

Dr. George Karraz, Ph. D.

1

Digital Image Processing Image Processing& Analysis

Image Filters

Dr. George Karraz, Ph.D.

Topics of This Lecture

Linear filters

- What are they? How are they applied?
- Application: smoothing
- Gaussian filter
- What does it *mean* to filter an image?

Nonlinear Filters

- Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Image derivatives
 - How to compute gradients robustly?

g_x	\rightarrow
	I
	1

Common Types of Noise

- Salt & pepper noise
 - Random occurrences of black and white pixels
- Impulse noise
 - Random occurrences of white pixels

Gaussian noise

- Variations in intensity drawn from a Gaussian ("Normal") distribution.
- Basic Assumption
 - Noise is i.i.d. (independent & identically distributed)

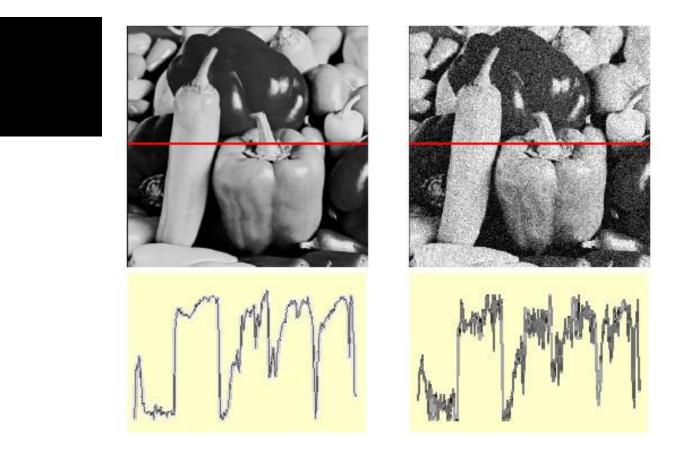
Original

Salt and pepper noise

Impulse noise

Gaussian noise

Gaussian Noise



 $f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

5

First Attempt at a Solution

Assumptions:

- Expect pixels to be like their neighbors
- Expect noise processes to be independent from pixel to pixel ("i.i.d. = independent, identically distributed")
- Let's try to replace each pixel with an average of all the values in its neighborhood...

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Correlation Filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{\substack{u=-k}}^{k} \sum_{\substack{v=-k}}^{k} F[i+u,j+v]$$

Attribute uniformLoop over all pixels inweight to eachneighborhood around image pixelpixelF[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \frac{H[u, v]F[i+u, j+v]}{V}$$

Non-uniform weights

Correlation Filtering

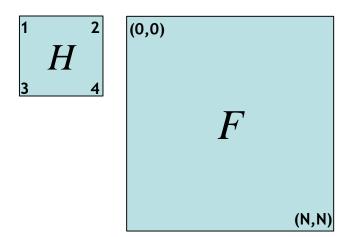
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted

$$G = H \otimes F$$

Filtering an image

- Replace each pixel by a weighted combination of its neighbors.
- The filter "kernel" or "mask" is the prescription for the weights in the linear combination.

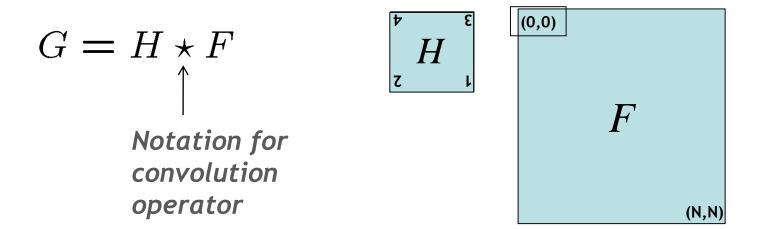


Convolution

Convolution:

- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$



Convolution vs. Correlation

Correlation

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]$$

$$G = H \otimes F$$
Convolution
$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]$$

$$G = H \star F$$
Note

• If H[-u,-v] = H[u,v], then correlation \equiv convolution.

Shift Invariant Linear System

Shift invariant:

Operator behaves the same everywhere, *i.e.* the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

Linear:

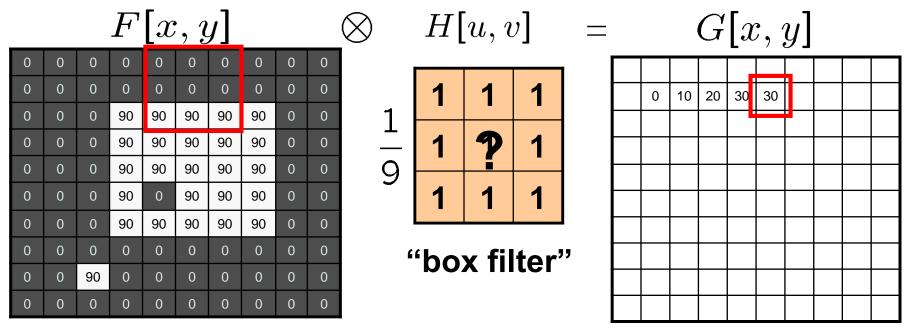
- Superposition: h * (f1 + f2) = (h * f1) + (h * f2)
- Scaling: h * (kf) = k (h * f)

Properties of Convolution

- Linear & shift invariant
- Commutative: $f \sum g = g \sum f$
- Associative: $(f \sum g) \sum h = f \sum (g \sum h)$
 - Often apply several filters in sequence: $(((a \sum b_1) \sum b_2) \sum b_3)$
 - This is equivalent to applying one filter: $a \sum (b_1 \sum b_2 \sum b_3)$
- Identity: $f \sum e = f$
 - for unit impulse e = [..., 0, 0, 1, 0, 0, ...].
- Differentiation: $\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$

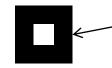
Averaging Filter

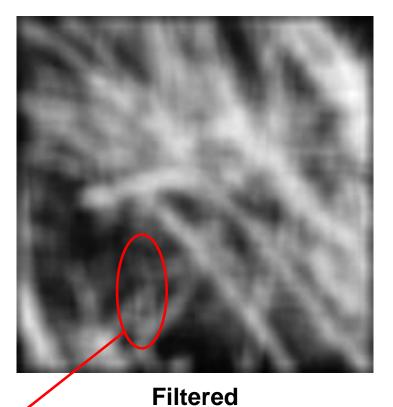
What values belong in the kernel H[u,v] for the moving average example?



 $G = H \otimes F$

Smoothing by Averaging



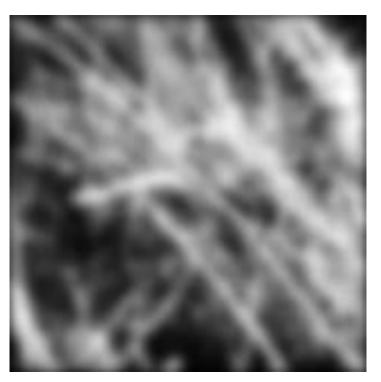


Original

"Ringing" artifacts!

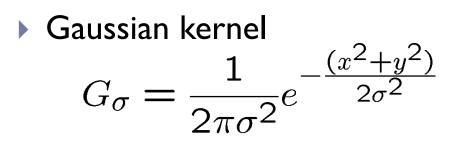
Smoothing with a Gaussian

Original

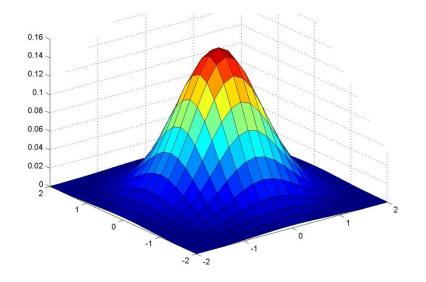


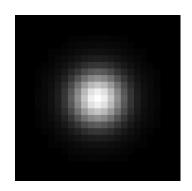
Filtered

Gaussian Smoothing



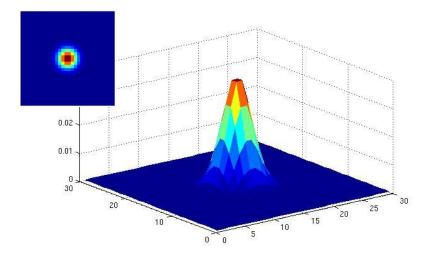
- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - This makes sense as 'probabilistic' inference about the signal
- A Gaussian gives a good model of a fuzzy blob

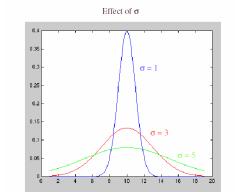


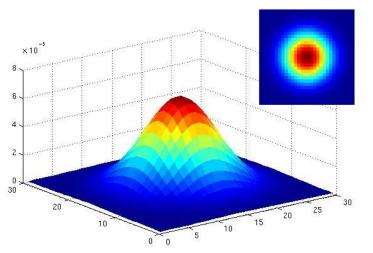


Gaussian Smoothing

- What parameters matter here?
- Variance σ of Gaussian
 - Determines extent of smoothing





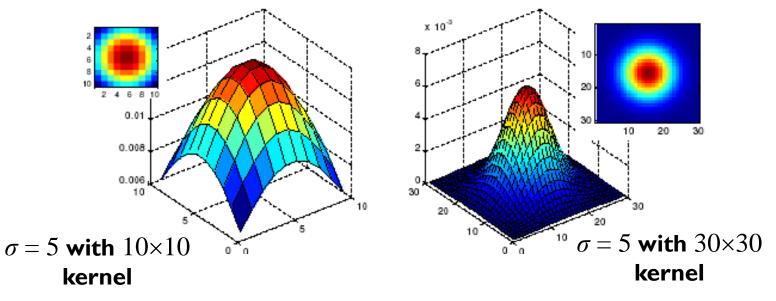


 $\sigma = 2$ with 30×30 kernel

 $\sigma = 5$ with 30×30 kernel

Gaussian Smoothing

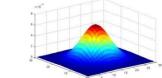
- What parameters matter here?
- Size of kernel or mask
 - Gaussian function has infinite support, but discrete filters use finite kernels



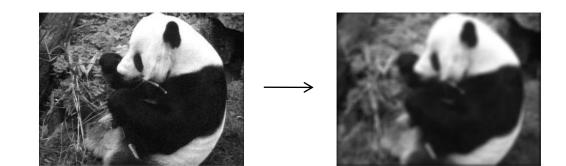
• Rule : set filter half-width to about 3σ

Gaussian Smoothing in Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(`gaussian' hsize, sigma);
```



- >> mesh(h);
- >> imagesc(h);
- >> outim = imfilter(im, h);
- >> imshow(outim);



Topics of This Lecture

Linear filters

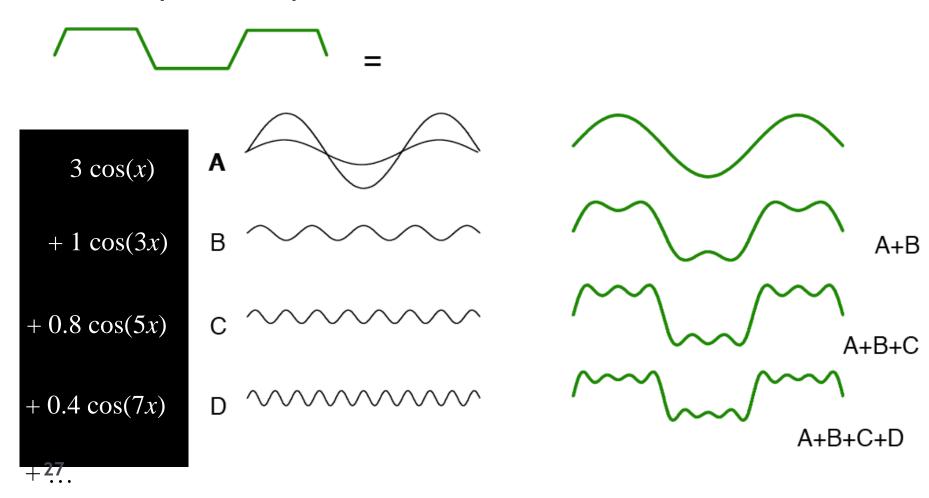
- What are they? How are they applied?
- Application: smoothing
- Gaussian filter
- What does it mean to filter an image?

Nonlinear Filters

- Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Image derivatives
 - How to compute gradients robustly?

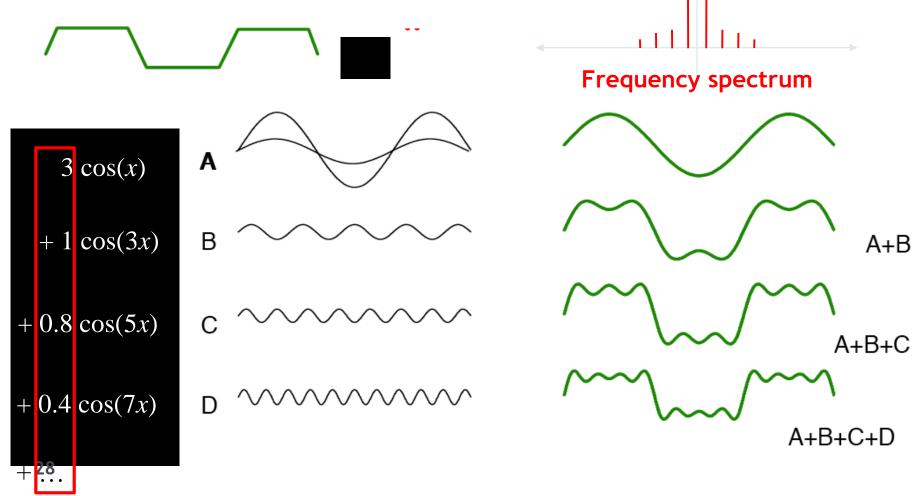
Why Does This Work?

A small excursion into the Fourier transform to talk about spatial frequencies...



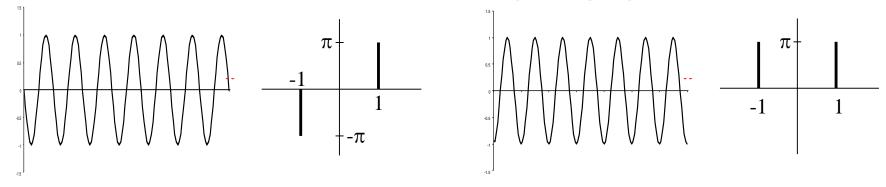
The Fourier Transform in Pictures

A small excursion into the Fourier transform to talk about spatial frequencies...
"high" "low" "high"



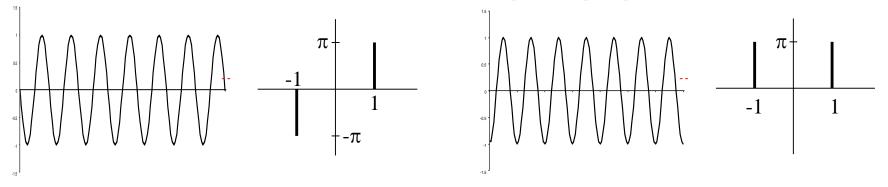
Sine and cosine transform to...

Sine and cosine transform to "frequency spikes"

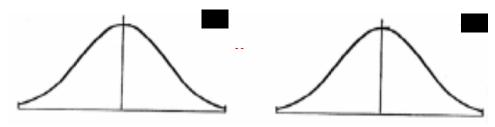


A Gaussian transforms to...

Sine and cosine transform to "frequency spikes"

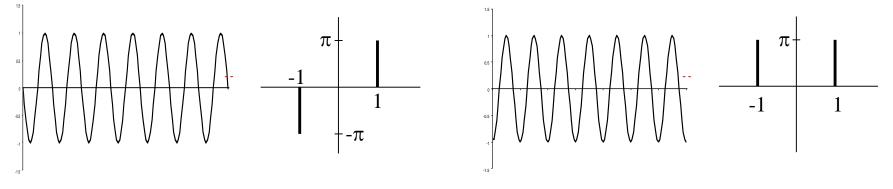


A Gaussian transforms to a Gaussian

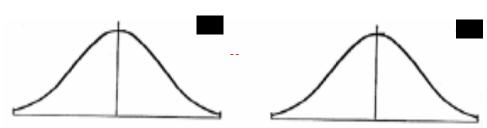


A box filter transforms to...

Sine and cosine transform to "frequency spikes"



A Gaussian transforms to a Gaussian



All of this is symmetric!

A box filter transforms to a sinc $sinc(x) = \frac{\sin x}{x}$

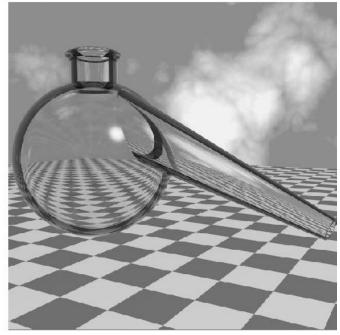
Effect of Convolution

Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain.

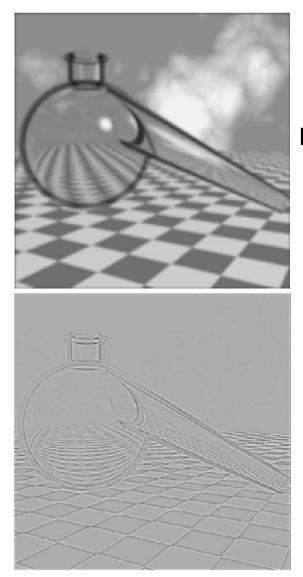
$$f * g$$
 " $F \cdot G$

- > This gives us a tool to manipulate image spectra.
 - A filter attenuates or enhances certain frequencies through this effect.

Low-Pass vs. High-Pass



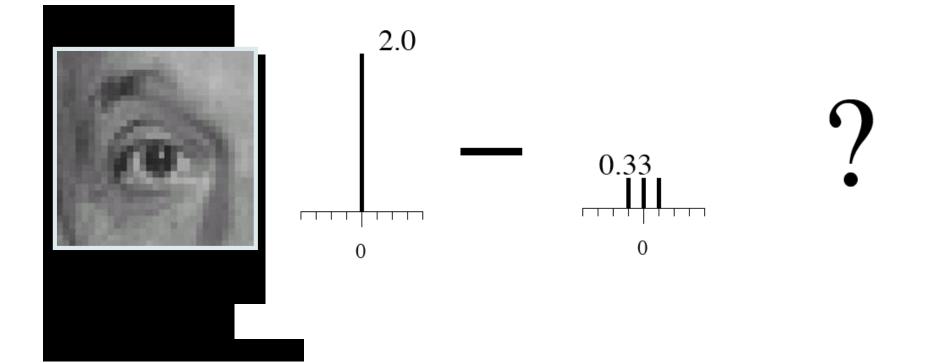
Original image



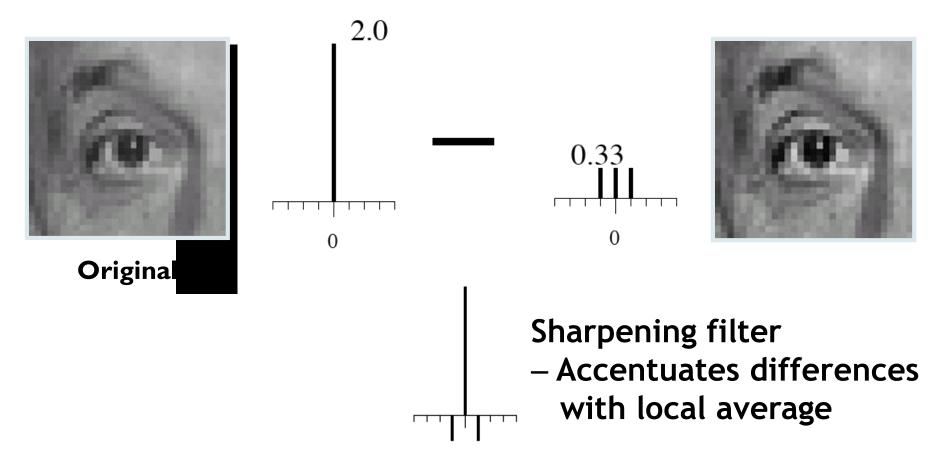
Low-pass filtered

High-pass filtered

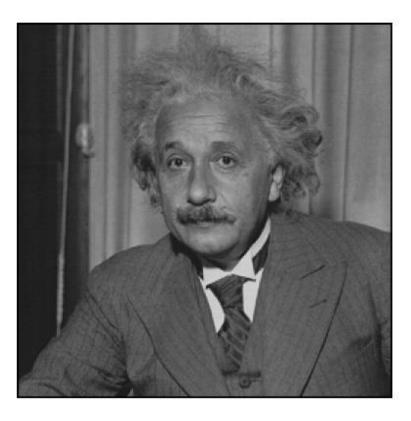
Quiz: What Effect Does This Filter Have?

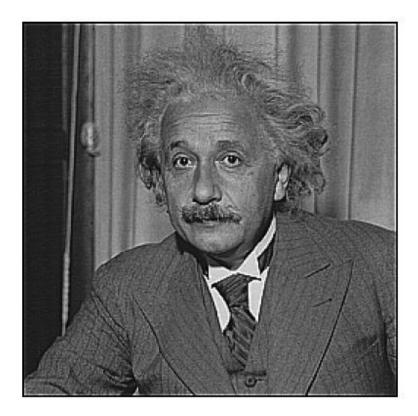


Sharpening Filter



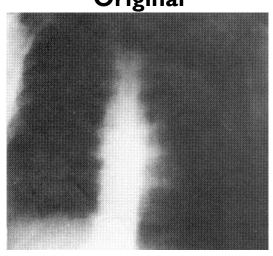
Sharpening Filter

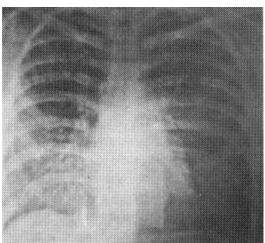




before

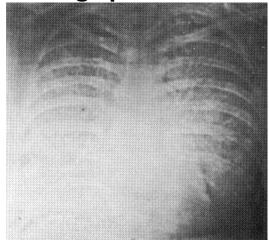
Application: High Frequency Emphasis Original

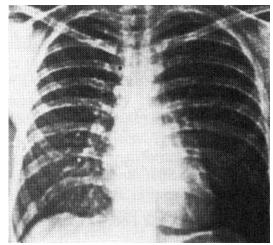




High Frequency Emphasis

High pass Filter





High Frequency Emphasis Histogram Equalization

Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?

Nonlinear Filters

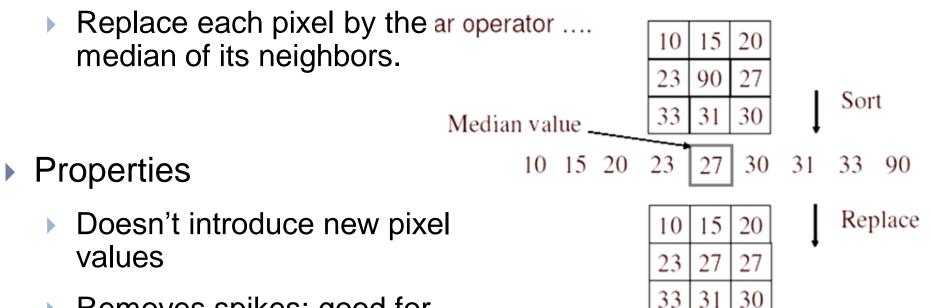
- Median filter
- Multi-Scale representations
 - How to properly rescale an image?

Image derivatives

How to compute gradients robustly?

Non-Linear Filters: Median Filter

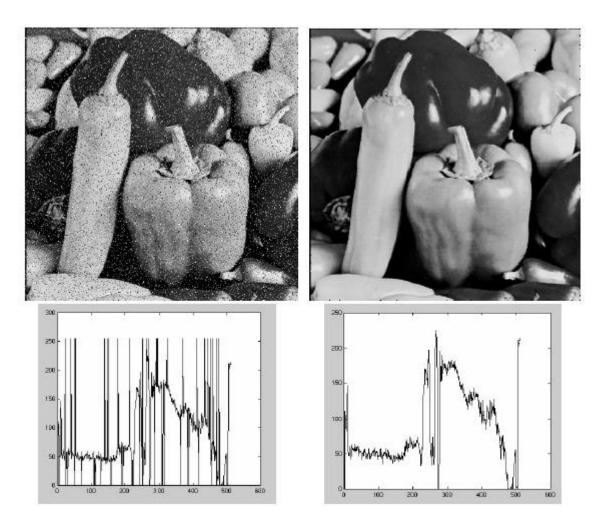
Basic idea



- Removes spikes: good for impulse, salt & pepper noise
- Linear?

Median Filter

Salt and pepper noise

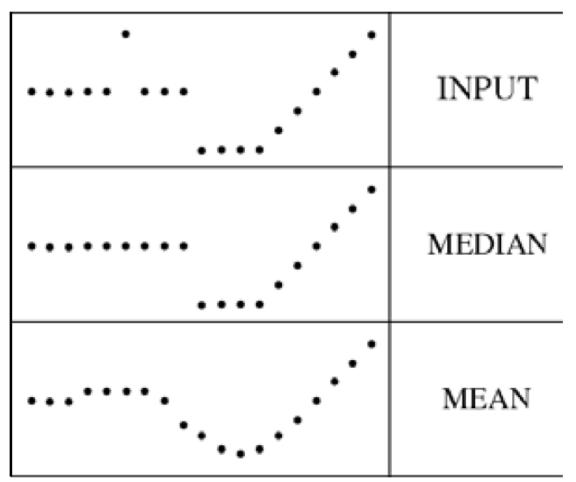


Median filtered

Plots of a row of the image

Median Filter

• The Median filter is edge preserving.



Median vs. Gaussian Filtering

3x3

5x5

7x7

Gaussian

Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?

Nonlinear Filters

- Median filter
- Multi-Scale representations
 - How to properly rescale an image?

Image derivatives

How to compute gradients robustly?

Motivation: Fast Search Across Scales

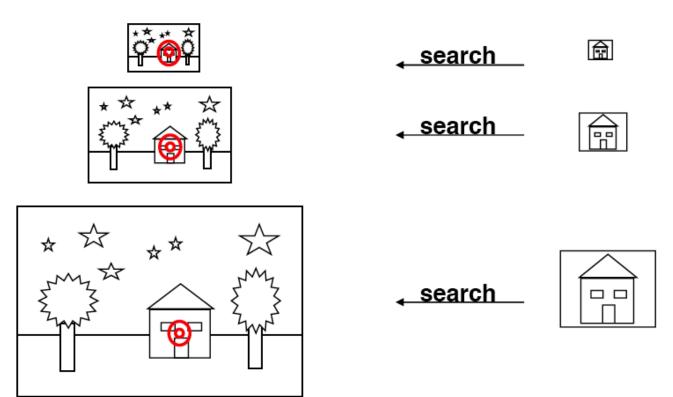
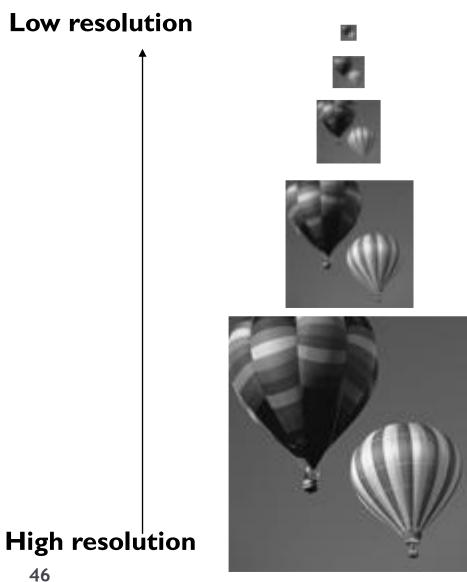
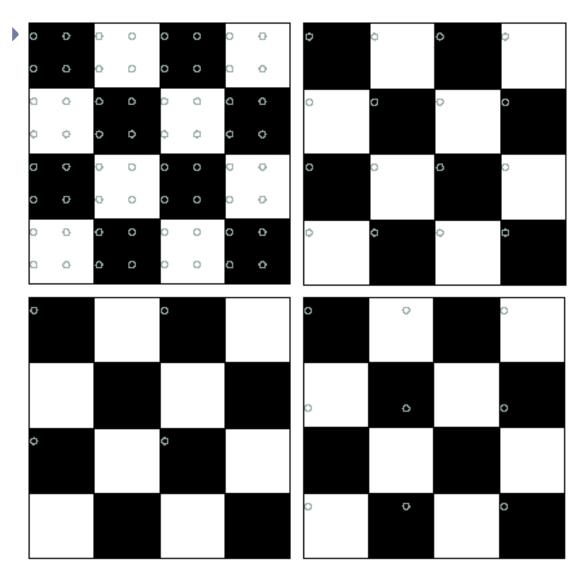


Image Pyramid



46

How Should We Go About Resampling?

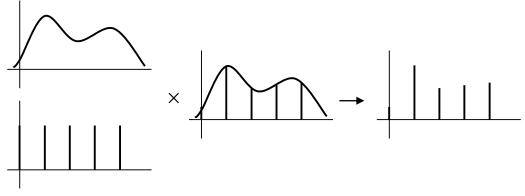


Let's resample the checkerboard by taking one sample at each circle.

In the top left board, the new representation is reasonable. Top right also yields a reasonable representation.

Bottom left is all black (dubious) and bottom right has checks that are too big. Fourier Interpretation: Discrete Sampling

Sampling in the spatial domain is like multiplying with a spike function.

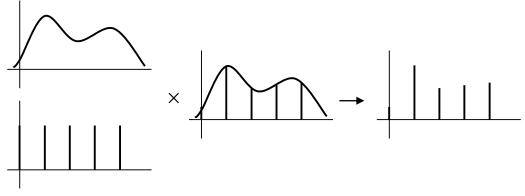


Sampling in the frequency domain is like...

?

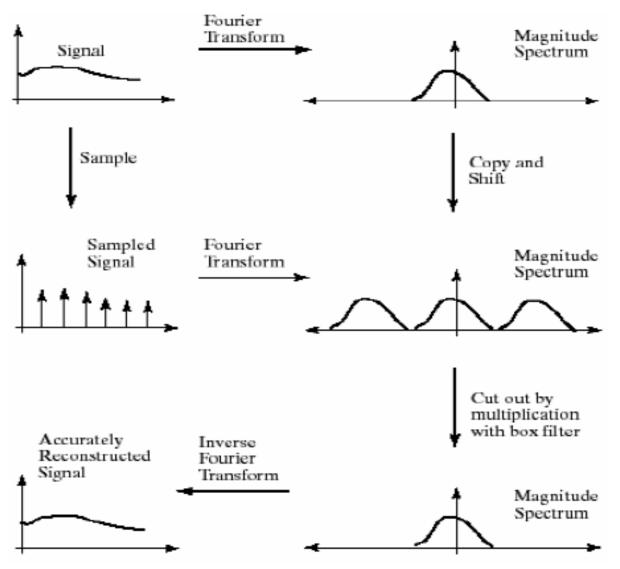
Fourier Interpretation: Discrete Sampling

Sampling in the spatial domain is like multiplying with a spike function.

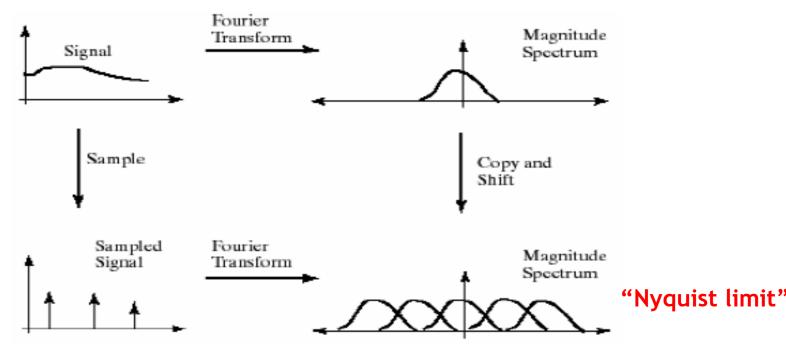


Sampling in the frequency domain is like convolving with a spike function.

Sampling and Aliasing



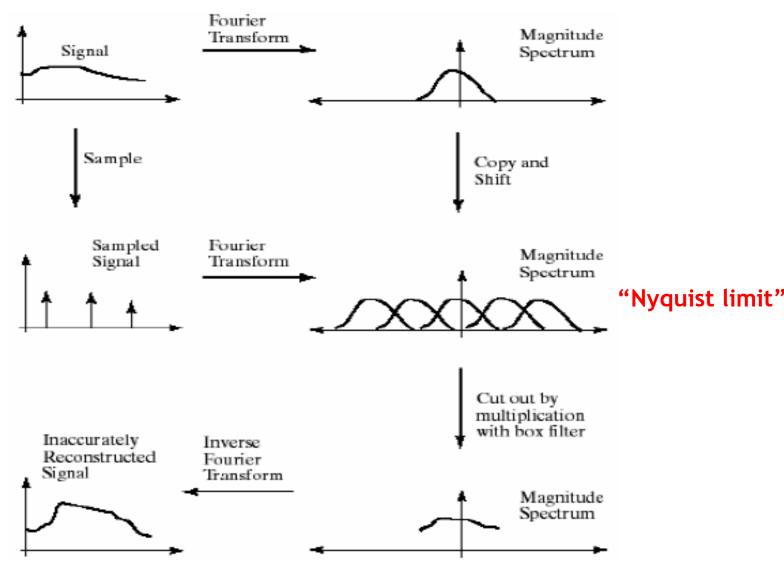
Sampling and Aliasing



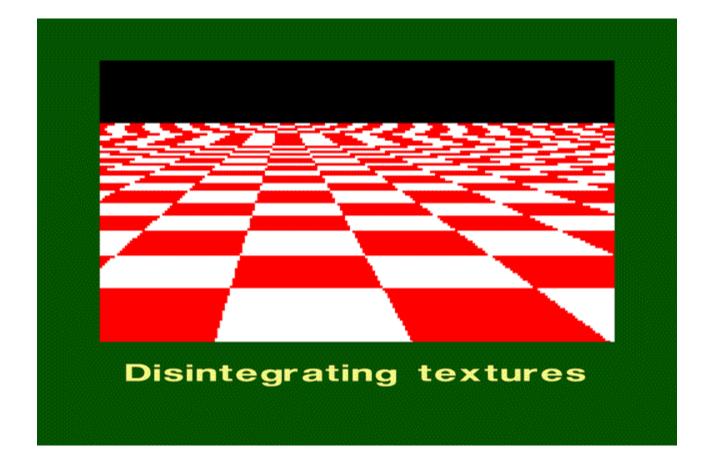
Nyquist theorem:

- In order to recover a certain frequency f, we need to sample with at least 2f.
- This corresponds to the point at which the transformed frequency spectra start to overlap.

Sampling and Aliasing



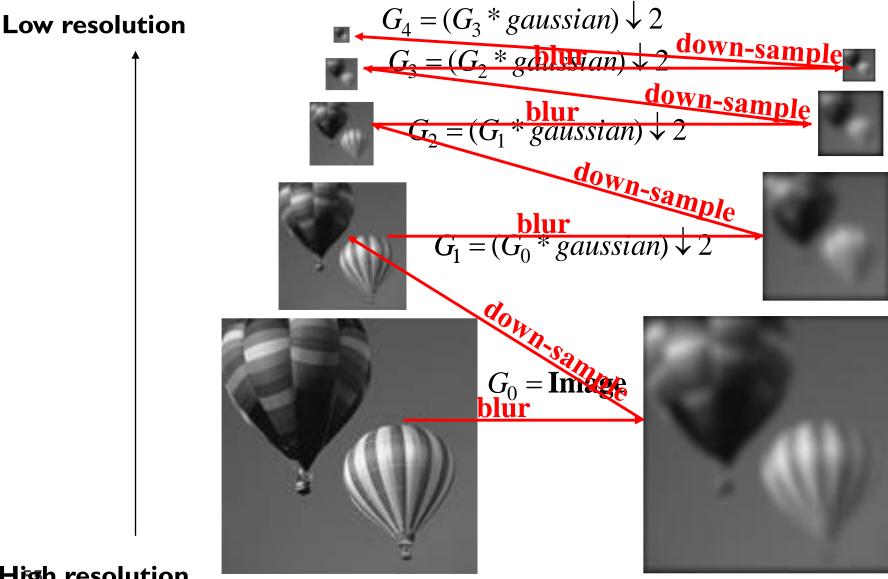
Aliasing in Graphics



Resampling with Prior Smoothing 256×256 128×128 64×64 32×32 16×16 no smoothing Gaussian $\sigma = 1$ Gaussian $\sigma = 2$

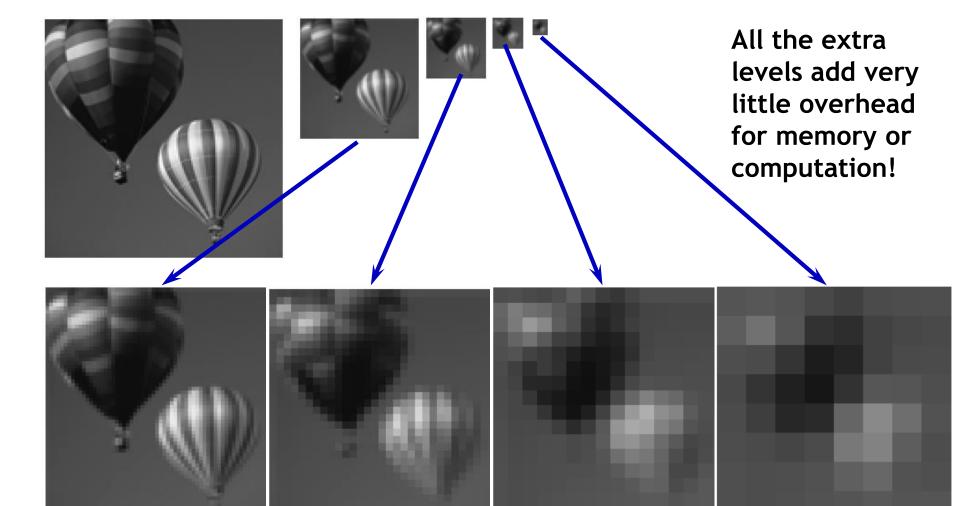
Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

The Gaussian Pyramid



High resolution

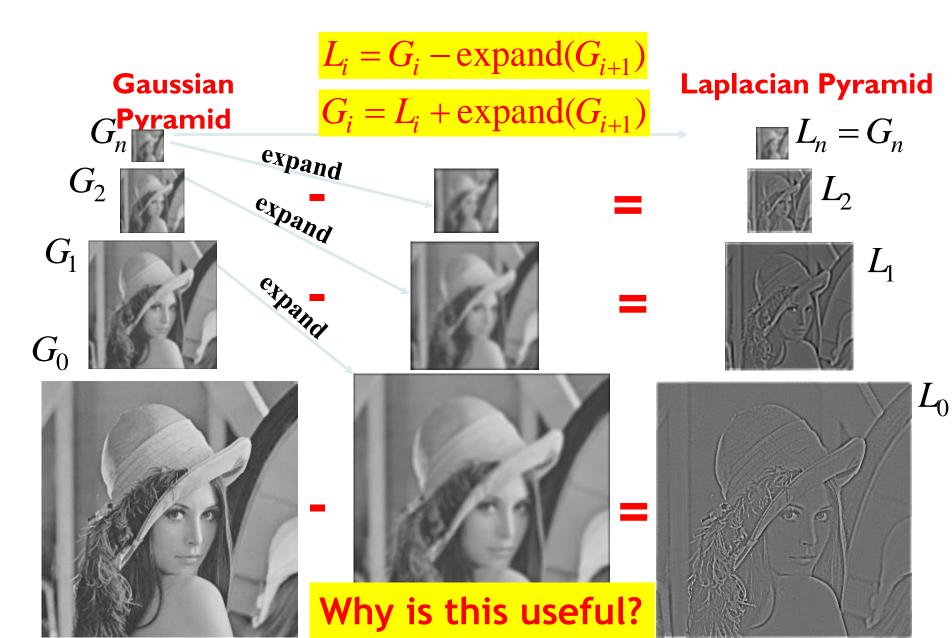
Gaussian Pyramid – Stored Information

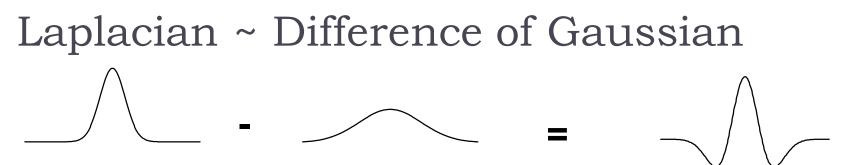


Summary: Gaussian Pyramid

- Construction: create each level from previous one
 - Smooth and sample
- Smooth with Gaussians, in part because
 - Gaussian*Gaussian = another Gaussian
 - $G(\sigma_1) * G(\sigma_2) = G(sqrt(\sigma_1^{2} + \sigma_2^{2}))$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
 - \Rightarrow There is no need to store smoothed images at the full original resolution.

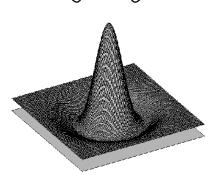
The Laplacian Pyramid

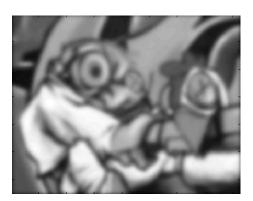




DoG = Difference of Gaussians

Cheap approximation - no derivatives needed.





Topics of This Lecture

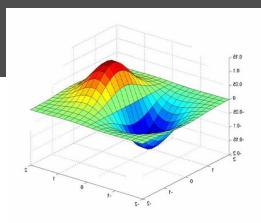
Linear filters

- What are they? How are they applied?
- Application: smoothing
- Gaussian filter
- What does it *mean* to filter an image?

Nonlinear Filters

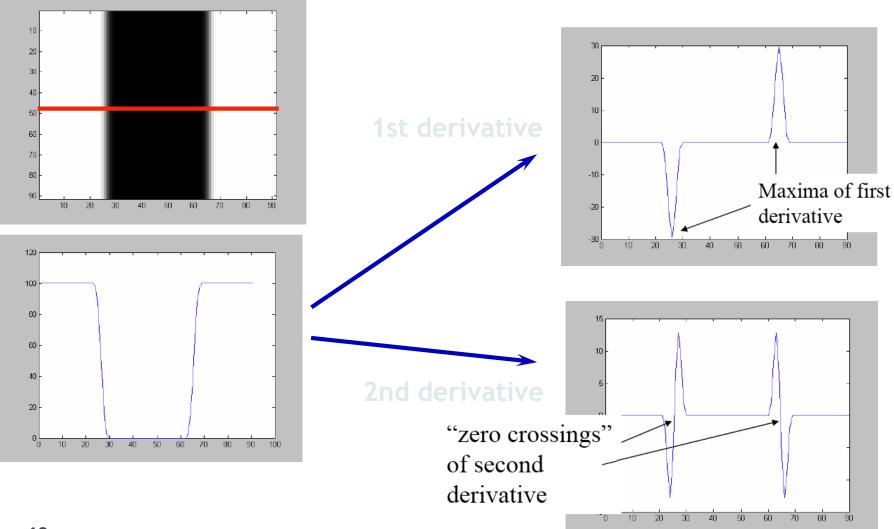
- Median filter
- Multi-Scale representations
 - How to properly rescale an image?

How to compute gradients robustly?



B. Leibe

Edges and Derivatives...



Differentiation and Convolution

For the 2D function f(x, y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate this using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an Image

 $\frac{\partial f(x,y)}{\partial y}$ $\frac{\partial f(x,y)}{\partial x}$ -1 ? - | or _ |

Which shows changes with respect to x?

Assorted Finite Difference Filters

 Prewitt:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

- >> My = fspecial(`sobel');
- >> outim = imfilter(double(im), My);
- >> imagesc(outim);
- >> colormap gray;

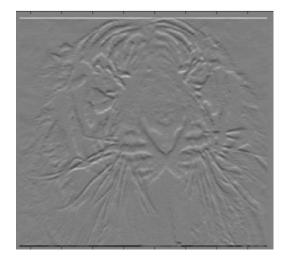


Image Gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid intensity change

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

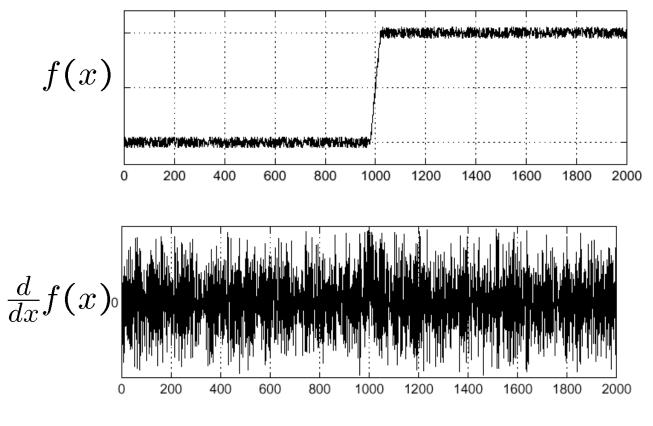
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

- The gradient direction (orientation of edge normal) is given by: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$
- The edge strength is given by the gradient magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

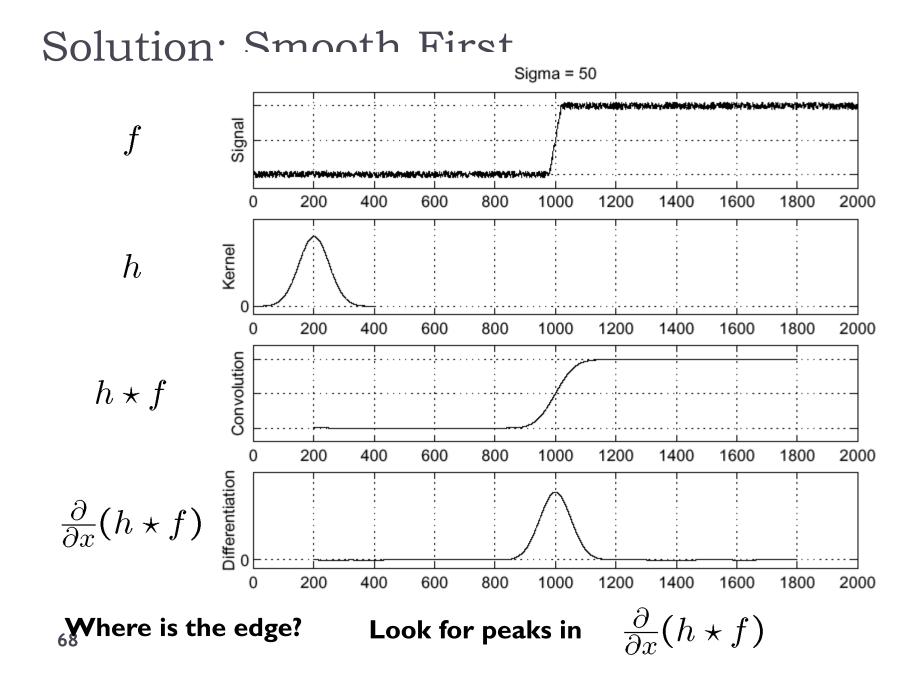
Effect of Noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal



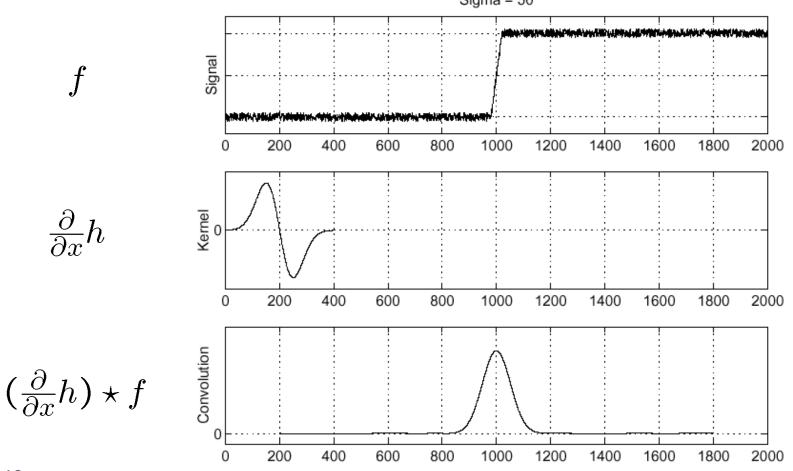
Where is the edge?



Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Differentiation property of convolution. Sigma = 50

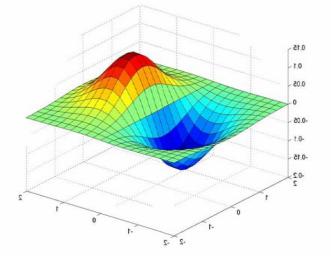


Derivative of Gaussian Filter

(I * g) * h = I * (g * h)

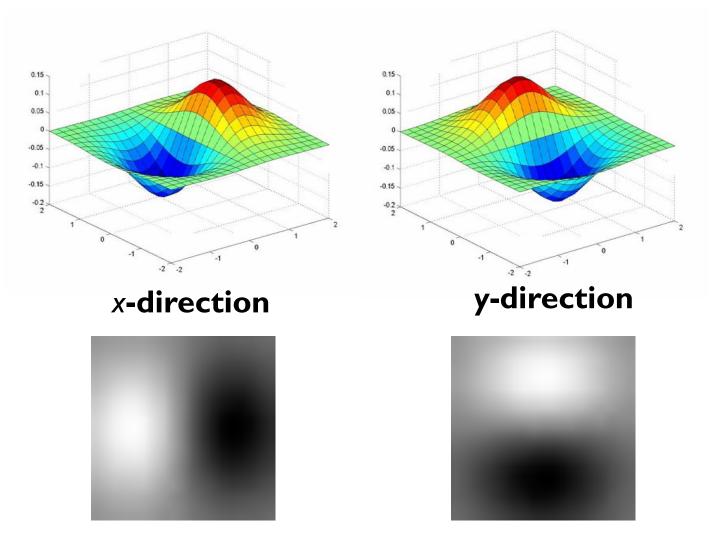
0.0030 0.0133 0.0219 0.0133 0.0030 0.0133 0.0596 0.0983 0.0596 0.0133 0.0219 0.0983 0.1621 0.0983 0.0219 0.0133 0.0596 0.0983 0.0596 0.0133			
0.0219 0.0983 0.1621 0.0983 0.0219		33 0.0219 0.0133 0.0030	0.003
		96 0.0983 0.0596 0.0133	0.013
0 0133 0 0596 0 0983 0 0596 0 0133	5	83 0.1621 0.0983 0.0219	0.021
	•	96 0.0983 0.0596 0.0133	0.013
0.0030 0.0133 0.0219 0.0133 0.0030		33 0.0219 0.0133 0.0030	0.003

Why is this preferable?

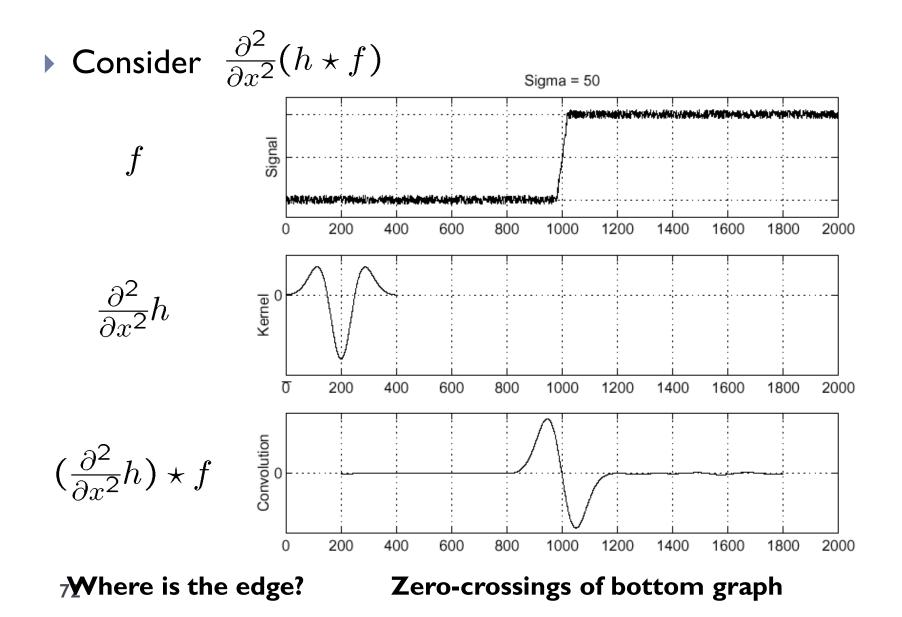


-1

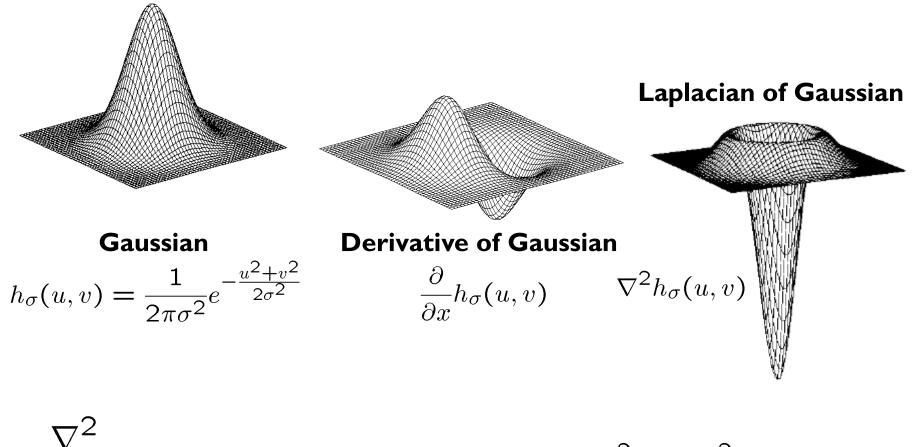
Derivative of Gaussian Filters



Laplacian of Gaussian (LoG)



Summary: 2D Edge Detection Filters

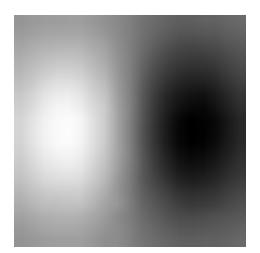


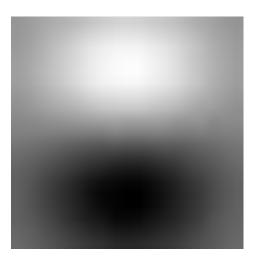
is the Laplacian operator: $\nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\partial u^2}$

Note: Filters are Templates

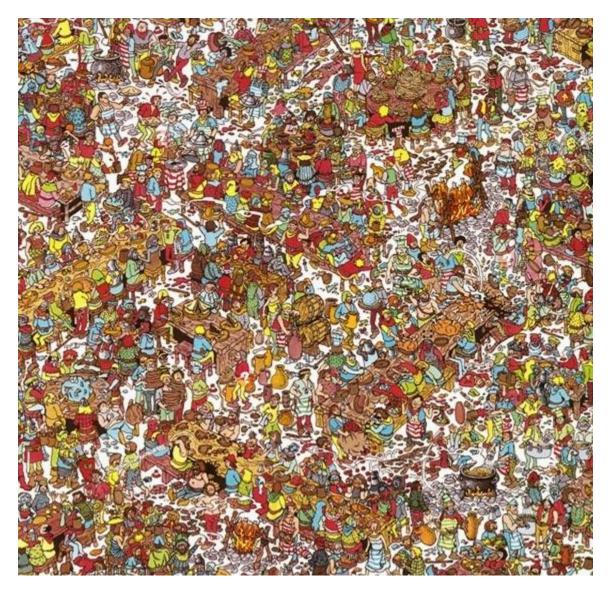
- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.

- Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.





Where's Waldo?



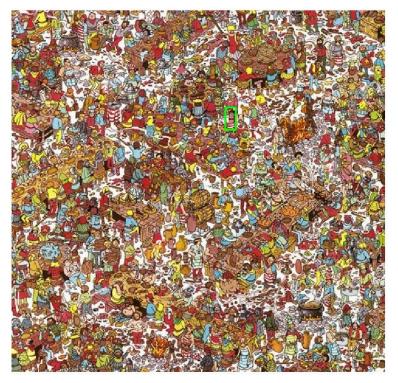
Template

Where's Waldo?

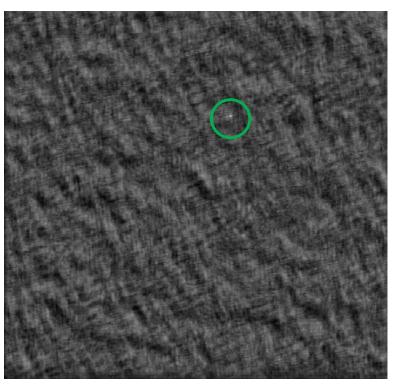
Template

Detected template

Where's Waldo?



Detected template



Correlation map

Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors $a \cdot b = |a| |b| \cos \theta$ $\cos \theta = \frac{a \cdot b}{|a| |b|}$
 - Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.

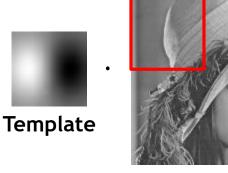


Image region

 $\vec{a} = \frac{\theta}{\vec{b}}$

Vector interpretation

Summary: Mask Properties

Smoothing

- Values positive
- Sum to $I \Rightarrow$ constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Derivatives

- Opposite signs used to get high response in regions of high contrast
- Sum to $0 \Rightarrow$ no response in constant regions
- High absolute value at points of high contrast

Filters act as templates

- Highest response for regions that "look the most like the filter"
- Dot product as correlation

Summary Linear Filters

Linear filtering:

Form a new image whose pixels are a weighted sum of original pixel values

Properties

Output is a shift-invariant function of the input (same at each image location)

Examples:

- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

Pyramid representations

Important for describing and searching an image at all scales