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Topics of This Lecture

3

 Linear filters
 What are they? How are they applied?

 Application: smoothing

 Gaussian filter

 What does it mean to filter an image?

 Nonlinear Filters
 Median filter

 Multi-Scale representations
 How to properly rescale an image?

 Image derivatives
 How to compute gradients robustly?
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Common Types of Noise
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 Salt & pepper noise
 Random occurrences of 

black and white pixels

 Impulse noise
 Random occurrences of 

white pixels

 Gaussian noise
 Variations in intensity drawn

from a Gaussian (“Normal”) 
distribution.

 Basic Assumption
 Noise is i.i.d. (independent &

identically distributed) 



Gaussian Noise
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>> noise = randn(size(im)).*sigma;

>> output = im + noise;



First Attempt at a Solution
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 Assumptions: 

 Expect pixels to be like their neighbors

 Expect noise processes to be independent from pixel to pixel

(“i.i.d. = independent, identically distributed”)

 Let’s try to replace each pixel with an average of all the 

values in its neighborhood…



Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Correlation Filtering
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 Say the averaging window size is 2k+1 x 2k+1:

 Now generalize to allow different weights depending 

on  neighboring pixel’s relative position:

Loop over all pixels in 

neighborhood around  image pixel 

F[i,j]

Attribute uniform 

weight to each 

pixel

Non-uniform weights



Correlation Filtering
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 This is called cross-correlation, denoted

 Filtering an image

 Replace each pixel by a 
weighted combination of 
its neighbors.

 The filter “kernel” or “mask” 
is the prescription for the 
weights in the linear 
combination.

F

(0,0)

(N,N)

H
4

1 2

3



Convolution
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 Convolution: 

 Flip the filter in both dimensions (bottom to top, right to left)

 Then apply cross-correlation

Notation for 

convolution 

operator

F

(0,0)

(N,N)

H
4

1 2

3

H
4

12

3



Convolution vs. Correlation
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 Correlation

 Convolution

 Note

 If H[-u,-v] = H[u,v], then correlation  convolution.

Note the difference!



Shift Invariant Linear System
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 Shift invariant: 

 Operator behaves the same everywhere, i.e. the value of the 

output depends on the pattern in the image neighborhood, 

not the position of the neighborhood.

 Linear: 

 Superposition: h * (f1 + f2) = (h * f1) +  (h * f2)

 Scaling: h * (k f) = k (h * f)



Properties of Convolution
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 Linear & shift invariant

 Commutative: f  g = g  f

 Associative: (f  g)  h = f  (g  h)

 Often apply several filters in sequence:    (((a  b1)  b2)  b3)

 This is equivalent to applying one filter:   a  (b1  b2  b3)

 Identity: f  e = f

 for unit impulse e = […, 0, 0, 1, 0, 0, …]. 

 Differentiation:



Averaging Filter
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 What values belong in the kernel H[u,v] for the moving 

average example?
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Smoothing by Averaging
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depicts box filter: 

white = high value, black = low value

Original Filtered

“Ringing” artifacts!



Smoothing with a Gaussian
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Original Filtered



Gaussian Smoothing
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 Gaussian kernel

 Rotationally symmetric

 Weights nearby pixels more
than distant ones

 This makes sense as 
‘probabilistic’ inference 
about the signal

 A Gaussian gives a good model 
of a fuzzy blob



Gaussian Smoothing
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 What parameters matter here?

 Variance  of Gaussian

 Determines extent of smoothing

σ = 2 with 3030 
kernel

σ = 5 with 3030 
kernel



Gaussian Smoothing
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 What parameters matter here?

 Size of kernel or mask
 Gaussian function has infinite support, but discrete filters use finite 

kernels

 Rule : set filter half-width to about 3σ

σ = 5 with 1010 
kernel

σ = 5 with 3030 
kernel



Gaussian Smoothing in Matlab
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>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);

>> imshow(outim);



Topics of This Lecture
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 Linear filters

 What are they? How are they applied?

 Application: smoothing

 Gaussian filter

 What does it mean to filter an image?

 Nonlinear Filters

 Median filter

 Multi-Scale representations

 How to properly rescale an image?

 Image derivatives

 How to compute gradients robustly?



Why Does This Work?
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 A small excursion into the Fourier transform to talk 

about spatial frequencies…

3 cos(x)

+ 1 cos(3x)

+ 0.8 cos(5x)

+ 0.4 cos(7x)

+ …



The Fourier Transform in Pictures
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 A small excursion into the Fourier transform to talk 

about spatial frequencies…

3 cos(x)

+ 1 cos(3x)

+ 0.8 cos(5x)

+ 0.4 cos(7x)

+ …

Frequency spectrum

“high”“high” “low”

¨
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Fourier Transforms of Important Functions
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 Sine and cosine transform to…

-1.5

-1

-0.5

0

0.5

1

1.5

¨

-1.5

-1

-0.5

0

0.5

1

1.5

¨



Fourier Transforms of Important Functions
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 Sine and cosine transform to “frequency spikes”

 A Gaussian transforms to… 
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Fourier Transforms of Important Functions
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 Sine and cosine transform to “frequency spikes”

 A Gaussian transforms to a Gaussian

 A box filter transforms to…
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Fourier Transforms of Important Functions
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 Sine and cosine transform to “frequency spikes”

 A Gaussian transforms to a Gaussian

 A box filter transforms to a sinc
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All of this is

symmetric!



Effect of Convolution
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 Convolving two functions in the image domain 

corresponds to taking the product of their transformed 

versions in the frequency domain.

 This gives us a tool to manipulate image spectra.

 A filter attenuates or enhances certain frequencies through this 

effect.

  f g ¨   F G



Low-Pass vs. High-Pass
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Original image

Low-pass

filtered

High-pass

filtered

Image Source: S. Chenney



Quiz: What Effect Does This Filter Have?
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Sharpening Filter
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Sharpening filter

 Accentuates differences     

with local average

Original



Sharpening Filter
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Application: High Frequency Emphasis

38

Original High pass Filter

High Frequency 

Emphasis
High Frequency Emphasis 

+
Histogram Equalization



Topics of This Lecture
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 Linear filters

 What are they? How are they applied?

 Application: smoothing

 Gaussian filter

 What does it mean to filter an image?

 Nonlinear Filters

 Median filter

 Multi-Scale representations

 How to properly rescale an image?

 Image derivatives

 How to compute gradients robustly?



Non-Linear Filters: Median Filter
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 Basic idea

 Replace each pixel by the
median of its neighbors.

 Properties

 Doesn’t introduce new pixel 
values

 Removes spikes: good for 
impulse, salt & pepper 
noise

 Linear?



Median Filter

41

Salt and 

pepper 

noise

Median 

filtered

Plots of a row of the image



Median Filter
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 The Median filter is edge preserving.



Median vs. Gaussian Filtering

43

3x3 5x5 7x7

Gaussian

Median



Topics of This Lecture
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 Linear filters

 What are they? How are they applied?

 Application: smoothing

 Gaussian filter

 What does it mean to filter an image?

 Nonlinear Filters

 Median filter

 Multi-Scale representations

 How to properly rescale an image?

 Image derivatives

 How to compute gradients robustly?



Motivation: Fast Search Across Scales
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Image Pyramid

46

High resolution

Low resolution



How Should We Go About Resampling?
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 Resa,mple Let’s resample the 

checkerboard by taking 

one sample at each 

circle.  

In the top left board, the 

new representation is 

reasonable. Top right 

also yields a reasonable 

representation. 

Bottom left is all black 

(dubious) and bottom 

right has checks that are 

too big.



Fourier Interpretation: Discrete Sampling
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 Sampling in the spatial domain is like multiplying with a 

spike function.

 Sampling in the frequency domain is like...



Source: S. Chenney

?



Fourier Interpretation: Discrete Sampling
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 Sampling in the spatial domain is like multiplying with a 

spike function.

 Sampling in the frequency domain is like convolving with a 

spike function.



*



Sampling and Aliasing

50



Sampling and Aliasing
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 Nyquist theorem: 

 In order to recover a certain frequency f, we need to sample with at least 2f.

 This corresponds to the point at which the transformed frequency spectra start 

to overlap.

“Nyquist limit”



Sampling and Aliasing
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“Nyquist limit”



Aliasing in Graphics

53



Resampling with Prior Smoothing
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 Note: We cannot recover the high frequencies, but we can 
avoid artifacts by smoothing before resampling.



The Gaussian Pyramid

55High resolution

Low resolution

2)*( 23  gaussianGG

1G

Image0G

2)*( 01  gaussianGG

2)*( 12  gaussianGG

2)*( 34  gaussianGG

blur

blur

blur

blur



Gaussian Pyramid – Stored Information
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All the extra 

levels add very 

little overhead 

for memory or 

computation!



Summary: Gaussian Pyramid
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 Construction: create each level from previous one

 Smooth and sample

 Smooth with Gaussians, in part because

 Gaussian*Gaussian = another Gaussian 

 G(1) * G(2) = G(sqrt(1 
2 + 2 

2))

 Gaussians are low-pass filters, so the representation is 

redundant once smoothing has been performed.

There is no need to store smoothed images at the    

full original resolution.



The Laplacian Pyramid
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Gaussian 

Pyramid

Laplacian Pyramid

0G

1G

2G
nG

- =

0L

- =
1L

- = 2L

nn GL 

)expand( 1 iii GGL

)expand( 1 iii GLG

Why is this useful?



Laplacian ~ Difference of Gaussian

59

- =

DoG = Difference of Gaussians

- =

Cheap approximation – no derivatives needed.



Topics of This Lecture
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 Linear filters

 What are they? How are they applied?

 Application: smoothing

 Gaussian filter

 What does it mean to filter an image?

 Nonlinear Filters

 Median filter

 Multi-Scale representations

 How to properly rescale an image?

 Image derivatives

 How to compute gradients robustly?



Edges and Derivatives…
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1st derivative

2nd derivative



Differentiation and Convolution
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 For the 2D function f(x,y), the partial derivative is:

 For discrete data, we can approximate this using finite 
differences:

 To implement the above as convolution, what would be 
the associated filter?







),(),(
lim

),(

0

yxfyxf

x

yxf 








1

),(),1(),( yxfyxf

x

yxf 








Partial Derivatives of an Image
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Which shows changes with respect to x?

-1     

1

1     

-1
or

?
-1 1

x

yxf



 ),(

y

yxf



 ),(



Assorted Finite Difference Filters
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>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My); 

>> imagesc(outim);

>> colormap gray;



Image Gradient
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 The gradient of an image:

 The gradient points in the direction of most rapid intensity change

 The gradient direction (orientation of edge normal) is given by:

 The edge strength is given by the gradient magnitude



Effect of Noise
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 Consider a single row or column of the image

 Plotting intensity as a function of position gives a signal

Where is the edge?



Solution: Smooth First

68
Where is the edge?  Look for peaks in 



Derivative Theorem of Convolution

69

 Differentiation property of convolution.



Derivative of Gaussian Filter
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 1 1  
0.0030    0.0133    0.0219    0.0133    0.0030

0.0133    0.0596    0.0983    0.0596    0.0133

0.0219    0.0983    0.1621    0.0983    0.0219

0.0133    0.0596    0.0983    0.0596    0.0133

0.0030    0.0133    0.0219    0.0133    0.0030

( ) ( )I g h I g h    

Why is this preferable?



Derivative of Gaussian Filters
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x-direction y-direction

Source: Svetlana Lazebnik



Laplacian of Gaussian (LoG)
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 Consider

Where is the edge?  Zero-crossings of bottom graph



Summary: 2D Edge Detection Filters
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 is the Laplacian operator:

Laplacian of Gaussian

Gaussian Derivative of Gaussian



Note: Filters are Templates

74

 Applying a filter at some point can 

be seen as taking a dot-product 

between the image and some 

vector.

 Filtering the image is a set of dot 

products.

 Insight 

 Filters look like the effects they 

are intended to find.

 Filters find effects they look 

like.



Where’s Waldo?

75 Scene

Template



Where’s Waldo?

76 Detected template

Template



Where’s Waldo?

77

Detected template Correlation map



Correlation as Template Matching
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 Think of filters as a dot product of the filter vector with 

the image region

 Now measure the angle between the vectors

 Angle (similarity) between vectors can be measured by 

normalizing length of each vector to 1.

cos|||| baba  cos
| || |

a b

a b





Template

Image region

a

b

Vector interpretation





Summary: Mask Properties

79

 Smoothing
 Values positive 

 Sum to 1  constant regions same as input

 Amount of smoothing proportional to mask size

 Remove “high-frequency” components; “low-pass” filter

 Derivatives
 Opposite signs used to get high response in regions of high contrast

 Sum to 0  no response in constant regions

 High absolute value at points of high contrast

 Filters act as templates
• Highest response for regions that “look the most like the filter”

• Dot product as correlation



Summary Linear Filters
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• Linear filtering:

 Form a new image whose 

pixels are a weighted sum 

of original pixel values

• Properties

 Output is a shift-invariant 

function of the input (same 

at each image location)

Examples:

• Smoothing with a box filter

• Smoothing with a Gaussian

• Finding a derivative

• Searching for a template

Pyramid representations

• Important for describing and 

searching an image at all 

scales
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