CHAPTER 7

Choose the correct answer:

1. The kinetic energy of a $\mathbf{9 0} \mathbf{~ k g}$ football player running at speed $\mathbf{1 0} \mathbf{~ m} / \mathbf{s}$ is:
(a) $4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$
(b) $4500 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$
(c) $4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $4500 \mathrm{~kg}^{2} \mathrm{~m}^{2} / \mathrm{s}^{2}$
2. A force $\vec{F}=3 \hat{i}+5 \hat{j}$ is applied to a block that moves a distance $\vec{d}=2 \hat{i}$ on a surface. The work done on the block by the force F is:
(a) 6 J
(b) 10 J
(c) 16 J
(d) 11.7 J
3. In the figure the force F moved the block a distance d, the work done on the block by the frictional force is:

(a) 2 J
(b) 0
(c) -1 J
(d) -2 J
4. Which of the following particles that moves along the x-axis has a negative work done on it ?

Particle	$\boldsymbol{K}_{\boldsymbol{i}}$ (initial KE)	$\boldsymbol{K}_{\boldsymbol{f}}$ (final KE)
\mathbf{A}	9 J	4 J
\mathbf{B}	4 J	4 J
\mathbf{C}	5 J	8 J
D	3 J	Zero

(a) A and D
(b) B and \mathbf{C}
(c) C and D
(d) \mathbf{D} and \mathbf{B}
5. The work done by the gravitational force on a $\mathbf{5} \mathbf{~ k g}$ body raised vertically (رفع إلى أعلى) a distance $\mathbf{0 . 5} \mathbf{~ m}$ is:
(a) +24.5 J
(b) +2.5 J
(c) -24.5 J
(d) -2.5 J
6. The power due to F_{1} and F_{2} acting on a box sliding to the right across a frictionless floor with velocity \mathbf{v} is:

(a) $P_{1}=F_{1} \vee \cos 180$
(b) $P_{1}=F_{1} \vee \cos 180$
(c) $P_{1}=F_{1} \vee \cos 0$
(d) $P_{1}=F_{1} \vee \cos 0$
$P_{2}=F_{2} \vee \cos 150$
7. In which of the following situation the net power = zero ?

situation	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$
\mathbf{A}	12	5	-7
B	-13	3	-2

C	15	-12	-3
D	10	2	-7

(a) \mathbf{A}
(b) B
(c) \mathbf{C}
(d) D
8. A spring of $\mathbf{k}=\mathbf{4 0 8} \mathbf{N} / \mathbf{m}$ is pulled to the position $\mathbf{x}=\mathbf{1 7} \mathbf{~ m m}$, the work done by the spring force is:
(a) $-5.9 \times 10^{-2} \mathrm{~J}$
(b) $-59 \times 10^{-2} \mathrm{~J}$
(c) $-0.59 \times 10^{-2} \mathrm{~J}$
(d) $-590 \times 10^{-2} \mathrm{~J}$
9. If the kinetic energy of a particle is initially $\mathbf{5} \mathbf{J}$ and there is a net transfer of $\mathbf{2} \mathbf{J}$ to the particle, then the final kinetic energy is :
(a) 3 J
(b) 7 J
(c) 5 J
(d) 2.5 J
10. Which of the following bodies has the largest kinetic energy ?

Body	Mass (kg)	Velocity(m/s)
A	$\mathbf{3 m}$	\mathbf{V}
B	$3 \mathbf{m}$	$\mathbf{2 ~ V}$
C	$\mathbf{2 m}$	$3 \mathbf{~ V}$
D	\mathbf{m}	$\mathbf{4} \mathbf{V}$

(a) body A
(b) body B
(c) body C
(d) body D
11. A force \mathbf{F} acts on a box that slides to the right a distance \mathbf{d} across a frictionless floor. In which situatin of the following the work done by this force on the box is zero ?
(a)

(b)

(c)

(d)

12. In question 11, which figure gives $\mathbf{W}=\mathbf{F} \mathbf{d}$?
(a)

(b)

(c)

(d)

13. Which of the following is the correct unit of work ?
(a) $\mathrm{N} . \mathrm{m}^{2}$
(b) $\mathrm{N}^{2} \cdot \mathrm{~m}$
(c) Joule
(d) Joule.m
14. A particle moves through a displacement $\vec{d}=(15 m) \hat{i}-(12 m) \hat{j}$ along a straight line while being acted on by a force $\vec{F}=(210 N) \hat{i}-(150 N) \hat{j}$. The work done on the particle by this force is:
(a) 4950 J
(b) 1350 J
(c) 3150 J
(d) 1800 J
15. The figure shows a force \mathbf{F} applied to a box that moves to the right for a distance d over a frictionless floor. The work done on the box by the force \mathbf{F} is:

(a) $F \cos 60$
(b) $\mathrm{Fd} \cos 60$
(c) $F \sin 60$
(d) F d $\sin 60$
16. The figure shows two forces applied to a box that moves to the right for a distance of $\mathbf{3} \mathbf{~ m}$ over a frictionless floor. The force magnitudes are $F_{1}=\mathbf{9} \mathbf{N}, F_{2}=\mathbf{3} \mathbf{N}$.
What is the work done on the box by the force $\mathbf{F}_{\mathbf{1}}$?

(a) 23.4 J
(b) zero
(c) 13.5 J
(d) 27 J
17. In question $\mathbf{1 6}$, what is the work done by the force $\mathbf{F}_{\mathbf{2}}$?
(a) 23.4 J
(b) zero
(c) 13.5 J
(d) 9 J
18. A force \boldsymbol{F} acts on a box that slides to the right a distance \boldsymbol{d} across a frictionless floor. In which situation of the following the work done by this force on the box is zero?
(a) The angle between
(b) The angle between
(c) The angle between
(d) The angle between
\vec{F} and \vec{d} is 150°
\vec{F} and \vec{d} is 90°
\vec{F} and \vec{d} is 45°
\vec{F} and \vec{d} is 0°
19. In question 18 , which situation gives $\mathbf{W}=\boldsymbol{F} \boldsymbol{d}$?
(a) The angle between
(b) The angle between
(c) The angle between
(d) The angle between \vec{F} and \vec{d} is 150° \vec{F} and \vec{d} is 90° \vec{F} and \vec{d} is 45°
\vec{F} and \vec{d} is 0°
20. A particle moves through a displacement $\vec{d}=-4 \hat{i}$ meter along a straight line while being acted on by a force $\vec{F}=2 \hat{i}-3 \hat{j}$ Newton. The work done on the particle by this force is:
(a) +2 J
(b) -4 J
(c) +5 J
(d) -8 J
21. Two men sliding a box of mass \mathbf{m} a displacement \mathbf{d} along the x-axis, if the work done by the first man was $\mathbf{W}_{\mathbf{1}}=\mathbf{6 0}$ \mathbf{J}, and the net work on the box was $\mathbf{W}=\mathbf{1 2 0} \mathbf{J}$. What is the work $\mathbf{W}_{\mathbf{2}}$ done by the second man?
(a) $W_{2}=0$
(b) $\mathrm{W}_{2}=60 \mathrm{~J}$
(c) $\mathrm{W}_{2}=120 \mathrm{~J}$
(d) $\mathrm{W}_{2}=180 \mathrm{~J}$
22. In question $\mathbf{2 1}$, What is the work done on the box $\left(\mathbf{W}_{\mathbf{g}}\right)$ by the gravitational force?
(a) 0
(b) 60 J
(c) 120 J
(d) 180 J
23. In question 21, if the box was initially stationary, what is its speed v_{f} at the end of the displacement?
(a) $v_{f}=\sqrt{\frac{2 W}{m}}$
(b) $v_{f}=\sqrt{\frac{m}{2 W}}$
(c) $v_{f}=\sqrt{\frac{2 m}{W}}$
(d) $v_{f}=\sqrt{\frac{W}{2 m}}$
24. Which of the following bodies has the smallest kinetic energy ?

Body	Mass(kg)	Velocity(m/s)
A	$3 \mathbf{m}$	$\mathbf{1 V}$
B	$3 \mathbf{m}$	$2 \mathbf{V}$
C	$2 \mathbf{m}$	$3 \mathbf{V}$
D	$1 \mathbf{m}$	$4 \mathbf{V}$

(a) body A
(b) body B
(c) body C
(d) body D
25. A block lies on a frictionless floor attached to a spring of spring constant $k=408 \mathrm{~N} / \mathrm{m}$, how much work does the spring force do on the block if it is pulled from $\mathbf{x}_{\mathbf{1}}=\mathbf{0}$ to $\mathbf{x}_{\mathbf{2}}=\mathbf{1 0} \mathbf{~ m m}$?
(a) -0.03 J
(b) -0.02 J
(c) -0.04 J
(d) -0.05 J
26. A block of weight $\mathbf{1 0 0} \mathbf{N}$ lifted up $\mathbf{1} \mathbf{m}$ by a man, the work done by the gravitational force on it is:
(a) 100 J
(b) -100 J
(c) 10.2 J
(d) -10.2 J
27. A block is pulled at a constant speed of $\mathbf{2 ~ m} / \mathrm{s}$ across a horizontal floor by an applied force of $\mathbf{2} \mathbf{N}$ directed $\mathbf{6 0}^{\circ}$ above the horizontal. What is the power acting on the block due to the force?
(a) 2 Watt
(b) 3 Watt
(c) 4 Watt
(d) 6 Watt

CHAPTER 9

28. In the closed and isolated system :
(a) mass = constant
(b) mass = zero
Fexternal $=$ constant
(c) mass $=$ constant
Fexternal $=$ constant
(d) mass = zero
$\mathrm{Fexternal}=$ zero
29. How fast would a man of mass 80 kg have to run to have the same linear momentum as a $\mathbf{1 6 0 0} \mathbf{~ k g}$ car moving at $\mathbf{1 . 2} \mathbf{~ k m} / \mathrm{h}$?
(a) $0.24 \mathrm{~km} / \mathrm{h}$
(b) $2.4 \mathrm{~km} / \mathrm{h}$
(c) $24 \mathrm{~km} / \mathrm{h}$
(d) $240 \mathrm{~km} / \mathrm{h}$
30. A box sliding along x-axis on a frictionless surface, suddenly explodes into three pieces. The figure shows the momenta of the three pieces, find the initial momentum of the box?
$P_{1}=\mathbf{1 0} \mathbf{k g ~ m} / \mathrm{s}$
$P_{2}=2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$P_{3}=6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

(a) $-18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) $18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $-2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
31. A $\mathbf{2} \mathbf{~ k g}$ body moving with velocity $\mathbf{3 ~ m} / \mathbf{s}$ and a $\mathbf{3} \mathbf{~ k g}$ body moving with velocity $\mathbf{~ o f ~} \mathbf{1 ~ m} / \mathbf{s}$ in the opposite direction along the \mathbf{x}-axis. Find the magnitude of the total linear momentum of the system of the two bodies?
(a) $3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) $9 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
32. A box of mass $\mathbf{m}=\mathbf{6} \mathbf{~ k g}$ slides with velocity $\mathbf{v}=\mathbf{+ 4} \mathbf{m} / \mathbf{s}$ across a frictionless floor suddenly explodes into two pieces. One piece $\mathbf{m}_{\mathbf{1}}=\mathbf{2} \mathbf{~ k g}$ moves with velocity $\mathbf{v}_{\mathbf{1}}=+\mathbf{8} \mathbf{~ m} / \mathbf{s}$. What is the velocity $\mathbf{v}_{\mathbf{2}}$ of the second piece $\mathbf{m}_{\mathbf{2}}$?
(a) $24 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~m} / \mathrm{s}$
