

 \mathbf{Q} **1**. For the reaction shown,

 $4 \text{HCl}_{(g)} + O_{2(g)} \rightarrow 2 \text{H}_2 O_{(g)} + 2 \text{Cl}_{2(g)}$ calculate the expected amount of Cl₂ (in moles) that are formed from 64 g HCl? (Given that: H = 1.00 g/mol, Cl = 35.5 g/mol)

- A. 2.00 mol
- B. 4.00 mol
- C. 1.75 mol
- D. 0.88 mol

 \mathbf{Q} **2.** For the combustion reaction of ethanol,

$$C_2H_6O_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)}$$

calculate the CO_2 molecules formed if 23 g of ethanol was

burnt? (C = 12, H = 1, O = 16).

- A. 6.02×10^{23} molecules.
- B. 3.01 x 10²³ molecules.
- C. 1.00 molecules.
- D. 2.00 molecules.

 $C_{2}H_{6}O - 2 CO_{2}$ Moles: 1 2 $\frac{23}{46} = 0.5$ Molar mass = 2(12) + 6(1) + 1(16) = 46
(C_{2}H_{6}O)
Moles (Cl_{2}) = $\frac{0.5 \times 2}{1} = 1$ CO₂ molecules = moles x 6.02 x 10²³
= 1 x (6.02 x 10²³) = 6.02 x 10²³ molecules

Q 3. For the following reaction,

$$2 \operatorname{Al}_{(s)} + 3 \operatorname{Cl}_{2(g)} \rightarrow 2 \operatorname{AlCl}_{3(s)}$$

calculate the theoretical yield (in grams) if 1 mole of each reactant is used? (molar mass $AICI_3 = 133.34$ g/mol)

 $2 \text{ AI} \longrightarrow 2 \text{ AICI}_3$ $3 \text{ CI}_2 \longrightarrow 2 \text{ AICI}_3$ A. 133.34 g.Moles: 22B. 89.34 g.Given 1?C. 266.68.moles (AICI_3) = 1 molD. None.Mone.

Theoritical yield (AICI₃) = moles x molar mass = 0.67 x 133.34 = 89.34 g

Q 4. For the following reaction,

$$Ti_{(s)}$$
 + $2Cl_{2(g)} \rightarrow TiCl_{4(g)}$

determine the limiting reactant if 20.1 g Ti was mixed with 29.8 g Cl_2 ? (Ti = 47.88, Cl = 35.5)

 A. Ti.
 Ti
 TiCl4
 $2 Cl_2$ TiCl4

 B. Cl_2 .
 Moles: 1
 1
 2 1

 C. TiCl_4.
 Given $\frac{20.1}{47.88} = 0.42$?
 $\frac{29.8}{71} = 0.42$?
 2

 D. None.
 moles (TiCl_4) = 0.42 mol
 moles (TiCl_4) = 0.21 mol

Cl₂ is the limitimg reactant

Less moles

Q 5. Which one of the following compounds gives a solution that doesn't conduct the electricity?

 $HCI - CH_{3}COOH - NaCI - Sugar$

- A. HCl.
- B. CH₃COOH.
- C. NaCl.
- D. Sugar.

NaOH: NaOH_(s)
$$\longrightarrow$$
 Na⁺_(aq.) + OH⁻_(aq.) strong electrolyte
CH₃COOH: CH₃COOH_(aq.) \longrightarrow CH₃COO⁻ + H⁺_(aq.) Weak
electrolyte
NaCl: NaCl_(s) \longrightarrow Na⁺_(aq.) + Cl⁻_(aq.) strong electrolyte
sugar: C₁₂H₂₂O_{11_(s) \longrightarrow C₁₂H₂₂O_{11_(aq.) nonelectrolyte}}

Q 6. Find the molarity of a solution that was formed by dissolving 51.5 g of sodium bromide in 500 ml solution? (Na = 23 g/mol, Br = 80 g/mol)

Q 7. How many moles of KCl are in 100 mL of 1.50 M KCl solution?

- A. 0.15 moles.
- 3
- C. 1.5 moles.

B. 150 moles.

D. None.

 $moles(KCI) = M \times V_{L} = 1.5 \times 0.1 = 0.15 mol$

Q 8. What is the required mass of KNO_3 to make a 500 mL solution of 1.0 M KNO_3 solution? ($KNO_3 = 101$ g/mol)

Q 9. If you dilute 300 mL of a 1.5 M solution of LiCl to 1.0 L, the new concentration of the solution will be .

- A. 4.5 M.
- B. 0.45 M.
- C. 450 M.
- D. None.

For dilution problems: $M_1 \times V_1 = M_2 \times V_2$

$$M_1 = 1.5$$
, $V1 = 300 \text{ mL}$
 $M_2 = ?$, $V_2 = 1 \text{ L} = 1000 \text{ mL}$

$$1.5 \times 300 = M_2 \times 1000$$
$$M_2 = \frac{1.5 \times 300}{1000} = 0.45 \text{ M}$$

\mathbf{Q} 10. Which of the following substances gives weak electrolyte when it is dissolved in water

A. NaCl. NaCl \longrightarrow Na⁺_(aq.) + Cl⁻_(aq.) B. Sugar. C₁₂H₂₂O₁₁ \longrightarrow C₁₂H₂₂O₁₁ (aq.)C. Acetic acid (CH₃COOH). CH₃COOH \longrightarrow CH₃COO⁻ + H⁺_(aq.) D. None.

Q 11. The oxidation state of sulfur atom in HSO_4^- ion is

A. -2.

.

- B. +2.
- C. -6.

For HSO₄-

H (group 1A), H has +1 O (group 6A), O has -2

Sum of oxidation states = charge of ion

1(+1) + 1(X) + 4(-2) = -1

 $1 + X - 8 = -1 \implies X = +6$

Q 12..... atoms can form bond through sharing of electrons between the two atoms.

- A. Two metal, covalent.
- B. Two metal, ionic.
- C. Two nonmetal, covalent.
- D. Two nonmetal, ionic.

Q 13. Triple covalent bonding involves sharing of electrons.

Q 14. Lewis structure of P – atom contains dots.

A. 1.

B. 3.

P in group 5A in the periodic table

••

• P •

P has 5 valence electrons

Lewis structure of P is :

Q 15. Lewis structure of water molecule shows the presence of bonding pair(s) and lone pair(s) of electrons.

A. two, two.

- B. two, one.
- C. one, two.
- D. one, one.

Q 16. The following Lewis structure can be used to describe the molecule. $\ddot{}$

- A. BF₃.
- B. AICI3.
- C. NH_3 . D. NCl_3 .

Y----X----Y

Central atom has 3 bonds + lone pair (2 electrons) , has 5 valence electrons. so, it is located at group 5.

Y without lone pairs, so Y = atoms are H atoms.

Q 17. According to the periodic table trends, the correct electronegativity order for the following elements is: Rb, F, Na, Cl

- A. Cl > F > Rb > Na.
- B. F > CI > Rb > Na.
- C. F > Cl > Na > Rb.
- D. Cl > F > Na > Rb.

Electronegativity Trends in Periodic Table

															_				
	1A																	8A	
1	H	2A						8	B				3A	4A	5A	бA	7A	He]
2	Li	Be						_	L	-			B	C	Ν	0	F	Ne	
3	Na	Mg	3 B	4B	5B	бВ	7 B	1)	IB	2B	Al	Si	P	S	Cl	Ar	
- 4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Кг	
5	Rb	Sr	Y	Zr	Nb	Mo	Τc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
б	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn	
7	Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt										
anthanides			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
c tinides			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

Electronegativity increases from bottom to top in a column. Electronegativity increases from left to right across a group.

Q 18. Two atoms with 0.9 electronegativity difference, form type of bonding.

- A. Pure covalent.
- B. Nonpolar covalent.
- C. Polar covalent.
- D. Ionic.

Type of bond vs. Electronegativity difference

- 1. \triangle EN = 0 Pure covalent bond
- 2. \triangle EN = 0.1 0.4 Nonpolar covalent bond
- 3. \triangle EN = 0.5 1.9 Polar covalent bond
- 4. $\Delta EN > 2$ lonic bond

Q 19. Which pair of elements is most likely to form an ionic compound if allowed to react together.

- A. Al and Si.
- B. C and F.
- C. Fe and Ca.
- D. K and Br.

Q 20. The following order of bonds is well describing the bond trend among the elements of periodic table. C = C < C = C < C - C

- A. Strength.
- B. Length.
- C. Energy.

D. none.

Order of bond strength: $C \equiv C > C = C > C - C$

Order of bond length: $C \equiv C < C = C < C - C$

\mathbf{Q} 21. For the following halogens, the order of increasing F-F, CI-CI, Br-Br, I-I the bond energy is

A. $I_2 > Br_2 > CI_2 > F_2$. B. $F_2 > Cl_2 > Br_2 > l_2$. C. $F_2 > Cl_2 > l_2 > Br_2$. D. $Cl_2 > F_2 > Br_2 > I_2$.

With my best wishes

Khaled Khalil