

#### مختصر توصيف المقرر

## (Course Information)

#### معلومات المقرر \*

|                               | اسم المقرر:                  |  |  |
|-------------------------------|------------------------------|--|--|
|                               | رقم المقرر:                  |  |  |
|                               | اسم ورقم المتطلب السابق:     |  |  |
|                               | اسم ورقم المتطلب المرافق:    |  |  |
|                               | مستوى المقرر:                |  |  |
|                               | الساعات المعتمدة:            |  |  |
| Module Title:                 | Neutron Physics and Reactors |  |  |
| Module ID:                    | PHYS 4852                    |  |  |
| Prerequisite (Co-requisite) : | PHYS 3812                    |  |  |
| Co-requisite :                |                              |  |  |
| Course Level:                 | Seventh                      |  |  |
| Credit Hours:                 | 3 (3+0+0)                    |  |  |

# **Module Description**

# وصف المقرر:

Neutron reactions: cross-sections, attenuation, reaction rate, fission cross-section. Nuclear fission, fission yield, Energy distribution among fission neutrons and fragments, regeneration factor. Thermal neutrons: energy distribution, effective cross section, moderation, average energy loss, Average energy logarithmic decrement, SDP, MR and resonance escape probability. The Nuclear chain reaction: neutron cycle, thermal utilization factor and calculating the four factors formula.

أهداف المقرر: Module Aims

In this course establishes an introduction of what happen in nuclear reactor.

## **Learning Outcomes:**

مخرجات التعليم:

Neutron reactions: cross-sections, attenuation, reaction rate, fission cross-section. Nuclear fission, fission yield, Energy distribution among fission neutrons and fragments, regeneration factor. Thermal neutrons: energy distribution, effective cross section, moderation, average energy loss, Average energy logarithmic decrement, SDP, MR and resonance escape probability. The Nuclear chain reaction: neutron cycle, thermal utilization factor and calculating the four factors formula.

#### **Course Contents:**

محتوى المقرر:

| ساعات التدريس | عدد الأسابيع | فائمة الموضوعات |
|---------------|--------------|-----------------|
| (Hours)       | (Weeks)      | (Subjects)      |

| 6 | 2                                                                                                                                                                                                             | Neutron Physics: neutron sources, absorption and moderation of neutrons, neutron detectors, neutron reactions and cross sections, neutron capture, interference and diffraction with neutrons.                                                                                                             |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6 | 2                                                                                                                                                                                                             | Neutron Interactions: Neutron Cross Sections, Neutron Energy Range,<br>Cross Section Energy Dependence, Neutron Scattering.                                                                                                                                                                                |  |  |
| 6 | 2                                                                                                                                                                                                             | NEUTRON DIFFUSION AND MODERATION: Neutron Flux, Fick's Law, The Equation of Continuity, The Diffusion Equation, Boundary Conditions, Solutions of the Diffusion Equation, The Diffusion Length, The Group-Diffusion Method, Thennal Neutron Diffusion, Two-Group Calculation of Neutron Moderation.        |  |  |
| 9 | 3                                                                                                                                                                                                             | NUCLEAR REACTORS AND NUCLEAR POWER: The Fission Chain Reaction, Nuclear Reactor Fuels, Non-Nuclear Components of Nuclear Power Plants, Components of Nuclear Reactors, Power Reactors and Nuclear Steam Supply Systems, Nuclear Cycles, Isotope Separation, Fuel Reprocessing, Radioactive Waste Disposal. |  |  |
| 6 | 2                                                                                                                                                                                                             | NUCLEAR REACTOR THEORY: One-Group Reactor Equation, The Slab Reactor, Other Reactor Shapes, The One-Group Critical Equation, Thermal Reactors, Reflected Reactors, Multi group Calculations.                                                                                                               |  |  |
| 6 | THE TIME-DEPENDENT REACTOR: Classification of Time Problems, Reactor Kinetics, Control Rods and Chemical Shim, Temperature Effects on Reactivity, Fission Product Poisoning, Core Properties during Lifetime. |                                                                                                                                                                                                                                                                                                            |  |  |
| 6 | 2                                                                                                                                                                                                             | HEAT REMOVAL FROM NUCLEAR REACTORS: General Thermodynamic Considerations, Heat Generation in Reactors, Heat Flow by Conduction, Heat Transfer to Coolants, Boiling Heat Transfer, Thennal Design of a Reactor.                                                                                             |  |  |

# **Textbook and References:**

# المقرر والمراجع المساندة:

| سنة النشر<br>Publishing Year          | اسم الناشر<br>Publisher | اسم المؤلف (رئيسي)<br>Author's Name | اسم الكتاب المقرر<br>Textbook title           |
|---------------------------------------|-------------------------|-------------------------------------|-----------------------------------------------|
| (1988)<br>ISBN-13: 978-<br>0471805533 | John Wiley and Sons     | K.S. Krane                          | Introductory Nuclear Physics                  |
| سنة النشر                             | اسم الثاشر              | اسم المؤلف (رئيسي)                  | اسم المرجع                                    |
| Publishing Year                       | Publisher               | Author's Name                       | Reference                                     |
| (1966)<br>ISBN-13: 978-<br>0201041200 | Addison<br>Wesley       | J. Lamarsh                          | Introduction to Nuclear<br>Reactor Theory     |
| (2001)<br>ISBN-13: 978-<br>0201824988 | Addison<br>Wesley       | J. Lamarsh & A. Baratta             | Introduction to Nuclear<br>Engineering        |
| (2008)<br>ISBN-13: 978-<br>0123706317 | John Wiley and Sons     | Elmer E. Lewis                      | Fundamentals of Nuclear<br>Reactor Physics    |
| (2013)<br>ISBN:978-<br>4431541943     | Springer                | Yoshiaki Oka & Katsuo<br>Suzuki     | Nuclear Reactor Kinetics and<br>Plant Control |