0.25 mol $ m C_2H_6$, and $ m C_2$ | | |------------------------|--|---|---|---| | a) 4.2 a | - | b) 0.24 atm | c) 0.55 atm | d) 0.36 atm | | A-10 | Name two eleme | ents that exist as gases a | it room temperature | | | a) Al a | nd Ne | b) N ₂ and He | c) O ₂ and I ₂ | d) S and Na | | | | | ble set of quantum num | | | a) $n=1$, | $l=1, m_l=1, m_s=$ | 1/2 | b) n=2, $l=1$, $m_l=2$, $m_s=$ | 1/2 | | c) n=2, | $l=2, m_l=1, m_s=$ | -1/2 | d) n=2, $l=1$, $m_l=0$, $m_s=$ | -1/2 | | A-12 | What is the energy 540 nm? | rgy in joules of a photor | ns associated with visible | e light of wavelength | | a) 1.07 | | b) 3.68 x 10 ⁻²⁸ J | c) 3.68 x 10 ⁻¹⁹ J | d) 3.58 x 10 ⁻⁴⁰ J | | A-13 | | | 3, if you know that the cries calculate the energy | | | a) -3.03 | 3x10 ⁻¹⁹ J | b) 3.03x10 ⁻¹⁹ J | | d) -2.42x10 ⁻¹⁹ J | | A-14 | An FM radio st | | MHz. Calculate the wa | velength of the | | a) 3.32 | | b) 29.9 x 10 ⁹ m | c) $3.02 \times 10^6 \text{ m}$ | d) 3.02 m | | | | avelength associated with b) 3.44x10 ⁻²⁵ nm | th tennis ball (55 g) trav
c) 3.44 x 10 ⁻³⁴ nm | veling at 35 m/s?
d) 3.44 x 10 ⁻⁴⁰ nm | | A-16 | | 0 | ration violate Hund's r | ıle | | a) | $\begin{array}{cc} \mathbf{1s} & \mathbf{2s} \\ \uparrow \downarrow & \uparrow \downarrow \end{array}$ | | | | | b) | $\uparrow\downarrow$ \uparrow | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | | c) | $\uparrow\downarrow$ $\uparrow\downarrow$ | $\begin{array}{ c c c c c c }\hline \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\\hline \end{array}$ | | | | d) | $\uparrow\downarrow$ $\uparrow\uparrow$ | \uparrow \uparrow | | | | A-17 a) Mg | Which of the fol | llowing element has 2 umb) Na | npaired electrons and is
c) Si | paramagnetic? d) B | | A-18 | What is the man | | rbital that can have the | following quantum | | a) 7 | 11411110111 09 I | b) 9 | c) 4 | d) 5 | | A-19
a) [Ar] | | nfiguration of a ground
b) [Ne]2s ² 2p ¹ | -state Al atom is
c) [Ar]3s ² 3p ¹ | d) [Ne]3s ² 3p ¹ | | A-20 | How many electric $m_l = -1$? | trons in a ground-state | calcium (Ca) atom are | in orbitals labeled by | |--
--|--|--|--------------------------------------| | a) 4 | m _l -1. | b) 2 | c) 3 | d) 5 | | A-21 | | he element with the folk
[Ar]4s ² 3d ¹⁰ 4p ³ ? | owing electron configur | ation located in the | | a) grou | | | c) group 4A, period 5 | d) group 5A, period 4 | | a) Alka
b) Alka
c) Halo | ali metals have thali earth metals hogens have the lo | rrect statement from the lowest ionization energy ave the lowest ionization energy lowest ionization energy. | gy | | | A-23 | 0 | | ng ionic radius: K ⁺ , P ³⁻ , | S ²⁻ , Cl ⁻¹ . | | Row 1
Row 2
Row 3
Row 4
a) Rov | $Cl^{-1} < S^{2-} < P^{3-} < S^{2-} < K^{+} < Cl^{-1} < K^{+} < P^{-3} < S^{2-} < K^{-1} K$ | $Cl^{1-} < K^+$
$< S^{2-} < P^{3-}$ | c) Row 1 | d) Row 4 | | a) Kov | | , | , | , | | A-24 a) Na | Which of the fo | ollowing elements has th
b) Ar | e highest electron affini | ty?
d) Al | | ŕ | A • 1 | , | | | | A-25 a) S ⁻² | Ar is <i>not</i> isoeled | b) Na ⁺¹ | c) K ⁺ | d) Cl ⁻¹ | | A-26
a) H-C | - | polar covalent bond is
b) F-F | c) Li-O | d) Na-N | | A-27 | The correct Le | wis symbol for an eleme | ent containing 4 electron | as is | | a) | | b) • X • | c) • X • | • X • d) | | A-28 | Calculate the to | otal valance electrons fo | or NO ₃ -1 ? | | | a) 22 | | b) 11 | c) 23 | d) 24 | | A-29 a) +5 | The formal cha | arge on the central nitro
b) -1 | gen in NO ₃ ⁻¹ is equal to c) +1 | d) 0 | | A-30 a) N | Which of the fo | ollowing when acting as b) O | central atom could devi | iate from octet rule? | | Absorb | يمتص | largest | اكبر | |------------------------|---|-------------------------|---------------------------------| | acceptable | مقبول | least | اقل | | according | وفقا | List | اوجد | | amount | كميه | lone pair | ازواج حره
الأقل | | around | کمیه
حول | lowest | الأقل | | as part of | کجز ۽ من | mixture | خليط | | attraction | جذب | molar mass | الكتلة المولية | | broadcasts | يبث | molecules | جزيئات | | boils | يغلى | multiplying | يتضاعف | | certain | محدد | one-third | ثلث | | classified | حون
کجز ء من
جذب
یبٹ
یغلی
محدد
یصنف | doubled | ضعف الكمية | | Consists of | يتكون من | quadrupled | أربعة اضعاف الكمية | | constant | ثابت | tripled | ثلاثة اضعاف الكمية | | container | وعاء | paramagnetic | احادي المغناطيسية | | Converts to | يتحول الى | partial pressure | | | covalent | تساهمي | ping-pong ball | ضغط جزئي
كرة تنس طاوله | | density | كثافه | possible | ممکن | | determined | إيجاد | process | ممکن
عملیه | | diamagnetic | ثنائى المغناطيسية | quantum number | اعداد کم | | diminish | علاقة طرديه | raise | پرفع ٰ | | corresponding | المصاحب | relationship | علاقة | | During | خلال | remains | | | electron configuration | توزيع الكتروني | represent | یبقی
یمثل | | electronegativity | سالبيه كهربائية | representative elements | عناصر ممثله | | Emission | انبعاث | resonance structures | اشكال رنين | | emit | ببعث | respectively | على التوالي | | assume | افتر ض | sample | عينه | | Energy | افتر ض
طاقة | sets | مجموعات | | Fixed quantity | كمية ثابتة | smallest | أصغر | | Flask | وعاء | solid | أصغر
صلب | | Flexible | مرن | species | صنف | | Found | وجد | stable | مستقر | | Frequency | تردد | starred electron | | | gaseous | غازی | Subjected to | الإلكترون ذو النجمة
تعرض الى | | greatest | غازي
أكبر
اعلى
تحمل | exerts | بذل | | Highest | اعلی | transitions | انتقاله | | holding | تحمل | allowable | | | Ideal gas | غاز مثالي | unpaired | مفد د | | separate | منفصل | valid | مسموح
مفرد
صالح | | Indicate | اه حد | velocity | سرعه | | initially | او جد
بداية | velocity | وعاء | | mine | 274 | violate | يخالف | | isoelectronic | بداية
منجم
نظير الالكتروني
حافظ | volume | حجم | | | مطير الاستروسي | wavelength | حجم
طول موجي | | kept | 215 | wavelengin | صوں موجي | **Faculty of Science - Chemistry Department** Chem-110, Second Exam Wednesday 13 /03 /1440 H Time: 90 minutes | Name: | Number: | Section: | |-------|---------|----------| | | | | #### •Useful information: $C = 3.0 \times 10^8 \text{ m/s}$ Speed of light, $h = 6.626 \times 10^{-34} \text{ J.s}$ Planck's const., $$\begin{split} &\mathbf{N}_{av} = 6.020 \times 10^{-3} \; \text{mol}^{-1} \\ &\mathbf{R}_{H} = 2.18 \times 10^{-18} \; \text{J} \\ &\mathbf{m}_{e} = 9.11 \; \text{x} \; 10^{-31} \; \text{kg} \\ &\mathbf{R} = 0.082 \; \text{L} \; \text{atm} \; \mathbf{K}^{-1} \; \text{mol}^{-1} \end{split}$$ Avogadro's No., Rydberg const. for H atom Mass of the electron, | 1A | | | | | | | | | | | | | | | | | 8A | |-------------------------------------|----------------------------------|-------------------------------------|--|------------------------------------|--|-----------------------------|--------------------------------------|-----------------------------------|------------------------------|----------------------------------|-----------------------------------|-----------------------------|--------------------------------|------------------------------------|--------------------------------|---------------------------------|---------------------------------| | 1
H | PERIODIC TABLE | | | | | | | | | | | He | | | | | | | Hydrogen
1 | 2A | _ | | K | ey | | Į | Relativ | e aton | nic ma | ss to | 3A | 4A | 5A | 6A | 7A | Helium
2 | | 7
Li | 9
Be
Beryllium | nearest whole number | | | | | | | | | oer | 11
B
Boron | 12
C
Carbon | 14
N
Nitrogen | 16
O
Oxygen
8 | 19
F
Flourine
9 | 20
Ne
Neon
10 | | 23
Na
Sodium | 24
Mg
Magnesium
12 | | | Carbon 6 — | | | | | | | | 27 Al Aluminum 13 | 28 Si Silicon 14 | 31 Phosphorus 15 | 32
S
Sulfur
16 | 35.5
Cl
Chlorine | 40
Ar
Argon
18 | | 39
K
Potassium
19 | 40
Ca
Calcium
20 | 45
Sc
Scandium
21 | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | V Cr Mn Fe Co Ni Cu Zn Gallium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium | | | | | | | Ga
Gallium | 72.5
Ge
Germanium
32 | 75
As
Arsenic
33 | 79
Se
Selenium
34 | 80
Br
Bromine
35 | Kr
Krypton
36 | | 85.5
Rb
Rubidium
37 | 86
Sr
Strontium
38 | 89
Y
Yttrium
39 | 91
Zr
Zirconium
40 | 93
Nb
Niobium
41 | 96
Mo
Molybdenum
42 | (96) Tc Technetium 43 | 101
Ru
Ruthenium
44 | 103
Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
Silver
47 | 112
Cd
Cadmium
48 | 115
In
Indium
49 | 119
Sn
Tin
50 | 122
Sb
Antimony
51 | 128 Te Tellurium 52 | 127
I
Iodine
53 | 131
Xe
Xenon
54 | | 133
Cs Cesium 55 | 137
Ba
Barium
56 | 139
La
Lanthanum
57 | 178.5
Hf
Hafnium
72 | 181
Ta
Tantalum
73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192
Ir
Iridium
77 | 195
Pt
Platinum
78 | 197
Au
Gold
79 | 201
Hg
Mercury
80 | 204
Tl
Thallium
81 | 207
Pb
Lead
82 | 209
Bi
Bismuth
83 | (210)
Po Polonium 84 | (210)
At Astatine 85 | (222)
Rn Radon 86 | | (223) Fr Francium 87 | (226)
Ra Radium 88 | (227)
Ac
Actinium
89 | (261)
Rf
Rutherfordium
104 | (262) Db Dubnium 105 | (266)
Sg
Scaborgium
106 | (264) Bh Bohrium 107 |
(265)
Hs
Hassium
108 | (268)
Mt
Meitnerium
109 | | | | | | | | | | | 140 Ce | 141 Pr Praseodymium | 144 Nd Neodymium | 145
Pm | 150
Sm | 152
Eu | 157
Gd | 159
Tb | 162.5 Dy | 165
Ho | 167
Er | 169
Tm | 173
Yb
Ytterbium | 175
Lu | |---------|---------------------|------------------|-----------|-----------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|-------------------------------|------------| | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | | 232 | 231 | 238 | 237 | 244 | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | Thorium | Protactinium | Uranium | Neptunium | Plutonium | Americium | Curium | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium | Lawrencium | | B-1 | completely with | llowing reaction: It taken a certain sample of alu $+3O_2(g) \rightarrow 2Al_2O_3(s)$ | | | |--------------------|--|---|--|--| | a) 6.4 | | b) 0.009 g | c) 0.24 g | d) 0.18 g | | B-2 | For a fixed amovolume at const | ount of gas decreasing that the pressure | he temperature will resu | ılted inin | | a) mul | tiplying | b) an increase | c) a decrease | d) no change | | B-3 | Calculate the m
25 °C and 862 i | nolar mass of unknown ;
mmHg ? | gaseous compound with | a density of 0.8 g/L at | | a) 0.02 | 2 g/mol | b) 44.1 g/mol | c) 17.2 g/mol | d) 1.4 g/mol | | B-4 | | ne following statements
s 600 m below sea level | | tmospheric pressure | | a) grat | er than 1 | | c) equal to 1 | d) 0 | | B-5 a) 0.51 | total pressure is | ases contains 0.31 mol C
s 1.50 atm. Calculate the
b) 0.78 atm | | | | | | ents that exist as gases a | - | | | a) Mg | and As | b) F ₂ and Si | c) P and Ar | d) H ₂ and Xe | | a) n=3 | Which one of the property | | b) n=1, $l=1$, $m_l=2$, $m_s=0$
d) n=2, $l=1$, $m_l=0$, $m_s=0$ | = 1/2 | | B-8 | What is the ene | ergy in joules of a photo | ns associated with visibl | le light of wavelength | | a) 4.4 | | b) 4.4 x 10 ⁻²⁸ J | c) 2.99 x 10 ⁻⁴⁰ J | d) 8.9 x 10 ⁻³² J | | | with the electro | ops from energy level n=
on drops is in Paschen so | eries calculate the energ | y of the emission? | | a) 1.55 | 5x10 ⁻¹⁹ J | b) -2.09x10 ⁻¹⁸ J | c) $-1.55 \times 10^{-19} \mathrm{J}$ | d) $-8.7 \times 10^{-20} \text{ J}$ | | B-10 | An FM radio st | cation broadcasts at 73.2 radio waves? | 2 MHz. Calculate the wa | evelength of the | | a) 0.24 | 1 m | b) 4.1 m | c) $2.2 \times 10^{16} \text{ m}$ | d) 4.1×10^6 m | | B-11 a) 3.3 | Calculate the w | vavelength associated wi
b) 3.3x10 ⁻³⁴ nm | th tennis ball (50 g) tra
c) 3.3 x 10 ⁻²⁸ nm | veling at 40 m/s?
d) 3.3 x 10 ⁻²⁵ nm | | B-12 a) K ⁺ | Kr is <i>not</i> isoelectronic with b) Br ⁻¹ | c) As ⁻³ | d) Sr ⁺² | |-------------------------------|--|---|----------------------------| | B-13 a) Cl-0 | An example of polar covalent bond is Cl b) H-F | c) Li-Br | d) K-I | | B-14 | The correct Lewis symbol for an eleme | ent containing 7 electro | ns is | | a) | b) • X • | c) • X • | • X • d) | | B-15 a) 20 | Calculate the total valance electrons for b) 10 | or CO ₃ -2 ?
c) 24 | d) 22 | | B-16 a) -2 | The formal charge on the central carb b) 0 | on in CO ₃ -2 is equal to c) +4 | d) -1 | | B-17 a) Br | Which of the following when acting as b) Cl | central atom could not c) B | expand it octet ?
d) Si | | B-18 a) | Which of the following electron config 1s 2s 2p $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow | uration violate Hund's | rule | | b) | $\begin{array}{c c} \uparrow \downarrow & \uparrow & \uparrow & \uparrow \\ \hline \end{array}$ | | | | c) | | | | | d) | | | | | B-19
a) N | Which of the following element has 3 u b) Li | unpaired electrons and i
c) O | s paramagnetic?
d) B | | B-20 | What is the maximum number of subo | orbital that can have the | following quantum | | a) 8 | numbers: n=4, m _s =+1/2
b) 7 | c) 4 | d) 16 | | B-21 a) [Ne | The electron configuration of a ground [2s ² 2p ³ b) [Ne]3s ² 3p ³ | d-state P atom is
c) [Ar]3s ² 3p ³ | d) $[Ar]4s^24p^3$ | | B-22 | How many electrons in a ground-state $m_l = 0$? | calcium (Ca) atom are | in orbitals labeled by | | a) 8 | b) 2 | c) 20 | d) 12 | | B-23 | Where would the element with periodic table [Ar]4s ² 3d ¹⁰ 4p ⁵ ? | | figuration located in the | |--|--|---|---| | a) gro | up 7A, period 4 b) group 5A, | | od 7 d) group 7A, period 5 | | a) Alkb) Alkc) Hal | Pick out the correct statement ali metals have the highest electronali earth metals have the highest ogens have the highest electron art gases have the highest electronal | on affinity
electron affinity
offinity | | | Row 2
Row 3
Row 4 | Increasing radius → Al +3 < Mg +2 < Na + < O +2 Na + < Mg +2 < Al +3 < O +2 Na + < Mg +2 < Al +3 < O +2 Na + < Mg +2 < Al +3 | 2 | - ² , Al + ³ , Na ⁺ , Mg ⁺² . | | a) Rov | w 2 b) Row 3 | c) Row 1 | d) Row 4 | | B-26 a) Cs | Which of the following elements b) Rb | nts has the highest electron a | affinity?
d) Li | | B-27 | If the pressure of a gas sample | e is quadrupled and the abs | olute temperature is | | | doubled, by what factor does | the volume of the sample ch | nange? | | a) 0.5 | b) 6 | c) 4 | d) 2 | | B-28 | If equal masses of O ₂ (g) and I temperature, which one of the | | - | | b) The | pressure in the O ₂ container is less pressures of both gases are the suppressure in the HBr container of the pressure in the HBr container is | same.
ould be greater or smaller than | n that in the O2 container | | B-29 | Consider the following chemic converted to N_2O_4 gas under to occupy? $2NO_2(g) \rightarrow N_2O_4(g)$ | • | | | a) 45 1 | 1.0 | c) 60 mL | d) 30 mL | | B-30 a) 4.1 | A gas sample containing 1.50 added to the same container a pressure increases to 750 torr Assume a constant-volume co mol b) 0.39 mol | nd the temperature is incre
, how many moles of gas we | ased to 50 °C. If the | | 1 | | | |-------------------|--
---| | | | اكبر
اقل | | مقبول | | | | وفقا | | اوجد | | کمیه | | ازواج حره
الأقل | | حول | lowest | | | کجز ۽ من | mixture | خليط | | جذب | molar mass | الكتلة المولية | | يبث | molecules | جزيئات | | يغلي | multiplying | يتضاعف | | محدد | one-third | ثلث | | يصنف | doubled | ضعف الكمية | | يتكون من | quadrupled | أربعة اضعاف الكمية | | ثابت | tripled | ثلاثة اضعاف الكمية | | وعاء | paramagnetic | احادي المغناطيسية | | يتحول الى | partial pressure | ضغط جزئي | | تساهمي | | كرة تنس طاوله | | كثافه | possible | ممكن | | إيجاد | process | عمليه | | ثنائي المغناطيسية | quantum number | اعداد کم | | علاقة طرديه | raise | | | المصاحب | relationship | ير فع
علاقة | | خلال | | يبقى | | | | يبقى
يمثل | | سالبيه كهربائية | - | عناصر ممثله | | | - | اشكال رنين | | يبعث | respectively | على التوالي | | | i | عينه | | طاقة | sets | مجمو عات | | كمية ثابتة | smallest | أصغر | | وعاء | solid | أصغر
صلب
صنف | | مرن | species | صنف | | | stable | مستقر | | تردد | starred electron | الإلكترون ذو النجمة | | غازي | Subjected to | | | أكبر | · | تعرض الى
بذل | | اعلى | | انتقاله | | تحمل | allowable | مسموح | | غاز مثالی | | | | منفصل | • | مفر د
صالح | | اوجد | | سرعه | | بداية | | وعاء | | منجم | | يخالف | | | volume |
حجم
طول موجي | | تطبر الالكثروني | voiume | حجم | | | علاقة طرديه المصاحب خلال توزيع الكتروني سالبيه كهربائية انبعاث يبعث افترض طاقة | الفقا المقبول المعادلة المعاد | **Faculty of Science - Chemistry Department** Chem-110, Second Exam Wednesday 13 /03 /1440 H Time: 90 minutes | Name: | Number: | Section: | |----------------------|--|----------| | •Useful information: | | | | Speed of light, | $C = 3.0 \times 10^8 \text{ m/s}$ | | | Planck's const., | $h = 6.626 \times 10^{-34} \text{ J.s}$ | | | Avogadro's No. | $N_{\rm av} = 6.022 \times 10^{23} \text{mol}^{-1}$ | | $N_{av} = 6.022 \times 10^{23} \text{ mol}$ $R_H = 2.18 \times 10^{-18} \text{ J}$ Rydberg const. for H atom $m_e = 9.11 \times 10^{-31} \text{ kg}$ $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Mass of the electron, | 1A | | | | | | | | | | | | | | | | | 8A | |----------------------|--------------------|--|---|--|-------------------------|----------------------|----------------------|-------------------------|------------------|------------------|------------------|------------------|-------------------|------------------|--------------------|--------------------|--------------------| | 1
H | | PERIODIC TABLE He | | | | | | | | | | | 4
He | | | | | | Hydrogen
1 | 2A | | | K | ey | | .] | Relativ | e aton | nic ma | ss to | 3A | 4A | 5A | 6A | 7A | Helium
2 | | 7
Li | 9
Be | | nearest whole number | | | | | | | | oer | 11
B | 12
C | 14
N | 16
O | 19
F | 20
Ne | | Lithium
3 | Beryllium
4 | | Boron Carbon Nitrogen Oxygen Flourine N | | | | | | | | | Neon
10 | | | | | | | 23
Na | 24
Mg | $ \begin{array}{c} $ | | | | | | | | 28
Si | 31
P | 32
S | 35.5
Cl | 40
Ar | | | | | Sodium
11 | Magnesium
12 | | | | | | | | | | | Aluminum
13 | Silicon
14 | Phosphorus
15 | Sulfur
16 | Chlorine
17 | Argon
18 | | 39
K | 40
Ca | 45
Sc | 48
Ti | 51 52 55 56 59 59 63.5 65 V Cr Mn Fe Co Ni Cu Zn | | | | | | | 65
Zn | 70
Ga | 72.5
Ge | 75
As | 79
Se | 80
Br | 84
Kr | | Potassium
19 | Calcium 20 | Scandium 21 | Titanium
22 | Vanadium
23 | Chromium 24 | Manganese
25 | Iron
26 | Cobalt
27 | Nickel
28 | Copper 29 | Zinc
30 | Gallium
31 | Germanium
32 | Arsenic 33 | Selenium
34 | Bromine 35 | Krypton
36 | | 85.5
Rb | 86
Sr | 89
Y | 91
Zr | 93
Nb | 96
Mo | (96)
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In | 119
Sn | 122
Sb | 128
Te | 127
I | 131
Xe | | Rubidium 37 | Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium 43 | Ruthenium
44 | Rhodium
45 | Palladium
46 | Silver
47 | Cadmium
48 | Indium
49 | Tin 50 | Antimony
51 | Tellurium
52 | Iodine
53 | Xenon
54 | | 133
Cs | 137
Ba | 139
La | 178.5
Hf | 181
Ta | 184
W | 186
Re | 190
Os | 192
Ir | 195
Pt | 197
Au | 201
Hg | 204
Tl | 207
Pb | 209
Bi | (210)
Po | (210)
At | (222)
Rn | | Cesium
55 | Barium
56 | Lanthanum
57 | Hafnium
72 | Tantalum
73 | Tungsten 74 | Rhenium
75 | Osmium
76 | II
Iridium
77 | Platinum
78 | Gold
79 | Mercury
80 | Thallium
81 | Lead
82 | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | (223) | (226) | (227) | (261) | (262) | (266) | (264) | (265) | (268) | | | | | | | | | | | Fr
Francium
87 | Ra
Radium
88 | Ac
Actinium
89 | Rf
Rutherfordium
104 | Db
Dubnium
105 | Sg
Seaborgium
106 | Bh
Bohrium
107 | Hs
Hassium
108 | Mt
Meitnerium
109 | | | | | | | | | | | 140 | 141 | 144 | 145 | 150 | 152 | 157 | 159 | 162.5 | 165 | 167 | 169 | 173 | 175 | |--------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|----------------| | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | 62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | Holmium
67 | Erbium
68 | Thulium
69 | Ytterbium
70 | Lutetium
71 | | 232 | 231 | 238 | 237 | 244 | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | Thorium 90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium 103 | | C-1 | corresponding | | 5 MIIIZ. Calculate the wa | ivelength of the | |---------------------------------|--|--|---|--| | a) 29.2 | 2 x 10 ⁻² m | b) 2.6 x 10 ¹⁶ m | c) 3.4 m | d) 3.4x10 ⁶ m | | C-2
a) 2.7 | Calculate the w | wavelength associated with b) 2.7x10 ⁻³⁴ nm | ith tennis ball (55 g) tra
c) 2.7 x 10 ⁻³⁷ nm | veling at 45 m/s? d) 2.7 x 10 ⁻³¹ nm | | C-3 | Which of the fo | ollowing electron config | uration violate Pauli exc | lusion principle | | a) | $\begin{array}{cc} \mathbf{1s} & \mathbf{2s} \\ \uparrow \downarrow & \uparrow \downarrow \end{array}$ | 2p | | | | b) | $\uparrow \downarrow \qquad \uparrow$ | | | | | c) | $\uparrow\downarrow$ $\uparrow\downarrow$ | | | | | d) | $\uparrow\downarrow$ $\uparrow\uparrow$ | | | | | C-4 a) Mg | Which of the fo | b) Na | inpaired electrons and is
c) Si | s paramagnetic?
d) Be | | C-5 | If the pressure | of a gas sample is triple | d and the absolute temp | oerature is doubled, b | | | what factor do | es the
volume of the san | nple change? | | | a) 2 | | b) 1.5 | c) 0.67 | d) 3 | | C-6 a) F ₂ as | | nents that exist as gases
b) N ₂ and Li | at room temperature
c) H ₂ and Br ₂ | d) C and B | | a) n=2 | Which one of the distribution $l=2, m_l=1, m_s=1, l=2, m_l=1, m_s=1$ | = 1/2 | b) n=3, $l=2$, $m_l=2$, $m_s=0$
d) n=2, $l=1$, $m_l=3$, $m_s=0$ | = 1/2 | | C-8 | | ergy in joules of a photo | ns associated with visibl | e light of wavelength | | a) 1.15 | 580 nm? 5 x 10 ⁻³¹ J | b) 3.43 x 10 ⁻¹⁹ J | c) 3.84 x 10 ⁻⁴⁰ J | d) 3.43 x 10 ⁻²⁸ J | | C-9 a) -3.0 | | | =3, if you know that the ies calculate the energy of 1.94x10 ⁻¹⁸ J | | | C-10 | The correct Lo | ewis symbol for an el | ement containing 5 elec | ctrons is | |---|--|--|--|---| | a) • X | | b) · X · | c) • X • | d) | | C-11 a) 17 | Calculate the t | total valance electron
b) 18 | s for NO ₂ -1?
c) 11 | d) 19 | | C-12 a) +5 | The formal ch | arge on the central n
b) -1 | itrogen in NO2 ⁻¹ is equ
c) +1 | al to
d) 0 | | C-13
a) P | Which of the f | ollowing when acting b) C | g as central atom could
c) F | deviate from octet rule? | | C-14 | completely wit | _ | f aluminum. What is th | xygen gas at STP to react
ne mass of aluminum (Al) | | a) 0.00 | · · | b) 0.13 g | c) 4.8 g | d) 0.18 g | | C-15 | For a fixed am at constant ten | | g the pressure will res | ulted inin volume | | a) mult | tiplying | b) an increase | c) a decrease | d) no change | | C-16 | Calculate the 1
45 °C and 589 | | wn gaseous compound | with a density of 0.8 g/L a | | a) 28.2 | | b) 26.9 g/mol | c) 0.035 g/mol | d) 3.8 g/mol | | a) Alkab) Alkac) Halo | ali metals have t
ali earth metals l
ogens have the h | he highest ionization enaction | energy
ation energy
gy | | | C-18 Row 1 Row 2 Row 3 Row 4 | Increasin
N -3 < O ²
Na + < F -
Na + < N - | ions in order of increase radius \rightarrow $^{-}$ < F $^{-1}$ < Na $^{+}$ 1 < O $^{-2}$ < N $^{-3}$ 3 < O $^{-2}$ < F $^{-1}$ < N $^{-3}$ < Na $^{+}$ | easing ionic radius: O | ·², Na ⁺ , N ³⁻ , F ⁻¹ . | | a) Row | v 2 | b) Row 3 | c) Row 1 | d) Row 4 | | C-19 | | the following stateme
is 400 m below sea le | _ | the atmospheric pressure | | a) grate | er than 1 | b) less than 1 | c) equal to 1 | d) 0 | | C-20 | What is the mannumbers: n=2, | ximum number of subor | rbital that can have the | following quantum | |--|---|---|--|--| | a) 7 | numbers, n 25 | b) 9 | c) 4 | d) 5 | | | | nfiguration of a ground
b) [Ar]3s ² 3p ² | -state Si atom is
c) [Ne]2s ² 2p ² | d) $[Ar]4s^2 4p^2$ | | C-22 | How many elect $m_l = +1$? | trons in a ground-state | potassium (K) atom are | in orbitals labeled by | | a) 2 | $m_l - \pm 1$: | b) 3 | c) 4 | d) 5 | | C-23 | Where would the periodic table, | ne element with the follo
Krl5s ² 3d ¹⁰ 5p ² ? | owing electron configura | ation located in the | | a) grou | | b) group 5A, period 3 | c) group 4A, period 5 | d) group 5A, period 4 | | C-24 | - | of $F_2(g)$ and $H_2(g)$ are in which one of the following | - | f equal volume and | | b) The c) The | pressure in the H pressure in the H | container is greater than 2 container is greater than 2 container could be great a gases are the same. | that in the F_2 container. | the F ₂ container | | | | | | | | C-25 | converted to N ₂ | llowing chemical equati
O_4 gas under the same of $O_4 \cap O_4(g)$ | | | | C-25 | converted to N ₂ occupy? 2NO ₂ (s | O ₄ gas under the same of | | | | a) 30 n | converted to N ₂ occupy? 2NO ₂ (som) A gas sample considered to the sample sample sample considered to the sample sampl | O ₄ gas under the same of
g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25
me container and the tenses to 800 torr, how man | conditions, what volume
c) 40 mL
°C exerts a pressure of
mperature is increased | e will the N_2O_4 d) 10 mL 300 torr. Some gas is to 50 °C. If the | | a) 30 n | converted to N ₂ occupy? 2NO ₂ (somL A gas sample condition added to the sample samp | O ₄ gas under the same of
g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25
me container and the ter | conditions, what volume
c) 40 mL
°C exerts a pressure of
mperature is increased | e will the N_2O_4 d) 10 mL 300 torr. Some gas is to 50 °C. If the | | a) 30 nC-26a) 2.19 | converted to N ₂ occupy? 2NO ₂ (smL A gas sample condition added to the sample sampl | O ₄ gas under the same of g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25
me container and the tenses to 800 torr, how manant-volume container
b) 5.19 mol | conditions, what volume
c) 40 mL
°C exerts a pressure of
mperature is increased
ny moles of gas were ad
c) 3.69 mol
H4, 0.25 mol C ₂ H ₆ , and | d) 10 mL 300 torr. Some gas is to 50 °C.
If the ded to the container? d) 0.27 mol 0.29 mol C ₃ H ₈ . The | | a) 30 nC-26a) 2.19 | converted to N ₂ occupy? 2NO ₂ (som) A gas sample condition added to the sample sample sample account of moles. A mixture of gas total pressure is | O ₄ gas under the same of g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25
me container and the tenses to 800 torr, how man ant-volume container
b) 5.19 mol | conditions, what volume
c) 40 mL
°C exerts a pressure of
mperature is increased
ny moles of gas were ad
c) 3.69 mol
H4, 0.25 mol C ₂ H ₆ , and | d) 10 mL 300 torr. Some gas is to 50 °C. If the ded to the container? d) 0.27 mol 0.29 mol C ₃ H ₈ . The | | a) 30 n
C-26
a) 2.19
C-27 | converted to N ₂ occupy? 2NO ₂ (smL A gas sample condended to the sample samp | O ₄ gas under the same of g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25 me container and the tenses to 800 torr, how man ant-volume container
b) 5.19 mol | conditions, what volume
c) 40 mL °C exerts a pressure of
mperature is increased
ny moles of gas were ad c) 3.69 mol H4, 0.25 mol C ₂ H ₆ , and e partial pressures of C ₂ c) 0.29 atm | d) 10 mL 300 torr. Some gas is to 50 °C. If the ded to the container? d) 0.27 mol 0.29 mol C ₃ H ₈ . The eH ₆ . d) 0.44 atm | | a) 30 n C-26 a) 2.19 C-27 a) 5.17 C-28 | converted to N ₂ occupy? 2NO ₂ (smL A gas sample condended to the sample samp | O ₄ gas under the same of g) → N ₂ O ₄ (g)
b) 20 mL
ontaining 1.50 mol at 25 me container and the tenses to 800 torr, how manant-volume container
b) 5.19 mol
asses contains 0.31 mol Container b) 5.19 mol
dises contains 0.31 mol Container b) 0.19 atm
llowing elements has the b) Se | conditions, what volume c) 40 mL °C exerts a pressure of mperature is increased in moles of gas were ad c) 3.69 mol H4, 0.25 mol C ₂ H ₆ , and e partial pressures of C ₂ c) 0.29 atm e highest electron affinite | d) 10 mL 300 torr. Some gas is to 50 °C. If the ded to the container? d) 0.27 mol 0.29 mol C ₃ H ₈ . The eH ₆ . d) 0.44 atm | | Absorb | يمتص | largest | اكبر | |------------------------|---|-------------------------|--------------------------------------| | acceptable | | least | اقل | | according | مقبول
وفقا | List | اوجد | | amount | کمیه | lone pair | ازواج حره | | around | حوان | lowest | الأقل | | as part of | وقف
کمیه
حول
کجزء من
جذب
بیث
یغلی
محدد
یصنف | mixture | خلیط | | attraction | جنب | molar mass | الكتلة المولية | | broadcasts | ىرىث | molecules | جزيئات | | boils | 1:, | multiplying | يتضاعف | | certain | مدر | one-third | ثلث | | classified | رفنادها | doubled | ضعف الكمية | | Consists of | دتکون دن دن | quadrupled | أربعة اضعاف الكمية | | constant | يتكون من
ثابت | tripled | اربعه اصعف الكمية ثلاثة اضعاف الكمية | | container | وعاء | paramagnetic | احادي المغناطيسية | | Converts to | يتحول الى | partial pressure | من فط من أ | | covalent | تبداه | | ضَغط جزئي
كرة تنس طاوله | | | تساه <i>مي</i>
کثافه | ping-pong ball possible | حرہ ننس صاوتہ
ممکن | | density | | 1 | عملیه | | determined | إيجاد | process | | | diamagnetic | ثنائي المغناطيسية | quantum number | اعداد کم | | diminish | علاقة طرديه | raise | يرفع
علاقة | | corresponding | المصاحب
خلال | relationship | | | During | | remains | يبقى
يمثل | | electron configuration | توزيع الكتروني | represent | | | electronegativity | سالبيه كهربائية | representative elements | عناصر ممثله | | Emission | انبعاث | resonance structures | اشكال رنين | | emit | يبعث | respectively | على التوالي | | assume | افتر ض
طاقة | sample | عينه | | Energy | | sets | مجموعات | | Fixed quantity | كمية ثابتة | smallest | أصغر
صلب
صنف | | Flask | وعاء | solid | صلب | | Flexible | مرن | species | صنف | | Found | وجد | stable | مستقر | | Frequency | تردد | starred electron | الإلكترون ذو النجمة | | gaseous | غازي | Subjected to | تعرض الى | | greatest | أكبر
اعلى
تحمل | exerts | بذل | | Highest | اعلى | transitions | انتقاله | | holding | تحمل | allowable | مسموح | | Ideal gas | غاز مثالي | unpaired | | | separate | منفصل | valid | مفر د
صالح | | Indicate | اوجد | velocity | سرعه | | initially | بداية | vessel | وعاء | | mine | منجم | violate | يخالف | | isoelectronic | اوجد
بدایة
منجم
نظیر الالکتروني | volume | | | kept | حافظ | wavelength | حجم
طول موجي | | I. | <u>I</u> | 1 | <u> </u> | **Faculty of Science - Chemistry Department** Chem-110, Second Exam Wednesday 13 /03 /1440 H Time: 90 minutes Number: **Section:** Name: •Useful information: $C = 3.0 \times 10^8 \text{ m/s}$ Speed of light, $h = 6.626 \times 10^{-34} \text{ J.s}$ Planck's const., $\begin{aligned} N_{av} &= 6.022 \times 10^{23} \text{ mol}^{-1} \\ R_{H} &= 2.18 \times 10^{-18} \text{ J} \end{aligned}$ Avogadro's No., Rydberg const. for H atom $m_e = 9.11 \times 10^{-31} \text{ kg}$ $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Mass of the electron, | 1A | | | | | | | | | | | | | | | | | 8A | |--------------------------------|--|--|--|------------------------------|---|-----------------------------------|--------------------------------------|---|------------------------------------|--------------------------------------|--------------------------|----------------------------|--------------------------------------|-----------------------------------|--------------------------------|----------------------------------|--------------------------| | 1 | PERIODIC TABLE | | | | | | | | | | 4
11.0 | | | | | | | | H
Hydrogen
1 | | | | | | | | | | | | Helium 2 | | | | | | | 7
Li | 9
Be
Beryllium | | | 12
C | ·
 | | → ₁ | nearest | | | | 11
B
Boron | 12
C
Carbon | 14
N
Nitrogen | 16
O
Oxygen | 19
F
Flourine | 20
Ne
Neon | | 3
23
Na
Sodium | 24 Mg Magnesium 12 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 10
40
Ar
Argon
18 | | | | | | | | | 39 K Potassium 19 | 40 Ca Calcium 20 | 45
Sc
Scandium | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron
26 | 59
Co
Cobalt
27 | 59
Ni
Nickel
28 | 63.5
Cu Copper 29 | 65 Zn Zinc 30 | 70
Ga Gallium 31 | 72.5
Ge
Germanium
32 | 75
As
Arsenic
33 | 79 Se Selenium 34 | 80
Br
Bromine
35 | 84 Kr Krypton 36 | | 85.5 Rb Rubidium | 86
Sr
Strontium | 89
Y
Yttrium | 91 Zr Zirconium | 93
Nb | 96
Mo | (96) Tc | 101 Ru | 103 Rh Rhodium | 106 Pd Palladium | 108
Ag
Silver | 112 Cd Cadmium | 115 In Indium | 119
Sn Tin 50 | 122 Sb Antimony | 128 Te Tellurium | 127 I lodine | 131 Xe | | 133 Cs Cesium 55 | 38
137
Ba
Barium
56 | 139
La
Lanthanum
57 | 178.5
Hf Hafnium 72 | 181
Ta Tantalum 73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 45
192
Ir
Iridium
77 | 195
Pt
Platinum
78 | 47 197 Au Gold 79 | 201 Hg Mercury 80 | 204 Tl Thallium 81 | 207
Pb Lead 82 | 209
Bi
Bismuth
83 | 52 (210) Po Polonium 84 | 53 (210) At Astatine 85 | (222) Rn Radon 86 | | (223) Fr Francium 87 | (226)
Ra
Radium
88 | (227) Ac Actinium 89 | (261)
Rf
Rutherfordium
104 | (262) Db Dubnium 105 | (266)
Sg
Seaborgium
106 | (264) Bh Bohrium 107 | (265)
Hs
Hassium
108 | (268) Mt Meitnerium 109 | | | | | | | | | | | 140
Ce
Cerium | 141
Pr
Praseodymium | 144
Nd
Neodymium | | 150
Sm
Samarium | | 157 Gd Gadolinium | | Dy Dysprosium | | 167
Er | 169 Tm Thulium | 173
Yb
Ytterbium | 175
Lu | |------------------------|---------------------------|------------------------|------------------|-----------------------|--------------------------|-------------------|--------------------------|--------------------|--------------------|-----------------|-----------------------|-------------------------------|-------------------| | 58
232
Th | 231
Pa | 238
U | 237
Np | 244
Pu | 63
(243)
Am | (247)
Cm | 65
(247)
Bk | (251)
Cf | (252)
Es | (257) Fm | (258)
Md | 70
(259)
No | (262)
Lr | | Thorium 90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium
103 | # D | D-1 | completely with | llowing reaction: It takes a certain sample of alu $+3O_2(g) \rightarrow 2Al_2O_3(s)$ | 1 0 | C | |-------------------------------|---------------------------------------|---|---|-------------------------| | a) 0.29 | | b) 8.04 g | c) 0.01 g | d) 0.22 g | | D-2 | For a fixed amo | ount of gas decreasing the | ne pressure will resulted | inin volume | | a) a dii | · · · · · · · · · · · · · · · · · · · | b) an increase | c) a decrease | d) no change | | D-3 | Calculate the m
25 °C and 492 r | olar mass of unknown g
nmHg ? | gaseous compound with | a density of 0.8 g/L at | | a) 30.2 | 2 g/mol | b) 2.5 g/mol | c) 0.04 g/mol | d) 25.2 g/mol | | | in a mine that is | ne following statements is 700 m
below sea level (| (1 atm) ? | | | a) grate | er than 1 | b) less than 1 | c) equal to 1 | d) 0 | | D-5 | O | ses contains 0.31 mol C
2.00 atm. Calculate the | e partial pressures of C2 | | | a) 0.59 | o atm | b) 0.29 atm | c) 0.145 atm | d) 6.9 atm | | D-6 | Which of the fo | llowing elements has the | e highest electron affinit | ty? | | a) B | | b) In | c) Al | d) Ga | | D-7 a) Rb ⁺ | Kr is not isoeled | etronic with b) Se -2 | c) Ca ⁺² | d) Br ⁻¹ | | ŕ | | , | c) ca | u) Di | | D-8 a) Ca-0 | | oolar covalent bond is
b) Li-O | c) I-I | d) H-Br | | D-9 | The correct Lev | vis symbol for an eleme | nt containing 6 electron | s is | | ·X | | b) · X · | • X • | • X • | | a) | | | c) | d) | | D-10 | Calculate the to | tal valance electrons for | r PO ₃ -3 ? | | | a) 26 | | b) 23 | c) 20 | d) 11 | | D-11 a) 0 | The formal cha | rge on the central phosp
b) -3 | phorus in PO ₃ -3 is equal c) -1 | to d) +5 | | | | | | | | | following when acting as | | expand it octet? | |---|---|---|--------------------------------| | a) I | b) N | c) P | a) S | | D-13 Name two eler | nents that exist as gases | at room temperature | | | a) P and S | b) Ca and N | c) Cl and Xe | d) Na and Mg | | D-14 Which one of | the following is an allow | able set of quantum nur | nbers for an electron? | | a) n=3, $l=2$, $m_l=0$, m_s | | b) n=1, $l=1$, $m_l=2$, $m_s=1$ | | | c) n=4, $l=5$, $m_l=1$, m_s | = -1/2 | d) n=2, $l=1$, $m_l=0$, $m_s=0$ | = 1 | | D-15 What is the en | ergy in joules of a photo | ons associated with visib | le light of wavelength | | a) 7.9 x 10 ⁻³² J | b) 2.6 x 10 ⁻⁴⁰ J | c) 4.9 x 10 ⁻²⁸ J | d) 4.9 x 10 ⁻¹⁹ J | | | rops from energy level n
on drops is in Brackett : | | | | a) $-8.7 \times 10^{-20} \text{ J}$ | b) -4.9x10 ⁻²⁰ J | c) -2.09x10 ⁻¹⁸ J | d) 4.9x10 ⁻²⁰ J | | , | , | , | , | | D-17 An FM radio s corresponding | station broadcasts at 68.
radio waves? | 5 MHz. Calculate the w | avelength of the | | a) 4.4 m | | c) $4.4 \times 10^6 \text{ m}$ | d) 0.23 m | | D-18 Calculate the a) 2.5 x 10 ⁻³⁴ nm | wavelength associated w
b) 2.5x10 ⁻²⁸ nm | rith tennis ball (45 g) tra
c) 2.5 x 10 ⁻²⁵ nm | | | D-19 If the pressure | e of a gas sample is doub | led and the absolute ten | nperature is | | quadrupled, k | y what factor does the v | volume of the sample ch | ange? | | a) 0.5 | b) 6 | c) 4 | d) 2 | | - | s of F ₂ (g) and H ₂ (g) are
which one of the follow | <u>-</u> | f equal volume and | | c) The pressure in the | th gases are the same H ₂ container could be gre F ₂ container is less than the H ₂ container is less than the | nat in the H ₂ container | n the F ₂ container | | converted to N | following chemical equat
$\sqrt{2}$ Qas under the same | | | | occupy? 2NO ₂ a) 35 mL | $(g) \rightarrow N_2O_4(g)$ b) 52.5 mL | c) 17.5 mL | d) 70 mL | | , | 5, C = 10 11112 | -, -, -, -, -, -, -, -, -, -, -, -, -, - | <u></u> | | D-22 What is the m
numbers: n=5. | aximum number of subo
. m _s =+1/2 | orbital that can have the | following quantum | | a) 25 | b) 5 | c) 12 | d) 2 | | D-23 | added to the sa
pressure increa | ontaining 2.50 mol at 25 me container and the te uses to 750 torr, how matant-volume container | mperature is increased | to 50 °C. If the | |---|--|---|---|---| | a) 0.14 | | b) 4.4 mol | c) 6.9 mol | d) 9.4 mol | | D-24 | Which of the fo | ollowing electron configu
2p | ıration violate Pauli exc | lusion principle | | a) | $\uparrow \downarrow \qquad \uparrow \downarrow$ | | | | | b) | $\uparrow\downarrow$ $\downarrow\downarrow$ | | | | | c) | $\uparrow\downarrow$ $\uparrow\downarrow$ | $\boxed{\uparrow\downarrow \uparrow\downarrow }$ | | | | d) | $\uparrow\downarrow$ \uparrow | $\boxed{ \uparrow\downarrow \uparrow \uparrow}$ | | | | D-25 | Which of the fo | ollowing element has 0 u | _ | | | a) Al | | b) K | c) F | d) Ca | | | The electron co | onfiguration of a ground
b) [Ar]3s ² 3p ⁴ | l-state S atom is
c) [Ne]3s ² 3p ⁴ | d) [Ar]4s ² 4p ⁴ | | D-27 | How many electric $m_l = 0$? | trons in a ground-state | potassium (K) atom are | in orbitals labeled by | | a) 7 | | b) 11 | c) 2 | d) 19 | | D-28 | Where would t
periodic table | he element with the follo | owing electron configura | ation located in the | | a) grou | | b) group 6A, period 4 | c) group 4A, period 4 | d) group 6A, period 7 | | a) Halob) Inerc) Alka | ogens have the lost gases have the ali metals have the | rrect statement from the
west electron affinity
lowest electron affinity
are lowest electron affinity
ave the lowest electron a | , | | | D-30
Row 1
Row 2
Row 3
Row 4 | Increasing
S -2 < Ga+.
S -2 < K + <
S K+ < Ca+. | fons in order of increasing radius \rightarrow $^3 < Ca^{+2} < K^+$ $Ca^{+2} < Ga^{+3}$ $^2 < Ga^{+3} < S^{-2}$ $^{+2} < K^+ < S^{-2}$ | ng ionic radius: Ca ⁺² , C | Ga ⁺³ , S ⁻² , K ⁺ . | | a) Rov | v 2 | b) Row 3 | c) Row 1 | d) Row 4 | | Absorb | يمتص | largest | اكبر | |------------------------|--|-------------------------|---------------------------------| | acceptable | مقبول | least | اقل | | according | وفقا | List | اوجد | | amount | كميه | lone pair | ازواج حره | | around | کمیه
حول | lowest | ازواج حره
الأقل | | as part of | کجز ۽ من | mixture | خليط | | attraction | جذب | molar mass | الكتلة المولية | | broadcasts | يبث | molecules | جزيئات | | boils | يغلى | multiplying | يتضاعف | | certain | محدد | one-third | ثلث | | classified | حوں
کجزء من
جذب
یبٹ
یغلی
محدد
یصنف | doubled | ضعف الكمية | | Consists of | يتكون من | quadrupled | أربعة اضعاف الكمية | | constant | ثابت | tripled | ثلاثة اضعاف الكمية | | container | وعاء | paramagnetic | احادي المغناطيسية | | Converts to | يتحول الى | partial pressure | • | | covalent | تساهمي | ping-pong ball | ضغط جزئي
كرة تنس طاوله | | density | كثافه | possible | ممكن | | determined | إيجاد | process | ممکن
عملیه | | diamagnetic | ثنائى المغناطيسية | quantum number | اعداد کم | | diminish | علاقة طرديه | raise | يرفع | | corresponding | المصاحب | relationship | علاقة | | During | خلال | remains | ببقى | | electron configuration | توزيع الكتروني | represent | یبقی
یمثل | | electronegativity | سالبيه كهربائية | representative elements | عناصر ممثله | | Emission | انبعاث | resonance structures | اشكال رنين | | emit | يبعث | respectively | على التوالي | | assume | افتر ض
طاقة | sample | عينه | | Energy | طاقة | sets | مجمو عات | | Fixed quantity | كمية ثابتة | smallest | أصغر | | Flask | وعاء | solid | أصغر
صلب | | Flexible | مرن | species | صنف | | Found | وجد | stable | مستقر | | Frequency | تردد | starred electron | الإلكترون ذو النجمة
تعرض الى | | gaseous | غازي | Subjected to | تعرض الى | | greatest | أكبر | exerts | بذل | | Highest | غازي
أكبر
اعلى
تحمل | transitions | انتقاله | | holding | تحمل | allowable | | | Ideal gas | غاز مثالي | unpaired | مسموح
مفر د
صالح | | separate | منفصل | valid | صالح | | Indicate | او جد | velocity | سرعه | | initially | اوجد
بداية | vessel | وعاء | | mine | منجم | violate | يخالف | | isoelectronic | بداية
منجم
نظير الالكتروني
حافظ | volume | حجم | | kept | حافظ | wavelength | طول موجي | | Кері | 1 | ,, a verengui | |