INTRODUCTORY PHYSICS MULTIPLE CHOICE QUESTIONS

PREPARED BY:
VARIOUS PHYSICS TEACHERS AT
TAIBAH UNIVERSITY'S PREP YEAR PROGRAM

1435-36 (2014-15)

Table of Contents

CHAPTER 1: INTRODUCTION, MEASUREMENTS, UNITS 1
Formulas \& Constants 1
Key Terms \& Definitions 1
Science; Scientific Method; Scientific Attitude 1
Physics vs. Other Sciences 2
Models, Theories, and Laws 2
Uncertainty, Accuracy, and Precision 3
Significant Figures 4
Scientific Notation 5
Units \& Standards 5
SI Prefixes \& Base Units 6
Unit Conversion 6
Order of Magnitude; Estimation 7
Dimensions 8
CHAPTER 2: MOTION \& ENERGY 9
Formulas \& Constants 9
Key Terms \& Definitions 9
Vectors 9
Linear Motion, Velocity, Acceleration 10
Free Fall 11
Newton's $1^{\text {st }}$ Law of Motion; Inertia; Equilibrium 11
Force; Support Force; Friction 12
Mass; Weight 12
Newton's $2^{\text {nd }}$ Law 13
Newton's $3^{\text {rd }}$ Law 13
Work; Energy 14
Power 14
Mechanical Energy 15
Potential Energy 15
Kinetic Energy 15
Conservation of Energy 16
CHAPTER 3: HEAT \& MATTER 17
Formulas \& Constants 17
Key Terms \& Definitions 17
Temperature 17
Heat. 18
Specific \& Latent Heat; Change of Phase 19
Elasticity; Stress; Hooke's Law 20
Density 20
Properties of Matter (optional) 21
CHAPTER 4: ELECTRICITY 22
Formulas \& Constants 22
Key Terms \& Definitions 22
Electric Charges; Coulomb's Law 22
Electric Field; Electric Potential 23
Capacitor; Resistance 23
Ohm's Law; Electric Power; Electric Circuits 24
CHAPTER 5: OPTICS 26
Formulas \& Constants 26
Key Terms \& Definitions 26
Electromagnetic Waves \& Spectrum 26
Reflection 27
Refraction 29
Dispersion; Rainbow 30
Lenses 30
CHAPTER 6: MODERN PHYSICS 33
X-Rays 33
Formulas \& Constants 33
Key Terms \& Definitions. 33
Radioactivity 34
Environmental Radiation 35
Correspondence Principle 33

CHAPTER 2: MOTION \& ENERGY

Formulas \& Constants

Average speed: $\overline{\mathrm{v}}=\frac{\mathrm{d}}{\mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}}{2}$	$\mathrm{a}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}}$	$\mathrm{vf}^{2}-\mathrm{v}_{\mathrm{i}}^{2}=2 \mathrm{a} \cdot \mathrm{d}$	$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{g} \cdot \mathrm{t}$ $\mathrm{v}=\mathrm{g} \cdot \mathrm{t}\left(\mathrm{v}_{\mathrm{i}}=0\right)$	$\mathrm{d}=1 / 2$ a.t $\mathrm{t}^{2}+\mathrm{v}_{\mathrm{i}} \cdot \mathrm{t}$ $\mathrm{d}=1 / 2 \mathrm{~g} \cdot \mathrm{t}^{2}\left(\mathrm{v}_{\mathrm{i}}=0\right)$	$\Sigma \mathrm{E}=$ constant (energy consrv.)
$\mathrm{F}=\mathrm{m} \cdot \mathrm{a}$	$\mathrm{w}=\mathrm{m} \cdot \mathrm{g}$	$\mathrm{P}=\mathrm{W} / \mathrm{t}$	$\mathrm{W}=\mathrm{F} \cdot \mathrm{d} \cdot \cos \theta$	$\mathrm{PE}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h}$ $\mathrm{KE}=1 / 2 \mathrm{~m} \cdot \mathrm{v}^{2}$	$\mathrm{~V}_{\mathrm{f}}=\sqrt{2 \mathrm{~g} \cdot \mathrm{~h}}$
$\mathrm{~F}_{\mathrm{A} \text { on } \mathrm{B}}=\mathrm{F}_{\mathrm{B} \text { on } \mathrm{A}}$	$\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$	$\tan \theta=\mathrm{Y} / \mathrm{X}$	$1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$	$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{hp}=3 / 4 \mathrm{~kW}$

Key Terms \& Definitions

Acceleration Action	فتّ
Air resistance	مقاومة الهواء
Average	متوسط
Component	عنصر/ / مُكوِّن/ مُركِبْبِّ
Direction	\|تانجاه
Displacement	إزاحة
Distance	مسافة
Dynamic	حركي
Energy	طاقة
Equilibrium	اتزان
Force	قوة
Free fall	س
Friction	احتكاك
Gravity	جاذبية

Horizontal Inertia	ألفقي ر الذاتي
Instantaneous	لحظي
Interaction	تفاعل
Kinetic energy	الطاقة الحركية
Mass	كتلة
Magnitude	مقدار
Mechanical	ميكانيكي
Motion	حركة
Net force	قوة إجمالية / صـافية
Normal force	القوة العمودية
Potential energy	طاقة الوضع
Power	قرة
Projectile	قذيفة أو مقفوف
Projection	إسقاط

Resultant Reaction	محصّلة ردة فعل
Resolution	تحلـل
Speed	السرعة القياسية
Static	سكوني
Support force	\|قوة الدعم
Tension	توتر
Terminal speed	\|السر عة الحدية
Vector	كمية متجهة
Velocity	\|السر عة المتجهة
Vertical	رأسي أو عمودي
Volume	حجّ
Weight	وزن
Work	شغل

Vectors

1. Scalar is a quantity that does not need:

A	value
B	magnitude
C	direction \checkmark
D	unit

2. Vector is a quantity that needs:

A	direction only
B	magnitude only
C	unit only
D	magnitude and direction \checkmark

3. Example of a scalar is:

A	velocity
B	distance \checkmark
C	acceleration
D	force

4. Example of a vector is:

A	velocity

B	distance
C	speed
D	time

5. For linear motion, the angle between the velocity and acceleration vectors is:
A always 0°
B always 180°
C 0° or $180^{\circ} \checkmark$
D always 90°
6. Adding two perpendicular vectors $(\overrightarrow{\mathrm{A}})$ and $(\overrightarrow{\mathrm{B}})$ gives a resultant $(\overrightarrow{\mathrm{R}})$ with magnitude:

A	$R=\sqrt{A^{2}+B^{2}} \checkmark$	
B	$R=A^{2}+B^{2}$	
C	$R=\sqrt{A+B}$	
D	$R=1 / \sqrt{A^{2}+B^{2}}$	

7. Two perpendicular forces, $\mathrm{F}_{1}=40 \mathrm{~N}$ and $\mathrm{F}_{2}=30 \mathrm{~N}$, act on a brick. The magnitude of the net force ($\mathrm{F}_{\text {net }}$) on the brick is:
A 70 N

8. If an airplane heading north with speed $\mathrm{v}_{\mathrm{P}}=400$ km/h faces a westbound wind (ريح نحو الغرب) of speed $\mathrm{v}_{\mathrm{A}}=300 \mathrm{~km} / \mathrm{h}$, the resultant velocity of the plane (\vec{v}) is:

9. Decomposing (or resolving) a vector $(\overrightarrow{\mathrm{A}})$ into two components in perpendicular directions (A_{x} and A_{y}) gives :

Linear Motion, Velocity, Acceleration

10. To calculate an object's average speed we need to know the:

A	acceleration and time
B	velocity and time
C	distance and time \checkmark
D	velocity and distance

11. A horse gallops (يجري) a distance of 10 kilometers in 30 minutes. Its average speed is:

A	$15 \mathrm{~km} / \mathrm{h}$
B	$20 \mathrm{~km} / \mathrm{h} \checkmark$
C	$30 \mathrm{~km} / \mathrm{h}$
D	$40 \mathrm{~km} / \mathrm{h}$

12. A car maintains for 10 seconds a constant velocity of $100 \mathrm{~km} / \mathrm{h}$ due east. During this interval its acceleration is:

A	$0 \mathrm{~km} / \mathrm{h}^{2} \checkmark$
B	$1 \mathrm{~km} / \mathrm{h}^{2}$
C	$10 \mathrm{~km} / \mathrm{h}^{2}$
D	$100 \mathrm{~km} / \mathrm{h}^{2}$

13. While an object near Earth's surface is in free fall, its increases:

A	velocity \checkmark
B	acceleration
C	mass

D height

14. The speed at a specific moment is called \qquad speed:

A	average
B	instantaneous \checkmark
C	initial
D	final

15. Acceleration is the rate of change in:

A	force
B	distance
C	speed
D	velocity \checkmark

16. If the speed is constant, the acceleration must be:

A	constant
B	zero
C	negative
D	unknown \checkmark

17. A car moves along a straight road with constant acceleration. If its initial and final speeds are $\mathrm{v}_{\mathrm{i}}=$ $10 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{f}}=20 \mathrm{~m} / \mathrm{s}$, its average speed is:

A	$12 \mathrm{~m} / \mathrm{s}$
B	$15 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

18. If an object in linear motion moves a distance of 20 m in 5 seconds, its average speed is:

A	$4 \mathrm{~m} / \mathrm{s} \checkmark$
B	$5 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

19. If an object is in linear motion, and its speed changes from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 10 seconds, its acceleration is:

A	$20 \mathrm{~m} / \mathrm{s}^{2}$
B	$10 \mathrm{~m} / \mathrm{s}^{2}$
C	$5 \mathrm{~m} / \mathrm{s}^{2}$
D	$1 \mathrm{~m} / \mathrm{s}^{2} \checkmark$

20. If your average speed is $80 \mathrm{~km} / \mathrm{h}$ on a 4 -hour trip, the total distance you cover is:

A	40 km
B	80 km
C	120 km
D	$320 \mathrm{~km} \checkmark$

21. If you travel 300 km in 4 hours, your average speed is:

A	$50 \mathrm{~km} / \mathrm{h}$
B	$75 \mathrm{~km} / \mathrm{h} \checkmark$
C	$80 \mathrm{~km} / \mathrm{h}$
D	$100 \mathrm{~km} / \mathrm{h}$

Free Fall

22. If air resistance on a falling rock can be neglected, we say that this rock is:

A	heavy
B	at terminal speed
C	in free fall \checkmark
D	light

23. If a stone drops in a free fall from the edge of a high cliff, its speed after 5 seconds is:

A	$10 \mathrm{~m} / \mathrm{s}$
B	$40 \mathrm{~m} / \mathrm{s}$
C	$50 \mathrm{~m} / \mathrm{s} \checkmark$
D	$100 \mathrm{~m} / \mathrm{s}$

24. If a stone drops in a free fall from the edge of a high cliff, the distance it covers after 4 seconds is:

A	40 m
B	$80 \mathrm{~m} \checkmark$
C	120 m
D	160 m

25. If an object in free fall has an initial speed of $10 \mathrm{~m} / \mathrm{s}$, its speed after 10 seconds is:

A	$80 \mathrm{~m} / \mathrm{s}$
B	$90 \mathrm{~m} / \mathrm{s}$
C	$100 \mathrm{~m} / \mathrm{s}$
D	$110 \mathrm{~m} / \mathrm{s} \checkmark$

26. Neglecting air resistance, if a player throws a ball straight up with a speed of $30 \mathrm{~m} / \mathrm{s}$, the ball will reach its maximum height after:

A	6 seconds
B	5 seconds
C	4 seconds
D	3 seconds \checkmark

27. If an object is in free fall, the distance it travels every seconds is:

A	the same as the previous (السابق) second
B	more than the previous second \checkmark
C	less than the previous second

C it is in dynamic equilibrium
D a nonzero net force acts on it
35. If you stand at rest on a pair of identical bathroom scales, the readings on the two scales will always be:

A	each equal to your weight

B each equal to half your weight
C each equal to double your weight
D different from each other
36. A man weighing 800 N stands at rest on two bathroom scales so that his weight is distributed evenly between them. The reading on each scale is:

A	$400 \mathrm{~N} \checkmark$
B	200 N
C	1600 N
D	800 N

37. A $80-\mathrm{kg}$ painter stands on a $20-\mathrm{kg}$ painting staging (سقالة دهان) that hangs on two ropes. If the staging is at rest and both ropes have the same tension, the tension in each rope is:

A	200 N
B	$500 \mathrm{~N} \checkmark$
C	800 N
D	1000 N

Force; Support Force; Friction

38. The support force is on an object results from the of atoms in the surface:

A	compression \checkmark
B	speed
C	acceleration
D	energy

39. The support force on a $2-\mathrm{kg}$ book lying on a level table is:

A	1 N
B	2 N
C	10 N
D	$20 \mathrm{~N} \checkmark$

40. In the following, check the correct statement:

A	force is a vector, mass is a scalar \checkmark
B	force is a vector, weight is a scalar
C	mass is a vector, weight is a scalar
D	force is a vector, mass is a vector

41. Two forces act on an object: $\overrightarrow{\mathrm{F}}_{1}=(6 \mathrm{~N}$, east $) ; \overrightarrow{\mathrm{F}}_{2}=(8$ N , west). The net force $(\Sigma \overrightarrow{\mathrm{F}})$ on it is:

A	$(14$ N, east $)$
B	$(14$ N, west $)$
C	$(2$ N, west $)$
D	$(-2$ N, west $)$

42. Two forces act on an object: $\overrightarrow{\mathrm{F}}_{1}=(10 \mathrm{~N}$, up $) ; \overrightarrow{\mathrm{F}}_{2}=(10$ N , down). The net force $(\Sigma \overrightarrow{\mathrm{F}})$ on it is:

A	$(20$ N, up $)$
B	$(20$ N, down $)$
C	$(10$ N, up $)$
D	zero \checkmark

43. Two forces act on a crate and the crate is in equilibrium. These two forces are:

A	$(100 \mathrm{~N}$, right $),(100 \mathrm{~N}$, left $) \checkmark$
B	$(100 \mathrm{~N}$, right $),(50 \mathrm{~N}$, left $)$
C	$(50 \mathrm{~N}$, right $),(100 \mathrm{~N}$, left $)$
D	$(100 \mathrm{~N}$, right $),(100 \mathrm{~N}$, right $)$

44. If the force of friction on a moving object is 10 N , the force needed to keep it at constant velocity is:

A	0 N
B	5 N
C	$10 \mathrm{~N} \checkmark$
D	more than 10 N

45. When an object falling through air stops gaining speed, we say that it has reached its \qquad speed:

A	average
B	instantaneous
C	final
D	terminal \checkmark

46. Air drag depends on a falling object's:

A	size and speed \checkmark
B	size and density
C	density and speed
D	none of these

Mass; Weight

47. Mass is a measure of an object's:

A	inertia \checkmark
B	volume
C	density
D	speed

48. Mass is an object's quantity of:

A	energy

B	matter \checkmark
C	dimensions
D	momentum

49. The SI unit for weight is the:

A	newton \checkmark
B	kilogram
C	gram
D	pound

50. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

A	same mass and different inertia
B	same inertia and different weight
C	same volume and different mass \checkmark
D	same weight and different density

51. If the Earth's gravitational pull is 6 times that of the Moon, an object taken to the Moon will have:

A	same mass and less weight \checkmark
B	same weight and less mass
C	same mass and same weight
D	less mass and less weight

Newton's $2^{\text {nd }}$ Law

52. An object's acceleration is directly proportional to the:

A	net force \checkmark
B	average speed
C	mass
D	inertia

53. If an object's mass decreases while a constant force is applied to it, its acceleration:

A	decreases
B	increases \checkmark
C	remains constant
D	changes according to volume

54. If the net force acting on an object decreases, its acceleration:

A	decreases \checkmark
B	increases
C	remains constant
D	changes direction

55. The net force on an $50-\mathrm{kg}$ crate is 100 N , its acceleration is:

A	$0.5 \mathrm{~m} / \mathrm{s}^{2}$

B	$1 \mathrm{~m} / \mathrm{s}^{2}$
C	$2 \mathrm{~m} / \mathrm{s}^{2} \checkmark$
D	$5 \mathrm{~m} / \mathrm{s}^{2}$

56. A $1-\mathrm{kg}$ falling ball encounters 10 N of air resistance. The net force on the ball is:

A	$0 \mathrm{~N} \checkmark$
B	4 N
C	6 N
D	10 N

Newton's $3^{\text {rd }}$ Law

57. The number of forces involved (الداخلة) in an interaction between two objects is:

A	0
B	1
C	$2 \checkmark$
D	3

58. A force is defined (تعريفها) as:

A	part of an interaction between two objects \checkmark

B a push from an object on itself
C a pull from an object on itself
D a push and a pull on the same object
59. Newton's $3^{\text {rd }}$ law states that, for two objects X and Y, whenever X exerts a force on Y , then:

A	Y exerts double that force on X
B	Y moves in the opposite direction
C	Y exerts half that force on X
D	Y exerts an equal but opposite force on $X \checkmark$

60. In an interaction between two objects, the action and reaction forces are:

A	perpendicular
B	in opposite directions \checkmark
C	in the same direction
D	on the same object

61. When a man pushes on a wall with force F, the wall pushes back on him with force of magnitude:

A	zero
B	F/2
C	F \checkmark
D	2 F

62. When a cannon shoots a cannonball with acceleration a_{b}, the cannon recoils (يرتد) with acceleration a_{c} such that:

A	$a_{c}=a_{b}$
B	a_{c} is much larger than a_{b}
C	a_{c} is much smaller than $a_{b} \checkmark$
D	$a_{c}=0$

63. When a cannon shoots a cannonball with force F_{b}, the cannon recoils (يرت)) with force F_{c} such that:

A	$\mathrm{~F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{b}} \checkmark$
B	F_{c} is much larger than F_{b}
C	F_{c} is much smaller than F_{b}
D	$\mathrm{F}_{\mathrm{c}}=0$

64. When a cannon shoots a cannonball, the cannon's recoil (ارتداد) is much slower than the cannonball because:

A	the force on the cannon is much less

B the mass of the cannon is much greater \checkmark
C the cannon's mass is more distributed (موز)
D there is more air resistance
65 . When a man stretches a spring with a $100-\mathrm{N}$ force (within its elasticity range), the spring pulls him back with:

A	0 N
B	50 N
C	$100 \mathrm{~N} \checkmark$
D	200 N

Work; Energy

66. Work is produced only if there is:

A	force and motion \checkmark
B	force and elevation (ارتفاع)
C	force and time
D	time and elevation

67. Work is proportional to:

A	(force) and (1/distance)
B	(force) and (distance) \checkmark
C	(1/force) and (distance)
D	(force) and (distance) 2

68. The SI unit of work is:

A	newton
B	watt
C	joule
D	ampere

69. A joule is equivalent to:

A $\mathrm{N} / \mathrm{m}^{2}$

B	$\mathrm{~m} / \mathrm{N}$
C	N / m
D	$\mathrm{N} . \mathrm{m} \checkmark$

70. A cart moves 10 m in the same direction as a $20-\mathrm{N}$ force acting on it. The work done by this force is:

A	$200 \mathrm{~J} \checkmark$
B	2 J
C	0.5 J
D	20 J

71. A man does 2000-J work in pushing a crate a distance of 10 m on a frictionless floor. The force applied by the man is:

Power

72. An engine (محرك) can do $100,000-\mathrm{J}$ work in 10 s . The power of this engine is:

A	1 MW
B	100 kW
C	1000 W
D	$10 \mathrm{~kW} \checkmark$

73. An engine (محرك) can do $75-\mathrm{kJ}$ work in 10 s . The power of this engine in horsepower is:

A	$10 \mathrm{hp} \checkmark$
B	1 hp
C	0.1 hp
D	100 hp

74. The SI unit of power is:

A	newton
B	watt \checkmark
C	joule
D	ampere

75. A watt is equivalent to:

A	$\mathrm{kg} \cdot \mathrm{m}^{3} / \mathrm{s}^{2}$
B	$\mathrm{~kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}$
C	$\mathrm{kg} \cdot \mathrm{m}^{2} \mathrm{~s}^{3} \checkmark$
D	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

76. Of the following quantities, the ones that have the same unit are:

A	work and energy \checkmark

B	work and power
C	energy and power
D	work and pressure

Mechanical Energy

77. Mechanical energy results from an object's:

A	position only
B	position and/or motion \checkmark
C	motion only
D	neither position nor motion

78. Mechanical energy consists of:

A	kinetic energy and power
B	potential energy and power
C	potential and kinetic energy \checkmark
D	power and work

Potential Energy

79. Of the following, the form of energy that is NOT potential is the energy of:

A	a moving car \checkmark
B	a stretched bow (قوس مشدود)
C	a compressed spring (زنبرك مضغوط)
D	water in a high reservoir

80. Potential energy is the energy stored in an object because of its:

A	speed
B	position \checkmark
C	charge
D	mass

81. A $20-\mathrm{kg}$ box rests on a $2-\mathrm{m}$ high shelf. Its potential energy relative to the ground is:

A	100 J
B	200 J
C	$400 \mathrm{~J} \checkmark$
D	800 J

82. The mass of a box of 200-J potential energy when resting on a 2-m-high shelf is:

A	$10 \mathrm{~kg} \checkmark$
B	20 kg
C	40 kg
D	80 kg

83. If a $5-\mathrm{kg}$ box sitting on a shelf of height (h) has $100-\mathrm{J}$ potential energy relative to the ground, h equals:

A	1 m
B	$2 \mathrm{~m} \checkmark$
C	4 m
D	8 m

84. Three $5-\mathrm{kg}$ rocks are raised to a height of 5 m , with Rock $_{1}$ raised with a rope, Rock $_{2}$ raised on a ramp (منحدر), and Rock ${ }_{3}$ raised with an lift (مصعد). The rock that attains the most potential energy is:

A	Rock $_{1}$
B	Rock $_{2}$
C	Rock $_{3}$
D	all the same \checkmark

Kinetic Energy

85. Kinetic energy is the energy stored in an object because of its:

A	motion \checkmark
B	position
C	charge
D	mass

86. The kinetic energy of a $1000-\mathrm{kg}$ car traveling at a speed of $20 \mathrm{~m} / \mathrm{s}$ is:

A	50 kJ
B	100 kJ
C	$200 \mathrm{~kJ} \checkmark$
D	400 kJ

87. The mass of a bicycle of 4000-J kinetic energy traveling at $10 \mathrm{~m} / \mathrm{s}$ is:

A	40 kg
B	50 kg
C	60 kg
D	$80 \mathrm{~kg} \checkmark$

88. The speed of a $40-\mathrm{kg}$ bicycle of $1620-\mathrm{J}$ kinetic energy is:

A	$9 \mathrm{~m} / \mathrm{s} \checkmark$
B	$3 \mathrm{~m} / \mathrm{s}$
C	$27 \mathrm{~m} / \mathrm{s}$
D	$90 \mathrm{~m} / \mathrm{s}$

89. If an object's speed doubles, its kinetic energy:

A	remains the same
B	doubles
C	triples
D	quadruples \checkmark

90. If an object's mass doubles while moving at a constant speed, its kinetic energy:

A	remains the same
B	doubles \checkmark
C	triples
D	quadruples

91. The kinetic energy of a car traveling at $20 \mathrm{~m} / \mathrm{s}$ is 500 kJ . If it travels at $40 \mathrm{~m} / \mathrm{s}$, its kinetic energy becomes:

A	500 kJ
B	1000 kJ
C	$2000 \mathrm{~kJ} \checkmark$
D	4000 kJ

92. The work done by the engine of a $1000-\mathrm{kg}$ car to move it from rest to a speed of $20 \mathrm{~m} / \mathrm{s}$ is:

A	50 kJ
B	100 kJ
C	$200 \mathrm{~kJ} \checkmark$
D	400 kJ

93. The force exerted by the engine of a $1000-\mathrm{kg}$ car to move it from rest to a speed of $20 \mathrm{~m} / \mathrm{s}$ within 100 m is:

A	1000 N
B	$2000 \mathrm{~N} \checkmark$
C	4000 N
D	5000 N

Conservation of Energy

94. The total energy of an object of mass (m), falling at height (h) with speed (v) can be written as:

A	$E=1 / 2 \mathrm{mv}^{2}+2 \mathrm{mgh}$
B	$E=1 / 2 \mathrm{mv}^{2}+\mathrm{mgh}$
C	$\mathrm{E}=\mathrm{mv}^{2}+1 / 2 \mathrm{mgh}$
D	$\mathrm{E}=1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{mgh}$

95. As an object falls, its potential energy and its kinetic energy \qquad _.
A increases, decreases

B	decreases, decreases
C	decreases, increases \checkmark
D	increases, increases

96. The ram of pile-driver (مِدَّك") falls from a height of 20 m . Its speed just before touching ground is:

A	$2 \mathrm{~m} / \mathrm{s}$
B	$5 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s} \checkmark$

97. A simple pendulum's bob has speed (v) at its lowest point (1); its highest point (3) has height (h).
If $h=20 \mathrm{~cm}$, v equals:

A	$2 \mathrm{~m} / \mathrm{s} \checkmark$
B	$5 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

98. When a simple pendulum's bob of mass $m=0.5 \mathrm{~kg}$ is at its highest point (3), its height is $\mathrm{h}=40 \mathrm{~cm}$. Its kinetic energy at its lowest point (1) is:

A	0 J
B	$2 \mathrm{~J} \checkmark$
C	5 J
D	10 J

99. When a simple pendulum's bob of mass $m=0.5 \mathrm{~kg}$ is at its highest point (3), its height is $\mathrm{h}=40 \mathrm{~cm}$. Its kinetic energy at point (2) of height $1 / 2 \mathrm{~h}$ is:

A	5 J
B	2 J
C	$1 \mathrm{~J} \checkmark$
D	0 J

100. When a simple pendulum's bob of mass $\mathrm{m}=$ 0.5 kg is at its highest point (3), its height is $\mathrm{h}=40$ cm . Its total energy at point (2) of height $1 / 2 \mathrm{~h}$ is:

A	5 J
B	$2 \mathrm{~J} \checkmark$
C	1 J
D	0 J

CHAPTER 3: HEAT \& MATTER

Formulas \& Constants

mass density $=\frac{\mathrm{m}}{\mathrm{V}}$	weight density $=\frac{\mathrm{mg}}{\mathrm{V}}$	stress $(\mathrm{S})=\frac{\mathrm{F}}{\mathrm{A}}$	$\mathrm{T}_{\mathrm{C}}=\frac{5}{9}\left(\mathrm{~T}_{\mathrm{F}}-32^{\circ}\right)$	$\mathrm{T}_{\mathrm{F}}=\frac{9}{5}\left(\mathrm{~T}_{\mathrm{C}}\right)+32^{\circ}$
$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$	$1 \mathrm{cal}=4.19 \mathrm{~J}$	$\mathrm{Q}=$ c.m. $\Delta \mathrm{T}$	melting: $\mathrm{Q}=\mathrm{m} . \mathrm{L}_{\mathrm{f}}$ vaporization: $\mathrm{Q}=\mathrm{m} . \mathrm{L}_{\mathrm{v}}$	$\mathrm{F}=\mathrm{k} . \Delta \ell$ (Hooke's Law)

Key Terms \& Definitions

Absolute zero	الصفر الهطلق
Absorption	\|تنصاص
Atom	ذرّة
Boiling	غلبان
Bonding	ترابط
Charge	شحنة
Compound	مركب
Compression	ضغط
Condensation	تكثف
Deform	يشوه
Density	كثافة
Dew	ندى
Diffusion	انتشار
Elastic limit	حد المرونة
Elastic range	حيز المرونة
Elasticity	مرونة
Element	عنصر

Evaporation	تبخبر
Expansion	تمدد
Fluid	مائع
Freezing	تجمد
Fusion	انصهار
Gas	غاز
Heat	حرارة
Heat transfer	انتقال الحرارة
Humidity	رطوبة
Inelastic	غير مرن
Liquid	سائل
Latent Heat	الحرارة الكامنة
Matter	مادة
Melting	ذوبن
Metal	معدنِ فِلِّز
Mixture	خليط أو مزيج
Molecule	جُزيْء

Neutral	متعال
Nucleus	نواة
Particle	جُسِّمْ
Phase	طوْر
Pressure	ضغط
Saturated	مشبع
Solid	صل
Solidification	تصلب
Specific Heat	\|الحرارة النو عبة
Strain	\|انفعل
State	حالة
Stress	إجهاد
Substance	صنف
Temperature	درجة الحرارة
Tensiom	توتر
Vaporization	تبخر
Volume	حجم

Temperature

1. Converting 77 degrees F to Celsius gives:

A	25 degrees $\mathrm{C} \checkmark$
B	55 degrees C
C	75 degrees C
D	95 degrees C

2. Converting 113 degrees F to Cel sius gives:

A	35 degrees C
B	45 degrees $\mathrm{C} \checkmark$
C	110 degrees C
D	165 degrees C

3. Converting 257 degrees F to Cel sius gives:

A	55 degrees C
B	220 degrees C
C	125 degrees $\mathrm{C} \checkmark$
D	335 degrees C

4. Converting 10 degrees F to Celsius gives:

A	25 degrees C
B	5 degrees C
C	0 degrees C
D	-12 degrees $\mathrm{C} \checkmark$

5. Converting 20 degrees F to Celsius gives:

A	-7 degrees $C \checkmark$
B	30 degrees C
C	42 degrees C
D	-12 degrees C

6. Converting -50 degrees F to Celsius gives:

A	-46 degrees $C \checkmark$
B	-32 degrees C
C	-23 degrees C
D	-18 degrees C

7. Converting -40 degrees F to Celsius gives:

A	-20 degrees C
B	-30 degrees C
C	-40 degrees $C \checkmark$

D -50 degrees C
8. The Fahrenheit and Celsius temperature scales have the same reading at:

A	32 degrees
B	0 degrees
C	-32 degrees
D	-40 degrees \checkmark

9. Converting 15 degrees C to Fahrenheit gives:

A	59 degrees $\mathrm{F} \checkmark$
B	47 degrees F
C	21 degrees F
D	-12 degrees F

10. Converting 145 degrees C to Fahrenheit gives:

A	177 degrees F
B	293 degrees $\mathrm{F} \checkmark$
C	112 degrees F
D	217 degrees F

11. Converting 35 degrees C to Fahrenheit gives:

A	59 degrees F
B	77 degrees F
C	95 degrees $\mathrm{F} \checkmark$
D	3 degrees F

12. Converting 95 degrees C to Fahrenheit gives:

A	63 degrees F
B	127 degrees F
C	275 degrees F
D	203 degrees $\mathrm{F} \checkmark$

13. Converting 75 degrees C to Kelvin gives:

A	$348 \mathrm{~K} \checkmark$
B	198 K
C	32 K
D	212 K

14. Converting 25 degrees C to Kelvin gives:

A	248 K
B	$298 \mathrm{~K} \checkmark$
C	47 K
D	237 K

15. Converting - 50 degrees C to Kelvin gives:

A	-40 K
B	323 K
C	$223 \mathrm{~K} \checkmark$
D	-273 K

16. Converting 406 degrees K to Celsius gives:

A 337 degrees C
Chapter 3: Heat \& Matter

B 276 degrees C
C 579 degrees C
D 133 degrees $\mathrm{C} \checkmark$
17. Converting 175 degrees K to Celsius gives:

A	-98 degrees $\mathrm{C} \checkmark$
B	112 degrees C
C	-213 degrees C
D	45 degrees C

18. Converting 6000 degrees K to Celsius gives:

A	6273 degrees C
B	5727 degrees $\mathrm{C} \checkmark$
C	5911 degrees C
D	6196 degrees C

19. The melting point of pure iron is 1505 degrees C . What Fahrenheit temperature is this?

A	1689 degrees F
B	3563 degrees F
C	2741 degrees $\mathrm{F} \checkmark$
D	4112 degrees F

20. The melting point of mercury is -38.0 degrees F . What Celsius temperature is this?

A	-36 degrees C
B	-37 degrees C
C	-38 degrees C
D	-39 degrees $\mathrm{C} \checkmark$

Heat

21. Find the amount of heat in cal generated by 95 J of work.

A	$23 \mathrm{cal} \checkmark$
B	25 cal
C	27 cal
D	24 cal

22. Find the amount of heat in kcal generated by 7510 J of work.

A	1.43 kcal
B	$1.79 \mathrm{kcal} \checkmark$
C	8.11 kcal
D	31.7 kcal

23. Find the amount of work in MJ that is equivalent to 3850 kcal .

A	3.17 MJ
B	0.918 MJ
C	$16.1 \mathrm{MJ} \checkmark$
D	8.23 MJ

24. Find the amount of work in kJ that is equivalent to 7.65 kcal of heat.

A	17.7 kJ
B	9.18 kJ
C	1.83 kJ
D	$32.1 \mathrm{~kJ} \checkmark$

25. Find the mechanical work equivalent (in kJ) of 8550 cal of heat.

A	$35.8 \mathrm{~kJ} \checkmark$
B	2.04 kJ
C	15.3 kJ
D	23.1 kJ

26. Find the heat equivalent (in kcal) of 763 kJ of work.

A	17.5 kcal
B	$182 \mathrm{kcal} \checkmark$
C	1232 kcal
D	3200 kcal

27. How much work must a person do to offset eating a piece of cake containing 625 Cal ?

A	39.2 kJ
B	92.4 kJ
C	$2.62 \mathrm{MJ} \checkmark$
D	13.3 MJ

28. How much work must a person do to offset eating a $200-\mathrm{g}$ bag of potato chips if 28 g of chips contain 150 Cal ?

A	320 kJ
B	610 kJ
C	1.2 MJ
D	$4.5 \mathrm{MJ} \checkmark$

29. A fuel yields $11.5 \mathrm{kcal} / \mathrm{g}$ when burned. How many joules of work are obtained by burning 1 kg of the fuel?

A	$48 \mathrm{MJ} \checkmark$
B	36 MJ
C	24 MJ
D	12 MJ

30. A fuel produces $16 \mathrm{kcal} / \mathrm{g}$ when burned. If 500 g of the fuel is burned, how many joules of work are produced?

A	22 MJ
B	$34 \mathrm{MJ} \checkmark$
C	47 MJ
D	65 MJ

31. Natural gas burned in a gas turbine has a heating value of $110 \mathrm{kcal} / \mathrm{g}$. If the turbine is 25% efficient
and 2.5 g of gas is burned each second, find the power output in kilowatts.

A	35 kW
B	160 kW
C	$290 \mathrm{~kW} \checkmark$
D	1900 kW

32. An industrial engine produces $38,000 \mathrm{kcal}$ of heat. What is the mechanical work equivalent of the heat produced?

A	33 MJ
B	85 MJ
C	120 MJ
D	$160 \mathrm{MJ} \checkmark$

Specific \& Latent Heat; Change of Phase

33. What heat is needed to change the temperature of 100 kg of copper $(\mathrm{c}=0.092 \mathrm{kcal} / \mathrm{kg}$ degree-C) from 100 to 200 degrees-C?

A	$920 \mathrm{kcal} \checkmark$
B	9.2 kcal
C	92 kcal
D	9200 kcal

34. What heat is needed to change the temperature of 10 kg of water $(\mathrm{c}=1.00 \mathrm{kcal} / \mathrm{kg}$ degree-C) from 10 to 20 degrees-C?

A	10 kcal
B	$100 \mathrm{kcal} \checkmark$
C	200 kcal
D	419 kcal

35. What heat is needed to change the temperature of 100 kg of steel $(\mathrm{c}=0.115 \mathrm{kcal} / \mathrm{kg}$ degree-C) from 1000 to 1100 degrees-K?

A	100 kcal
B	300 kcal
C	$1150 \mathrm{kcal} \checkmark$
D	4600 kcal

36. What heat should be given off by 10 kg of aluminum $(\mathrm{c}=0.22 \mathrm{kcal} / \mathrm{kg}$ degree-C) to change their temperature from 200 to 100 degrees-C?

A	51 kcal
B	430 kcal
C	910 kcal
D	$220 \mathrm{kcal} \checkmark$

37. How many calories of heat are required to melt 7 g of ice at 0 degrees C? (L-fusion $=80 \mathrm{cal} / \mathrm{g}$)

| A $560 \mathrm{cal} \checkmark$ |
| :--- | :--- |

B	135 cal
C	2300 cal
D	1500 cal

38. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 100 degrees C? $(\mathrm{L}$-vaporization $=540 \mathrm{cal} / \mathrm{g})$

A	540 cal
B	$5400 \mathrm{cal} \checkmark$
C	54000 cal
D	540000 cal

39. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 0 degrees C ? (c-water $=1 \mathrm{cal} / \mathrm{g}$ degree C , Lvaporization $=540 \mathrm{cal} / \mathrm{g}$)

A	640000 cal
B	64000 cal
C	$6400 \mathrm{cal} \checkmark$
D	640 cal

40. How many calories of heat are required by 50 g of ice at 0 degrees C to melt to water at 40 degrees C ? (c-water $=1 \mathrm{cal} / \mathrm{g}$ degree C , L -fusion $=80 \mathrm{cal} / \mathrm{g}$)

A	2000 cal
B	4000 cal
C	5000 cal
D	$6000 \mathrm{cal} \checkmark$

Elasticity; Stress; Hooke's Law

41. When a deforming (مشوّه) force acts on an elastic object, the object is:

A	never deformed
B	permanently (بشكل دائ)) deformed
C	temporarily (وقتيا) deformed \checkmark
D	broken into pieces

42. An elastic material can be:

A dough (عجين)
B clay (طين)
C lead (رصاص)
D rubber (مطاط) ${ }^{\text {(مط }}$
43. When a $10-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it extends to 25 cm . What would be its length when a $30-\mathrm{N}$ force is applied to it within its elastic range?

A	$35 \mathrm{~cm} \checkmark$
B	15 cm
C	30 cm
D	20 cm

44. When a $100-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it
extends to 21 cm . What would be its length when a $1000-\mathrm{N}$ force is applied to it within its elastic range?

A	25 cm
B	$30 \mathrm{~cm} \checkmark$
C	35 cm
D	5 cm

45. When a $50-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it extends to 22 cm . What would be its length when a $75-\mathrm{N}$ force is applied to it within its elastic range?

A	3 cm
B	21 cm
C	$23 \mathrm{~cm} \checkmark$
D	30 cm

46. When a $10-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it is compressed to 18 cm . What would be its length when a $30-\mathrm{N}$ compressing force is applied to it within its elastic range?

A	6 cm
B	16 cm
C	26 cm
D	$14 \mathrm{~cm} \checkmark$

47. A block of lead with dimensions ($10 \mathrm{~cm} \times 5 \mathrm{~cm} \times$ 4 cm) has a mass of 2.3 kg . It exerts the greatest stress on a flat surface when it lies on the side with dimensions:

A	$5 \mathrm{~cm} \times 10 \mathrm{~cm}$
B	$5 \mathrm{~cm} \times 4 \mathrm{~cm} \checkmark$
C	$10 \mathrm{~cm} \times 4 \mathrm{~cm}$
D	same stress on all sides

48. A cube (مكعب) of iron of $10-\mathrm{cm}$ sides weighs 80 N . The stress it exerts on a flat surface is:

A	80 Pa

B 800 Pa
C $8000 \mathrm{~Pa} \checkmark$
D $80,000 \mathrm{~Pa}$
49. A cylinder of lead is of $5.64-\mathrm{cm}$ radius, $20-\mathrm{cm}$ height, and $23-\mathrm{kg}$ mass. The stress it exerts on a flat surface when it lies on its flat side is:

A	23 Pa	$\stackrel{\text { radius }}{\sim}$	
B	230 Pa		
C	2.3 kPa		height
D	$23 \mathrm{kPa} \checkmark$		

Density

50. Density of a substance (صنف) depends on the and \qquad of its atoms.
A mass, charge (شحنة)

B	mass, spacing \checkmark
C	spacing (تباعد), charge
D	mass, color

51. A $500-\mathrm{g}$ block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has density of:

A	$0.5 \mathrm{~g} / \mathrm{cm}^{3}$
B	$1.5 \mathrm{~g} / \mathrm{cm}^{3}$
C	$2.5 \mathrm{~g} / \mathrm{cm}^{3} \checkmark$
D	$3.5 \mathrm{~g} / \mathrm{cm}^{3}$

52. A $500-\mathrm{g}$ block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has density of:

A	$2500 \mathrm{~kg} / \mathrm{m}^{3} \checkmark$
B	$2.5 \mathrm{~kg} / \mathrm{m}^{3}$
C	$0.8 \mathrm{~kg} / \mathrm{m}^{3}$
D	$800 \mathrm{~kg} / \mathrm{m}^{3}$

53. A 500-g block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has weight density of:

A	$2.5 \mathrm{kN} / \mathrm{m}^{3}$
B	$5 \mathrm{kN} / \mathrm{m}^{3}$
C	$10 \mathrm{kN} / \mathrm{m}^{3}$
D	$25 \mathrm{kN} / \mathrm{m}^{3} \checkmark$

Properties of Matter (optional)

54. Two or more atoms that bond together by sharing
electrons are called $\mathrm{a}(\mathrm{n})$:

A	molecule \checkmark
B	atom
C	mixture
D	ion

55. Examples of molecules do NOT include:

A	water
B	carbon \checkmark
C	ammonia
D	methane

56. When two atoms of hydrogen bond with one atom of oxygen, they form a molecules of:
A carbon dioxide
B ammonia
C water \checkmark
D methane
57. When atoms of different elements chemically bond together, they form a:

A	noble gas
B	new element
C	mixture
D	compound \checkmark

CHAPTER 4: ELECTRICITY

Formulas \& Constants

$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ $1 / \mathrm{e}=6.25 \times 10^{18}$	$\mathrm{q}_{\text {proton }}=+\mathrm{e}$ $\mathrm{q}_{\text {electron }}=-\mathrm{e}$	$\mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \cdot \mathrm{q}_{2}}{\mathrm{~d}^{2}}$	$\mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$	Electric field: $\mathcal{E}=\frac{\mathrm{F}}{\mathrm{q}}$
Elec. potential energy: E_{p}	$\mathrm{E}_{\mathrm{p}}=\mathrm{k} \frac{\mathrm{Q} \cdot \mathrm{q}}{\mathrm{d}} ; \mathrm{V}=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{q}}$	$\mathrm{I}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}$	$\mathrm{R}=\rho \frac{l}{\mathrm{~A}} ; A=\pi \cdot r^{2}$	
$\mathrm{~V}=\mathrm{I} . \mathrm{R}$	V	$\mathrm{P}=\mathrm{V} . \mathrm{I}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\mathrm{I}^{2} \cdot \mathrm{R}$	$\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots$	$\frac{1}{\mathrm{R}_{\text {parallel }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots$

Key Terms \& Definitions

Alternating current	تيار متردد
Capacitor	مكثف
Charge	شحنة
Conductor	موصِّل
Current	تيار
Direct current	تبار مباشر

Electric field	\|المجال الكهر بائي
Electric potential	الجهج الكهربائي
Electricity	كهرباء
Electrostatics	الكهرباء الساءكنة
Insulator	عازل
Parallel circuit	دائرة منو ازية

Potential difference	فرق الجهد
Power	قارة
Resistance	مقاومة
Resistivity	مقاومية
Semiconductor	شبه موصِّل
Series circuit	دائرة متنتالية أو مسلسلة

Electric Charges; Coulomb’s Law

1. Normally, an atom's net charge is:

A	negative
B	positive
C	zero \checkmark
D	a vector

2. The number of electrons needed to make up one coulomb of charge is:

A	1.6×10^{-19}
B	$1.6 \times 10^{+19}$
C	6.25×10^{-18}
D	$6.25 \times 10^{18} \checkmark$

3. A positively charged object is an object with:

A	extra electrons
B	lack (نصص) of protons
C	extra neutrons
D	lack of electrons \checkmark

4. A negatively charged object is an object with:

A	extra electrons \checkmark
B	extra protons
C	extra neutrons
D	lack of (نص⿱) (ق) electrons

5. The electrostatic force equation for two charged objects, q_{1} and q_{2}, gives a positive result if:

A	q_{1} is positive and q_{2} is negative
B	q_{1} is negative and q_{2} is positive
C	q_{1} and q_{2} have the same sign \checkmark
D	q_{1} and q_{2} are neutral

6. The electrostatic force equation for two charged objects, q_{1} and q_{2}, gives a negative result if:

A	q_{1} repels q_{2}
B	$\mathrm{q}_{2}=\mathrm{q}_{1}$
C	$\mathrm{q}_{1}=1 / 2 \mathrm{q}_{2}$
D	q_{1} attracts $\mathrm{q}_{2} \checkmark$

7. The electrostatic force between two charged objects, q_{1} and q_{2}, is located at:

A	q_{1}
B	q_{2}
C	q_{1} for force from q_{2}, and q_{2} for force from $q_{1} \checkmark$
D	halfway between q_{1} and q_{2}

8. The attractive force between two charges $\mathrm{q}_{1}=1 / 3 \mathrm{C}$ and $\mathrm{q}_{2}=-1 / 3 \mathrm{C}$ separated by 1 km is:

A	$1000 \mathrm{~N} \checkmark$
B	100 N
C	10 N
D	1 N

9. The repulsive force between two identical 1-C charges separated by 300 m is:

C	10 kN
D	$100 \mathrm{kN} \checkmark$

Electric Field; Electric Potential

10. The following quantities are all scalar, except for:

A	electric current
B	electric field \checkmark
C	electric charge
D	electric potential

11. A group of charges (Q) exert a net force $F=10 \mathrm{~N}$ on a charge $\mathrm{q}=0.2 \mathrm{C}$ located at point (X). This means that the magnitude of the electric field resulting from Q at X equals:

A	$0.2 \mathrm{~N} / \mathrm{C}$
B	$5 \mathrm{~N} / \mathrm{C}$
C	$10 \mathrm{~N} / \mathrm{C}$
D	$50 \mathrm{~N} / \mathrm{C} \checkmark$

12. The electric field around a negative point-charge (Q) points (يتجه):

A	radially away from Q
B	radially toward Q^{\checkmark}
C	in circles around Q
D	in ellipsoids (مجسم بيضوي) around Q

13. The electric field around a positive point-charge (Q) points (يتجه):

A	radially away from Q^{\checkmark}
B	radially toward Q
C	in circles around Q
D	in ellipsoids (مجس بيضوي) around Q

14. The electric field between two point charges $(+\mathrm{Q})$ and (-Q) separated by a distance (d) points (يتجه):

A	on a straight line from +Q to $-\mathrm{Q}^{\checkmark}$
B	radially toward +Q
C	radially toward -Q
D	on a straight line from -Q to +Q

15. The electric field around two point charges $(+\mathrm{Q})$ and (-Q) separated by a distance (d) is:

A	concentric (منداخل) cubes
B	radially toward Q
C	radially toward -Q
D	concentric ellipsoids (مجس بيضوي) \checkmark

16. The SI unit for the electric potential energy is the: A ampere

B	watt
C	volt
D	joule \checkmark

17. The SI unit for the electric potential is the:

A	ampere
B	watt
C	volt \checkmark
D	joule

18. One volt is equal to:

A	1 joule/second
B	1 joule/coulomb \checkmark
C	ampere/second
D	ampere/coulomb

19. A charge $\mathrm{q}=0.5 \mathrm{C}$ located at point (X) has electric potential energy $\mathrm{PE}=10 \mathrm{~J}$ caused by a group of charges (Q). This means that the electric potential resulting from Q at X equals:

A	0.5 V
B	5 V
C	10 V
D	$20 \mathrm{~V} \checkmark$

Capacitor; Resistance

20. Electric energy can be stored in a:

A	resistance
B	capacitor \checkmark
C	switch
D	light bulb

21. A capacitor consists of:

A	a conductor between two insulating plates
B	an insulator between two conducting plates \checkmark
C	two insulating plates in vacuum
D	two conducting plates in vacuum

22. When a capacitor is connected to a battery, the plate connected to the \qquad terminal becomes \qquad

A	positive, positive \checkmark
B	negative, positive
C	positive, negative
D	positive, neutral

23. If a capacitor is connected to a battery of potential difference V , the capacitor becomes fully charged when the potential difference between its plates equals:

A	0
B	$\mathrm{~V} \checkmark$
C	$\mathrm{V} / 2$
D	2 V

24. A $10-\mathrm{km}$ copper wire (resistivity $=1.7 \times 10^{-8} \Omega . \mathrm{m}$) has cross-sectional area $=1 \mathrm{~mm}^{2}$. Its resistance is:

A	1.7Ω
B	17Ω
C	$170 \Omega \checkmark$
D	1700Ω

Ohm's Law; Electric Power; Electric Circuits

25. An electric circuit consists of a $24-\Omega$ resistance connected across the terminals of a $12-\mathrm{V}$ battery. The electric current in this circuit is:

A	24 amperes
B	12 amperes
C	2 amperes
D	0.5 amperes \checkmark

26. An electric circuit consists of a light bulb connected across the terminals of a $12-\mathrm{V}$ battery. If the electric current in this circuit is 6 mA , the resistance of the light bulb is:

A	$0.5 \mathrm{k} \Omega$
B	$2 \mathrm{k} \Omega \checkmark$
C	20Ω
D	2Ω

27. If the power rating of a vacuum cleaner is 550 W , the current it draws in a $220-\mathrm{V}$ electric circuit is:

A	0.4 amperes
B	1.5 amperes
C	2.5 amperes \checkmark
D	5 amperes

28. If a light bulb in a $220-\mathrm{V}$ electric circuit draws 0.5 amperes, its power rating is:

A	$110 \mathrm{~W} \checkmark$
B	440 W
C	40 W
D	75 W

29. A classroom has ten $25-\mathrm{W}$ compact fluorescent lamps (CFL). If these lamps are turned on for 10 hours every day, their energy consumption (استهالاك) in 20 days is:

A	1 kWh
B	5 kWh

Chapter 4: Electricity

C 10 kWh
D $50 \mathrm{kWh} \checkmark$
30. In electricity, the kilowatt-hour is a unit of:

A	electric current
B	electric power
C	electric potential
D	electric energy \checkmark

31. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. Their equivalent
 resistance is:

A	4Ω
B	12Ω
C	24Ω
D	$36 \Omega \checkmark$

32. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. The potential difference across each light bulb is:

A	0 V
B	$4 \mathrm{~V}^{\checkmark}$
C	8 V
D	12 V

33. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. The current passing through each light bulb is:

A	$1 / 3 \mathrm{~A} \checkmark$
B	$2 / 3 \mathrm{~A}$
C	1 A
D	3 A

34. Three identical light bulbs, each of resistance 12Ω, are connected in parallel to a $12-\mathrm{V}$ battery. Their equivalent resistance is:

A	$4 \Omega \checkmark$
B	12Ω
C	24Ω
D	36Ω

35. Three identical light bulbs, each of resistance 12Ω, are connected in parallel to a $12-\mathrm{V}$ battery. The potential difference across each light bulb is:

A	0 V
B	4 V
C	8 V
D	$12 \mathrm{~V} \checkmark$

36. Three identical light bulbs, each of resistance 12Ω,
are connected in parallel to a $12-\mathrm{V}$ battery. The current passing through each light bulb is:

A	$1 / 3 \mathrm{~A}$
B	$2 / 3 \mathrm{~A}$
C	$1 \mathrm{~A} \checkmark$
D	3 A

37. In an electric circuit consisting of two resistances (10Ω and 5Ω) connected in series, if the current through the $10-\Omega$ resistance is 1 A , the current through other resistance is:

A	0 A

B	0.5 A
C	$1 \mathrm{~A} \checkmark$
D	2 A

38. In an electric circuit consisting of two resistances (10Ω and 5Ω) connected in parallel, if the current through the $10-\Omega$ resistance is 1 A , the current through other resistance is:

A	0 A
B	0.5 A
C	1 A
D	$2 \mathrm{~A} \checkmark$

CHAPTER 5: OPTICS

Formulas \& Constants

$\mathcal{f}=\mathrm{c} / \lambda$ or: $\mathrm{c}=\boldsymbol{f} \cdot \lambda$ $\mathscr{f}=$ frequency; $\lambda=$ wavelength $)$	$\begin{gathered} \boldsymbol{f}=1 / \mathrm{T} \\ (\text { frequency }=1 /(\text { time of } 1 \text { cycle })) \end{gathered}$	$\begin{aligned} & \mathrm{E}=\mathrm{h} \boldsymbol{\mathcal { F }} \quad \text { (photon energy }= \\ & \text { constant } \times \text { wave frequency) } \end{aligned}$	$\begin{gathered} \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s} \end{gathered}$
10^{0} to $10^{24+} \mathrm{Hz}$ (frequencies in the e-m spectrum)	$4 \times 10^{14} \text { to } 8 \times 10^{14} \mathrm{~Hz}$ (frequency range of visible light)	$\begin{gathered} \theta_{\mathrm{i}}=\theta_{\mathrm{r}} \\ \text { (law of reflection) } \end{gathered}$	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
Snell's law: $\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{r}} \sin \theta_{\mathrm{r}}$ ($\mathrm{i}=$ incidence; $\mathrm{r}=$ refraction)	Index of refraction: $\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}$ ($\mathrm{v}=$ speed of light in medium)	$\begin{gathered} \frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \text { or: } s_{i}=\frac{s_{0} \cdot f}{s_{o}-f} \\ (o=\text { object } ; i=\text { image }) \end{gathered}$	$\begin{aligned} & M=\frac{h_{i}}{h_{o}}=-\frac{s_{i}}{s_{o}} \\ & =\frac{1}{1-s_{o} / f} \end{aligned}$

Key Terms \& Definitions

Aberration	زيغ
Absorption	امنصاص
Amplitude	\|ارتفاع الموجة
Astigmatism	\|انحراف في القرنية
Beam	حزمة
Chromatic	لونيّ
Concave	مقعر
Converge	يركز
Convex	محبن
Cornea	اللقرنية
Critical angle	الزاوية الحرجة
Defect	خلل
Deformation	تتوّه
Diffuse	مبعثّر أو منتشر
Dispersion	انتشار
Diverge	يوزع
Fiber optics	تلألياف البصرية
Focal distance	\|البعد البؤري

Focal point	البؤرة
Frequency	تردد
Electromagnetic	كهرومغناطبي
Incidence	سقوط
Infrared	تحت الحمر
Inverted image	صورة مقلوبة
Least time principle	قاعدة الزمن الأقصر
Lens	عدسة
Magnify	يكبّر
Medium	وسط
Microwaves	الموجات شديدة القصر
Mirage	سراب
Mirror	مرآة
Oscillation	ارتجاج أو اهتزاز
Period	فترة الموجة
Photon	فوتون
Plane	مسطح
Polished	مصقول

Prism	منشور
Rainbow	قوس المطر
Ray	شعاع
Real image	صورة حقيقية
Reflection	\|نعكاس
Refraction	\|انكسار
Resonance	رنين
Source	مصدر
Spectrum	ط
Specular	مرئي؛ بصري
Transparent	شفاف
Ultraviolet	فوق البنفجية
Upright image	صورة قائمة
Violet	بنفسجي
Virtual image	صورة وهرية
Visible light	\|الضوء المرئي
Wave	موجة
Wavelength	طول الموجة

Electromagnetic Waves \& Spectrum

1. Light is the oscillation of:

A electric \& sound fields
B electric \& magnetic fields \checkmark
C sound \& magnetic fields
D electric \& gravitational fields
2. Shaking an electrically charged rod to-and-fro in empty space produces:
A air waves
B sound waves
C electromagnetic waves \checkmark
D va
acuum waves
3. Electromagnetic waves start from a vibrating:

A B C D	fork (\%ُوْك)
	string (9)
	spring (زنبر)
	charge \checkmark

4. In an electromagnetic wave, the electric and magnetic fields are:
A perpendicular to each other and to the direction of

	motion \checkmark
B	parallel to each other and to the direction of motion
C	perpendicular to each other and parallel to the direction of motion
D	parallel to each other and perpendicular to the direction of motion

5. A wave's frequency is:

A the number of waves repeating (نتكرر) every second \checkmark
B the time duration for one complete wave
C the maximum value of a wave
D the length of a single wave
6. A wave's wavelength is:

| A | the number of waves repeating (تنكرر) every second |
| :--- | :--- | :--- |

B the time duration for one complete wave
C its maximum value
D the length of a single wave \checkmark
7. Going from left to right in the electromagnetic spectrum, the following happens:
A both wavelength and frequency increase
B both wavelength and frequency decrease
C wavelength increases and frequency decreases
D wavelength decreases and frequency increases \checkmark
8. In the electromagnetic spectrum, the narrowest range is that of:

A	radio waves

B x-ray waves
C visible light waves \checkmark
D ultraviolet waves
9. Electromagnetic waves that travel in vacuum slower than light are:

A	gamma-ray waves
B	x-ray waves
C	ultraviolet waves
D	none of these \checkmark

10. In the electromagnetic spectrum, the highest energy is that of:

A	gamma-ray waves \checkmark

B x-ray waves
C blue light waves
D ultraviolet waves
11. In the electromagnetic spectrum, the lowest frequency is that of:

A	ultraviolet waves
B	x-ray waves

C	red light waves
D	radio waves \checkmark

12. Among the following electromagnetic waves, the longest wavelength is for:

A	infrared waves
B	microwaves \checkmark
C	visible light waves
D	ultraviolet waves

13. The wavelength of $300-\mathrm{MHz}$ microwave is:

A	$1 \mu \mathrm{~m}$
B	1 mm
C	1 cm
D	$1 \mathrm{~m} \checkmark$

14. The frequency of $0.5-\mu \mathrm{m}$ green light is:

A	$2 \times 10^{14} \mathrm{~Hz}$
B	$4 \times 10^{14} \mathrm{~Hz}$
C	$6 \times 10^{14} \mathrm{~Hz}$
D	$8 \times 10^{14} \mathrm{~Hz}$

Reflection

15. Wave reflection means that the wave always:

A	enters from one medium into another
B	remains in the same medium \checkmark
C	returns along the same line of incidence
D	slides along the border between two media

16. We see most things around us because:

A they are primary sources of light
B they are secondary sources of light
C they reflect light \checkmark
D they absorb light
17. If light beam (X) falls obliquely on a mirror and reflects into beam (Y), we can say that:
A X is always perpendicular to the mirror
B Y is always perpendicular to the mirror
C X and Y make equal angles with the mirror \checkmark
D X and Y are perpendicular to each other
18. When a light beam is reflected, it keeps a constant:

A	speed
B	frequency
C	wavelength
D	all of these \checkmark

19. The angle of reflection is always:

A	equal to the angle of incidence \checkmark
B	smaller than the angle of incidence
C	larger than the angle of incidence
D	equal to the angle of refraction

20. An object placed in front of a plane mirror forms an image that is of \qquad size and \qquad distance to the mirror.

A	same; same \checkmark
B	larger; same
C	same; nearer
D	same; farther

21. An object placed between a concave (مقعر) mirror and its focus forms an image that is of \qquad size and distance to the mirror.

A	smaller; farther
B	larger; nearer
C	smaller; nearer
D	larger; farther \checkmark

22. An object placed in front of a convex (محدب) mirror forms an image that is of \qquad size and distance to the mirror.

A	smaller; farther
B	larger; nearer
C	smaller; nearer \checkmark
D	larger; farther

23. An image formed behind a mirror is virtual for:

A	plane, convex and concave \checkmark
B	plane and concave, and real for convex
C	plane and convex, and real for concave
D	convex and concave, and real for plane

24. Diffuse reflection occurs when light is incident on a surface that is:

A	smooth (أملس)
B	polished (صصقول)
C	transparent (شفاف)
D	rough (خشن) ${ }^{\text {(}}$

25. Specular (بصري) reflection occurs when light is incident on a:

A	lens
B	mirror \checkmark
C	painted wall
D	page of a book

26. After diffuse reflection, light goes in:

A	one direction

B	two opposite directions
C	no direction
D	all directions \checkmark

27. You can see the road ahead of your car at night because of:

A	specular reflection
B	absorption
C	diffuse reflection \checkmark
D	refraction

28. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the image of the door will appear in the mirror at a distance of:

A	$1.6 \mathrm{~m} \checkmark$
B	2.4 m
C	0.8 m
D	3.2 m

29. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.1 m
B	$0.5 \mathrm{~m} \checkmark$
C	1 m
D	1.25 m

30. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the mirror will be:

A	5
B	2
C	0.5
D	0.2

31. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and reduced \checkmark
B	upright and enlarged
C	inverted and reduced
D	inverted and enlarged

32. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the image of the door will appear in the mirror at a distance of:

A	1.4 m
B	$2.8 \mathrm{~m} \checkmark$
C	0.7 m
D	5.6 m

33. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m
away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.1 m
B	0.5 m
C	$1 \mathrm{~m} \checkmark$
D	1.25 m

34. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the mirror will be:

A	-2
B	+2
C	$-0.4 \checkmark$
D	+0.4

35. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A upright and reduced
B upright and enlarged
C inverted and reduced \checkmark
D inverted and enlarged

Refraction

36. The process of light bending when passing obliquely from one medium into another is called:

A	specular reflection
B	absorption
C	diffuse reflection
D	refraction \checkmark

37. When light is refracted, it keeps a constant:

A	speed
B	frequency \checkmark
C	wavelength
D	all of these

38. When light is refracted in passing from air into water, its angle of refraction is:

A	equal to the angle of incidence
B	more than the angle of incidence
C	less than the angle of incidence \checkmark
D	zero

39. Mirage (سراب) happens on hot days because light rays coming toward us from the sky:

A	bend toward the ground \checkmark
B	bend away from the ground
C	bounce (يرتند) off the ground

stick to the ground
40. What we actually see in a mirage (سراب):

A	water vapor collecting above the road
B	water that evaporates very fast
C	sky light that appears like water \checkmark
D	only an imaginary image

41. If the speed of light in water is 0.75 c , the index of refraction of water is:

A	1.33
B	0.75
C	2.25
D	0.25

42. The index of refraction of water is $4 / 3$. A beam of light incident from air into water at $30^{\circ}\left(\sin 30^{\circ}=1 / 2\right)$ refracts at an angle of:

A	13°
B	9°
C	49°
D	$22^{\circ} \checkmark$

43. The index of refraction of water is $4 / 3$. A beam of light incident from water into air at $30^{\circ}\left(\sin 30^{\circ}=1 / 2\right)$ refracts at an angle of:

A	$42^{\circ} \checkmark$
B	90°
C	49°
D	22°

44. The index of refraction of water is $4 / 3$. This means that the critical angle of water (into air) is:

A	42°
B	90°
C	$49^{\circ} \checkmark$
D	22°

45. If a beam of light is incident from water into air at the critical angle, its angle of refraction in air is:

A	0°
B	$90^{\circ} \checkmark$
C	60°
D	30°

46. A beam of light is directed from the bottom of a swimming pool so as to hit the top surface at a 60° angle. This beam will then undergo (يخضع ل) a total:

A	dispersion
B	diffuse reflection
C	internal reflection \checkmark

D refraction

47. A beam of light falling obliquely on a pane (لوح) of glass leaves the pane such that it is:

A	parallel to the pane
B	perpendicular to the pane
C	perpendicular to its original direction
D	parallel to its original (أصلي) direction \checkmark

48. A fish under water appears nearer because of:

A	refraction \checkmark
B	aberration
C	reflection
D	dispersion

49. Light travels through an optical fiber by:

A	dispersion
B	diffuse reflection
C	total internal reflection \checkmark
D	total refraction

Dispersion; Rainbow

50. In the visible light spectrum, red appears at the:

A	right
B	left \checkmark
C	middle
D	outside

51. In the visible light spectrum, the longest-wavelength light is:

A	red \checkmark
B	blue
C	green
D	violet

52. In the visible light spectrum, the highest-frequency light is:

A	red
B	blue
C	green
D	violet \checkmark

53. The light component that travels the fastest through glass or water is:

A	blue light

B	red light \checkmark
C	violet light
D	green light

54. Separation of light falling on a prism into colors is called:

A	dispersion \checkmark
B	reflection
C	absorption
D	mirage

55. When white light falls on a prism (as shown), its color components separate so that the highest (from base) is:
A blue light
green light
C violet light
D red light \checkmark

56. You can see a rainbow on a humid day only if the sunlight is coming from:

57. Rainbow results from that:

A	raindrops make the shape of prisms in the air
B	light disperses inside raindrops \checkmark
C	raindrops form water ponds on the ground
D	raindrops reflect light at different angles

58. Rainbow is formed in the following sequence (ترتيب):

A	refraction \rightarrow reflection \rightarrow refraction \checkmark
B	reflection \rightarrow refraction \rightarrow reflection
C	refraction \rightarrow refraction \rightarrow reflection
D	reflection \rightarrow reflection \rightarrow refraction

Lenses

59. A converging lens usually has two \qquad surfaces and is \qquad at its center than its edges.

A	convex (محدب); thinner
B	concave (دقعر); thinner
C	concave; thicker
D	convex; thicker \checkmark

60. A diverging lens usually has two \qquad surfaces and is \qquad at its center than its edges:
A convex (محدب); thinner

B	concave (($)$; thinner \checkmark
C	concave; thicker
D	convex; thicker

61. A converging lens converges a beam of light that is parallel to its principal axis into:

A	the focal point on the other side \checkmark
B	the focal point on the same side
C	the center of curvature on the same side
D	the center of curvature on the other side

62. A diverging lens diverges a beam of light that is parallel to its principal axis so as to appear coming from:

A	the focal point on the other side
B	the focal point on the same side \checkmark
C	the center of curvature on the same side
D	the center of curvature on the other side

63. Light passing through the center of a lens:

A	bends up for a diverging lens
B	bends up for a converging lens
C	passes without deviation for both types \checkmark
D	gets reflected for both types

64. When an object is placed inside the focal point of a converging lens, its image is:

A	real and farther
B	real and nearer
C	virtual and nearer
D	virtual and farther \checkmark

65. When an object is placed outside the focal point of a converging lens, its image is:

A	real and inverted (ققلوبة) ${ }^{(\text {قائمة) }}$)
B	real and upright
C	virtual and upright
D	virtual and inverted

66. Distortion (تشويه) in the image of a lens is called:

A	conversion
B	aberration \checkmark
C	dispersion
D	refraction

67. Distortion (تشويه) in the image of a lens caused by different speeds of the color components (مكونات) of light is called:
A spherical aberration
B linear aberration
C astigmatic aberration
Chapter 5: Optics

A	0.2 m
B	$0.5 \mathrm{~m} \checkmark$
C	1 m
D	2 m

75. If a diverging lens of 2-m focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the lens will be:

A	-0.4
B	+0.4
C	-0.2
D	$+0.2 \checkmark$

76. If a diverging lens of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and virtual \checkmark
B	inverted and virtual
C	upright and real
D	inverted and real

