CHAPTER 7

Choose the correct answer:

1. The kinetic energy of a 90 kg football player running at speed 10 m/s is:

(a) 4500 kg m/s ²	<mark>(b) 4500 kg m²/s²</mark>	(c) 4500 kg m/s	(d) 4500 kg ² m ² /	′ s ²	
2. A force $\vec{F} = 3\hat{i} + 3\hat{i}$ on a surface. The wo	$5\hat{j}$ is applied to a b rk done on the block	lock that moves a distan < by the force F is:	ce $\vec{d} = 2\hat{i}$		
<mark>(a) 6 J</mark> (b)) 10 J	(c) 16 J (d) 11	.7 J		
3. In the figure the fo	orce F moved the blo	ock a distance d, the wo	rk done on the block b $f_{k}=1N$	by the frictional force is:	
(a) 2 J ((b) 0 (c) -1 J (<mark>d</mark>) - 2 J		
4. Which of the follow	wing particles that m	oves along the x-axis ha	s a negative work d o	one on it ?	
	Particle	Ki (initial KE)	K _f (final KE)		
	Α	9 J	4 J		
	В	4 J	4]		
	C	5 J	8 J		
	D	3 J	Zero]	
(a) A and D	(b) B and C	(c) C and D	(d) D and B		
5. The work done by the gravitational force on a 5 kg body raised vertically (رفع إلى أعلى) a distance 0.5 m is:					
(a) + 24.5 J	(b) + 2.5 J	<mark>(c) – 24.5 J</mark>	(d) – 2.5 J		
6. The power due to across a frictionless flo	o F_1 and F_2 acting or por with velocity v is:	a box sliding to the ri q	ght	F_2 V F_1	
(a) $P_1 = F_1 v \cos 180$ $P_2 = F_2 v \cos 150$	(b) $P_1 = F_1 v \cos 18$ $P_2 = F_2 v \cos 30$	30 (c) $P_1 = F_1 v \cos 0$ $P_2 = F_2 v \cos 30$	(d) $P_1 = F_1 v \cos P_2 = F_2 v \cos P_2$	0 150	

7. In which of the following situation the **net power = zero ?**

situation	P 1	P ₂	P ₃
Α	12	5	-7
В	-13	3	-2

	С	15	-12	-3	
	D	10	2	-7	
(a) A	(b) B		(c) C		(d) D
8. A spring of k = 40	B N/m is pul	led to the po	osition x = 1	. 7 mm , the	e work done by the spring force is:
<mark>(a) – 5.9 x 10⁻² J</mark>	(b) – 59 x ⁻	10 ⁻² J	(c) – 0.59 :	к 10 ⁻² Ј	(d) – 590 x 10 ⁻² J
9. If the kinetic energy kinetic energy is	y of a partic :	e is initiall	y 5 J and th	nere is a n	et transfer of 2 J to the particle , then the final
(a) 3 J	<mark>(b) 7 J</mark>		(c) 5 J		(d) 2.5 J
10. Which of the follow	ing bodies ha	s the large	st kinetic e	nergy ?	
	Body	Mass (kg	g) Velocity	/(m/s)	
	B	3 m	2\	/	
	C D	<u>2 m</u> m	3 \ 4 \	/ /	
(a) body A	(b) body E	3	(c) body	C	(d) body D
11. A force F acts on a following the work	a box that sl done by this	ides to the	e right a dis ne box is zer	tance d ac o ?	cross a frictionless floor. In which situatin of the
	,			-	
F	r	F		F	F
(a)	<mark>(b)</mark>		(c)		(d)
12. In question 11 , v	vhich figure g	ives W = F	d ?		
×		•		;	4
(a)	(b)		(c)	F	(d) F
13. Which of the follow	ing is the cor	rect unit of	work ?		
(a) N.m ²	(b) N ² .m		<mark>(c) Joule</mark>	2	(d) Joule.m
14. A particle moves the force $\vec{F} = (210N)$	hrough a dis $\hat{i} - (150N)$	placement	$\vec{d} = (15m)$ rk done on t	$\hat{i} - (12m)\hat{j}$ he particle	\dot{i} along a straight line while being acted on by a by this force is:

(a) 4950 J (b) 1350 J (c) 3150 J (d) 1800 J

15. The figure shows a for that moves to the right floor. The work done o	orce F applied to a box t for a distance d over a f n the box by the force F is	frictionless s:	F 60°
(a) F cos 60	(b) F d cos 60	(c) F sin 60	(d) F d sin 60
16. The figure shows to that moves to the rig floor. The force magnit What is the work don	wo forces applied to a be Jht for a distance of 3 cudes are F ₁ =9 N , F ₂ =3 e on the box by the fo	ox m over a frictionless 3 N. rce F ₁ ?	F_1 60° F_2 F_2
(a) 23.4 J	(b) zero	<mark>(c) 13.5 J</mark>	(d) 27 J
17. In question 16 , v	what is the work done by	y the force F₂?	
(a) 23.4 J	<mark>(b) zero</mark> (c) 13.5 J (c	I) 9 J
18. A force <i>F</i> acts on a following the work d	box that slides to the rig lone by this force on the b	ght a distance <i>d</i> across a box is zero ?	frictionless floor. In which situation of the
(a) The angle between $ec{F}$ and $ec{d}$ is 150°	(b) The angle between $ec{F}$ and $ec{d}$ is 90°	(c) The angle between \vec{F} and \vec{d} is 45°	(d) The angle between $ec{F}$ and $ec{d}$ is 0°
19. In question 18, wh	hich situation gives $\mathbf{W} = F$	<i>d</i> ?	
(a) The angle between $ec{F}$ and $ec{d}$ is 150°	(b) The angle between $ec{F}$ and $ec{d}$ is 90°	(c) The angle between \vec{F} and \vec{d} is 45°	(d) The angle between \vec{F} and \vec{d} is 0°
20. A particle moves thro	bugh a displacement $ec{d}$ =	$i=-4\hat{i}$ meter along a stra	ight line while being acted on by a force
$ec{F}=2\hat{i}-3\hat{j}$ New	ton. The work done on th	ne particle by this force is:	
(a) +2 J	(b) – 4 J	(c) +5 J	<mark>(d) – 8 J</mark>
21. Two men sliding a bo J , and the net work o	ox of mass m a displacement on the box was W=120 J .	ent d along the x-axis, if t What is the work W_2 do	the work done by the first man was $W_1 = 60$ ne by the second man?
(a) W ₂ = 0	(b) W ₂ = 60 J	(c) W ₂ = 120 J	(d) W ₂ = 180 J
22. In question 21 , Wh	nat is the work done on the	e box (W g) by the gravit a	ational force?
(a) 0	(b) 60 J	(c) 120 J	(d) 180 J

23. In **question 21**, if the box was initially **stationary**, what is its speed v_f at the end of the displacement?

(a)
$$v_f = \sqrt{\frac{2W}{m}}$$
 (b) $v_f = \sqrt{\frac{m}{2W}}$ (c) $v_f = \sqrt{\frac{2m}{W}}$ (d) $v_f = \sqrt{\frac{W}{2m}}$

24. Which of the following bodies has the smallest kinetic energy ?

Body	Mass(kg)	Velocity(m/s)
Α	3 m	1 V
В	3 m	2 V
С	2 m	3 V
D	1 m	4 V

(a) body A (b) body B (c) body C (d) body D

25. A block lies on a frictionless floor attached to a spring of **spring constant k=408 N/m, how much work** does the spring force do on the block if it is pulled from **x**₁**=0** to **x**₂**=10 mm**?

(a) -0.03 J (b) -0.02 J (c) -0.04 J (d) -0.05 J

26. A block of weight 100 N lifted up 1 m by a man, the work done by the gravitational force on it is:

(a) 100 J (b) – 100 J (c) 10.2 J (d) -10.2 J

27. A block is pulled at a **constant speed of 2 m/s** across a horizontal floor by an applied force of **2 N** directed **60**° above the horizontal. What is the power acting on the block due to the force?

(a) 2 Watt

(b) 3 Watt

(c) 4 Watt

(d) 6 Watt

CHAPTER 9

