
Mock Exam for Quiz 2

2nd Term 2017 – 1438

1- Mendeleev arranged the elements in his early periodic table primarily according to what criterion?

- A) Similar physical properties
- B) Similar chemical properties
- C) Decreasing atomic masses
- D) Similar appearance

Mendeleev arranged the elements in his early *periodic* table primarily according to what criterion?

- A) Similar physical properties
- B) Similar chemical properties
- C) Decreasing atomic masses
- D) Similar appearance

2- Which of the following is **incorrect** about nonmetals?

- a) They typically have a low boiling point.
- b) They are found at the right-hand side of the periodic table.
- c) They are good conductors of electricity.
- d) Some are colorful.

Which of the following is **incorrect** about nonmetals?

- a) They typically have a low boiling point.
- b) They are found at the right-hand side of the periodic table.
- c) They are good conductors of electricity.
- d) Some are colorful.

3) Chromium is an example of an element that is a _____.

- A) transition element
- B) nonmetal
- C) metalloid
- D) noble gas

Chromium is an example of an element that is a _____.

A) transition element

- B) nonmetal
- C) metalloid
- D) noble gas

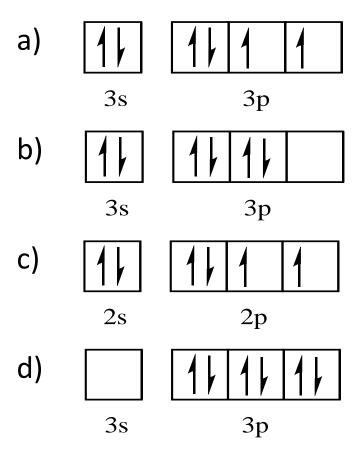
4- Which of the following determines the identity of an atom?

- A) Number of protons
- B) Number of electrons
- C) Number of neutrons
- D) Total number of protons and neutrons

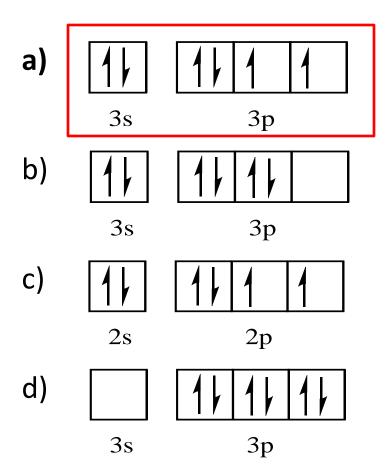
Which of the following determines the identity of an atom?

A) Number of protons

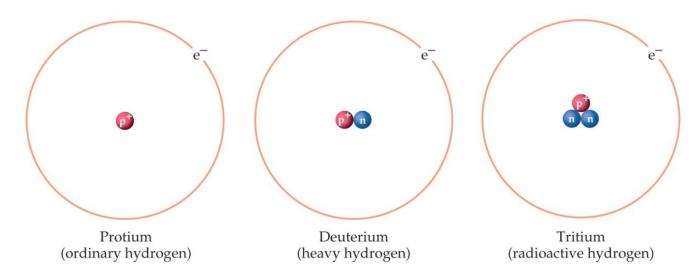
- B) Number of electrons
- C) Number of neutrons
- D) Total number of protons and neutrons


5- Which of the following elements is an alkali earth metal?

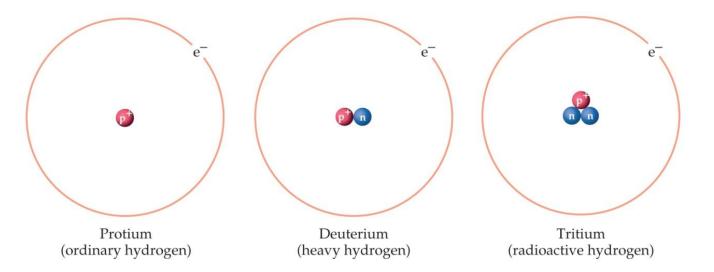
- A) Li
- B) Fe
- C) Ca
- D) Ge


Which of the following elements is an alkali earth metal?

- A) Li
- B) Fe
- C) Ca
- D) Ge


6- Which of the following correctly illustrates the valence electron configuration of sulfur?

Which of the following correctly illustrates the valence electron configuration of sulfur?



7- Isotopes are elements that differ only in their ____.

- A) atomic number
- B) nuclear charge
- C) number of electrons in the neutral atom
- D)mass number

Isotopes are elements that differ only in their ____.

- A) atomic number
- B) nuclear charge
- C) number of electrons in the neutral atom

D)mass number

8- How many valence electrons does chlorine have?

- a) 8
- b) 7
- c) 6
- d) 5

How many valence electrons does chlorine have?

- a) 8
- b) 7
- c) 6
- d) 5

9- In a chemical bond, the polarity of it can be specified by:

A	electron affinity
В	electronegativity
C	ionization energy
D	metallic character

10- Group 2A in periodic table in their compounds always have an oxidation state of:

A	+2
В	-2
C	0
D	+1

11- The resulting bond due to transfer of electron is:

A	covalent
В	polar covalent
C	ionic
D	metallic

12- The resulting bond due to unequal sharing of electron is:

A	covalent
В	polar covalent
C	ionic
D	metallic

13- Substance that produces H⁺ ion is called

A	Acid
В	Base
C	Solution
D	antacid

14- Substance that produces OH⁻ ion is called

A	Acid
В	Base
C	Solution
D	antacid

15- A proton that associates with water has a form:

A	
В	OH-
С	H ₃ O ⁺
D	H ₃ O ⁻

16- 105 g of MgCl₂ contains — mol MgCl₂.

A	105
В	6.62×10^{23}
С	1.10
D	1.76

17- The number of grams in 7.00 moles of N_2 is _____.

A	14
В	28
C	98
D	196

18- Which of the following is the strongest acid?

A	NH ₄ +
В	NaOH
С	H_2CO_3
D	HCI

19- Acetic acid (Vinegar) can be classified as a(n) _____.

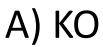
A	Solid
В	weak electrolyte
С	Strong electrolyte
D	Ionic compound

20- Hydrobromic acid (HBr) can be classified as a(n) _____.

Solid A weak electrolyte C Strong electrolyte Ionic compound

21- Aqueous solution of NaCl can be classified as a(n) _____.

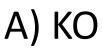
Non-electrolyte A weak electrolyte C Strong electrolyte molecular compound


22- What is the mass, in grams, of 2.5 moles of ammonia (NH₃)?

- A) 25.0 g
- B) 42.5 g
- C) 46.0 g
- D) 77.5 g

What is the mass, in grams, of 2.5 moles of ammonia (NH₃)?

- A) 25.0 g
- B) 42.5 g
- C) 46.0 g
- D) 77.5 g
 - 1 mole $NH_3 = 17.0 g (14.0 g N + 3.0 g H)$
 - 2.5 moles $NH_3 \times 17.0 \text{ g/mole } NH_3 = 42.5 \text{ g}$


23- The correct formula for the ionic compound formed from the elements potassium and oxygen is _____.

- B) K_2O
- C) KO₂
- D) K_2O_3

1A	2A										3A	4A	5A	6A		Noble gases
Li ⁺													N ³⁻	O ²⁻	F ⁻	
Na ⁺	Mg ²⁺	3B	4B	5B	6B	7B		8B	 1B	2B	Al ³⁺		P ³⁻	S ²⁻	Cl ⁻	
K ⁺	Ca ²⁺						Fe ²⁺ Fe ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br ⁻	
Rb ⁺	Sr ²⁺								Ag ⁺						I_	
Cs ⁺	Ba ²⁺															

The correct formula for the ionic compound formed from the elements potassium and oxygen is _____.

- B) K₂O
- C) KO₂
- D) K₂O₃

1A	2A										3A	4A	5A	6A		Noble gases
Li ⁺													N ³⁻	O ²⁻	F ⁻	
Na ⁺	Mg ²⁺	3B	4B	5B	6B	7B		8B	. 1B	2B	Al ³⁺		P ³⁻	S ²⁻	Cl	
K ⁺	Ca ²⁺						Fe ²⁺ Fe ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br ⁻	
Rb ⁺	Sr ²⁺								Ag ⁺						I_	
Cs ⁺	Ba ²⁺															

24- What is the correct name for this compound?

- A) Copper chloride
- B) Copper(I) chloride
- C) Copper(II) chloride
- D) Copper monochloride

CuCl

Name?

What is the correct name for this compound?

- A) Copper chloride
- B) Copper(I) chloride
- C) Copper(II) chloride
- D) Copper monochloride

CuCl

Name?

25- When the following equation is properly balanced, what is the coefficient of O₂?

$$_{---} C_5H_{12} + _{---} O_2 \rightarrow _{---} CO_2 + _{---} H_2O$$

- A) 6
- B) 8
- C) 9
- D) 10

When the following equation is properly balanced, what is the coefficient of O₂?

$$___C_5H_{12} + ___O_2 \rightarrow ___CO_2 + ___H_2O$$

- A) 6
- **B)** 8
- C) 9
- D) 10

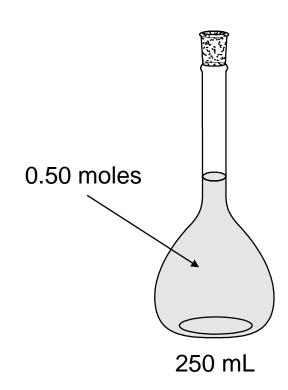
26- Consider the combustion of propane as represented in this chemical equation.

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

When 7.5 moles of O₂ are consumed, how many moles of CO₂ are formed?

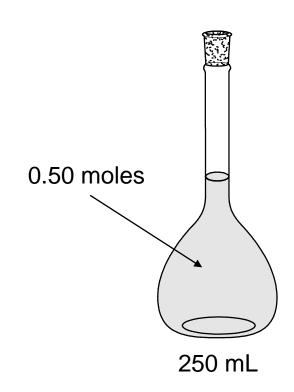
- A) 3 moles of CO₂
- B) 4 moles of CO₂
- C) 4.5 moles of CO₂
- D) 6 moles of CO₂

Consider the combustion of propane as represented in this chemical equation.


$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

When 7.5 moles of O₂ are consumed, how many moles of CO₂ are formed?

- A) 3 moles of CO₂
- B) 4 moles of CO₂
- C) 4.5 moles of CO₂
- D) 6 moles of CO₂


27- What is the molarity of solution prepared by dissolving 0.50 moles of solute in 250 mL of solution?

- A) 0.5 M
- B) 0.75 M
- C) 1.5 M
- D) 2.0 M

What is the molarity of solution prepared by dissolving 0.50 moles of solute in 250 mL of solution?

- A) 0.5 M
- B) 0.75 M
- C) 1.5 M
- D) 2.0 M

M = moles/L = 0.50 moles/0.250 L = 2.0 M

28- For the following reaction

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

the theoretical yield of Al_2O_3 is 3.5 g.

In a particular experiment the actual product was 1.75 g of Al_2O_3 .

Then the % yield is _____.

A)75

B)50

C)100

D)25

For the following reaction

$$4Al(s) + 3O2(g) \rightarrow 2Al_2O_3(s)$$

the theoretical yield of Al_2O_3 is 3.5 g.

In a particular experiment the actual product was 1.75 g of ${\rm Al_2O_3}$.

Then the % yield is _____.

A)75

B)50

C)100

D)25

29- Iron rusts according to the equation below: Iron is _____.

$$4 \text{ Fe} + 3 \text{ O}_2 \longrightarrow 2 \text{ Fe}_2 \text{O}_3$$

- A) the reducing agent
- B) the oxidizing oxidized
- C) the element reduced
- D) neither oxidized nor reduced

Iron rusts according to the equation below: Iron is _____.

$$4 \text{ Fe} + 3 \text{ O}_2 \longrightarrow 2 \text{ Fe}_2 \text{O}_3$$

A) the reducing agent

- B) the oxidizing oxidized
- C) the element reduced
- D) neither oxidized nor reduced

30- In the final product of the corrosion of iron-based metals— $Fe(OH)_3$, or rust—what is the oxidation state of the Fe?

B)
$$+1$$

$$C) +2$$

$$D) + 3$$

4 Fe + 6
$$H_2O$$
 + 3 O_2 \rightarrow 4 Fe(OH)₃

In the final product of the corrosion of iron-based metals—Fe(OH)₃, or rust—what is the oxidation state of the Fe?

B)
$$+1$$

$$C) +2$$

$$D) + 3$$

4 Fe + 6
$$H_2O$$
 + 3 $O_2 \rightarrow$ 4 Fe(OH)₃

Iron(III) hydroxide