

MINISTRY OF EDUCATION

لكل المهتمين و المهتمات بدروس و مراجع الجامعية مدونة المناهج السعودية eduschool40.blog

	D		B	С	D
	Question	A	The larger force	The smaller force	Resultant force
	- Sou OI	The positive force	The larger toret		10 m/s
	A ball leaves the ground level with take-off angle 300 to the horizontal and reaches a maximum height of five meters. The take-off speed of the ball is :	<u>19.8 m/s</u>	16.7 m/s	25.8 m/s	10
	An object is subjected to a displacement of $\Delta \vec{r} = 2i + 4j - 5k$ and ending with position vector $\vec{r} = 4i + 8j$ -10k in meters. The magnitude of its initial position vector is:	5.8 m	zero	<u>6.7 m</u>	10 m
4	The friction force on a moving body is proportional to the	acceleration of the body	weight of the body	force causing the motion	normal force on the body
5	A player of a mass 57 Kg runs on a circular track of radius 24 m with constant speed of 15 m/s. The magnitude of his centripetal force is:	537.38 N	525.38 N	540.38 N	<u>534.38 N</u>
6	A ball is thrown with a force of 62 N. The ball has an acceleration of 4 m/s^2 . What is the mass of the ball?	14.5 Kg	18.5 Kg	<u>15.5 Kg</u>	17.5 Kg
7	A block of 5 kg is at rest on a frictionless inclined surface of 30° to the horizontal, which connected to the wall trough a cord. The value of the tension force of the cord is:	26.7 N	30.7 N	<u>24.5 N</u>	10.8 N
	The newton	is a unit of velocity	= kg.m.s ⁻²	= kg.m/s	= kg.m.s ²
1	In the figure, two blocks are connected together with a cord over a frictionless inclined surface, where $m_1 = 12 \ kg$ and $m_2 = 20 \ kg$, the acceleration of the two blocks is: $m_1 = 12 \ kg$ and $m_2 = 20 \ kg$, the acceleration of the two blocks is:	0.99 m/s ²	<u>0.23m/s²</u>	0.39 m/s ²	0.79 m/s ²
A	in elevator weights 29 kN moves upward with its speed increasing at a rate of				
1.	.5 m/s ² . The tension in the cable of the elevator is:	39.8 kN	<u>33.4 kN</u>	14.5 kN	46.7 kN
TI	he maximum range of a projected ball is 60 m, the initial speed of the ball was:	24.249 m/s	22.249 m/s	25.249 m/s	27.249 m/s

	ID Question	А	В	С	D
	The period time of an object moving at a constant speed of 5 m/s on a circular path of radius 5 m is:	π/2 (Second)	π (Second)	<u>2π (Second)</u>	Zero
1.1	23 The formula of the centripetal force	m ² vR	mv ² R ⁻¹	mv ² R	$v^2 R^{-1}$
2	In the figure if $F_1 = 17$ N and $F_2 = 11$ N, the frictional force exerted by the surface on a block moving with constant velocity is :	<u>6 N</u>	27 N	28 N	7 N
2	A car rounds a 5 m radius curve at speed of 5 m/s. The magnitude of its centripetal acceleration is:	5 m/s^2	Zero	1 m/s ²	25 m/s ²
20	An chiesten of the	<u>11.78°</u>	12.31 °	15.12 °	0.0
27	A bullet is fired from ground level with a speed of 140 m/s at angle 30° above	140 m/s	70 m/s	121.24 m/s	Zero
28	The force required to keep an object in a circular orbit is directed	away from the center of the circle	in the direction opposite to that in which the object is moving	toward the center of the circle	in the direction in which the object is moving
9	A 22 kg object is moving with a net force of 8 N directed to south. The object having a magnitude of acceleration	2.75 m/s ² south	0.36 m/s ² north	2.75 m/s ² north	0.36 m/s ² south
0	The force of friction on a sliding object is $f_k = 6$ N. The magnitude of the pplied force needed to maintain a constant velocity is	More than 6 N	3	<u>6 N</u>	Less than 6 N

	1	. سوال ومدة الإختبار 90 دقيقة	بأن الاختبار مكون من 30	l/e		
	10	A projectile is fired over all	Α	Barbara Barbara	C	D
		A projectile is fired over the ground level with an initial velocity that has a distance from launching to landing points is:	130 m	<u>102 m</u>	90 m	120 m
	13	Find the magnitude of the tension in the string at the bottom of the circle where its speed is 7 m/s.	48.98 N	51.98 N	<u>49.98 N</u>	52.98 N
1	14	The maximum horizontal distance the ball terrely	6.673 m	5.673 m	7.673 m	<u>3.673 m</u>
5.4 1	5 a is	accelerates at 1.75 m/s^2 when a 83 N horizontal table, at the earth. This block and the table are then set up on the moon where the acceleration due to gravity s 1.62 m/s^2 . What is the weight of the block on the moon?	72.48 N	<u>76.83 N</u>	78.78 N	79.93 N
16	5 at	the rate of 0.61 m/s^2 . The coefficient of kinetic friction between the puck and c is:	0.048	0.062	0.091	0.112
17	Th +1.	the x-y coordinates of a particle as a function of time are $x = 2t^2+t$ and $y=t^2+2t$. The position vector describing its location after one second is:	<u>3 i + 4 j</u>	6i-4j	7 i + 4 j	4i+3j
	coel	27.5 kg piece of wood is placed on top of another piece of wood. There is 5 N of maximum static friction force measured between them. Determine the fficient of static friction between the two pieces of wood.	0.22	0.1	0.195	0.25
19 w	A ba with nage	all has a weight of 52 N is thrown at an angle of 30° above the horizontal an initial speed of 5 m/s. Neglecting air resistance, at its highest point, the nitude of the net force on the ball is	104 N	26 N	<u>52 N</u>	Zero
20 01		g box is at rest on a rough inclined surface with 25° to the horizontal. If it is reshold of motion, the coefficient of static friction between the box and the set is:	0.25	0.54	<u>0.47</u>	0.36
21 = 4	i obj li +	ject of mass 3 kg is subjected to two forces to give it an acceleration of \vec{a} 3j (m/s ²). If the first force is $\vec{F} = 8i + 7j$ (N) then the second one is:	5i - 4 j	4i+2j	3 i + 8 j	9i+3j

m W = F

2