Assessment
Physics: Lesson 5

Question 1

?Which of the following is not a scalar quantity
Mass
Volume
Velocity
D. Time

Question 2

?Which of the following is not a vector quantity

Area
Acceleration
Force
Displacement

Question 3

:A vector quantity must have
both units and no direction
units or direction or magnitude
either direction or magnitude
.both magnitude and direction

Question 4

?Which statement about forces is true
.Forces only act horizontally or vertically
.Forces can be added using vector triangles
.Forces on a body always add up to zero
If two forces act on the same body along the same line the resultant .D .cannot be zero

90 of 5 N and a vertical force

Two forces act on a body: a horizontal force of 5 N and a vertical force ?of 5 N . What is the resultant force
.There is a resultant force of 10 N at 45° to the horizontal
.There is a resultant force of 5 N at 45° to the horizontal
.There is a resultant force of 7.1 N at 45° to the horizontal
.There is a resultant force of 7.1 N at 35° to the horizontal

Question 6

Two forces act on a body. A horizontal force of 5 N and a vertical force of ? 12 N . What is the magnitude of the resultant force

N 17
N 13
N 12
D. 169 N

Question 7

:When finding the resultant of two forces that act on an object you can use an accurately drawn vector triangle
can use trigonometry to find the resultant
C. can use either method A or method B
D. must use both methods A and B.

Two 100 N forces of the same size, acting at the same angle to the horizontal, are supporting a suspended crate, as shown in the diagram. Which of the following statements is correct?

$$
w=100 \sin \theta
$$

.You can work out the weight of the crate You can work out the weight of the crate if

 .resultant force unless you know the value of angle θ

If you use a vector diagram to calculate the resultant of two forces :that act on a body at the same time you must make the length of each line proportional to the size of each force .A show the direction of each force by the direction of the line with an .B arrow
include a scale and a reference direction in your diagram
do all of the above

Question 10

A plane is flying due north at $160 \mathrm{~km} / \mathrm{h}$ relative to the surrounding air. There is a crosswind blowing due east. If the magnitude of the resultant ?velocity of the plane is $200 \mathrm{~km} / \mathrm{h}$, what is the speed of the crosswind
km/h 40

$$
A^{2}+B^{2}=R^{2}
$$

km/h 120

km/h 180
km/h 100

Assessment
Physics: Lesson 6

Question 1

arfos

:Speed and velocity are
La mion
different because speed is measured in km / h and velocity is
measured in m / s
different because speed is a scalar quantity and velocity is a vector quantity
different because velocity is a scalar quantity and speed is a vector quantity
different terms for the same thing

Question 2

:The correct definition of velocity is
the rate of change of speed with time
the rate of change of direction with time
the speed of an object
the speed of an object and its direction of motion

Question 3

In a 100 m race, the winner has a time of 10 seconds.
:The winner's top speed is
mss 10
more than $10 \mathrm{~m} / \mathrm{s}$

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

$$
\text { speed }=\frac{100}{10}=10 \mathrm{~m} / \mathrm{s}
$$

.A
less than $10 \mathrm{~m} / \mathrm{s}$
impossible to say

An object travels at $10 \mathrm{~m} / \mathrm{s}$ for 20 s and then at $16 \mathrm{~m} / \mathrm{s}$ for a further 20 ?s. What is the average speed of the object
$\mathrm{m} / \mathrm{s} 11$

$$
\text { average speed }=\frac{\text { total distance covered }}{\text { time interval }}
$$

m/s 12
m/s 13

$$
d_{2}=16 \times 20=320 \mathrm{~m}
$$

m/s 14

$$
d_{k}=(10 \times 20)=200 \mathrm{~m}
$$

$$
\frac{200+320}{20+20}=13 \mathrm{~m} / \mathrm{s}
$$

Question 5
.A car accelerates from $20 \mathrm{~km} / \mathrm{h}$ to $128 \mathrm{~km} / \mathrm{h}$ in 10 s
.Find its acceleration in $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{m} / \mathrm{s}^{2} 3$

$$
\begin{aligned}
& a=\frac{\Delta v}{t}=\frac{v_{f}-v_{i}}{t} \\
& a=\frac{128-20}{10}=\frac{108}{20} \\
& a=10.3 \mathrm{~km} / \mathrm{h}^{2}
\end{aligned}
$$

$$
\mathrm{m} / \mathrm{s}^{2} 10.8
$$

$$
\mathrm{m} / \mathrm{s}^{2} 38.9
$$

$$
\mathrm{m} / \mathrm{s}^{2} 0.3
$$

$$
10.8 \mathrm{~km} / \mathrm{h}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{3600 \mathrm{~s}}{2 \mathrm{~h}}=3 \mathrm{~m} / \mathrm{s}^{2}
$$

Question 6

:Acceleration is usually measured in
m / s
$\mathrm{m} / \mathrm{s}^{3}$
$\mathrm{m} / \mathrm{s}^{2}$
cm / s

Question 7

$$
v_{1}=0
$$

A ball rolling down a slope accelerates uniformly from rest. Its velocity ?after $\frac{5 \mathrm{~s}}{\mathrm{t}}$ is $\frac{4 \mathrm{~m} / \mathrm{s}}{v_{f}}$. What is its acceleration
$\mathrm{m} / \mathrm{s}^{2} 20$

$$
\mathrm{m} / \mathrm{s}^{2} 1.25
$$

$$
\begin{aligned}
a & =\frac{\Delta v}{t} \\
& =\frac{4-(0)}{5} \\
& =0.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$\mathrm{m} / \mathrm{s}^{2} 4$
$\mathrm{m} / \mathrm{s}^{2} 0.8$

Question 8

An object has a uniform acceleration of $-2 \mathrm{~m} / \mathrm{s}^{2}$. This means that after 8 :S

its velocity has increased by $16 \mathrm{~m} / \mathrm{s}$
its velocity has decreased by $16 \mathrm{~m} / \mathrm{s}$
it has reversed the direction in which it is moving
its velocity has not changed

A ball is thrown vertically up into the air. Which of the following ?statements is false
.The speed of the ball decreases while it is moving upwards
.The speed of the ball will never be zero, as it is always moving
The ball's velocity will be positive for some of the time and .negative for some the time
.The ball will eventually fall back to the ground because of gravity

Question 10

A car travels 50 km along a straight road in 20 minutes. What is its?average velocity$\mathrm{km} / \min 2.5$km/h 50

$$
=\frac{50}{20}
$$km/min 0.4

$$
=2.5 \mathrm{~km} / \mathrm{min}
$$

km/min 15

Assessment
Physics: Lesson 7

Question 1

A car accelerates from $56 \mathrm{~m} / \mathrm{s}$ to $96 \mathrm{~m} / \mathrm{s}$ in 7.3 s . What ?is its acceleration
m/s² 5.48

$$
a=\frac{\Delta V}{t}
$$

m/s² 20.82

$$
a=\frac{96-56}{7 \cdot 3}
$$

$$
a=5.48 \mathrm{~m} / \mathrm{s}^{2}
$$

$\mathrm{m} / \mathrm{s}^{2} 13.15$
$\mathrm{m} / \mathrm{s}^{2} 7.67$

Question 2

A car accelerates from $46 \mathrm{~m} / \mathrm{s}$ to $96 \mathrm{~m} / \mathrm{s}$ in 10 s . What ?is its acceleration
$\mathrm{m} / \mathrm{s}^{2} 50$
$\mathrm{m} / \mathrm{s}^{2} 9.6$
$\mathrm{m} / \mathrm{s}^{2} 5$
$\mathrm{m} / \mathrm{s}^{2} 4.6$

Question 3

A car slows down from $26 \mathrm{~m} / \mathrm{s}$ with an acceleration of $? 2 \mathrm{~m} / \mathrm{s}^{2}$ for $7 \mathrm{~s}^{t}$. What is its final velocity
$\mathrm{m} / \mathrm{s} 12$

$$
v_{f}=v_{i}+a t
$$

m/s 12-

$$
v_{f}=(26)+(.2)(7)
$$

.B
m/s 19
$=12 \mathrm{~m} / \mathrm{s}$

Question 4

An automobile accelerates from 16 km/h to 96 km/h ?in 8 s . What is its acceleration

$$
a=\frac{\Delta U}{t}
$$

$4.4 \mathrm{~m} / \mathrm{s}$
.A
$=\frac{26.6-4.4}{8}$

$$
=\frac{22.2}{8}=2.77
$$

$\mathrm{m} / \mathrm{s}^{2} 10$
$\mathrm{m} / \mathrm{s}^{2} 2.8$

Question 5

When the air resistance acting on an object is equal to its weight we say the object has reached its

zero-speed limit
maximum acceleration
lowest speed
terminal speed

Question 6

As an object falls, the air resistance acts to
speed the object up
slow the object down

keep the object at constant speed
D. do nothing

Question 7

The average velocity of a rolling ball is $3.00 \mathrm{~m} / \mathrm{s}$. How ?long does it take for the ball to roll 20 m s
s 60
Howlong = is; odesl wie
.A
s 0.25

$$
t=\frac{s}{V a u}=\frac{20}{3.00}=6.67
$$

.B
s 6.67
.C

Question 8

A train speeding up has an average acceleration of $3.50 \mathrm{~m} / \mathrm{s}^{2}$. If ?its initial velocity is $10.0 \mathrm{~m} / \mathrm{s}$, how far does it travel in 2.0 s

$$
\text { How far }=\text { s oller }
$$

m 7
m 27

$$
s=(20)(2)+\frac{1}{2}(3.50)(2)^{2}
$$

$$
=27 \mathrm{~m}
$$

Question 9

A rock is dropped from a bridge. It has a velocity of $23 \mathrm{~m} / \mathrm{s}$ when it hits the ground? How long is the rock in the air? (Ignore air resistance; acceleration due to gravity is $9.80 \mathrm{~m} /$.(s²
s 4.6

$$
v_{f}=v_{i}+a t
$$

s 0.2

$$
t=\frac{v_{f}-v_{i}}{a}
$$

s 2.3

$$
t=\frac{23-0}{9.80}
$$

s 9.8

Question 10

A ball is dropped from the top of a building. It has a velocity of $31 \mathrm{~m} / \mathrm{s}$ when it hits the ground? How tall is the building? (Ignore air resistance; acceleration due to gravity is $9.80 \mathrm{~m} /$.(s²
m 98

$$
\begin{aligned}
& \text { How tall }=s \text { ? } \\
& s=\text { vit }+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
t=\frac{\Delta v}{a}=3.165
$$

m 3

$$
s=(0)(3.13)+\frac{1}{2}(9.80)(3.16)^{2}
$$

m 31

$$
=48.9 \mathrm{~m}
$$

.C
m 49

Assessment
Physics: Lesson 8

Question 1

?Which of the following statements about a force is false A force can make an object accelerate

A force can change the shape of an object $\sqrt{ }$
A force can change the direction of a moving object $\sqrt{ }$
D. A force can only act on a moving objects

Question 2

Inertia is the property of a body that
$\longrightarrow \quad \ddot{m}$
A. keeps it moving
B. makes it want to stop moving
C. makes it difficult to change the way it is moving
D. makes it accelerate
.This diagram shows a block of wood at rest on a slope ?What correctly describes this situation
.A. As the block is at rest there are no forces acting on it
.B. This is impossible as the force of gravity must make it move
.C. The block must have too much mass to move
D. The block does not move because there is no net force acting on it

Question 4

?What is the unit of force in terms of SI base units
A. $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
B. $\mathrm{kg} \mathrm{m} / \mathrm{s}$
C. m / s
D. $\mathrm{m} / \mathrm{s}^{2}$

Question 5

What net force is necessary to produce an acceleration of $10.00 \mathrm{~m} / \mathrm{s} 2$?on a mass of 2.00 kg

N 20

$$
F=2 \times 20=20 \mathrm{~N}
$$

N 12
.B
N 8
N 5
.D

Question 6

What force is necessary to produce an acceleration of $2.5 \mathrm{~m} / \mathrm{s} 2$ on a mass ?of 7.5 kg
A. 15 N
B. 0.33 N

$$
\begin{aligned}
F & =7.5 \times 2.5 \\
& =18.25 \mathrm{~N}
\end{aligned}
$$

C. 3 N
D. 18.75 N

Question 7

What force is necessary to produce an acceleration of $30.00 \mathrm{~m} / \mathrm{s} 2$ on a ?mass of 5.00 kg

N 6
.A
N 150

$$
F=5.00 \times 30.00
$$

N 15
N 60

Question 8

?The SI unit for normal force is
Nkg.s/m² AB$\mathrm{Nm} / \mathrm{s}^{2}$kg.m/s

Question 9

A man weighing 600 N stands at rest on two bathroom scales so that his weight is distributed evenly between them. The reading on each scale :is

N 800
B. 200 N

$$
600 \div 2=300 \mathrm{~N}
$$

C. 1600 N
D. 300 N

Question 10

An object is accelerated at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ by a force of $2.5 \times 10^{7} \mathrm{~N}$. What is its ?mass
A. $1.25 \times 10^{8} \mathrm{~kg}$
B. $5 \times 10^{7} \mathrm{~kg}$
C. $1.25 \times 10^{6} \mathrm{~kg}$
D. $5 \times 10^{6} \mathrm{~kg}$

Assessment
Physics: Lesson 9

Question 1

The frictional force is caused by interactions between the object and .the surface it is resting on

True
False

Question 2

?The frictional force that governs an object in motion is called Static friction

Friction
Kinetic friction
Net force

Question 3

The direction of the frictional force is always \qquad the .motion of the object
perpendicular to
in the same direction as
opposite to
D. not equal to

Question 4

:The frictional force that governs an object at rest is called

Static friction

Total force
. A
.B
Kinetic friction
Net force

Question 5

What is the net force acting on an object if there is a force of 15 N acting to the right and a frictional force of 3 N acting to the left? .Assume forces acting to the right are positive

N 15
$15-3=22 \mathrm{~N}$
N 12
N 12-
N 18

Question 6

What is the static-friction force acting on an object if there is a force of 1.5 N acting to the right and the object is not moving? Assume forces .acting to the right are positive

N 1.5
N 1.5-
N 0
D. Not enough information provided

Question 7

A force is needed to keep a 400 N wooden box sliding on a wooden floor with a coefficient of kinetic friction equal to 0.10 . What is the force ?acting on the box

N 4000

N 400
N 40
D. 4 N

Question 8

Kinetic friction is also known as

Sliding friction
Static frictionB
Total force
Net force

Question 9

The net force is the arithmetic sum of both vertical and horizontal .forces

True

False

Question 10

To decrease the frictional force, you need to decrease the surface area .of the object in contact with the ground

True
False
.B

Assessment
Physics: Lesson 10

Question 1

How many forces are involved in an interaction ?between two objects

Question 2

What is the direction of the force the ground applies to a ?stationary car

Upward
Downward
Parallel to the road surface
There is no force

Question 3

Every action has an opposite and equal reaction is a :statement of

Newton's first law
Newton's second law
Newton's third law
Newton's fourth law

Identify the force pair in this system: a car stationary on the .road

Weight and the normal force
Mass and the normal force .B

Mass and friction
Weight and friction
.D

Question 5

What is the force the ground applies to a person with a mass ?of 70 kg

N 686
N 70
N 0

. A

Question 6

A truck crashes all the way through a wall. Since the wall collapses, the wall sustains a greater force than the truck does.
?According to Newton's laws of motion, is this true or false

True

False

Suppose that the mass of the spacecraft is $5,000 \mathrm{~kg}$ and that the mass of the astronaut is 105 kg . The astronaut pushes with a force of 420 N on the spacecraft. Find the .acceleration of the astronaut
$\mathrm{m} / \mathrm{s}^{2} 4$
$\mathrm{m} / \mathrm{s}^{2} 0.084$
$\mathrm{m} / \mathrm{s}^{2} 0$

Question 8

When a man pushes on a wall with force F, the wall pushes :back on him with force of magnitude
A. Zero
B. $\mathrm{F} / 2$
C. F
D. 2 F

Question 9

When a man stretches a spring with a $400-\mathrm{N}$ force (within its :elasticity range), the spring pulls him back with
A. 0 N
B. 50 N
C. 400 N
D. 200 N

Question 10

When a cannon shoots a cannonball with force F_{b}, the cannon :recoils with force F_{c} such that
A. $F_{c}=F_{b}$
B. F_{c} is much larger than F_{b}
C. F_{c} is much smaller than F_{b}
D. $F_{c}=0$

Assessment
Physics: Lesson 11

Question 1

.Work is \qquad multiplied by the distance the object travels

Mass

Velocity
Acceleration
Force

Question 2

The SI unit for work is
Joule
N .B
G
.C
m / s
.D

Question 3

?Which of these can be used as a unit for work
N
.A
N / m
.B
N.m
m / s
.D

Question 4

A force acts on a block with a magnitude of 20 N . The block travels 20 ?m in the direction of the force. How much work is done on the block
A. 20 J

```
W=fs
    w=(20)(20)=400 d
```

B. 400 J
C. 0 J
D. 40 J

Question 6

A force acts on a block with a magnitude of 20 N perpendicular to the direction the block travels, which is 20 m . How much work is done on the ?block by the force
A. 20 J
B. 400 J
C. 0 J
D. 40 J

Question 8

What is the force acting on a block that has 150 J of work done on it ?and travels 5 m
A. 155 N

$$
\begin{aligned}
& w=f s \\
& f=\frac{w}{s} \\
& =\frac{250}{5} \\
& =30 \mathrm{~N}
\end{aligned}
$$

B. 30 N
C. 0 N
D. 145 N

Question 5

A force acts on a block with a magnitude of 10 N . The block travels 20 ?m in the direction of the force. How much work is done on the block
A. 20 J

$$
\begin{aligned}
w & =10 \times 20 \\
& =200 \mathrm{j}
\end{aligned}
$$

B. 200 J
C. 0 J
D. 30 J

Question 7

A force acts on a block with a magnitude of 10 N perpendicular to the direction the block travels, which is 20 m . How much work is done on ?the block force
A. 0 J
B. 200 J
C. 20 J
D. 30 J

Question 9

What is the force acting on a block that has 15 J of work done on it ?and travels 30 m

N 45
N 2

$$
\begin{aligned}
& w=f s \\
& f=\frac{w}{s} \\
& f=\frac{15}{30}=0.5 \mathrm{~N}
\end{aligned}
$$

.B

N 0.5
N 15
.D

Question 10

What is the force acting on a block that has 60 J of work done on it and ?travels 3 m

N 20
N 63

$$
=20 \mathrm{~N}
$$

N 0.05
N 57

Assessment
Physics: Lesson 12

Question 1

?What is the definition of power
A. Time over work $\quad P=\frac{w}{t}$
B. Work multiplied time
C. They are not related
D. Work over time

Question 2

?What is the SI unit of power
watts
joules
horsepower
seconds

Question 3

?What is the definition of work in terms of power
Power divided by time

Power multiplied by displacement
Power multiplied by time
D. Power and work are not related

Question 4

?Which of these is a unit of power

joulesnewton meterB
joules per second C
secondsD

Question 5

ω
What is the average power if 2500 J of work is done by a machine in ? 15.4 s
watts 38,500
watts 162.3
$p=\frac{\omega}{t}$
$=\frac{2500}{25.4 \mathrm{~s}}$
watts 0.00616
$=162.3$
.B
watts 0

Question 6

What is the average power if 500 J of work is done by a machine in 1 ?hour
watts 0.139

$$
P=\frac{w}{t}
$$

$$
500 \div 60 \div 60=0.139
$$

watts 500
watts 0.002
watts 7.2

Question 7
?How many horsepower are there in 1000 watts \longrightarrow kkw hp 746,000 hp 746
hp 1
hp 1.34

Question 8

?How many watts are there is 500 horsepower

watts 0.67

$$
500 \mathrm{hp} \times \frac{750 \mathrm{w}}{1 \mathrm{hp}}=373000
$$

watts 373,000
watts 746
watts 373

Question 9

What is the average power if 3570 J of work is done by a machine in ?5.4 st
watts 19,278

$$
P=\frac{\omega}{t}
$$

watts 0.00151

$$
=\frac{3570}{5.4}=661 \cdot 1
$$

.A
watts 66
.C
watts 661

Question 10

?How many watts are there in 5 horsepower

watts 0.014
$\sup \times \frac{750 \mathrm{w}}{1 \mathrm{hp}}=3750 \mathrm{w}$
watts 746
watt 1
watts 3730

Assessment
Physics: Lesson 13

Question 1

?Which of the following is the SI unit for energy

Newton
Watt
Joule
m / s

Question 2

?Which of the following is the SI unit for kinetic energy
Newton
Watt
m / s
joule
.D

Question 3

? What is the kinetic energy of a $\underline{300 \mathrm{~kg} \text { car moving at } 20 \mathrm{~m} / \mathrm{s} .50}$
A. 6000 J

$$
\begin{aligned}
K E= & \frac{1}{2} m v^{2} \\
= & \frac{1}{2}(300)(20)^{2} \\
& =60000 \mathrm{~J}
\end{aligned}
$$

C. 320 J
D. 3000 J

Question 4

What is the potential energy of a 2500 kg plane 25 meters above the ?ground
A. $62,500 \mathrm{~J}$
B. 100 J $P E=612500 \mathrm{~d}$
C. 2525 J
D. $612,500 \mathrm{~J}$

Question 5

?energy is the energy due to position

Kinetic
Gravitational potential .B

Nuclear
Electrical

Question 6

Energy is a measure of the work that can be done on/by an object

True
False

Question 7

A car starts from rest and uses $10,000 \mathrm{~J}$ of work to accelerate. What is ?it final speed if it has a mass of 500 kg
A. $20.4 \mathrm{~m} / \mathrm{s}$
B. $6.3 \mathrm{~m} / \mathrm{s}$
C. $10.5 \mathrm{~m} / \mathrm{s}$
D. $0 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
K E=w \\
K E=\frac{1}{2} m v^{2} \\
w=\frac{1}{2} m v^{2} \\
v=\frac{\sqrt{\frac{2 w}{m}}}{u} \\
v=\frac{\sqrt{2(10000)}}{500} \\
v=6.3 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Question 8

You drop a ball from a height of 20 m . What is its speed when it hits ?the ground

$$
K E=P E \longrightarrow \quad m g h=\frac{1}{2} m v^{2} \longrightarrow v=\sqrt{2 g h}
$$

A. $10.2 \mathrm{~m} / \mathrm{s}$
B. $0 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
v=\sqrt{2(9.8)(20)} \\
=19.79
\end{gathered}
$$

C. $19.8 \mathrm{~m} / \mathrm{s}$
D. $32.1 \mathrm{~m} / \mathrm{s}$

Question 9

The total energy of an object of mass (m), falling at height (h) with :speed (v) can be written as
$\mathrm{E}=1 / 2 \mathrm{mv} 2+2 \mathrm{mgh}$
$E=1 / 2 m v 2+m g h$
$E=K E+P E$
.B
$E=m v 2+1 / 2 m g h$
$E=1 / 2 m v 2+1 / 2 m g h$

Question 10

You drop a 1 kg ball from a height of 50 m . What is the ball's kinetic ?energy when it reaches the ground
A. 0 J

$$
v=\sqrt{2 g h}=31.3 \mathrm{~m} / \mathrm{s}
$$

B. 490 J
C. 50 J
D. 254 J

$$
\begin{aligned}
K E & =\frac{1}{2} m v^{2} \\
K E & =\frac{1}{2}(1)(31.3)^{2} \\
& =489.8 \mathrm{~d}
\end{aligned}
$$

Assessment
Physics: Lesson 14

Question 1

?Which of the following is the SI unit for heat

Watt
m / s

Question 2

?Which of the following is the SI unit for absolute temperature F°
C°
K
.C

J
.D

Question 3

.Convert $60^{\circ} \mathrm{F}$ to Celsius
A. $15.5^{\circ} \mathrm{C}$
B. $140^{\circ} \mathrm{C}$
C. $333^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

$$
T_{c}=\frac{5}{9}\left(T_{f}-32\right)
$$

$$
=15.5^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& =15.5^{\circ} \mathrm{C}
\end{aligned}
$$

Question 4

.Convert $20^{\circ} \mathrm{F}$ to Celsius
A. $68^{\circ} \mathrm{C}$

B. $293^{\circ} \mathrm{C}$ $=-6.67^{\circ} \mathrm{C}$
C. $-6.67^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

Question 5

.Convert $40^{\circ} \mathrm{F}$ to Celsius
A. $104^{\circ} \mathrm{C}$
B. $4.44^{\circ} \mathrm{C}$

C. $313 .{ }^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

Question 6

.Convert $90^{\circ} \mathrm{C}$ to Fahrenheit
A. $194^{\circ} \mathrm{F}$
B. $32^{\circ} \mathrm{F}$

$$
\text { shift } \rightarrow \text { [8) } \rightarrow \text { 3 } 8 \text { : : }
$$

C. $363^{\circ} \mathrm{F}$

$$
T_{f}=\frac{q}{5}\left(T_{c}+32\right)
$$

D. $0^{\circ} \mathrm{F}$

Question 7

.Convert $100^{\circ} \mathrm{C}$ to Fahrenheit
A. $37.8^{\circ} \mathrm{F}$

B. $373^{\circ} \mathrm{F}$
C. $212^{\circ} \mathrm{F}$
D. $0^{\circ} \mathrm{F}$

Question 8

.Convert $130^{\circ} \mathrm{C}$ to Fahrenheit

A. $54.4^{\circ} \mathrm{F}$

B. $403^{\circ} \mathrm{F}$
C. $266^{\circ} \mathrm{F}$
D. $0^{\circ} \mathrm{F}$

Question 9

.Convert $140^{\circ} \mathrm{C}$ to kelvin
A. $413 \mathrm{~K} \quad 140+273=423$
B. 60 K
C. 284 K
D. 0 K

Question 10

Find the amount of heat in kcal generated by 7510 J .of work
A. 1.43 kcal

$$
\begin{aligned}
& \text { shift } \rightarrow \text { B } \rightarrow \text { (3) } \\
& =1794 \mathrm{C}
\end{aligned}
$$

B. 1.79 kcal
C. 8.11 kcal

$$
\begin{array}{r}
7510 \alpha \times \frac{1 \mathrm{Kcal}}{4190} \\
=1.79 \mathrm{Kcal}
\end{array}
$$

Assessment
Physics: Lesson 15

Question 1

When a solid undergoes a change of phase into a liquid this is called Melting

Freezing
Vaporizing
Boiling .D

Question 2

When a liquid undergoes a change of phase into a solid this is called

Melting

Freezing
Vaporizing
Boiling

Question 3

When a liquid undergoes a change of phase into a gas this is called

Melting

Freezing
Vaporizing
Boiling

Question 4

What heat is needed to change the temperature of 10 kg of water ($\mathrm{c}=$ $? 1.00 \mathrm{kcal} / \mathrm{kg}$ degree- C) from $\frac{10 \text { to } 20 \text { degrees }-\mathrm{C}}{\Delta T}$
A. 10 kcal
B. 200 kcal
C. 100 kcal
D. 419 kcal

Question 5

How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 100 degrees C? (L-vaporization = 540 $\mathrm{cal} / \mathrm{g}$)
A. 540 cal
$L v=\frac{Q}{m}$
$Q=L U \times m$
B. 540000 cal
C. 54000 cal
D. 5400 cal

Question 6

It takes $100,000 \mathrm{~J}$ of heat to raise the temperature of water from $10^{\circ} \mathrm{C}$ to $11^{\circ} \mathrm{C}$. What is the mass of the water? The specific heat of water is 4186 . $\mathrm{J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right.$)
A. 23.9 kg
$Q=c m \Delta T$
B. 4186 kg
$m=\frac{Q}{c \Delta T}$
$m=\frac{100000}{4186 \times 2}$
C. 1.2 kg
D. 4.186 kg

Question 7

How much heat is needed to raise the temperature of 4 kg of water .from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$? The specific heat of water is $4186 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
A. $16,744 \mathrm{~J}$
$Q=c m \Delta T$
$Q=4186 \times 4 \times 10$
B. 4186 J
C. $502,320 \mathrm{~J}$
D. $167,440 \mathrm{~J}$

Question 8

How much heat is needed to raise the temperature of 6 kg of marble .from $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$? The specific heat of marble is $880 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
A. 5280 J
B. $105,600 \mathrm{~J}$
C. $10,560 \mathrm{~J}$
D. $52,800 \mathrm{~J}$

Question 9

What is the change in temperature of 4 kg of water if it takes $.1,000,000 \mathrm{~J}$ of heat? The specific heat of water is $4186 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
A. $238.9^{\circ} \mathrm{C}$
B. $59.7^{\circ} \mathrm{C}$
C. $10.5^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =\frac{2000000}{4 \times 4286} \\
& =59.7 \mathrm{c}
\end{aligned}
$$

Question 10

What is the change in temperature of 14 kg of water if it takes $100,000 \mathrm{~J}$.of heat? The specific heat of water is $4186 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
A. $23.9^{\circ} \mathrm{C}$
B. $17.1^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. $1.7^{\circ} \mathrm{C}$

Assessment
Physics: Lesson 16

Question 3

An example of an elastic material is
Cement
Clay
Dough
Rubber ball

Question 4

How much force is needed to pull a spring 0.25 m if the spring constant ?is equal to $10 \mathrm{~N} / \mathrm{m}$
A. 40 N
B. 10 N
C. 0.25 N
D. 2.5 N

Question 5

How much force is needed to pull a spring 0.25 m if the spring constant ?is equal to $20 \mathrm{~N} / \mathrm{m}$
A. 80 N
B. 5 N
C. 20 N
D. 0.25 N

Question 6

How much force is needed to pull a spring 0.5 m if the spring constant is ?equal to $1 \mathrm{~N} / \mathrm{m}$
A. 0.5 N
B. 1 N
C. 2 N
D. 1.5 N

Question 7

How far does a spring with a spring constant of $100 \mathrm{~N} / \mathrm{m}$ compress if 2 N ?of force is used to compress it
A. 0.2 m
B. 0.02 m

$$
\frac{2}{200}=0.02
$$

C. 1 m
D. 2 m

Question 8

How far does a spring with a spring constant of $100 \mathrm{~N} / \mathrm{m}$ compress if ?20 N of force is used to compress it
m 0.2
B. 2 m

$$
\frac{20}{200}=0.2
$$

C. 20 m
D. 1 m

Question 9

What is the spring constant of a spring that is compressed 0.4 m if 20 N ?of force is used to compress it
A. $1 \mathrm{~N} / \mathrm{m}$
B. $5 \mathrm{~N} / \mathrm{m}$
C. $0.5 \mathrm{~N} / \mathrm{m}$

$$
\frac{20}{0.4}=50
$$

D. $50 \mathrm{~N} / \mathrm{m}$

Question 10

A cube of iron of $10-\mathrm{cm}$ sides weighs 60 N . The stress it exerts on a flat :surface is

$$
=0.01 \mathrm{~m}^{2}
$$

A. 60 Pa
B. 600 Pa

$$
\begin{aligned}
s & =\frac{F}{A} \\
& =\frac{60}{0.01} \\
& =6000 \mathrm{PA}
\end{aligned}
$$

D. $60,000 \mathrm{~Pa}$

Assessment
Physics: Lesson 17

Question 2

.is defined as a mass per unit volume \qquad
Mass density

Weight density

Weight
Answer not present

Question 3

.is defined as a weight per unit volume
Mass density .A

Weight density .B

Mass
Answer not present

Question 4

Find the weight density of a block of wood $3.00 \mathrm{in} . \times 2.00 \mathrm{in} . \times 5.00 \mathrm{in}$. .with a weight of 0.300 lb
A. $17.28 \mathrm{lb} / \mathrm{ft}^{3}$
B. $0.01 \mathrm{lb} / \mathrm{ft}^{3}$
C. $100.0 \mathrm{lb} / \mathrm{ft}^{3}$
D. $1.00 \mathrm{lb} / \mathrm{ft}^{3}$

Question 5

Find the weight density of a block of wood $0.20 \mathrm{~m} \times 0.20 \mathrm{~m} \times 0.40 \mathrm{~m}$. with a weight of 67.2 N
A. $1.07 \mathrm{~N} / \mathrm{m}^{3}$
B. $1680 \mathrm{~N} / \mathrm{m}^{3}$
C. $4200 \mathrm{~N} / \mathrm{m}^{3}$

$$
\begin{aligned}
D_{w} & =\frac{\omega}{V} \\
& =\frac{67.2}{0.20 \times 0.20 \times 0.40}=4200 \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

D. $2.69 \mathrm{~N} / \mathrm{m}^{3}$

Question 6

Find the mass density of a sphere of wood with a 2.00 cm . radius and a .mass of $0.500 \mathrm{Kg} \quad v=\frac{4}{3} ク(\vdash)^{3}$
A. $14921 \mathrm{Kg} / \mathrm{m}^{3}$

$$
D_{m}=\frac{0.500}{\frac{4}{3} \pi(0.02)^{3}}
$$

B. $5.97 \mathrm{Kg} / \mathrm{m}^{3}$
C. $0.0597 \mathrm{Kg} / \mathrm{m}^{3}$
D. $1 \mathrm{Kg} / \mathrm{m}^{3}$

Question 7

Find the mass density of a sphere of wood with a 0.03 m radius and a .mass of 0.100 Kg
A. $1 \mathrm{Kg} / \mathrm{m}^{3}$

$$
D_{m}=\frac{0.100}{\frac{4}{3} \pi(0.03)^{3}}
$$

B. $0.796 \mathrm{Kg} / \mathrm{m}^{3}$
C. $0.00796 \mathrm{Kg} / \mathrm{m}^{3}$
D. $884 \mathrm{~kg} / \mathrm{m}^{3}$

Question 8

Find the weight density of a can of oil (2 quart) weighing 1.50 lb . (1 .quart $=0.03342 \mathrm{ft}^{3}$)
A. $1296 \mathrm{lb} / \mathrm{ft}^{3}$
B. $22.4 \mathrm{lb} / \mathrm{ft}^{3}$

$$
\begin{aligned}
D w & =\frac{w}{V} \\
& =\frac{1.50}{2 \times 0.033 \mathrm{ld}} \\
& =22.4 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$\mathrm{lb} / \mathrm{ft}^{3} 44.8$
$\mathrm{lb} / \mathrm{ft}^{3} 77.1$

Question 9

Copper has a mass density of $8890 \mathrm{~kg} / \mathrm{m}^{3}$. Find its mass density in g/ .cm ${ }^{3}$
A. $0.889 \mathrm{~g} / \mathrm{cm}^{3}$ $8890000 \mathrm{~g} / \mathrm{m}^{3} \div 10^{6}=8.89 \mathrm{~g} / \mathrm{cm}^{3}$
B. $889 \mathrm{~g} / \mathrm{cm}^{3}$
C. $88.9 \mathrm{~g} / \mathrm{cm}^{3}$
D. $8.89 \mathrm{~g} / \mathrm{cm}^{3}$

Question 10

A quantity of gasoline weighs 33.3 N with weight density $6660 \mathrm{~N} / \mathrm{m}^{3}$. Find .its volume
A. $2.50 \times 10^{-3} \mathrm{~m}^{3}$
B. $5.00 \times 10^{-3} \mathrm{~m}^{3}$
C. $2.00 \times 10^{2} \mathrm{~m}^{3}$ $=\frac{33.3}{6000}$
D. $1.00 \times 10^{-3} \mathrm{~m}^{3}$

Assessment
Physics: Lesson 18

Question 1

?Which electric charge has lines of force drawn away from the charge
Positive
Negative
Neutral
None of the charges

Which of the following is the correct statement about the fundamental ?characteristic of electric charges
A. Like charges repel and attract each other.
B. Unlike charges repel and like charges attract each other.
C. Like and unlike charges neither attract nor repel.
D. Like charges repel and unlike charges attract each other.

Question 3

?is the SI unit for charge

J
.A

N
.B

W

C
.D

Question 4

:A positively charged object is an object with
A. extra electrons
B. lack of electrons
C. extra neutrons
D. lack of protons

Question 5

$$
6.5 \times 10^{-6} \mathrm{C}
$$

Two charges, each with magnitude $+6.50 \mu \mathrm{C}$, are separated by a .distance of 0.400 cm . Find the force of repulsion between them $4 \times 10^{-3} \mathrm{~m}$
A. $3.65 \times 10^{-9} \mathrm{~N}$
B. $9.50 \times 10-17 \mathrm{~N}$
C. $2.38 \times 10^{4} \mathrm{~N}$

$$
\begin{aligned}
F & =k \frac{q_{1} q_{2}}{r^{2}} \\
& =9 \times 10^{4} \frac{6.5 \times 10^{-6} \times 6.5 \times 10^{-6}}{\left(4 \times 20^{-3}\right)^{2}}
\end{aligned}
$$

D. $1.46 \times 10^{-11} \mathrm{~N}$

Question 6

What is the electrostatic force between two charges of +6 nC and +1 nC ?if they are separated by a distance of 2 mm

$$
2 \times 10^{-3}
$$

A. $6.91 \times 10^{-10} \mathrm{~N}$
B. $1.03 \times 10^{-2} \mathrm{~N}$
C. $1.06 \times 10^{-4} \mathrm{~N}$
D. $1.35 \times 10^{-2} \mathrm{~N}$

Question 7

Calculate the distance between two charges of +4 nC and -3 nC if .the electrostatic force between them is 0.005 N
A. $6.50 \times 10^{-6} \mathrm{~m}$
B. $8.67 \times 10^{+7} \mathrm{~m}$
C. $46.0 \times 10^{-3} \mathrm{~m}$
D. $4.6 \times 10^{-3} \mathrm{~m}$

$$
F=k \frac{q_{2} q_{2}}{L^{2}}
$$

$$
\begin{aligned}
r & =\frac{\sqrt{k q_{1} q_{2}}}{F} \\
& =4.64 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

Question 8

Find the magnitude of the electric field in which a negative charge of .C experiences a force of $\frac{0.06}{F} \mathrm{~N} \underline{10^{-8} \times 3} q$

A. $2 \times 10+6 \mathrm{~N} / \mathrm{C}$

$$
E=\frac{F}{q}
$$

B. $5 \times 10^{-9} \mathrm{~N} / \mathrm{C}$

$$
\begin{aligned}
& =\frac{0.06}{3 \times 10^{-8}} \\
& =2 \times 10^{6} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

C. $6 \times 10^{-3} \mathrm{~N} / \mathrm{C}$
D. $3 \times 10^{-3} \mathrm{~N} / \mathrm{C}$

Question 9

What force is exerted on a test charge of $4 \times 10^{-5} \mathrm{C}$ if it is placed in an electric ?field of magnitude $2 \times 10^{4} \mathrm{~N} / \mathrm{C}$
A. 22 N

$$
E=\frac{F}{q}
$$

B. 8 N
C. 0.8 N

$$
F=E q
$$

$$
\begin{aligned}
F & =E q \\
& =2 \times 10^{4} \times 4 \times 10^{-5}
\end{aligned}
$$

D. 80 N

Question 10

An electric field of magnitude $0.4 \mathrm{~N} / \mathrm{C}$ exerts a force of $8 \times 10^{-4} \mathrm{~N}$ on a test ?charge placed in the field. What is the magnitude of the test charge

C 1
mC 2
nC 3
nC 2

Assessment
Physics: Lesson 19

Question 1

.is the SI unit for current
Ω
V

Question 2

.is the SI unit for voltage

J

Question 3

.is the SI unit for resistance \qquad

V

Question 4

:Electric energy can be stored in a

A. switch
B. light bulb
C. capacitor
D. resistance

Question 5

When a capacitor is connected to a battery, the plate connected to the
\qquad terminal becomes
A. positive, negative
B. negative, positive
C. positive, positive
D. positive, neutral

Question 6

:Ohm's law states that
voltage = current - resistance
voltage = current + resistance
voltage $=$ current \div resistance
voltage $=$ current \times resistance

Question 7

A torch lamp takes a current of 0.3 amperes from a 3 volt battery. What ?is its resistance
A. 3Ω
B. 10Ω

$$
\begin{aligned}
V & =I R \\
R & =\frac{V}{I} \\
& =\frac{3}{0.3}=10 \Omega
\end{aligned}
$$

$\Omega 20$
$\Omega 35$

Question 8

A heating element on an electric stove operating on 110 V has a ?resistance of 20.0Ω. What current does it draw
A. 0.18 A
B. 2200 A

$$
\begin{aligned}
V & =I R \\
I & =\frac{V}{R} \\
& =\frac{110}{20}=5.5 \mathrm{~A}
\end{aligned}
$$

C. 5.5 A
D. 90 A

Question 9

A heating element on an electric stove operating on 130 V has a ?resistance of 20.0Ω. What current does it draw
A. 110 A
B. 2600 A

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R}
\end{aligned}
$$

C. 0.15 A
D. 6.5 A

A 10.0 m copper wire (resistivity $1.72 \times 10^{-6} \Omega \mathrm{~cm}$) has a cross-sectional area $9.5 \times 10^{-3} \mathrm{~cm}^{2}$. Its resistance is:
$\Omega 10^{-1} \times 1.81$
$\Omega 10^{-9} \times 1.63$
$\Omega 10^{-7} \times 1.63$

$$
\Omega 10^{+4} \times 5.52
$$

$$
\begin{aligned}
& R=\frac{P L}{A} \\
&= \frac{1.72 \times 10^{-6} \times 1000}{9.5 \times 10^{-3}} \\
&=0.181 \Omega
\end{aligned}
$$

Assessment
Physics: Lesson 20

Question 4

A soldering iron draws 20.50 A in a $120-\mathrm{V}$ circuit. What is its ?wattage rating
A. 5.85 W

$$
\begin{aligned}
P & =I V \\
& =20.50 \times 120 \\
& =2460 \mathrm{~W}
\end{aligned}
$$

C. 0.171 W
D. 2460 W

Question 7

?What is the power of a $12-\mathrm{V}$ heater with a resistance of 10Ω
A. 120 W
B. 2 W
C. 14.4 W

$$
\begin{aligned}
P & =\frac{V^{2}}{R} \\
& =\frac{12^{2}}{10} \\
& =24.4 \mathrm{~W}
\end{aligned}
$$

D. 12 W

Question 9

An electric fire is rated at 550 W . How much would it cost to ?operate it for 5 h at $\$ 0.08 / \mathrm{kWh}$
A. $\$ 0.02$
cost $=$ power \times hours \times cents

$$
\begin{gathered}
=0.550 \times 5 \times 0.08 \\
=0.22 \$
\end{gathered}
$$

C. $\$ 22$
D. $\$ 0.22$

Question 1

:In electricity, the kilowatt-hour is a unit of
A. electric current
B. electric energy
C. electric potential
D. electric power

Question 2

If a light bulb in a 440-V electric circuit draws 0.5 amperes, :its power rating is

$$
P=V I
$$

A. 220 W
$=440 \times 0.5$
$=220 \mathrm{~W}$
B. 840 W
C. 40 W
D. 75 W

Question 3

:The rate of consuming energy is called
voltage
.A
current .B
power
resistance

Question 5

A soldering iron draws 25.50 A in a $120-\mathrm{V}$ circuit. What is its ?wattage rating

A. 3060 W
B. 4.71 W
C. 0.213 W
D. 94.5 W

Question 6

A MP3 system draws 30.50 A in a $120-\mathrm{V}$ circuit. What is its ?wattage rating
A. 3.93 W
B. 3660 W
C. 0.254 W
D. 89.5 W

Question 8

An electric heater connected to the $230-\mathrm{V}$ mains supply draws ?a current of 4 A . What is the power of the electric heater
A. 920 W
B. 57.5 W
C. 230 W
D. 950 W

Question 10

$$
0.250 \mathrm{Kl}
$$

A TV needs 250 W . It is switched on for 30 minutes. If each kWh costs 8 ?cents, how much does it cost to run the TV
A. \$2 cost $=$ power x hour x cents
B. 1 cent
C. 4 cents
D. 2 cents

Assessment
Physics: Lesson 21

Question 1

.Find the equivalent resistance of the circuit
A. 0.5Ω
B. 20Ω
C. 1.98Ω
D. 0.05Ω

Question 2

.Find the equivalent resistance of the circuit
A. 2.2Ω
B. 21Ω
C. 0.45Ω

D. 0.05Ω

Question 3

.Find the equivalent resistance of the circuit
A. 22Ω
B. 2.37Ω
C. 0.42Ω

D. 0.04Ω

Question 4

.Find the equivalent resistance of the circuit

A. 0.04Ω

B. 24Ω
C. 0.38Ω
D. 2.64Ω

Question 5

.Find the equivalent resistance of the circuit
A. 25Ω
$\Omega 2.74$
$\Omega 0.37$

$\Omega 0.033$

Question 6

.Find the equivalent resistance of the circuit

Question 7

.Find the equivalent resistance of the circuit
A. 5.04Ω
B. 0.20Ω
C. 49Ω
D. 0.020Ω

Question 8

.Find the equivalent resistance of the circuit

Question 9

.Find the equivalent resistance of the circuit
A. 5.64Ω
B. 0.019Ω
C. 0.18Ω
D. 53Ω

Question 10

.Find the equivalent resistance of the circuit
A. 55Ω
B. 0.17Ω
C. 5.87Ω
D. 0.018Ω

Assessment
Physics: Lesson 22

Question 1

:Electromagnetic waves are composed of which of the following
A. Changing electric and magnetic fields
B. Changing electric fields only
C. Changing magnetic fields only
D. Static electric or magnetic fields

Which of the following is ranked in order from largest wavelength to .smallest
A. Radio, Microwave, Infrared, Gamma, X ray
B. Radio, Infrared, Microwave , X ray, Gamma
C. Radio, Microwave, Infrared, X ray, Gamma
D. Microwave, Radio, Infrared, X ray, Gamma
:In an electromagnetic wave, the electric and magnetic fields are
A. parallel to each other and perpendicular to the direction of motion
B. parallel to each other and to the direction of motion
C. perpendicular to each other and parallel to the direction of motion
D. perpendicular to each other and to the direction of motion
:A wave's frequency is
A. the time duration for one complete wave
B. the number of waves repeating every second
C. the maximum value of a wave
D. the length of a single wave

If we move from left to right in the electromagnetic spectrum, what ?will happen
A. both wavelength and frequency increase
B. both wavelength and frequency decrease
C. wavelength decreases and frequency increases
D. wavelength increases and frequency decreases

Question 6

.Find the distance a gamma wave travels in 0.01 secs
A. $3 \times 10^{4} \mathrm{~m}$
B. $3 \times 10^{5} \mathrm{~m}$

$$
s=c t
$$

C. $3 \times 10^{6} \mathrm{~m}$
D. $3 \times 10^{3} \mathrm{~m}$

Question 7

.Find the distance an X ray wave travels in 0.01 secs
A. $3 \times 10^{6} \mathrm{~m}$
B. $3 \times 10^{5} \mathrm{~m}$

$$
\begin{aligned}
& \text { viec led anu's liergsed } 1 \\
& c=3 \times 10^{8}: a_{\text {Gull }}
\end{aligned}
$$

C. $3 \times 10^{4} \mathrm{~m}$
D. $3 \times 10^{3} \mathrm{~m}$

Question 8

.Find the distance a gamma wave travels in 0.001 secs

A. $3 \times 10^{6} \mathrm{~m}$	$s=c t$
B. $3 \times 10^{3} \mathrm{~m}$	$=3 \times 10^{8} \times 0.00 \mathrm{~L}$
C. $3 \times 10^{4} \mathrm{~m}$	$=300000$
D. $3 \times 10^{5} \mathrm{~m}$	

Question 9

.Find the wavelength of a wave that has a frequency of $2.5 \times 10^{7} \mathrm{~Hz}$
A. 10 m
B. 11 m
C. 12 m
D. 13 m

Question 10
.Find the frequency of a wave that has a wavelength of $3.0 \times 10^{-2} \mathrm{~m}$
A. $1 \times 10^{12} \mathrm{~Hz}$

$$
c=\lambda_{f}
$$

B. $1 \times 1010 \mathrm{~Hz}$
C. $1 \times 10^{8} \mathrm{~Hz}$
D. $1 \times 10^{3} \mathrm{~Hz}$

Assessment
Physics: Lesson 23

Question 1

?How many types of reflections are there

1

2

3
.C

Question 2

The law of reflection states that the angel of reflection is .the angle of incidence

A. equal to

B. unequal to
C. greater than
D. less than

Which of the following is not true of the image formed by a plane :mirror

.The image is virtual
.The image is the same size as you are
The image is located as far behind the mirror as you are in front of .it
.The image is inverted
.D

Question 4

.A image has a negative value for s_{i}
inverted
real
virtual
.C
non inverted
.D

Question 5

An object 5.00 cm in front of a convex mirror forms an image 2.0 cm ?behind the mirror. What is the focal length of the mirror
alu_si $\mathrm{Si}_{\mathrm{a}}^{\mathrm{w}}$
A. 3.33 cm
B. 1.43 cm

$$
\frac{1}{f}=\frac{1}{s i}+\frac{1}{\text { so }}
$$

$$
\frac{1}{f}=\frac{1}{-2}+\frac{1}{5}=-0.3 \rightarrow \underset{x^{-1}}{\text { qtio tiie }} \rightarrow-3.33
$$

C. -3.33 cm
D. 0.33 cm

Question 8

An object 5.0 cm in front of a concave mirror forms an image 10.00 ?cm in front of the mirror. What is the focal length of the mirror
A. 0.30 cm
B. 10.0 cm
C. -10.0 cm
D. 3.33 cm

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{5}+\frac{1}{10}=0.3 \Longrightarrow x^{-2} \Longrightarrow 3.33
\end{aligned}
$$

Question 10

:You can see the road ahead of your car at night because of diffuse reflection
absorption
specular reflection
refraction

Question 6

An object 5.00 cm in front of a convex mirror forms an image 3.0 cm ?behind the mirror. What is the focal length of the mirror

A. -7.5 cm
B. 1.88 cm
C. 7.5 cm
D. 0.133 cm

Question 7

An object 5.00 cm in front of a convex mirror forms an image 4.0 cm ?behind the mirror. What is the focal length of the mirror

A. 0.05 cm

$$
\frac{1}{f}=\frac{1}{s i}+\frac{1}{s o}
$$

B. 2.22 cm

$$
\frac{1}{f}=\frac{1}{-4}+\frac{1}{5}=-0.05 \rightarrow x \rightarrow-20
$$

C. 20 cm
D. -20 cm

Question 9

An object 5.0 cm in front of a concave mirror forms an image 12.00 cm ?in front of the mirror. What is the focal length of the mirror
$+\mathrm{si}_{\mathrm{i}} \longleftarrow$ aiéerpleq
A. -3.53 cm
B. 8.57 cm

$$
\frac{L}{f}=\frac{1}{s o}+\frac{t}{s i}
$$

C. 3.53 cm
D. 0.283 cm

