Phys 110 Dr Reem Altuwirqi raltuwirqi@kau.edu.sa Office hours: S-M-W 11 am - 1 pm Coordinator Dr Hana Farhan http://hfarhan.kau.edu.sa

Read the book Think! Ask questions Attend the tutorials Information is key No pain no gain ⓒ

By PresenterMedia.com

Important Information

• اسم الكتاب: Edition /8th Fundamentals of physics, by Halliday & Resnick (موجود في مكتبة خوارزم تصوير أول 10 فصول لعدم توفر النسخة في المكتبات). • توزيع المنهج: (موجود بالموقع) (الفصول 1-2-3-4-5-6-7-9) • توزيع الدرجات: الدوري الاول 30 درجه + 3 درجات بونس (الفصول 1-2-3) نصفي 30 درجه + 3 درجات بونس (الفصول 4-5-6) النهائي 40 درجه + 4 درجات بونس (جميع الفصول) • أهداف المنهج على موقع المنسقة • مواعيد الاختبارات وأماكنها تحدد لاحقاً من قبل الشؤون التعليميه وستعلن في موقع المنسقه في حينه • نظام الحضور والغياب هو نفس نظام الجامعه • يمنع عملية التحويل والتنقل بين الشعب إلا لظروف قاهرة •ضرورة مراجعة موقع المنسـقه (<u>hfarhan.kau.edu.sa</u>) بشـكل مسـتمر • محاضرات حلول التمارين (السـكاشـن) سـتعقد يومياً من السـاعـه 12-1 ما عدا يوم الاربعاء وسـتبدأ بمشـيئة الله من يوم السبت 28/3 (الرجاء مراجعة الموقع لمعرفة المواعيد والغرف) (شعبتنا الأحد 12-1). •ضرورة طباعة التمارين من الموقع وضرورة حلَّها قبل الحضور لمحاضرة السيكشـن ومناقشتها.

By PresenterMedia.com

Objectives After this lecture you should be able to ... Differentiate Between base and derived quantities Standards of measurements Explain The International system of units Define Convert \Rightarrow Units using the chain-link method \Rightarrow The scientific notation to numbers Apply

The International System of Units (SI)

Based on the General Conference on Weight and Measurements In 1971.

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	Kg
Length	Meter	т
Time	Second	S
Temperature	Kelvin	К
Amount of substance	Mole	mol
Electric current	Ampere	А
Luminous intensity	Candela	cd

Standards of Base Quantities

Length:

A meter is the length of the path traveled by Light in a vacuum during a time interval of 1/299792458 of a second.

<u>Time</u>:

A Second is the time taken by 9192631770 oscillations of the light (of specified wavelength) emitted by cesium-133 atom.

<u>Mass</u>:

A kilogram is the mass of a paltinum-irradium cylinder 3.9 cm in height and diameter kept near Paris.

Scientific Notations

For large or small numbers

$>356000000.0 \text{ m} = 3.56 \times 10^{+9} \text{ m}$ $>0.00000492 \text{ s} = 4.92 \times 10^{-6} \text{ s}$

Scientific Notations

• Example

Express 0.00592 in scientific notation. a) 5.92×10^{3} b) 5.92×10^{-3} c) 5.92×10^{-2} d) 5.92×10^{-5} e) 5.92×10^{5}

Scientific Notations

• Example

Express 0.00592 in scientific notation. a) 5.92×10^{3} b) 5.92×10^{-3} c) 5.92×10^{-2} d) 5.92×10^{-5} e) 5.92×10^{5}

Scientific Notations Using prefixes $10^1 \ 10^2 \ 10^3 \ 10^6 \ 10^9$ 10^{-9} 10^{-6} 10^{-3} 10^{-2} 10^{-1} deka hecto kilo mega giga nano micro milli centi desi da h k Μ μ G n c d m 3.56 Gm giga → G 3.56x 10⁹ m $4.92 \times 10^{-6} \text{ s} = 4.92 \mu \text{ s}$

Conversion between units

Chain-link conversion

Convert 2 min to s?

 $\frac{1\min}{1\min} = \frac{60s}{1\min}$ $1 = \frac{60s}{1\min}$

 $l = \frac{60}{1}$

<u>Conversion factor:</u> is the ratio of units that equal unity

$$2\min \times \frac{60\,\mathrm{s}}{1\,\mathrm{min}} = 120\,\mathrm{s}$$

• Example

A section of a river can be approximated as a rectangle that is 20 m wide and 30 m long. Express the area of this river in square kilometers.

- a) 600 km²
- b) 6 km²
- c) $6 \times 10^{-2} \text{ km}^2$
- d) $6 \times 10^{-4} \text{ km}^2$
- e) $6 \times 10^{+4} \text{ km}^2$

• Example

A section of a river can be approximated as a rectangle that is 20 m wide and 30 m long. Express the area of this river in square kilometers.

- a) 600 km²
- b) 6 km²
- c) $6 \times 10^{-2} \text{ km}^2$

d) $6 \times 10^{-4} \text{ km}^2$

e) $6 \times 10^{+4} \text{ km}^2$

• Example

Consider each of the following comparisons between various time units. Which one of these comparisons is false?

a) 84 600 s = 1 day
b) 1 h > 3000 s
c) 1 ns > 1000 μs
d) 1 s = 1000 ms
e) 1 y = 5.26 × 10⁵ h

• Example

Consider each of the following comparisons between various time units. Which one of these comparisons is false?

a) 84 600 s = 1 day
b) 1 h > 3000 s
c) 1 ns > 1000 μs
d) 1 s = 1000 ms
e) 1 y = 5.26 × 10⁵ h

