

INTRODUCTORY PHYSICS MULTIPLE CHOICE QUESTIONS

PREPARED BY:

VARIOUS PHYSICS TEACHERS AT TAIBAH UNIVERSITY'S PREP YEAR PROGRAM

1435-36 (2014-15)

Table of Contents

CHAPTER	1.	INTRODI	ICTION
	т.	IN INCODE	

-	/	
ME	ASUREMENTS, UNITS	1
	Formulas & Constants	. 1
	Key Terms & Definitions	. 1
	Science; Scientific Method; Scientific Attitude	e 1
	Physics vs. Other Sciences	. 2
	Models, Theories, and Laws	. 2
	Uncertainty, Accuracy, and Precision	. 3
	Significant Figures	. 4
	Scientific Notation	. 5
	Units & Standards	. 5
	SI Prefixes & Base Units	. 6
	Unit Conversion	. 6
	Order of Magnitude; Estimation	. 7
	Dimensions	. 8
CHA	APTER 2: MOTION & ENERGY	9
	Formulas & Constants	. 9
	Key Terms & Definitions	. 9
	Vectors	. 9
	Linear Motion, Velocity, Acceleration	10
	Free Fall	11
	Newton's 1 st Law of Motion; Inertia; Equilibrium	11
	Force; Support Force; Friction	
	Mass; Weight	
	Newton's 2 nd Law	13
	Newton's 3 rd Law	
	Work; Energy	14
	Work; Energy	

15
15
15
16
17
17
17
17
18
19
20
20
21
22
22
22
22
23
23
24
26
26
26
26
27
29
30
30

CHAPTER 6: MODERN PHYSICS	33
Formulas & Constants	33
Key Terms & Definitions	33
Correspondence Principle	33

X-Rays	3
Radioactivity34	4
Environmental Radiation3	5

CHAPTER 2: MOTION & ENERGY

Average speed: $\overline{v} = \frac{d}{t} = \frac{v_f + v_i}{2}$	$a = \frac{v_f - v_i}{t}$	$v_{f}^{2} - v_{i}^{2} = 2$ a.d	$v_f = v_i + g.t$ $v = g.t (v_i = 0)$		ΣE = constant (energy consrv.)
F = m.a	w = m.g	P = W / t	$W = F \cdot d \cdot \cos \theta$	$PE = m.g.h$ $KE = \frac{1}{2} m.v^2$	$V_f = \sqrt{2 \text{ g. h}}$
$F_{A \text{ on } B} = F_{B \text{ on } A}$	$\mathbf{R}^2 = \mathbf{X}^2 + \mathbf{Y}^2$	$\tan \theta = Y / X$	1 m/s = 3.6 km/h	g = 10 m/s ²	1 hp = ¾ kW

Formulas & Constants

Key Terms & Definitions

Key Terms & Demnitoris						
Acceleration	تسارع	Horizontal	أفقي	Resultant	محصّلة	
Action	فعل	Inertia	القصور الذاتي	Reaction	ردة فعل	
Air resistance	مقاومة الهواء	Instantaneous	لحظي	Resolution	تحليل	
Average	متوسط	Interaction	تفاعل	Speed	السرعة القياسية	
Component	عنصر / مُكَوِّن/ مُرَكِّب	Kinetic energy	الطاقة الحركية	Static	سكوني	
Direction	اتجاه	Mass	كتلة	Support force	قوة الدعم	
Displacement	إزاحة	Magnitude	مقدار	Tension	توتر	
Distance	مسافة	Mechanical	ميكانيكي	Terminal speed	السرعة الحدية	
Dynamic	حركي	Motion	حركة	Vector	كمية متجهة	
Energy	طاقة	Net force	قوة إجمالية / صافية	Velocity	السرعة المتجهة	
Equilibrium	اتزان	Normal force	القوة العمودية	Vertical	ر أسي أو عمودي	
Force	قوة	Potential energy	طاقة الوضع	Volume	حجم	
Free fall	سقوط حر	Power	قدرة	Weight	وزن	
Friction	احتكاك	Projectile	قذيفة أو مقذوف	Work	شغل	
Gravity	جاذبية	Projection	إسقاط			

Vectors

- 1. Scalar is a quantity that does not need:
- A value
- B magnitude
- C direction√
- D unit
- 2. Vector is a quantity that needs:
- A direction only
- B magnitude only
- C unit only
- D magnitude and direction \checkmark

3. Example of a scalar is:

- A velocity
- B distance√
- C acceleration
- D force

- اسقاط distance
- C speed D time

В

- 5. For linear motion, the angle between the velocity and acceleration vectors is:
- Aalways 0° Balways 180° C 0° or 180° Dalways 90°
- 6. Adding two perpendicular vectors (\vec{A}) and (\vec{B}) gives a resultant (\vec{R}) with magnitude:
- AR = $\sqrt{A^2 + B^2} \sqrt{B}$ BR = $A^2 + B^2$ CR = $\sqrt{A + B}$ DR = $1 / \sqrt{A^2 + B^2}$
- 7. Two perpendicular forces, $F_1 = 40$ N and $F_2 = 30$ N, act on a brick. The magnitude of the net force (F_{net}) on the brick is:

- 4. Example of a vector is:
- A velocity√

Chapter 2: Motion & Energy

А

70 N

8. If an airplane heading north with speed $v_P = 400$ km/h faces a westbound wind ((,,z)) of speed $v_A = 300$ km/h, the resultant velocity of the plane (\vec{v}) is:

	1 ()	$V \uparrow \rightarrow$
А	500 km/h, north-west√	
В	700 km/h, north-east	Ň
С	500 km/h, north-east	
D	700 km/h, north-west	

Decomposing (or resolving) a vector (A) into two components in perpendicular directions (A_x and A_y) gives :

А	$A_x + A_y = A$	Â,
В	$A_x + A_y = A^2$	
С	$A_x^2 + A_y^2 = A$	
D	$A_x^2 + A_y^2 = A^2 \checkmark$	

Linear Motion, Velocity, Acceleration

10. To calculate an object's average speed we need to know the:

А	acceleration and time
В	velocity and time
С	distance and time \checkmark
D	velocity and distance

 A horse gallops (يجري) a distance of 10 kilometers in 30 minutes. Its average speed is:

Α	15 km/h
В	20 km/h√
С	30 km/h
D	40 km/h

- 12. A car maintains for 10 seconds a constant velocity of 100 km/h due east. During this interval its acceleration is:
- A
 0 km/h² √

 B
 1 km/h²

 C
 10 km/h²

 D
 100 km/h²
- 13. While an object near Earth's surface is in free fall, its ______ increases:

A	velocity 🗸
В	acceleration
С	mass

- D height
- A average
- B instantaneous √
- C initial
- D final

15. Acceleration is the rate of change in:

A force

- B distance
- C speed
- D velocity√

16. If the speed is constant, the acceleration must be:

А	constant				
В	zero				
С	negative				
D	unknown√				

17. A car moves along a straight road with constant acceleration. If its initial and final speeds are $v_i = 10 \text{ m/s}$, $v_f = 20 \text{ m/s}$, its average speed is:

B 15 m/s ✓ C 10 m/s D 20 m/s	A	12 m/s
	В	15 m/s ✓
D 20 m/s	С	10 m/s
	D	20 m/s

18. If an object in linear motion moves a distance of 20 m in 5 seconds, its average speed is:

A	4 m/s√
В	5 m/s
С	10 m/s
D	20 m/s

19. If an object is in linear motion, and its speed changes from 10 m/s to 20 m/s in 10 seconds, its acceleration is:

А	20 m/s ²
В	10 m/s ²
С	5 m/s ²
D	$1 \text{ m/s}^2 \checkmark$
	<u> </u>

- 20. If your average speed is 80 km/h on a 4-hour trip, the total distance you cover is:
- A 40 km
- B 80 km
- C 120 km
- D 320 km√

Chapter 2: Motion & Energy

21. If you travel 300 km in 4 hours, your average speed is:

А	50 km/h
В	75 km/h √
С	80 km/h
D	100 km/h

Free Fall

22. If air resistance on a falling rock can be neglected, we say that this rock is:

A	heavy
В	at terminal speed
С	in free fall√
D	light
22	If a stone drang in a free fall from the edge of a high

23. If a stone drops in a free fall from the edge of a high cliff, its speed after 5 seconds is:

A	10 m/s
В	40 m/s
С	50 m/s√
D	100 m/s

24. If a stone drops in a free fall from the edge of a high cliff, the distance it covers after 4 seconds is:

А	40 m
В	80 m ✓
С	120 m
D	160 m

25. If an object in free fall has an initial speed of 10 m/s, its speed after 10 seconds is:

А	80 m/s
В	90 m/s
С	100 m/s
D	110 m/s

26. Neglecting air resistance, if a player throws a ball straight up with a speed of 30 m/s, the ball will reach its maximum height after:

А	6 seconds
В	5 seconds
С	4 seconds
D	3 seconds√

- 27. If an object is in free fall, the distance it travels every seconds is:
- A the same as the previous (السابق) second
- B more than the previous second \checkmark
- C less than the previous second

Chapter 2: Motion & Energy

D undefined

- 28. If an object is in free fall, its speed every seconds is:
- A the same as the previous (السابق) second
- B more than the previous second \checkmark
- C less than the previous second
- D undefined

Newton's 1st Law of Motion; Inertia; Equilibrium

20	TC	4 1	C			•	1	11
29.	It no	external	forces	act	on a	a moving	object,	it will:

- A continue moving at the same speed
 B continue moving at the same velocity√
 C move slower and slower until it finally stops
 D make a sudden stop
 30. If an object is in mechanical equilibrium, we can say that:
- A a nonzero net force acts on it
 B it has constant velocity√
 C it has small acceleration
 D it has large acceleration
- 31. Inertia means that:
- A an object at rest tries to remain at rest, and a moving object tries to stop
 P an object at rest tries to move, and a moving object
- B an object at rest tries to move, and a moving object tries to stop
- C an object at rest tries to move, and a moving object tries to keep moving
- D an object at rest tries to remain at rest, and a moving object tries to keep moving√
- 32. The SI unit of inertia is the:
- A kilogram
- B newton
- C joule
- D none of these \checkmark
- 33. If two equal forces act on a moving cart in opposite directions, we can say about it that:
- A it has acceleration
 B it is in static equilibrium
 C it is in dynamic equilibrium√
 D nonzero net force acts on it
- 34. If two equal forces act on a stationary (ساكن) book in opposite directions, we can say about it that:

А	it has acceleration
В	it is in static equilibrium \checkmark

C	,	it is in dynamic equilibrium
D)	a nonzero net force acts on it

35. If you stand at rest on a pair of identical bathroom scales, the readings on the two scales will always be:

each equal to your weight
each equal to half your weight \checkmark
each equal to double your weight
different from each other

36. A man weighing 800 N stands at rest on two bathroom scales so that his weight is distributed evenly between them. The reading on each scale is:

А	400 N ✓
В	200 N
С	1600 N
D	800 N

37. A 80-kg painter stands on a 20-kg painting staging (سقالة دهان) that hangs on two ropes. If the staging is at rest and both ropes have the same tension, the tension in each rope is:

А	200 N
В	500 N√
С	800 N
D	1000 N

Force; Support Force; Friction

38. The support force is on an object results from the ______ of atoms in the surface:

А	compression√
В	speed
С	acceleration
D	energy
20	The support force on a 2 kg back lying on a lovel

39. The support force on a 2-kg book lying on a level table is:

А	1 N
В	2 N
С	10 N
D	20 N√

40. In the following, check the correct statement:

A	force is a vector, mass is a scalar \checkmark
В	force is a vector, weight is a scalar
С	mass is a vector, weight is a scalar
D	force is a vector, mass is a vector

- 41. Two forces act on an object: $\vec{F}_1 = (6 \text{ N}, \text{ east}); \vec{F}_2 = (8 \text{ N}, \text{ west})$. The net force $(\Sigma \vec{F})$ on it is:
- Chapter 2: Motion & Energy

- A (14 N, east)
- B (14 N, west)
- C (2 N, west) \checkmark
- D (-2 N, west)
- 42. Two forces act on an object: $\vec{F}_1 = (10 \text{ N}, \text{ up}); \vec{F}_2 = (10 \text{ N}, \text{ down})$. The net force $(\Sigma \vec{F})$ on it is:

A (20 N, up)

- B (20 N, down)
- C (10 N, up)
- D zero√

43. Two forces act on a crate and the crate is in equilibrium. These two forces are:

A	(100 N, right), (100 N, left) ✓
	(100 N, right), (50 N, left)
0	(50 N, right), (100 N, left)

D (100 N, right), (100 N, right)

44. If the force of friction on a moving object is 10 N, the force needed to keep it at constant velocity is:

А	0 N
В	5 N
С	10 N√
D	more than 10 N

45. When an object falling through air stops gaining speed, we say that it has reached its ______ speed:

A	average
В	instantaneous
С	final
D	terminal√

46. Air drag depends on a falling object's:

- A size and speed \checkmark
- B size and density
- C density and speed

D none of these

Mass; Weight

47. Mass is a measure of an object's:

A	inertia√
В	volume
С	density
D	speed

48. Mass is an object's quantity of:

A lenergy

- B matter√
- C dimensions
- D momentum

49. The SI unit for weight is the:

- A newton√

 B kilogram

 C gram

 D pound
- 50. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

A	same	mass	and	di	ff	erent	iner	tia	l		

- B same inertia and different weight
- C same volume and different mass \checkmark
- D same weight and different density
- 51. If the Earth's gravitational pull is 6 times that of the Moon, an object taken to the Moon will have:
- A same mass and less weight√
- B same weight and less mass

C same mass and same weight

D less mass and less weight

Newton's 2nd Law

- 52. An object's acceleration is directly proportional to the:
- A
 net force√

 B
 average speed

 C
 mass

 D
 inertia
- 53. If an object's mass decreases while a constant force is applied to it, its acceleration:
- A decreases B increases ✓
- C remains constant
- D changes according to volume

54. If the net force acting on an object decreases, its acceleration:

- A
 decreases√

 B
 increases

 C
 remains constant

 D
 changes direction
- 55. The net force on an 50-kg crate is 100 N, its acceleration is:
- A 0.5 m/s^2

- $\begin{array}{c|c}
 B & 1 & m/s^2 \\
 \hline C & 2 & m/s^2 \checkmark \\
 \hline D & 5 & m/s^2
 \end{array}$
- 56. A 1-kg falling ball encounters 10 N of air resistance. The net force on the ball is:

А	0 N✓
В	4 N
С	6 N
D	10 N

Newton's 3rd Law

57. The number of forces involved (الداخلة) in an interaction between two objects is:

А	0
В	1
С	2√
D	3

- 58. A force is defined (تعريفها) as:
- A part of an interaction between two objects \checkmark
- B a push from an object on itself
- C a pull from an object on itself
- D a push and a pull on the same object
- 59. Newton's 3rd law states that, for two objects X and Y, whenever X exerts a force on Y, then:
- A Y exerts double that force on X
- B Y moves in the opposite direction
- C Y exerts half that force on X
- D Y exerts an equal but opposite force on $X\checkmark$
- 60. In an interaction between two objects, the action and reaction forces are:

A	perpendicular
В	in opposite directions√
С	in the same direction
D	on the same object

61. When a man pushes on a wall with force F, the wall pushes back on him with force of magnitude:

A	zero
В	F/2
С	F✓
D	2 F

62. When a cannon shoots a cannonball with acceleration a_b , the cannon recoils ((x, y)) with acceleration a_c such that:

Chapter 2: Motion & Energy

A	$a_c = a_b$
В	a_c is much larger than a_b
С	a_c is much smaller than $a_b \checkmark$
D	$a_c = 0$

63. When a cannon shoots a cannonball with force F_b , the cannon recoils ($(\mathfrak{L},\mathfrak{L})$) with force F_c such that:

А	$F_c = F_b \checkmark$
В	F_{c} is much larger than F_{b}
С	F_c is much smaller than F_b
D	$F_c = 0$

64. When a cannon shoots a cannonball, the cannon's recoil (الرنداد) is much slower than the cannonball because:

А	the force on the cannon is much less
В	the mass of the cannon is much greater \checkmark
С	the cannon's mass is more distributed (موزع)
D	there is more air resistance

65. When a man stretches a spring with a 100-N force (within its elasticity range), the spring pulls him back with:

А	0 N
В	50 N
С	100 N✓
D	200 N

Work; Energy

- 66. Work is produced only if there is:
- A force and motion \checkmark
- B force and elevation (ارتفاع)
- C force and time
- D time and elevation

67. Work is proportional to:

- A (force) and (1/distance)

 B (force) and (distance)√
- C (1/force) and (distance)
- D (force) and (distance)²

68. The SI unit of work is:

- A newton
- B watt
- C joule√
- D ampere
- 69. A joule is equivalent to:
- A N/m²

- B m/N
- C N/m
- D N.m√
- 70. A cart moves 10 m in the same direction as a 20-N force acting on it. The work done by this force is:

А	200 J√
В	2 J
С	0.5 J
D	20 J

71. A man does 2000-J work in pushing a crate a distance of 10 m on a frictionless floor. The force applied by the man is:

A	20 N	
В	200 N√	F F
С	2000 N	
D	20000 N	

Power

72. An engine (محرك) can do 100,000-J work in 10 s. The power of this engine is:

А	1 MW
В	100 kW
С	1000 W
D	10 kW✓

73. An engine (محرك) can do 75-kJ work in 10 s. The power of this engine in horsepower is:

	А	10 hp√
C 0.1 hp D 100 hp	В	1 hp
D 100 hp	С	0.1 hp
-	D	100 hp

74. The SI unit of power is:

A	newton

- B watt√
- C joule
- D ampere
- 75. A watt is equivalent to:
- A kg.m³/s²
- B $kg^2.m^2/s^3$
- $C kg.m^2/s^3 \checkmark$
- D $kg^2.m^2/s$
- 76. Of the following quantities, the ones that have the same unit are:
- A work and energy√

Chapter 2: Motion & Energy

C energy and power D work and pressure	В	work and power
D work and pressure	С	energy and power
1	D	work and pressure

Mechanical Energy

77. Mechanical energy results from an object's:

- A position only
- B position and/or motion \checkmark
- C motion only
- D neither position nor motion

78. Mechanical energy consists of:

- A kinetic energy and power
- B potential energy and power

C potential and kinetic energy \checkmark

D power and work

Potential Energy

79. Of the following, the form of energy that is NOT potential is the energy of:

А	a moving car√
В	a stretched bow (قوس مشدود)
С	a compressed spring (زنبرك مضغوط)
D	water in a high reservoir (خزان)

80. Potential energy is the energy stored in an object because of its:

А	speed
В	position√
С	charge
D	mass

81. A 20-kg box rests on a 2-m high shelf. Its potential energy relative to the ground is:

B 200 J	
B 200 J	
C 400 J√	
D 800 J	

82. The mass of a box of 200-J potential energy when resting on a 2-m-high shelf is:

А	10 kg√
В	20 kg
С	40 kg
D	80 kg

83. If a 5-kg box sitting on a shelf of height (h) has 100-J potential energy relative to the ground, h equals:

A	1 m
В	2 m√
С	4 m
D	8 m

84. Three 5-kg rocks are raised to a height of 5 m, with Rock₁ raised with a rope, Rock₂ raised on a ramp (منحدر), and Rock₃ raised with an lift (منحدر). The rock that attains the most potential energy is:

A	Rock ₁
В	Rock ₂
С	Rock ₃
D	all the same√

Kinetic Energy

- 85. Kinetic energy is the energy stored in an object because of its:
- A motion√

B position

- C charge
- D mass
- D mass
- 86. The kinetic energy of a 1000-kg car traveling at a speed of 20 m/s is:

A 50 kJ

B 100 kJ

C 200 kJ√

- D 400 kJ
- D 400 KJ
- 87. The mass of a bicycle of 4000-J kinetic energy traveling at 10 m/s is:
- A 40 kg
- B 50 kg
- C 60 kg
- D 80 kg√
- 88. The speed of a 40-kg bicycle of 1620-J kinetic energy is:
- A 9 m/s√
- B 3 m/s
- C 27 m/s
- D 90 m/s

89. If an object's speed doubles, its kinetic energy:

- A remains the same
- B doubles
- C triples
- D quadruples√

- 90. If an object's mass doubles while moving at a constant speed, its kinetic energy:
- A
 remains the same

 B
 doubles√

 C
 triples

 D
 quadruples
- 91. The kinetic energy of a car traveling at 20 m/s is 500 kJ. If it travels at 40 m/s, its kinetic energy becomes:

А	500 kJ
В	1000 kJ
С	2000 kJ√
D	4000 kJ

92. The work done by the engine of a 1000-kg car to move it from rest to a speed of 20 m/s is:

А	50 kJ
В	100 kJ
С	200 kJ√
D	400 kJ

93. The force exerted by the engine of a 1000-kg car to move it from rest to a speed of 20 m/s within 100 m is:

А	1000 N
В	2000 N√
С	4000 N
D	5000 N

Conservation of Energy

94. The total energy of an object of mass (m), falling at height (h) with speed (v) can be written as:

А	$E = \frac{1}{2} mv^2 + 2 mgh$
В	$E = \frac{1}{2} mv^2 + mgh\sqrt{2}$
С	$E = mv^2 + \frac{1}{2} mgh$
D	$\mathbf{E} = \frac{1}{2} \mathbf{m} \mathbf{v}^2 + \frac{1}{2} \mathbf{m} \mathbf{g} \mathbf{h}$
0.5	

- A increases, decreases

- B decreases, decreases
- C decreases, increases√

D increases, increases

- 96. The ram of pile-driver (مِذَكَ) falls from a height of 20 m. Its speed just before touching ground is:
- A 2 m/s
- B 5 m/s
- C 10 m/s
- D 20 m/s√

97. A simple pendulum's bob has speed (v) at its lowest point (1); its highest point (3) has height (h).

	If $n = 20$ cm, v equals:	Bob's mass (m)
A	2 m/s√	
В	5 m/s	PENDULUM
С	10 m/s	2 h
D	20 m/s	h/2
		Reference Line

98. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its kinetic energy at its lowest point (1) is:

A	0 J
В	2 J√
С	5 J
D	10 J

99. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its kinetic energy at point (2) of height ½ h is:

А	5 J
В	2 J
С	1 J√
D	0 J

100. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its total energy at point (2) of height $\frac{1}{2}$ h is:

А	5 J
В	2 J√
С	1 J
D	0 J

CHAPTER 3: HEAT & MATTER

		i unnulas & constant		
mass density = $\frac{m}{V}$	weight density = $\frac{\text{mg}}{\text{V}}$	stress (S) = $\frac{F}{A}$	$T_{\rm C} = \frac{5}{9} (T_{\rm F} - 32^{\circ})$	$T_{\rm F} = \frac{9}{5} (T_{\rm C}) + 32^{\circ}$
$T_{\rm K} = T_{\rm C} + 273$	1 cal = 4.19 J	$Q = c.m.\Delta T$	melting: $Q = m.L_f$ vaporization: $Q = m.L_v$	$F = k.\Delta \ell$ (Hooke's Law)

Formulas & Constants

Key Terms & Definitions

Absolute zero	الصفر المطلق	Evaporation	تبخير	Neutral	متعادل
Absorption	امتصاص	Expansion	تمدد	Nucleus	نواة
Atom	ذرّة	Fluid	مائع	Particle	جُسبْم
Boiling	غليان	Freezing	تجمد	Phase	طۇر
Bonding	ترابط	Fusion	انصبهار	Pressure	ضغط
Charge	شحنة	Gas	غاز	Saturated	مشبع
Compound	مرکب	Heat	حرارة	Solid	صلب
Compression	ضغط	Heat transfer	انتقال الحرارة	Solidification	تصلب
Condensation	تكثف	Humidity	رطوبة	Specific Heat	الحرارة النوعية
Deform	يشوه	Inelastic	غیر مرن	Strain	انفعال
Density	كثافة	Liquid	سائل	State	حالة
Dew	ندی	Latent Heat	الحرارة الكامنة	Stress	إجهاد
Diffusion	انتشار	Matter	مادة	Substance	صنف
Elastic limit	حد المرونة	Melting	ذوبان	Temperature	درجة الحرارة
Elastic range	حيز المرونة	Metal	معدِن؛ فلِزّ	Tensiom	توتر
Elasticity	مرونة	Mixture	خليط أو مزيج	Vaporization	تبخر
Element	عنصر	Molecule	جُزِيْء	Volume	حجم

Temperature

- 1. Converting 77 degrees F to Celsius gives:
- A 25 degrees C√
- B 55 degrees C
- C 75 degrees C
- D 95 degrees C
- 2. Converting 113 degrees F to Celsius gives:
- A 35 degrees C
- B 45 degrees C✓
- C 110 degrees C
- D 165 degrees C
- 3. Converting 257 degrees F to Celsius gives:
- A 55 degrees C B 220 degrees C
- C 125 degrees C \checkmark
- D 335 degrees C
- 4. Converting 10 degrees F to Celsius gives:

- A 25 degrees C
 B 5 degrees C
 C 0 degrees C
 D -12 degrees C√
 5. Converting 20 degrees F to Celsius gives:
 A -7 degrees C√
- B 30 degrees C
- C 42 degrees C
- D -12 degrees C
- 6. Converting -50 degrees F to Celsius gives:
- A -46 degrees C√
- B -32 degrees C
- C -23 degrees C
- D -18 degrees C
- 7. Converting -40 degrees F to Celsius gives:
- A -20 degrees C
- B -30 degrees C
- C -40 degrees C√

D -50 degrees C

- 8. The Fahrenheit and Celsius temperature scales have the same reading at:
- A 32 degrees
- B 0 degrees
- C -32 degrees
- D -40 degrees√
- 9. Converting 15 degrees C to Fahrenheit gives:
- A 59 degrees F√
- B 47 degrees F
- C 21 degrees F
- D -12 degrees F
- 10. Converting 145 degrees C to Fahrenheit gives:
- A 177 degrees F
- B 293 degrees F√
- C 112 degrees F
- D 217 degrees F

11. Converting 35 degrees C to Fahrenheit gives:

- A 59 degrees F
- B 77 degrees F
- C 95 degrees F√
- D 3 degrees F
- 12. Converting 95 degrees C to Fahrenheit gives:
- A 63 degrees F
- B 127 degrees F
- C 275 degrees F
- D 203 degrees F√
- 13. Converting 75 degrees C to Kelvin gives:
- A 348 K√ B 198 K C 32 K D 212 K
- 14. Converting 25 degrees C to Kelvin gives:

А	248 K
В	298 K√
С	47 K
D	237 K

15. Converting -50 degrees C to Kelvin gives:

A	-40 K
В	323 K
С	223 K√
D	-273 K

16. Converting 406 degrees K to Celsius gives:

A 337 degrees C

- 276 degrees C В
- С 579 degrees C
- D 133 degrees C√

17. Converting 175 degrees K to Celsius gives:

-98 degrees C√ А

- B 112 degrees C
- С -213 degrees C
- D 45 degrees C

18. Converting 6000 degrees K to Celsius gives:

- A 6273 degrees C
- B 5727 degrees C√
- С 5911 degrees C
- D 6196 degrees C
- 19. The melting point of pure iron is 1505 degrees C. What Fahrenheit temperature is this?
- 1689 degrees F А B 3563 degrees F С 2741 degrees F√
- D 4112 degrees F
- 20. The melting point of mercury is -38.0 degrees F. What Celsius temperature is this?
- -36 degrees C A В -37 degrees C
- С -38 degrees C

D -39 degrees C√

Heat

21. Find the amount of heat in cal generated by 95 J of work.

A	23 cal√
В	25 cal
С	27 cal
D	24 cal

- 22. Find the amount of heat in kcal generated by 7510 J of work.
- 1.43 kcal A B 1.79 kcal√ 8.11 kcal
- С
- D 31.7 kcal
- 23. Find the amount of work in MJ that is equivalent to 3850 kcal.

А	3.17 MJ
В	0.918 MJ
С	16.1 MJ√
D	8.23 MJ

Chapter 3: Heat & Matter

24. Find the amount of work in kJ that is equivalent to 7.65 kcal of heat.

A	17.7 kJ
В	9.18 kJ
С	1.83 kJ
D	32.1 kJ√

25. Find the mechanical work equivalent (in kJ) of 8550 cal of heat.

А	35.8 kJ√
В	2.04 kJ
С	15.3 kJ
D	23.1 kJ

26. Find the heat equivalent (in kcal) of 763 kJ of work.

А	17.5 kcal	
В	182 kcal√	
С	1232 kcal	
D	3200 kcal	

27. How much work must a person do to offset eating a piece of cake containing 625 Cal?

А	39.2 kJ
В	92.4 kJ
С	2.62 MJ✓
D	13.3 MJ

28. How much work must a person do to offset eating a 200-g bag of potato chips if 28 g of chips contain 150 Cal?

А	320 kJ
В	610 kJ
С	1.2 MJ
D	4.5 MJ√

29. A fuel yields 11.5 kcal/g when burned. How many joules of work are obtained by burning 1 kg of the fuel?

А	48 MJ√
В	36 MJ
С	24 MJ
D	12 MJ

30. A fuel produces 16 kcal/g when burned. If 500 g of the fuel is burned, how many joules of work are produced?

А	22 MJ
В	34 MJ√
С	47 MJ
D	65 MJ

31. Natural gas burned in a gas turbine has a heating value of 110 kcal/g. If the turbine is 25% efficient

and 2.5 g of gas is burned each second, find the power output in kilowatts.

- A 35 kW B 160 kW C 290 kW✓ D 1900 kW
- 32. An industrial engine produces 38,000 kcal of heat. What is the mechanical work equivalent of the heat produced?

А	33 MJ
В	85 MJ
С	120 MJ
D	160 MJ√

Specific & Latent Heat; Change of Phase

33. What heat is needed to change the temperature of 100 kg of copper (c = 0.092 kcal/kg degree-C) from 100 to 200 degrees-C?

A	920 kcal√
В	9.2 kcal
С	92 kcal
D	9200 kcal

34. What heat is needed to change the temperature of 10 kg of water (c = 1.00 kcal/kg degree-C) from 10 to 20 degrees-C?

Α	10 kcal
В	100 kcal√
С	200 kcal
D	419 kcal

35. What heat is needed to change the temperature of 100 kg of steel (c = 0.115 kcal/kg degree-C) from 1000 to 1100 degrees-K?

А	100 kcal
В	300 kcal
С	1150 kcal√
D	4600 kcal

36. What heat should be given off by 10 kg of aluminum (c = 0.22 kcal/kg degree-C) to change their temperature from 200 to 100 degrees-C?

 A
 51 kcal

 B
 430 kcal

 C
 910 kcal

D 220 kcal√

37. How many calories of heat are required to melt 7 g of ice at 0 degrees C? (L-fusion = 80 cal/g)

A 560 cal√

В	135 cal
С	2300 cal
D	1500 cal

38. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 100 degrees C? (L-vaporization = 540 cal/g)

А	540 cal
В	5400 cal√
С	54000 cal
D	540000 cal

39. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 0 degrees C? (c-water = 1 cal/g degree C, Lvaporization = 540 cal/g)

А	640000 cal	
В	64000 cal	
С	6400 cal√	
D	640 cal	

40. How many calories of heat are required by 50 g of ice at 0 degrees C to melt to water at 40 degrees C? (c-water = 1 cal/g degree C, L-fusion = 80 cal/g)

А	2000 cal
В	4000 cal
С	5000 cal
D	6000 cal√

Elasticity; Stress; Hooke's Law

- When a deforming (مشوّه) force acts on an elastic object, the object is:
- A never deformed B permanently (بشکل دائم) deformed C temporarily (وقتياً) deformed√
- D broken into pieces
- 42. An elastic material can be:

А	dough (عجين)
В	clay (طين)
С	lead (رصاص)
D	rubber (مطاط)√

43. When a 10-N force is applied on a 20-cm spring, it extends to 25 cm. What would be its length when a 30-N force is applied to it within its elastic range?

B 15 cm C 30 cm D 20 cm	A	35 cm√
	В	15 cm
D 20 cm	С	30 cm
	D	20 cm

44. When a 100-N force is applied on a 20-cm spring, it

extends to 21 cm. What would be its length when a 1000-N force is applied to it within its elastic range?

A 25 cm

B 30 cm√

C 35 cm

D 5 cm

45. When a 50-N force is applied on a 20-cm spring, it extends to 22 cm. What would be its length when a 75-N force is applied to it within its elastic range?

А	3 cm
В	21 cm
С	23 cm√
D	30 cm

46. When a 10-N force is applied on a 20-cm spring, it is compressed to 18 cm. What would be its length when a 30-N compressing force is applied to it within its elastic range?

А	6 cm
В	16 cm
С	26 cm
D	14 cm√

47. A block of lead with dimensions (10 cm \times 5 cm \times 4 cm) has a mass of 2.3 kg. It exerts the greatest stress on a flat surface when it lies on the side with dimensions:

A	$5 \text{ cm} \times 10 \text{ cm}$
В	$5 \text{ cm} \times 4 \text{ cm} \checkmark$
С	$10 \text{ cm} \times 4 \text{ cm}$
D	same stress on all sides

48. A cube (مكعب) of iron of 10-cm sides weighs 80 N. The stress it exerts on a flat surface is:

А	80 Pa
В	800 Pa
С	8000 Pa√
D	80,000 Pa

49. A cylinder of lead is of 5.64-cm radius, 20-cm height, and 23-kg mass. The stress it exerts on a flat surface when it lies on its flat side is:

Density

50. Density of a substance (صنف) depends on the _____ and _____ of its atoms.

A mass, charge (شحنة)

Chapter 3: Heat & Matter

- B mass, spacing√
- C spacing (تباعد), charge
- D mass, color
- 51. A 500-g block of wood with dimensions (10 cm \times 5 cm \times 4 cm) has density of:
- A
 0.5 g/cm^3

 B
 1.5 g/cm^3

 C
 $2.5 \text{ g/cm}^3 \checkmark$

 D
 3.5 g/cm^3
- 52. A 500-g block of wood with dimensions (10 cm \times 5 cm \times 4 cm) has density of:

А	2500 kg/m³√
В	2.5 kg/m^3
С	0.8 kg/m ³
D	800 kg/m ³

53. A 500-g block of wood with dimensions (10 cm \times 5 cm \times 4 cm) has weight density of:

А	2.5 kN/m ³
В	5 kN/m ³
С	10 kN/m ³
D	25 kN/m ³ √

Properties of Matter (optional)

54. Two or more atoms that bond together by sharing

electrons are called a(n):

A molecule√

B atom

C mixture

D ion

55. Examples of molecules do NOT include:

A water

- B carbon√
- C ammonia
- D methane
- 56. When two atoms of hydrogen bond with one atom of oxygen, they form a molecules of:

A carbon dioxide

- B ammonia
- C water√
- D methane
- 57. When atoms of different elements chemically bond together, they form a:
- A noble gas B new element C mixture D compound√

CHAPTER 4: ELECTRICITY

$e = 1.6 \times 10^{-19} C$ $1/e = 6.25 \times 10^{18}$			$F = k \frac{q_1 \cdot q_2}{d^2}$ $k = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$	
Elec. potential energy: E _p	$E_p = k \frac{Q \cdot q}{d}; V = \frac{E_p}{q}$	$I = \frac{\Delta Q}{\Delta t}$	$\mathbf{R} = \rho \frac{l}{A} \; ; \; \; A = \; \pi \cdot r^2$	
V = I.R		$P = V.I = \frac{V^2}{R} = I^2.R$	$R_{\text{series}} = R_1 + R_2 + \cdots$	$\frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	<u> </u>		•	

Formulas & Constants

Key Terms & Definitions

Alternating current	تیار متردد	Electric field	المجال الكهربائي	Potential difference	فرق الجهد
Capacitor	مكثَّف	Electric potential	الجهد الكهر بائي	Power	قدرة
Charge	شحنة	Electricity	كهرباء	Resistance	مقاومة
Conductor	موصِیّل	Electrostatics	الكهرباء الساكنة	Resistivity	مقاومية
Current	تيار	Insulator	عازل	Semiconductor	شبه موصِّل
Direct current	تیار مباشر	Parallel circuit	دائرة متوازية	Series circuit	دائرة متتالية أو مسلسلة

Electric Charges; Coulomb's Law

- 1. Normally, an atom's net charge is:
- A negative
- B positive
- C zero√ D a vector
- D a vector
- 2. The number of electrons needed to make up one coulomb of charge is:
- A 1.6×10^{-19} B $1.6 \times 10^{+19}$ C 6.25×10^{-18} D 6.25×10^{18}
- 3. A positively charged object is an object with:
- A extra electrons
- B lack (نقص) of protons
- C extra neutrons
- D lack of electrons√
- 4. A negatively charged object is an object with:
- A extra electrons√
- B extra protons
- C extra neutrons
- D lack of (نقص) electrons
- 5. The electrostatic force equation for two charged objects, q₁ and q₂, gives a positive result if:

- A q_1 is positive and q_2 is negativeB q_1 is negative and q_2 is positiveC q_1 and q_2 have the same sign/
- D q_1 and q_2 are neutral
- 6. The electrostatic force equation for two charged objects, q₁ and q₂, gives a negative result if:
- A q_1 repels q_2 B $q_2 = q_1$ C $q_1 = \frac{1}{2} q_2$ D q_1 attracts $q_2 \checkmark$
- 7. The electrostatic force between two charged objects, q_1 and q_2 , is located at:
- $\begin{array}{c|c} A & q_1 \\ \hline B & q_2 \end{array}$
- C q_1 for force from q_2 , and q_2 for force from $q_1 \checkmark$
- D halfway between q_1 and q_2
- 8. The attractive force between two charges $q_1 = \frac{1}{3} C$ and $q_2 = -\frac{1}{3} C$ separated by 1 km is:
- A 1000 N√
- B 100 N
- C 10 N
- D 1 N
- JIN
- 9. The repulsive force between two identical 1-C charges separated by 300 m is:
- A 100 N B 1 kN

С	10 kN
D	100 kN√

Electric Field; Electric Potential

10. The following quantities are all scalar, except for:

- A
 electric current

 B
 electric field√

 C
 electric charge
- D electric potential
- 11. A group of charges (Q) exert a net force F = 10 N on a charge q = 0.2 C located at point (X). This means that the magnitude of the electric field resulting from Q at X equals:
- A
 0.2 N/C

 B
 5 N/C

 C
 10 N/C

 D
 50 N/C
- 12. The electric field around a negative point-charge (Q) points (يتجه):
- Aradially away from QBradially toward $Q\checkmark$ Cin circles around Q
- D in ellipsoids (مجسم بيضوي) around Q
- The electric field around a positive point-charge (Q) points (يتجه):
- A radially away from Q✓
- B radially toward Q
- C in circles around Q
- D in ellipsoids (مجسم بيضوي) around Q
- 14. The electric field between two point charges (+Q) and (-Q) separated by a distance (d) points (بنجه):
- A on a straight line from +Q to $-Q\checkmark$
- B radially toward +Q
- C radially toward –Q
- D on a straight line from -Q to +Q
- 15. The electric field around two point charges (+Q) and (-Q) separated by a distance (d) is:
- A concentric (متداخل) cubes
- B radially toward Q
- C radially toward -Q
- √(مجسم بيضوي) Concentric ellipsoids
- 16. The SI unit for the electric potential energy is the:
- A ampere

- B watt
- C volt
- D joule√

17. The SI unit for the electric potential is the:

A ampere

- B watt
- C volt√
- D joule
- 18. One volt is equal to:
- A 1 joule/second
- B 1 joule/coulomb√
- C ampere/second
- D ampere/coulomb
- 19. A charge q = 0.5 C located at point (X) has electric potential energy PE = 10 J caused by a group of charges (Q). This means that the electric potential resulting from Q at X equals:

А	0.5 V
В	5 V
С	10 V
D	20 V⁄

Capacitor; Resistance

- 20. Electric energy can be stored in a:
- A
 resistance

 B
 capacitor√

 C
 switch

 D
 light bulb
- 21. A capacitor consists of:
- A a conductor between two insulating plates
- B an insulator between two conducting plates \checkmark
- C two insulating plates in vacuum
- D two conducting plates in vacuum
- 22. When a capacitor is connected to a battery, the plate connected to the _____:
- A positive, positive√
- B negative, positive
- C positive, negative
- D positive, neutral
- D positive, neutral
- 23. If a capacitor is connected to a battery of potential difference V, the capacitor becomes fully charged when the potential difference between its plates equals:

Chapter 4: Electricity

A	0
В	V✓
С	V/2
D	2V

24. A 10-km copper wire (resistivity = $1.7 \times 10^{-8} \Omega$.m) has cross-sectional area = 1 mm². Its resistance is:

А	1.7 Ω
В	17 Ω
С	170 Ω √
D	1700 Ω

Ohm's Law; Electric Power; Electric Circuits

25. An electric circuit consists of a $24-\Omega$ resistance connected across the terminals of a 12-V battery. The electric current in this circuit is:

А	24 amperes
В	12 amperes
С	2 amperes
D	0.5 amperes√

26. An electric circuit consists of a light bulb connected across the terminals of a 12-V battery. If the electric current in this circuit is 6 mA, the resistance of the light bulb is:

A	0.5 kΩ
В	2 kΩ√
С	20 Ω
D	2 Ω

27. If the power rating of a vacuum cleaner is 550 W, the current it draws in a 220-V electric circuit is:

А	0.4 amperes
В	1.5 amperes
С	2.5 amperes√
D	5 amperes

28. If a light bulb in a 220-V electric circuit draws 0.5 amperes, its power rating is:

А	110 W✓
В	440 W
С	40 W
D	75 W

29. A classroom has ten 25-W compact fluorescent lamps (CFL). If these lamps are turned on for 10 hours every day, their energy consumption (استهلاك) in 20 days is:

А	1 kWh	
В	5 kWh	

- C 10 kWh
- D 50 kWh✓
- 30. In electricity, the kilowatt-hour is a unit of:
- A electric current
- B electric power
- C electric potential
- D electric energy√
- 31. Three identical light bulbs, each of resistance 12 Ω , are connected in series to a 12-V battery. Their equivalent resistance is:

А	4 Ω
В	12 Ω
С	24 Ω
D	36 Ω√

32. Three identical light bulbs, each of resistance 12 Ω , are connected in series to a 12-V battery. The potential difference across each light bulb is:

A	0 V
В	4 V✓
С	8 V
D	12 V

33. Three identical light bulbs, each of resistance 12 Ω , are connected in series to a 12-V battery. The current passing through each light bulb is:

А	⅓ A√
В	² / ₃ A
С	1 A
D	3 A

34. Three identical light bulbs, each of resistance 12 Ω , are connected in parallel to a 12-V battery. Their equivalent resistance is:

А	4 Ω√	
В	12 Ω	
С	24 Ω	
D	36 Ω	

35. Three identical light bulbs, each of resistance 12 Ω , are connected in parallel to a 12-V battery. The potential difference across each light bulb is:

А	0 V
В	4 V
С	8 V
D	12 V✓

36. Three identical light bulbs, each of resistance 12 Ω ,

Chapter 4: Electricity

are connected in parallel to a 12-V battery. The current passing through each light bulb is:

А	1/3 A
В	² / ₃ A
С	1 A✓
D	3 A

37. In an electric circuit consisting of two resistances (10 Ω and 5 Ω) connected in series, if the current through the 10- Ω resistance is 1 A, the current through other resistance is:

A 0 A

В	0.5 A
С	1 A√
D	2 A

38. In an electric circuit consisting of two resistances (10 Ω and 5 Ω) connected in parallel, if the current through the 10- Ω resistance is 1 A, the current through other resistance is:

А	0 A
В	0.5 A
С	1 A
D	2 A√

CHAPTER 5: OPTICS

Formulas & Constants

$f = c / \lambda \text{ or: } c = f \cdot \lambda$			$c = 3 \times 10^8 \text{ m/s}$
\mathcal{J} =frequency; λ =wavelength)	(frequency = 1/(time of 1 cycle))	constant × wave frequency)	$h = 6.6 \times 10^{-34} J.s$
10^{0} to 10^{24+} Hz	4×10^{14} to 8×10^{14} Hz	$\theta_i = \theta_r$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
(frequencies in the e-m spectrum)	(frequency range of visible light)	(law of reflection)	1 HZ - 1 S
Snell's law: $n_i \sin \theta_i = n_r \sin \theta_r$ (i = incidence; r = refraction)	Index of refraction: $n = \frac{c}{v}$ (v = speed of light in medium)	$\frac{1}{f} = \frac{1}{s_o} + \frac{1}{s_i} \text{ or: } s_i = \frac{s_o \cdot f}{s_o - f}$ (o = object; i = image)	$M = \frac{h_i}{h_o} = -\frac{s_i}{s_o}$ $= \frac{1}{1 - s_o/f}$

Key Terms & Definitions

Rey Terms & Deminions					
Aberration	زيغ	Focal point	البؤرة	Prism	منشور
Absorption	امتصاص	Frequency	تردد	Rainbow	قوس المطر
Amplitude	ارتفاع الموجة	Electromagnetic	كهرومغناطيسي	Ray	شعاع
Astigmatism	انحراف في القرنية	Incidence	سقوط	Real image	صورة حقيقية
Beam	حزمة	Infrared	تحت الحمراء	Reflection	انعكاس
Chromatic	لونيّ	Inverted image	صورة مقلوبة	Refraction	انکسار
Concave	مقعر	Least time principle	قاعدة الزمن الأقصر	Resonance	رنين
Converge	يركز	Lens	عدسة	Source	مصدر
Convex	محدب	Magnify	يکبّر	Spectrum	طيف
Cornea	القرنية	Medium	وسط	Specular	مرئي؛ بصري
Critical angle	الزاوية الحرجة	Microwaves	الموجات شديدة القصر	Transparent	شفاف
Defect	خلل	Mirage	سراب	Ultraviolet	فوق البنفسجي
Deformation	تشوّه	Mirror	مرآة	Upright image	صورة قائمة
Diffuse	مبعثر أو منتشر	Oscillation	ارتجاج أو اهتزاز	Violet	بنفسجي
Dispersion	انتشار	Period	فترة الموجة	Virtual image	صورة وهمية
Diverge	يوزع	Photon	فوتون	Visible light	الضوء المرئي
Fiber optics	تلألياف البصرية	Plane	مسطح	Wave	موجة
Focal distance	البعد البؤري	Polished	مصقول	Wavelength	طول الموجة

- 1. Light is the oscillation of:
- A electric & sound fields
- B electric & magnetic fields√
- C sound & magnetic fields
- D electric & gravitational fields

- 2. Shaking an electrically charged rod to-and-fro in empty space produces:
- A air waves
- B sound waves
- C electromagnetic waves√
- D vacuum waves
- 3. Electromagnetic waves start from a vibrating:
- (شَوْكة) A fork
- B string (وَتَر)
- (زنبرك) C spring
- D charge√
- 4. In an electromagnetic wave, the electric and magnetic fields are:
- A perpendicular to each other and to the direction of

1		motion√	Cr
	В	parallel to each other and to the direction of motion	Dr
		perpendicular to each other and parallel to the	
	C	direction of motion	<mark>12.</mark> .
	D	parallel to each other and perpendicular to the	
		direction of motion	A 1
(<mark>5.</mark>	A wave's frequency is:	B r
		the number of waves repeating (تتكرر) every second	C v
	A B		Dι
		the time duration for one complete wave	<mark>13</mark> . '
	C	the maximum value of a wave	A 1
	D	the length of a single wave	B 1
	<mark>6</mark> .	A wave's wavelength is:	C 1
	А	the number of waves repeating (تتكرر) every second	D 1
	В	the time duration for one complete wave	
	С	its maximum value	<mark>14.</mark> ′
	D	the length of a single wave√	A 2
6	<mark>7.</mark>	Going from left to right in the electromagnetic	B 4
	' ·	spectrum, the following happens:	Ce
1	А	both wavelength and frequency increase	D 8
	В	both wavelength and frequency decrease	
	C	wavelength increases and frequency decreases	
	D	wavelength decreases and frequency increases√	15.
			A
	8.	In the electromagnetic spectrum, the narrowest range is that of:	B r
	A	radio waves	C r
	В	x-ray waves	Ds
	С	visible light waves√	<mark>16.</mark> 1
	D	ultraviolet waves	At
(<mark>9.</mark>	Electromagnetic waves that travel in vacuum slower	Βt
	-	than light are:	C t
1	А	gamma-ray waves	Dt
	В	x-ray waves	
	С	ultraviolet waves	<mark>17.</mark>]
	D		
		none of these√	
	10		A Z
	<mark>10</mark> .	In the electromagnetic spectrum, the highest energy	В
		In the electromagnetic spectrum, the highest energy is that of:	B C 2
	A	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves	B Y C Z D Z
	A B	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves	B C 2
	A B C	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves	B 1 C 2 D 2 18, 1 A s
	A B	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves ultraviolet waves	B C 2 D 2 18,
	A B C D	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves ultraviolet waves In the electromagnetic spectrum, the lowest	B 1 C 2 D 2 18, 1 A s
	A B C D	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves ultraviolet waves In the electromagnetic spectrum, the lowest frequency is that of:	B C D 2 18, X B f
	A B C D 11.	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves ultraviolet waves In the electromagnetic spectrum, the lowest frequency is that of: ultraviolet waves	B C 2 D 2 I8 A s B f C v D z
	A B C D 11. A B	In the electromagnetic spectrum, the highest energy is that of: gamma-ray waves√ x-ray waves blue light waves ultraviolet waves In the electromagnetic spectrum, the lowest frequency is that of:	B C D 2 18, v A S B f C v

2	red	light	waves
---	-----	-------	-------

radio waves√

- Among the following electromagnetic waves, the longest wavelength is for:
- infrared waves
- microwaves√
- visible light waves
- ultraviolet waves

The wavelength of 300-MHz microwave is:

μm mm 1 cm 1 m√

The frequency of $0.5 - \mu m$ green light is:

A	2	×	10^{14}	Hz

 $4 \times 10^{14} \,\mathrm{Hz}$ $6 \times 10^{14} \text{ Hz}$

 $8 \times 10^{14} \text{ Hz}$

Reflection

15.	Wave reflection	means	that the	wave always:	
-----	-----------------	-------	----------	--------------	--

- enters from one medium into another remains in the same medium \checkmark returns along the same line of incidence slides along the border between two media We see most things around us because: they are primary sources of light they are secondary sources of light they reflect light√ they absorb light If light beam (X) falls obliquely on a mirror and reflects into beam (Y), we can say that: X is always perpendicular to the mirror Y is always perpendicular to the mirror X and Y make equal angles with the mirror \checkmark X and Y are perpendicular to each other When a light beam is reflected, it keeps a constant: speed frequency wavelength

 - all of these√

The angle of reflection is always:

A equal to the angle of incidence \checkmark	B two opposite directions
B smaller than the angle of incidence	C no direction
C larger than the angle of incidence	D all directions√
D equal to the angle of refraction	27. You can see the road ahead of your car at nigh
20. An object placed in front of a plane mirror forms an	because of:
image that is of size and	A specular reflection
distance to the mirror.	B absorption
A same; same√	C diffuse reflection√
B larger; same	D refraction
C same; nearer	28. If a compary mirror of 2 m facel longth is placed 8
D same; farther	28. If a convex mirror of 2-m focal length is placed 8 r away from a 2.5-m-high door, the image of the doo
مقعر) mirror (مقعر) مقعر) مقعر	will appear in the mirror at a distance of:
and its focus forms an image that is of size	A 1.6 m√
and distance to the mirror.	B 2.4 m
A smaller; farther	C 0.8 m
B larger; nearer	D 3.2 m
C smaller; nearer	29. If a convex mirror of 2-m focal length is placed 8 r
D larger; farther√	away from a 2.5-m-high door, the height of th
22. An object placed in front of a convex (محدب) mirror	door's image will be:
forms an image that is of size and	A 0.1 m
distance to the mirror.	B 0.5 m√
A smaller; farther	C 1 m
B larger; nearer	D 1.25 m
C smaller; nearer√	30. If a convex mirror of 2-m focal length is placed 8 r
D larger; farther	away from a 2.5-m-high door, the magnification of
3. An image formed behind a mirror is virtual for:	the door in the mirror will be:
A plane, convex and concave√	A 5
B plane and concave, and real for convex	B 2
C plane and convex, and real for concave	C 0.5
D convex and concave, and real for plane	D 0.2√
	31. If a convex mirror of 2-m focal length is placed 8 r
24. Diffuse reflection occurs when light is incident on a surface that is:	away from a 2.5-m-high door, the image of the doo
A smooth (أملس)	will be:
B polished (مصقول)	A upright and reduced ✓
C transparent (شفاف)	B upright and enlarged
D rough (خشن)√	C inverted and reduced
	D inverted and enlarged
25. Specular (بصري) reflection occurs when light is incident on a:	32. If a concave mirror of 2-m focal length is placed 7 r
A lens	away from a 2.5-m-high door, the image of the door will appear in the mirror at a distance of:
B mirror√	A 1.4 m
C painted wall	$\frac{A}{B} = 2.8 \text{ m}$
D page of a book	C 0.7 m
26. After diffuse reflection, light goes in:	D 5.6 m
A one direction	
	33 . If a concave mirror of 2-m focal length is placed 7 m

away from a 2.5-m-high door, the height of the door's image will be:

А	0.1 m
В	0.5 m
С	1 m⁄
D	1.25 m

34. If a concave mirror of 2-m focal length is placed 7 m away from a 2.5-m-high door, the magnification of the door in the mirror will be:

А	-2
В	+2
С	-0.4√
D	+0.4

35. If a concave mirror of 2-m focal length is placed 7 m away from a 2.5-m-high door, the image of the door will be:

A	upright and reduced
В	upright and enlarged
С	inverted and reduced√
D	inverted and enlarged

Refraction

36. The process of light bending when passing obliquely from one medium into another is called:

- A specular reflection
- B absorption
- C diffuse reflection
- D refraction√

37. When light is refracted, it keeps a constant:

- A speed
- B frequency√
- C wavelength
- D all of these
- 38. When light is refracted in passing from air into water, its angle of refraction is:
- A equal to the angle of incidence
- B more than the angle of incidence
- C less than the angle of incidence \checkmark
- D zero
- **39.** Mirage (سراب) happens on hot days because light rays coming toward us from the sky:
- A bend toward the ground \checkmark
- B bend away from the ground
- С bounce (يرتد) off the ground

- D stick to the ground
- **40**. What we actually see in a mirage (سراب):
- A water vapor collecting above the road
- В water that evaporates very fast
- С sky light that appears like water \checkmark
- only an imaginary image D
- 41. If the speed of light in water is 0.75 c, the index of refraction of water is:
- A 1.33√ В 0.75 С 2.25 0.25 D
- 42. The index of refraction of water is 4/3. A beam of light incident from air into water at 30° (sin $30^{\circ} = \frac{1}{2}$) refracts at an angle of:

А	13°
В	9°
С	49°
D	22°√

43. The index of refraction of water is 4/3. A beam of light incident from water into air at 30° (sin $30^{\circ} = \frac{1}{2}$) refracts at an angle of:

42°√ A В 90° С 49° 22° D

- 44. The index of refraction of water is 4/3. This means that the critical angle of water (into air) is:
- 42° А В 90°
- С 49°√
 - 22°
- D
- 45. If a beam of light is incident from water into air at the critical angle, its angle of refraction in air is:
- 0° А B 90°√ С 60° D 30°

46. A beam of light is directed from the bottom of a swimming pool so as to hit the top surface at a 60°angle. This beam will then undergo (يخضع ل) a total:

- dispersion A В diffuse reflection
- internal reflection√

D refraction	B red light√
47. A beam of light falling obliquely on a pane (لوح) of glass leaves the pane such that it is:	C violet light D green light
A parallel to the pane	54. Separation of light falling on a prism into colors is
B perpendicular to the pane	called:
C perpendicular to its original direction	A dispersion
D parallel to its original (أصلي) direction√	B reflection
48. A fish under water appears nearer because of:	C absorption
A refraction	D mirage
B aberration	55. When white light falls on a prism (as shown), its
C reflection	color components separate so that the highest (from
D dispersion	base) is:
49 . Light travels through an optical fiber by:	A blue light
A dispersion	B green light
B diffuse reflection	C violet light \square red light \checkmark
C total internal reflection \checkmark	D red light√
D total refraction	56. You can see a rainbow on a humid day only if the sunlight is coming from:
	A above
Dispersion; Rainbow	B nowhere
Visible Spectrum	C behind you√
	D in front of you
RedOrangeYellowGreenBlueIndigoViolet $f \approx 4 \times 10^{14} \text{Hz}$ $6 \times 10^{14} \text{Hz}$ $8 \times 10^{14} \text{Hz}$	57 Deinhenn neuelte fram that
$J \approx 800 \text{ nm}$ 600 nm 400 nm	57. Rainbow results from that:
50. In the visible light spectrum, red appears at the:	A raindrops make the shape of prisms in the air
A right	B light disperses inside raindrops√
B left√	C raindrops form water ponds on the ground
C middle	D raindrops reflect light at different angles
D outside	(ترتيب): Rainbow is formed in the following sequence
51. In the visible light spectrum, the longest-wavelength	A refraction \rightarrow reflection \rightarrow refraction \checkmark
light is:	B reflection \rightarrow refraction \rightarrow reflection
A red⁄	C refraction \rightarrow refraction \rightarrow reflection

Lenses

reflection \rightarrow reflection \rightarrow refraction

- 59. A converging lens usually has two surfaces and is ______ at its center than its edges.
- A convex (محدب); thinner В concave (مقعر); thinner С concave; thicker
- D convex; thicker√
- 60. A diverging lens usually has two surfaces and is ______ at its center than its edges:
- А convex (محدب); thinner

Chapter 5: Optics

glass or water is:

В blue

С

green D violet

light is:

A red

B blue

C green

D violet√

A blue light

52. In the visible light spectrum, the highest-frequency

53. The light component that travels the fastest through

D

- B concave (مقعر); thinner√
- C concave; thicker
- D convex; thicker
- 61. A converging lens converges a beam of light that is parallel to its principal axis into:
- A the focal point on the other side \checkmark
- B the focal point on the same side
- C the center of curvature on the same side
- D the center of curvature on the other side
- 62. A diverging lens diverges a beam of light that is parallel to its principal axis so as to appear coming from:
- A the focal point on the other side
- B the focal point on the same side \checkmark
- C the center of curvature on the same side
- D the center of curvature on the other side
- 63. Light passing through the center of a lens:
- A bends up for a diverging lens
- B bends up for a converging lens
- C passes without deviation for both types \checkmark
- D gets reflected for both types
- 64. When an object is placed inside the focal point of a converging lens, its image is:
- A real and farther
- B real and nearer
- C virtual and nearer
- D virtual and farther \checkmark
- 65. When an object is placed outside the focal point of a converging lens, its image is:
- ✓ (مقلوبة) A real and inverted
- B real and upright (قائمة)
- C virtual and upright
- D virtual and inverted
- 66. Distortion (تشويه) in the image of a lens is called:
- A conversion
- B aberration√
- C dispersion
- D refraction
- 67. Distortion (تشويه) in the image of a lens caused by different speeds of the color components (مكونات) of light is called:
- A spherical aberration
- B linear aberration
- C astigmatic aberration

Chapter 5: Optics

D chromatic aberration \checkmark

- 68. An eye defect (خلل) where the cornea (القرنية) is curved unevenly (بعدم اتساق) is called:
- A conversion
- B dispersion
- C astigmatism√
- D refraction

69. If a converging lens of 2-m focal length is placed 7 m away from a 2.5-m-high door, the distance of the door's image from the lens will be:

- A 1.4 m B 2.8 m√ C 0.7 m
- D 5.6 m
- 70. If a converging lens of 2-m focal length is placed 7 m away from a 2.5-m-high door, the height of the door's image will be:
- A
 0.1 m

 B
 0.5 m

 C
 1 m√

 D
 1.25 m
- **71**. If a converging lens of 2-m focal length is placed 7 m away from a 2.5-m-high door, the magnification of the door in the lens will be:

А	-2
В	+2
С	-0.4√
D	+0.4

- 72. If a converging lens of 2-m focal length is placed 7 m away from a 2.5-m-high door, the image of the door will be:
- A upright and virtual
- B inverted and virtual
- C upright and real
- D inverted and real \checkmark
- **73.** If a diverging lens of 2-m focal length is placed 8 m away from a 2.5-m-high door, the distance of the door's image from the lens will be:
- A 1.6 m√
- B 2.4 m
- C 0.8 m
- D 3.2 m
- 74. If a diverging lens of 2-m focal length is placed 8 m away from a 2.5-m-high door, the height of the door's image will be:

A	0.2 m
В	0.5 m√
С	1 m
D	2 m

75. If a diverging lens of 2-m focal length is placed 8 m away from a 2.5-m-high door, the magnification of the door in the lens will be:

А	-0.4
В	+0.4
С	-0.2
D	+0.2√

76. If a diverging lens of 2-m focal length is placed 8 m away from a 2.5-m-high door, the image of the door will be:

A upright and virtual√

B inverted and virtual

C upright and real

D inverted and real