Mansoura University Faculty of Science Chemistry Department Subject: General Chemistry Course code: Chem111 First year education students Major: Chemistry Time allowed: 3 hours Full Mark: 155 Marks Date: Jan 11, 2015 ## Section A: Inorganic Chemistry [78 Marks] ## Answer the following questions: | VI GA ; | 0 1 | | | | |--------------------------------------|---|---|---|--| | | of VBT, what is the k i) BeCl ₂ ii) B (At.No: F=9, B=5, I | F ₃ iii) PCl ₅ | iv) SF ₆ | | | b) Using VESP
i) BrF ₅ | R theory, determine t
ii) SnCl ₅ | he geometry of the | | | | 1) 111 5 | (H=1, N=7, Br=35, | | . , | | | c) Write the valu | ues of n, l, m and s fo | r each orbital in th | e 2p ² subshell. | [5 Marks | | II- Choose the ap | propriate answer and | give the reason: | 2. The heat of comit
3. The heat of comi | [33 Marks | | i) $1s^2 2s^2 2p^6$ | ectronic configuration
ii)1s ² 2s ² 2p ⁶ 3s ¹
following is most lik | $iii)1s^22s^22p^63s^23p$ | 6 iv) $1s^{2}2s^{2}2p^{6}3s$ | s ² 3p ⁶ 4s ² 3d ² | | i)NF ₃ | | iii) CO ₂ | iv) N ₂ | | | | following Lewis stru | | | POC1? | | i) Ö === P Ö | ı. ii) . Ö.— P.— | -Çl iii) Ö === P= | == Ċl iv) ·· Ö | P—— Č1 | | 4. Which one of | f the following is a m | etal? | o c., rind the motec | | | i)Ne | ii) Cl | | iv) Al | | | 5. Which atomi | c orbital is spherical i | | | | | i)2s | ii) 2p | iii) 3d | iv) 4f | | | 6. Which one of | f the following eleme | | | gy? | | i) Na | ii) Rb | , | iv) Al | | | | following has the lar | gest radius? | 2+ | | | i) O ²⁻ | ii) F | 111/11/11 | | | | 8. Calculate the transition (n | $v & \lambda \text{ of the spectr}$
=3 to n=2) {A=2.18x | al in hydrogen spe 10^{-18} , c=3x10 ⁸ m/s | ec, $h=6.62 \times 10^{-34} J$? | | | i) 4.568x10 | ¹⁴ /s, 656.3 nm. | | ii) $3.95 \times 10^{12} / s$, | 423.2 nm. | | iii)4.568x10 ¹ | $^{4}/\text{s}$,6.563x10 ⁻⁷ m. | | iv) i or iii. | | | 9. How many lo | one (nonbonding) pai | rs of electrons are | on the central atom | of XeF ₂ ? | | i) 1 | ii) 2 | iii) 3 | iv) 4 | | | | like NO, NO2 and BF | | | | | | ow ii)all do not follo | | | | | | e following molecule | s contains only on | e non-bonding pair | of | | valence electror | | *** | :\ % T | | | i)NH ₄ ⁺ | ii) HCN | iii) C_2H_4 | iv) N_2 | | | | | | Please tu | rn over → | ## Section B: Physical Chemistry [77 Marks] ## Answer the following questions: 1- Write short notes on: [20 Marks] - a. The factors affecting the solubility of a solute in a liquid solvent - b. The boiling point elevation in solutions 2- Compare between: [16 Marks] - a. Raoult's law and Henry's law - b. Bond enthalpy and bond dissociation energy - c. Molar heat capacity and specific heat capacity - d. Molarity and molality 3- Use the given information to calculate ΔH^0 of the reaction: [11 Marks] - $C(s) + 2H_2(g) \rightarrow CH_4(g)$ - 1. The heat of combustion of C(s) is $-393.5 \, kJ/mol$ - 2. The heat of combustion of $H_2(g)$ is $-285.8 \, kJ/\text{mol}$ - 3. The heat of combustion of $CH_4(g)$ is $-890.4 \, kJ/\text{mol}$ - 4- Henry's law constant for oxygen dissolved in water is 4.34×10^{-4} atm at 25°C. If the partial pressure of oxygen is 0.2 atm, calculate the concentration of dissolved oxygen in moles per litre. [10 Marks] - 5- For a certain hydrocarbon gas, 20.0 mg has a pressure of 24.7 torr in 500 cm³ vessel at 25°C. Find the molecular weight of the gas. [10 Marks] 6- Calculate ΔH^o of the reaction: [10 Marks] $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$ knowing that ΔH_f^o of $NH_3(g)$, NO(g), $H_2O(l)$ are -46.11, 90.25 and - 285.83 kJ/mol respectively. Best wishes