Property of image that forms by a mirror (by reflection)						
Mirror type	f	s _o	Image Properties			
Plane mirror	no	$s_o > 0$	Erect, virtual, same size, same far, reverse right and left.			
Concave mirror	+	$s_o > f$	Real, inverted. (<i>Negative</i> M) ($h_i = negative$).			
		$s_o < f$	Virtual, erect, larger. ($s_i = negative$).			
		$s_o = f$	No image will be formed.			
Convex mirror	-	$s_o > 0$	Virtual, erect, smaller. (<i>Positive M</i>).			

1	_ 1	1	f = focal length of mirror
f	$-\frac{1}{s_o}$	-	$s_a =$ distance of object from mirror $s_i =$ distance of image from mirror

$$M = \frac{b_i}{b_o} = \frac{-s_i}{s_o}$$

M = magnification

- $b_i = \text{image height}$
- $b_o = \text{object height}$
- $s_i = \text{image distance}$
- $s_a = object distance$
- The distance to a **virtual** image (s_i) is always **negative**.
- The **focal length** (*f*) of a **convex mirror** is always **negative**.
- An **inverted image (real)** has a **negative** magnification.
- An erect image (virtual) has a positive magnification.

Property of image that forms by a Lens (by refraction)						
Lens type	f	s _o	Image Properties			
Converging lens Convex lens	+	$s_o > f$	Real, inverted. (<i>Negative</i> M) ($h_i = negative$).			
		$s_o < f$	Virtual, erect, larger. ($s_i = negative$)			
Diverging lens Concave lens	-	<i>s</i> _o > 0	Virtual, erect, smaller. (<i>Positive M</i>).			

 $s_a =$ object distance from lens center

- The distance to a **virtual** image (s_i) is always **negative**.
- The **focal length** (*f*) of a **diverging lens** is always **negative**.
- **Diverging (Concave) lens** are *thicker on the edges* than at the center.
- **Converging (Convex) lens** are *thicker in the center* than on the edges.