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C H A P T E R  1

Measurement

1-1 MEASURING THINGS, INCLUDING LENGTHS
Learning Objectives
After reading this module, you should be able to . . .

1.01 Identify the base quantities in the SI system.
1.02 Name the most frequently used prefixes for

SI units.

1.03 Change units (here for length, area, and volume) by 
using chain-link conversions.

1.04 Explain that the meter is defined in terms of the speed of
light in vacuum.

Key Ideas
● Physics is based on measurement of physical quantities.
Certain physical quantities have been chosen as base quanti-
ties (such as length, time, and mass); each has been defined in
terms of a standard and given a unit of measure (such as meter,
second, and kilogram). Other physical quantities are defined in
terms of the base quantities and their standards and units.

● The unit system emphasized in this book is the International
System of Units (SI). The three physical quantities displayed
in Table 1-1 are used in the early chapters. Standards, which
must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.

These standards are used in all physical measurement, for
both the base quantities and the quantities derived from
them. Scientific notation and the prefixes of Table 1-2 are
used to simplify measurement notation.

● Conversion of units may be performed by using chain-link
conversions in which the original data are multiplied succes-
sively by conversion factors written as unity and the units are
manipulated like algebraic quantities until only the desired
units remain.

● The meter is defined as the distance traveled by light 
during a precisely specified time interval.

What Is Physics?
Science and engineering are based on measurements and comparisons. Thus, we
need rules about how things are measured and compared, and we need
experiments to establish the units for those measurements and comparisons. One
purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any
time or time interval can be precisely determined and compared. You may wonder
whether such accuracy is actually needed or worth the effort. Here is one example of
the worth: Without clocks of extreme accuracy, the Global Positioning System
(GPS) that is now vital to worldwide navigation would be useless.

Measuring Things
We discover physics by learning how to measure the quantities involved in
physics. Among these quantities are length, time, mass, temperature, pressure,
and electric current.

We measure each physical quantity in its own units, by comparison with a
standard. The unit is a unique name we assign to measures of that quantity—for
example, meter (m) for the quantity length. The standard corresponds to exactly
1.0 unit of the quantity. As you will see, the standard for length, which corresponds



to exactly 1.0 m, is the distance traveled by light in a vacuum during a certain
fraction of a second. We can define a unit and its standard in any way we care to.
However, the important thing is to do so in such a way that scientists around the
world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of
the standard. Rulers, which approximate our length standard, give us one such
procedure for measuring length. However, many of our comparisons must be
indirect. You cannot use a ruler, for example, to measure the radius of an atom
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to
organize them. Fortunately, they are not all independent; for example, speed is the
ratio of a length to a time. Thus, what we do is pick out—by international agree-
ment—a small number of physical quantities, such as length and time, and assign
standards to them alone. We then define all other physical quantities in terms of
these base quantities and their standards (called base standards). Speed, for example,
is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the
length standard as the distance between one’s nose and the index finger on an
outstretched arm, we certainly have an accessible standard—but it will, of course,
vary from person to person.The demand for precision in science and engineering
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system.Table 1-1 shows the units for the three base quantities—length,
mass, and time—that we use in the early chapters of this book. These units were
defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the SI unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time.Thus, as you will see in Chapter 7,

1 watt � 1 W � 1 kg � m2/s3, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3 560 000 000 m � 3.56 � 109 m (1-2)

and 0.000 000 492 s � 4.92 � 10�7 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 � 109 watts � 1.27 gigawatts � 1.27 GW (1-4)
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Table 1-1 Units for Three SI 
Base Quantities

Quantity Unit Name Unit Symbol

Length meter m
Time second s
Mass kilogram kg

Table 1-2 Prefixes for SI Units

Factor Prefixa Symbol

1024 yotta- Y
1021 zetta- Z
1018 exa- E
1015 peta- P
1012 tera- T
109 giga- G
106 mega- M
103 kilo- k
102 hecto- h
101 deka- da
10�1 deci- d
10�2 centi- c
10�3 milli- m
10�6 micro- m
10�9 nano- n
10�12 pico- p
10�15 femto- f
10�18 atto- a
10�21 zepto- z
10�24 yocto- y

aThe most frequently used prefixes are shown in
bold type.



or a particular time interval as

2.35 � 10�9 s � 2.35 nanoseconds � 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Changing Units
We often need to change the units in which a physical quantity is expressed. We
do so by a method called chain-link conversion. In this method, we multiply the
original measurement by a conversion factor (a ratio of units that is equal to
unity). For example, because 1 min and 60 s are identical time intervals, we have

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion
factors. This is not the same as writing or 60 � 1; each number and its unit
must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we
can introduce conversion factors wherever we find them useful. In chain-link
conversion, we use the factors to cancel unwanted units. For example, to convert
2 min to seconds, we have

(1-6)

If you introduce a conversion factor in such a way that unwanted units do not
cancel, invert the factor and try again. In conversions, the units obey the same
algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units,
including non-SI units still used in the United States. However, the conversion
factors are written in the style of “1 min � 60 s” rather than as a ratio. So, you
need to decide on the numerator and denominator in any needed ratio.

Length
In 1792, the newborn Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the north pole to the equator. Later, for practical reasons, this
Earth standard was abandoned and the meter came to be defined as the distance
between two fine lines engraved near the ends of a platinum–iridium bar, the
standard meter bar, which was kept at the International Bureau of Weights and
Measures near Paris. Accurate copies of the bar were sent to standardizing labo-
ratories throughout the world. These secondary standards were used to produce
other, still more accessible standards, so that ultimately every measuring device
derived its authority from the standard meter bar through a complicated chain
of comparisons.

Eventually, a standard more precise than the distance between two fine
scratches on a metal bar was required. In 1960, a new standard for the meter,
based on the wavelength of light, was adopted. Specifically, the standard for the
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in
a gas discharge tube that can be set up anywhere in the world. This awkward
number of wavelengths was chosen so that the new standard would be close to
the old meter-bar standard.

2 min � (2 min)(1) � (2 min)� 60 s
1 min � � 120 s.

1
60 � 1

1 min
60 s

� 1  and  
60 s

1 min
� 1.
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By 1983, however, the demand for higher precision had reached such a point
that even the krypton-86 standard could not meet it, and in that year a bold step was
taken. The meter was redefined as the distance traveled by light in a specified time
interval. In the words of the 17th General Conference on Weights and Measures:

4 CHAPTER 1 MEASUREMENT

The meter is the length of the path traveled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

Table 1-3 Some Approximate Lengths

Measurement Length in Meters

Distance to the first 
galaxies formed 2 � 1026

Distance to the 
Andromeda galaxy 2 � 1022

Distance to the nearby 
star Proxima Centauri 4 � 1016

Distance to Pluto 6 � 1012

Radius of Earth 6 � 106

Height of Mt. Everest 9 � 103

Thickness of this page 1 � 10�4

Length of a typical virus 1 � 10�8

Radius of a hydrogen atom 5 � 10�11

Radius of a proton 1 � 10�15

This time interval was chosen so that the speed of light c is exactly

c � 299 792 458 m/s.

Measurements of the speed of light had become extremely precise, so it made
sense to adopt the speed of light as a defined quantity and to use it to redefine
the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line)
to those of some very small objects.

Significant Figures and Decimal Places
Suppose that you work out a problem in which each value consists of two digits.
Those digits are called significant figures and they set the number of digits that
you can use in reporting your final answer. With data given in two significant 
figures, your final answer should have only two significant figures. However,
depending on the mode setting of your calculator, many more digits might be 
displayed.Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least
number of significant figures in the given data. (However, sometimes an extra
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or
more, the last remaining digit is rounded up; otherwise it is retained as is. For 
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is
rounded to three significant figures as 11.3. (The answers to sample problems in
this book are usually presented with the symbol � instead of � even if rounding
is involved.)

When a number such as 3.15 or 3.15 � 103 is provided in a problem, the number
of significant figures is apparent, but how about the number 3000? Is it known to
only one significant figure (3 � 103)? Or is it known to as many as four significant
figures (3.000 � 103)? In this book, we assume that all the zeros in such given num-
bers as 3000 are significant, but you had better not make that assumption elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they
have one, two, and five decimal places, respectively.

ball’s builder most unhappy. Instead, because we want only
the nearest order of magnitude, we can estimate any quanti-
ties required in the calculation.

Calculations: Let us assume the ball is spherical with radius 
R � 2 m. The string in the ball is not closely packed (there
are uncountable gaps between adjacent sections of string).
To allow for these gaps, let us somewhat overestimate

Sample Problem 1.01 Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To
the nearest order of magnitude, what is the total length L
of the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the to-
tal length L, but that would take great effort and make the
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Additional examples, video, and practice available at WileyPLUS

1-2 TIME
Learning Objectives
After reading this module, you should be able to . . .

1.05 Change units for time by using chain-link conversions.
1.06 Use various measures of time, such as for motion or as

determined on different clocks. 

Key Idea
● The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time

signals are sent worldwide by radio signals keyed to atomic
clocks in standardizing laboratories.

Time
Time has two aspects. For civil and some scientific purposes, we want to know
the time of day so that we can order events in sequence. In much scientific work,
we want to know how long an event lasts. Thus, any time standard must be able
to answer two questions: “When did it happen?” and “What is its duration?”
Table 1-4 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s
rotation, which determines the length of the day, has been used in this way for
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation.
A quartz clock, in which a quartz ring is made to vibrate continuously, can be
calibrated against Earth’s rotation via astronomical observations and used to
measure time intervals in the laboratory. However, the calibration cannot be
carried out with the accuracy called for by modern scientific and engineering
technology.

Table 1-4 Some Approximate Time Intervals

Time Interval 
Measurement in Seconds

Lifetime of the 
proton (predicted) 3 � 1040

Age of the universe 5 � 1017

Age of the pyramid of Cheops 1 � 1011

Human life expectancy 2 � 109

Length of a day 9 � 104

aThis is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Time between human heartbeats 8 � 10�1

Lifetime of the muon 2 � 10�6

Shortest lab light pulse 1 � 10�16

Lifetime of the most 
unstable particle 1 � 10�23

The Planck timea 1 � 10�43

Time Interval 
Measurement in Seconds

the cross-sectional area of the string by assuming the
cross section is square, with an edge length d � 4 mm.
Then, with a cross-sectional area of d2 and a length L, the
string occupies a total volume of

V � (cross-sectional area)(length) � d2L.

This is approximately equal to the volume of the ball, given
by , which is about 4R3 because p is about 3. Thus, we
have the following

4
3
R3

d2L � 4R3,

or

� 2 � 106 m � 106 m � 103 km.
(Answer)

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string!

L �
4R3

d 2 �
4(2 m)3

(4 � 10�3 m)2

Figure 1-1 When the metric system was
proposed in 1792, the hour was redefined
to provide a 10-hour day. The idea did not
catch on. The maker of this 10-hour watch
wisely provided a small dial that kept con-
ventional 12-hour time. Do the two dials
indicate the same time?

Steven Pitkin



Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 part in 1018—that is, 1 s in 1 � 1018 s (which is about 3 � 1010 y).

6 CHAPTER 1 MEASUREMENT

To meet the need for a better time standard, atomic clocks have
been developed. An atomic clock at the National Institute of
Standards and Technology (NIST) in Boulder, Colorado, is the stan-
dard for Coordinated Universal Time (UTC) in the United States. Its
time signals are available by shortwave radio (stations WWV and
WWVH) and by telephone (303-499-7111). Time signals (and related
information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a
clock extremely accurately at your particular location, you would have
to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over
a 4-year period, as determined by comparison with a cesium
(atomic) clock. Because the variation displayed by Fig. 1-2 is sea-
sonal and repetitious, we suspect the rotating Earth when there is a
difference between Earth and atom as timekeepers. The variation is

due to tidal effects caused by the Moon and to large-scale winds.
The 13th General Conference on Weights and Measures in 1967 adopted

a standard second based on the cesium clock:

One second is the time taken by 9 192 631 770 oscillations of the light (of a specified
wavelength) emitted by a cesium-133 atom.

Figure 1-2 Variations in the length of the
day over a 4-year period. Note that the
entire vertical scale amounts to only 
3 ms (� 0.003 s).
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1-3 MASS
Learning Objectives
After reading this module, you should be able to . . .

1.07 Change units for mass by using chain-link 
conversions.

1.08 Relate density to mass and volume when the mass is
uniformly distributed. 

Key Ideas
● The kilogram is defined in terms of a platinum–iridium
standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of 
the atom carbon-12, is usually used. 

● The density of a material is the mass per unit volume:  

� �
m
V

.

�

Figure 1-3 The international 1 kg standard of
mass, a platinum–iridium cylinder 3.9 cm in
height and in diameter.

Mass
The Standard Kilogram
The SI standard of mass is a cylinder of
platinum and iridium (Fig. 1-3) that is kept
at the International Bureau of Weights
and Measures near Paris and assigned, by
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international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate
copies that are used elsewhere. Since 1889, it has been taken to France twice for
recomparison with the primary standard.

A Second Mass Standard
The masses of atoms can be compared with one another more precisely than
they can be compared with the standard kilogram. For this reason, we have 
a second mass standard. It is the carbon-12 atom, which, by international agree-
ment, has been assigned a mass of 12 atomic mass units (u).The relation between
the two units is

1 u � 1.660 538 86 � 10�27 kg, (1-7)

with an uncertainty of �10 in the last two decimal places. Scientists can, with
reasonable precision, experimentally determine the masses of other atoms rela-
tive to the mass of carbon-12. What we presently lack is a reliable means of
extending that precision to more common units of mass, such as a kilogram.

Density
As we shall discuss further in Chapter 14, density r (lowercase Greek letter rho)
is the mass per unit volume:

(1-8)

Densities are typically listed in kilograms per cubic meter or grams per cubic
centimeter.The density of water (1.00 gram per cubic centimeter) is often used as
a comparison. Fresh snow has about 10% of that density; platinum has a density
that is about 21 times that of water.

� �
m
V

.

Table 1-5 Some Approximate Masses

Mass in 
Object Kilograms

Known universe 1 � 1053

Our galaxy 2 � 1041

Sun 2 � 1030

Moon 7 � 1022

Asteroid Eros 5 � 1015

Small mountain 1 � 1012

Ocean liner 7 � 107

Elephant 5 � 103

Grape 3 � 10�3

Speck of dust 7 � 10�10

Penicillin molecule 5 � 10�17

Uranium atom 4 � 10�25

Proton 2 � 10�27

Electron 9 � 10�31

KEY IDEA

The density of the sand rsand in a sample is the mass per unit
volume—that is, the ratio of the total mass msand of the sand
grains to the total volume Vtotal of the sample:

(1-10)

Calculations: The total volume Vtotal of a sample is

Vtotal � Vgrains � Vvoids.

Substituting for Vvoids from Eq. 1-9 and solving for Vgrains

lead to

(1-11)Vgrains �
Vtotal

1 � e
.

�sand �
msand

Vtotal
.

Sample Problem 1.02 Density and liquefaction

A heavy object can sink into the ground during an earthquake
if the shaking causes the ground to undergo liquefaction, in
which the soil grains experience little friction as they slide
over one another. The ground is then effectively quicksand.
The possibility of liquefaction in sandy ground can be pre-
dicted in terms of the void ratio e for a sample of the ground:

(1-9)

Here, Vgrains is the total volume of the sand grains in the sam-
ple and Vvoids is the total volume between the grains (in the
voids). If e exceeds a critical value of 0.80, liquefaction can
occur during an earthquake.What is the corresponding sand
density rsand? Solid silicon dioxide (the primary component
of sand) has a density of � 2.600 � 103 kg/m3.�SiO2

e �
Vvoids

Vgrains
.



Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.
These standards are used in all physical measurement, for both
the base quantities and the quantities derived from them.
Scientific notation and the prefixes of Table 1-2 are used to sim-
plify measurement notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)� �
m
V

.

Review & Summary
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at http://www.wiley.com/college/halliday

Problems

Module 1-1 Measuring Things, Including Lengths
•1 Earth is approximately a sphere of radius 6.37 � 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

•3 The micrometer (1 mm) is often called the micron. (a) How

SSM

many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points � 1 pica, and 6 picas � 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods
and (b) chains? (1 furlong � 201.168 m, 1 rod � 5.0292 m,
and 1 chain � 20.117 m.)

WWWSSM

Additional examples, video, and practice available at WileyPLUS

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)�sand �
�SiO2

Vtotal

Vtotal

1 � e
�

�SiO2

1 � e
.

msand � �SiO2
Vgrains.

Substituting � 2.600 � 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

�sand �
2.600 � 10 3 kg/m3

1.80
� 1.4 � 103 kg/m3.

�
�SiO2

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


9PROBLEMS

••6 You can easily convert common units and measures electroni-
cally, but you still should be able to use a conversion table, such as
those in Appendix D. Table 1-6 is part of a conversion table for a
system of volume measures once common in Spain; a volume of 1
fanega is equivalent to 55.501 dm3 (cubic decimeters). To complete
the table, what numbers (to three significant figures) should be en-
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar-
tilla column, and (d) the almude column, starting with the top
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu-
bic centimeters (cm3).

Table 1-6 Problem 6

cahiz fanega cuartilla almude medio

1 cahiz � 1 12 48 144 288
1 fanega � 1 4 12 24
1 cuartilla � 1 3 6
1 almude � 1 2
1 medio � 1

••7 Hydraulic engineers in the United States often use, as a
unit of volume of water, the acre-foot, defined as the volume of wa-
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun-
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26
km2.What volume of water, in acre-feet, fell on the town?

••8 Harvard Bridge, which connects MIT with its fraternities

ILW

Module 1-2 Time
•10 Until 1883, every city and town in the United States kept its
own local time. Today, travelers reset their watches only when the
time change equals 1.0 h. How far, on the average, must you travel
in degrees of longitude between the time-zone boundaries at
which your watch must be reset by 1.0 h? (Hint: Earth rotates 360°
in about 24 h.)

•11 For about 10 years after the French Revolution, the French
government attempted to base measures of time on multiples of
ten: One week consisted of 10 days, one day consisted of 10 hours,
one hour consisted of 100 minutes, and one minute consisted of 100
seconds. What are the ratios of (a) the French decimal week to the
standard week and (b) the French decimal second to the standard
second?

•12 The fastest growing plant on record is a Hesperoyucca whip-
plei that grew 3.7 m in 14 days. What was its growth rate in micro-
meters per second?

•13 Three digital clocks A, B, and C run at different rates and

3000 m
2000 km

Figure 1-5 Problem 9.

across the Charles River, has a length of 364.4 Smoots plus one
ear. The unit of one Smoot is based on the length of Oliver Reed
Smoot, Jr., class of 1962, who was carried or dragged length by
length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint) 
1-Smoot lengths along the bridge.The marks have been repainted
biannually by fraternity pledges since the initial measurement,
usually during times of traffic congestion so that the police can-
not easily interfere. (Presumably, the police were originally up-
set because the Smoot is not an SI base unit, but these days they
seem to have accepted the unit.) Figure 1-4 shows three parallel
paths, measured in Smoots (S), Willies (W), and Zeldas (Z).
What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?

Figure 1-4 Problem 8.

••9 Antarctica is roughly semicircular, with a radius of 2000 km
(Fig. 1-5). The average thickness of its ice cover is 3000 m. How
many cubic centimeters of ice does Antarctica contain? (Ignore
the curvature of Earth.)

S

W

Z

0 32

60

212

258

216

0

do not have simultaneous readings of zero. Figure 1-6 shows si-
multaneous readings on pairs of the clocks for four occasions. (At
the earliest occasion, for example, B reads 25.0 s and C reads 92.0
s.) If two events are 600 s apart on clock A, how far apart are they
on (a) clock B and (b) clock C? (c) When clock A reads 400 s, what
does clock B read? (d) When clock C reads 15.0 s, what does clock B
read? (Assume negative readings for prezero times.)

Figure 1-6 Problem 13.

•14 A lecture period (50 min) is close to 1 microcentury. (a) How
long is a microcentury in minutes? (b) Using 

,

find the percentage difference from the approximation.

•15 A fortnight is a charming English measure of time equal to
2.0 weeks (the word is a contraction of “fourteen nights”).That is a
nice amount of time in pleasant company but perhaps a painful
string of microseconds in unpleasant company. How many mi-
croseconds are in a fortnight?

•16 Time standards are now based on atomic clocks. A promis-
ing second standard is based on pulsars, which are rotating neu-
tron stars (highly compact stars consisting only of neutrons).
Some rotate at a rate that is highly stable, sending out a radio
beacon that sweeps briefly across Earth once with each rotation,
like a lighthouse beacon. Pulsar PSR 1937 � 21 is an example; it
rotates once every 1.557 806 448 872 75 � 3 ms, where the trailing
�3 indicates the uncertainty in the last decimal place (it does not
mean �3 ms). (a) How many rotations does PSR 1937 � 21 make
in 7.00 days? (b) How much time does the pulsar take to rotate ex-
actly one million times and (c) what is the associated uncertainty?

percentage difference � � actual � approximation
actual � 100

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142
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•17 Five clocks are being tested in a laboratory. Exactly at
noon, as determined by the WWV time signal, on successive days
of a week the clocks read as in the following table. Rank the five
clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

••18 Because Earth’s rotation is gradually slowing, the length of
each day increases:The day at the end of 1.0 century is 1.0 ms longer
than the day at the start of the century. In 20 centuries, what is the
total of the daily increases in time?

•••19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H � 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is t � 11.1 s, what is
the radius r of Earth?

Module 1-3 Mass
•20 The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m3.

•21 Earth has a mass of 5.98 � 1024 kg.The average mass of the atoms
that make up Earth is 40 u. How many atoms are there in Earth?

•22 Gold, which has a density of 19.32 g/cm3, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into
a leaf of 1.000 mm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
mm, what is the length of the fiber?

•23 (a) Assuming that water has a density of exactly 1 g/cm3,
find the mass of one cubic meter of water in kilograms.
(b) Suppose that it takes 10.0 h to drain a container of 5700 m3 of
water.What is the “mass flow rate,” in kilograms per second, of wa-
ter from the container?

••24 Grains of fine California beach sand are approximately
spheres with an average radius of 50 m and are made of silicon
dioxide, which has a density of 2600 kg/m3.What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

••25 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide.Assume that the mud ends up
uniformly distributed over a surface area of the valley measuring
0.40 km � 0.40 km and that mud has a density of 1900 kg/m3. What
is the mass of the mud sitting above a 4.0 m2 area of the valley floor?

••26 One cubic centimeter of a typical cumulus cloud contains
50 to 500 water drops, which have a typical radius of 10 mm. For

�

SSM

SSM that range, give the lower value and the higher value, respectively,
for the following. (a) How many cubic meters of water are in a
cylindrical cumulus cloud of height 3.0 km and radius 1.0 km? (b)
How many 1-liter pop bottles would that water fill? (c) Water has
a density of 1000 kg/m3. How much mass does the water in the
cloud have?

••27 Iron has a density of 7.87 g/cm3, and the mass of an iron atom
is 9.27 � 10�26 kg. If the atoms are spherical and tightly packed, (a)
what is the volume of an iron atom and (b) what is the distance be-
tween the centers of adjacent atoms?

••28 A mole of atoms is 6.02 � 1023 atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

••29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul �
100 gins, 1 gin � 16 tahils, 1 tahil � 10 chees, and 1 chee �
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

••30 Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time t by
m � 5.00t0.8 � 3.00t � 20.00, with t  0, m in grams, and t in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) t � 2.00 s and (d) t � 5.00 s?

•••31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm3 and a mass of 0.0200 g.Assume that the volume
of the empty spaces between the candies is negligible. If the height
of the candies in the container increases at the rate of 0.250 cm/s, at
what rate (kilograms per minute) does the mass of the candies in
the container increase?

Additional Problems
32 In the United States, a doll house has the scale of 1�12 of a
real house (that is, each length of the doll house is that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1�144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0 m,
and a standard sloped roof (vertical triangular faces on the ends)
of height 3.0 m. In cubic meters, what are the volumes of the corre-
sponding (a) doll house and (b) miniature house?

Figure 1-7 Problem 32.

6.0 m

12 m

20 m

3.0 m

1
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What Is Physics?
Human constructions are supposed to be stable in spite of the forces that act on them.
A building, for example, should be stable in spite of the gravitational force and wind
forces on it, and a bridge should be stable in spite of the gravitational force pulling it
downward and the repeated jolting it receives from cars and trucks.

One focus of physics is on what allows an object to be stable in spite of any
forces acting on it. In this chapter we examine the two main aspects of stability:
the equilibrium of the forces and torques acting on rigid objects and the elasticity
of nonrigid objects, a property that governs how such objects can deform. When
this physics is done correctly, it is the subject of countless articles in physics and
engineering journals; when it is done incorrectly, it is the subject of countless
articles in newspapers and legal journals.

Equilibrium
Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding
with constant velocity across a frictionless surface, (3) the rotating blades of a
ceiling fan, and (4) the wheel of a bicycle that is traveling along a straight path at
constant speed. For each of these four objects,

C H A P T E R  1 2

Equilibrium and Elasticity

12-1 EQUILIBRIUM

After reading this module, you should be able to . . .

12.01 Distinguish between equilibrium and static equilibrium.
12.02 Specify the four conditions for static equilibrium.

12.03 Explain center of gravity and how it relates to center of
mass.

12.04 For a given distribution of particles, calculate the coor-
dinates of the center of gravity and the center of mass.

Key Ideas

Learning Objectives
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● A rigid body at rest is said to be in static equilibrium. For
such a body, the vector sum of the external forces acting on it
is zero:

(balance of forces).

If all the forces lie in the xy plane, this vector equation is
equivalent to two component equations:

Fnet,x � 0 and Fnet,y � 0 (balance of forces).

● Static equilibrium also implies that the vector sum of the
external torques acting on the body about any point is zero, or

(balance of torques).t:net � 0

F
:

net � 0

If the forces lie in the xy plane, all torque vectors are parallel
to the z axis, and the balance-of-torques equation is equiva-
lent to the single component equation

tnet,z � 0 (balance of torques).

● The gravitational force acts individually on each element of
a body. The net effect of all individual actions may be found by
imagining an equivalent total gravitational force acting at
the center of gravity. If the gravitational acceleration is the
same for all the elements of the body, the center of gravity is
at the center of mass.

g:
F
:

g



Indeterminate Structures
For the problems of this chapter, we have only three independent equations at
our disposal, usually two balance of forces equations and one balance-of-torques
equation about a given rotation axis. Thus, if a problem has more than three
unknowns, we cannot solve it.

Consider an unsymmetrically loaded car. What are the forces—all different—
on the four tires? Again, we cannot find them because we have only three inde-
pendent equations. Similarly, we can solve an equilibrium problem for a table
with three legs but not for one with four legs. Problems like these, in which there
are more unknowns than equations, are called indeterminate.

Yet solutions to indeterminate problems exist in the real world. If you rest
the tires of the car on four platform scales, each scale will register a definite read-
ing, the sum of the readings being the weight of the car. What is eluding us in our
efforts to find the individual forces by solving equations?

The problem is that we have assumed — without making a great point of
it — that the bodies to which we apply the equations of static equilibrium are
perfectly rigid. By this we mean that they do not deform when forces are ap-
plied to them. Strictly, there are no such bodies. The tires of the car, for ex-
ample, deform easily under load until the car settles into a position of static
equilibrium.

We have all had experience with a wobbly restaurant table, which we usually
level by putting folded paper under one of the legs. If a big enough elephant sat
on such a table, however, you may be sure that if the table did not collapse, it
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12-3 ELASTICITY
Learning Objectives

12.10 For shearing, apply the equation that relates stress to
strain and the shear modulus.

12.11 For hydraulic stress, apply the equation that relates
fluid pressure to strain and the bulk modulus.

● Three elastic moduli are used to describe the elastic behav-
ior (deformations) of objects as they respond to forces that act
on them. The strain (fractional change in length) is linearly re-
lated to the applied stress (force per unit area) by the proper
modulus, according to the general stress–strain relation

stress � modulus � strain.

● When an object is under tension or compression, the
stress–strain relation is written as

where �L/L is the tensile or compressive strain of the object,
F is the magnitude of the applied force causing the strain,
A is the cross-sectional area over which is applied (per-
pendicular to A), and E is the Young’s modulus for the ob-
ject. The stress is F/A.

F
:

F
:

F
A

� E
�L
L

,

● When an object is under a shearing stress, the stress–strain
relation is written as

where �x/L is the shearing strain of the object, �x is the
displacement of one end of the object in the direction of the
applied force , and G is the shear modulus of the object.
The stress is F/A.

● When an object undergoes hydraulic compression due to a
stress exerted by a surrounding fluid, the stress–strain relation
is written as

where p is the pressure (hydraulic stress) on the object due
to the fluid, �V/V (the strain) is the absolute value of the frac-
tional change in the object’s volume due to that pressure, and
B is the bulk modulus of the object.

p � B
�V
V

,

F
:

F
A

� G
�x
L

,

After reading this module, you should be able to . . . 

12.07 Explain what an indeterminate situation is.
12.08 For tension and compression, apply the equation that

relates stress to strain and Young’s modulus.
12.09 Distinguish between yield strength and ultimate strength.

Key Ideas



would deform just like the tires of a car. Its legs would all touch the floor,
the forces acting upward on the table legs would all assume definite (and differ-
ent) values as in Fig. 12-9, and the table would no longer wobble. Of course, we
(and the elephant) would be thrown out onto the street but, in principle, how do
we find the individual values of those forces acting on the legs in this or similar
situations where there is deformation?

To solve such indeterminate equilibrium problems, we must supplement
equilibrium equations with some knowledge of elasticity, the branch of physics
and engineering that describes how real bodies deform when forces are applied
to them.
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Checkpoint 3
A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that 
exert upward forces and on the bar.The figure shows four arrangements for the
wires.Which arrangements, if any, are indeterminate (so that we cannot solve for nu-
merical values of and )?F

:

2F
:

1

F
:

2F
:

1

10 N 10 N

10 N 10 N

d d

d
d/2

(a) (b)

(c) (d)

F1 F1

F1 F2

F2 F2

F2F1

com

FgF1

F2

F3

F4

Figure 12-9 The table is an indeterminate
structure.The four forces on the table legs
differ from one another in magnitude and
cannot be found from the laws of static
equilibrium alone.

Elasticity
When a large number of atoms come together to form a metallic solid, such as an
iron nail, they settle into equilibrium positions in a three-dimensional lattice, a
repetitive arrangement in which each atom is a well-defined equilibrium distance
from its nearest neighbors. The atoms are held together by interatomic forces
that are modeled as tiny springs in Fig. 12-10. The lattice is remarkably rigid,
which is another way of saying that the “interatomic springs” are extremely stiff.
It is for this reason that we perceive many ordinary objects, such as metal ladders,
tables, and spoons, as perfectly rigid. Of course, some ordinary objects, such as gar-
den hoses or rubber gloves, do not strike us as rigid at all. The atoms that make up
these objects do not form a rigid lattice like that of Fig. 12-10 but are aligned in long,
flexible molecular chains, each chain being only loosely bound to its neighbors.

All real “rigid” bodies are to some extent elastic, which means that we can
change their dimensions slightly by pulling, pushing, twisting, or compressing
them. To get a feeling for the orders of magnitude involved, consider a vertical
steel rod 1 m long and 1 cm in diameter attached to a factory ceiling. If you hang
a subcompact car from the free end of such a rod, the rod will stretch but only by
about 0.5 mm, or 0.05%. Furthermore, the rod will return to its original length
when the car is removed.

If you hang two cars from the rod, the rod will be permanently stretched and
will not recover its original length when you remove the load. If you hang three
cars from the rod, the rod will break. Just before rupture, the elongation of the

Figure 12-10 The atoms of a metallic solid are
distributed on a repetitive three-dimensional
lattice.The springs represent interatomic
forces.



rod will be less than 0.2%. Although deformations of this size seem small, they
are important in engineering practice. (Whether a wing under load will stay on an
airplane is obviously important.)

Three Ways. Figure 12-11 shows three ways in which a solid might change
its dimensions when forces act on it. In Fig. 12-11a, a cylinder is stretched. In
Fig. 12-11b, a cylinder is deformed by a force perpendicular to its long axis,
much as we might deform a pack of cards or a book. In Fig. 12-11c, a solid ob-
ject placed in a fluid under high pressure is compressed uniformly on all sides.
What the three deformation types have in common is that a stress, or deform-
ing force per unit area, produces a strain, or unit deformation. In Fig. 12-11, ten-
sile stress (associated with stretching) is illustrated in (a), shearing stress in (b),
and hydraulic stress in (c).

The stresses and the strains take different forms in the three situations of
Fig. 12-11, but—over the range of engineering usefulness—stress and strain are
proportional to each other.The constant of proportionality is called a modulus of
elasticity, so that

stress � modulus � strain. (12-22)

In a standard test of tensile properties, the tensile stress on a test cylinder
(like that in Fig. 12-12) is slowly increased from zero to the point at which the
cylinder fractures, and the strain is carefully measured and plotted. The result is a
graph of stress versus strain like that in Fig. 12-13. For a substantial range of
applied stresses, the stress–strain relation is linear, and the specimen recovers its
original dimensions when the stress is removed; it is here that Eq. 12-22 applies. If
the stress is increased beyond the yield strength Sy of the specimen, the specimen
becomes permanently deformed. If the stress continues to increase, the specimen
eventually ruptures, at a stress called the ultimate strength Su.

Tension and Compression
For simple tension or compression, the stress on the object is defined as F/A,
where F is the magnitude of the force applied perpendicularly to an area A on
the object. The strain, or unit deformation, is then the dimensionless quantity
�L/L, the fractional (or sometimes percentage) change in a length of the speci-
men. If the specimen is a long rod and the stress does not exceed the yield
strength, then not only the entire rod but also every section of it experiences
the same strain when a given stress is applied. Because the strain is dimension-
less, the modulus in Eq. 12-22 has the same dimensions as the stress — namely,
force per unit area.
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Figure 12-11 (a) A cylinder subject to tensile stress stretches by an amount �L. (b) A cylinder
subject to shearing stress deforms by an amount �x, somewhat like a pack of playing cards
would. (c) A solid sphere subject to uniform hydraulic stress from a fluid shrinks in volume
by an amount �V.All the deformations shown are greatly exaggerated.

L

Figure 12-12 A test specimen used to deter-
mine a stress–strain curve such as that of
Fig.12-13.The change �L that occurs in a
certain length L is measured in a tensile
stress–strain test.

Figure 12-13 A stress–strain curve for a steel
test specimen such as that of Fig. 12-12.
The specimen deforms permanently when
the stress is equal to the yield strength of
the specimen’s material. It ruptures when the
stress is equal to the ultimate strength of the
material.
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Figure 12-14 A strain gage of overall dimen-
sions 9.8 mm by 4.6 mm. The gage is fas-
tened with adhesive to the object whose
strain is to be measured; it experiences
the same strain as the object. The electri-
cal resistance of the gage varies with the
strain, permitting strains up to 3% to be
measured.

Courtesy Micro Measurements, a Division
of Vishay Precision Group, Raleigh, NC

Table 12-1 Some Elastic Properties of Selected Materials of Engineering Interest

Young’s Ultimate Yield
Density r Modulus E Strength Su Strength Sy

Material (kg/m3) (109 N/m2) (106 N/m2) (106 N/m2)

Steela 7860 200 400 250
Aluminum 2710 70 110 95
Glass 2190 65 50b —
Concretec 2320 30 40b —
Woodd 525 13 50b —
Bone 1900 9b 170b —
Polystyrene 1050 3 48 —

aStructural steel (ASTM-A36). bIn compression.
cHigh strength dDouglas fir.

The modulus for tensile and compressive stresses is called the Young’s modulus
and is represented in engineering practice by the symbol E. Equation 12-22 becomes

(12-23)

The strain �L/L in a specimen can often be measured conveniently with a strain
gage (Fig. 12-14), which can be attached directly to operating machinery with an
adhesive. Its electrical properties are dependent on the strain it undergoes.

Although the Young’s modulus for an object may be almost the same for tension
and compression, the object’s ultimate strength may well be different for the two types
of stress.Concrete, for example, is very strong in compression but is so weak in tension
that it is almost never used in that manner.Table 12-1 shows the Young’s modulus and
other elastic properties for some materials of engineering interest.

Shearing
In the case of shearing, the stress is also a force per unit area, but the force vector
lies in the plane of the area rather than perpendicular to it. The strain is the
dimensionless ratio �x/L, with the quantities defined as shown in Fig. 12-11b.The
corresponding modulus, which is given the symbol G in engineering practice, is
called the shear modulus. For shearing, Eq. 12-22 is written as

(12-24)

Shearing occurs in rotating shafts under load and in bone fractures due to bending.

Hydraulic Stress
In Fig. 12-11c, the stress is the fluid pressure p on the object, and, as you will see in
Chapter 14, pressure is a force per unit area. The strain is �V/V, where V is the
original volume of the specimen and �V is the absolute value of the change in vol-
ume.The corresponding modulus, with symbol B, is called the bulk modulus of the
material. The object is said to be under hydraulic compression, and the pressure
can be called the hydraulic stress. For this situation, we write Eq. 12-22 as

(12-25)

The bulk modulus is 2.2 � 109 N/m2 for water and 1.6 � 1011 N/m2 for
steel. The pressure at the bottom of the Pacific Ocean, at its average depth 
of about 4000 m, is 4.0 � 107 N/m2. The fractional compression �V/V of a volume 
of water due to this pressure is 1.8%; that for a steel object is only about 0.025%. In
general, solids—with their rigid atomic lattices—are less compressible than 
liquids, in which the atoms or molecules are less tightly coupled to their neighbors.

p � B
�V
V

.
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� 2.2 � 108 N/m2. (Answer)

The yield strength for structural steel is 2.5 � 108 N/m2, so
this rod is dangerously close to its yield strength.

We find the value of Young’s modulus for steel in
Table 12 -1.Then from Eq. 12-23 we find the elongation:

� 8.9 � 10�4 m � 0.89 mm. (Answer)
For the strain, we have

� 1.1 � 10�3 � 0.11%. (Answer)

�L
L

�
8.9 � 10�4 m

0.81 m

�L �
(F/A)L

E
�

(2.2 � 108 N/m2)(0.81 m)
2.0 � 1011 N/m2

stress �
F
A

�
F

pR2 �
6.2 � 104 N

(p)(9.5 � 10�3 m)2

Sample Problem 12.05 Stress and strain of elongated rod

One end of a steel rod of radius R � 9.5 mm and length 
L � 81 cm is held in a vise. A force of magnitude 
F � 62 kN is then applied perpendicularly to the end face
(uniformly across the area) at the other end, pulling di-
rectly away from the vise. What are the stress on the rod
and the elongation �L and strain of the rod?

KEY IDEAS

(1) Because the force is perpendicular to the end face and
uniform, the stress is the ratio of the magnitude F of the
force to the area A. The ratio is the left side of Eq. 12 -23.
(2) The elongation �L is related to the stress and Young’s
modulus E by Eq. 12-23 (F/A � E �L/L). (3) Strain is the
ratio of the elongation to the initial length L.

Calculations: To find the stress, we write

mation gives us

(12-27)

We cannot solve this equation because it has two unknowns,
F4 and F3.

To get a second equation containing F4 and F3, we can use
a vertical y axis and then write the balance of vertical forces
(Fnet,y � 0) as

3F3 � F4 � Mg � 0, (12-28)

where Mg is equal to the magnitude of the gravitational force
on the system. (Three legs have force on them.) To solve
the simultaneous equations 12-27 and 12-28 for, say, F3, we
first use Eq. 12-28 to find that F4 � Mg � 3F3. Substituting
that into Eq. 12-27 then yields, after some algebra,

� 548 N � 5.5 � 102 N. (Answer)

From Eq. 12-28 we then find

F4 � Mg � 3F3 � (290 kg)(9.8 m/s2) � 3(548 N)

� 1.2 kN. (Answer)

You can show that the three short legs are each compressed
by 0.42 mm and the single long leg by 0.92 mm.

�
(5.0 � 10�4 m)(10�4 m2)(1.3 � 1010 N/m2)

(4)(1.00 m)

�
(290 kg)(9.8 m/s2)

4

F3 �
Mg
4

�
dAE
4L

F
:

3

F4L
AE

�
F3L
AE

� d.

Sample Problem 12.06 Balancing a wobbly table

A table has three legs that are 1.00 m in length and a fourth
leg that is longer by d � 0.50 mm, so that the table wobbles
slightly. A steel cylinder with mass M � 290 kg is placed
on the table (which has a mass much less than M) so that
all four legs are compressed but unbuckled and the table
is level but no longer wobbles. The legs are wooden cylin-
ders with cross-sectional area A � 1.0 cm2; Young’s mod-
ulus is E � 1.3 � 1010 N/m2.What are the magnitudes of the
forces on the legs from the floor?

KEY IDEAS

We take the table plus steel cylinder as our system. The situ-
ation is like that in Fig. 12-9, except now we have a steel
cylinder on the table. If the tabletop remains level, the legs
must be compressed in the following ways: Each of the short
legs must be compressed by the same amount (call it �L3)
and thus by the same force of magnitude F3. The single long
leg must be compressed by a larger amount �L4 and thus by
a force with a larger magnitude F4. In other words, for a
level tabletop, we must have

�L4 � �L3 � d. (12-26)

From Eq. 12-23, we can relate a change in length to the
force causing the change with �L � FL/AE, where L is the
original length of a leg.We can use this relation to replace �L4

and �L3 in Eq. 12-26. However, note that we can approximate
the original length L as being the same for all four legs.

Calculations: Making those replacements and that approxi-

Additional examples, video, and practice available at WileyPLUS
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Static Equilibrium A rigid body at rest is said to be in static
equilibrium. For such a body, the vector sum of the external forces
acting on it is zero:

(balance of forces). (12-3)

If all the forces lie in the xy plane, this vector equation is equiva-
lent to two component equations:

Fnet,x � 0 and Fnet,y � 0 (balance of forces). (12-7, 12-8)

Static equilibrium also implies that the vector sum of the external
torques acting on the body about any point is zero, or

(balance of torques). (12-5)

If the forces lie in the xy plane, all torque vectors are parallel to the
z axis, and Eq. 12-5 is equivalent to the single component equation

tnet,z � 0 (balance of torques). (12-9)

Center of Gravity The gravitational force acts individually on
each element of a body. The net effect of all individual actions may
be found by imagining an equivalent total gravitational force 
acting at the center of gravity. If the gravitational acceleration is
the same for all the elements of the body, the center of gravity is at
the center of mass.

Elastic Moduli Three elastic moduli are used to describe the
elastic behavior (deformations) of objects as they respond to
forces that act on them. The strain (fractional change in length) is
linearly related to the applied stress (force per unit area) by the
proper modulus, according to the general relation

stress � modulus � strain. (12-22)

g:
F
:

g

t:net � 0

F
:

net � 0

Review & Summary

Tension and Compression When an object is under tension
or compression, Eq. 12-22 is written as

(12-23)

where �L/L is the tensile or compressive strain of the object, F is
the magnitude of the applied force causing the strain, A is the
cross-sectional area over which is applied (perpendicular to A,
as in Fig. 12-11a), and E is the Young’s modulus for the object. The
stress is F/A.

Shearing When an object is under a shearing stress, Eq. 12-22 is
written as

(12-24)

where �x/L is the shearing strain of the object, �x is the
displacement of one end of the object in the direction of the ap-
plied force (as in Fig. 12-11b), and G is the shear modulus of the
object.The stress is F/A.

Hydraulic Stress When an object undergoes hydraulic com-
pression due to a stress exerted by a surrounding fluid, Eq. 12-22 is
written as

(12-25)

where p is the pressure (hydraulic stress) on the object due to the
fluid, �V/V (the strain) is the absolute value of the fractional
change in the object’s volume due to that pressure, and B is the
bulk modulus of the object.

p � B
�V
V

,

F
:

F
A

� G
�x
L

,

F
:

F
:

F
A

� E
�L
L

,

Questions

1 Figure 12-15 shows three situations in which the same
horizontal rod is supported by a hinge on a wall at one end and a
cord at its other end. Without written calculation, rank the situa-
tions according to the magnitudes of (a) the force on the rod
from the cord, (b) the vertical force on the rod from the hinge,
and (c) the horizontal force on the rod from the hinge, greatest
first.

compared to that of the safe.(a) Rank the positions according to
the force on post A due to the safe, greatest compression first,
greatest tension last, and indicate where, if anywhere, the force is
zero. (b) Rank them according to the force on post B.

3 Figure 12-17 shows four overhead views of rotating uniform
disks that are sliding across a frictionless floor. Three forces, of
magnitude F, 2F, or 3F, act on each disk, either at the rim, at the
center, or halfway between rim and center.The force vectors rotate
along with the disks, and, in the “snapshots” of Fig. 12-17, point left
or right.Which disks are in equilibrium?

50° 50° 

(1) (2) (3)

Figure 12-15 Question 1.

2 In Fig. 12-16, a rigid beam is at-
tached to two posts that are fas-
tened to a floor.A small but heavy
safe is placed at the six positions
indicated, in turn.Assume that the
mass of the beam is negligible

1 2 3 4 5 6 

A B 

Figure 12-16 Question 2.

(a) (b) (c) (d)

F

3F
2F

2F

F

F F 

F

2F

2F

F

F

Figure 12-17 Question 3.

4 A ladder leans against a frictionless wall but is prevented from
falling because of friction between it and the ground. Suppose
you shift the base of the ladder toward the wall. Determine
whether the following become larger, smaller, or stay the same (in



magnitude): (a) the normal force on the ladder from the ground,
(b) the force on the ladder from the wall, (c) the static frictional
force on the ladder from the ground, and (d) the maximum value
fs,max of the static frictional force.

5 Figure 12-18 shows a mobile of toy penguins hanging from a
ceiling. Each crossbar is horizontal, has negligible mass, and ex-
tends three times as far to the right of the wire supporting it as to
the left. Penguin 1 has mass m1 � 48 kg. What are the masses of
(a) penguin 2, (b) penguin 3, and (c) penguin 4?

344 CHAPTER 12 EQUILIBRIUM AND ELASTICITY

What is the tension in the short cord
labeled with T?

9 In Fig. 12-22, a vertical rod is
hinged at its lower end and attached
to a cable at its upper end.A horizon-
tal force is to be applied to the rod
as shown. If the point at which the
force is applied is moved up the rod,
does the tension in the cable increase,
decrease, or remain the same?

10 Figure 12-23 shows a horizon-
tal block that is suspended by two
wires, A and B, which are identical
except for their original lengths. The
center of mass of the block is closer
to wire B than to wire A. (a)
Measuring torques about the
block’s center of mass, state whether
the magnitude of the torque due to wire A is greater than, less
than, or equal to the magnitude of the torque due to wire B. (b)
Which wire exerts more force on the block? (c) If the wires are now
equal in length, which one was originally shorter (before the block
was suspended)?

11 The table gives the initial lengths of three rods and the
changes in their lengths when forces are applied to their ends to
put them under strain. Rank the rods according to their strain,
greatest first.

Initial Length Change in Length

Rod A 2L0 �L0

Rod B 4L0 2�L0

Rod C 10L0 4�L0

12 A physical therapist gone wild has constructed the (station-
ary) assembly of massless pulleys and cords seen in Fig. 12-24.
One long cord wraps around all the pulleys, and shorter cords
suspend pulleys from the ceiling or weights from the pulleys.
Except for one, the weights (in newtons) are indicated. (a) What
is that last weight? (Hint: When a cord loops halfway around a
pulley as here, it pulls on the pulley with a net force that is twice
the tension in the cord.) (b) What is the tension in the short cord
labeled T?

F
:

a

1 2

3 4 

6 Figure 12-19 shows an overhead
view of a uniform stick on which
four forces act. Suppose we choose
a rotation axis through point O, cal-
culate the torques about that axis
due to the forces, and find that these
torques balance. Will the torques
balance if, instead, the rotation axis is chosen to be at (a) point A
(on the stick), (b) point B (on line with the stick), or (c) point C
(off to one side of the stick)? (d) Suppose, instead, that we find
that the torques about point O do not balance. Is there another
point about which the torques will balance?

7 In Fig. 12-20, a stationary 5 kg rod AC is held
against a wall by a rope and friction between rod
and wall.The uniform rod is 1 m long, and angle

. (a) If you are to find the magnitude of
the force on the rod from the rope with a sin-
gle equation,at what labeled point should a rota-
tion axis be placed? With that choice of axis and
counterclockwise torques positive, what is the
sign of (b) the torque due to the rod’s weight
and (c) the torque due to the pull on the rod
by the rope? (d) Is the magnitude of greater
than, less than,or equal to the magnitude of ?

8 Three piñatas hang from the
(stationary) assembly of massless
pulleys and cords seen in Fig. 12-21.
One long cord runs from the ceiling
at the right to the lower pulley at
the left, looping halfway around all
the pulleys. Several shorter cords
suspend pulleys from the ceiling or
piñatas from the pulleys. The
weights (in newtons) of two piñatas
are given. (a) What is the weight of
the third piñata? (Hint: A cord that
loops halfway around a pulley pulls
on the pulley with a net force that
is twice the tension in the cord.) (b)

tw

tr

tr

tw

T
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u � 30	

O A

C

B

Figure 12-19 Question 6.

θ 

B C A

D

Figure 12-20
Question 7.

Fa

Figure 12-22 Question 9.

com

A B 

Figure 12-23 Question 10.

Figure 12-18 Question 5.

T

10

17

Figure 12-21 Question 8.

T

5 34

6
20

15
23

Figure 12-24 Question 12.
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•7 A 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long.
He places one end on the ground 2.5 m from a wall, rests the upper
end against a cracked window, and climbs the ladder. He is 3.0 m up
along the ladder when the window breaks. Neglect friction between
the ladder and window and assume that the base of the ladder does
not slip. When the window is on the verge of breaking, what are (a)
the magnitude of the force on the window from the ladder, (b) the
magnitude of the force on the ladder from the ground, and (c) the
angle (relative to the horizontal) of that force on the ladder?

•8 A physics Brady Bunch, whose weights in newtons are
indicated in Fig. 12-27, is balanced on a seesaw.What is the number
of the person who causes the largest torque about the rotation axis
at fulcrum f directed (a) out of the page and (b) into the page?

Module 12-1 Equilibrium
•1 Because g varies so little over the extent of
most structures, any structure’s center of gravity
effectively coincides with its center of mass.
Here is a fictitious example where g varies more
significantly. Figure 12-25 shows an array of
six particles, each with mass m, fixed to the edge
of a rigid structure of negligible mass. The dis-
tance between adjacent particles along the edge
is 2.00 m.The following table gives the value of g
(m/s2) at each particle’s location. Using the
coordinate system shown, find (a) the x coordi-
nate xcom and (b) the y coordinate ycom of the center of mass of the
six-particle system.Then find (c) the x coordinate xcog and (d) the y
coordinate ycog of the center of gravity of the six-particle system.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Particle g Particle g

1 8.00 4 7.40
2 7.80 5 7.60
3 7.60 6 7.80

Module 12-2 Some Examples of Static Equilibrium
•2 An automobile with a mass of 1360 kg has 3.05 m between the
front and rear axles. Its center of gravity is located 1.78 m behind
the front axle. With the automobile on level ground, determine the
magnitude of the force from the ground on (a) each front wheel
(assuming equal forces on the front wheels) and (b) each rear
wheel (assuming equal forces on the rear wheels).

•3 In Fig. 12-26, a uniform sphere
of mass m 0.85 kg and radius r 4.2 cm is
held in place by a massless rope attached to a
frictionless wall a distance L 8.0 cm above
the center of the sphere. Find (a) the tension
in the rope and (b) the force on the sphere from
the wall.

•4 An archer’s bow is drawn at its midpoint
until the tension in the string is equal to the
force exerted by the archer. What is the angle
between the two halves of the string?

•5 A rope of negligible mass is stretched
horizontally between two supports that are 3.44 m
apart. When an object of weight 3160 N is hung at the center of the
rope, the rope is observed to sag by 35.0 cm. What is the tension in
the rope?

•6 A scaffold of mass 60 kg and length 5.0 m is supported in a
horizontal position by a vertical cable at each end. A window
washer of mass 80 kg stands at a point 1.5 m from one end. What is
the tension in (a) the nearer cable and (b) the farther cable?

ILW
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WWWSSM
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x

Figure 12-25
Problem 1.

L

r

Figure 12-26
Problem 3.

4 3 2 1 0 1 2 3 4 meters 

220 330 440 560  560 440 330 220 newtons

1 2 3 4  5 6 7 8 

f

Figure 12-27 Problem 8.

•9 A meter stick balances horizontally on a knife-edge at the
50.0 cm mark. With two 5.00 g coins stacked over the 12.0 cm
mark, the stick is found to balance at the 45.5 cm mark. What is the
mass of the meter stick?

•10 The system in Fig. 12-28 is in
equilibrium, with the string in the
center exactly horizontal. Block A
weighs 40 N, block B weighs 50 N,
and angle f is 35°. Find (a) tension
T1, (b) tension T2, (c) tension T3, and
(d) angle u.

•11 Figure 12-29 shows a
diver of weight 580 N standing at the
end of a diving board with a length
of L � 4.5 m and negligible mass.
The board is fixed to two pedestals
(supports) that are separated by dis-
tance d � 1.5 m. Of the forces acting
on the board, what are the (a) magni-
tude and (b) direction (up or down)
of the force from the left pedestal
and the (c) magnitude and (d) direc-
tion (up or down) of the force from
the right pedestal? (e) Which
pedestal (left or right) is being
stretched, and (f) which pedestal is being compressed?

SSM

SSM

T2

T3T1
θ φ 

A B

Figure 12-28 Problem 10.

d

L

Figure 12-29 Problem 11.

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


•12 In Fig. 12-30, trying to get his car out of mud, a man ties one
end of a rope around the front bumper and the other end tightly
around a utility pole 18 m away. He then pushes sideways on the
rope at its midpoint with a force of 550 N, displacing the center of
the rope 0.30 m, but the car barely moves.What is the magnitude of
the force on the car from the rope? (The rope stretches somewhat.)
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•17 In Fig. 12-34, a uniform beam of
weight 500 N and length 3.0 m is sus-
pended horizontally. On the left it is
hinged to a wall; on the right it is sup-
ported by a cable bolted to the wall at
distance D above the beam. The least
tension that will snap the cable is 1200
N. (a) What value of D corresponds to
that tension? (b) To prevent the cable
from snapping, should D be increased
or decreased from that value?

•18 In Fig. 12-35, horizontal scaf-
fold 2, with uniform mass m2 30.0
kg and length L2 � 2.00 m, hangs
from horizontal scaffold 1, with uni-
form mass m1 � 50.0 kg. A 20.0 kg
box of nails lies on scaffold 2, cen-
tered at distance d � 0.500 m from
the left end. What is the tension T in
the cable indicated?

•19 To crack a certain nut in a nut-
cracker, forces with magnitudes of at
least 40 N must act on its shell from
both sides. For the nutcracker of Fig.
12-36, with distances L � 12 cm and
d � 2.6 cm, what are the force com-
ponents F� (perpendicular to the
handles) corresponding to that 40 N?

•20 A bowler holds a bowling ball
(M � 7.2 kg) in the palm of his hand
(Fig. 12 -37). His upper arm is vertical; his lower arm (1.8 kg) is
horizontal. What is the magnitude of (a) the force of the biceps
muscle on the lower arm and (b) the force between the bony
structures at the elbow contact point?

�

F

Figure 12-30 Problem 12.

•13 Figure 12-31 shows the
anatomical structures in the
lower leg and foot that are
involved in standing on tip-
toe, with the heel raised
slightly off the floor so that
the foot effectively contacts
the floor only at point P.
Assume distance a � 5.0 cm,
distance b � 15 cm, and the
person’s weight W � 900 N.
Of the forces acting on the
foot, what are the (a) magni-
tude and (b) direction (up or down) of the force at point A from
the calf muscle and the (c) magnitude and (d) direction (up or
down) of the force at point B from the lower leg bones?

•14 In Fig. 12-32, a horizontal
scaffold, of length 2.00 m and uni-
form mass 50.0 kg, is suspended
from a building by two cables. The
scaffold has dozens of paint cans
stacked on it at various points. The total mass of the paint cans is
75.0 kg. The tension in the cable at the right is 722 N. How far
horizontally from that cable is the center of mass of the system of
paint cans?

•15 Forces , , and act on the structure of Fig. 12-33,
shown in an overhead view.We wish to put the structure in equilib-
rium by applying a fourth force, at a point such as P. The fourth
force has vector components and .We are given that a � 2.0 m,F
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Figure 12-32 Problem 14.

a b
P

A
B

Lower leg bones 

Calf muscle 

Figure 12-31 Problem 13.

b � 3.0 m, c � 1.0 m, F1 � 20 N, F2 � 10 N, and F3 � 5.0 N. Find (a)
Fh, (b) Fv, and (c) d.

y

x
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d

b a

a

P
c

F1 F2

F3

Fh

Fv

Figure 12-33 Problem 15.

•16 A uniform cubical crate is 0.750 m on each side and weighs
500 N. It rests on a floor with one edge against a very small, fixed
obstruction. At what least height above the floor must a horizontal
force of magnitude 350 N be applied to the crate to tip it?

Cable

Beam

D

Figure 12-34 Problem 17.

T = ? 1
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Figure 12-35 Problem 18.

L

d

F⊥ 

F⊥ 

Figure 12-36 Problem 19.

Biceps

Lower arm
(forearm plus 
hand) center 

of mass 

Elbow
contact
point

M

33 cm 
15 cm

4.0 cm

Figure 12-37 Problem 20.

••21 The system in Fig. 12-38 is
in equilibrium. A concrete block of
mass 225 kg hangs from the end of
the uniform strut of mass 45.0 kg. A
cable runs from the ground, over
the top of the strut, and down to the
block, holding the block in place.
For angles f � 30.0° and u � 45.0°,
find (a) the tension T in the cable
and the (b) horizontal and (c) verti-
cal components of the force on the strut from the hinge.

ILW
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T

Hinge

Strut

Figure 12-38 Problem 21.



••22 In Fig. 12-39, a 55 kg
rock climber is in a lie-back climb
along a fissure, with hands pulling on
one side of the fissure and feet
pressed against the opposite side.
The fissure has width w � 0.20 m,
and the center of mass of the climber
is a horizontal distance d � 0.40 m
from the fissure. The coefficient of
static friction between hands and
rock is m1 � 0.40, and between boots
and rock it is m2 � 1.2. (a) What is the
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feet–ground contact point. If he is on the
verge of sliding, what is the coefficient of
static friction between feet and ground?

••27 In Fig. 12-44, a 15 kg block is
held in place via a pulley system. The
person’s upper arm is vertical; the fore-
arm is at angle u � 30° with the horizon-
tal. Forearm and hand together have a
mass of 2.0 kg, with a center of mass at dis-
tance d1 � 15 cm from the contact point of
the forearm bone and the upper-arm bone
(humerus). The triceps muscle pulls verti-
cally upward on the forearm at distance d2 � 2.5 cm behind that
contact point. Distance d3 is 35 cm. What are the (a) magnitude and
(b) direction (up or down) of the force on the forearm from the tri-
ceps muscle and the (c) magnitude and (d) direction (up or down) of
the force on the forearm from the humerus?

h

w

com
d

Figure 12-39 Problem 22.

Figure 12-40 Problem  23.

θ 

θ 
Hinge

θ 

φ 

Figure 12-41 Problem 24.

If the climber encounters wet rock, so
that m1 and m2 are reduced, what hap-
pens to (c) the answer to (a) and (d)
the answer to (b)?

••23 In Fig. 12-40, one end of a
uniform beam of weight 222 N is
hinged to a wall; the other end is sup-
ported by a wire that makes angles 
u � 30.0° with both wall and beam.
Find (a) the tension in the wire and the
(b) horizontal and (c) vertical compo-
nents of the force of the hinge on the
beam.

••24 In Fig. 12 -41, a climber
with a weight of 533.8 N is held by a
belay rope connected to her climbing
harness and belay device; the force of
the rope on her has a line of action
through her center of mass. The indi-
cated angles are u � 40.0° and f �
30.0°. If her feet are on the verge of
sliding on the vertical wall, what is the
coefficient of static friction between
her climbing shoes and the wall?

••25 In Fig. 12-42, whatWWWSSM
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Figure 12-42 Problem 25.
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Figure 12-43 Problem 26.
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d3d1

d2

Triceps

Figure 12-44
Problem 27.

••28 In Fig. 12-45, suppose the
length L of the uniform bar is 3.00 m
and its weight is 200 N. Also, let the
block’s weight W � 300 N and the an-
gle u � 30.0°. The wire can withstand
a maximum tension of 500 N. (a) What
is the maximum possible distance x
before the wire breaks? With the
block placed at this maximum x, what
are the (b) horizontal and (c) vertical
components of the force on the bar
from the hinge at A?

••29 A door has a height of 2.1 m
along a y axis that extends vertically
upward and a width of 0.91 m along an
x axis that extends outward from the
hinged edge of the door.A hinge 0.30 m
from the top and a hinge 0.30 m from
the bottom each support half the door’s
mass, which is 27 kg. In unit-vector
notation, what are the forces on the

com

L

x

C

B
θ 

A

Figure 12-45
Problems 28 and 34.

door at (a) the top hinge and (b) the
bottom hinge?

••30 In Fig. 12-46, a 50.0 kg uniform

least horizontal pull by the hands and push by the feet that
will keep the climber stable? (b) For the horizontal pull of
(a), what must be the vertical distance h between hands and feet?

••26 In Fig. 12-43, a climber leans out against a vertical
ice wall that has negligible friction. Distance a is 0.914 m and dis-
tance L is 2.10 m. His center of mass is distance d � 0.940 m from the

dv
Cable

Hinge
Rod

L

dh

L

Figure 12-46 Problem 30.

square sign, of edge length L � 2.00 m, is
hung from a horizontal rod of length
dh � 3.00 m and negligible mass. A ca-
ble is attached to the end of the rod

magnitude of (constant) force ap-
plied horizontally at the axle of the
wheel is necessary to raise the wheel
over a step obstacle of height 
h � 3.00 cm? The wheel’s radius is r �
6.00 cm, and its mass is m � 0.800 kg.

F
:



and to a point on the wall at distance dv � 4.00 m above the point
where the rod is hinged to the wall. (a) What is the tension in the
cable? What are the (b) magnitude and (c) direction (left or right)
of the horizontal component of the force on the rod from the wall,
and the (d) magnitude and (e) direction (up or down) of the verti-
cal component of this force?

••31 In Fig. 12-47, a
nonuniform bar is suspended
at rest in a horizontal position
by two massless cords. One
cord makes the angle u �
36.9° with the vertical; the
other makes the angle f �
53.1° with the vertical. If the
length L of the bar is 6.10 m,
compute the distance x from
the left end of the bar to its center of mass.

••32 In Fig. 12-48, the driver of a car on a horizontal road makes
an emergency stop by applying the brakes so that all four wheels
lock and skid along the road. The coefficient of kinetic friction be-
tween tires and road is 0.40. The separation between the front and
rear axles is L � 4.2 m, and the center of mass of the car is located
at distance d � 1.8 m behind the front axle and distance h � 0.75 m
above the road. The car weighs 11 kN. Find the magnitude of (a)
the braking acceleration of the car, (b) the normal force on each
rear wheel, (c) the normal force on each front wheel, (d) the brak-
ing force on each rear wheel, and (e) the braking force on each
front wheel. (Hint: Although the car is not in translational equilib-
rium, it is in rotational equilibrium.)
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the beam at distance y from the lower end. The beam remains
vertical because of a cable attached at the upper end, at angle u
with the horizontal. Figure 12-49b gives the tension T in the cable
as a function of the position of the applied force given as a fraction
y/L of the beam length. The scale of the T axis is set by Ts � 600 N.
Figure 12-49c gives the magnitude Fh of the horizontal force on the
beam from the hinge, also as a function of y/L. Evaluate (a) angle u
and (b) the magnitude of .

••34 In Fig. 12-45, a thin horizontal bar AB of negligible weight
and length L is hinged to a vertical wall at A and supported at B
by a thin wire BC that makes an angle u with the horizontal. A
block of weight W can be moved anywhere along the bar; its posi-
tion is defined by the distance x from the wall to its center of
mass. As a function of x, find (a) the tension in the wire, and the
(b) horizontal and (c) vertical components of the force on the bar
from the hinge at A.

••35 A cubical box is filled with sand and weighs 890
N. We wish to “roll” the box by pushing horizontally on one of the
upper edges. (a) What minimum force is required? (b) What mini-
mum coefficient of static friction between box and floor is re-
quired? (c) If there is a more efficient way to roll the box, find the
smallest possible force that would have to be applied directly to
the box to roll it. (Hint: At the onset of tipping, where is the normal
force located?)

••36 Figure 12-50 shows a 70 kg climber
hanging by only the crimp hold of one hand on
the edge of a shallow horizontal ledge in a
rock wall. (The fingers are pressed down to
gain purchase.) Her feet touch the rock wall
at distance H � 2.0 m directly below her
crimped fingers but do not provide any sup-
port. Her center of mass is distance a � 0.20
m from the wall. Assume that the force from
the ledge supporting her fingers is equally
shared by the four fingers. What are the values
of the (a) horizontal component Fh and (b)
vertical component Fv of the force on each
fingertip?

••37 In Fig. 12-51, a uniform plank, with a
length L of 6.10 m and a weight of 445 N, rests
on the ground and against a frictionless roller at
the top of a wall of height h � 3.05 m.The plank
remains in equilibrium for any value of u � 70°
but slips if u � 70°. Find the coefficient of static
friction between the plank and the ground.
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••33 Figure 12-49a shows a vertical uniform beam of length L
that is hinged at its lower end. A horizontal force is applied toF
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••38 In Fig. 12-52, uniform beams A
and B are attached to a wall with hinges
and loosely bolted together (there is
no torque of one on the other). Beam
A has length LA � 2.40 m and mass
54.0 kg; beam B has mass 68.0 kg.The
two hinge points are separated by dis-
tance d � 1.80 m. In unit-vector nota-
tion, what is the force on (a) beam A
due to its hinge, (b) beam A due to
the bolt, (c) beam B due to its hinge,
and (d) beam B due to the bolt?

•••39 For the stepladder shown in
Fig. 12-53, sides AC and CE are each
2.44 m long and hinged at C. Bar BD
is a tie-rod 0.762 m long, halfway up.
A man weighing 854 N climbs 1.80 m
along the ladder. Assuming that the
floor is frictionless and neglecting the
mass of the ladder, find (a) the tension
in the tie-rod and the magnitudes of
the forces on the ladder from the floor
at (b) A and (c) E. (Hint: Isolate parts
of the ladder in applying the equilib-
rium conditions.)

•••40 Figure 12-54a shows a horizon-
tal uniform beam of mass mb and
length L that is supported on the left
by a hinge attached to a wall and on the right by a cable at angle u with
the horizontal. A package of mass mp is positioned on the beam at a
distance x from the left end. The total mass is mb � mp � 61.22 kg.
Figure 12-54b gives the tension T in the cable as a function of the
package’s position given as a fraction x/L of the beam length. The
scale of the T axis is set by Ta � 500 N and Tb � 700 N. Evaluate (a)
angle u, (b) mass mb, and (c) mass mp.
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be 0.53. How far (in percent) up the ladder must the firefighter go
to put the ladder on the verge of sliding?

Module 12-3 Elasticity
•43 A horizontal aluminum rod 4.8 cm in diameter
projects 5.3 cm from a wall.A 1200 kg object is suspended from the
end of the rod. The shear modulus of aluminum is 3.0 � 1010 N/m2.
Neglecting the rod’s mass, find (a) the shear stress on the rod and
(b) the vertical deflection of the end of the rod.

•44 Figure 12-55 shows the
stress–strain curve for a material.
The scale of the stress axis is set by
s � 300, in units of 106 N/m2. What
are (a) the Young’s modulus and (b)
the approximate yield strength for
this material?

••45 In Fig. 12-56, a lead brick rests
horizontally on cylinders A and B.
The areas of the top faces of the cylin-
ders are related by AA � 2AB; the
Young’s moduli of the cylinders
are related by EA � 2EB. The cylin-
ders had identical lengths before the
brick was placed on them. What
fraction of the brick’s mass is sup-
ported (a) by cylinder A and (b) by
cylinder B? The horizontal distances
between the center of mass of the
brick and the centerlines of the
cylinders are dA for cylinder A and
dB for cylinder B. (c) What is the ratio dA/dB?

••46 Figure 12-57 shows an approximate plot of stress ver-
sus strain for a spider-web thread, out to the point of breaking at a
strain of 2.00. The vertical axis scale is set by values a � 0.12
GN/m2, b � 0.30 GN/m2, and c � 0.80 GN/m2. Assume that the
thread has an initial length of 0.80 cm, an initial cross-sectional area of
8.0 � 10�12 m2, and (during stretching) a constant volume. The
strain on the thread is the ratio of the change in the thread’s
length to that initial length, and the stress on the thread is the ra-
tio of the collision force to that initial cross-sectional area.
Assume that the work done on the thread by the collision force is
given by the area under the curve on the graph. Assume also that
when the single thread snares a flying insect, the insect’s kinetic
energy is transferred to the stretching of the thread. (a) How
much kinetic energy would put the thread on the verge of break-
ing? What is the kinetic energy of (b) a fruit fly of mass 6.00 mg
and speed 1.70 m/s and (c) a bumble bee of mass 0.388 g and
speed 0.420 m/s? Would (d) the fruit fly and (e) the bumble bee
break the thread?
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•••41 A crate, in the form of a cube with edge lengths of 1.2 m, con-
tains a piece of machinery; the center of mass of the crate and its
contents is located 0.30 m above the crate’s geometrical center. The
crate rests on a ramp that makes an angle u with the horizontal.As u
is increased from zero, an angle will be reached at which the crate
will either tip over or start to slide down the ramp. If the coefficient
of static friction ms between ramp and crate is 0.60, (a) does the crate
tip or slide and (b) at what angle u does this occur? If ms � 0.70,
(c) does the crate tip or slide and (d) at what angle u does this occur?
(Hint: At the onset of tipping, where is the normal force located?)

•••42 In Fig. 12-7 and the associated sample problem, let the co-
efficient of static friction ms between the ladder and the pavement



••47 A tunnel of length L � 150 m, height H � 7.2 m, and width
5.8 m (with a flat roof) is to be constructed at distance d � 60 m
beneath the ground. (See Fig. 12-58.) The tunnel roof is to be sup-
ported entirely by square steel columns, each with a cross-sectional
area of 960 cm2. The mass of 1.0 cm3 of the ground material is 2.8 g.
(a) What is the total weight of the ground material the columns must
support? (b) How many columns are needed to keep the compres-
sive stress on each column at one-half its ultimate strength?

350 CHAPTER 12 EQUILIBRIUM AND ELASTICITY

are forced against rigid walls at distances rA � 7.0 cm and rB � 4.0 cm
from the axle. Initially the stoppers touch the walls without being
compressed. Then force of magnitude 220 N is applied perpendi-
cular to the rod at a distance R � 5.0 cm from the axle. Find the mag-
nitude of the force compressing (a) stopper A and (b) stopper B.
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••48 Figure 12-59 shows the
stress versus strain plot for an
aluminum wire that is stretched
by a machine pulling in opposite
directions at the two ends of the
wire. The scale of the stress axis is
set by s � 7.0, in units of
107 N/m2. The wire has an initial
length of 0.800 m and an initial
cross-sectional area of 2.00 � 10�6

m2. How much work does the force
from the machine do on the wire to produce a strain of 1.00 � 10�3?

••49 In Fig. 12-60, a 103 kg uni-
form log hangs by two steel wires,
A and B, both of radius 1.20 mm.
Initially, wire A was 2.50 m long
and 2.00 mm shorter than wire B.
The log is now horizontal. What
are the magnitudes of the forces
on it from (a) wire A and (b) wire
B? (c) What is the ratio dA/dB?

•••50 Figure 12-61 rep-
resents an insect caught at the mid-
point of a spider-web thread. The
thread breaks under a stress of 
8.20 � 108 N/m2 and a strain of
2.00. Initially, it was horizontal
and had a length of 2.00 cm and a
cross-sectional area of 8.00 �
10�12 m2. As the thread was stretched under the weight of the in-
sect, its volume remained constant. If the weight of the insect
puts the thread on the verge of breaking, what is the insect’s
mass? (A spider’s web is built to break if a potentially harmful in-
sect, such as a bumble bee, becomes snared in the web.)

•••51 Figure 12-62 is an overhead view of a rigid rod that turns
about a vertical axle until the identical rubber stoppers A and B
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Additional Problems
52 After a fall, a 95 kg rock climber finds himself dangling from
the end of a rope that had been 15 m long and 9.6 mm in diameter
but has stretched by 2.8 cm. For the rope, calculate (a) the strain,
(b) the stress, and (c) the Young’s modulus.

53 In Fig. 12-63, a rectangular
slab of slate rests on a bedrock sur-
face inclined at angle u � 26°. The
slab has length L � 43 m, thickness
T � 2.5 m, and width W � 12 m, and
1.0 cm3 of it has a mass of 3.2 g. The
coefficient of static friction between
slab and bedrock is 0.39. (a)
Calculate the component of the
gravitational force on the slab parallel to the bedrock surface. (b)
Calculate the magnitude of the static frictional force on the slab.
By comparing (a) and (b), you can see that the slab is in danger of
sliding. This is prevented only by chance protrusions of bedrock.
(c) To stabilize the slab, bolts are to be driven perpendicular to the
bedrock surface (two bolts are shown). If each bolt has a cross-
sectional area of 6.4 cm2 and will snap under a shearing stress of
3.6 � 108 N/m2, what is the minimum number of bolts needed?
Assume that the bolts do not affect the normal force.

54 A uniform ladder whose length
is 5.0 m and whose weight is 400 N
leans against a frictionless vertical
wall. The coefficient of static friction
between the level ground and the
foot of the ladder is 0.46. What is the
greatest distance the foot of the lad-
der can be placed from the base of
the wall without the ladder immedi-
ately slipping?

55 In Fig. 12-64, block A
(mass 10 kg) is in equilibrium, but it
would slip if block B (mass 5.0 kg)
were any heavier. For angle u � 30°,
what is the coefficient of static fric-
tion between block A and the sur-
face below it?

56 Figure 12-65a shows a uniform ramp between two buildings
that allows for motion between the buildings due to strong winds.
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At its left end, it is hinged to the building wall; at its right end, it has
a roller that can roll along the building wall. There is no vertical
force on the roller from the building, only a horizontal force with
magnitude Fh. The horizontal distance between the buildings is
D � 4.00 m. The rise of the ramp is h � 0.490 m. A man walks
across the ramp from the left. Figure 12-65b gives Fh as a function
of the horizontal distance x of the man from the building at the
left. The scale of the Fh axis is set by a � 20 kN and b � 25 kN.
What are the masses of (a) the ramp and (b) the man?
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60 In Fig. 12-69, a package of mass
m hangs from a short cord that is tied
to the wall via cord 1 and to the ceil-
ing via cord 2. Cord 1 is at angle f �
40° with the horizontal; cord 2 is at an-
gle u. (a) For what value of u is the
tension in cord 2 minimized? (b) In
terms of mg, what is the minimum ten-
sion in cord 2?

61 The force in Fig. 12-70
keeps the 6.40 kg block and the pulleys in
equilibrium. The pulleys have negligible
mass and friction. Calculate the tension T in
the upper cable. (Hint: When a cable wraps
halfway around a pulley as here, the magni-
tude of its net force on the pulley is twice
the tension in the cable.)

62 A mine elevator is supported by a sin-
gle steel cable 2.5 cm in diameter. The total
mass of the elevator cage and occupants is
670 kg. By how much does the cable stretch
when the elevator hangs by (a) 12 m of ca-
ble and (b) 362 m of cable? (Neglect the
mass of the cable.)

63 Four bricks of length L, identi-
cal and uniform, are stacked on top of one
another (Fig. 12-71) in such a way that
part of each extends beyond the
one beneath. Find, in terms of
L, the maximum values of
(a) a1, (b) a2, (c) a3, (d)
a4, and (e) h, such
that the stack is
in equilibrium,
on the verge of
falling.
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57 In Fig. 12-66, a 10 kg sphere
is supported on a frictionless plane
inclined at angle u � 45° from the
horizontal. Angle f is 25°. Cal-
culate the tension in the cable.

58 In Fig. 12-67a, a uniform 40.0 kg
beam is centered over two rollers.
Vertical lines across the beam mark
off equal lengths.Two of the lines are
centered over the rollers; a 10.0 kg
package of tamales is centered over
roller B.What are the magnitudes of
the forces on the beam from (a)
roller A and (b) roller B? The beam
is then rolled to the left until the
right-hand end is centered over
roller B (Fig. 12-67b). What now are
the magnitudes of the forces on the
beam from (c) roller A and (d)
roller B? Next, the beam is rolled to
the right. Assume that it has a
length of 0.800 m. (e) What hori-
zontal distance between the pack-
age and roller B puts the beam on
the verge of losing contact with
roller A?

59 In Fig. 12-68, an 817 kg
construction bucket is suspended
by a cable A that is attached at O
to two other cables B and C, mak-
ing angles u1 � 51.0° and u2 � 66.0°
with the horizontal. Find the ten-
sions in (a) cable A, (b) cable B,
and (c) cable C. (Hint: To avoid
solving two equations in two un-
knowns, position the axes as
shown in the figure.)
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64 In Fig. 12-72, two identical, uni-
form, and frictionless spheres, each of
mass m, rest in a rigid rectangular con-
tainer.A line connecting their centers is
at 45° to the horizontal. Find the
magnitudes of the forces on the spheres
from (a) the bottom of the container,
(b) the left side of the container,
(c) the right side of the container, and
(d) each other. (Hint: The force of one
sphere on the other is directed along
the center–center line.)

65 In Fig. 12-73, a uniform beam
with a weight of 60 N and a length of
3.2 m is hinged at its lower end, and
a horizontal force of magnitude
50 N acts at its upper end. The beam
is held vertical by a cable that makes
angle u � 25° with the ground and is
attached to the beam at height h �
2.0 m. What are (a) the tension in
the cable and (b) the force on the
beam from the hinge in unit-vector
notation?
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66 A uniform beam is 5.0 m long
and has a mass of 53 kg. In Fig. 12-
74, the beam is supported in a hori-
zontal position by a hinge and a ca-
ble, with angle u � 60°. In unit-vector
notation,what is the force on the beam
from the hinge?

67 A solid copper cube has an edge
length of 85.5 cm. How much stress must be applied to the cube to
reduce the edge length to 85.0 cm? The bulk modulus of copper is
1.4 � 1011 N/m2.

68 A construction worker at-
tempts to lift a uniform beam off the
floor and raise it to a vertical posi-
tion. The beam is 2.50 m long and
weighs 500 N.At a certain instant the
worker holds the beam momentarily
at rest with one end at distance d �
1.50 m above the floor, as shown in
Fig. 12-75, by exerting a force on
the beam, perpendicular to the
beam. (a) What is the magnitude P?
(b) What is the magnitude of the (net) force of the floor on the
beam? (c) What is the minimum value the coefficient of static
friction between beam and floor can have in order for the beam
not to slip at this instant?

69 In Fig. 12-76, a uniform rod of mass m is
hinged to a building at its lower end, while its upper
end is held in place by a rope attached to the wall. If
angle u1 � 60°, what value must angle u2 have so
that the tension in the rope is equal to mg/2?

70 A 73 kg man stands on a level bridge of
length L. He is at distance L/4 from one end. The
bridge is uniform and weighs 2.7 kN. What are the
magnitudes of the vertical forces on the bridge from
its supports at (a) the end farther from him and (b) the nearer end?

71 A uniform cube of side length 8.0 cm rests on a horizon-
tal floor. The coefficient of static friction between cube and floor is
m. A horizontal pull is applied perpendicular to one of the verti-
cal faces of the cube, at a distance 7.0 cm above the floor on the
vertical midline of the cube face. The magnitude of is gradually
increased. During that increase, for what values of m will the cube
eventually (a) begin to slide and (b) begin to tip? (Hint: At the
onset of tipping, where is the normal force located?)

72 The system in Fig. 12-77 is in equilibrium.The angles are u1 � 60°
and u2 � 20°, and the ball has mass M � 2.0 kg. What is the tension
in (a) string ab and (b) string bc?
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73 A uniform ladder is 10 m
long and weighs 200 N. In 
Fig. 12-78, the ladder leans against
a vertical, frictionless wall at height
h � 8.0 m above the ground. A
horizontal force is applied to the
ladder at distance d � 2.0 m from
its base (measured along the lad-
der). (a) If force magnitude F � 50
N, what is the force of the ground
on the ladder, in unit-vector nota-
tion? (b) If F � 150 N, what is the
force of the ground on the ladder,
also in unit-vector notation? (c) Suppose the coefficient of static
friction between the ladder and the ground is 0.38; for what mini-
mum value of the force magnitude F will the base of the ladder
just barely start to move toward the wall?

74 A pan balance is made up of a rigid, massless rod with a hang-
ing pan attached at each end. The rod is supported at and free to
rotate about a point not at its center. It is balanced by unequal
masses placed in the two pans.When an unknown mass m is placed
in the left pan, it is balanced by a mass m1 placed in the right pan;
when the mass m is placed in the right pan, it is balanced by a mass
m2 in the left pan. Show that 

75 The rigid square frame in 
Fig. 12-79 consists of the four side bars
AB, BC, CD, and DA plus two diago-
nal bars AC and BD, which pass each
other freely at E. By means of the turn-
buckle G, bar AB is put under tension,
as if its ends were subject to horizontal,
outward forces of magnitude 535 N.
(a) Which of the other bars are in ten-
sion? What are the magnitudes of (b)
the forces causing the tension in those bars and (c) the forces caus-
ing compression in the other bars? (Hint: Symmetry considera-
tions can lead to considerable simplification in this problem.)

76 A gymnast with mass 46.0 kg
stands on the end of a uniform bal-
ance beam as shown in Fig. 12-80.The
beam is 5.00 m long and has a mass of
250 kg (excluding the mass of the two
supports). Each support is 0.540 m
from its end of the beam. In unit-vec-
tor notation, what are the forces on
the beam due to (a) support 1 and
(b) support 2?

77 Figure 12-81 shows a 300 kg
cylinder that is horizontal. Three
steel wires support the cylinder
from a ceiling. Wires 1 and 3 are at-
tached at the ends of the cylinder,
and wire 2 is attached at the cen-
ter. The wires each have a cross-
sectional area of 2.00 � 10�6 m2.
Initially (before the cylinder was put in place) wires 1 and 3
were 2.0000 m long and wire 2 was 6.00 mm longer than that.
Now (with the cylinder in place) all three wires have been
stretched. What is the tension in (a) wire 1 and (b) wire 2?

T
:

m � 1m1m2.

F
:

SSM

θ 

Cable

Beam

y

x

Figure 12-74 Problem 66.

d

P

Figure 12-75 Problem 68.

Figure 12-76
Problem 69.

Rod

Rope

1θ 

2θ 

θ 

c

a

b
2

θ 1

M

Figure 12-77 Problem 72.

x

y

h

d

F

Figure 12-78 Problem 73.

T T

GA B 

D C 

E

Figure 12-79 Problem 75.

x

y

1 2 

Figure 12-80 Problem 76.

1 2 3 

Ceiling

Figure 12-81 Problem 77.



78 In Fig. 12-82, a uniform beam of
length 12.0 m is supported by a hori-
zontal cable and a hinge at angle u �
50.0°. The tension in the cable is 400
N. In unit-vector notation, what are
(a) the gravitational force on the
beam and (b) the force on the beam
from the hinge?

79 Four bricks of length L,
identical and uniform, are stacked
on a table in two ways, as shown in
Fig. 12-83 (compare with Problem
63). We seek to maximize the over-
hang distance h in both arrangements. Find the optimum distances
a1, a2, b1, and b2, and calculate h for the two arrangements.
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the loop with the rope hanging vertically when the child’s father
pulls on the child with a horizontal force and displaces the child
to one side. Just before the child is released from rest, the rope
makes an angle of 15	 with the vertical and the tension in the
rope is 280 N. (a) How much does the child weigh? (b) What is
the magnitude of the (horizontal) force of the father on the child
just before the child is released? (c) If the maximum horizontal
force the father can exert on the child is 93 N, what is the maxi-
mum angle with the vertical the rope can make while the father is
pulling horizontally?

85 Figure 12-85a shows details of a finger in the crimp hold
of the climber in Fig. 12-50. A tendon that runs from muscles in
the forearm is attached to the far bone in the finger. Along the
way, the tendon runs through several guiding sheaths called pul-
leys. The A2 pulley is attached to the first finger bone; the A4 pul-
ley is attached to the second finger bone. To pull the finger toward
the palm, the forearm muscles pull the tendon through the pul-
leys, much like strings on a marionette can be pulled to move parts
of the marionette. Figure 12-85b is a simplified diagram of the sec-
ond finger bone, which has length d. The tendon’s pull on the
bone acts at the point where the tendon enters the A4 pulley, at
distance d/3 along the bone. If the force components on each of
the four crimped fingers in Fig. 12-50 are Fh � 13.4 N and Fv �
162.4 N, what is the magnitude of ? The result is probably tolera-
ble, but if the climber hangs by only one or two fingers, the A2 and
A4 pulleys can be ruptured, a common ailment among rock
climbers.
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Figure 12-82 Problem 78.
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Figure 12-84 Problem 83.

86 A trap door in a ceiling is 0.91 m square, has a mass of 11 kg,
and is hinged along one side, with a catch at the opposite side. If
the center of gravity of the door is 10 cm toward the hinged side
from the door’s center, what are the magnitudes of the forces ex-
erted by the door on (a) the catch and (b) the hinge?

87 A particle is acted on by forces given, in newtons, by �F
:

1

80 A cylindrical aluminum rod, with an initial length of 0.8000
m and radius 1000.0 mm, is clamped in place at one end and then
stretched by a machine pulling parallel to its length at its other
end. Assuming that the rod’s density (mass per unit volume)
does not change, find the force magnitude that is required of the
machine to decrease the radius to 999.9 mm. (The yield strength
is not exceeded.)

81 A beam of length L is carried by three men, one man at one
end and the other two supporting the beam between them on a
crosspiece placed so that the load of the beam is equally divided
among the three men. How far from the beam’s free end is the
crosspiece placed? (Neglect the mass of the crosspiece.)

82 If the (square) beam in Fig. 12-6a and the associated sample
problem is of Douglas fir, what must be its thickness to keep the
compressive stress on it to of its ultimate strength? 

83 Figure 12-84 shows a stationary arrangement of two crayon
boxes and three cords. Box A has a mass of 11.0 kg and is on a
ramp at angle u � 30.0°; box B has a mass of 7.00 kg and hangs on a
cord. The cord connected to box A is parallel to the ramp, which is
frictionless. (a) What is the tension in the upper cord, and (b) what
angle does that cord make with the horizontal?

1
6

45°

80°

10°

Ft

Fh

Fv

Fc

d/3

(b)

Far
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finger
bone

First
finger bone 

A2 A4

Attached

Tendon 

(a)

Figure 12-85 Problem 85.

84 A makeshift swing is constructed by making a loop in one end
of a rope and tying the other end to a tree limb. A child is sitting in

8.40 � 5.70 and � 16.0 � 4.10 . (a) What are the x component
and (b) y component of the force that balances the sum of theseF

:

3

 ĵ îF
:

2 ĵ î

forces? (c) What angle does have relative to the �x axis?

88 The leaning Tower of Pisa is 59.1 m high and 7.44 m in diame-
ter.The top of the tower is displaced 4.01 m from the vertical.Treat
the tower as a uniform, circular cylinder. (a) What additional dis-
placement, measured at the top, would bring the tower to the verge
of toppling? (b) What angle would the tower then make with the
vertical?

F
:

3
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C H A P T E R  1 4

Fluids

14-1 FLUIDS, DENSITY, AND PRESSURE

After reading this module, you should be able to . . .

14.01 Distinguish fluids from solids.
14.02 When mass is uniformly distributed, relate density to

mass and volume.

14.03 Apply the relationship between hydrostatic
pressure, force, and the surface area over which that 
force acts.

● The density r of any material is defined as the material’s
mass per unit volume:

Usually, where a material sample is much larger than atomic 
dimensions, we can write this as

● A fluid is a substance that can flow; it conforms to the
boundaries of its container because it cannot withstand

r �
m
V

.

r �
�m
�V

.

shearing stress. It can, however, exert a force perpendicular
to its surface. That force is described in terms of pressure p:

in which �F is the force acting on a surface element of
area �A. If the force is uniform over a flat area, this can be
written as

● The force resulting from fluid pressure at a particular point
in a fluid has the same magnitude in all directions. 

p �
F
A

.

p �
�F
�A

,

Learning Objectives

Key Ideas

What Is Physics?
The physics of fluids is the basis of hydraulic engineering, a branch of engineering
that is applied in a great many fields. A nuclear engineer might study the fluid
flow in the hydraulic system of an aging nuclear reactor, while a medical engineer
might study the blood flow in the arteries of an aging patient. An environmental
engineer might be concerned about the drainage from waste sites or the efficient
irrigation of farmlands. A naval engineer might be concerned with the dangers
faced by a deep-sea diver or with the possibility of a crew escaping from a
downed submarine.An aeronautical engineer might design the hydraulic systems
controlling the wing flaps that allow a jet airplane to land. Hydraulic engineering
is also applied in many Broadway and Las Vegas shows, where huge sets are
quickly put up and brought down by hydraulic systems.

Before we can study any such application of the physics of fluids, we must
first answer the question “What is a fluid?”

What Is a Fluid?
A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the
boundaries of any container in which we put them. They do so because a fluid
cannot sustain a force that is tangential to its surface. (In the more formal
language of Module 12-3, a fluid is a substance that flows because it cannot
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withstand a shearing stress. It can, however, exert a force in the direction perpen-
dicular to its surface.) Some materials, such as pitch, take a long time to conform
to the boundaries of a container, but they do so eventually; thus, we classify even
those materials as fluids.

You may wonder why we lump liquids and gases together and call them fluids.
After all (you may say), liquid water is as different from steam as it is from ice.
Actually, it is not. Ice, like other crystalline solids, has its constituent atoms organ-
ized in a fairly rigid three-dimensional array called a crystalline lattice. In neither
steam nor liquid water, however, is there any such orderly long-range arrangement.

Density and Pressure
When we discuss rigid bodies, we are concerned with particular lumps of matter,
such as wooden blocks, baseballs, or metal rods. Physical quantities that we find
useful, and in whose terms we express Newton’s laws, are mass and force. We
might speak, for example, of a 3.6 kg block acted on by a 25 N force.

With fluids, we are more interested in the extended substance and in properties
that can vary from point to point in that substance. It is more useful to speak of
density and pressure than of mass and force.

Density
To find the density r of a fluid at any point, we isolate a small volume element �V
around that point and measure the mass �m of the fluid contained within that 
element.The density is then

(14-1)

In theory, the density at any point in a fluid is the limit of this ratio as the volume 
element �V at that point is made smaller and smaller. In practice, we assume that
a fluid sample is large relative to atomic dimensions and thus is “smooth” (with
uniform density), rather than “lumpy” with atoms. This assumption allows us to
write the density in terms of the mass m and volume V of the sample:

(uniform density). (14-2)

Density is a scalar property; its SI unit is the kilogram per cubic meter.
Table 14-1 shows the densities of some substances and the average densities of
some objects. Note that the density of a gas (see Air in the table) varies consid-
erably with pressure, but the density of a liquid (see Water) does not; that is,
gases are readily compressible but liquids are not.

Pressure
Let a small pressure-sensing device be suspended inside a fluid-filled vessel, as
in Fig. 14-1a. The sensor (Fig. 14-1b) consists of a piston of surface area �A
riding in a close-fitting cylinder and resting against a spring. A readout arrange-
ment allows us to record the amount by which the (calibrated) spring is
compressed by the surrounding fluid, thus indicating the magnitude �F of the
force that acts normal to the piston.We define the pressure on the piston as

(14-3)

In theory, the pressure at any point in the fluid is the limit of this ratio as the surface
area �A of the piston, centered on that point, is made smaller and smaller. However,
if the force is uniform over a flat area A (it is evenly distributed over every point of

p �
�F
�A

.

r �
m
V

r �
�m
�V

.

Table 14-1 Some Densities

Material or Object             Density (kg/m3)

Interstellar space 10�20

Best laboratory vacuum 10�17

Air: 20	C and 1 atm pressure             1.21
20	C and 50 atm                           60.5

Styrofoam 1 � 102

Ice 0.917 � 103

Water: 20	C and 1 atm 0.998 � 103

20	C and 50 atm 1.000 � 103

Seawater: 20	C and 1 atm 1.024 � 103

Whole blood 1.060 � 103

Iron  7.9 � 103

Mercury (the metal,
not the planet) 13.6 � 103

Earth: average 5.5 � 103

core 9.5 � 103

crust 2.8 � 103

Sun: average 1.4 � 103

core 1.6 � 105

White dwarf star (core)                        1010

Uranium nucleus                                    3 � 1017

Neutron star (core)                                1018

Figure 14-1 (a) A fluid-filled vessel con-
taining a small pressure sensor, shown
in (b).The pressure is measured by the 
relative position of the movable piston in
the sensor.

(a)

(b)

Pressure
sensor

Vacuum

Δ

ΔA

F



the area), we can write Eq. 14-3 as

(pressure of uniform force on flat area), (14-4)

where F is the magnitude of the normal force on area A.
We find by experiment that at a given point in a fluid at rest, the pressure p

defined by Eq. 14-4 has the same value no matter how the pressure sensor is
oriented. Pressure is a scalar, having no directional properties. It is true that
the force acting on the piston of our pressure sensor is a vector quantity, but
Eq. 14-4 involves only the magnitude of that force, a scalar quantity.

The SI unit of pressure is the newton per square meter, which is given a spe-
cial name, the pascal (Pa). In metric countries, tire pressure gauges are calibrated
in kilopascals. The pascal is related to some other common (non-SI) pressure
units as follows:

1 atm � 1.01 � 105 Pa � 760 torr � 14.7 lb/in.2.

The atmosphere (atm) is, as the name suggests, the approximate average pressure
of the atmosphere at sea level. The torr (named for Evangelista Torricelli, who 
invented the mercury barometer in 1674) was formerly called the millimeter of
mercury (mm Hg).The pound per square inch is often abbreviated psi.Table 14-2
shows some pressures.

p �
F
A
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Table 14-2 Some Pressures

Pressure (Pa)

Center of the Sun 2 � 1016

Center of Earth 4 � 1011

Highest sustained 
laboratory pressure 1.5 � 1010

Deepest ocean trench 
(bottom)           1.1 � 108

Spike heels on a dance floor              106

Automobile tirea 2 � 105

Atmosphere at sea level 1.0 � 105

Normal blood systolic 
pressurea,b 1.6 � 104

Best laboratory vacuum                   10�12

aPressure in excess of atmospheric pressure.
bEquivalent to 120 torr on the physician’s 
pressure gauge.

Sample Problem 14.01 Atmospheric pressure and force

A living room has floor dimensions of 3.5 m and 4.2 m and a
height of 2.4 m.

(a) What does the air in the room weigh when the air pres-
sure is 1.0 atm?

KEY IDEAS

(1) The air’s weight is equal to mg, where m is its mass.
(2) Mass m is related to the air density r and the air volume
V by Eq. 14-2 (r � m/V).

Calculation: Putting the two ideas together and taking the
density of air at 1.0 atm from Table 14-1, we find

mg � (rV)g

� (1.21 kg/m3)(3.5 m � 4.2 m � 2.4 m)(9.8 m/s2)

� 418 N � 420 N. (Answer)

This is the weight of about 110 cans of Pepsi.

Additional examples, video, and practice available at WileyPLUS

14-2 FLUIDS AT REST

After reading this module, you should be able to . . .

14.04 Apply the relationship between the hydrostatic pressure,
fluid density, and the height above or below a reference level.

14.05 Distinguish between total pressure (absolute pressure)
and gauge pressure.

Learning Objectives

(b) What is the magnitude of the atmosphere’s downward
force on the top of your head, which we take to have an area
of 0.040 m2?

KEY IDEA

When the fluid pressure p on a surface of area A is uniform,
the fluid force on the surface can be obtained from Eq. 14-4
(p � F/A).

Calculation: Although air pressure varies daily, we can 
approximate that p � 1.0 atm.Then Eq. 14-4 gives

� 4.0 � 103 N. (Answer)

This large force is equal to the weight of the air column from
the top of your head to the top of the atmosphere.

F � pA � (1.0 atm)� 1.01 � 105 N/m2

1.0 atm �(0.040 m2)
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y = 0
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y2 Level 2, p2

y = 0
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Level 1, p1

y = 0
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F1

Sample

y1

y2

Air

Water

y = 0
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(a)

Three forces act on this sample of water.

This upward force is due to the water 
pressure pushing on the bottom surface. Gravity pulls downward on the sample.

Sample

mg

(e) F1

F2

The three forces
balance.

This downward force is due to the water 
pressure pushing on the top surface.

(d)(c)

(b)

A

Figure 14-2 (a) A tank of water in which a sample of water is contained in an imaginary cylinder of horizontal base area A.
(b)–(d) Force acts at the top surface of the cylinder; force acts at the bottom surface of the cylinder; the gravitational
force on the water in the cylinder is represented by . (e) A free-body diagram of the water sample. In WileyPLUS, this 
figure is available as an animation with voiceover.

mg:
F
:

2F
:

1

● Pressure in a fluid at rest varies with vertical position y. For
y measured positive upward,

p2 � p1 � rg(y1 � y2).

If h is the depth of a fluid sample below some reference level
at which the pressure is p0, this equation becomes

p � p0 � rgh,

where p is the pressure in the sample.

● The pressure in a fluid is the same for all points at the same
level.

● Gauge pressure is the difference between the actual pres-
sure (or absolute pressure) at a point and the atmospheric
pressure.

Key Ideas

Fluids at Rest
Figure 14-2a shows a tank of water—or other liquid—open to the atmosphere.
As every diver knows, the pressure increases with depth below the air–water
interface. The diver’s depth gauge, in fact, is a pressure sensor much like that of
Fig. 14-1b. As every mountaineer knows, the pressure decreases with altitude as
one ascends into the atmosphere.The pressures encountered by the diver and the
mountaineer are usually called hydrostatic pressures, because they are due to flu-
ids that are static (at rest). Here we want to find an expression for hydrostatic
pressure as a function of depth or altitude.

Let us look first at the increase in pressure with depth below the water’s
surface. We set up a vertical y axis in the tank, with its origin at the air–water
interface and the positive direction upward. We next consider a water sample con-



Figure 14-3 The pressure p increases with
depth h below the liquid surface according
to Eq. 14-8.

p

h

Level 1 

Level 2 

Air

Liquid

y = 0 

y

p0

The pressure at a point in a fluid in static equilibrium depends on the depth of
that point but not on any horizontal dimension of the fluid or its container.

390 CHAPTER 14 FLUIDS

tained in an imaginary right circular cylinder of horizontal base (or face) area A,
such that y1 and y2 (both of which are negative numbers) are the depths below the
surface of the upper and lower cylinder faces, respectively.

Figure 14-2e is a free-body diagram for the water in the cylinder.The water is
in static equilibrium; that is, it is stationary and the forces on it balance. Three
forces act on it vertically: Force acts at the top surface of the cylinder and is
due to the water above the cylinder (Fig. 14-2b). Force acts at the bottom sur-
face of the cylinder and is due to the water just below the cylinder (Fig. 14-2c).
The gravitational force on the water is m , where m is the mass of the water in the
cylinder (Fig. 14-2d).The balance of these forces is written as

F2 � F1 � mg. (14-5)

To involve pressures, we use Eq. 14-4 to write

F1 � p1A and F2 � p2A. (14-6)

The mass m of the water in the cylinder is, from Eq. 14-2, m � rV, where the
cylinder’s volume V is the product of its face area A and its height y1 � y2.Thus, m
is equal to rA(y1 � y2). Substituting this and Eq. 14-6 into Eq. 14-5, we find

p2A � p1A � rAg(y1 � y2)

or p2 � p1 � rg(y1 � y2). (14-7)

This equation can be used to find pressure both in a liquid (as a function of
depth) and in the atmosphere (as a function of altitude or height). For the former,
suppose we seek the pressure p at a depth h below the liquid surface. Then we
choose level 1 to be the surface, level 2 to be a distance h below it (as in Fig. 14-3),
and p0 to represent the atmospheric pressure on the surface.We then substitute

y1 � 0, p1 � p0 and y2 � �h, p2 � p

into Eq. 14-7, which becomes

p � p0 � rgh (pressure at depth h). (14-8)

Note that the pressure at a given depth in the liquid depends on that depth but
not on any horizontal dimension.

g:

F
:

2

F
:

1

Thus, Eq. 14-8 holds no matter what the shape of the container. If the bottom 
surface of the container is at depth h, then Eq. 14-8 gives the pressure p there.

In Eq. 14-8, p is said to be the total pressure, or absolute pressure, at level 2.
To see why, note in Fig. 14-3 that the pressure p at level 2 consists of two contribu-
tions: (1) p0, the pressure due to the atmosphere, which bears down on the liquid,
and (2) rgh, the pressure due to the liquid above level 2, which bears down on
level 2. In general, the difference between an absolute pressure and an atmo-
spheric pressure is called the gauge pressure (because we use a gauge to measure
this pressure difference). For Fig. 14-3, the gauge pressure is rgh.

Equation 14-7 also holds above the liquid surface: It gives the atmospheric pres-
sure at a given distance above level 1 in terms of the atmospheric pressure p1 at level 1
(assuming that the atmospheric density is uniform over that distance). For example, to
find the atmospheric pressure at a distance d above level 1 in Fig.14-3,we substitute

y1 � 0, p1 � p0 and y2 � d, p2 � p.

Then with r � rair, we obtain
p � p0 � rairgd.
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Checkpoint 1
The figure shows four
containers of olive oil.
Rank them according
to the pressure at
depth h, greatest first.

h

(a) (b) (c) (d)

ascends, the external pressure on him decreases, until it is
atmospheric pressure p0 at the surface. His blood pressure
also decreases, until it is normal. However, because he does
not exhale, the air pressure in his lungs remains at the value it
had at depth L. At the surface, the pressure difference �p is

�p � p � p0 � rgL,

� 0.95 m. (Answer)

This is not deep! Yet, the pressure difference of 9.3 kPa
(about 9% of atmospheric pressure) is sufficient to rupture
the diver’s lungs and force air from them into the depres-
surized blood, which then carries the air to the heart,
killing the diver. If the diver follows instructions and grad-
ually exhales as he ascends, he allows the pressure in his
lungs to equalize with the external pressure, and then there
is no danger.

L �
�p
�g

�
9300 Pa

(998 kg/m3)(9.8 m/s2)

Sample Problem 14.02 Gauge pressure on a scuba diver

A novice scuba diver practicing in a swimming pool takes
enough air from his tank to fully expand his lungs before
abandoning the tank at depth L and swimming to the sur-
face, failing to exhale during his ascent. At the surface, the
difference �p between the external pressure on him and the
air pressure in his lungs is 9.3 kPa. From what depth does he
start? What potentially lethal danger does he face?

KEY IDEA

The pressure at depth h in a liquid of density r is given by 
Eq. 14-8 (p � p0 � rgh), where the gauge pressure rgh is
added to the atmospheric pressure p0.

Calculations: Here, when the diver fills his lungs at depth L,
the external pressure on him (and thus the air pressure within
his lungs) is greater than normal and given by Eq. 14-8 as

p � p0 � rgL,

where r is the water’s density (998 kg/m3, Table 14-1). As he

Equating these two expressions and solving for the un-
known density yield

� 915 kg/m3. (Answer)

Note that the answer does not depend on the atmospheric
pressure p0 or the free-fall acceleration g.

rx � rw
l

l � d
� (998 kg/m3)

135 mm
135 mm � 12.3 mm

The U-tube in Fig. 14-4 contains two liquids in static equilib-
rium: Water of density rw (� 998 kg/m3) is in the right arm,
and oil of unknown density rx is in the left. Measurement gives
l � 135 mm and d � 12.3 mm. What is the density of the oil?

KEY IDEAS

(1) The pressure pint at the level of the oil–water interface in
the left arm depends on the density rx and height of the oil
above the interface. (2) The water in the right arm at the
same level must be at the same pressure pint. The reason is
that, because the water is in static equilibrium, pressures at
points in the water at the same level must be the same.

Calculations: In the right arm, the interface is a distance l
below the free surface of the water, and we have, from Eq. 14-8,

pint � p0 � rwgl (right arm).

In the left arm, the interface is a distance l � d below the free
surface of the oil, and we have,again from Eq.14-8,

pint � p0 � rxg(l � d) (left arm).

Additional examples, video, and practice available at WileyPLUS

Figure 14-4 The oil in the left arm stands higher than the water.

Interface

Water

Oil

l

d

This much oil
balances... ... this much

water.

Sample Problem 14.03 Balancing of pressure in a U-tube

so
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Figure 14-6 An open-tube manometer, con-
nected to measure the gauge pressure of
the gas in the tank on the left.The right arm
of the U-tube is open to the atmosphere.

Tank

Manometer

Level 2 

Level 1 

p0

h

pg

Measuring Pressure
The Mercury Barometer

Figure 14-5a shows a very basic mercury barometer, a device used to
measure the pressure of the atmosphere. The long glass tube is filled
with mercury and inverted with its open end in a dish of mercury, as
the figure shows. The space above the mercury column contains only
mercury vapor, whose pressure is so small at ordinary temperatures
that it can be neglected.

We can use Eq. 14-7 to find the atmospheric pressure p0 in terms
of the height h of the mercury column.We choose level 1 of Fig. 14-2 to
be that of the air–mercury interface and level 2 to be that of the top of
the mercury column, as labeled in Fig. 14-5a.We then substitute

y1 � 0, p1 � p0 and y2 � h, p2 � 0

into Eq. 14-7, finding that
p0 � rgh, (14-9)

where r is the density of the mercury.
For a given pressure, the height h of the mercury column does not

depend on the cross-sectional area of the vertical tube. The fanciful
mercury barometer of Fig. 14-5b gives the same reading as that of Fig. 14-5a; all
that counts is the vertical distance h between the mercury levels.

Equation 14-9 shows that, for a given pressure, the height of the column of
mercury depends on the value of g at the location of the barometer and on the
density of mercury, which varies with temperature. The height of the column (in
millimeters) is numerically equal to the pressure (in torr) only if the barometer is
at a place where g has its accepted standard value of 9.80665 m/s2 and the
temperature of the mercury is 0°C. If these conditions do not prevail (and they
rarely do), small corrections must be made before the height of the mercury
column can be transformed into a pressure.

The Open-Tube Manometer
An open-tube manometer (Fig. 14-6) measures the gauge pressure pg of a gas. It
consists of a U-tube containing a liquid, with one end of the tube connected to the
vessel whose gauge pressure we wish to measure and the other end open to the
atmosphere.We can use Eq. 14-7 to find the gauge pressure in terms of the height
h shown in Fig. 14-6. Let us choose levels 1 and 2 as shown in Fig. 14-6.With 

y1 � 0, p1 � p0 and y2 � �h, p2 � p

substituted into Eq. 14-7, we find that

pg � p � p0 � rgh, (14-10)

where r is the liquid’s density. The gauge pressure pg is directly proportional to h.

14-3 MEASURING PRESSURE

After reading this module, you should be able to . . .

14.06 Describe how a barometer can measure atmospheric
pressure.

14.07 Describe how an open-tube manometer can measure
the gauge pressure of a gas.

Learning Objectives

● A mercury barometer can be used to measure atmospheric
pressure.

● An open-tube manometer can be used to measure the
gauge pressure of a confined gas.

Key Ideas

Level 1 

p0

y

Level 2 

h

p ≈ 0 

h

p0

p ≈ 0 

(a) (b)

Figure 14-5 (a) A mercury barometer. (b)
Another mercury barometer.The distance
h is the same in both cases.
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The gauge pressure can be positive or negative, depending on whether 
p  p0 or p � p0. In inflated tires or the human circulatory system, the 
(absolute) pressure is greater than atmospheric pressure, so the gauge pressure is a
positive quantity, sometimes called the overpressure. If you suck on a straw to pull
fluid up the straw, the (absolute) pressure in your lungs is actually less than atmo-
spheric pressure.The gauge pressure in your lungs is then a negative quantity.

14-4 PASCAL’S PRINCIPLE

14-4 PASCAL’S PRINCIPLE

After reading this module, you should be able to . . .

14.08 Identify Pascal’s principle.
14.09 For a hydraulic lift, apply the relationship between the

input area and displacement and the output area and 
displacement.

Learning Objectives

● Pascal’s principle states that a change in the pressure applied to an enclosed fluid is transmitted undiminished to every por-
tion of the fluid and to the walls of the containing vessel. 

Key Idea

Pascal’s Principle
When you squeeze one end of a tube to get toothpaste out the other end, you are
watching Pascal’s principle in action.This principle is also the basis for the Heimlich
maneuver, in which a sharp pressure increase properly applied to the abdomen is
transmitted to the throat, forcefully ejecting food lodged there. The principle was
first stated clearly in 1652 by Blaise Pascal (for whom the unit of pressure is named):

Figure 14-7 Lead shot (small balls of lead)
loaded onto the piston create a pressure pext

at the top of the enclosed (incompressible)
liquid. If pext is increased, by adding more
lead shot, the pressure increases by the same
amount at all points within the liquid.

Lead shot 

Piston

P p

h

pext

Liquid

A change in the pressure applied to an enclosed incompressible fluid is transmit-
ted undiminished to every portion of the fluid and to the walls of its container.

Demonstrating Pascal’s Principle
Consider the case in which the incompressible fluid is a liquid contained in a tall
cylinder, as in Fig. 14-7.The cylinder is fitted with a piston on which a container of
lead shot rests.The atmosphere, container, and shot exert pressure pext on the pis-
ton and thus on the liquid.The pressure p at any point P in the liquid is then

p � pext � rgh. (14-11)

Let us add a little more lead shot to the container to increase pext by an amount
�pext. The quantities r, g, and h in Eq. 14-11 are unchanged, so the pressure
change at P is

�p � �pext. (14-12)

This pressure change is independent of h, so it must hold for all points within the
liquid, as Pascal’s principle states.

Pascal’s Principle and the Hydraulic Lever
Figure 14-8 shows how Pascal’s principle can be made the basis of a hydraulic lever.
In operation, let an external force of magnitude Fi be directed downward on the left-
hand (or input) piston, whose surface area is Ai.An incompressible liquid in the de-
vice then produces an upward force of magnitude Fo on the right-hand (or output)
piston, whose surface area is Ao. To keep the system in equilibrium, there must be a
downward force of magnitude Fo on the output piston from an external load (not

di

Input

Ai
do

Oil

Ao

Output

Fi

Fo
A small input 
force produces ...

... a large output
force.

Figure 14-8 A hydraulic arrangement that
can be used to magnify a force .The work
done is, however, not magnified and is the
same for both the input and output forces.

F
:

i
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14-5 ARCHIMEDES’ PRINCIPLE

After reading this module, you should be able to . . .

14.10 Describe Archimedes’ principle.
14.11 Apply the relationship between the buoyant force on a

body and the mass of the fluid displaced by the body.
14.12 For a floating body, relate the buoyant force to the

gravitational force.

14.13 For a floating body, relate the gravitational force to the
mass of the fluid displaced by the body.

14.14 Distinguish between apparent weight and actual weight.
14.15 Calculate the apparent weight of a body that is fully or

partially submerged.

Learning Objectives

● Archimedes’ principle states that when a body is fully or
partially submerged in a fluid, the fluid pushes upward with a
buoyant force with magnitude

Fb � mfg,

where mf is the mass of the fluid that has been  pushed out of
the way by the body.

● When a body floats in a fluid, the magnitude Fb of the
(upward) buoyant force on the body is equal to the magnitude
Fg of the (downward) gravitational force on the body. 

● The apparent weight of a body on which a buoyant force
acts is related to its actual weight by

weightapp � weight � Fb.

Key Ideas

shown).The force applied on the left and the downward force from the load onF
:

oF
:

i

With a hydraulic lever, a given force applied over a given distance can be 
transformed to a greater force applied over a smaller distance.

the right produce a change �p in the pressure of the liquid that is given by

,

so . (14-13)

Equation 14-13 shows that the output force Fo on the load must be greater than
the input force Fi if Ao  Ai, as is the case in Fig. 14-8.

If we move the input piston downward a distance di, the output piston moves
upward a distance do, such that the same volume V of the incompressible liquid is
displaced at both pistons.Then

V � Aidi � Aodo,
which we can write as

. (14-14)

This shows that, if Ao  Ai (as in Fig. 14-8), the output piston moves a smaller
distance than the input piston moves.

From Eqs. 14-13 and 14-14 we can write the output work as

(14-15)

which shows that the work W done on the input piston by the applied force is
equal to the work W done by the output piston in lifting the load placed on it.

The advantage of a hydraulic lever is this:

W � Fo do � �Fi
Ao

Ai
� �di

Ai

Ao
� � Fi di,

do � di
Ai

Ao

Fo � Fi
Ao

Ai

�p �
Fi

Ai
�

Fo

Ao

The product of force and distance remains unchanged so that the same work is
done. However, there is often tremendous advantage in being able to exert the
larger force. Most of us, for example, cannot lift an automobile directly but can
with a hydraulic jack, even though we have to pump the handle farther than
the automobile rises and in a series of small strokes.
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The upward buoyant
force on this sack of
water equals the
weight of the water.

Figure 14-9 A thin-walled plastic sack of water
is in static equilibrium in the pool.The gravita-
tional force on the sack must be balanced by
a net upward force on it from the surrounding
water.

(a) (b)

Fb The buoyant force 
is due to the 
pressure of the
surrounding water.

Stone
Fb

Fg

The net force is 
downward, so the 
stone accelerates
downward.

(c)

Wood
Fb

Fg

The net force 
is upward, so the 
wood accelerates
upward.

Figure 14-10 (a) The water surrounding the hole in the water pro-
duces a net upward buoyant force on whatever fills the hole.
(b) For a stone of the same volume as the hole, the gravita-
tional force exceeds the buoyant force in magnitude. (c) For a
lump of wood of the same volume, the gravitational force is
less than the buoyant force in magnitude.

the magnitude mfg of the gravitational force on the sack of water: Fb � mfg.F
:

g
(Subscript f refers to fluid, here the water.) In words, the magnitude of the buoyant
force is equal to the weight of the water in the sack.

In Fig. 14-10b, we have replaced the sack of water with a stone that exactly fills
the hole in Fig. 14-10a.The stone is said to displace the water, meaning that the stone
occupies space that would otherwise be occupied by water.We have changed nothing
about the shape of the hole, so the forces at the hole’s surface must be the same as
when the water-filled sack was in place. Thus, the same upward buoyant force that
acted on the water-filled sack now acts on the stone; that is, the magnitude Fb of the
buoyant force is equal to mfg, the weight of the water displaced by the stone.

Unlike the water-filled sack, the stone is not in static equilibrium. The down-
ward gravitational force on the stone is greater in magnitude than the upward
buoyant force (Fig. 14-10b).The stone thus accelerates downward, sinking.

Let us next exactly fill the hole in Fig. 14-10a with a block of lightweight
wood, as in Fig. 14-10c. Again, nothing has changed about the forces at the hole’s
surface, so the magnitude Fb of the buoyant force is still equal to mfg, the weight

F
:

g

Archimedes’ Principle
Figure 14-9 shows a student in a swimming pool, manipulating a very thin plastic
sack (of negligible mass) that is filled with water. She finds that the sack and its
contained water are in static equilibrium, tending neither to rise nor to sink.
The downward gravitational force on the contained water must be balanced
by a net upward force from the water surrounding the sack.

This net upward force is a buoyant force . It exists because the pressure in
the surrounding water increases with depth below the surface. Thus, the pressure
near the bottom of the sack is greater than the pressure near the top, which
means the forces on the sack due to this pressure are greater in magnitude near
the bottom of the sack than near the top. Some of the forces are represented in
Fig. 14-10a, where the space occupied by the sack has been left empty. Note that the
force vectors drawn near the bottom of that space (with upward components) have
longer lengths than those drawn near the top of the sack (with downward compo-
nents). If we vectorially add all the forces on the sack from the water, the horizontal
components cancel and the vertical components add to yield the upward buoyant
force on the sack. (Force is shown to the right of the pool in Fig. 14-10a.)

Because the sack of water is in static equilibrium, the magnitude of is equal toF
:

b

F
:

bF
:

b

F
:

b

F
:

g
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When a body floats in a fluid, the magnitude Fb of the buoyant force on the body
is equal to the magnitude Fg of the gravitational force on the body.

When a body floats in a fluid, the magnitude Fg of the gravitational force on the
body is equal to the weight mfg of the fluid that has been displaced by the body.

of the displaced water. Like the stone, the block is not in static equilibrium.
However, this time the gravitational force is lesser in magnitude than the
buoyant force (as shown to the right of the pool), and so the block accelerates 
upward, rising to the top surface of the water.

Our results with the sack, stone, and block apply to all fluids and are summarized
in Archimedes’ principle:

F
:

g

When a body is fully or partially submerged in a fluid, a buoyant force from the
surrounding fluid acts on the body. The force is directed upward and has a magni-
tude equal to the weight mfg of the fluid that has been displaced by the body.

F
:

b

The buoyant force on a body in a fluid has the magnitude

Fb � mfg (buoyant force), (14-16)

where mf is the mass of the fluid that is displaced by the body.

Floating
When we release a block of lightweight wood just above the water in a pool, the block
moves into the water because the gravitational force on it pulls it downward. As the
block displaces more and more water, the magnitude Fb of the upward buoyant force
acting on it increases. Eventually, Fb is large enough to equal the magnitude Fg of the
downward gravitational force on the block, and the block comes to rest.The block is
then in static equilibrium and is said to be floating in the water. In general,

We can write this statement as

Fb � Fg (floating). (14-17)

From Eq. 14-16, we know that Fb � mfg. Thus,

We can write this statement as

Fg � mfg (floating). (14-18)

In other words, a floating body displaces its own weight of fluid.

Apparent Weight in a Fluid
If we place a stone on a scale that is calibrated to measure weight, then the
reading on the scale is the stone’s weight. However, if we do this underwater,
the upward buoyant force on the stone from the water decreases the reading.
That reading is then an apparent weight. In general, an apparent weight is related
to the actual weight of a body and the buoyant force on the body by

which we can write as

weightapp � weight � Fb (apparent weight). (14-19)

�apparent
weight � � �actual

weight� � �magnitude of
buoyant force�,
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If, in some test of strength, you had to lift a heavy stone, you could do it more
easily with the stone underwater. Then your applied force would need to exceed
only the stone’s apparent weight, not its larger actual weight.

The magnitude of the buoyant force on a floating body is equal to the body’s
weight. Equation 14-19 thus tells us that a floating body has an apparent weight of
zero—the body would produce a reading of zero on a scale. For example, when as-
tronauts prepare to perform a complex task in space, they practice the task floating
underwater, where their suits are adjusted to give them an apparent weight of zero.

14-5 ARCHIMEDES’ PRINCIPLE

Checkpoint 2
A penguin floats first in a fluid of density r0, then in a fluid of density 0.95r0, and then
in a fluid of density 1.1r0. (a) Rank the densities according to the magnitude of the
buoyant force on the penguin, greatest first. (b) Rank the densities according to the
amount of fluid displaced by the penguin, greatest first.

Sample Problem 14.04 Floating, buoyancy, and density

In Fig. 14-11, a block of density floats face
down in a fluid of density . The block has
height .

(a) By what depth h is the block submerged?

KEY IDEAS

(1) Floating requires that the upward buoyant force on the
block match the downward gravitational force on the block.
(2) The buoyant force is equal to the weight of the fluid
displaced by the submerged portion of the block.

Calculations: From Eq. 14-16, we know that the buoyant
force has the magnitude , where is the mass of
the fluid displaced by the block’s submerged volume 
From Eq. 14-2 , we know that the mass of the dis-
placed fluid is We don’t know but if we symbol-
ize the block’s face length as L and its width as W, then from
Fig. 14-11 we see that the submerged volume must be

. If we now combine our three expressions, we
find that the upward buoyant force has magnitude

(14-20)

Similarly, we can write the magnitude of the gravita-
tional force on the block, first in terms of the block’s mass
m, then in terms of the block’s density r and (full) volume V,
and then in terms of the block’s dimensions L, W, and H
(the full height):

. (14-21)

The floating block is stationary. Thus, writing Newton’s
second law for components along a vertical y axis with the
positive direction upward , we have

Fb � Fg � m(0),

(Fnet,y � may)

Fg � mg � rVg � rfLWHg

Fg

Fb � mf g � rfVf g � rfLWhg.

Vf � LWh

Vfmf � rfVf .
(r � m/V)

Vf .
mfFb � mf g

mf g

H � 6.0 cm
rf � 1200 kg/m3

r � 800 kg/m3

or from Eqs. 14-20 and 14-21,

which gives us

. (Answer)

(b) If the block is held fully submerged and then released,
what is the magnitude of its acceleration?

Calculations: The gravitational force on the block is the
same but now, with the block fully submerged, the volume
of the displaced water is (The full height of
the block is used.) This means that the value of is now
larger, and the block will no longer be stationary but will 
accelerate upward. Now Newton’s second law yields

,

or ,

where we inserted for the mass m of the block. Solv-
ing for a leads to

(Answer)� 4.9 m/s2.

a � � rf

r � 1�g � � 1200 kg/m3

800 kg/m3 � 1� (9.8 m/s2)

rLWH

rfLWHg � rLWHg � rLWHa

Fb � Fg � ma

Fb

V � LWH.

� 4.0 cm

h �
r
rf

H �
800 kg/m3

 1200 kg/m3  (6.0 cm)

rfLWhg � rLWHg � 0,

hH

Floating means
that the buoyant
force matches the
gravitational force.

Figure 14-11 Block of height H floats
in a fluid, to a depth of h.

Additional examples, video, and practice available at WileyPLUS

Floating means
that the buoyant
force matches the
gravitational force.
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Ideal Fluids in Motion
The motion of real fluids is very complicated and not yet fully understood.
Instead, we shall discuss the motion of an ideal fluid, which is simpler to handle
mathematically and yet provides useful results. Here are four assumptions that
we make about our ideal fluid; they all are concerned with flow:

1. Steady flow In steady (or laminar) flow, the velocity of the moving fluid at any
fixed point does not change with time. The gentle flow of water near the center
of a quiet stream is steady; the flow in a chain of rapids is not. Figure 14-12 shows
a transition from steady flow to nonsteady (or nonlaminar or turbulent) flow
for a rising stream of smoke. The speed of the smoke particles increases as
they rise and, at a certain critical speed, the flow changes from steady to non-
steady.

2. Incompressible flow We assume, as for fluids at rest, that our ideal fluid is 
incompressible; that is, its density has a constant, uniform value.

3. Nonviscous flow Roughly speaking, the viscosity of a fluid is a measure of how
resistive the fluid is to flow. For example, thick honey is more resistive to flow than
water, and so honey is said to be more viscous than water. Viscosity is the fluid
analog of friction between solids; both are mechanisms by which the kinetic en-
ergy of moving objects can be transferred to thermal energy. In the absence of fric-
tion, a block could glide at constant speed along a horizontal surface. In the same
way, an object moving through a nonviscous fluid would experience no viscous
drag force—that is, no resistive force due to viscosity; it could move at constant
speed through the fluid.The British scientist Lord Rayleigh noted that in an ideal
fluid a ship’s propeller would not work, but, on the other hand, in an ideal fluid a
ship (once set into motion) would not need a propeller!

4. Irrotational flow Although it need not concern us further, we also assume
that the flow is irrotational. To test for this property, let a tiny grain of dust
move with the fluid.Although this test body may (or may not) move in a circu-
lar path, in irrotational flow the test body will not rotate about an axis through
its own center of mass. For a loose analogy, the motion of a Ferris wheel is ro-
tational; that of its passengers is irrotational.

We can make the flow of a fluid visible by adding a tracer. This might
be a dye injected into many points across a liquid stream (Fig. 14-13) or smoke

● An ideal fluid is incompressible and lacks viscosity, and its
flow is steady and irrotational. 

● A streamline is the path followed by an individual fluid particle.

● A tube of flow is a bundle of streamlines. 

● The flow within any tube of flow obeys the equation of continuity:

RV � Av � a constant,

in which RV is the volume flow rate, A is the cross-sectional
area of the tube of flow at any point, and v is the speed of the
fluid at that point. 

● The mass flow rate Rm is

Rm � rRV � rAv � a constant.

Key Ideas

Figure 14-12 At a certain point, the rising flow
of smoke and heated gas changes from
steady to turbulent.

Will McIntyre/Photo Researchers, Inc.

14-6 THE EQUATION OF CONTINUITY

After reading this module, you should be able to . . .

14.16 Describe steady flow, incompressible flow, nonviscous
flow, and irrotational flow.

14.17 Explain the term streamline.
14.18 Apply the equation of continuity to relate the 

cross-sectional area and flow speed at one point in a tube
to those quantities at a different point.

14.19 Identify and calculate volume flow rate.
14.20 Identify and calculate mass flow rate.

Learning Objectives
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particles added to a gas flow (Fig. 14-12). Each bit of a tracer follows a stream-
line, which is the path that a tiny element of the fluid would take as the fluid
flows. Recall from Chapter 4 that the velocity of a particle is always tangent to
the path taken by the particle. Here the particle is the fluid element, and its ve-
locity is always tangent to a streamline (Fig. 14-14). For this reason, two
streamlines can never intersect; if they did, then an element arriving at
their intersection would have two different velocities simultaneously — an 
impossibility.

The Equation of Continuity
You may have noticed that you can increase the speed of the water emerging
from a garden hose by partially closing the hose opening with your thumb.
Apparently the speed v of the water depends on the cross-sectional area A
through which the water flows.

Here we wish to derive an expression that relates v and A for the steady flow
of an ideal fluid through a tube with varying cross section, like that in Fig. 14-15.
The flow there is toward the right, and the tube segment shown (part of a longer
tube) has length L.The fluid has speeds v1 at the left end of the segment and v2 at
the right end. The tube has cross-sectional areas A1 at the left end and A2 at the
right end. Suppose that in a time interval �t a volume �V of fluid enters the tube
segment at its left end (that volume is colored purple in Fig. 14-15).Then, because
the fluid is incompressible, an identical volume �V must emerge from the right
end of the segment (it is colored green in Fig. 14-15).

v:

Courtesy D. H. Peregrine, University of Bristol

Figure 14-13 The steady flow
of a fluid around a cylin-
der, as revealed by a dye
tracer that was injected
into the fluid upstream of
the cylinder.

Streamline

Fluid
element

v

Figure 14-14 A fluid element traces out a
streamline as it moves.The velocity vector
of the element is tangent to the streamline
at every point.

Figure 14-15 Fluid flows from left to right at a steady
rate through a tube segment of length L. The fluid’s
speed is v1 at the left side and v2 at the right side.The
tube’s cross-sectional area is A1 at the left side and
A2 at the right side. From time t in (a) to time t � �t
in (b), the amount of fluid shown in purple enters at
the left side and the equal amount of fluid shown in
green emerges at the right side.

L

v1

A1

A2

v2

(a) Time t

L

(b) Time t + Δt

The volume flow per
second here must
match ...

... the volume flow
per second here.
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Figure 14-16 Fluid flows at a constant speed v
through a tube. (a) At time t, fluid element e
is about to pass the dashed line. (b) At time
t � �t, element e is a distance �x � v �t
from the dashed line.

ve

ve

(a) Time t

(b) Time t + Δt

Δ x

A1

A2

The volume 
flow per
second here 
must match ...

... the volume flow
per second here.

Figure 14-17 A tube of flow is defined by the
streamlines that form the boundary of the
tube.The volume flow rate must be the same
for all cross sections of the tube of flow.

Checkpoint 3
The figure shows a pipe and
gives the volume flow rate
(in cm3/s) and the direction of
flow for all but one section.
What are the volume flow
rate and the direction of flow
for that section?

4 8 

2 5 
6

4

We can use this common volume �V to relate the speeds and areas. To do
so, we first consider Fig. 14-16, which shows a side view of a tube of uniform
cross-sectional area A. In Fig. 14-16a, a fluid element e is about to pass through
the dashed line drawn across the tube width. The element’s speed is v, so dur-
ing a time interval �t, the element moves along the tube a distance �x � v �t.
The volume �V of fluid that has passed through the dashed line in that time 
interval �t is

�V � A �x � Av �t. (14-22)

Applying Eq. 14-22 to both the left and right ends of the tube segment in
Fig. 14-15, we have

�V � A1v1 �t � A2v2 �t

or A1v1 � A2v2 (equation of continuity). (14-23)

This relation between speed and cross-sectional area is called the equation of
continuity for the flow of an ideal fluid. It tells us that the flow speed increases
when we decrease the cross-sectional area through which the fluid flows.

Equation 14-23 applies not only to an actual tube but also to any so-called
tube of flow, or imaginary tube whose boundary consists of streamlines. Such
a tube acts like a real tube because no fluid element can cross a streamline;
thus, all the fluid within a tube of flow must remain within its boundary.
Figure 14-17 shows a tube of flow in which the cross-sectional area increases
from area A1 to area A2 along the flow direction. From Eq. 14-23 we know
that, with the increase in area, the speed must decrease, as is indicated by the
greater spacing between streamlines at the right in Fig. 14-17. Similarly, you
can see that in Fig. 14-13 the speed of the flow is greatest just above and just
below the cylinder.

We can rewrite Eq. 14-23 as

RV � Av � a constant (volume flow rate, equation of continuity), (14-24)

in which RV is the volume flow rate of the fluid (volume past a given point per
unit time). Its SI unit is the cubic meter per second (m3/s). If the density r of the
fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow
rate Rm (mass per unit time):

Rm � rRV � rAv � a constant (mass flow rate). (14-25)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25
says that the mass that flows into the tube segment of Fig. 14-15 each second must
be equal to the mass that flows out of that segment each second.



40114-7 BERNOULLI’S EQUATION

Figure 14-18 As water falls from a tap, its speed in-
creases. Because the volume flow rate must be the
same at all horizontal cross sections of the stream,
the stream must “neck down” (narrow).

h

A0

A

The volume flow per
second here must
match ...

... the volume flow
per second here.

KEY IDEA

The volume flow rate through the higher cross section must
be the same as that through the lower cross section.

Calculations: From Eq. 14-24, we have

A0v0 � Av, (14-26)

where v0 and v are the water speeds at the levels correspon-
ding to A0 and A. From Eq. 2-16 we can also write, because
the water is falling freely with acceleration g,

(14-27)

Eliminating v between Eqs. 14-26 and 14-27 and solving for
v0, we obtain

� 0.286 m/s � 28.6 cm/s.

From Eq. 14-24, the volume flow rate RV is then

RV � A0v0 � (1.2 cm2)(28.6 cm/s)

� 34 cm3/s. (Answer)

� A
(2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

(1.2 cm2)2 � (0.35 cm2)2

v0 � A
2ghA2

A2
0 � A2

v2 � v2
0 � 2gh.

Sample Problem 14.05 A water stream narrows as it falls

Figure 14-18 shows how the stream of water emerging from a
faucet “necks down” as it falls. This change in the horizontal
cross-sectional area is characteristic of any laminar (non-
turbulant) falling stream because the gravitational force 
increases the speed of the stream. Here the indicated cross-
sectional areas are A0 � 1.2 cm2 and A � 0.35 cm2. The two
levels are separated by a vertical distance h � 45 mm. What
is the volume flow rate from the tap? 

Additional examples, video, and practice available at WileyPLUS

14-7 BERNOULLI’S EQUATION

After reading this module, you should be able to . . .

14.21 Calculate the kinetic energy density in terms of a fluid’s
density and flow speed.

14.22 Identify the fluid pressure as being a type of energy
density.

14.23 Calculate the gravitational potential energy density.

14.24 Apply Bernoulli’s equation to relate the total energy
density at one point on a streamline to the value at another
point.

14.25 Identify that Bernoulli's equation is a statement of the
conservation of energy.

Learning Objectives

● Applying the principle of conservation of mechanical energy to the flow of an ideal fluid leads to Bernoulli’s equation:

p � rv2 � rgy � a constant

along any tube of flow.

1
2

Key Idea

Bernoulli’s Equation
Figure 14-19 represents a tube through which an ideal fluid is flowing at a steady
rate. In a time interval �t, suppose that a volume of fluid �V, colored purple in
Fig. 14-19, enters the tube at the left (or input) end and an identical volume,
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Figure 14-19 Fluid flows at a steady rate
through a length L of a tube, from the
input end at the left to the output end at
the right. From time t in (a) to time t � �t
in (b), the amount of fluid shown in
purple enters the input end and the
equal amount shown in green emerges
from the output end.

p1

L

Input

v1

y1

(a)

(b)

y

v2

p2

y2

y

x

t

t + Δt

x

Output

*For irrotational flow (which we assume), the constant in Eq. 14-29 has the same value for all
points within the tube of flow; the points do not have to lie along the same streamline. Similarly,
the points 1 and 2 in Eq. 14-28 can lie anywhere within the tube of flow.

If the speed of a fluid element increases as the element travels along a horizontal
streamline, the pressure of the fluid must decrease, and conversely.

colored green in Fig. 14-19, emerges at the right (or output) end. The emerging
volume must be the same as the entering volume because the fluid is incompress-
ible, with an assumed constant density r.

Let y1, v1, and p1 be the elevation, speed, and pressure of the fluid entering at
the left, and y2, v2, and p2 be the corresponding quantities for the fluid emerging
at the right. By applying the principle of conservation of energy to the fluid, we
shall show that these quantities are related by

(14-28)

In general, the term is called the fluid’s kinetic energy density (kinetic en-
ergy per unit volume).We can also write Eq. 14-28 as

(Bernoulli’s equation). (14-29)

Equations 14-28 and 14-29 are equivalent forms of Bernoulli’s equation,
after Daniel Bernoulli, who studied fluid flow in the 1700s.* Like the equation of
continuity (Eq. 14-24), Bernoulli’s equation is not a new principle but simply 
the reformulation of a familiar principle in a form more suitable to fluid 
mechanics. As a check, let us apply Bernoulli’s equation to fluids at rest, by put-
ting v1 � v2 � 0 in Eq. 14-28.The result is Eq. 14-7:

p2 � p1 � rg(y1 � y2).

A major prediction of Bernoulli’s equation emerges if we take y to be a
constant (y � 0, say) so that the fluid does not change elevation as it flows. Equation
14-28 then becomes

(14-30)
which tells us that:

p1� 1
2rv2

1 � p2 � 1
2rv2

2,

p � 1
2rv2 � rgy � a constant

1
2rv2

p1 � 1
2rv2

1 � rgy1 � p2 � 1
2rv2

2 � rgy2.

Put another way, where the streamlines are relatively close together (where the
velocity is relatively great), the pressure is relatively low, and conversely.

The link between a change in speed and a change in pressure makes sense
if you consider a fluid element that travels through a tube of various widths.
Recall that the element’s speed in the narrower regions is fast and its speed in the
wider regions is slow. By Newton’s second law, forces (or pressures) must cause
the changes in speed (the accelerations). When the element nears a narrow re-
gion, the higher pressure behind it accelerates it so that it then has a greater
speed in the narrow region. When it nears a wide region, the higher pressure
ahead of it decelerates it so that it then has a lesser speed in the wide region.

Bernoulli’s equation is strictly valid only to the extent that the fluid is ideal. If
viscous forces are present, thermal energy will be involved, which here we neglect.

Proof of Bernoulli’s Equation
Let us take as our system the entire volume of the (ideal) fluid shown in 
Fig. 14-19.We shall apply the principle of conservation of energy to this system as
it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid
lying between the two vertical planes separated by a distance L in Fig. 14-19 does
not change its properties during this process; we need be concerned only with
changes that take place at the input and output ends.
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First, we apply energy conservation in the form of the work–kinetic energy
theorem,

W � �K, (14-31)

which tells us that the change in the kinetic energy of our system must equal the
net work done on the system. The change in kinetic energy results from the
change in speed between the ends of the tube and is

, (14-32)

in which �m (� r �V) is the mass of the fluid that enters at the input end and
leaves at the output end during a small time interval �t.

The work done on the system arises from two sources. The work Wg done by
the gravitational force on the fluid of mass �m during the vertical lift of
the mass from the input level to the output level is

Wg � ��m g(y2 � y1)

� �rg �V(y2 � y1). (14-33)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering
fluid into the tube and by the system (at the output end) to push forward the fluid
that is located ahead of the emerging fluid. In general, the work done by a force
of magnitude F, acting on a fluid sample contained in a tube of area A to move
the fluid through a distance �x, is

F �x � ( pA)(�x) � p(A �x) � p �V.

The work done on the system is then p1 �V, and the work done by the system
is �p2 �V.Their sum Wp is

Wp � �p2 �V � p1 �V

� �( p2 � p1) �V. (14-34)

The work–kinetic energy theorem of Eq. 14-31 now becomes

W � Wg � Wp � �K.

Substituting from Eqs. 14-32, 14-33, and 14-34 yields

.

This, after a slight rearrangement, matches Eq. 14-28, which we set out to prove.

�rg �V(y2 � y1) � �V(p2 � p1) � 1
2r �V(v2

2 � v2
1)

(�m g:)

� 1
2r �V(v2

2 � v2
1)

�K � 1
2�m v2

2 � 1
2�m v2

1

Checkpoint 4
Water flows smoothly through the pipe shown in the figure, descending in the process.
Rank the four numbered sections of pipe according to (a) the volume flow rate RV

through them, (b) the flow speed v through them, and (c) the water pressure p within
them, greatest first.

1

Flow

2

3
4

Sample Problem 14.06 Bernoulli principle of fluid through a narrowing pipe

Ethanol of density r 791 kg/m3 flows smoothly through
a horizontal pipe that tapers (as in Fig. 14-15) in cross-
sectional area from A1 � 1.20 � 10�3 m2 to A2 � A1/2.

� The pressure difference between the wide and narrow 
sections of pipe is 4120 Pa. What is the volume flow rate
RV of the ethanol?
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KEY IDEAS

(1) Because the fluid flowing through the wide section of
pipe must entirely pass through the narrow section, the vol-
ume flow rate RV must be the same in the two sections.Thus,
from Eq. 14-24,

RV � v1A1 � v2A2. (14-35)

However, with two unknown speeds, we cannot evaluate this
equation for RV. (2) Because the flow is smooth, we can ap-
ply Bernoulli’s equation. From Eq. 14-28, we can write

, (14-36)

where subscripts 1 and 2 refer to the wide and narrow
sections of pipe, respectively, and y is their common eleva-
tion. This equation hardly seems to help because it does not
contain the desired RV and it contains the unknown speeds
v1 and v2.

Calculations: There is a neat way to make Eq. 14-36 work for
us:First,we can use Eq.14-35 and the fact that A2 � A1/2 to write

and . (14-37)v2 �
RV

A2
�

2RV

A1
v1 �

RV

A1

p1 � 1
2rv2

1 � rgy � p2 � 1
2rv2

2 � rgy

Sample Problem 14.07 Bernoulli principle for a leaky water tank

In the old West, a desperado fires a bullet into an open water
tank (Fig. 14-20), creating a hole a distance h below the water
surface.What is the speed v of the water exiting the tank?

KEY IDEAS

(1) This situation is essentially that of water moving (down-
ward) with speed v0 through a wide pipe (the tank) of cross-
sectional area A and then moving (horizontally) with speed v
through a narrow pipe (the hole) of cross-sectional area a. (2)
Because the water flowing through the wide pipe must en-
tirely pass through the narrow pipe, the volume flow rate RV

must be the same in the two “pipes.” (3) We can also relate v
to v0 (and to h) through Bernoulli’s equation (Eq. 14-28).

Calculations: From Eq. 14-24,

RV � av � Av0

and thus

Because a A, we see that v0 v.To apply Bernoulli’s equa-
tion, we take the level of the hole as our reference level for
measuring elevations (and thus gravitational potential en-
ergy). Noting that the pressure at the top of the tank and at
the bullet hole is the atmospheric pressure p0 (because both
places are exposed to the atmosphere), we write Eq. 14-28 as

(14-39)p0 � 1
2rv2

0 � rgh � p0 � 1
2rv2 � rg(0).

��

v0 �
a
A

v.

h
p0

y = 0 

p0

Figure 14-20 Water pours
through a hole in a water
tank, at a distance h below
the water surface. The pres-
sure at the water surface and
at the hole is atmospheric
pressure p0.

(Here the top of the tank is represented by the left side of
the equation and the hole by the right side. The zero on the
right indicates that the hole is at our reference level.)
Before we solve Eq. 14-39 for v, we can use our result that
v0 v to simplify it: We assume that , and thus the term

in Eq. 14-39, is negligible relative to the other terms,
and we drop it. Solving the remaining equation for v then
yields

(Answer)

This is the same speed that an object would have when
falling a height h from rest.

v � 12gh.

1
2rv2

0

v2
0�

Additional examples, video, and practice available at WileyPLUS

Then we can substitute these expressions into Eq. 14-36 to
eliminate the unknown speeds and introduce the desired vol-
ume flow rate.Doing this and solving for RV yield

. (14-38)

We still have a decision to make: We know that the
pressure difference between the two sections is 4120 Pa, but
does that mean that p1 � p2 is 4120 Pa or �4120 Pa? We
could guess the former is true, or otherwise the square root
in Eq. 14-38 would give us an imaginary number. However,
let’s try some reasoning. From Eq. 14-35 we see that speed
v2 in the narrow section (small A2) must be greater than
speed v1 in the wider section (larger A1). Recall that if the
speed of a fluid increases as the fluid travels along a hori-
zontal path (as here), the pressure of the fluid must
decrease. Thus, p1 is greater than p2, and p1 � p2 � 4120 Pa.
Inserting this and known data into Eq. 14-38 gives

� 2.24 � 10�3 m3/s. (Answer)

RV � 1.20 � 10�3 m2A
(2)(4120 Pa)

(3)(791 kg/m3)

RV � A1A
2( p1 � p2)

3r
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Density The density r of any material is defined as the material’s
mass per unit volume:

(14-1)

Usually, where a material sample is much larger than atomic 
dimensions, we can write Eq. 14-1 as

(14-2)

Fluid Pressure A fluid is a substance that can flow; it conforms
to the boundaries of its container because it cannot withstand shear-
ing stress. It can, however, exert a force perpendicular to its surface.
That force is described in terms of pressure p:

(14-3)

in which �F is the force acting on a surface element of area �A. If the
force is uniform over a flat area,Eq.14-3 can be written as

(14-4)

The force resulting from fluid pressure at a particular point in a
fluid has the same magnitude in all directions. Gauge pressure is the
difference between the actual pressure (or absolute pressure) at a
point and the atmospheric pressure.

Pressure Variation with Height and Depth Pressure in a fluid
at rest varies with vertical position y. For y measured positive upward,

p2 � p1 � rg(y1 � y2). (14-7)

The pressure in a fluid is the same for all points at the same level. If
h is the depth of a fluid sample below some reference level at which
the pressure is p0, then the pressure in the sample is

p � p0 � rgh. (14-8)

p �
F
A

.

p �
�F
�A

,

r �
m
V

.

r �
�m
�V

.

Review & Summary
Pascal’s Principle A change in the pressure applied to an en-
closed fluid is transmitted undiminished to every portion of the
fluid and to the walls of the containing vessel.

Archimedes’ Principle When a body is fully or partially sub-
merged in a fluid, a buoyant force from the surrounding fluid
acts on the body. The force is directed upward and has a magni-
tude given by

Fb � mfg, (14-16)

where mf is the mass of the fluid that has been displaced by the body
(that is, the fluid that has been pushed out of the way by the body).

When a body floats in a fluid, the magnitude Fb of the (upward)
buoyant force on the body is equal to the magnitude Fg of the (down-
ward) gravitational force on the body. The apparent weight of a body
on which a buoyant force acts is related to its actual weight by

weightapp � weight � Fb. (14-19)

Flow of Ideal Fluids An ideal fluid is incompressible and
lacks viscosity, and its flow is steady and irrotational. A streamline
is the path followed by an individual fluid particle.A tube of flow is
a bundle of streamlines.The flow within any tube of flow obeys the
equation of continuity:

RV � Av � a constant, (14-24)

in which RV is the volume flow rate, A is the cross-sectional area of
the tube of flow at any point, and v is the speed of the fluid at that
point.The mass flow rate Rm is

Rm � rRV � rAv � a constant. (14-25)

Bernoulli’s Equation Applying the principle of conservation
of mechanical energy to the flow of an ideal fluid leads to
Bernoulli’s equation along any tube of flow:

p � rv2 � rgy � a constant. (14-29)1
2

F
:

b

1 We fully submerge an irregular 3 kg lump of material in a cer-
tain fluid. The fluid that would have been in the space now occu-
pied by the lump has a mass of 2 kg. (a) When we release the lump,
does it move upward, move downward, or remain in place? (b) If
we next fully submerge the lump in a less dense fluid and again re-
lease it, what does it do?

2 Figure 14-21 shows four situations in which a red liquid and a gray
liquid are in a U-tube. In one situation the liquids cannot be in static
equilibrium. (a) Which situation is that? (b) For the other three sit-

Questions

(1) (2) (3) (4) 

Figure 14-21 Question 2.

uations, assume static equilibrium. For each of them, is the density
of the red liquid greater than, less than, or equal to the density of
the gray liquid?

3 A boat with an anchor on board floats in a swimming
pool that is somewhat wider than the boat. Does the pool water
level move up, move down, or remain the same if the anchor is
(a) dropped into the water or (b) thrown onto the surrounding
ground? (c) Does the water level in the pool move upward,
move downward, or remain the
same if, instead, a cork is dropped
from the boat into the water,
where it floats?

4 Figure 14-22 shows a tank filled
with water. Five horizontal floors
and ceilings are indicated; all have
the same area and are located at
distances L, 2L, or 3L below the
top of the tank. Rank them accord-
ing to the force on them due to the
water, greatest first. Figure 14-22 Question 4.

a

b

e

d
c



water flows smoothly toward the right. The radii of the pipe sec-
tions are indicated. In which arrangements is the net work done on
a unit volume of water moving from the leftmost section to the
rightmost section (a) zero, (b) positive, and (c) negative?

8 A rectangular block is pushed
face-down into three liquids, in
turn. The apparent weight Wapp of
the block versus depth h in the
three liquids is plotted in Fig. 14-26.
Rank the liquids according to their
weight per unit volume, greatest
first.

9 Water flows smoothly in a hor-
izontal pipe. Figure 14-27 shows
the kinetic energy K of a water el-
ement as it moves along an x axis
that runs along the pipe. Rank the
three lettered sections of the pipe
according to the pipe radius, great-
est first.

10 We have three containers with different liquids. The gauge
pressure pg versus depth h is plotted in Fig. 14-28 for the liquids.
In each container, we will fully submerge a rigid plastic bead.
Rank the plots according to the magnitude of the buoyant force
on the bead, greatest first.

2.00R 2.00RR

(1)

3.00R R 2.00R

(2)

2.00R 3.00RR

(3)

R R 3.00R

(4)

5 The teapot effect. Water
poured slowly from a teapot spout
can double back under the spout for
a considerable distance (held there
by atmospheric pressure) before
detaching and falling. In Fig. 14-23,
the four points are at the top or bot-
tom of the water layers, inside or
outside. Rank those four points ac-
cording to the gauge pressure in the water there, most positive first.

6 Figure 14-24 shows three identical open-top containers filled to
the brim with water; toy ducks float in two of them. Rank the contain-
ers and contents according to their weight,greatest first.

Figure 14-24 Question 6.

(a) (b) (c)

Figure 14-25 Question 7.

Figure 14-26 Question 8.

Wapp

h

a

b

c
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Water
flow

d c

b
a

Spout

Figure 14-23 Question 5.

K

xA B C 

Figure 14-27 Question 9.

pg

h

a
b

c

Figure 14-28 Question 10.

Module 14-1 Fluids, Density, and Pressure
•1 A fish maintains its depth in fresh water by adjusting the
air content of porous bone or air sacs to make its average density
the same as that of the water. Suppose that with its air sacs col-
lapsed, a fish has a density of 1.08 g/cm3. To what fraction of its ex-
panded body volume must the fish inflate the air sacs to reduce its
density to that of water?

•2 A partially evacuated airtight container has a tight-fitting lid
of surface area 77 m2 and negligible mass. If the force required to
remove the lid is 480 N and the atmospheric pressure is 1.0 � 105

Pa, what is the internal air pressure?

•3 Find the pressure increase in the fluid in a syringe when a
nurse applies a force of 42 N to the syringe’s circular piston, which
has a radius of 1.1 cm.

SSM

ILW

•4 Three liquids that will not mix are poured into a cylindrical con-
tainer.The volumes and densities of the liquids are 0.50 L, 2.6 g/cm3;
0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3. What is the force on the 
bottom of the container due to these liquids? One liter � 1 L �
1000 cm3. (Ignore the contribution due to the atmosphere.)

•5 An office window has dimensions 3.4 m by 2.1 m. As a
result of the passage of a storm, the outside air pressure drops to
0.96 atm, but inside the pressure is held at 1.0 atm. What net force
pushes out on the window?

•6 You inflate the front tires on your car to 28 psi.Later,you measure
your blood pressure, obtaining a reading of 120/80, the readings being
in mm Hg.In metric countries (which is to say,most of the world), these
pressures are customarily reported in kilopascals (kPa). In kilopascals,
what are (a) your tire pressure and (b) your blood pressure?

SSM

7 Figure 14-25 shows four arrangements of pipes through which

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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tion against a maximum pressure difference (between inside and
outside the chest cavity) of 0.050 atm.What is the difference in dmax

for fresh water and the water of the Dead Sea (the saltiest natural
water in the world, with a density of 1.5 � 103 kg/m3)?

•13 At a depth of 10.9 km, the Challenger Deep in the
Marianas Trench of the Pacific Ocean is the deepest site in any
ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached
the Challenger Deep in the bathyscaph Trieste. Assuming that
seawater has a uniform density of 1024 kg/m3, approximate the
hydrostatic pressure (in atmospheres) that the Trieste had to
withstand. (Even a slight defect in the Trieste structure would
have been disastrous.)

•14 Calculate the hydrostatic difference in blood pressure be-
tween the brain and the foot in a person of height 1.83 m. The den-
sity of blood is 1.06 � 103 kg/m3.

•15 What gauge pressure must a machine produce in order to suck
mud of density 1800 kg/m3 up a tube by a height of 1.5 m?

•16 Snorkeling by humans
and elephants. When a person
snorkels, the lungs are connected
directly to the atmosphere through
the snorkel tube and thus are at at-
mospheric pressure. In atmo-
spheres, what is the difference 
between this internal air pressure
and the water pressure against the
body if the length of the snorkel
tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably
lethal situation)? In the latter, the pressure difference causes
blood vessels on the walls of the lungs to rupture, releasing blood
into the lungs. As depicted in Fig. 14-31, an elephant can safely
snorkel through its trunk while swimming with its lungs 4.0 m be-
low the water surface because the membrane around its lungs
contains connective tissue that holds and protects the blood ves-
sels, preventing rupturing.

•17 Crew members attempt to escape from a dam-
aged submarine 100 m below the surface. What force must be ap-
plied to a pop-out hatch, which is 1.2 m by 0.60 m, to push it out at
that depth? Assume that the density of the ocean water is 1024
kg/m3 and the internal air pressure is at 1.00 atm.

•18 In Fig. 14-32, an open tube of length
L 1.8 m and cross-sectional area A �
4.6 cm2 is fixed to the top of a cylindrical bar-
rel of diameter D � 1.2 m and height H �
1.8 m. The barrel and tube are filled with
water (to the top of the tube). Calculate
the ratio of the hydrostatic force on the
bottom of the barrel to the gravitational
force on the water contained in the barrel.
Why is that ratio not equal to 1.0? (You need
not consider the atmospheric pressure.)

••19 A large aquarium of height 5.00
m is filled with fresh water to a depth of
2.00 m. One wall of the aquarium consists
of thick plastic 8.00 m wide. By how much
does the total force on that wall increase
if the aquarium is next filled to a depth of
4.00 m?

�

SSM

�p

••7 In 1654 Otto von Guericke, in-
ventor of the air pump, gave a
demonstration before the noble-
men of the Holy Roman Empire in
which two teams of eight horses
could not pull apart two evacuated
brass hemispheres. (a) Assuming
the hemispheres have (strong) thin
walls, so that R in Fig. 14-29 may be considered both the inside
and outside radius, show that the force required to pull apart
the hemispheres has magnitude F � pR2 �p, where �p is the dif-
ference between the pressures outside and inside the sphere.
(b) Taking R as 30 cm, the inside pressure as 0.10 atm, and the out-
side pressure as 1.00 atm, find the force magnitude the teams of
horses would have had to exert to pull apart the hemispheres.
(c) Explain why one team of horses could have proved the
point just as well if the hemispheres were attached to a sturdy wall.

Module 14-2 Fluids at Rest
•8 The bends during flight. Anyone who scuba dives is 
advised not to fly within the next 24 h because the air mixture
for diving can introduce nitrogen to the bloodstream. Without 
allowing the nitrogen to come out of solution slowly, any sudden
air-pressure reduction (such as during airplane ascent) can result
in the nitrogen forming bubbles in the blood, creating the bends,
which can be painful and even fatal. Military special operation
forces are especially at risk. What is the change in pressure on
such a special-op soldier who must scuba dive at a depth of 20 m
in seawater one day and parachute at an altitude of 7.6 km the
next day? Assume that the average air density within the altitude
range is 0.87 kg/m3.

•9 Blood pressure in Argentinosaurus. (a) If this long-
necked, gigantic sauropod had a head height of 21 m and a heart
height of 9.0 m, what (hydrostatic) gauge pressure in its blood
was required at the heart such that the blood pressure at the
brain was 80 torr (just enough to perfuse the brain with blood)?
Assume the blood had a density of . (b) What
was the blood pressure (in torr or mm Hg) at the feet?

•10 The plastic tube in Fig. 14-30 has a
cross-sectional area of 5.00 cm2. The tube is
filled with water until the short arm (of
length d � 0.800 m) is full. Then the short arm
is sealed and more water is gradually poured
into the long arm. If the seal will pop off when
the force on it exceeds 9.80 N, what total
height of water in the long arm will put the seal
on the verge of popping?

•11 Giraffe bending to drink. In a giraffe with its head 2.0 m
above its heart, and its heart 2.0 m above its feet, the (hydrostatic)
gauge pressure in the blood at its heart is 250 torr.Assume that the gi-
raffe stands upright and the blood density is . In torr
(or mm Hg), find the (gauge) blood pressure (a) at the brain (the
pressure is enough to perfuse the brain with blood, to keep the giraffe
from fainting) and (b) at the feet (the pressure must be countered by
tight-fitting skin acting like a pressure stocking). (c) If the giraffe
were to lower its head to drink from a pond without splaying its legs
and moving slowly, what would be the increase in the blood pressure
in the brain? (Such action would probably be lethal.)

•12 The maximum depth dmax that a diver can snorkel is set
by the density of the water and the fact that human lungs can func-

1.06 � 103 kg/m3

1.06 � 103 kg/m3

F
:

R
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Figure 14-29 Problem 7.

d

Figure 14-30
Problems 10

and 81.

Figure 14-31 Problem 16.

D

L

H

A

SUITABLE FOR

WATER

FRESH

DRINKING

Figure 14-32
Problem 18.



at depth D � 35.0 m behind the ver-
tical upstream face of a dam of
width W � 314 m. Find (a) the net
horizontal force on the dam from
the gauge pressure of the water and
(b) the net torque due to that force
about a horizontal line through O
parallel to the (long) width of the dam.This torque tends to rotate the
dam around that line, which would cause the dam to fail. (c) Find the
moment arm of the torque.

Module 14-3 Measuring Pressure
•25 In one observation, the column in a mercury barometer (as is
shown in Fig. 14-5a) has a measured height h of 740.35 mm. The tem-
perature is �5.0	C, at which temperature the density of mercury r is
1.3608 � 104 kg/m3.The free-fall acceleration g at the site of the barom-
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eter is 9.7835 m/s2.What is the atmospheric pressure at that site in pas-
cals and in torr (which is the common unit for barometer readings)?

•26 To suck lemonade of density 1000 kg/m3 up a straw to a maxi-
mum height of 4.0 cm, what minimum gauge pressure (in atmo-
spheres) must you produce in your lungs?

••27 What would be the height of the atmosphere if the
air density (a) were uniform and (b) decreased linearly to zero
with height? Assume that at sea level the air pressure is 1.0 atm
and the air density is 1.3 kg/m3.

Module 14-4 Pascal’s Principle
•28 A piston of cross-sectional
area a is used in a hydraulic press to
exert a small force of magnitude f on
the enclosed liquid. A connecting
pipe leads to a larger piston of cross-
sectional area A (Fig. 14-36). (a) What
force magnitude F will the larger pis-
ton sustain without moving? (b) If
the piston diameters are 3.80 cm and
53.0 cm, what force magnitude on the small piston will balance a 20.0
kN force on the large piston?

••29 In Fig. 14-37, a spring of spring
constant 3.00 � 104 N/m is between a
rigid beam and the output piston of a
hydraulic lever. An empty container
with negligible mass sits on the input
piston.The input piston has area Ai, and
the output piston has area 18.0Ai.
Initially the spring is at its rest length.
How many kilograms of sand must be
(slowly) poured into the container to compress the spring by 5.00 cm?

Module 14-5 Archimedes’ Principle
•30 A 5.00 kg object is released from rest while fully submerged
in a liquid. The liquid displaced by the submerged object has a
mass of 3.00 kg. How far and in what direction does the object
move in 0.200 s, assuming that it moves freely and that the drag
force on it from the liquid is negligible?

•31 A block of wood floats in fresh water with two-thirds of its
volume V submerged and in oil with 0.90V submerged. Find the den-
sity of (a) the wood and (b) the oil.

•32 In Fig. 14-38, a cube of edge
length L � 0.600 m and mass 450 kg
is suspended by a rope in an open
tank of liquid of density 1030 kg/m3.
Find (a) the magnitude of the total
downward force on the top of the
cube from the liquid and the atmo-
sphere, assuming atmospheric pres-
sure is 1.00 atm, (b) the magnitude
of the total upward force on the bot-
tom of the cube, and (c) the tension
in the rope. (d) Calculate the magnitude of the buoyant force on
the cube using Archimedes’ principle. What relation exists among
all these quantities?

•33 An iron anchor of density 7870 kg/m3 appears 200 N
lighter in water than in air. (a) What is the volume of the anchor?
(b) How much does it weigh in air?

•34 A boat floating in fresh water displaces water weighing
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••20 The L-shaped fish tank shown in 
Fig. 14-33 is filled with water and is open at
the top. If d � 5.0 m, what is the (total)
force exerted by the water (a) on face A
and (b) on face B?

••21 Two identical cylindrical ves-
sels with their bases at the same level each
contain a liquid of density 1.30 � 103

kg/m3. The area of each base is 4.00 cm2,
but in one vessel the liquid height is 0.854
m and in the other it is 1.560 m. Find the
work done by the gravitational force in
equalizing the levels when the two vessels are connected.

••22 g-LOC in dogfights.When a pilot takes a tight turn at high
speed in a modern fighter airplane, the blood pressure at the brain
level decreases, blood no longer perfuses the brain, and the blood in
the brain drains. If the heart maintains the (hydrostatic) gauge pressure
in the aorta at 120 torr (or mm Hg) when the pilot undergoes a hori-
zontal centripetal acceleration of 4g, what is the blood pressure (in
torr) at the brain, 30 cm radially inward from the heart? The perfusion
in the brain is small enough that the vision switches to black and white
and narrows to “tunnel vision” and the pilot can undergo g-LOC (“g-
induced loss of consciousness”).Blood density is .

••23 In analyzing certain geo-
logical features, it is often appro-
priate to assume that the pressure
at some horizontal level of com-
pensation, deep inside Earth, is the
same over a large region and is
equal to the pressure due to the
gravitational force on the overly-
ing material. Thus, the pressure on
the level of compensation is given
by the fluid pressure formula. This
model requires, for one thing, that
mountains have roots of continen-
tal rock extending into the denser
mantle (Fig. 14-34). Consider a mountain of height H � 6.0 km
on a continent of thickness T � 32 km. The continental rock has
a density of 2.9 g /cm3, and beneath this rock the mantle has a
density of 3.3 g /cm3. Calculate the depth D of the root. (Hint: Set
the pressure at points a and b equal; the depth y of the level of
compensation will cancel out.)

•••24 In Fig. 14-35, water stands

1.06 � 103 kg/m3
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35.6 kN. (a) What is the weight of the water this boat displaces
when floating in salt water of density 1.10 � 103 kg/m3? (b) What is
the difference between the volume of fresh water displaced and
the volume of salt water displaced?

•35 Three children, each of weight 356 N,
make a log raft by lashing together logs of
diameter 0.30 m and length 1.80 m. How
many logs will be needed to keep them
afloat in fresh water? Take the den-
sity of the logs to be 800 kg/m3.

••36 In Fig. 14-39a, a rectan-
gular block is gradually pushed
face-down into a liquid. The block
has height d; on the bottom and
top the face area is A � 5.67 cm2.
Figure 14-39b gives the apparent
weight Wapp of the block as a func-
tion of the depth h of its lower
face. The scale on the vertical axis
is set by Ws � 0.20 N. What is the
density of the liquid?

••37 A hollow spherical iron shell floats almost completely sub-
merged in water.The outer diameter is 60.0 cm,and the density of iron
is 7.87 g/cm3. Find the inner diameter.

••38 A small solid ball is 
released from rest while fully sub-
merged in a liquid and then its kinetic
energy is measured when it has moved
4.0 cm in the liquid. Figure 14-40 gives
the results after many liquids are used:
The kinetic energy K is plotted versus
the liquid density rliq, and Ks � 1.60 J
sets the scale on the vertical axis.
What are (a) the density and (b) the volume of the ball?

••39 A hollow sphere of inner radius 8.0 cm and outer
radius 9.0 cm floats half-submerged in a liquid of density 800 kg/m3.
(a) What is the mass of the sphere? (b) Calculate the density of the
material of which the sphere is made.

••40 Lurking alligators.An al-
ligator waits for prey by floating with
only the top of its head exposed, so
that the prey cannot easily see it.
One way it can adjust the extent of
sinking is by controlling the size of its
lungs. Another way may be by swallowing stones (gastrolithes) that
then reside in the stomach. Figure 14-41 shows a highly simplified
model (a “rhombohedron gater”) of mass 130 kg that roams with its
head partially exposed.The top head surface has area 0.20 m2. If the
alligator were to swallow stones with a total mass of 1.0% of its body
mass (a typical amount), how far would it sink?

••41 What fraction of the volume of an iceberg (density 917 kg/m3)
would be visible if the iceberg floats (a) in the ocean (salt water, den-
sity 1024 kg/m3) and (b) in a river (fresh water, density 1000 kg/m3)?
(When salt water freezes to form ice, the salt is excluded. So, an ice-
berg could provide fresh water to a community.)

••42 A flotation device is in the shape of a right cylinder, with a
height of 0.500 m and a face area of 4.00 m2 on top and bottom, and
its density is 0.400 times that of fresh water. It is initially held fully
submerged in fresh water, with its top face at the water surface.Then
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it is allowed to ascend gradually until it begins to float. How much
work does the buoyant force do on the device during the ascent?

••43 When researchers find a rea-
sonably complete fossil of a di-
nosaur, they can determine the mass
and weight of the living dinosaur
with a scale model sculpted from
plastic and based on the dimensions
of the fossil bones. The scale of the
model is 1/20; that is, lengths are 1/20
actual length, areas are (1/20)2 actual
areas, and volumes are (1/20)3 actual
volumes. First, the model is suspended from one arm of a balance
and weights are added to the other arm until equilibrium is
reached. Then the model is fully submerged in water and enough
weights are removed from the second arm to reestablish equilib-
rium (Fig. 14-42). For a model of a particular T. rex fossil, 637.76 g
had to be removed to reestablish equilibrium. What was the vol-
ume of (a) the model and (b) the actual T. rex? (c) If the density of
T. rex was approximately the density of water, what was its mass?

••44 A wood block (mass 3.67 kg, density 600 kg/m3) is  fitted
with lead (density 1.14 � 104 kg/m3) so that it floats in water with
0.900 of its volume submerged. Find the lead mass if the lead is fit-
ted to the block’s (a) top and (b) bottom.

••45 An iron casting containing a number of cavities weighs
6000 N in air and 4000 N in water. What is the total cavity volume
in the casting? The density of solid iron is 7.87 g/cm3.

••46 Suppose that you release a small ball from rest at a depth
of 0.600 m below the surface in a pool of water. If the density of the
ball is 0.300 that of water and if the drag force on the ball from the
water is negligible, how high above the water surface will the ball
shoot as it emerges from the water? (Neglect any transfer of en-
ergy to the splashing and waves produced by the emerging ball.)

••47 The volume of air space in the passenger compartment of an
1800 kg car is 5.00 m3. The volume of the motor and front wheels is
0.750 m3,and the volume of the rear wheels,gas tank,and trunk is 0.800
m3; water cannot enter these two regions. The car rolls into a lake. (a)
At first, no water enters the passenger compartment. How much of the
car, in cubic meters, is below the water surface with the car floating
(Fig. 14-43)? (b) As water slowly enters, the car sinks. How many cubic
meters of water are in the car as it disappears below the water surface?
(The car,with a heavy load in the trunk,remains horizontal.)

Figure 14-43 Problem 47.

Figure 14-42 Problem 43.

•••48 Figure 14-44 shows an iron ball suspended by thread of
negligible mass from an upright cylinder that
floats partially submerged in water. The cylin-
der has a height of 6.00 cm, a face area of 12.0
cm2 on the top and bottom, and a density of
0.30 g/cm3, and 2.00 cm of its height is above
the water surface.What is the radius of the iron
ball?

Figure 14-44
Problem 48.



with water to a depth D � 0.30 m. A hole of cross-sectional area
A � 6.5 cm2 in the bottom of the tank allows water to drain out. (a)
What is the drainage rate in cubic meters per second? (b) At what
distance below the bottom of the tank is the cross-sectional area of
the stream equal to one-half the area of the hole?

•58 The intake in Fig. 14-47 has
cross-sectional area of 0.74 m2 and
water flow at 0.40 m/s. At the outlet,
distance D � 180 m below the in-
take, the cross-sectional area is
smaller than at the intake and the
water flows out at 9.5 m/s into
equipment. What is the pressure dif-
ference between inlet and outlet?

•59 Water is moving with a speed of 5.0 m/s through a pipe
with a cross-sectional area of 4.0 cm2. The water gradually descends
10 m as the pipe cross-sectional area increases to 8.0 cm2. (a) What
is the speed at the lower level? (b) If the pressure at the upper level
is 1.5 � 105 Pa, what is the pressure at the lower level?

•60 Models of torpedoes are sometimes tested in a horizontal pipe of
flowing water, much as a wind tunnel is used to test model airplanes.
Consider a circular pipe of internal diameter 25.0 cm and a torpedo
model aligned along the long axis of the pipe.The model has a 5.00 cm
diameter and is to be tested with water flowing past it at 2.50 m/s. (a)
With what speed must the water flow in the part of the pipe that is
unconstricted by the model? (b) What will the pressure difference be
between the constricted and unconstricted parts of the pipe?

•61 A water pipe having a 2.5 cm inside diameter carries wa-
ter into the basement of a house at a speed of 0.90 m/s and a pres-
sure of 170 kPa. If the pipe tapers to 1.2 cm and rises to the second
floor 7.6 m above the input point, what are the (a) speed and
(b) water pressure at the second floor?

••62 A pitot tube (Fig. 14-48) is used to determine the air-
speed of an airplane. It consists of an outer tube with a number of
small holes B (four are shown) that allow air into the tube; that
tube is connected to one arm of a U-tube. The other arm of the 
U-tube is connected to hole A at the front end of the device, which
points in the direction the plane is headed. At A the air becomes
stagnant so that vA � 0.At B, however, the speed of the air presum-
ably equals the airspeed v of the plane. (a) Use Bernoulli’s equation
to show that

,

where r is the density of the liquid in the U-tube and h is the differ-
ence in the liquid levels in that tube. (b) Suppose that the tube con-
tains alcohol and the level difference h is 26.0 cm. What is the
plane’s speed relative to the air? The density of the air is 1.03 kg/m3

and that of alcohol is 810 kg/m3.

v � A
2rgh
rair
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Module 14-6 The Equation of Continuity
•49 Canal effect. Figure 14-45
shows an anchored barge that ex-
tends across a canal by distance

and into the water by dis-
tance . The canal has a
width , a water depth

, and a uniform water-flow
speed . Assume that the
flow around the barge is uniform. As
the water passes the bow, the water
level undergoes a dramatic dip
known as the canal effect. If the dip
has depth , what is the water speed alongside the boat
through the vertical cross sections at (a) point a and (b) point b?
The erosion due to the speed increase is a common concern to hy-
draulic engineers.

•50 Figure 14-46 shows two
sections of an old pipe system
that runs through a hill, with
distances dA � dB � 30 m and
D � 110 m. On each side of
the hill, the pipe radius is
2.00 cm. However, the radius of the pipe inside the hill is no longer
known.To determine it, hydraulic engineers first establish that water
flows through the left and right sections at 2.50 m/s. Then they re-
lease a dye in the water at point A and find that it takes 88.8 s to
reach point B. What is the average radius of the pipe within the hill?

•51 A garden hose with an internal diameter of 1.9 cm is
connected to a (stationary) lawn sprinkler that consists merely of
a container with 24 holes, each 0.13 cm in diameter. If the water
in the hose has a speed of 0.91 m/s, at what speed does it leave the
sprinkler holes?

•52 Two streams merge to form a river. One stream has a width
of 8.2 m, depth of 3.4 m, and current speed of 2.3 m/s. The other
stream is 6.8 m wide and 3.2 m deep, and flows at 2.6 m/s. If the
river has width 10.5 m and speed 2.9 m/s, what is its depth?

••53 Water is pumped steadily out of a flooded basement at
5.0 m/s through a hose of radius 1.0 cm, passing through a window
3.0 m above the waterline.What is the pump’s power?

••54 The water flowing through a 1.9 cm (inside diameter) pipe
flows out through three 1.3 cm pipes. (a) If the flow rates in the
three smaller pipes are 26, 19, and 11 L/min, what is the flow rate in
the 1.9 cm pipe? (b) What is the ratio of the speed in the 1.9 cm pipe
to that in the pipe carrying 26 L/min?

Module 14-7 Bernoulli’s Equation
•55 How much work is done by pressure in forcing 1.4 m3 of
water through a pipe having an internal diameter of 13 mm if the
difference in pressure at the two ends of the pipe is 1.0 atm?

•56 Suppose that two tanks, 1 and 2, each with a large opening at
the top, contain different liquids.A small hole is made in the side of
each tank at the same depth h below the liquid surface, but the
hole in tank 1 has half the cross-sectional area of the hole in tank 2.
(a) What is the ratio r1/r2 of the densities of the liquids if the mass
flow rate is the same for the two holes? (b) What is the ratio
RV1/RV2 of the volume flow rates from the two tanks? (c) At one in-
stant, the liquid in tank 1 is 12.0 cm above the hole. If the tanks are
to have equal volume flow rates, what height above the hole must
the liquid in tank 2 be just then?

SSM
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h � 0.80 m

vi � 1.5 m/s
H � 14 m

D � 55 m
b � 12 m

d � 30 m

•57 A cylindrical tank with a large diameter is filledSSM
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••63 A pitot tube (see Problem 62) on a high-altitude aircraft
measures a differential pressure of 180 Pa. What is the aircraft’s
airspeed if the density of the air is 0.031 kg/m3?

••64 In Fig. 14-49, water flows
through a horizontal pipe and then out
into the atmosphere at a speed v1 � 15
m/s. The diameters of the left and right
sections of the pipe are 5.0 cm and 3.0
cm. (a) What volume of water flows
into the atmosphere during a 10 min period? In the left section of the
pipe, what are (b) the speed v2 and (c) the gauge pressure?

••65 A venturi meter is used to measure the flow
speed of a fluid in a pipe. The meter is connected between two
sections of the pipe (Fig. 14-50); the cross-sectional area A of the
entrance and exit of the meter matches the pipe’s cross-sectional
area. Between the entrance and exit, the fluid flows from the
pipe with speed V and then through a narrow “throat” of cross-
sectional area a with speed v. A manometer connects the wider
portion of the meter to the narrower portion. The change in the
fluid’s speed is accompanied by a change �p in the fluid’s pressure,
which causes a height difference h of the liquid in the two arms of
the manometer. (Here �p means pressure in the throat minus pres-
sure in the pipe.) (a) By applying Bernoulli’s equation and the
equation of continuity to points 1 and 2 in Fig. 14-50, show that

,

where r is the density of the fluid. (b) Suppose that the fluid is
fresh water, that the cross-sectional areas are 64 cm2 in the pipe
and 32 cm2 in the throat, and that the pressure is 55 kPa in the pipe
and 41 kPa in the throat. What is the rate of water flow in cubic
meters per second?

V � A
2a2 �p

�(a2 � A2)

WWWSSM

opening. (a) Find the magnitude of the
frictional force between plug and pipe
wall. (b) The plug is removed. What
water volume exits the pipe in 3.0 h?

••68 Fresh water flows horizontally
from pipe section 1 of cross-sectional
area A1 into pipe section 2 of cross-sec-
tional area A2. Figure 14-52 gives a plot
of the pressure difference p2 � p1 versus
the inverse area squared that
would be expected for a volume flow
rate of a certain value if the water flow
were laminar under all circumstances.
The scale on the vertical axis is set by
Δps � 300 kN/m2. For the conditions
of the figure, what are the values of
(a) A2 and (b) the volume flow rate?

••69 A liquid of density 900 kg/m3

flows through a horizontal pipe that
has a cross-sectional area of 1.90 � 10�2 m2 in region A and a

A�2
1

cross-sectional area of 9.50 � 10�2 m2 in region B. The pressure
difference between the two regions is 7.20 � 103 Pa. What are (a)
the volume flow rate and (b) the mass flow rate?

••70 In Fig. 14-53, water flows
steadily from the left pipe section
(radius r1 � 2.00R), through the mid-
dle section (radius R), and into the
right section (radius r3 � 3.00R). The
speed of the water in the middle sec-
tion is 0.500 m/s. What is the net work done on 0.400 m3 of the wa-
ter as it moves from the left section to the right section?

••71 Figure 14-54 shows a stream of
water flowing through a hole at depth
h � 10 cm in a tank holding water to
height H � 40 cm. (a) At what dis-
tance x does the stream strike the
floor? (b) At what depth should a sec-
ond hole be made to give the same
value of x? (c) At what depth should a
hole be made to maximize x?

•••72 A very simplified schem-
atic of the rain drainage system for a home is shown in Fig. 14-55.
Rain falling on the slanted roof runs off into gutters around the
roof edge; it then drains through downspouts (only one is
shown) into a main drainage pipe M below the basement, which
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••66 Consider the venturi tube of Problem 65 and Fig. 14-50
without the manometer. Let A equal 5a. Suppose the pressure p1 at A
is 2.0 atm. Compute the values of (a) the speed V at A and (b) the
speed v at a that make the pressure p2 at a equal to zero. (c) Compute
the corresponding volume flow rate if the diameter at A is 5.0 cm.
The phenomenon that occurs at a when p2 falls to nearly zero is
known as cavitation.The water vaporizes into small bubbles.

••67 In Fig. 14-51, the fresh water behind a reservoir damILW

has depth D 15 m. A horizontal pipe 4.0 cm in diameter passes
through the dam at depth d � 6.0 m. A plug secures the pipe
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Figure 14-55 Problem 72.

carries the water to an
even larger pipe below the
street. In Fig. 14-55, a floor
drain in the basement is
also connected to drain-
age pipe M. Suppose the
following apply:

(1) the downspouts have
height h1 � 11 m, (2) the
floor drain has height h2 �
1.2 m, (3) pipe M has radius
3.0 cm, (4) the house has
side width w � 30 m and
front length L � 60 m,(5) all



the water striking the roof goes through pipe M, (6) the initial speed
of the water in a downspout is negligible, and (7) the wind speed is
negligible (the rain falls vertically).

At what rainfall rate, in centimeters per hour, will water from
pipe M reach the height of the floor drain and threaten to flood
the basement?

Additional Problems
73 About one-third of the body of a person floating in the
Dead Sea will be above the waterline. Assuming that the human
body density is 0.98 g/cm3, find the density of the water in the
Dead Sea. (Why is it so much greater than 1.0 g/cm3?)

74 A simple open U-tube contains mercury. When 11.2 cm of
water is poured into the right arm of the tube, how high above its
initial level does the mercury rise in the left arm?

75 If a bubble in sparkling water accelerates upward at the
rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass?
Assume that the drag force on the bubble is negligible.

76 Suppose that your body has a uniform density of 0.95
times that of water. (a) If you float in a swimming pool, what frac-
tion of your body’s volume is above the water surface?

Quicksand is a fluid produced when water is forced up into
sand, moving the sand grains away from one another so they are no
longer locked together by friction. Pools of quicksand can form when
water drains underground from hills into valleys where there are
sand pockets. (b) If you float in a deep pool of quicksand that has a
density 1.6 times that of water, what fraction of your body’s volume is
above the quicksand surface? (c) Are you unable to breathe?

77 A glass ball of radius 2.00 cm sits at the bottom of a container
of milk that has a density of 1.03 g/cm3. The normal force on the
ball from the container’s lower surface has magnitude 9.48 � 10�2 N.
What is the mass of the ball?

78 Caught in an avalanche, a skier is fully submerged in
flowing snow of density 96 kg/m3. Assume that the average density
of the skier, clothing, and skiing equipment is 1020 kg/m3. What
percentage of the gravitational force on the skier is offset by the
buoyant force from the snow?

79 An object hangs from a spring balance. The balance registers
30 N in air, 20 N when this object is immersed in water, and 24 N
when the object is immersed in another liquid of unknown den-
sity.What is the density of that other liquid?

80 In an experiment, a rectangular block with height h is allowed
to float in four separate liquids. In the first liquid, which is water, it
floats fully submerged. In liquids A, B, and C, it floats with heights
h/2, 2h/3, and h/4 above the liquid surface, respectively. What are
the relative densities (the densities relative to that of water) of
(a) A, (b) B, and (c) C?

81 Figure 14-30 shows a modified U-tube: the right arm is
shorter than the left arm. The open end of the right arm is height
d � 10.0 cm above the laboratory bench. The radius throughout
the tube is 1.50 cm. Water is gradually poured into the open end of
the left arm until the water begins to flow out the open end of the
right arm. Then a liquid of density 0.80 g/cm3 is gradually added to
the left arm until its height in that arm is 8.0 cm (it does not mix
with the water). How much water flows out of the right arm?

82 What is the acceleration of a rising hot-air balloon if the ratio
of the air density outside the balloon to that inside is 1.39? Neglect
the mass of the balloon fabric and the basket.
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83 Figure 14-56 shows a
siphon, which is a device for
removing liquid from a container.
Tube ABC must initially be filled,
but once this has been done, liquid
will flow through the tube until the
liquid surface in the container is
level with the tube opening at A.
The liquid has density 1000 kg/m3

and negligible viscosity. The dis-
tances shown are h1 � 25 cm, d �
12 cm, and h2 � 40 cm. (a) With
what speed does the liquid emerge
from the tube at C? (b) If the at-
mospheric pressure is 1.0 � 105 Pa,
what is the pressure in the liquid at
the topmost point B? (c) Theoretically, what is the greatest possi-
ble height h1 that a siphon can lift water?

84 When you cough, you expel air at high speed through the
trachea and upper bronchi so that the air will remove excess mucus
lining the pathway.You produce the high speed by this procedure:You
breathe in a large amount of air, trap it by closing the glottis (the nar-
row opening in the larynx), increase the air pressure by contracting
the lungs, partially collapse the trachea and upper bronchi to narrow
the pathway, and then expel the air through the pathway by suddenly
reopening the glottis. Assume that during the expulsion the volume
flow rate is 7.0 � 10�3 m3/s. What multiple of 343 m/s (the speed of
sound vs) is the airspeed through the trachea if the trachea diameter
(a) remains its normal value of 14 mm and (b) contracts to 5.2 mm?

85 A tin can has a total volume of 1200 cm3

and a mass of 130 g. How many grams of lead
shot of density 11.4 g/cm3 could it carry with-
out sinking in water?

86 The tension in a string holding a solid
block below the surface of a liquid (of density
greater than the block) is T0 when the container
(Fig. 14-57) is at rest. When the container is
given an upward acceleration of 0.250g, what
multiple of T0 gives the tension in the string?

87 What is the minimum area (in square meters) of the top sur-
face of an ice slab 0.441 m thick floating on fresh water that will
hold up a 938 kg automobile? Take the densities of ice and fresh
water to be 917 kg/m3 and 998 kg/m3, respectively.

88 A 8.60 kg sphere of radius 6.22 cm is at a depth of 2.22 km in
seawater that has an average density of 1025 kg/m3. What are the
(a) gauge pressure, (b) total pressure, and (c) corresponding total
force compressing the sphere’s surface? What are (d) the magni-
tude of the buoyant force on the sphere and (e) the magnitude of
the sphere’s acceleration if it is free to move? Take atmospheric
pressure to be 1.01 � 105 Pa.

89 (a) For seawater of density 1.03 g/cm3, find the weight of wa-
ter on top of a submarine at a depth of 255 m if the horizontal
cross-sectional hull area is 2200.0 m2. (b) In atmospheres, what wa-
ter pressure would a diver experience at this depth?

90 The sewage outlet of a house constructed on a slope is 6.59 m be-
low street level. If the sewer is 2.16 m below street level, find the mini-
mum pressure difference that must be created by the sewage pump to
transfer waste of average density 1000.00 kg/m3 from outlet to sewer.
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Temperature, Heat, and the 
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18-1 TEMPERATURE

After reading this module, you should be able to . . .

18.01 Identify the lowest temperature as 0 on the Kelvin scale
(absolute zero).

18.02 Explain the zeroth law of thermodynamics.
18.03 Explain the conditions for the triple-point temperature.

18.04 Explain the conditions for measuring a temperature
with a constant-volume gas thermometer.

18.05 For a constant-volume gas thermometer, relate the
pressure and temperature of the gas in some given state
to the pressure and temperature at the triple point.

● Temperature is an SI base quantity related to our sense of
hot and cold. It is measured with a thermometer, which con-
tains a working substance with a measurable property, such
as length or pressure, that changes in a regular way as the
substance becomes hotter or colder.

● When a thermometer and some other object are placed in
contact with each other, they eventually reach thermal equilib-
rium. The reading of the thermometer is then taken to be the
temperature of the other object. The process provides con-
sistent and useful temperature measurements because of the
zeroth law of thermodynamics: If bodies A and B are each in
thermal equilibrium with a third body C (the thermometer),
then A and B are in thermal equilibrium with each other.

● In the SI system, temperature is measured on the Kelvin
scale, which is based on the triple point of water (273.16 K).
Other temperatures are then defined by use of a constant-
volume gas thermometer, in which a sample of gas is main-
tained at constant volume so its pressure is proportional to its
temperature. We define the temperature T as measured with
a gas thermometer to be

Here T is in kelvins, and p3 and p are the pressures of 
the gas at 273.16 K and the measured temperature, 
respectively.

T � (273.16 K) � lim
gas:0

p
p3
�.

Learning Objectives

Key Ideas

What Is Physics?
One of the principal branches of physics and engineering is thermodynamics,
which is the study and application of the thermal energy (often called the
internal energy) of systems. One of the central concepts of thermodynamics is
temperature. Since childhood, you have been developing a working knowledge
of thermal energy and temperature. For example, you know to be cautious with
hot foods and hot stoves and to store perishable foods in cool or cold compart-
ments. You also know how to control the temperature inside home and car, and
how to protect yourself from wind chill and heat stroke.

Examples of how thermodynamics figures into everyday engineering and
science are countless. Automobile engineers are concerned with the heating of a
car engine, such as during a NASCAR race. Food engineers are concerned both
with the proper heating of foods, such as pizzas being microwaved, and with the
proper cooling of foods, such as TV dinners being quickly frozen at a processing
plant. Geologists are concerned with the transfer of thermal energy in an El Niño
event and in the gradual warming of ice expanses in the Arctic and Antarctic.
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Agricultural engineers are concerned with the weather conditions that determine
whether the agriculture of a country thrives or vanishes. Medical engineers are
concerned with how a patient’s temperature might distinguish between a benign
viral infection and a cancerous growth.

The starting point in our discussion of thermodynamics is the concept of
temperature and how it is measured.

Temperature
Temperature is one of the seven SI base quantities. Physicists measure tempera-
ture on the Kelvin scale, which is marked in units called kelvins. Although the
temperature of a body apparently has no upper limit, it does have a lower limit;
this limiting low temperature is taken as the zero of the Kelvin temperature scale.
Room temperature is about 290 kelvins, or 290 K as we write it, above this
absolute zero. Figure 18-1 shows a wide range of temperatures.

When the universe began 13.7 billion years ago, its temperature was about 1039 K.
As the universe expanded it cooled,and it has now reached an average temperature of
about 3 K.We on Earth are a little warmer than that because we happen to live near a
star.Without our Sun,we too would be at 3 K (or,rather,we could not exist).

The Zeroth Law of Thermodynamics
The properties of many bodies change as we alter their temperature, perhaps by
moving them from a refrigerator to a warm oven. To give a few examples: As
their temperature increases, the volume of a liquid increases, a metal rod grows a
little longer, and the electrical resistance of a wire increases, as does the pressure
exerted by a confined gas. We can use any one of these properties as the basis of
an instrument that will help us pin down the concept of temperature.

Figure 18-2 shows such an instrument.Any resourceful engineer could design
and construct it, using any one of the properties listed above. The instrument is
fitted with a digital readout display and has the following properties: If you heat
it (say, with a Bunsen burner), the displayed number starts to increase; if you then
put it into a refrigerator, the displayed number starts to decrease. The instrument
is not calibrated in any way, and the numbers have (as yet) no physical meaning.
The device is a thermoscope but not (as yet) a thermometer.

Suppose that, as in Fig. 18-3a, we put the thermoscope (which we shall call
body T) into intimate contact with another body (body A). The entire system is
confined within a thick-walled insulating box. The numbers displayed by the
thermoscope roll by until, eventually, they come to rest (let us say the reading is
“137.04”) and no further change takes place. In fact, we suppose that every
measurable property of body T and of body A has assumed a stable, unchanging
value.Then we say that the two bodies are in thermal equilibrium with each other.
Even though the displayed readings for body T have not been calibrated, we
conclude that bodies T and A must be at the same (unknown) temperature.

Suppose that we next put body T into intimate contact with body B (Fig. 18-3b)
and find that the two bodies come to thermal equilibrium at the same reading of the
thermoscope. Then bodies T and B must be at the same (still unknown) temperature.
If we now put bodies A and B into intimate contact (Fig. 18-3c), are they immediately
in thermal equilibrium with each other? Experimentally,we find that they are.

The experimental fact shown in Fig. 18-3 is summed up in the zeroth law of
thermodynamics:

If bodies A and B are each in thermal equilibrium with a third body T, then A
and B are in thermal equilibrium with each other.

Figure 18-1 Some temperatures on the Kelvin
scale.Temperature T � 0 corresponds
to 10�� and cannot be plotted on this 
logarithmic scale.
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Figure 18-2 A thermoscope.The numbers
increase when the device is heated and
decrease when it is cooled.The thermally
sensitive element could be—among many
possibilities—a coil of wire whose
electrical resistance is measured and
displayed.

Thermally sensitive 
element

In less formal language, the message of the zeroth law is: “Every body has a
property called temperature. When two bodies are in thermal equilibrium, their
temperatures are equal. And vice versa.” We can now make our thermoscope
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(b)

B

T

A

S T

(a)

B

S

A

T

(c)

T

BA

Figure 18-3 (a) Body T (a thermo-
scope) and body A are in thermal
equilibrium. (Body S is a
thermally insulating screen.) (b)
Body T and body B are also in
thermal equilibrium, at the same
reading of the thermoscope. (c) If
(a) and (b) are true, the zeroth
law of thermodynamics states
that body A and body B are also
in thermal equilibrium.

(the third body T) into a thermometer, confident that its readings will have
physical meaning. All we have to do is calibrate it.

We use the zeroth law constantly in the laboratory. If we want to know whether
the liquids in two beakers are at the same temperature, we measure the tempera-
ture of each with a thermometer. We do not need to bring the two liquids into
intimate contact and observe whether they are or are not in thermal equilibrium.

The zeroth law, which has been called a logical afterthought, came to light
only in the 1930s, long after the first and second laws of thermodynamics had
been discovered and numbered. Because the concept of temperature is funda-
mental to those two laws, the law that establishes temperature as a valid concept
should have the lowest number—hence the zero.

Measuring Temperature
Here we first define and measure temperatures on the Kelvin scale. Then we
calibrate a thermoscope so as to make it a thermometer.

The Triple Point of Water
To set up a temperature scale, we pick some reproducible thermal phenomenon
and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that
is, we select a standard fixed point and give it a standard fixed-point temperature.
We could, for example, select the freezing point or the boiling point of water but,
for technical reasons, we select instead the triple point of water.

Liquid water, solid ice, and water vapor (gaseous water) can coexist, in
thermal equilibrium, at only one set of values of pressure and temperature.
Figure 18-4 shows a triple-point cell, in which this so-called triple point of water
can be achieved in the laboratory. By international agreement, the triple point of
water has been assigned a value of 273.16 K as the standard fixed-point
temperature for the calibration of thermometers; that is,

T3 � 273.16 K (triple-point temperature), (18-1)

in which the subscript 3 means “triple point.” This agreement also sets the size of
the kelvin as 1/273.16 of the difference between the triple-point temperature of
water and absolute zero.

Note that we do not use a degree mark in reporting Kelvin temperatures.
It is 300 K (not 300�K), and it is read “300 kelvins” (not “300 degrees Kelvin”).
The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK. No distinction in nomen-
clature is made between Kelvin temperatures and temperature differences, so
we can write, “the boiling point of sulfur is 717.8 K” and “the temperature of this
water bath was raised by 8.5 K.”

The Constant-Volume Gas Thermometer
The standard thermometer, against which all other thermometers are calibrated,
is based on the pressure of a gas in a fixed volume. Figure 18-5 shows such a
constant-volume gas thermometer; it consists of a gas-filled bulb connected by a
tube to a mercury manometer. By raising and lowering reservoir R, the mercury

Figure 18-4 A triple-point cell, in which solid
ice, liquid water, and water vapor coexist in
thermal equilibrium. By international
agreement, the temperature of this mixture
has been defined to be 273.16 K.The bulb
of a constant-volume gas thermometer is
shown inserted into the well of the cell.

Gas
thermometer
bulb

Vapor

Water

Ice

Figure 18-5 A constant-volume gas ther-
mometer, its bulb immersed in a liquid
whose temperature T is to be measured.

0

h

R

T

Scale
Gas-filled
bulb
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level in the left arm of the U-tube can always be brought to the zero of the scale
to keep the gas volume constant (variations in the gas volume can affect tem-
perature measurements).

The temperature of any body in thermal contact with the bulb (such as the
liquid surrounding the bulb in Fig. 18-5) is then defined to be

T � Cp, (18-2)

in which p is the pressure exerted by the gas and C is a constant. From Eq. 14-10,
the pressure p is p � p0 � rgh, (18-3)

in which p0 is the atmospheric pressure, r is the density of the mercury in the
manometer, and h is the measured difference between the mercury levels in the
two arms of the tube.* (The minus sign is used in Eq. 18-3 because pressure p is
measured above the level at which the pressure is p0.)

If we next put the bulb in a triple-point cell (Fig. 18-4), the temperature now
being measured is

T3 � Cp3, (18-4)

in which p3 is the gas pressure now. Eliminating C between Eqs. 18-2 and 18-4
gives us the temperature as

(provisional). (18-5)

We still have a problem with this thermometer. If we use it to measure, say,
the boiling point of water, we find that different gases in the bulb give slightly
different results. However, as we use smaller and smaller amounts of gas to fill
the bulb, the readings converge nicely to a single temperature, no matter what
gas we use. Figure 18-6 shows this convergence for three gases.

Thus the recipe for measuring a temperature with a gas thermometer is

(18-6)

The recipe instructs us to measure an unknown temperature T as follows:
Fill the thermometer bulb with an arbitrary amount of any gas (for example,
nitrogen) and measure p3 (using a triple-point cell) and p, the gas pressure at 
the temperature being measured. (Keep the gas volume the same.) Calculate the
ratio p/p3.Then repeat both measurements with a smaller amount of gas in the bulb,
and again calculate this ratio. Continue this way, using smaller and smaller amounts
of gas, until you can extrapolate to the ratio p/p3 that you would find if there were ap-
proximately no gas in the bulb. Calculate the temperature T by substituting that ex-
trapolated ratio into Eq. 18-6. (The temperature is called the ideal gas temperature.)

T � (273.16 K) � lim
gas :0

p
p3
�.

T � T3 � p
p3
� � (273.16 K) � p

p3
�

*For pressure units, we shall use units introduced in Module 14-1. The SI unit for pressure is the
newton per square meter, which is called the pascal (Pa). The pascal is related to other common pres-
sure units by

1 atm � 1.01 � 105 Pa � 760 torr � 14.7 lb/in.2.
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Figure 18-6 Temperatures measured by a con-
stant-volume gas thermometer, with its bulb
immersed in boiling water. For temperature
calculations using Eq. 18-5, pressure p3 was
measured at the triple point of water.Three
different gases in the thermometer bulb
gave generally different results at different gas
pressures, but as the amount of gas was
decreased (decreasing p3), all three curves con-
verged to 373.125 K.



The Celsius and Fahrenheit Scales
So far, we have discussed only the Kelvin scale, used in basic scientific work. In
nearly all countries of the world, the Celsius scale (formerly called the centigrade
scale) is the scale of choice for popular and commercial use and much scientific
use. Celsius temperatures are measured in degrees, and the Celsius degree has
the same size as the kelvin. However, the zero of the Celsius scale is shifted to a
more convenient value than absolute zero. If TC represents a Celsius temperature
and T a Kelvin temperature, then

TC � T � 273.15�. (18-7)

In expressing temperatures on the Celsius scale, the degree symbol is commonly
used. Thus, we write 20.00�C for a Celsius reading but 293.15 K for a Kelvin
reading.

The Fahrenheit scale, used in the United States, employs a smaller degree than
the Celsius scale and a different zero of temperature. You can easily verify both
these differences by examining an ordinary room thermometer on which both scales
are marked.The relation between the Celsius and Fahrenheit scales is

(18-8)

where TF is Fahrenheit temperature. Converting between these two scales can be
done easily by remembering a few corresponding points, such as the freezing and
boiling points of water (Table 18-1). Figure 18-7 compares the Kelvin, Celsius,
and Fahrenheit scales.

TF � 9
5TC � 32�,
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18-2 THE CELSIUS AND FAHRENHEIT SCALES

After reading this module, you should be able to . . .

18.06 Convert a temperature between any two (linear) 
temperature scales, including the Celsius, Fahrenheit,
and Kelvin scales.

18.07 Identify that a change of one degree is the same on the
Celsius and Kelvin scales.

Learning Objectives

● The Celsius temperature scale is defined by

TC � T � 273.15�,

Key Idea

Figure 18-7 The Kelvin, Celsius, and
Fahrenheit temperature scales compared.

Triple
point of 

water

Absolute
zero

273.16 K 0.01°C 32.02°F 

0 K –273.15°C –459.67°F 

Table 18-1 Some Corresponding Temperatures

Temperature C F

Boiling point of watera 100 212
Normal body temperature 37.0 98.6
Accepted comfort level 20 68
Freezing point of watera 0 32
Zero of Fahrenheit scale � �18 0
Scales coincide �40 �40

aStrictly, the boiling point of water on the Celsius scale is 99.975 C,
and the freezing point is 0.00 C.Thus, there is slightly less than 100 C
between those two points.

��
�

��

with T in kelvins. The Fahrenheit temperature scale is defined by

TF � 9
5TC � 32�.
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We use the letters C and F to distinguish measurements and degrees on the
two scales.Thus,

0�C � 32�F

means that 0� on the Celsius scale measures the same temperature as 32� on the
Fahrenheit scale, whereas

5 C� � 9 F�

means that a temperature difference of 5 Celsius degrees (note the degree sym-
bol appears after C) is equivalent to a temperature difference of 9 Fahrenheit
degrees.

Checkpoint 1
The figure here shows three
linear temperature scales
with the freezing and boiling
points of water indicated.
(a) Rank the degrees on
these scales by size, greatest
first. (b) Rank the following
temperatures, highest first:
50�X, 50�W, and 50�Y.

70°X

–20°X

120°W

30°W

90°Y

0°Y

Boiling point

Freezing point

corresponding temperatures on the Fahrenheit scale. On the
Z scale, the difference between the boiling and freezing
points is 65.0�Z � (�14.0�Z) � 79.0 Z�. On the Fahrenheit
scale, it is 212�F � 32.0�F � 180 F�. Thus, a temperature dif-
ference of 79.0 Z� is equivalent to a temperature difference of
180 F� (Fig. 18-8), and we can use the ratio (180 F�)/(79.0 Z�)
as our conversion factor.

Now, since T is below the freezing point by 84.0 Z�, it
must also be below the freezing point by

Because the freezing point is at 32.0�F, this means that

T � 32.0�F � 191 F� � �159�F. (Answer)

(84.0 Z�)
180 F�

79.0 Z�
� 191 F�.

Sample Problem 18.01 Conversion between two temperature scales

Suppose you come across old scientific notes that describe
a temperature scale called Z on which the boiling point of
water is 65.0�Z and the freezing point is �14.0�Z. To what
temperature on the Fahrenheit scale would a temperature
of T � �98.0�Z correspond? Assume that the Z scale is 
linear; that is, the size of a Z degree is the same everywhere
on the Z scale.

KEY IDEA

A conversion factor between two (linear) temperature
scales can be calculated by using two known (benchmark)
temperatures, such as the boiling and freezing points of wa-
ter. The number of degrees between the known tempera-
tures on one scale is equivalent to the number of degrees
between them on the other scale.

Calculations: We begin by relating the given temperature
T to either known temperature on the Z scale. Since T �
�98.0�Z is closer to the freezing point (�14.0�Z) than to the
boiling point (65.0�Z), we use the freezing point. Then we
note that the T we seek is below this point by �14.0�Z �
(�98.0�Z) � 84.0 Z� (Fig. 18-8). (Read this difference as
“84.0 Z degrees.”)

Next, we set up a conversion factor between the Z
and Fahrenheit scales to convert this difference. To do so,
we use both known temperatures on the Z scale and the

Additional examples, video, and practice available at WileyPLUS

Figure 18-8 An unknown temperature scale compared with the
Fahrenheit temperature scale.
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180 F° 



Thermal Expansion
You can often loosen a tight metal jar lid by holding it under a stream of hot water.
Both the metal of the lid and the glass of the jar expand as the hot water adds en-
ergy to their atoms. (With the added energy, the atoms can move a bit farther from
one another than usual, against the spring-like interatomic forces that hold every
solid together.) However, because the atoms in the metal move farther apart than
those in the glass, the lid expands more than the jar and thus is loosened.

Such thermal expansion of materials with an increase in temperature must be
anticipated in many common situations. When a bridge is subject to large
seasonal changes in temperature, for example, sections of the bridge are
separated by expansion slots so that the sections have room to expand on hot
days without the bridge buckling. When a dental cavity is filled, the filling mate-
rial must have the same thermal expansion properties as the surrounding tooth;
otherwise, consuming cold ice cream and then hot coffee would be very painful.
When the Concorde aircraft (Fig. 18-9) was built, the design had to allow for the
thermal expansion of the fuselage during supersonic flight because of frictional
heating by the passing air.

The thermal expansion properties of some materials can be put to common
use.Thermometers and thermostats may be based on the differences in expansion
between the components of a bimetal strip (Fig. 18-10).Also, the familiar liquid-in-
glass thermometers are based on the fact that liquids such as mercury and alcohol
expand to a different (greater) extent than their glass containers.

Linear Expansion
If the temperature of a metal rod of length L is raised by an amount �T, its length
is found to increase by an amount

�L � La �T, (18-9)
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18-3 THERMAL EXPANSION

After reading this module, you should be able to . . .

18.08 For one-dimensional thermal expansion, apply the rela-
tionship between the temperature change �T, the length
change �L, the initial length L, and the coefficient of linear
expansion a.

18.09 For two-dimensional thermal expansion, use one-

dimensional thermal expansion to find the change in area.
18.10 For three-dimensional thermal expansion, apply the re-

lationship between the temperature change �T, the vol-
ume change �V, the initial volume V, and the coefficient of
volume expansion b.

Learning Objectives

● All objects change size with changes in temperature. For a
temperature change �T, a change �L in any linear dimension
L is given by

�L � La �T,

in which a is the coefficient of linear expansion.

Key Ideas
● The change in the volume V of a solid or liquid is

�V � Vb �T.

Here b � 3a is the material’s coefficient of volume 
expansion.

�V

Figure 18-9 When a Concorde flew faster
than the speed of sound, thermal expan-
sion due to the rubbing by passing air
increased the aircraft’s length by about
12.5 cm. (The temperature increased to
about 128 C at the aircraft nose and about
90 C at the tail, and cabin windows were
noticeably warm to the touch.) 

�
�

Hugh Thomas/BWP Media/Getty Images, Inc.

Figure 18-10 (a) A bimetal strip, consisting
of a strip of brass and a strip of steel
welded together, at temperature T0.
(b) The strip bends as shown at tempera-
tures above this reference temperature.
Below the reference temperature the
strip bends the other way. Many thermo-
stats operate on this principle, making
and breaking an electrical contact as the
temperature rises and falls.

Brass

Steel

T = T0

(a)

T  > T0

(b)

Different amounts of
expansion or contraction
can produce bending.
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in which a is a constant called the coefficient of linear expansion. The coefficient a
has the unit “per degree” or “per kelvin” and depends on the material. Although a
varies somewhat with temperature, for most practical purposes it can be taken as
constant for a particular material. Table 18-2 shows some coefficients of linear ex-
pansion. Note that the unit C� there could be replaced with the unit K.

The thermal expansion of a solid is like photographic enlargement except it is in
three dimensions. Figure 18-11b shows the (exaggerated) thermal expansion of a
steel ruler. Equation 18-9 applies to every linear dimension of the ruler, including its
edge, thickness, diagonals, and the diameters of the circle etched on it and the circular
hole cut in it. If the disk cut from that hole originally fits snugly in the hole, it will con-
tinue to fit snugly if it undergoes the same temperature increase as the ruler.

Volume Expansion
If all dimensions of a solid expand with temperature, the volume of that solid
must also expand. For liquids, volume expansion is the only meaningful expan-
sion parameter. If the temperature of a solid or liquid whose volume is V is
increased by an amount �T, the increase in volume is found to be

�V � Vb �T, (18-10)

where b is the coefficient of volume expansion of the solid or liquid. The coef-
ficients of volume expansion and linear expansion for a solid are related by

b � 3a. (18-11)

The most common liquid, water, does not behave like other liquids. Above
about 4�C, water expands as the temperature rises, as we would expect. Between
0 and about 4�C, however, water contracts with increasing temperature. Thus, at
about 4�C, the density of water passes through a maximum. At all other tempera-
tures, the density of water is less than this maximum value.

This behavior of water is the reason lakes freeze from the top down rather than
from the bottom up. As water on the surface is cooled from, say, 10�C toward
the freezing point, it becomes denser (“heavier”) than lower water and sinks to the
bottom. Below 4�C, however, further cooling makes the water then on the surface
less dense (“lighter”) than the lower water, so it stays on the surface until it freezes.
Thus the surface freezes while the lower water is still liquid. If lakes froze from the
bottom up, the ice so formed would tend not to melt completely during the sum-
mer, because it would be insulated by the water above. After a few years, many
bodies of open water in the temperate zones of Earth would be frozen solid all year
round—and aquatic life could not exist.

Table 18-2 Some Coefficients of 
Linear Expansiona

Substance a (10�6/C�)

Ice (at 0�C) 51
Lead 29
Aluminum 23
Brass 19
Copper 17
Concrete 12
Steel 11
Glass (ordinary) 9
Glass (Pyrex) 3.2
Diamond 1.2
Invarb 0.7
Fused quartz 0.5

aRoom temperature values except for the listing
for ice.
bThis alloy was designed to have a low coeffi-
cient of expansion.The word is a shortened form
of “invariable.”

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(b)

Circular
hole

Circle(a)

Figure 18-11 The same steel ruler at two
different temperatures.When it ex-
pands, the scale, the numbers, the
thickness, and the diameters of the cir-
cle and circular hole are all increased
by the same factor. (The expansion has
been exaggerated for clarity.)

Checkpoint 2
The figure here shows four rectangular metal plates, with sides of L, 2L, or
3L.They are all made of the same material, and their temperature is to be
increased by the same amount.Rank the plates according to the expected
increase in (a) their vertical heights and (b) their areas,greatest first.

(1) (2) (3) (4)
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volume of the fuel did also, as given by Eq. 18-10 (�V �
Vb �T).

Calculations: We find

�V� (37 000 L)(9.50 � 10�4/C�)(�23.0 K) � �808 L.

Thus, the amount delivered was

Vdel � V � �V � 37 000 L � 808 L
� 36 190 L. (Answer)

Note that the thermal expansion of the steel tank has 
nothing to do with the problem. Question: Who paid for the
“missing” diesel fuel?

Sample Problem 18.02 Thermal expansion of a volume

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of
diesel fuel. He encountered cold weather on the way to
Payson, Utah, where the temperature was 23.0 K lower than
in Las Vegas, and where he delivered his entire load. How
many liters did he deliver? The coefficient of volume expan-
sion for diesel fuel is 9.50 � 10�4/C�, and the coefficient of
linear expansion for his steel truck tank is 11 � 10�6/C�.

KEY IDEA

The volume of the diesel fuel depends directly on the tem-
perature. Thus, because the temperature decreased, the

Additional examples, video, and practice available at WileyPLUS

18-4 ABSORPTION OF HEAT

After reading this module, you should be able to . . .

18.11 Identify that thermal energy is associated with the random
motions of the microscopic bodies in an object.

18.12 Identify that heat Q is the amount of transferred energy
(either to or from an object’s thermal energy) due to a tempera-
ture difference between the object and its environment.

18.13 Convert energy units between various measurement systems.
18.14 Convert between mechanical or electrical energy and ther-

mal energy.
18.15 For a temperature change �T of a substance, relate 

the change to the heat transfer Q and the substance’s heat 
capacity C.

18.16 For a temperature change �T of a substance, relate the

change to the heat transfer Q and the substance’s 
specific heat c and mass m.

18.17 Identify the three phases of matter.
18.18 For a phase change of a substance, relate the heat

transfer Q, the heat of transformation L, and the amount
of mass m transformed.

18.19 Identify that if a heat transfer Q takes a substance
across a phase-change temperature, the transfer must
be calculated in steps: (a) a temperature change to reach
the phase-change temperature, (b) the phase change,
and then (c) any temperature change that moves the 
substance away from the phase-change temperature.

Learning Objectives

● Heat Q is energy that is transferred between a system and
its environment because of a temperature difference between
them. It can be measured in joules (J), calories (cal), kilocalo-
ries (Cal or kcal), or British thermal units (Btu), with

1 cal � 3.968 � 10�3 Btu � 4.1868 J.

● If heat Q is absorbed by an object, the object’s temperature
change Tf � Ti is related to Q by

Q � C(Tf � Ti),

in which C is the heat capacity of the object. If the object has
mass m, then

Q � cm(Tf � Ti),

where c is the specific heat of the material making up the
object.

Key Ideas
● The molar specific heat of a material is the heat capacity
per mole, which means per 6.02 � 1023 elementary units of
the material.

● Heat absorbed by a material may change the material’s
physical state —for example, from solid to liquid or from liquid
to gas. The amount of energy required per unit mass to
change the state (but not the temperature) of a particular
material is its heat of transformation L. Thus,

Q � Lm.

● The heat of vaporization LV is the amount of energy per unit
mass that must be added to vaporize a liquid or that must be
removed to condense a gas. 

● The heat of fusion LF is the amount of energy per unit mass
that must be added to melt a solid or that must be removed to
freeze a liquid.
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Temperature and Heat
If you take a can of cola from the refrigerator and leave it on the kitchen table, its
temperature will rise—rapidly at first but then more slowly—until the tempera-
ture of the cola equals that of the room (the two are then in thermal equilibrium).
In the same way, the temperature of a cup of hot coffee, left sitting on the table,
will fall until it also reaches room temperature.

In generalizing this situation, we describe the cola or the coffee as a system
(with temperature TS) and the relevant parts of the kitchen as the environment
(with temperature TE) of that system. Our observation is that if TS is not equal to
TE, then TS will change (TE can also change some) until the two temperatures are
equal and thus thermal equilibrium is reached.

Such a change in temperature is due to a change in the thermal energy of the
system because of a transfer of energy between the system and the system’s
environment. (Recall that thermal energy is an internal energy that consists of the
kinetic and potential energies associated with the random motions of the atoms,
molecules, and other microscopic bodies within an object.) The transferred energy
is called heat and is symbolized Q. Heat is positive when energy is transferred to a
system’s thermal energy from its environment (we say that heat is absorbed by the
system). Heat is negative when energy is transferred from a system’s thermal en-
ergy to its environment (we say that heat is released or lost by the system).

This transfer of energy is shown in Fig. 18-12. In the situation of Fig. 18-12a,
in which TS � TE, energy is transferred from the system to the environment, so
Q is negative. In Fig. 18-12b, in which TS � TE, there is no such transfer, Q is
zero, and heat is neither released nor absorbed. In Fig. 18-12c, in which TS � TE,
the transfer is to the system from the environment; so Q is positive.

Environment

System
TS

Q
TETS >

Environment

System
TS

TETS = Q = 0

Q < 0 

TE

TE

Environment

System
TS

Q

TETS <

TE

(a)

(b)

(c)
Q > 0

The system has a
higher temperature,
so ...

... it loses
energy as heat.

The system has the
same temperature,
so ...

... no energy
is transferred
as heat.

The system has a
lower temperature,
so ...

... it gains
energy as
heat.

Figure 18-12 If the temperature of a system exceeds that of its environment as in (a), heat Q
is lost by the system to the environment until thermal equilibrium (b) is established. (c) If
the temperature of the system is below that of the environment, heat is absorbed by the
system until thermal equilibrium is established.



Language. Recall that energy can also be transferred between a system and
its environment as work W via a force acting on a system. Heat and work, unlike
temperature, pressure, and volume, are not intrinsic properties of a system. They
have meaning only as they describe the transfer of energy into or out of a system.
Similarly, the phrase “a $600 transfer” has meaning if it describes the transfer to
or from an account, not what is in the account, because the account holds money,
not a transfer.

Units. Before scientists realized that heat is transferred energy, heat was
measured in terms of its ability to raise the temperature of water. Thus, the
calorie (cal) was defined as the amount of heat that would raise the tempera-
ture of 1 g of water from 14.5�C to 15.5�C. In the British system, the correspon-
ding unit of heat was the British thermal unit (Btu), defined as the amount of
heat that would raise the temperature of 1 lb of water from 63�F to 64�F.

In 1948, the scientific community decided that since heat (like work) is
transferred energy, the SI unit for heat should be the one we use for energy—
namely, the joule. The calorie is now defined to be 4.1868 J (exactly), with no refer-
ence to the heating of water. (The “calorie” used in nutrition, sometimes called the
Calorie (Cal), is really a kilocalorie.) The relations among the various heat units are

1 cal � 3.968 � 10�3 Btu � 4.1868 J. (18-12)

The Absorption of Heat by Solids and Liquids
Heat Capacity
The heat capacity C of an object is the proportionality constant between the heat
Q that the object absorbs or loses and the resulting temperature change �T of
the object; that is,

Q � C �T � C(Tf � Ti), (18-13)

in which Ti and Tf are the initial and final temperatures of the object. Heat
capacity C has the unit of energy per degree or energy per kelvin. The heat
capacity C of, say, a marble slab used in a bun warmer might be 179 cal/C�, which
we can also write as 179 cal/K or as 749 J/K.

The word “capacity” in this context is really misleading in that it suggests analogy
with the capacity of a bucket to hold water. That analogy is false, and you should not
think of the object as “containing” heat or being limited in its ability to absorb heat.
Heat transfer can proceed without limit as long as the necessary temperature differ-
ence is maintained.The object may,of course,melt or vaporize during the process.

Specific Heat
Two objects made of the same material—say, marble—will have heat capacities
proportional to their masses. It is therefore convenient to define a “heat capacity
per unit mass” or specific heat c that refers not to an object but to a unit mass of
the material of which the object is made. Equation 18-13 then becomes

Q � cm �T � cm(Tf � Ti). (18-14)

Through experiment we would find that although the heat capacity of a particu-
lar marble slab might be 179 cal/C� (or 749 J/K), the specific heat of marble itself
(in that slab or in any other marble object) is 0.21 cal/g �C� (or 880 J/kg �K).
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We are led then to this definition of heat:

Heat is the energy transferred between a system and its environment because of
a temperature difference that exists between them.



From the way the calorie and the British thermal unit were initially defined,
the specific heat of water is

c � 1 cal/g �C� � 1 Btu/lb �F� � 4186.8 J/kg �K. (18-15)

Table 18-3 shows the specific heats of some substances at room temperature.
Note that the value for water is relatively high.The specific heat of any substance
actually depends somewhat on temperature, but the values in Table 18-3 apply
reasonably well in a range of temperatures near room temperature.
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Table 18-3 Some Specific Heats
and Molar Specific Heats at Room
Temperature

Molar
Specific

Specific Heat Heat

cal J J

Substance g �K kg �K mol �K

Elemental
Solids

Lead 0.0305 128 26.5
Tungsten 0.0321 134 24.8
Silver 0.0564 236 25.5
Copper 0.0923 386 24.5
Aluminum 0.215 900 24.4
Other Solids

Brass 0.092 380
Granite 0.19 790
Glass 0.20 840
Ice (�10�C) 0.530 2220
Liquids

Mercury 0.033 140
Ethyl
alcohol 0.58 2430

Seawater 0.93 3900
Water 1.00 4187

Checkpoint 3
A certain amount of heat Q will warm 1 g of material A by 3 C� and 1 g of material B
by 4 C�.Which material has the greater specific heat?

Molar Specific Heat
In many instances the most convenient unit for specifying the amount of a
substance is the mole (mol), where

1 mol � 6.02 � 1023 elementary units

of any substance. Thus 1 mol of aluminum means 6.02 � 1023 atoms (the atom is
the elementary unit), and 1 mol of aluminum oxide means 6.02 � 1023 molecules
(the molecule is the elementary unit of the compound).

When quantities are expressed in moles, specific heats must also involve
moles (rather than a mass unit); they are then called molar specific heats.
Table 18-3 shows the values for some elemental solids (each consisting of a single
element) at room temperature.

An Important Point
In determining and then using the specific heat of any substance, we need to
know the conditions under which energy is transferred as heat. For solids and
liquids, we usually assume that the sample is under constant pressure (usually
atmospheric) during the transfer. It is also conceivable that the sample is held at
constant volume while the heat is absorbed. This means that thermal expansion
of the sample is prevented by applying external pressure. For solids and liquids,
this is very hard to arrange experimentally, but the effect can be calculated, and it
turns out that the specific heats under constant pressure and constant volume for
any solid or liquid differ usually by no more than a few percent. Gases, as you will
see, have quite different values for their specific heats under constant-pressure
conditions and under constant-volume conditions.

Heats of Transformation
When energy is absorbed as heat by a solid or liquid, the temperature of the sample
does not necessarily rise. Instead, the sample may change from one phase, or state,
to another. Matter can exist in three common states: In the solid state, the mole-
cules of a sample are locked into a fairly rigid structure by their mutual attraction.
In the liquid state, the molecules have more energy and move about more. They
may form brief clusters, but the sample does not have a rigid structure and can flow
or settle into a container. In the gas, or vapor, state, the molecules have even more
energy, are free of one another, and can fill up the full volume of a container.

Melting. To melt a solid means to change it from the solid state to the liquid
state. The process requires energy because the molecules of the solid must be
freed from their rigid structure. Melting an ice cube to form liquid water is a com-
mon example. To freeze a liquid to form a solid is the reverse of melting and re-
quires that energy be removed from the liquid, so that the molecules can settle
into a rigid structure.



Table 18-4 Some Heats of Transformation

Melting Boiling

Substance Melting Point (K) Heat of Fusion LF (kJ/kg) Boiling Point (K) Heat of Vaporization LV (kJ/kg)

Hydrogen 14.0 58.0 20.3 455
Oxygen 54.8 13.9 90.2 213
Mercury 234 11.4 630 296
Water 273 333 373 2256
Lead 601 23.2 2017 858
Silver 1235 105 2323 2336
Copper 1356 207 2868 4730

Vaporizing. To vaporize a liquid means to change it from the liquid state
to the vapor (gas) state. This process, like melting, requires energy because the
molecules must be freed from their clusters. Boiling liquid water to transfer it
to water vapor (or steam — a gas of individual water molecules) is a common
example. Condensing a gas to form a liquid is the reverse of vaporizing; it
requires that energy be removed from the gas, so that the molecules can cluster
instead of flying away from one another.

The amount of energy per unit mass that must be transferred as heat when a
sample completely undergoes a phase change is called the heat of transformation
L.Thus, when a sample of mass m completely undergoes a phase change, the total
energy transferred is

Q � Lm. (18-16)

When the phase change is from liquid to gas (then the sample must absorb heat)
or from gas to liquid (then the sample must release heat), the heat of transfor-
mation is called the heat of vaporization LV. For water at its normal boiling or
condensation temperature,

LV � 539 cal/g � 40.7 kJ/mol � 2256 kJ/kg. (18-17)

When the phase change is from solid to liquid (then the sample must absorb
heat) or from liquid to solid (then the sample must release heat), the heat of
transformation is called the heat of fusion LF. For water at its normal freezing or
melting temperature,

LF � 79.5 cal/g � 6.01 kJ/mol � 333 kJ/kg. (18-18)

Table 18-4 shows the heats of transformation for some substances.
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can occur. (2) Because nothing in the system undergoes a
phase change, the thermal energy transfers can only change
the temperatures.

Calculations: To relate the transfers to the temperature
changes, we can use Eqs. 18-13 and 18-14 to write

for the water: Qw � cwmw(Tf � Ti); (18-19)
for the beaker: Qb � Cb(Tf � Ti); (18-20)
for the copper: Qc � ccmc(Tf � T). (18-21)

Because the total energy of the system cannot change, the
sum of these three energy transfers is zero:

Qw � Qb � Qc � 0. (18-22)

Sample Problem 18.03 Hot slug in water, coming to equilibrium

A copper slug whose mass mc is 75 g is heated in a laboratory
oven to a temperature T of 312°C. The slug is then dropped
into a glass beaker containing a mass mw � 220 g of water.
The heat capacity Cb of the beaker is 45 cal/K. The initial
temperature Ti of the water and the beaker is 12°C.Assuming
that the slug, beaker, and water are an isolated system and the
water does not vaporize, find the final temperature Tf of the
system at thermal equilibrium.

KEY IDEAS

(1) Because the system is isolated, the system’s total energy
cannot change and only internal transfers of thermal energy
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Q3 � cliqm(Tf � Ti)

� (4186.8 J/kg �K)(0.720 kg)(15�C � 0°C)

� 45 217 J � 45.22 kJ.

Total: The total required heat Qtot is the sum of the
amounts required in the three steps:

Qtot � Q1 � Q2 � Q3

� 15.98 kJ � 239.8 kJ � 45.22 kJ
� 300 kJ. (Answer)

Note that most of the energy goes into melting the ice rather
than raising the temperature.

(b) If we supply the ice with a total energy of only 210 kJ (as
heat), what are the final state and temperature of the water?

KEY IDEA

From step 1, we know that 15.98 kJ is needed to raise the
temperature of the ice to the melting point. The remaining
heat Qrem is then 210 kJ � 15.98 kJ, or about 194 kJ. From
step 2, we can see that this amount of heat is insufficient to
melt all the ice. Because the melting of the ice is incomplete,
we must end up with a mixture of ice and liquid; the temper-
ature of the mixture must be the freezing point, 0�C.

Calculations: We can find the mass m of ice that is melted by
the available energy Qrem by using Eq. 18-16 with LF:

Thus, the mass of the ice that remains is 720 g � 580 g, or
140 g, and we have

580 g water and 140 g ice, at 0�C. (Answer)

m �
Qrem

LF
�

194 kJ
333 kJ/kg

� 0.583 kg � 580 g.

Sample Problem 18.04 Heat to change temperature and state

(a) How much heat must be absorbed by ice of mass m �
720 g at �10�C to take it to the liquid state at 15�C?

KEY IDEAS

The heating process is accomplished in three steps: (1) The
ice cannot melt at a temperature below the freezing
point — so initially, any energy transferred to the ice as
heat can only increase the temperature of the ice, until 0�C is
reached. (2) The temperature then cannot increase until all
the ice melts—so any energy transferred to the ice as heat
now can only change ice to liquid water, until all the ice melts.
(3) Now the energy transferred to the liquid water as heat can
only increase the temperature of the liquid water.

Warming the ice: The heat Q1 needed to take the ice from
the initial Ti � �10�C to the final Tf � 0�C (so that the ice
can then melt) is given by Eq. 18-14 (Q � cm �T). Using the
specific heat of ice cice in Table 18-3 gives us

Q1 � cicem(Tf � Ti)

� (2220 J/kg �K)(0.720 kg)[0�C � (�10�C)]

� 15 984 J � 15.98 kJ.

Melting the ice: The heat Q2 needed to melt all the ice is
given by Eq. 18-16 (Q � Lm). Here L is the heat of fusion
LF, with the value given in Eq. 18-18 and Table 18-4. We find

Q2 � LF m � (333 kJ/kg)(0.720 kg) � 239.8 kJ.

Warming the liquid: The heat Q3 needed to increase the
temperature of the water from the initial value Ti � 0�C to
the final value Tf � 15�C is given by Eq. 18-14 (with the spe-
cific heat of liquid water cliq):

Substituting Eqs. 18-19 through 18-21 into Eq. 18-22 yields

cwmw(Tf � Ti) � Cb(Tf � Ti) � ccmc(Tf � T) � 0. (18-23)

Temperatures are contained in Eq. 18-23 only as differences.
Thus, because the differences on the Celsius and Kelvin
scales are identical, we can use either of those scales in this
equation. Solving it for Tf, we obtain

Using Celsius temperatures and taking values for cc and cw

from Table 18-3, we find the numerator to be

(0.0923 cal/g �K)(75 g)(312�C) � (45 cal/K)(12�C)

� (1.00 cal/g �K)(220 g)(12�C) � 5339.8 cal,

Tf �
cc mcT � CbTi � cw mwTi

cw mw � Cb � cc mc
.

and the denominator to be

(1.00 cal/g �K)(220 g) � 45 cal/K

� (0.0923 cal/g �K)(75 g) � 271.9 cal/C�.

We then have

(Answer)

From the given data you can show that

Qw � 1670 cal, Qb � 342 cal, Qc � �2020 cal.

Apart from rounding errors, the algebraic sum of these
three heat transfers is indeed zero, as required by the con-
servation of energy (Eq. 18-22).

Tf �
5339.8 cal

271.9 cal/C�
� 19.6�C � 20�C.

Additional examples, video, and practice available at WileyPLUS



534 CHAPTER 18 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

Heat Transfer Mechanisms
We have discussed the transfer of energy as heat between a system and its en-
vironment, but we have not yet described how that transfer takes place.There are
three transfer mechanisms: conduction, convection, and radiation. Let’s next ex-
amine these mechanisms in turn.

Conduction
If you leave the end of a metal poker in a fire for enough time, its handle will get
hot. Energy is transferred from the fire to the handle by (thermal) conduction
along the length of the poker. The vibration amplitudes of the atoms and elec-
trons of the metal at the fire end of the poker become relatively large because
of the high temperature of their environment. These increased vibrational ampli-
tudes, and thus the associated energy, are passed along the poker, from atom to
atom, during collisions between adjacent atoms. In this way, a region of rising
temperature extends itself along the poker to the handle.

Consider a slab of face area A and thickness L, whose faces are maintained
at temperatures TH and TC by a hot reservoir and a cold reservoir, as in Fig. 18-18.
Let Q be the energy that is transferred as heat through the slab, from its hot face
to its cold face, in time t. Experiment shows that the conduction rate Pcond (the

● The rate Pcond at which energy is conducted through a slab
for which one face is maintained at the higher temperature 
TH and the other face is maintained at the lower temperature
TC is

Here each face of the slab has area A, the length of the slab
(the distance between the faces) is L, and k is the thermal
conductivity of the material.

● Convection occurs when temperature differences cause an
energy transfer by motion within a fluid. 

Pcond �
Q
t

� kA
TH � TC

L
.

Key Ideas
● Radiation is an energy transfer via the emission of electro-
magnetic energy. The rate Prad at which an object emits
energy via thermal radiation is

Prad � s´AT4,

where s (� 5.6704 � 10�8 W/m2�K4) is the Stefan –
Boltzmann constant, ´ is the emissivity of the object’s sur-
face, A is its surface area, and T is its surface temperature
(in kelvins). The rate Pabs at which an object absorbs energy
via thermal radiation from its environment, which is at the
uniform temperature Tenv (in kelvins), is

Pabs � s´AT4
env.

Figure 18-18 Thermal conduction. Energy is
transferred as heat from a reservoir at
temperature TH to a cooler reservoir at
temperature TC through a conducting slab
of thickness L and thermal conductivity k.

k

Hot reservoir 
at TH

Cold reservoir 
at TC

L

TCTH >

Q

We assume a steady
transfer of energy as heat.

18-6 HEAT TRANSFER MECHANISMS

After reading this module, you should be able to . . .

18.31 For thermal conduction through a layer, apply the rela-
tionship between the energy-transfer rate Pcond and the
layer’s area A, thermal conductivity k, thickness L, and
temperature difference �T (between its two sides).

18.32 For a composite slab (two or more layers) that has
reached the steady state in which temperatures are no
longer changing, identify that (by the conservation of
energy) the rates of thermal conduction Pcond through the
layers must be equal.

18.33 For thermal conduction through a layer, apply the
relationship between thermal resistance R, thickness L,
and thermal conductivity k.

18.34 Identify that thermal energy can be transferred by 

convection, in which a warmer fluid (gas or liquid) tends to
rise in a cooler fluid.

18.35 In the emission of thermal radiation by an object, apply
the relationship between the energy-transfer rate Prad and
the object’s surface area A, emissivity ´, and surface tem-
perature T (in kelvins).

18.36 In the absorption of thermal radiation by an object,
apply the relationship between the energy-transfer rate
Pabs and the object’s surface area A and emissivity ́ , and
the environmental temperature T (in kelvins).

18.37 Calculate the net energy-transfer rate Pnet of an object
emitting radiation to its environment and absorbing radia-
tion from that environment.

Learning Objectives
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amount of energy transferred per unit time) is

(18-32)

in which k, called the thermal conductivity, is a constant that depends on the
material of which the slab is made. A material that readily transfers energy by
conduction is a good thermal conductor and has a high value of k.Table 18-6 gives
the thermal conductivities of some common metals, gases, and building materials.

Thermal Resistance to Conduction (R-Value)
If you are interested in insulating your house or in keeping cola cans cold on a
picnic, you are more concerned with poor heat conductors than with good ones.
For this reason, the concept of thermal resistance R has been introduced into
engineering practice.The R-value of a slab of thickness L is defined as

(18-33)

The lower the thermal conductivity of the material of which a slab is made, the
higher the R-value of the slab; so something that has a high R-value is a poor ther-
mal conductor and thus a good thermal insulator.

Note that R is a property attributed to a slab of a specified thickness, not to a
material. The commonly used unit for R (which, in the United States at least, is
almost never stated) is the square foot – Fahrenheit degree – hour per British
thermal unit (ft 2�F��h/Btu). (Now you know why the unit is rarely stated.)

Conduction Through a Composite Slab
Figure 18-19 shows a composite slab, consisting of two materials having different
thicknesses L1 and L2 and different thermal conductivities k1 and k2. The tempera-
tures of the outer surfaces of the slab are TH and TC. Each face of the slab has area
A. Let us derive an expression for the conduction rate through the slab under the
assumption that the transfer is a steady-state process; that is, the temperatures
everywhere in the slab and the rate of energy transfer do not change with time.

In the steady state, the conduction rates through the two materials must be
equal.This is the same as saying that the energy transferred through one material
in a certain time must be equal to that transferred through the other material in
the same time. If this were not true, temperatures in the slab would be changing
and we would not have a steady-state situation. Letting TX be the temperature of
the interface between the two materials, we can now use Eq. 18-32 to write

(18-34)

Solving Eq. 18-34 for TX yields, after a little algebra,

(18-35)

Substituting this expression for TX into either equality of Eq. 18-34 yields

(18-36)

We can extend Eq. 18-36 to apply to any number n of materials making up
a slab:

(18-37)

The summation sign in the denominator tells us to add the values of L/k for all
the materials.

Pcond �
A(TH � TC)

� (L/k)
.

Pcond �
A(TH � TC)

L1/k1 � L2/k2
.

TX �
k1L2TC � k2L1TH

k1L2 � k2L1
.

Pcond �
k2A(TH � TX)

L2
�

k1A(TX � TC)
L1

.

R �
L
k

.

Pcond �
Q
t

� kA
TH � TC

L
,

Table 18-6 Some Thermal Conductivities

Substance k (W/m �K)

Metals

Stainless steel 14
Lead 35
Iron 67
Brass 109
Aluminum 235
Copper 401
Silver 428

Gases

Air (dry) 0.026
Helium 0.15
Hydrogen 0.18

Building Materials

Polyurethane foam 0.024
Rock wool 0.043
Fiberglass 0.048
White pine 0.11
Window glass 1.0

Figure 18-19 Heat is transferred at a steady
rate through a composite slab made up of
two different materials with different thick-
nesses and different thermal conductivities.
The steady-state temperature at the interface
of the two materials is TX.

Cold reservoir 
at TC

Hot reservoir 
at TH

k1

L1

Q

TX

k2

L2

The energy
transfer per
second here ...

... equals the 
energy transfer
per second here.
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Figure 18-20 A false-color thermogram re-
veals the rate at which energy is radiated by a
cat.The rate is color-coded, with white and
red indicating the greatest radiation rate.The
nose is cool.

Edward Kinsman/Photo Researchers, Inc.

Checkpoint 7
The figure shows the face and
interface temperatures of a com-
posite slab consisting of four
materials, of identical thicknesses,
through which the heat transfer is steady. Rank the materials according to their ther-
mal conductivities, greatest first.

25°C 15°C 10°C –5.0°C –10°C

a b c d 

Convection
When you look at the flame of a candle or a match, you are watching thermal
energy being transported upward by convection. Such energy transfer occurs
when a fluid, such as air or water, comes in contact with an object whose tem-
perature is higher than that of the fluid. The temperature of the part of the fluid
that is in contact with the hot object increases, and (in most cases) that fluid
expands and thus becomes less dense. Because this expanded fluid is now lighter
than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the
surrounding cooler fluid then flows so as to take the place of the rising warmer
fluid, and the process can then continue.

Convection is part of many natural processes. Atmospheric convection plays
a fundamental role in determining global climate patterns and daily weather vari-
ations. Glider pilots and birds alike seek rising thermals (convection currents of
warm air) that keep them aloft. Huge energy transfers take place within the
oceans by the same process. Finally, energy is transported to the surface of the
Sun from the nuclear furnace at its core by enormous cells of convection, in
which hot gas rises to the surface along the cell core and cooler gas around the
core descends below the surface.

Radiation
The third method by which an object and its environment can exchange energy
as heat is via electromagnetic waves (visible light is one kind of electromag-
netic wave). Energy transferred in this way is often called thermal radiation to
distinguish it from electromagnetic signals (as in, say, television broadcasts) and
from nuclear radiation (energy and particles emitted by nuclei). (To “radiate”
generally means to emit.) When you stand in front of a big fire, you are warmed
by absorbing thermal radiation from the fire; that is, your thermal energy
increases as the fire’s thermal energy decreases. No medium is required for heat
transfer via radiation — the radiation can travel through vacuum from, say, the
Sun to you.

The rate Prad at which an object emits energy via electromagnetic radiation
depends on the object’s surface area A and the temperature T of that area in
kelvins and is given by

Prad � s´AT 4. (18-38)

Here s � 5.6704 � 10�8 W/m2�K4 is called the Stefan–Boltzmann constant after
Josef Stefan (who discovered Eq. 18-38 experimentally in 1879) and Ludwig
Boltzmann (who derived it theoretically soon after). The symbol ´ represents the
emissivity of the object’s surface, which has a value between 0 and 1, depending
on the composition of the surface. A surface with the maximum emissivity of 1.0
is said to be a blackbody radiator, but such a surface is an ideal limit and does not
occur in nature. Note again that the temperature in Eq. 18-38 must be in kelvins
so that a temperature of absolute zero corresponds to no radiation. Note also that
every object whose temperature is above 0 K—including you—emits thermal
radiation. (See Fig. 18-20.)
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The rate Pabs at which an object absorbs energy via thermal radiation from its
environment, which we take to be at uniform temperature Tenv (in kelvins), is

Pabs � s´AT 4
env. (18-39)

The emissivity ́ in Eq. 18-39 is the same as that in Eq. 18-38.An idealized blackbody
radiator, with ´ � 1, will absorb all the radiated energy it intercepts (rather than
sending a portion back away from itself through reflection or scattering).

Because an object both emits and absorbs thermal radiation, its net rate Pnet

of energy exchange due to thermal radiation is

Pnet � Pabs � Prad � s´A(T 4
env � T 4). (18-40)

Pnet is positive if net energy is being absorbed via radiation and negative if it is
being lost via radiation.

Thermal radiation is involved in the numerous medical cases of a dead rat-
tlesnake striking a hand reaching toward it.Pits between each eye and nostril of a rat-
tlesnake (Fig. 18-21) serve as sensors of thermal radiation.When, say, a mouse moves
close to a rattlesnake’s head, the thermal radiation from the mouse triggers these sen-
sors, causing a reflex action in which the snake strikes the mouse with its fangs and in-
jects its venom. The thermal radiation from a reaching hand can cause the same re-
flex action even if the snake has been dead for as long as 30 min because the snake’s
nervous system continues to function. As one snake expert advised, if you must re-
move a recently killed rattlesnake,use a long stick rather than your hand.

Figure 18-21 A rattlesnake’s face has thermal 
radiation detectors, allowing the snake to
strike at an animal even in complete darkness.

© David A. Northcott/Corbis Images

Additional examples, video, and practice available at WileyPLUS

KEY IDEAS

(1) Temperature T4 helps determine the rate Pd at which en-
ergy is conducted through the brick, as given by Eq. 18-32.
However, we lack enough data to solve Eq. 18-32 for T4.
(2) Because the conduction is steady, the conduction rate Pd

through the brick must equal the conduction rate Pa through
the pine.That gets us going.

Calculations: From Eq. 18-32 and Fig. 18-22, we can write

Setting Pa � Pd and solving for T4 yield

Letting Ld � 2.0La and kd � 5.0ka, and inserting the known
temperatures, we find

� �8.0�C. (Answer)

T4 �
ka(2.0La)
(5.0ka)La

 (25�C � 20�C) � (�10�C)

T4 �
kaLd

kdLa
 (T1 � T2) � T5.

Pa � kaA
T1 � T2

La
  and  Pd � kdA

T4 � T5

Ld
.

Sample Problem 18.06 Thermal conduction through a layered wall

Figure 18-22 shows the cross section of a wall made of
white pine of thickness La and brick of thickness Ld

(� 2.0La), sandwiching two layers of unknown material
with identical thicknesses and thermal conductivities. The
thermal conductivity of the pine is ka and that of the brick
is kd (� 5.0ka). The face area A of the wall is unknown.
Thermal conduction through the wall has reached the
steady state; the only known interface temperatures 
are T1 � 25�C, T2 � 20�C, and T5 � �10�C. What is inter-
face temperature T4?

Figure 18-22 Steady-state heat transfer through a wall.

Indoors Outdoors

(a) (b) (d)(c)

La Lb Lc Ld

ka kb kc kd

T1 T2 T3 T4 T5

The energy transfer
per second is the
same in each layer.
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KEY IDEAS

(1) In a steady-state situation, a surface with area A, emissivity
´, and temperature T loses energy to thermal radiation at the
rate given by Eq. 18-38 (Prad s´AT 4). (2) Simultaneously,
it gains energy by thermal radiation from its environment
at temperature Tenv at the rate given by Eq. 18-39 (Penv �
s´ ).

Calculations: To find the net rate of energy exchange, we
subtract Eq. 18-38 from Eq. 18-39 to write

Pnet � Pabs � Prad

� s´A( � T 4). (18-41)

We need the area of the curved surface of the cylinder,
which is A � h(2pR). We also need the temperatures in
kelvins: Tenv � 273 K � 3 K � 270 K and T � 273 K �
22 K � 295 K. Substituting in Eq. 18-41 for A and then
substituting known values in SI units (which are not dis-
played here), we find

Pnet � (5.67 � 10�8)(0.80)(0.050)(2p)(0.015)(2704 � 2954)

� �0.48 W. (Answer)

Thus, the plant has a net loss of energy via thermal radiation
of 0.48 W. The plant’s energy production rate is comparable
to that of a hummingbird in flight.

T4
env

AT4
env

�

Sample Problem 18.07 Thermal radiation by a skunk cabbage can melt surrounding snow

Unlike most other plants, a skunk cabbage can regulate its
internal temperature (set at T � 22�C) by altering the rate
at which it produces energy. If it becomes covered with
snow, it can increase that production so that its thermal ra-
diation melts the snow in order to re-expose the plant to
sunlight. Let’s model a skunk cabbage with a cylinder of
height h � 5.0 cm and radius R � 1.5 cm and assume it is
surrounded by a snow wall at temperature Tenv � �3.0�C
(Fig. 18-23). If the emissivity ´ is 0.80, what is the net rate
of energy exchange via thermal radiation between the
plant’s curved side and the snow?

Additional examples, video, and practice available at WileyPLUS

h

R

Figure 18-23 Model of skunk cabbage that has melted snow to uncover
itself.

Temperature; Thermometers Temperature is an SI base
quantity related to our sense of hot and cold. It is measured with a
thermometer, which contains a working substance with a measur-
able property, such as length or pressure, that changes in a regular
way as the substance becomes hotter or colder.

Zeroth Law of Thermodynamics When a thermometer and
some other object are placed in contact with each other, they even-
tually reach thermal equilibrium.The reading of the thermometer is
then taken to be the temperature of the other object. The process
provides consistent and useful temperature measurements because
of the zeroth law of thermodynamics: If bodies A and B are each in
thermal equilibrium with a third body C (the thermometer), then A
and B are in thermal equilibrium with each other.

The Kelvin Temperature Scale In the SI system, tempera-
ture is measured on the Kelvin scale, which is based on the triple
point of water (273.16 K). Other temperatures are then defined by

Review & Summary

use of a constant-volume gas thermometer, in which a sample of gas
is maintained at constant volume so its pressure is proportional to
its temperature. We define the temperature T as measured with a
gas thermometer to be

(18-6)

Here T is in kelvins, and p3 and p are the pressures of the gas at
273.16 K and the measured temperature, respectively.

Celsius and Fahrenheit Scales The Celsius temperature
scale is defined by

TC � T � 273.15�, (18-7)

with T in kelvins.The Fahrenheit temperature scale is defined by

(18-8)TF � 9
5TC � 32�.

T � (273.16 K) � lim
gas:0

p
p3
�.
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Thermal Expansion All objects change size with changes in tem-
perature. For a temperature change �T, a change �L in any linear
dimension L is given by

�L � La �T, (18-9)

in which a is the coefficient of linear expansion. The change �V in
the volume V of a solid or liquid is

�V � Vb �T. (18-10)

Here b � 3a is the material’s coefficient of volume expansion.

Heat Heat Q is energy that is transferred between a system and
its environment because of a temperature difference between
them. It can be measured in joules (J), calories (cal), kilocalories
(Cal or kcal), or British thermal units (Btu), with

1 cal � 3.968 � 10�3 Btu � 4.1868 J. (18-12)

Heat Capacity and Specific Heat If heat Q is absorbed by
an object, the object’s temperature change Tf � Ti is related to Q by

Q � C(Tf � Ti), (18-13)

in which C is the heat capacity of the object. If the object has mass
m, then

Q � cm(Tf � Ti), (18-14)

where c is the specific heat of the material making up the object.
The molar specific heat of a material is the heat capacity
per mole, which means per 6.02 � 10 23 elementary units of the
material.

Heat of Transformation Matter can exist in three common
states: solid, liquid, and vapor. Heat absorbed by a material may
change the material’s physical state—for example, from solid to liq-
uid or from liquid to gas.The amount of energy required per unit mass
to change the state (but not the temperature) of a particular material
is its heat of transformation L.Thus,

Q � Lm. (18-16)

The heat of vaporization LV is the amount of energy per unit mass
that must be added to vaporize a liquid or that must be removed to
condense a gas. The heat of fusion LF is the amount of energy per
unit mass that must be added to melt a solid or that must be re-
moved to freeze a liquid.

Work Associated with Volume Change A gas may
exchange energy with its surroundings through work. The amount
of work W done by a gas as it expands or contracts from an initial
volume Vi to a final volume Vf is given by

(18-25)W � �dW � �Vf

Vi

p dV.

The integration is necessary because the pressure p may vary dur-
ing the volume change.

First Law of Thermodynamics The principle of conser-
vation of energy for a thermodynamic process is expressed in the
first law of thermodynamics, which may assume either of the
forms

�Eint � Eint, f � Eint,i � Q � W (first law) (18-26)

or dEint � dQ � dW (first law). (18-27)

Eint represents the internal energy of the material, which depends
only on the material’s state (temperature, pressure, and volume).
Q represents the energy exchanged as heat between the system
and its surroundings; Q is positive if the system absorbs heat and
negative if the system loses heat. W is the work done by the sys-
tem; W is positive if the system expands against an external force
from the surroundings and negative if the system contracts be-
cause of an external force. Q and W are path dependent; �Eint is
path independent.

Applications of the First Law The first law of thermody-
namics finds application in several special cases:

adiabatic processes: Q � 0, �Eint � �W

constant-volume processes: W � 0, �Eint � Q

cyclical processes: �Eint � 0, Q � W

free expansions: Q � W � �Eint � 0

Conduction, Convection, and Radiation The rate Pcond at
which energy is conducted through a slab for which one face is
maintained at the higher temperature TH and the other face is
maintained at the lower temperature TC is

(18-32)

Here each face of the slab has area A, the length of the slab (the
distance between the faces) is L, and k is the thermal conductivity
of the material.

Convection occurs when temperature differences cause an en-
ergy transfer by motion within a fluid.

Radiation is an energy transfer via the emission of electromag-
netic energy. The rate Prad at which an object emits energy via ther-
mal radiation is

Prad � s´AT 4, (18-38)

where s (� 5.6704 � 10�8 W/m2�K4) is the Stefan – Boltzmann
constant, ´ is the emissivity of the object’s surface, A is its surface
area, and T is its surface temperature (in kelvins). The rate Pabs at
which an object absorbs energy via thermal radiation from its envi-
ronment, which is at the uniform temperature Tenv (in kelvins), is

Pabs � s´AT4
env. (18-39)

Pcond �
Q
t

� kA
TH � TC

L
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•12 An aluminum-alloy rod has a length of 10.000 cm at 20.000�C
and a length of 10.015 cm at the boiling point of water. (a) What is
the length of the rod at the freezing point of water? (b) What is the
temperature if the length of the rod is 10.009 cm?

•13 Find the change in volume of an aluminum sphere with anSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 18-1 Temperature
•1 Suppose the temperature of a gas is 373.15 K when it is at the
boiling point of water. What then is the limiting value of the ratio
of the pressure of the gas at that boiling point to its pressure at the
triple point of water? (Assume the volume of the gas is the same at
both temperatures.)

•2 Two constant-volume gas thermometers are assembled, one
with nitrogen and the other with hydrogen. Both contain enough
gas so that p3 � 80 kPa. (a) What is the difference between the
pressures in the two thermometers if both bulbs are in boiling
water? (Hint: See Fig. 18-6.) (b) Which gas is at higher pressure?

•3 A gas thermometer is con-
structed of two gas-containing bulbs,
each in a water bath, as shown in 
Fig. 18-30.The pressure difference be-
tween the two bulbs is measured by
a mercury manometer as shown.
Appropriate reservoirs, not shown in
the diagram, maintain constant gas volume in the two bulbs. There is
no difference in pressure when both baths are at the triple point of
water. The pressure difference is 120 torr when one bath is at the
triple point and the other is at the boiling point of water. It is 90.0 torr
when one bath is at the triple point and the other is at an unknown
temperature to be measured.What is the unknown temperature?

Module 18-2 The Celsius and Fahrenheit Scales
•4 (a) In 1964, the temperature in the Siberian village of
Oymyakon reached �71�C. What temperature is this on the
Fahrenheit scale? (b) The highest officially recorded temperature in
the continental United States was 134�F in Death Valley, California.
What is this temperature on the Celsius scale?

•5 At what temperature is the Fahrenheit scale reading equal to
(a) twice that of the Celsius scale and (b) half that of the Celsius scale?

••6 On a linear X temperature scale, water freezes at �125.0�X and
boils at 375.0�X. On a linear Y temperature scale, water freezes at
�70.00�Y and boils at �30.00�Y. A temperature of 50.00�Y corre-
sponds to what temperature on the X scale?

••7 Suppose that on a linear temperature scale X, water boilsILW

Figure 18-30 Problem 3.

at �53.5�X and freezes at �170�X. What is a temperature of 340 K
on the X scale? (Approximate water’s boiling point as 373 K.)

Module 18-3 Thermal Expansion
•8 At 20�C, a brass cube has edge length 30 cm. What is the in-
crease in the surface area when it is heated from 20�C to 75�C?

•9 A circular hole in an aluminum plate is 2.725 cm inILW
diameter at 0.000�C. What is its diameter when the temperature of
the plate is raised to 100.0�C?

•10 An aluminum flagpole is 33 m high. By how much does its
length increase as the temperature increases by 15 C�?

•11 What is the volume of a lead ball at 30.00�C if the ball’s vol-
ume at 60.00�C is 50.00 cm3?

pletely filled with glycerin at 22�C. How much glycerin, if any, will
spill out of the cup if the temperature of both the cup and the glyc-
erin is increased to 28�C? (The coefficient of volume expansion of
glycerin is 5.1 � 10�4/C�.)

••18 At 20�C, a rod is exactly 20.05 cm long on a steel
ruler. Both are placed in an oven at 270�C, where the rod now
measures 20.11 cm on the same ruler. What is the coefficient of
linear expansion for the material of which the rod is made?

••19 A vertical glass tube of length L � 1.280 000 m is half
filled with a liquid at 20.000 000�C. How much will the height of
the liquid column change when the tube and liquid are heated to 
30.000 000�C? Use coefficients aglass � 1.000 000 � 10�5/K and
bliquid � 4.000 000 � 10�5/K.

has an interior diameter of 2.992 cm at 25.00�C. At what common
temperature will the ring just slide onto the rod?

••16 When the temperature of a metal cylinder is raised from 0.0�C
to 100�C, its length increases by 0.23%. (a) Find the percent change in
density. (b) What is the metal? Use Table 18-2.

••17 An aluminum cup of 100 cm3 capacity is com-WWWSSM

Radioactive
source

Electric
heater

Clamp
d

Figure 18-31 Problem 20.

Figure 18-32 Problem 21.

initial radius of 10 cm when the sphere is heated from 0.0�C to 100�C.

••14 When the temperature of a copper coin is raised by 100 C�,
its diameter increases by 0.18%. To two significant figures, give the
percent increase in (a) the area of a face, (b) the thickness, (c) the
volume, and (d) the mass of the coin. (e) Calculate the coefficient
of linear expansion of the coin.

••15 A steel rod is 3.000 cm in diameter at 25.00�C.A brass ringILW

L 0

L 0

x

••20 In a certain experiment, a
small radioactive source must
move at selected, extremely slow
speeds. This motion is accom-
plished by fastening the source to
one end of an aluminum rod and
heating the central section of the
rod in a controlled way. If the effective heated section of the rod
in Fig. 18-31 has length d � 2.00 cm, at what constant rate must
the temperature of the rod be changed if the source is to move at
a constant speed of 100 nm/s?

•••21 As a result of a
temperature rise of 32 , a bar
with a crack at its center buckles
upward (Fig. 18-32). The fixed dis-
tance L0 is 3.77 m and the coeffi-
cient of linear expansion of the bar
is 25 � 10�6/ . Find the rise x of
the center.

C�

C�

ILWSSM

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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Module 18-4 Absorption of Heat 
•22 One way to keep the contents of a garage from becoming
too cold on a night when a severe subfreezing temperature is forecast
is to put a tub of water in the garage. If the mass of the water is 125 kg
and its initial temperature is 20 C, (a) how much energy must the wa-
ter transfer to its surroundings in order to freeze completely and
(b) what is the lowest possible temperature of the water and its sur-
roundings until that happens?

•23 A small electric immersion heater is used to heat 100 g
of water for a cup of instant coffee. The heater is labeled
“200 watts” (it converts electrical energy to thermal energy at this
rate). Calculate the time required to bring all this water from 
23.0 C to 100 C, ignoring any heat losses.

•24 A certain substance has a mass per mole of 50.0 g/mol. When
314 J is added as heat to a 30.0 g sample, the sample’s temperature
rises from 25.0 C to 45.0 C. What are the (a) specific heat and
(b) molar specific heat of this substance? (c) How many moles are
in the sample?

•25 A certain diet doctor encourages people to diet by drinking
ice water. His theory is that the body must burn off enough fat to
raise the temperature of the water from 0.00�C to the body tem-
perature of 37.0�C. How many liters of ice water would have to be
consumed to burn off 454 g (about 1 lb) of fat, assuming that burn-
ing this much fat requires 3500 Cal be transferred to the ice water?
Why is it not advisable to follow this diet? (One liter � 103 cm3.
The density of water is 1.00 g/cm3.)

•26 What mass of butter, which has a usable energy content of 
6.0 Cal/g (� 6000 cal/g), would be equivalent to the change in grav-
itational potential energy of a 73.0 kg man who ascends from sea
level to the top of Mt. Everest, at elevation 8.84 km? Assume that
the average g for the ascent is 9.80 m/s2.

•27 Calculate the minimum amount of energy, in joules,
required to completely melt 130 g of silver initially at 15.0 C.

•28 How much water remains unfrozen after 50.2 kJ is trans-
ferred as heat from 260 g of liquid water initially at its freezing
point?

••29 In a solar water heater, energy from the Sun is gathered by
water that circulates through tubes in a rooftop collector. The so-
lar radiation enters the collector through a transparent cover and
warms the water in the tubes; this water is pumped into a holding
tank. Assume that the efficiency of the overall system is 20%
(that is, 80% of the incident solar energy is lost from the system).
What collector area is necessary to raise the temperature of 200
L of water in the tank from 20�C to 40°C in 1.0 h when the inten-
sity of incident sunlight is 700 W/m2?

••30 A 0.400 kg sample is placed in a cooling apparatus that re-
moves energy as heat at a con-
stant rate. Figure 18-33 gives
the temperature T of the sam-
ple versus time t; the horizon-
tal scale is set by ts � 80.0 min.
The sample freezes during the
energy removal. The specific
heat of the sample in its initial
liquid phase is 3000 J/kg �K.
What are (a) the sample’s heat
of fusion and (b) its specific
heat in the frozen phase?

�

SSM

��

��

SSM

�

••31 What mass of steam at 100 C must be mixed with 150 g
of ice at its melting point, in a thermally insulated container, to
produce liquid water at 50 C?

••32 The specific heat of a substance varies with temperature ac-
cording to the function c � 0.20 � 0.14T � 0.023T 2, with T in C
and c in cal/g �K. Find the energy required to raise the temperature
of 2.0 g of this substance from 5.0 C to 15 C.

••33 Nonmetric version: (a) How long does a 2.0 � 105 Btu/h water
heater take to raise the temperature of 40 gal of water from 70 F to
100°F? Metric version: (b) How long does a 59 kW water heater take
to raise the temperature of 150 L of water from 21�C to 38�C?

••34 Samples A and B are at different initial temperatures
when they are placed in a thermally insulated container and al-
lowed to come to thermal equilibrium. Figure 18-34a gives their
temperatures T versus time t. Sample A has a mass of 5.0 kg; sam-
ple B has a mass of 1.5 kg. Figure 18-34b is a general plot for
the material of sample B. It shows the temperature change �T that
the material undergoes when energy is transferred to it as heat Q.
The change �T is plotted versus the energy Q per unit mass of the
material, and the scale of the vertical axis is set by �Ts � 4.0 C .
What is the specific heat of sample A?

�

�

��

�

�

�ILW

Figure 18-33 Problem 30.
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Figure 18-34 Problem 34.

••35 An insulated Thermos contains 130 cm3 of hot coffee at
80.0 C. You put in a 12.0 g ice cube at its melting point to cool the
coffee. By how many degrees has your coffee cooled once the ice
has melted and equilibrium is reached? Treat the coffee as
though it were pure water and neglect energy exchanges with the
environment.

••36 A 150 g copper bowl contains 220 g of water, both at 20.0 C.A
very hot 300 g copper cylinder is dropped into the water, causing the
water to boil, with 5.00 g being converted to steam. The final tem-
perature of the system is 100 C. Neglect energy transfers with the
environment. (a) How much energy (in calories) is transferred to
the water as heat? (b) How much to the bowl? (c) What is the orig-
inal temperature of the cylinder?

••37 A person makes a quantity of iced tea by mixing 500 g of hot
tea (essentially water) with an equal mass of ice at its melting
point.Assume the mixture has negligible energy exchanges with its
environment. If the tea’s initial temperature is Ti � 90 C, when
thermal equilibrium is reached what are (a) the mixture’s tempera-
ture Tf and (b) the remaining mass mf of ice? If Ti � 70 C, when
thermal equilibrium is reached what are (c) Tf and (d) mf?

••38 A 0.530 kg sample of liquid water and a sample of ice are
placed in a thermally insulated container. The container also con-
tains a device that transfers energy as heat from the liquid water
to the ice at a constant rate P, until thermal equilibrium is

�

�

�

�

�
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point of �114 C, a heat of vaporization of 879 kJ/kg, a heat of fu-
sion of 109 kJ/kg, and a specific heat of 2.43 kJ/kg�K. How much
energy must be removed from 0.510 kg of ethyl alcohol that is ini-
tially a gas at 78.0 C so that it becomes a solid at �114 C?

••40 Calculate the specific heat of a metal from the following
data. A container made of the metal has a mass of 3.6 kg and con-
tains 14 kg of water. A 1.8 kg piece of the metal initially at a tem-
perature of 180 C is dropped into the water. The container and
water initially have a temperature of 16.0 C, and the final tempera-
ture of the entire (insulated) system is 18.0 C.

•••41 (a) Two 50 g ice cubes are dropped into 200 g
of water in a thermally insulated container. If the water is initially
at 25 C, and the ice comes directly from a freezer at �15 C, what is
the final temperature at thermal equilibrium? (b) What is the final
temperature if only one ice cube is used?

��

WWWSSM
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reached. The temperatures T of the liquid water and the ice are
given in Fig. 18-35 as functions of time t; the horizontal scale is set
by ts � 80.0 min. (a) What is rate P? (b) What is the initial mass of
the ice in the container? (c) When thermal equilibrium is
reached, what is the mass of the ice produced in this process?

state C, and then back to A, as shown in the p-V diagram of Fig. 18-
38a. The vertical scale is set by ps � 40 Pa, and the horizontal scale
is set by Vs � 4.0 m3. (a)–(g) Complete the table in Fig. 18-38b by
inserting a plus sign, a minus sign, or a zero in each indicated cell.
(h) What is the net work done by the system as it moves once
through the cycle ABCA?
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Figure 18-38 Problem 44.••39 Ethyl alcohol has a boiling point of 78.0 C, a freezing�

•45 A gas within a
closed chamber undergoes the
cycle shown in the p-V diagram
of Fig. 18-39. The horizontal
scale is set by Vs � 4.0 m3.
Calculate the net energy added
to the system as heat during
one complete cycle.

•46 Suppose 200 J of work is
done on a system and 70.0 cal is
extracted from the system as
heat. In the sense of the first law
of thermodynamics, what are
the values (including algebraic signs) of (a) W, (b) Q, and (c) �Eint?

••47 When a system is taken from state i to state fWWWSSM

ILWSSM

along path iaf in Fig. 18-40, Q � 50 cal and W � 20 cal. Along path 
ibf, Q � 36 cal. (a) What is W along path ibf? (b) If W � �13 cal
for the return path fi, what is Q for this path? (c) If Eint,i � 10 cal,
what is Eint, f? If Eint,b � 22 cal, what is Q for (d) path ib and (e)
path bf ?
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•••42 A 20.0 g copper ring at
0.000 C has an inner diameter of 
D � 2.54000 cm. An aluminum
sphere at 100.0 C has a diameter
of d � 2.545 08 cm. The sphere is
put on top of the ring (Fig. 18-36),
and the two are allowed to come
to thermal equilibrium, with no
heat lost to the surroundings. The
sphere just passes through the
ring at the equilibrium tempera-
ture. What is the mass of the
sphere?

Module 18-5 The First Law of
Thermodynamics
•43 In Fig. 18-37, a gas sample ex-
pands from V0 to 4.0V0 while its
pressure decreases from p0 to
p0/4.0. If V0 � 1.0 m3 and p0 � 40
Pa, how much work is done by the
gas if its pressure changes with vol-
ume via (a) path A, (b) path B, and
(c) path C?

•44 A thermodynamic system
is taken from state A to state B to
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••48 As a gas is held within a
closed chamber, it passes through the
cycle shown in Fig. 18-41. Determine
the energy transferred by the system
as heat during constant-pressure
process CA if the energy added as heat
QAB during constant-volume process
AB is 20.0 J, no energy is transferred
as heat during adiabatic process BC,
and the net work done during the cycle
is 15.0 J.
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Figure 18-41 Problem 48.
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••49 Figure 18-42 represents a
closed cycle for a gas (the figure is not
drawn to scale).The change in the inter-
nal energy of the gas as it moves from a
to c along the path abc is �200 J.
As it moves from c to d, 180 J must be
transferred to it as heat. An additional
transfer of 80 J to it as heat is needed as
it moves from d to a. How much work is
done on the gas as it moves from c to d?

••50 A lab sample of gas is taken
through cycle abca shown in the p-V
diagram of Fig. 18-43. The net work
done is �1.2 J. Along path ab, the
change in the internal energy is �3.0 J
and the magnitude of the work done
is 5.0 J. Along path ca, the energy
transferred to the gas as heat is �2.5
J. How much energy is transferred as
heat along (a) path ab and (b) path bc?

a beehive, several hundred of the bees quickly form a compact
ball around the hornet to stop it. They don’t sting, bite, crush, or
suffocate it. Rather they overheat it by quickly raising their body
temperatures from the normal 35 C to 47 C or 48 C, which is
lethal to the hornet but not to the bees (Fig. 18-44). Assume the
following: 500 bees form a ball of radius R � 2.0 cm for a time t �
20 min, the primary loss of energy by the ball is by thermal radia-
tion, the ball’s surface has emissivity ´ � 0.80, and the ball has a
uniform temperature. On average, how much additional energy
must each bee produce during the 20 min to maintain 47 C?

••57 (a) What is the rate of energy loss in watts per square meter
through a glass window 3.0 mm thick if the outside temperature is
�20 F and the inside temperature is �72 F? (b) A storm window
having the same thickness of glass is installed parallel to the first
window, with an air gap of 7.5 cm between the two windows. What
now is the rate of energy loss if conduction is the only important
energy-loss mechanism?

••58 A solid cylinder of radius r1 � 2.5 cm, length h1 � 5.0 cm,
emissivity 0.85, and temperature 30 C is suspended in an environ-
ment of temperature 50 C. (a) What is the cylinder’s net thermal
radiation transfer rate P1? (b) If the cylinder is stretched until its
radius is r2 � 0.50 cm, its net thermal radiation transfer rate be-
comes P2.What is the ratio P2 /P1?
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(a)

(b)

T1

T1
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Figure 18-45 Problem 59.

Figure 18-44
Problem 56. © Dr. Masato Ono, Tamagawa University

Module 18-6 Heat Transfer Mechanisms
•51 A sphere of radius 0.500 m, temperature 27.0 C, and emissiv-
ity 0.850 is located in an environment of temperature 77.0 C. At
what rate does the sphere (a) emit and (b) absorb thermal radia-
tion? (c) What is the sphere’s net rate of energy exchange?

•52 The ceiling of a single-family dwelling in a cold climate
should have an R-value of 30. To give such insulation, how thick
would a layer of (a) polyurethane foam and (b) silver have to be?

•53 Consider the slab shown in Fig. 18-18. Suppose thatSSM
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L � 25.0 cm, A � 90.0 cm2, and the material is copper. If TH �
125 C, TC � 10.0 C, and a steady state is reached, find the conduc-
tion rate through the slab.

•54 If you were to walk briefly in space without a spacesuit
while far from the Sun (as an astronaut does in the movie 2001, A
Space Odyssey), you would feel the cold of space—while you radi-
ated energy, you would absorb almost none from your environ-
ment. (a) At what rate would you lose energy? (b) How much en-
ergy would you lose in 30 s? Assume that your emissivity is 0.90,
and estimate other data needed in the calculations.

•55 A cylindrical copper rod of length 1.2 m and cross-sectional
area 4.8 cm2 is insulated along its side.The ends are held at a temper-
ature difference of 100 C by having one end in a water–ice mixture
and the other in a mixture of boiling water and steam. At what rate
(a) is energy conducted by the rod and (b) does the ice melt?

••56 The giant hornet Vespa mandarinia japonica preys on
Japanese bees. However, if one of the hornets attempts to invade

�

ILW

��

••59 In Fig. 18-45a, two identical rec-
tangular rods of metal are welded end
to end, with a temperature of T1 � 0 C
on the left side and a temperature 
of T2 � 100 C on the right side. In 
2.0 min, 10 J is conducted at a constant
rate from the right side to the left side.
How much time would be required to
conduct 10 J if the rods were welded
side to side as in Fig. 18-45b?

••60 Figure 18-46 shows the cross
section of a wall made of three layers.
The layer thicknesses are L1, L2 �
0.700L1, and L3 � 0.350L1. The ther-
mal conductivities are k1, k2 �
0.900k1, and k3 0.800k1. The temper-
atures at the left side and right side of
the wall are TH � 30.0 C and TC ��

�

�

�

�15.0 C, respectively. Thermal
conduction is steady. (a) What is
the temperature difference �T2

across layer 2 (between the left and
right sides of the layer)? If k2 were,
instead, equal to 1.1k1, (b) would
the rate at which energy is con-
ducted through the wall be greater
than, less than, or the same as pre-
viously, and (c) what would be the
value of �T2?

••61 A 5.0 cm slab has formed
on an outdoor tank of water (Fig.
18-47). The air is at �10�C. Find the
rate of ice formation (centimeters
per hour). The ice has thermal con-
ductivity 0.0040 cal/s �cm �C and
density 0.92 g/cm3. Assume there is

�

SSM

�

no energy transfer through the walls or bottom.



temperature of 100 C. Water has density r � 1000 kg/m3, and the�
skillet has a constant temperature Ts � 300 C and the drop has a�

utes, an effect named after an early investigator. The longer lifetime
is due to the support of a thin layer of air and water vapor that sepa-
rates the drop from the metal (by distance L in Fig. 18-48). Let L �
0.100 mm, and assume that the drop is flat with height h � 1.50 mm
and bottom face area A � 4.00 � 10�6 m2. Also assume that the

••62 Leidenfrost effect. A
water drop will last about 1 s on a
hot skillet with a temperature
between 100 C and about 200 C.
However, if the skillet is much hot-
ter, the drop can last several min-
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Water drop 
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h
L

Figure 18-48 Problem 62.

545PROBLEMS

Figure 18-50 Problem 64.
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Figure 18-49 Problem 63.

••64 Penguin huddling. To withstand the harsh weather of
the Antarctic, emperor penguins huddle in groups (Fig. 18-50).
Assume that a penguin is a circular cylinder with a top surface area
a � 0.34 m2 and height h � 1.1 m. Let Pr be the rate at which an in-
dividual penguin radiates energy to the environment (through the
top and the sides); thus NPr is the rate at which N identical, well-
separated penguins radiate. If the penguins huddle closely to form

a huddled cylinder with top surface area Na and height h, the cylin-
der radiates at the rate Ph. If N � 1000, (a) what is the value of the
fraction Ph/NPr and (b) by what percentage does huddling reduce
the total radiation loss?

••65 Ice has formed on a shallow pond, and a steady state has
been reached, with the air above the ice at �5.0 C and the bottom
of the pond at 4.0 C. If the total depth of ice � water is 1.4 m, how
thick is the ice? (Assume that the thermal conductivities of ice and
water are 0.40 and 0.12 cal/m �C �s, respectively.)

•••66 Evaporative cooling of beverages. A cold beverage
can be kept cold even on a warm day if it is slipped into a porous
ceramic container that has been soaked in water. Assume that en-
ergy lost to evaporation matches the net energy gained via the ra-
diation exchange through the top and side surfaces. The container
and beverage have temperature T � 15 C, the environment has
temperature Tenv � 32 C, and the container is a cylinder with 
radius r � 2.2 cm and height 10 cm. Approximate the emissivity as
´ � 1, and neglect other energy exchanges. At what rate dm/dt is
the container losing water mass?

Additional Problems
67 In the extrusion of cold chocolate from a tube, work is done
on the chocolate by the pressure applied by a ram forcing the
chocolate through the tube. The work per unit mass of extruded
chocolate is equal to p/r, where p is the difference between the ap-
plied pressure and the pressure where the chocolate emerges from
the tube, and r is the density of the chocolate. Rather than increas-
ing the temperature of the chocolate, this work melts cocoa fats in
the chocolate.These fats have a heat of fusion of 150 kJ/kg.Assume
that all of the work goes into that melting and that these fats make
up 30% of the chocolate’s mass. What percentage of the fats melt
during the extrusion if p � 5.5 MPa and r � 1200 kg/m3?

68 Icebergs in the North Atlantic present hazards to shipping,
causing the lengths of shipping routes to be increased by about 30%
during the iceberg season. Attempts to destroy icebergs include
planting explosives, bombing, torpedoing, shelling, ramming, and
coating with black soot. Suppose that direct melting of the iceberg, by
placing heat sources in the ice, is tried. How much energy as heat is
required to melt 10% of an iceberg that has a mass of 200 000 metric
tons? (Use 1 metric ton � 1000 kg.)

69 Figure 18-51 displays a closed cycle for
a gas. The change in internal energy along
path ca is �160 J. The energy transferred to
the gas as heat is 200 J along path ab, and 40 J
along path bc. How much work is done by
the gas along (a) path abc and (b) path ab?

70 In a certain solar house, energy from
the Sun is stored in barrels filled with wa-
ter. In a particular winter stretch of five
cloudy days, 1.00 � 10 6 kcal is needed
to maintain the inside of the house at
22.0 C. Assuming that the water in the
barrels is at 50.0 C and that the water
has a density of 1.00 � 10 3 kg/m3, what
volume of water is required?

71 A 0.300 kg sample is placed in a
cooling apparatus that removes energy as
heat at a constant rate of 2.81 W. Figure
18-52 gives the temperature T of the sam-
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supporting layer has thermal conductivity k � 0.026 W/m�K. (a) At
what rate is energy conducted from the skillet to the drop through
the drop’s bottom surface? (b) If conduction is the primary way en-
ergy moves from the skillet to the drop, how long will the drop last?

••63 Figure 18-49 shows (in cross section) a wall consisting of
four layers, with thermal conductivities k1 0.060 W/m �K, k3

0.040 W/m �K, and k4 � 0.12 W/m �K (k2 is not known). The layer
thicknesses are L1 � 1.5 cm, L3 � 2.8 cm, and L4 � 3.5 cm (L2 is
not known). The known temperatures are T1 � 30 C, T12 � 25 C,
and T4 � �10 C. Energy transfer through the wall is steady. What
is interface temperature T34?

�
��

��



is depicted in Figure 38-7. Source S contains molecules that emit photons at well-
separated times. Mirrors M1 and M2 are positioned to reflect light that the source
emits along two distinct paths, 1 and 2, that are separated by an angle u, which is
close to 180°. This arrangement differs from the standard two-slit experiment, in
which the angle between the paths of the light reaching two slits is very small.

After reflection from mirrors M1 and M2, the light waves traveling along
paths 1 and 2 meet at beam splitter B, which transmits half the incident light and
reflects the other half. On the right side of B in Fig. 38-7, the light wave traveling
along path 2 and reflected by B combines with the light wave traveling along path
1 and transmitted by B. These two waves then interfere with each other at detec-
tor D (a photomultiplier tube that can detect individual photons).

The output of the detector is a randomly spaced series of electronic pulses,
one for each detected photon. In the experiment, the beam splitter is moved
slowly in a horizontal direction (in the reported experiment, a distance of only
about 50 mm maximum), and the detector output is recorded on a chart recorder.
Moving the beam splitter changes the lengths of paths 1 and 2, producing a phase
shift between the light waves arriving at detector D. Interference maxima and
minima appear in the detector’s output signal.

This experiment is difficult to understand in traditional terms. For example,
when a molecule in the source emits a single photon, does that photon travel
along path 1 or path 2 in Fig. 38-7 (or along any other path)? Or can it move in
both directions at once? To answer, we assume that when a molecule emits a pho-
ton, a probability wave radiates in all directions from it. The experiment samples
this wave in two of those directions, chosen to be nearly opposite each other.

We see that we can interpret all three versions of the double-slit experiment
if we assume that (1) light is generated in the source as photons, (2) light is
absorbed in the detector as photons, and (3) light travels between source and
detector as a probability wave.
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38-4 THE BIRTH OF QUANTUM PHYSICS

After reading this module, you should be able to . . .

38.15 Identify an ideal blackbody radiator and its spectral
radiancy S(l).

38.16 Identify the problem that physicists had with blackbody
radiation prior to Planck’s work, and explain how Planck
and Einstein solved the problem.

38.17 Apply Planck’s radiation law for a given wavelength
and temperature.

38.18 For a narrow wavelength range and for a given wave-
length and temperature, find the intensity in blackbody
radiation.

38.19 Apply the relationship between intensity, power, and area.
38.20 Apply Wien’s law to relate the surface temperature of

an ideal blackbody radiator to the wavelength at which the
spectral radiancy is maximum.

Learning Objectives

● As a measure of the emission of thermal radiation by an
ideal blackbody radiator, we define the spectral radiancy in
terms of the emitted intensity per unit wavelength at a given
wavelength l:

● The Planck radiation law, in which atomic oscillators
produce the thermal radiation, is

S(l) �
2pc2h

l5

1
ehc/lkT � 1

,

S(l) �
intensity

(unit wavelength)
.

where h is the Planck constant, k is the Boltzmann con-
stant, and T is the temperature of the radiating surface (in
kelvins).

● Planck’s law was the first suggestion that the energies 
of the atomic oscillators producing the radiation are
quantized.

● Wien’s law relates the temperature T of a blackbody radia-
tor and the wavelength lmax at which the spectral radiancy is
maximum:

lmaxT � 2898 mm ? K.

Key Ideas

Figure 38-7 The light from a single photon
emission in source S travels over two
widely separated paths and interferes with
itself at detector D after being recombined
by beam splitter B. (Based on Ming Lai and
Jean-Claude Diels, Journal of the Optical
Society of America B, 9, 2290–2294,
December 1992.)

A single molecule

θ 

B

D

M2M1

Path 1 Path 2S

A single photon can take
widely different paths and
still interfere with itself.



The Birth of Quantum Physics
Now that we have seen how the photoelectric effect and Compton
scattering propelled physicists into quantum physics, let’s back up
to the very beginning, when the idea of quantized energies gradu-
ally emerged out of experimental data.The story begins with what
might seem mundane these days but which was a fixation point for
physicists of 1900. The subject was the thermal radiation emitted
by an ideal blackbody radiator—that is, a radiator whose emitted
radiation depends only on its temperature and not on the material
from which it is made, the nature of its surface, or anything other
than temperature. In a nutshell here was the trouble: the
experimental results differed wildly from the theoretical predic-
tions and no one had a clue as to why.

Experimental Setup. We can make an ideal radiator by form-
ing a cavity within a body and keeping the cavity walls at a uniform
temperature.The atoms on the inner wall of the body oscillate (they
have thermal energy), which causes them to emit electromagnetic
waves, the thermal radiation. To sample that internal radiation, we
drill a small hole through the wall so that some of the radiation can
escape to be measured (but not enough to alter the radiation inside
the cavity). We are interested in how the intensity of the radiation
depends on wavelength.

That intensity distribution is handled by defining a spectral
radiancy S(l) of the radiation emitted at given wavelength l:

(38-12)

If we multiply S(l) by a narrow wavelength range dl, we have the intensity (that
is, the power per unit area of the hole in the wall) that is being emitted in the
wavelength range l to l 1 dl.

The solid curve in Fig. 38-8 shows the experimental results for a cavity with a
wall temperature of 2000 K, for a range of wavelengths. Although such a radiator
would glow brightly in a dark room, we can tell from the figure that only a small
part of its radiated energy actually lies in the visible range (which is colorfully
indicated). At that temperature, most of the radiated energy lies in the infrared
region, with longer wavelengths.

Theory. The prediction of classical physics for the spectral radiancy, for a
given temperature T in kelvins, is

(classical radiation law), (38-13)

where k is the Boltzmann constant (Eq. 19-7) with the value

k � 1.38 � l0�23 J/K � 8.62 � 10�5 eV/K.

This classical result is plotted in Fig. 38-8 for T � 2000 K. Although the theoreti-
cal and experimental results agree well at long wavelengths (off the graph to the
right), they are not even close in the short wavelength region. Indeed, the theo-
retical prediction does not even include a maximum as seen in the measured
results and instead “blows up” up to infinity (which was quite disturbing, even
embarrassing, to the physicists).

Planck’s Solution. In 1900, Planck devised a formula for S(l) that neatly
fitted the experimental results for all wavelengths and for all temperatures:

(Planck’s radiation law). (38-14)S(l) �
2pc2h

l5

1
ehc/lkT � 1

S(l) �
2pckT

l4

power

� unit area
of emitter�� unit

wavelength�
.�S(l) �

intensity

� unit
wavelength�
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Figure 38-8 The solid curve shows the experimental spectral ra-
diancy for a cavity at 2000 K. Note the failure of the classical
theory, which is shown as a dashed curve.The range of visible
wavelengths is indicated.



The key element in the equation lies in the argument of the exponential: hc/l,
which we can rewrite in a more suggestive form as hf. Equation 38-14 was the
first use of the symbol h, and the appearance of hf suggests that the energies of
the atomic oscillators in the cavity wall are quantized. However, Planck, with his
training in classical physics, simply could not believe such a result in spite of the
immediate success of his equation in fitting all experimental data.

Einstein’s Solution. No one understood Eq. 38-14 for 17 years, but then
Einstein explained it with a very simple model with two key ideas: (1) The ener-
gies of the cavity-wall atoms that are emitting the radiation are indeed quantized.
(2) The energies of the radiation in the cavity are also quantized in the form of
quanta (what we now call photons), each with energy E 5 hf. In his model he ex-
plained the processes by which atoms can emit and absorb photons and how the
atoms can be in equilibrium with the emitted and absorbed light.

Maximum Value. The wavelength lmax at which the S(l) is maximum (for a
given temperature T) can be found by taking the first derivative of Eq. 38-14 with
respect to l, setting the derivative to zero, and then solving for the wavelength.
The result is known as Wien’s law:

lmaxT � 2898 mm ? K (at maximum radiancy). (38-15)

For example, in Fig. 38-8 for which T � 2000 K, lmax � 1.5 mm, which is greater
than the long wavelength end of the visible spectrum and is in the infrared
region, as shown. If we increase the temperature, lmax decreases and the peak in
Fig. 38-8 changes shape and shifts more into the visible range.

Radiated Power. If we integrate Eq. 38-14 over all wavelengths (for a given
temperature), we find the power per unit area of a thermal radiator. If we then
multiply by the total surface area A, we find the total radiated power P. We have
already seen the result in Eq. 18-38 (with some changes in notation):

P � s AT 4, (38-16)

where s (� 5.6704 3 1028 W/m2 ? K4) is the Stefan–Boltzmann constant and is
the emissivity of the radiating surface ( � 1 for an ideal blackbody radiator).
Actually, integrating Eq. 38-14 over all wavelengths is difficult. However, for a
given temperature T, wavelength l, and wavelength range 
l that is small rela-
tive to l, we can approximate the power in that range by simply evaluating
S(l)A 
l.

�
�

�
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38-5 ELECTRONS AND MATTER WAVES 

After reading this module, you should be able to . . .

38.21 Identify that electrons (and protons and all other
elementary particles) are matter waves.

38.22 For both relativistic and nonrelativistic particles, apply
the relationships between the de Broglie wavelength,
momentum, speed, and kinetic energy.

38.23 Describe the double-slit interference pattern obtained
with particles such as electrons.

38.24 Apply the optical two-slit equations (Module 35-2) 
and diffraction equations (Module 36-1) to matter
waves.

Learning Objectives

● A moving particle such as an electron can be described as
a matter wave.

● The wavelength associated with the matter wave is the
particle’s de Broglie wavelength l � h/p, where p is the
particle’s momentum.

● Particle: When an electron interacts with matter, the inter-
action is particle-like, occurring at a point and transferring
energy and momentum.

● Wave: When an electron is in transit, we interpret it as
being a probability wave.

Key Ideas



(speed of sound).

In air at 20�C, the speed of sound is 343 m/s.

v � A
B
�
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What Is Physics?
The physics of sound waves is the basis of countless studies in the research
journals of many fields. Here are just a few examples. Some physiologists are
concerned with how speech is produced, how speech impairment might be
corrected, how hearing loss can be alleviated, and even how snoring is pro-
duced. Some acoustic engineers are concerned with improving the acoustics of
cathedrals and concert halls, with reducing noise near freeways and road
construction, and with reproducing music by speaker systems. Some aviation en-
gineers are concerned with the shock waves produced by supersonic aircraft and
the aircraft noise produced in communities near an airport. Some medical re-
searchers are concerned with how noises produced by the heart and lungs can
signal a medical problem in a patient. Some paleontologists are concerned with
how a dinosaur’s fossil might reveal the dinosaur’s vocalizations. Some military
engineers are concerned with how the sounds of sniper fire might allow a sol-
dier to pinpoint the sniper’s location, and, on the gentler side, some biolo-
gists are concerned with how a cat purrs.

To begin our discussion of the physics of sound, we must first answer the
question “What are sound waves?”

Sound Waves
As we saw in Chapter 16, mechanical waves are waves that require a material
medium to exist. There are two types of mechanical waves: Transverse waves
involve oscillations perpendicular to the direction in which the wave travels;
longitudinal waves involve oscillations parallel to the direction of wave travel.

In this book, a sound wave is defined roughly as any longitudinal wave.
Seismic prospecting teams use such waves to probe Earth’s crust for oil. Ships

C H A P T E R  1 7

Waves—II

17-1 SPEED OF SOUND

After reading this module, you should be able to . . .

17.01 Distinguish between a longitudinal wave and a
transverse wave.

17.02 Explain wavefronts and rays.
17.03 Apply the relationship between the speed of sound

through a material, the material’s bulk modulus, and the
material’s density.

Key Idea

Learning Objectives

● Sound waves are longitudinal mechanical waves that can
travel through solids, liquids, or gases. The speed v of a
sound wave in a medium having bulk modulus B and den-
sity r is

17.04 Apply the relationship between the speed of sound, the
distance traveled by a sound wave, and the time required
to travel that distance.
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carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines
use sound waves to stalk other submarines, largely by listening for the charac-
teristic noises produced by the propulsion system. Figure 17-1 suggests how
sound waves can be used to explore the soft tissues of an animal or human body.
In this chapter we shall focus on sound waves that travel through the air and that
are audible to people.

Figure 17-2 illustrates several ideas that we shall use in our discussions.
Point S represents a tiny sound source, called a point source, that emits sound
waves in all directions. The wavefronts and rays indicate the direction of travel
and the spread of the sound waves. Wavefronts are surfaces over which the
oscillations due to the sound wave have the same value; such surfaces are rep-
resented by whole or partial circles in a two-dimensional drawing for a point
source. Rays are directed lines perpendicular to the wavefronts that indicate
the direction of travel of the wavefronts. The short double arrows superim-
posed on the rays of Fig. 17-2 indicate that the longitudinal oscillations of the
air are parallel to the rays.

Near a point source like that of Fig. 17-2, the wavefronts are spherical and
spread out in three dimensions, and there the waves are said to be spherical. As
the wavefronts move outward and their radii become larger, their curvature
decreases. Far from the source, we approximate the wavefronts as planes (or lines
on two-dimensional drawings), and the waves are said to be planar.

The Speed of Sound
The speed of any mechanical wave, transverse or longitudinal, depends on both an
inertial property of the medium (to store kinetic energy) and an elastic property of
the medium (to store potential energy). Thus, we can generalize Eq. 16-26, which
gives the speed of a transverse wave along a stretched string, by writing

(17-1)

where (for transverse waves) t is the tension in the string and m is the string’s
linear density. If the medium is air and the wave is longitudinal, we can guess
that the inertial property, corresponding to m, is the volume density r of air.
What shall we put for the elastic property?

In a stretched string, potential energy is associated with the periodic stretching
of the string elements as the wave passes through them. As a sound wave passes
through air, potential energy is associated with periodic compressions and expan-
sions of small volume elements of the air. The property that determines the extent
to which an element of a medium changes in volume when the pressure (force per
unit area) on it changes is the bulk modulus B, defined (from Eq. 12-25) as

(definition of bulk modulus). (17-2)

Here �V/V is the fractional change in volume produced by a change in pressure
�p. As explained in Module 14-1, the SI unit for pressure is the newton per
square meter, which is given a special name, the pascal (Pa). From Eq. 17-2 we see
that the unit for B is also the pascal. The signs of �p and �V are always
opposite: When we increase the pressure on an element (�p is positive), its vol-
ume decreases (�V is negative). We include a minus sign in Eq. 17-2 so that B is
always a positive quantity. Now substituting B for t and r for m in Eq. 17-1 yields

(speed of sound) (17-3)v � A
B
�

B � �
�p

�V/V

v � A
t

m
� A

elastic property
inertial property

,

Mauro Fermariello/SPL/Photo Researchers, Inc.

Figure 17-1 A loggerhead turtle is being
checked with ultrasound (which has a
frequency above your hearing range); an
image of its interior is being produced on
a monitor off to the right.

Ray

Ray

S

Wavefronts 

Figure 17-2 A sound wave travels from a
point source S through a three-dimen-
sional medium. The wavefronts form
spheres centered on S; the rays are radi-
al to S. The short, double-headed arrows
indicate that elements of the medium
oscillate parallel to the rays.
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as the speed of sound in a medium with bulk modulus B and density r.Table 17-1
lists the speed of sound in various media.

The density of water is almost 1000 times greater than the density of air. If this
were the only relevant factor, we would expect from Eq. 17-3 that the speed of
sound in water would be considerably less than the speed of sound in air. However,
Table 17-1 shows us that the reverse is true.We conclude (again from Eq. 17-3) that
the bulk modulus of water must be more than 1000 times greater than that of air.
This is indeed the case.Water is much more incompressible than air, which (see Eq.
17-2) is another way of saying that its bulk modulus is much greater.

Formal Derivation of Eq. 17-3
We now derive Eq. 17-3 by direct application of Newton’s laws. Let a single
pulse in which air is compressed travel (from right to left) with speed v through the
air in a long tube, like that in Fig. 16-2. Let us run along with the pulse at that speed,
so that the pulse appears to stand still in our reference frame. Figure 17-3a
shows the situation as it is viewed from that frame. The pulse is standing still, and
air is moving at speed v through it from left to right.

Let the pressure of the undisturbed air be p and the pressure inside the
pulse be p � �p, where �p is positive due to the compression. Consider an element
of air of thickness �x and face area A, moving toward the pulse at speed v. As this
element enters the pulse, the leading face of the element encounters a region of
higher pressure, which slows the element to speed v � �v, in which �v is negative.
This slowing is complete when the rear face of the element reaches the pulse, which
requires time interval

(17-4)

Let us apply Newton’s second law to the element. During �t, the average
force on the element’s trailing face is pA toward the right, and the average force
on the leading face is ( p � �p)A toward the left (Fig. 17-3b). Therefore, the
average net force on the element during �t is

F � pA � ( p � �p)A

� ��p A (net force). (17-5)

The minus sign indicates that the net force on the air element is directed to the
left in Fig. 17-3b. The volume of the element is A �x, so with the aid of Eq. 17-4,
we can write its mass as

�m � r �V � rA �x � rAv �t (mass). (17-6)

The average acceleration of the element during �t is

(acceleration). (17-7)a �
�v
�t

�t �
�x
v

.

Table 17-1 The Speed of Sounda

Medium Speed (m/s)

Gases

Air (0�C) 331
Air (20�C) 343
Helium 965
Hydrogen 1284
Liquids

Water (0�C) 1402
Water (20�C) 1482
Seawaterb 1522
Solids

Aluminum 6420
Steel 5941
Granite 6000

aAt 0�C and 1 atm pressure, except where noted.
bAt 20�C and 3.5% salinity.

ΔΔx

(b)

pA (p +    p)APulse

Moving air (fluid element)

p, v

p +    p, v + vΔ Δ

Δx

A

p, v

(a)

v

Figure 17-3 A compression pulse is sent from right to left down a long air-filled tube.The refer-
ence frame of the figure is chosen so that the pulse is at rest and the air moves from left to
right. (a) An element of air of width �x moves toward the pulse with speed v. (b) The leading
face of the element enters the pulse.The forces acting on the leading and trailing faces (due to
air pressure) are shown.
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17-2 TRAVELING SOUND WAVES

After reading this module, you should be able to . . .

17.05 For any particular time and position, calculate the dis-
placement s(x, t) of an element of air as a sound wave travels
through its location.

17.06 Given a displacement function s(x, t) for a sound wave,
calculate the time between two given displacements.

17.07 Apply the relationships between wave speed v, angular
frequency v, angular wave number k, wavelength l, period
T, and frequency f.

17.08 Sketch a graph of the displacement s(x) of an element
of air as a function of position, and identify the amplitude
sm and wavelength l.

17.09 For any particular time and position, calculate the pres-

sure variation (variation from atmospheric pressure) of an
element of air as a sound wave travels through its location.

17.10 Sketch a graph of the pressure variation �p(x) of an el-
ement as a function of position, and identify the amplitude
�pm and wavelength l.

17.11 Apply the relationship between pressure-variation am-
plitude �pm and displacement amplitude sm.

17.12 Given a graph of position s versus time for a sound
wave, determine the amplitude sm and the period T.

17.13 Given a graph of pressure variation �p versus time
for a sound wave, determine the amplitude �pm and the
period T.

�p

Learning Objectives

● A sound wave causes a longitudinal displacement s of a
mass element in a medium as given by

s � sm cos(kx � vt),

where sm is the displacement amplitude (maximum displace-
ment) from equilibrium, k � 2p/l, and v � 2pf, l and f being
the wavelength and frequency, respectively, of the sound wave. 

● The sound wave also causes a pressure change of the
medium from the equilibrium pressure:

�p � �pm sin(kx � vt),

where the pressure amplitude is

�pm � (vrv)sm.

�p
Key Ideas

Thus, from Newton’s second law (F � ma), we have, from Eqs. 17-5, 17-6,
and 17-7,

(17-8)

which we can write as

(17-9)

The air that occupies a volume V (� Av �t) outside the pulse is compressed by an
amount �V (� A �v �t) as it enters the pulse.Thus,

(17-10)

Substituting Eq. 17-10 and then Eq. 17-2 into Eq. 17-9 leads to

(17-11)

Solving for v yields Eq. 17-3 for the speed of the air toward the right in Fig. 17-3,
and thus for the actual speed of the pulse toward the left.

�v2 � �
�p

�v/v
� �

�p
�V/V

� B.

�V
V

�
A �v �t
Av �t

�
�v
v

.

�v2 � �
�p

�v/v
.

��p A � (�Av �t)
�v
�t

,

Traveling Sound Waves
Here we examine the displacements and pressure variations associated with a
sinusoidal sound wave traveling through air. Figure 17-4a displays such a wave
traveling rightward through a long air-filled tube. Recall from Chapter 16 that
we can produce such a wave by sinusoidally moving a piston at the left end of
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the tube (as in Fig. 16-2). The piston’s rightward motion moves the element of
air next to the piston face and compresses that air; the piston’s leftward motion
allows the element of air to move back to the left and the pressure to decrease.
As each element of air pushes on the next element in turn, the right– left motion
of the air and the change in its pressure travel along the tube as a sound wave.

Consider the thin element of air of thickness �x shown in Fig. 17-4b. As the
wave travels through this portion of the tube, the element of air oscillates left
and right in simple harmonic motion about its equilibrium position. Thus, the
oscillations of each air element due to the traveling sound wave are like those of
a string element due to a transverse wave, except that the air element oscillates
longitudinally rather than transversely. Because string elements oscillate parallel
to the y axis, we write their displacements in the form y(x, t). Similarly, because
air elements oscillate parallel to the x axis, we could write their displacements in
the confusing form x(x, t), but we shall use s(x, t) instead.

Displacement. To show that the displacements s(x, t) are sinusoidal func-
tions of x and t, we can use either a sine function or a cosine function. In this
chapter we use a cosine function, writing

s(x, t) � sm cos(kx � vt). (17-12)

Figure 17-5a labels the various parts of this equation. In it, sm is the displacement
amplitude—that is, the maximum displacement of the air element to either side
of its equilibrium position (see Fig. 17-4b). The angular wave number k, angular
frequency v, frequency f, wavelength l, speed v, and period T for a sound
(longitudinal) wave are defined and interrelated exactly as for a transverse
wave, except that l is now the distance (again along the direction of travel) in
which the pattern of compression and expansion due to the wave begins to
repeat itself (see Fig. 17-4a). (We assume sm is much less than l.)

Pressure. As the wave moves, the air pressure at any position x in Fig. 17-4a
varies sinusoidally, as we prove next.To describe this variation we write

�p(x, t) � �pm sin(kx � vt). (17-13)

Figure 17-5b labels the various parts of this equation. A negative value of �p in
Eq. 17-13 corresponds to an expansion of the air, and a positive value to a com-
pression. Here �pm is the pressure amplitude, which is the maximum increase or
decrease in pressure due to the wave; �pm is normally very much less than the
pressure p present when there is no wave. As we shall prove, the pressure ampli-

Compression

(a)

Δ x

Expansion

λ 

Equilibrium
position

s

sm sm

(b)

x

Oscillating fluid element 

v

The element oscillates
left and right as the wave
moves through it.

Figure 17-4 (a) A sound wave, traveling
through a long air-filled tube with speed v,
consists of a moving, periodic pattern of
expansions and compressions of the air.
The wave is shown at an arbitrary instant.
(b) A horizontally expanded view of a
short piece of the tube. As the wave pass-
es, an air element of thickness �x oscillates
left and right in simple harmonic motion
about its equilibrium position. At the
instant shown in (b), the element happens
to be displaced a distance s to the right of
its equilibrium position. Its maximum dis-
placement, either right or left, is sm.

Displacement

Pressure variation 
Pressure amplitude 

Displacement
amplitude

ω ω 

Oscillating
term

(a)

ω ω (b)

s(x,t) = sm cos(kx – t)

Δp(x,t) = Δpm sin(kx – t)

Figure 17-5 (a) The displacement function
and (b) the pressure-variation function
of a traveling sound wave consist of an
amplitude and an oscillating term.
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tude �pm is related to the displacement amplitude sm in Eq. 17-12 by

�pm � (vrv)sm. (17-14)

Figure 17-6 shows plots of Eqs. 17-12 and 17-13 at t � 0; with time, the
two curves would move rightward along the horizontal axes. Note that the
displacement and pressure variation are p/2 rad (or 90�) out of phase. Thus, for
example, the pressure variation �p at any point along the wave is zero when the
displacement there is a maximum.

Checkpoint 1
When the oscillating air element in Fig. 17-4b is moving rightward through the point
of zero displacement, is the pressure in the element at its equilibrium value, just be-
ginning to increase, or just beginning to decrease?

Figure 17-6 (a) A plot of the displacement
function (Eq. 17-12) for t � 0. (b) A simi-
lar plot of the pressure-variation function
(Eq. 17-13). Both plots are for a 1000 Hz
sound wave whose pressure amplitude is
at the threshold of pain.

20 40 60 80 

20 40 60 80 

10

0

–10

x (cm)

t = 0 

(a)

sm

pmΔ 

x (cm)

t = 0 

Pr
es

su
re

 v
ar

ia
ti

on
 (

Pa
) 

D
is

pl
ac

em
en

t (
   

m
) 

μ 

30
20
10

0
–10
–20
–30

(b)

Derivation of Eqs. 17-13 and 17-14
Figure 17-4b shows an oscillating element of air of cross-sectional area A and
thickness �x, with its center displaced from its equilibrium position by
distance s. From Eq. 17-2 we can write, for the pressure variation in the dis-
placed element,

(17-15)

The quantity V in Eq. 17-15 is the volume of the element, given by

V � A �x. (17-16)

The quantity �V in Eq. 17-15 is the change in volume that occurs when the
element is displaced. This volume change comes about because the displace-
ments of the two faces of the element are not quite the same, differing by some
amount �s.Thus, we can write the change in volume as

�V � A �s. (17-17)

Substituting Eqs. 17-16 and 17-17 into Eq. 17-15 and passing to the differen-
tial limit yield

(17-18)

The symbols � indicate that the derivative in Eq. 17-18 is a partial derivative,
which tells us how s changes with x when the time t is fixed. From Eq. 17-12 we
then have, treating t as a constant,

Substituting this quantity for the partial derivative in Eq. 17-18 yields

�p � Bksm sin(kx � vt).

This tells us that the pressure varies as a sinusoidal function of time and that the
amplitude of the variation is equal to the terms in front of the sine function.
Setting �pm � Bksm, this yields Eq. 17-13, which we set out to prove.

Using Eq. 17-3, we can now write

�pm � (Bk)sm � (v2rk)sm.

Equation 17-14, which we also wanted to prove, follows at once if we substitute
v/v for k from Eq. 16-12.

�s
�x

�
�

�x
 [sm cos(kx � vt)] � �ksm sin(kx � vt).

�p � �B
�s
�x

� �B
�s
�x

.

�p � �B
�V
V

.
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� 1.1 � 10�5 m � 11 mm. (Answer)

That is only about one-seventh the thickness of a book page.
Obviously, the displacement amplitude of even the loudest
sound that the ear can tolerate is very small. Temporary ex-
posure to such loud sound produces temporary hearing loss,
probably due to a decrease in blood supply to the inner ear.
Prolonged exposure produces permanent damage.

The pressure amplitude �pm for the faintest detectable
sound at 1000 Hz is 2.8 � 10�5 Pa. Proceeding as above
leads to sm � 1.1 � 10�11 m or 11 pm, which is about one-
tenth the radius of a typical atom. The ear is indeed a sensi-
tive detector of sound waves.

sm �
28 Pa

(343 m/s)(1.21 kg/m3)(2�)(1000 Hz)

Sample Problem 17.01 Pressure amplitude, displacement amplitude

The maximum pressure amplitude pm that the human ear can
tolerate in loud sounds is about 28 Pa (which is very much less
than the normal air pressure of about 105 Pa). What is the dis-
placement amplitude sm for such a sound in air of density r �
1.21 kg/m3,at a frequency of 1000 Hz and a speed of 343 m/s?

KEY IDEA

The displacement amplitude sm of a sound wave is related to
the pressure amplitude �pm of the wave according to Eq.17-14.

Calculations: Solving that equation for sm yields

.

Substituting known data then gives us

sm �
�pm

v��
�

�pm

v�(2�f )

�

Additional examples, video, and practice available at WileyPLUS

17-3 INTERFERENCE
Learning Objectives

waves with the same amplitude, wavelength, and travel di-
rection, determine the type of interference between the
waves (fully destructive interference, fully constructive in-
terference, or indeterminate interference).

17.16 Convert a phase difference between radians, degrees,
and number of wavelengths.

● The interference of two sound waves with identical wave-
lengths passing through a common point depends on their phase
difference f there. If the sound waves were emitted in phase and
are traveling in approximately the same direction, f is given by

where �L is their path length difference. 

● Fully constructive interference occurs when f is an integer
multiple of 2p,

f �
�L
l

 2p,

f m(2p), for m 0, 1, 2, . . . ,

and, equivalently, when �L is related to wavelength l by

� 0, 1, 2, . . . .

● Fully destructive interference occurs when f is an odd multiple
of p,

f � (2m � 1)p, for m � 0, 1, 2, . . . ,

� 0.5, 1.5, 2.5, . . . .
�L
l

�L
l

��

After reading this module, you should be able to . . . 

17.14 If two waves with the same wavelength begin in
phase but reach a common point by traveling along dif-
ferent paths, calculate their phase difference f at that
point by relating the path length difference �L to the
wavelength l.

17.15 Given the phase difference between two sound

Key Ideas

Interference
Like transverse waves, sound waves can undergo interference. In fact, we can
write equations for the interference as we did in Module 16-5 for transverse
waves. Suppose two sound waves with the same amplitude and wavelength are
traveling in the positive direction of an x axis with a phase difference of f.We can
express the waves in the form of Eqs. 16-47 and 16-48 but, to be consistent with
Eq. 17-12, we use cosine functions instead of sine functions:

s1(x, t) � sm cos(kx � vt)

and
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or projectile produces a burst of sound, called a sonic boom, in which the air pres-
sure first suddenly increases and then suddenly decreases below normal before re-
turning to normal. Part of the sound that is heard when a rifle is fired is the sonic
boom produced by the bullet. When a long bull whip is snapped, its tip is moving
faster than sound and produces a small sonic boom—the crack of the whip.

Sound Waves Sound waves are longitudinal mechanical waves
that can travel through solids, liquids, or gases. The speed v of a
sound wave in a medium having bulk modulus B and density r is

(speed of sound). (17-3)

In air at 20�C, the speed of sound is 343 m/s.
A sound wave causes a longitudinal displacement s of a mass

element in a medium as given by

s � sm cos(kx � vt), (17-12)

where sm is the displacement amplitude (maximum displacement)
from equilibrium, k � 2p/l, and v � 2pf, l and f being the wave-
length and frequency of the sound wave. The wave also causes a
pressure change �p from the equilibrium pressure:

�p � �pm sin(kx � vt), (17-13)

where the pressure amplitude is

�pm � (vrv)sm. (17-14)

Interference The interference of two sound waves with identi-
cal wavelengths passing through a common point depends on their
phase difference f there. If the sound waves were emitted in phase
and are traveling in approximately the same direction, f is given by

(17-21)

where �L is their path length difference (the difference in the
distances traveled by the waves to reach the common point). Fully
constructive interference occurs when f is an integer multiple of 2p,

f � m(2p), for m � 0, 1, 2, . . . , (17-22)

and, equivalently, when �L is related to wavelength l by

� 0, 1, 2, . . . . (17-23)

Fully destructive interference occurs when f is an odd multiple of p,

f � (2m � 1)p, for m � 0, 1, 2, . . . , (17-24)

and, equivalently, when �L is related to l by

� 0.5, 1.5, 2.5, . . . . (17-25)

Sound Intensity The intensity I of a sound wave at a surface is
the average rate per unit area at which energy is transferred by the
wave through or onto the surface:

, (17-26)

where P is the time rate of energy transfer (power) of the sound wave

I �
P
A

�L
l

�L
l

f �
�L
l

 2p,

v � A
B
�

Review & Summary

and A is the area of the surface intercepting the sound.The intensity I
is related to the displacement amplitude sm of the sound wave by

(17-27)

The intensity at a distance r from a point source that emits sound
waves of power Ps is

. (17-28)

Sound Level in Decibels The sound level b in decibels (dB)
is defined as

, (17-29)

where I0 (� 10�12 W/m2) is a reference intensity level to which all
intensities are compared. For every factor-of-10 increase in inten-
sity, 10 dB is added to the sound level.

Standing Wave Patterns in Pipes Standing sound wave
patterns can be set up in pipes. A pipe open at both ends will
resonate at frequencies

, n � 1, 2, 3, . . . , (17-39)

where v is the speed of sound in the air in the pipe. For a pipe
closed at one end and open at the other, the resonant fre-
quencies are

, n � 1, 3, 5, . . . . (17-41)

Beats Beats arise when two waves having slightly different fre-
quencies, f1 and f2, are detected together.The beat frequency is

fbeat � f 1 � f 2. (17-46)

The Doppler Effect The Doppler effect is a change in the
observed frequency of a wave when the source or the detec-
tor moves relative to the transmitting medium (such as air).
For sound the observed frequency f is given in terms of the source
frequency f by

(general Doppler effect), (17-47)

where vD is the speed of the detector relative to the medium, vS is
that of the source, and v is the speed of sound in the medium. The
signs are chosen such that f tends to be greater for motion toward
and less for motion away.

Shock Wave If the speed of a source relative to the medium
exceeds the speed of sound in the medium, the Doppler equation
no longer applies. In such a case, shock waves result.The half-angle
u of the Mach cone is given by

(Mach cone angle). (17-57)sin u �
v
vS

f  � f
v � vD

v � vS

f �
v
�

�
nv
4L

f �
v
�

�
nv
2L

b � (10 dB) log 
I
I0

I �
Ps

4pr2

I � 1
2�vv2s2

m.
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Rather, they change the value of dV/dp—that is, the differential
change in volume due to the differential change in the pressure
caused by the sound wave in the water. If fs /fi � 0.333, what is the
ratio (dV/dp)s/(dV/dp)i?

Module 17-2 Traveling Sound Waves
•9 If the form of a sound wave traveling through air is

s(x, t) � (6.0 nm) cos(kx � (3000 rad/s)t � f),

how much time does any given air molecule along the path take to
move between displacements s � �2.0 nm and s � �2.0 nm?

•10 Underwater illusion. One
clue used by your brain to determine
the direction of a source of sound is
the time delay �t between the arrival
of the sound at the ear closer to the
source and the arrival at the farther
ear.Assume that the source is distant
so that a wavefront from it is approx-
imately planar when it reaches you,
and let D represent the separation
between your ears. (a) If the source is located at angle u in front of
you (Fig. 17-31), what is in terms of D and the speed of sound v
in air? (b) If you are submerged in water and the sound source is di-
rectly to your right, what is �t in terms of D and the speed of sound
vw in water? (c) Based on the time-delay clue, your brain interprets
the submerged sound to arrive at an angle u from the forward direc-
tion. Evaluate u for fresh water at 20�C.

•11 Diagnostic ultrasound of frequency 4.50 MHz is used to
examine tumors in soft tissue. (a) What is the wavelength in air of
such a sound wave? (b) If the speed of sound in tissue is 1500 m/s,
what is the wavelength of this wave in tissue?

•12 The pressure in a traveling sound wave is given by the
equation

�p � (1.50 Pa) sin p[(0.900 m�1) x � (315 s�1)t].

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, and
(d) speed of the wave.

••13 A sound wave of the form s � sm cos(kx � vt � f) travels at
343 m/s through air in a long horizontal tube. At one instant, air
molecule A at x � 2.000 m is at
its maximum positive displace-
ment of 6.00 nm and air mole-
cule B at x � 2.070 m is at a pos-
itive displacement of 2.00 nm.
All the molecules between A
and B are at intermediate dis-
placements. What is the fre-
quency of the wave?

••14 Figure 17-32 shows the
output from a pressure monitor
mounted at a point along the

SSM

�t

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Where needed in the problems, use

speed of sound in air � 343 m/s

and density of air � 1.21 kg/m3

unless otherwise specified.

Module 17-1 Speed of Sound
•1 Two spectators at a soccer game see, and a moment later hear,
the ball being kicked on the playing field. The time delay for spec-
tator A is 0.23 s, and for spectator B it is 0.12 s. Sight lines from the
two spectators to the player kicking the ball meet at an angle of
90�. How far are (a) spectator A and (b) spectator B from the
player? (c) How far are the spectators from each other?

•2 What is the bulk modulus of oxygen if 32.0 g of oxygen occupies
22.4 L and the speed of sound in the oxygen is 317 m/s?

•3 When the door of the Chapel of the Mausoleum in
Hamilton, Scotland, is slammed shut, the last echo heard by some-
one standing just inside the door reportedly comes 15 s later. (a) If
that echo were due to a single reflection off a wall opposite the
door, how far from the door is the wall? (b) If, instead, the wall is
25.7 m away, how many reflections (back and forth) occur?

•4 A column of soldiers, marching at 120 paces per minute, keep
in step with the beat of a drummer at the head of the column. The
soldiers in the rear end of the column are striding forward with the
left foot when the drummer is advancing with the right foot.What is
the approximate length of the column?

••5 Earthquakes generate sound waves inside Earth.
Unlike a gas, Earth can experience both transverse (S) and longitu-
dinal (P) sound waves. Typically, the speed of S waves is about 
4.5 km/s, and that of P waves 8.0 km/s. A seismograph records 
P and S waves from an earthquake.The first P waves arrive 3.0 min
before the first S waves. If the waves travel in a straight line, how
far away did the earthquake occur?

••6 A man strikes one end of a thin rod with a hammer.
The speed of sound in the rod is 15 times the speed of sound in air.
A woman, at the other end with her ear close to the rod, hears the
sound of the blow twice with a 0.12 s interval between; one sound
comes through the rod and the other comes through the air along-
side the rod. If the speed of sound in air is 343 m/s, what is the
length of the rod?

••7 A stone is dropped into a well. The splash is
heard 3.00 s later.What is the depth of the well?

••8 Hot chocolate effect. Tap a metal spoon inside a
mug of water and note the frequency fi you hear. Then add a
spoonful of powder (say, chocolate mix or instant coffee) and tap
again as you stir the powder. The frequency you hear has a lower
value fs because the tiny air bubbles released by the powder
change the water’s bulk modulus. As the bubbles reach the water
surface and disappear, the frequency gradually shifts back to its
initial value. During the effect, the bubbles don’t appreciably
change the water’s density or volume or the sound’s wavelength.
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separated by distance d1 � 2.00 m are
in phase. Assume the amplitudes of
the sound waves from the speakers
are approximately the same at the lis-
tener’s ear at distance d2 3.75 m di-
rectly in front of one speaker.
Consider the full audible range for
normal hearing, 20 Hz to 20 kHz. (a)
What is the lowest frequency fmin,1

that gives minimum signal (destructive interference) at the lis-
tener’s ear? By what number must fmin,1 be multiplied to get (b)
the second lowest frequency fmin,2 that gives minimum signal and
(c) the third lowest frequency fmin,3 that gives minimum signal?
(d) What is the lowest frequency fmax,1 that gives maximum signal
(constructive interference) at the listener’s ear? By what number
must fmax,1 be multiplied to get (e) the second lowest frequency
fmax,2 that gives maximum signal and (f) the third lowest fre-
quency fmax,3 that gives maximum signal?

••22 In Fig. 17-38, sound with a
40.0 cm wavelength travels right-
ward from a source and through a
tube that consists of a straight por-
tion and a half-circle. Part of the
sound wave travels through the half-
circle and then rejoins the rest of the
wave, which goes directly through
the straight portion. This rejoining
results in interference. What is the
smallest radius r that results in an in-
tensity minimum at the detector?

•••23 Figure 17-39 shows two
point sources S1 and S2 that emit
sound of wavelength l � 2.00 m.
The emissions are isotropic and in
phase, and the separation between

�
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path taken by a sound wave of a single frequency traveling at 343
m/s through air with a uniform density of 1.21 kg/m3. The vertical
axis scale is set by �ps � 4.0 mPa. If the displacement function of the
wave is s(x, t) � sm cos(kx � vt), what are (a) sm, (b) k, and (c) v?
The air is then cooled so that its density is 1.35 kg/m3 and the speed
of a sound wave through it is 320 m/s.The sound source again emits
the sound wave at the same frequency and same pressure ampli-
tude.What now are (d) sm, (e) k, and (f) v?

••15 A handclap on stage in an amphitheater sends out

ql.What are the (a) smallest and (b) second smallest values of q that
put A and B exactly out of phase with each other after the
reflections?

••19 Figure 17-35 shows two

Figure 17-33 Problem 15.

w

Terrace

isotropic point sources of sound, S1

and S2. The sources emit waves in
phase at wavelength 0.50 m; they are
separated by D � 1.75 m. If we move a sound detector along a large
circle centered at the midpoint between the sources, at how many
points do waves arrive at the detector (a) exactly in phase and (b) ex-
actly out of phase?

••20 Figure 17-36 shows four isotropic point sources of sound
that are uniformly spaced on an x axis. The sources emit sound at
the same wavelength l and same amplitude sm, and they emit in
phase. A point P is shown on the x axis. Assume that as the sound
waves travel to P, the decrease in their amplitude is negligible.
What multiple of sm is the amplitude of the net wave at P if dis-
tance d in the figure is (a) l/4, (b) l/2, and (c) l?

••21 In Fig. 17-37, two speakersSSM

sound waves that scatter from terraces of width w � 0.75 m
(Fig. 17-33). The sound returns to the stage as a periodic
series of pulses, one from each terrace; the parade of pulses
sounds like a played note. (a) Assuming that all the rays in
Fig. 17-33 are horizontal, find the frequency at which the pulses
return (that is, the frequency of the perceived note). (b) If the
width w of the terraces were smaller, would the frequency be
higher or lower?

Module 17-3 Interference
•16 Two sound waves, from two different sources with the same
frequency, 540 Hz, travel in the same direction at 330 m/s. The
sources are in phase. What is the phase difference of the waves at
a point that is 4.40 m from one source and 4.00 m from the
other?

••17 Two loud speakers are located 3.35 m apart on an
outdoor stage. A listener is 18.3 m from one and 19.5 m from the
other. During the sound check, a signal generator drives the two
speakers in phase with the same amplitude and frequency.
The transmitted frequency is swept through the audible range
(20 Hz to 20 kHz). (a) What is the lowest frequency fmin,1 that gives
minimum signal (destructive interference) at the listener’s loca-
tion? By what number must fmin,1 be multiplied to get (b) the sec-
ond lowest frequency fmin,2 that gives minimum signal and (c) the
third lowest frequency fmin,3 that gives minimum signal? (d) What is
the lowest frequency fmax,1 that gives maximum signal (constructive
interference) at the listener’s location? By what number must fmax,1

be multiplied to get (e) the second lowest frequency fmax,2 that
gives maximum signal and (f) the third lowest frequency fmax,3 that
gives maximum signal?

••18 In Fig. 17-34, sound waves A
and B, both of wavelength l, are ini-
tially in phase and traveling right-
ward, as indicated by the two rays.
Wave A is reflected from four sur-
faces but ends up traveling in its orig-
inal direction.Wave B ends in that di-
rection after reflecting from two
surfaces. Let distance L in the figure
be expressed as a multiple q of l: L �
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••34 Two atmospheric sound sources A and B emit isotropi-
cally at constant power. The sound levels b of their emissions are
plotted in Fig. 17-40 versus the radial distance r from the sources.
The vertical axis scale is set by b1 � 85.0 dB and b2 � 65.0 dB.
What are (a) the ratio of the larger power to the smaller power and
(b) the sound level difference at r � 10 m? 

intensity of the waves 2.50 m from the source is 1.91 � 10�4 W/m2.
Assuming that the energy of the waves is conserved, find the
power of the source.

•30 The source of a sound wave has a power of 1.00 mW. If it is a
point source, (a) what is the intensity 3.00 m away and (b) what is
the sound level in decibels at that distance?

•31 When you “crack” a knuckle, you suddenly widen
the knuckle cavity, allowing more volume for the synovial fluid in-
side it and causing a gas bubble suddenly to appear in the fluid.The
sudden production of the bubble, called “cavitation,” produces a
sound pulse—the cracking sound. Assume that the sound is trans-
mitted uniformly in all directions and that it fully passes from the
knuckle interior to the outside. If the pulse has a sound level of
62 dB at your ear, estimate the rate at which energy is produced by
the cavitation.

•32 Approximately a third of people with normal hearing
have ears that continuously emit a low-intensity sound outward
through the ear canal. A person with such spontaneous otoacoustic
emission is rarely aware of the sound, except perhaps in a noise-
free environment, but occasionally the emission is loud enough to
be heard by someone else nearby. In one observation, the sound
wave had a frequency of 1665 Hz and a pressure amplitude of
1.13 � 10�3 Pa. What were (a) the displacement amplitude and
(b) the intensity of the wave emitted by the ear?

•33 Male Rana catesbeiana bullfrogs are known for their
loud mating call. The call is emitted not by the frog’s mouth but by
its eardrums, which lie on the surface of the head. And, surpris-
ingly, the sound has nothing to do with the frog’s inflated throat. If
the emitted sound has a frequency of 260 Hz and a sound level of
85 dB (near the eardrum), what is the amplitude of the eardrum’s
oscillation? The air density is 1.21 kg/m3.

the sources is d � 16.0 m. At any point P on the x axis, the wave
from S1 and the wave from S2 interfere. When P is very far away
(x � �), what are (a) the phase difference between the arriving
waves from S1 and S2 and (b) the type of interference they pro-
duce? Now move point P along the x axis toward S1. (c) Does the
phase difference between the waves increase or decrease? At
what distance x do the waves have a phase difference of (d)
0.50l, (e) 1.00l, and (f ) 1.50l?

Module 17-4 Intensity and Sound Level
•24 Suppose that the sound level of a conversation is initially at
an angry 70 dB and then drops to a soothing 50 dB. Assuming that
the frequency of the sound is 500 Hz, determine the (a) initial and
(b) final sound intensities and the (c) initial and (d) final sound
wave amplitudes.

•25 A sound wave of frequency 300 Hz has an intensity of 
1.00 mW/m2.What is the amplitude of the air oscillations caused by
this wave?

•26 A 1.0 W point source emits sound waves isotropically.
Assuming that the energy of the waves is conserved, find the inten-
sity (a) 1.0 m from the source and (b) 2.5 m from the source.

•27 A certain sound source is increased in sound
level by 30.0 dB. By what multiple is (a) its intensity increased and
(b) its pressure amplitude increased?

•28 Two sounds differ in sound level by 1.00 dB. What is the ratio
of the greater intensity to the smaller intensity?

•29 A point source emits sound waves isotropically. TheSSM

WWWSSM

Figure 17-40 Problem 34.

••35 A point source emits 30.0 W of sound isotropically. A small
microphone intercepts the sound in an area of 0.750 cm2, 200 m
from the source. Calculate (a) the sound intensity there and (b) the
power intercepted by the microphone.

••36 Party hearing. As the number of people at a party in-
creases, you must raise your voice for a listener to hear you against
the background noise of the other partygoers. However, once you
reach the level of yelling, the only way you can be heard is if you
move closer to your listener, into the listener’s “personal space.”
Model the situation by replacing you with an isotropic point source
of fixed power P and replacing your listener with a point that ab-
sorbs part of your sound waves.These points are initially separated
by ri � 1.20 m. If the background noise increases by �b � 5 dB, the
sound level at your listener must also increase. What separation rf

is then required?

•••37 A sound source sends a sinusoidal sound wave of angular
frequency 3000 rad/s and amplitude 12.0 nm through a tube of air.
The internal radius of the tube is 2.00 cm. (a) What is the average
rate at which energy (the sum of the kinetic and potential energies)
is transported to the opposite end of the tube? (b) If, simultane-
ously, an identical wave travels along an adjacent, identical tube,
what is the total average rate at which energy is transported to the
opposite ends of the two tubes by the waves? If, instead, those two
waves are sent along the same tube simultaneously, what is the to-
tal average rate at which they transport energy when their phase
difference is (c) 0, (d) 0.40p rad, and (e) p rad?

Module 17-5 Sources of Musical Sound
•38 The water level in a vertical glass tube 1.00 m long can be ad-
justed to any position in the tube.A tuning fork vibrating at 686 Hz
is held just over the open top end of the tube, to set up a standing
wave of sound in the air-filled top portion of the tube. (That air-
filled top portion acts as a tube with one end closed and the other
end open.) (a) For how many different positions of the water level
will sound from the fork set up resonance in the tube’s air-filled
portion?  What are the (b) least and (c) second least water heights
in the tube for resonance to occur?

•39 (a) Find the speed of waves on a violin string of
mass 800 mg and length 22.0 cm if the fundamental frequency is
920 Hz. (b) What is the tension in the string? For the fundamental,
what is the wavelength of (c) the waves on the string and (d) the
sound waves emitted by the string?

ILWSSM
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•40 Organ pipe A, with both ends open, has a fundamental 
frequency of 300 Hz. The third harmonic of organ pipe B, with 
one end open, has the same frequency as the second harmonic of
pipe A. How long are (a) pipe A and (b) pipe B?

•41 A violin string 15.0 cm long and fixed at both ends oscillates
in its n � 1 mode. The speed of waves on the string is 250 m/s, and
the speed of sound in air is 348 m/s.What are the (a) frequency and
(b) wavelength of the emitted sound wave?

•42 A sound wave in a fluid medium is reflected at a barrier so
that a standing wave is formed. The distance between nodes is 
3.8 cm, and the speed of propagation is 1500 m/s. Find the fre-
quency of the sound wave.

•43 In Fig. 17-41, S is a small loudspeaker
driven by an audio oscillator with a frequency that
is varied from 1000 Hz to 2000 Hz, and D is a cylin-
drical pipe with two open ends and a length of
45.7 cm. The speed of sound in the air-filled pipe is
344 m/s. (a) At how many frequencies does the
sound from the loudspeaker set up resonance in
the pipe? What are the (b) lowest and (c) second
lowest frequencies at which resonance occurs?

•44 The crest of a Parasaurolophus dinosaur skull is shaped
somewhat like a trombone and contains a nasal passage in the
form of a long, bent tube open at both ends. The dinosaur may
have used the passage to produce sound by setting up the funda-
mental mode in it. (a) If the nasal passage in a certain
Parasaurolophus fossil is 2.0 m long, what frequency would have
been produced? (b) If that dinosaur could be recreated (as in
Jurassic Park), would a person with a hearing range of 60 Hz to
20 kHz be able to hear that fundamental mode and, if so, would the
sound be high or low frequency? Fossil skulls that contain shorter
nasal passages are thought to be those of the female
Parasaurolophus. (c) Would that make the female’s fundamental
frequency higher or lower than the male’s?

•45 In pipe A, the ratio of a particular harmonic frequency to the
next lower harmonic frequency is 1.2. In pipe B, the ratio of a par-
ticular harmonic frequency to the next lower harmonic frequency
is 1.4. How many open ends are in (a) pipe A and (b) pipe B?

••46 Pipe A, which is 1.20 m long and open at both ends,
oscillates at its third lowest harmonic frequency. It is filled with air
for which the speed of sound is 343 m/s. Pipe B, which is closed at
one end, oscillates at its second lowest harmonic frequency. This
frequency of B happens to match the frequency of A. An x axis ex-
tends along the interior of B, with x � 0 at the closed end. (a) How
many nodes are along that axis? What are the (b) smallest and
(c) second smallest value of x locating those nodes? (d) What is the
fundamental frequency of B?

••47 A well with vertical sides and water at the bottom resonates
at 7.00 Hz and at no lower frequency. The air-filled portion of the
well acts as a tube with one closed end (at the bottom) and one
open end (at the top).The air in the well has a density of 1.10 kg/m3

and a bulk modulus of 1.33 � 105 Pa. How far down in the well is
the water surface?

••48 One of the harmonic frequencies of tube A with two open
ends is 325 Hz. The next-highest harmonic frequency is 390 Hz.
(a) What harmonic frequency is next highest after the harmonic 
frequency 195 Hz? (b) What is the number of this next-highest 
harmonic? One of the harmonic frequencies of tube B with only

SSM

one open end is 1080 Hz. The next-highest harmonic frequency is
1320 Hz. (c) What harmonic frequency is next highest after the
harmonic frequency 600 Hz? (d) What is the number of this next-
highest harmonic?

••49 A violin string 30.0 cm long with linear density
0.650 g/m is placed near a loudspeaker that is fed by an audio oscil-
lator of variable frequency. It is found that the string is set into os-
cillation only at the frequencies 880 and 1320 Hz as the frequency
of the oscillator is varied over the range 500–1500 Hz. What is the
tension in the string?

••50 A tube 1.20 m long is closed at one end. A stretched wire
is placed near the open end. The wire is 0.330 m long and has a
mass of 9.60 g. It is fixed at both ends and oscillates in its funda-
mental mode. By resonance, it sets the air column in the tube into
oscillation at that column’s fundamental frequency. Find (a) that
frequency and (b) the tension in the wire.

Module 17-6 Beats
•51 The A string of a violin is a little too tightly stretched. Beats
at 4.00 per second are heard when the string is sounded together
with a tuning fork that is oscillating accurately at concert A
(440 Hz).What is the period of the violin string oscillation?

•52 A tuning fork of unknown frequency makes 3.00 beats per
second with a standard fork of frequency 384 Hz. The beat fre-
quency decreases when a small piece of wax is put on a prong of
the first fork.What is the frequency of this fork?

••53 Two identical piano wires have a fundamental
frequency of 600 Hz when kept under the same tension.What frac-
tional increase in the tension of one wire will lead to the occur-
rence of 6.0 beats/s when both wires oscillate simultaneously?

••54 You have five tuning forks that oscillate at close but differ-
ent resonant frequencies. What are the (a) maximum and (b) mini-
mum number of different beat frequencies you can produce by
sounding the forks two at a time, depending on how the resonant
frequencies differ?

Module 17-7 The Doppler Effect
•55 A whistle of frequency 540 Hz moves in a circle of radius
60.0 cm at an angular speed of 15.0 rad/s. What are the (a) lowest
and (b) highest frequencies heard by a listener a long distance
away, at rest with respect to the center of the circle?

•56 An ambulance with a siren emitting a whine at 1600 Hz over-
takes and passes a cyclist pedaling a bike at 2.44 m/s. After being
passed, the cyclist hears a frequency of 1590 Hz. How fast is the
ambulance moving?

•57 A state trooper chases a speeder along a straight road; both
vehicles move at 160 km/h. The siren on the trooper’s vehicle pro-
duces sound at a frequency of 500 Hz. What is the Doppler shift in
the frequency heard by the speeder?

••58 A sound source A and a reflecting surface B move directly
toward each other. Relative to the air, the speed of source A is
29.9 m/s, the speed of surface B is 65.8 m/s, and the speed of sound
is 329 m/s. The source emits waves at frequency 1200 Hz as meas-
ured in the source frame. In the reflector frame, what are the 
(a) frequency and (b) wavelength of the arriving sound waves? In
the source frame, what are the (c) frequency and (d) wavelength of
the sound waves reflected back to the source?
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Figure 17-44 Problem 73.

••59 In Fig. 17-42, a French submarine and a U.S. submarine
move toward each other during maneuvers in motionless water
in the North Atlantic. The French sub moves at speed vF �
50.00 km/h, and the U.S. sub at vUS � 70.00 km/h. The French sub
sends out a sonar signal (sound wave in water) at 1.000 � 103 Hz.
Sonar waves travel at 5470 km/h. (a) What is the signal’s frequency
as detected by the U.S. sub? (b) What frequency is detected by the
French sub in the signal reflected back to it by the U.S. sub?

locomotive whistle emits sound at frequency 500.0 Hz. The air is
still. (a) What frequency does the uncle hear? (b) What frequency
does the girl hear? A wind begins to blow from the east at 10.00
m/s. (c) What frequency does the uncle now hear? (d) What fre-
quency does the girl now hear?

Module 17-8 Supersonic Speeds, Shock Waves
•68 The shock wave off the cockpit of the FA 18 in Fig. 17-24 
has an angle of about 60�. The airplane was traveling at about 
1350 km/h when the photograph was taken. Approximately what
was the speed of sound at the airplane’s altitude?

••69 A jet plane passes over you at a height of 5000 m
and a speed of Mach 1.5. (a) Find the Mach cone angle (the sound
speed is 331 m/s). (b) How long after the jet passes directly over-
head does the shock wave reach you?

••70 A plane flies at 1.25 times the speed of sound. Its sonic boom
reaches a man on the ground 1.00 min after the plane passes di-
rectly overhead. What is the altitude of the plane? Assume the
speed of sound to be 330 m/s.

Additional Problems
71 At a distance of 10 km, a 100 Hz horn, assumed to be an
isotropic point source, is barely audible. At what distance would it
begin to cause pain?

72 A bullet is fired with a speed of 685 m/s. Find the angle made
by the shock cone with the line of motion of the bullet.

73 A sperm whale (Fig. 17-44a) vocalizes by producing a
series of clicks. Actually, the whale makes only a single sound near
the front of its head to start the series. Part of that sound then
emerges from the head into the water to become the first click of
the series. The rest of the sound travels backward through the
spermaceti sac (a body of fat), reflects from the frontal sac (an air
layer), and then travels forward through the spermaceti sac. When
it reaches the distal sac (another air layer) at the front of the head,
some of the sound escapes into the water to form the second click,
and the rest is sent back through the spermaceti sac (and ends up
forming later clicks).

Figure 17-44b shows a strip-chart recording of a series of clicks.
A unit time interval of 1.0 ms is indicated on the chart. Assuming
that the speed of sound in the spermaceti sac is 1372 m/s, find
the length of the spermaceti sac. From such a calculation, marine
scientists estimate the length of a whale from its click series.

SSMFrench U.S.
vF vUS

Figure 17-42 Problem 59.

••60 A stationary motion detector sends sound waves of frequency
0.150 MHz toward a truck approaching at a speed of 45.0 m/s. What
is the frequency of the waves reflected back to the detector?

••61 A bat is flitting about in a cave, navigating via
ultrasonic bleeps.Assume that the sound emission frequency of the
bat is 39 000 Hz. During one fast swoop directly toward a flat wall
surface, the bat is moving at 0.025 times the speed of sound in air.
What frequency does the bat hear reflected off the wall?

••62 Figure 17-43 shows four tubes with lengths 1.0 m or 2.0 m,
with one or two open ends as drawn. The third harmonic is set up in
each tube, and some of the sound that escapes from them is detected
by detector D, which moves directly away from the tubes. In
terms of the speed of sound v,
what speed must the detector
have such that the detected
frequency of the sound from
(a) tube 1, (b) tube 2, (c) tube
3, and (d) tube 4 is equal to the
tube’s fundamental frequency?

••63 An acoustic burglar alarm consists of a source emitting
waves of frequency 28.0 kHz. What is the beat frequency between
the source waves and the waves reflected from an intruder walking
at an average speed of 0.950 m/s directly away from the alarm?

••64 A stationary detector measures the frequency of a sound
source that first moves at constant velocity directly toward the de-
tector and then (after passing the detector) directly away from it.
The emitted frequency is f. During the approach the detected fre-
quency is fapp and during the recession it is frec. If ( fapp � frec)/f �
0.500, what is the ratio vs/v of the speed of the source to the speed
of sound?

•••65 A 2000 Hz siren and a civil defense official are both at
rest with respect to the ground. What frequency does the official
hear if the wind is blowing at 12 m/s (a) from source to official and
(b) from official to source?

•••66 Two trains are traveling toward each other at 30.5 m/s
relative to the ground. One train is blowing a whistle at 500 Hz.
(a) What frequency is heard on the other train in still air? (b) What
frequency is heard on the other train if the wind is blowing at 
30.5 m/s toward the whistle and away from the listener? (c) What
frequency is heard if the wind direction is reversed?

•••67 A girl is sitting near the open window of a
train that is moving at a velocity of 10.00 m/s to the east. The girl’s
uncle stands near the tracks and watches the train move away. The
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Oscillations

15-1 SIMPLE HARMONIC MOTION

After reading this module, you should be able to . . .

15.01 Distinguish simple harmonic motion from other types of
periodic motion.

15.02 For a simple harmonic oscillator, apply the relationship
between position x and time t to calculate either if given a
value for the other.

15.03 Relate period T, frequency f, and angular frequency v.
15.04 Identify (displacement) amplitude xm, phase constant

(or phase angle) f, and phase vt � f.
15.05 Sketch a graph of the oscillator’s position x versus time

t, identifying amplitude xm and period T.
15.06 From a graph of position versus time, velocity versus

time, or acceleration versus time, determine the amplitude
of the plot and the value of the phase constant f.

15.07 On a graph of position x versus time t describe the ef-
fects of changing period T, frequency f, amplitude xm, or
phase constant f.

15.08 Identify the phase constant f that corresponds to the
starting time (t � 0) being set when a particle in SHM is
at an extreme point or passing through the center point.

15.09 Given an oscillator’s position x(t) as a function of time,
find its velocity v(t) as a function of time, identify the veloc-
ity amplitude vm in the result, and calculate the velocity at
any given time.

15.10 Sketch a graph of an oscillator’s velocity v versus time t,
identifying the velocity amplitude vm.

15.11 Apply the relationship between velocity amplitude vm,
angular frequency v, and (displacement) amplitude xm.

15.12 Given an oscillator’s velocity v(t) as a function of time,
calculate its acceleration a(t) as a function of time, identify
the acceleration amplitude am in the result, and calculate
the acceleration at any given time.

15.13 Sketch a graph of an oscillator’s acceleration a versus
time t, identifying the acceleration amplitude am.

15.14 Identify that for a simple harmonic oscillator the acceler-
ation a at any instant is always given by the product of a
negative constant and the displacement x just then.

15.15 For any given instant in an oscillation, apply the relation-
ship between acceleration a, angular frequency v, and dis-
placement x.

15.16 Given data about the position x and velocity v at one 
instant, determine the phase vt � f and phase constant f.

15.17 For a spring–block oscillator, apply the relationships be-
tween spring constant k and mass m and either period T or
angular frequency v.

15.18 Apply Hooke’s law to relate the force F on a simple har-
monic oscillator at any instant to the displacement x of the
oscillator at that instant.

● The frequency f of periodic, or oscillatory, motion is the
number of oscillations per second. In the SI system, it is
measured in hertz: 1 Hz � 1 s�1.
● The period T is the time required for one complete oscilla-
tion, or cycle. It is related to the frequency by T � 1/f.
● In simple harmonic motion (SHM), the displacement x(t) of a
particle from its equilibrium position is described by the equation

x � xm cos(vt � f) (displacement),

in which xm is the amplitude of the displacement, vt � f is
the phase of the motion, and f is the phase constant. The
angular frequency v is related to the period and frequency of
the motion by v � 2p/T � 2pf.

● Differentiating x(t) leads to equations for the particle’s
SHM velocity and acceleration as functions of time:

v � �vxm sin(vt � f) (velocity)

and a � �v2xm cos(vt � f) (acceleration).

In the velocity function, the positive quantity vxm is the veloc-
ity amplitude vm. In the acceleration function, the positive
quantity v2xm is the acceleration amplitude am.

● A particle with mass m that moves under the influence of a
Hooke’s law restoring force given by F � �kx is a linear sim-
ple harmonic oscillator with

(angular frequency)

and (period).T � 2pA
m
k

v � A
k
m

Key Ideas

Learning Objectives
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What Is Physics?
Our world is filled with oscillations in which objects move back and forth repeat-
edly. Many oscillations are merely amusing or annoying, but many others are
dangerous or financially important. Here are a few examples: When a bat hits a
baseball, the bat may oscillate enough to sting the batter’s hands or even to break
apart.When wind blows past a power line, the line may oscillate (“gallop” in elec-
trical engineering terms) so severely that it rips apart, shutting off the power
supply to a community. When an airplane is in flight, the turbulence of the air
flowing past the wings makes them oscillate, eventually leading to metal fatigue
and even failure.When a train travels around a curve, its wheels oscillate horizon-
tally (“hunt” in mechanical engineering terms) as they are forced to turn in new
directions (you can hear the oscillations).

When an earthquake occurs near a city, buildings may be set oscillating so
severely that they are shaken apart.When an arrow is shot from a bow, the feathers
at the end of the arrow manage to snake around the bow staff without hitting it be-
cause the arrow oscillates. When a coin drops into a metal collection plate, the coin
oscillates with such a familiar ring that the coin’s denomination can be determined
from the sound. When a rodeo cowboy rides a bull, the cowboy oscillates wildly as
the bull jumps and turns (at least the cowboy hopes to be oscillating).

The study and control of oscillations are two of the primary goals of both
physics and engineering. In this chapter we discuss a basic type of oscillation
called simple harmonic motion.

Heads Up. This material is quite challenging to most students. One reason is
that there is a truckload of definitions and symbols to sort out, but the main reason
is that we need to relate an object’s oscillations (something that we can see or even
experience) to the equations and graphs for the oscillations. Relating the real, visi-
ble motion to the abstraction of an equation or graph requires a lot of hard work.

Simple Harmonic Motion
Figure 15-1 shows a particle that is oscillating about the origin of an x axis, repeat-
edly going left and right by identical amounts.The frequency f of the oscillation is
the number of times per second that it completes a full oscillation (a cycle) and
has the unit of hertz (abbreviated Hz), where

1 hertz � 1 Hz � 1 oscillation per second � 1 s�1. (15-1)

The time for one full cycle is the period T of the oscillation, which is

. (15-2)

Any motion that repeats at regular intervals is called periodic motion or har-
monic motion. However, here we are interested in a particular type of periodic
motion called simple harmonic motion (SHM). Such motion is a sinusoidal func-
tion of time t. That is, it can be written as a sine or a cosine of time t. Here we
arbitrarily choose the cosine function and write the displacement (or position) of
the particle in Fig. 15-1 as

x(t) � xm cos(vt � f) (displacement), (15-3)

in which xm, v, and f are quantities that we shall define.
Freeze-Frames. Let’s take some freeze-frames of the motion and then arrange

them one after another down the page (Fig. 15-2a). Our first freeze-frame is at t � 0
when the particle is at its rightmost position on the x axis. We label that coordi-
nate as xm (the subscript means maximum); it is the symbol in front of the cosine

T �
1
f

+xm–xm

x

0
Figure 15-1 A particle repeatedly oscillates
left and right along an x axis, between
extreme points xm and �xm.
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A particle oscillates left
and right in simple
harmonic motion.

Rotating the figure reveals
that the motion forms a
cosine function.

This is a graph of the motion,
with the period T indicated.

The speed is zero at
extreme points.

The speed is greatest
at x = 0.

The speed 
is zero at the 
extreme points.

The speed is greatest
at the midpoint.

Figure 15-2 (a) A sequence of “freeze-frames” (taken at equal time intervals) showing the position of a par-
ticle as it oscillates back and forth about the origin of an x axis, between the limits �xm and �xm. (b) The
vector arrows are scaled to indicate the speed of the particle.The speed is maximum when the particle is at
the origin and zero when it is at �xm. If the time t is chosen to be zero when the particle is at �xm, then the
particle returns to �xm at t � T, where T is the period of the motion.The motion is then repeated. (c)
Rotating the figure reveals the motion forms a cosine function of time, as shown in (d). (e) The speed (the
slope) changes.

A
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function in Eq. 15-3. In the next freeze-frame, the particle is a bit to the left of xm.
It continues to move in the negative direction of x until it reaches the leftmost po-
sition, at coordinate �xm. Thereafter, as time takes us down the page through
more freeze-frames, the particle moves back to xm and thereafter repeatedly os-
cillates between xm and �xm. In Eq. 15-3, the cosine function itself oscillates be-
tween �1 and �l.The value of xm determines how far the particle moves in its os-
cillations and is called the amplitude of the oscillations (as labeled in the handy
guide of Fig. 15-3).

Figure 15-2b indicates the velocity of the particle with respect to time, in the se-
ries of freeze-frames. We’ll get to a function for the velocity soon, but for now just
notice that the particle comes to a momentary stop at the extreme points and has
its greatest speed (longest velocity vector) as it passes through the center point.

Mentally rotate Fig. 15-2a counterclockwise by 90	, so that the freeze-frames
then progress rightward with time. We set time t � 0 when the particle is at xm.
The particle is back at xm at time t � T (the period of the oscillation), when it
starts the next cycle of oscillation. If we filled in lots of the intermediate freeze-
frames and drew a line through the particle positions, we would have the cosine
curve shown in Fig. 15-2d. What we already noted about the speed is displayed in
Fig. 15-2e. What we have in the whole of Fig. 15-2 is a transformation of what we
can see (the reality of an oscillating particle) into the abstraction of a graph. (In
WileyPLUS the transformation of Fig. 15-2 is available as an animation with
voiceover.) Equation 15-3 is a concise way to capture the motion in the abstrac-
tion of an equation.

More Quantities. The handy guide of Fig. 15-3 defines more quantities
about the motion. The argument of the cosine function is called the phase of the
motion. As it varies with time, the value of the cosine function varies. The con-
stant f is called the phase angle or phase constant. It is in the argument only be-
cause we want to use Eq. 15-3 to describe the motion regardless of where the par-
ticle is in its oscillation when we happen to set the clock time to 0. In Fig. 15-2, we set
t � 0 when the particle is at xm. For that choice, Eq. 15-3 works just fine if we also
set f � 0. However, if we set t � 0 when the particle happens to be at some other
location, we need a different value of f. A few values are indicated in Fig. 15-4.
For example, suppose the particle is at its leftmost position when we happen to
start the clock at t � 0.Then Eq. 15-3 describes the motion if f � p rad.To check,
substitute t � 0 and f � p rad into Eq. 15-3. See, it gives x � �xm just then. Now
check the other examples in Fig. 15-4.

The quantity v in Eq. 15-3 is the angular frequency of the motion.To relate it
to the frequency f and the period T, let’s first note that the position x(t) of the
particle must (by definition) return to its initial value at the end of a period. That
is, if x(t) is the position at some chosen time t, then the particle must return to that
same position at time t � T. Let’s use Eq. 15-3 to express this condition, but let’s
also just set f � 0 to get it out of the way. Returning to the same position can
then be written as

xm cos vt � xm cos v(t � T). (15-4)

The cosine function first repeats itself when its argument (the phase, remember)
has increased by 2p rad. So, Eq. 15-4 tells us that

v(t � T) � vt � 2p

or vT � 2p.

Thus, from Eq. 15-2 the angular frequency is

(15-5)

The SI unit of angular frequency is the radian per second.

v �
2p

�
� 2pf.

Figure 15-3 A handy guide to the quantities
in Eq. 15-3 for simple harmonic motion.

Displacement
at time t

Amplitude

Angular
frequency

Time

Phase
constant
or phase 
angle

Phase

x(t) = xm cos( t +   ) ω φ 

0

+xm–xm 0

p rad

p rad3
2

1
2
p rad

Figure 15-4 Values of f corresponding to
the position of the particle at time t � 0.
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We’ve had a lot of quantities here, quantities that we could experimentally
change to see the effects on the particle’s SHM. Figure 15-5 gives some examples.
The curves in Fig. 15-5a show the effect of changing the amplitude. Both curves
have the same period. (See how the “peaks” line up?) And both are for f � 0. (See
how the maxima of the curves both occur at t � 0?) In Fig. 15-5b, the two curves
have the same amplitude xm but one has twice the period as the other (and thus half
the frequency as the other). Figure 15-5c is probably more difficult to understand.
The curves have the same amplitude and same period but one is shifted relative to
the other because of the different f values. See how the one with f � 0 is just a reg-
ular cosine curve? The one with the negative f is shifted rightward from it.That is a
general result: negative f values shift the regular cosine curve rightward and posi-
tive f values shift it leftward. (Try this on a graphing calculator.)
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φ = 0

φ = – _
4
π

This negative value
shifts the cosine
curve rightward.

This zero gives a
regular cosine curve.

Figure 15-5 In all three cases, the blue curve is obtained
from Eq. 15-3 with f � 0. (a) The red curve differs from
the blue curve only in that the red-curve amplitude x�m is
greater (the red-curve extremes of displacement are high-
er and lower). (b) The red curve differs from the blue
curve only in that the red-curve period is T� � T/2 (the red
curve is compressed horizontally). (c) The red curve dif-
fers from the blue curve only in that for the red curve 
f � �p/4 rad rather than zero (the negative value of f
shifts the red curve to the right).

Checkpoint 1
A particle undergoing simple harmonic oscillation of period T (like that in Fig. 15-2) is
at �xm at time t � 0. Is it at �xm, at �xm, at 0, between �xm and 0, or between 0 and
�xm when (a) t � 2.00T, (b) t � 3.50T, and (c) t � 5.25T?

The Velocity of SHM
We briefly discussed velocity as shown in Fig. 15-2b, finding that it varies in magni-
tude and direction as the particle moves between the extreme points (where the
speed is momentarily zero) and through the central point (where the speed is maxi-
mum). To find the velocity v(t) as a function of time, let’s take a time derivative of
the position function x(t) in Eq. 15-3:

or v(t) � �vxm sin(vt � f) (velocity). (15-6)

The velocity depends on time because the sine function varies with time,
between the values of �1 and �1. The quantities in front of the sine function

v(t) �
dx(t)

dt
�

d
dt

 [xm cos(vt � f)]
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determine the extent of the variation in the velocity, between �vxm and �vxm.
We say that vxm is the velocity amplitude vm of the velocity variation. When the
particle is moving rightward through x � 0, its velocity is positive and the magni-
tude is at this greatest value. When it is moving leftward through x � 0, its veloc-
ity is negative and the magnitude is again at this greatest value. This variation
with time (a negative sine function) is displayed in the graph of Fig. 15-6b for a
phase constant of f � 0, which corresponds to the cosine function for the dis-
placement versus time shown in Fig. 15-6a.

Recall that we use a cosine function for x(t) regardless of the particle’s posi-
tion at t � 0.We simply choose an appropriate value of f so that Eq. 15-3 gives us
the correct position at t � 0. That decision about the cosine function leads us to a
negative sine function for the velocity in Eq. 15-6, and the value of f now gives
the correct velocity at t � 0.

The Acceleration of SHM
Let’s go one more step by differentiating the velocity function of Eq. 15-6 with
respect to time to get the acceleration function of the particle in simple harmonic
motion:

or a(t) � �v2xm cos(vt � f) (acceleration). (15-7)

We are back to a cosine function but with a minus sign out front. We know the
drill by now.The acceleration varies because the cosine function varies with time,
between �1 and �1. The variation in the magnitude of the acceleration is set by
the acceleration amplitude am, which is the product v2xm that multiplies the co-
sine function.

Figure 15-6c displays Eq. 15-7 for a phase constant f � 0, consistent with
Figs. 15-6a and 15-6b. Note that the acceleration magnitude is zero when the 
cosine is zero, which is when the particle is at x � 0. And the acceleration mag-
nitude is maximum when the cosine magnitude is maximum, which is when the
particle is at an extreme point, where it has been slowed to a stop so that its 
motion can be reversed. Indeed, comparing Eqs. 15-3 and 15-7 we see an extremely
neat relationship:

a(t) � �v2x(t). (15-8)

This is the hallmark of SHM: (1) The particle’s acceleration is always oppo-
site its displacement (hence the minus sign) and (2) the two quantities are al-
ways related by a constant (v2). If you ever see such a relationship in an oscil-
lating situation (such as with, say, the current in an electrical circuit, or the
rise and fall of water in a tidal bay), you can immediately say that the motion
is SHM and immediately identify the angular frequency v of the motion. In a
nutshell:

a(t) �
dv(t)

dt
�

d
dt

 [�vxm sin(vt � f)]

In SHM, the acceleration a is proportional to the displacement x but opposite in
sign, and the two quantities are related by the square of the angular frequency v.

Checkpoint 2
Which of the following relationships between a particle’s acceleration a and its
position x indicates simple harmonic oscillation: (a) a � 3x2, (b) a � 5x, (c) a � �4x,
(d) a � �2/x? For the SHM, what is the angular frequency (assume the unit of rad/s)?

Figure 15-6 (a) The displacement x(t) of a
particle oscillating in SHM with phase
angle f equal to zero. The period T marks
one complete oscillation. (b) The velocity
v(t) of the particle. (c) The acceleration
a(t) of the particle.
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Figure 15-7 A linear simple harmonic oscil-
lator. The surface is frictionless. Like the
particle of Fig. 15-2, the block moves in
simple harmonic motion once it has been
either pulled or pushed away from the
x � 0 position and released. Its displace-
ment is then given by Eq. 15-3.

k

x

–xm x = 0 +xm

m

Simple harmonic motion is the motion of a particle when the force acting on it is
proportional to the particle’s displacement but in the opposite direction.

The Force Law for Simple Harmonic Motion
Now that we have an expression for the acceleration in terms of the displacement
in Eq. 15-8, we can apply Newton’s second law to describe the force responsible
for SHM:

F � ma � m(�v2x) � �(mv2)x. (15-9)

The minus sign means that the direction of the force on the particle is opposite the di-
rection of the displacement of the particle.That is, in SHM the force is a restoring force
in the sense that it fights against the displacement,attempting to restore the particle to
the center point at x � 0. We’ve seen the general form of Eq. 15-9 back in Chapter 8
when we discussed a block on a spring as in Fig.15-7.There we wrote Hooke’s law,

F � �kx, (15-10)

for the force acting on the block. Comparing Eqs. 15-9 and 15-10, we can now re-
late the spring constant k (a measure of the stiffness of the spring) to the mass of
the block and the resulting angular frequency of the SHM:

k � mv2. (15-11)

Equation 15-10 is another way to write the hallmark equation for SHM.

Checkpoint 3
Which of the following relationships between the force F on a particle and the parti-
cle’s position x gives SHM: (a) F � �5x, (b) F � �400x2, (c) F � 10x, (d) F � 3x2?

The block–spring system of Fig. 15-7 is called a linear simple harmonic oscillator
(linear oscillator, for short), where linear indicates that F is proportional to x to
the first power (and not to some other power).

If you ever see a situation in which the force in an oscillation is always pro-
portional to the displacement but in the opposite direction, you can immediately
say that the oscillation is SHM. You can also immediately identify the associated
spring constant k. If you know the oscillating mass, you can then determine the
angular frequency of the motion by rewriting Eq. 15-11 as

(angular frequency). (15-12)

(This is usually more important than the value of k.) Further, you can determine
the period of the motion by combining Eqs. 15-5 and 15-12 to write

(period). (15-13)

Let’s make a bit of physical sense of Eqs. 15-12 and 15-13. Can you see that a
stiff spring (large k) tends to produce a large v (rapid oscillations) and thus a
small period T? Can you also see that a large mass m tends to result in a small v
(sluggish oscillations) and thus a large period T?

Every oscillating system, be it a diving board or a violin string, has some
element of “springiness” and some element of “inertia” or mass. In Fig. 15-7, these
elements are separated: The springiness is entirely in the spring, which we assume
to be massless, and the inertia is entirely in the block, which we assume to be rigid.
In a violin string, however, the two elements are both within the string.

T � 2pA
m
k

v � A
k
m
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Additional examples, video, and practice available at WileyPLUS

This maximum speed occurs when the oscillating block is
rushing through the origin; compare Figs. 15-6a and 15-6b,
where you can see that the speed is a maximum whenever
x � 0.

(d) What is the magnitude am of the maximum acceleration
of the block?

KEY IDEA

The magnitude am of the maximum acceleration is the accel-
eration amplitude v2xm in Eq. 15-7.

Calculation: So, we have

am � v2xm � (9.78 rad/s)2(0.11 m)

� 11 m/s2. (Answer)

This maximum acceleration occurs when the block is at the
ends of its path, where the block has been slowed to a stop
so that its motion can be reversed. At those extreme
points, the force acting on the block has its maximum mag-
nitude; compare Figs. 15-6a and 15-6c, where you can see
that the magnitudes of the displacement and acceleration
are maximum at the same times, when the speed is zero, as
you can see in Fig. 15-6b.

(e) What is the phase constant f for the motion?

Calculations: Equation 15-3 gives the displacement of the
block as a function of time. We know that at time t � 0,
the block is located at x � xm. Substituting these initial
conditions, as they are called, into Eq. 15-3 and canceling xm

give us
1 � cos f. (15-14)

Taking the inverse cosine then yields

f � 0 rad. (Answer)

(Any angle that is an integer multiple of 2p rad also satisfies
Eq. 15-14; we chose the smallest angle.)

(f) What is the displacement function x(t) for the
spring–block system?

Calculation: The function x(t) is given in general form by
Eq. 15-3. Substituting known quantities into that equation
gives us

x(t) � xm cos(vt � f)

� (0.11 m) cos[(9.8 rad/s)t � 0]

� 0.11 cos(9.8t), (Answer)

where x is in meters and t is in seconds.

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance 
x � 11 cm from its equilibrium position at x � 0 on a fric-
tionless surface and released from rest at t � 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

KEY IDEA

The block–spring system forms a linear simple harmonic 
oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:

� 9.8 rad/s. (Answer)

The frequency follows from Eq. 15-5, which yields

(Answer)

The period follows from Eq. 15-2, which yields

(Answer)

(b) What is the amplitude of the oscillation?

KEY IDEA

With no friction involved, the mechanical energy of the spring–
block system is conserved.

Reasoning: The block is released from rest 11 cm from its
equilibrium position, with zero kinetic energy and the
elastic potential energy of the system at a maximum. Thus,
the block will have zero kinetic energy whenever it is
again 11 cm from its equilibrium position, which means it
will never be farther than 11 cm from that position. Its
maximum displacement is 11 cm:

xm � 11 cm. (Answer)

(c) What is the maximum speed vm of the oscillating block,
and where is the block when it has this speed?

KEY IDEA

The maximum speed vm is the velocity amplitude vxm in Eq.15-6.

Calculation: Thus, we have

vm � vxm � (9.78 rad/s)(0.11 m)

� 1.1 m/s. (Answer)

T �
1
f

�
1

1.56 Hz
� 0.64 s � 640 ms.

f �
v

2p
�

9.78 rad/s
2p rad

� 1.56 Hz � 1.6 Hz.

v � A
k
m

� A
65 N/m
0.68 kg

� 9.78 rad/s

Sample Problem 15.01 Block–spring SHM, amplitude, acceleration, phase constant
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Calculations: We know v and want f and xm. If we divide
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns
and reduce the other to a single trig function:

Solving for tan f, we find

� �0.461.

This equation has two solutions:

f � �25	 and f � 180	 � (�25	) � 155	.

Normally only the first solution here is displayed by a calcu-
lator, but it may not be the physically possible solution. To
choose the proper solution, we test them both by using them
to compute values for the amplitude xm. From Eq. 15-15, we
find that if f � �25	, then

We find similarly that if f � 155	, then xm � 0.094 m.
Because the amplitude of SHM must be a positive constant,
the correct phase constant and amplitude here are

f � 155	 and xm � 0.094 m � 9.4 cm. (Answer)

xm �
x(0)

cos f
�

�0.0850 m
cos(�25	)

� �0.094 m.

tan f � �
v(0)

vx(0)
� �

�0.920 m/s
(23.5 rad/s)(�0.0850 m)

v(0)
x(0)

�
�vxm sin f

xm cos f
� �v tan f.

Sample Problem 15.02 Finding SHM phase constant from displacement and velocity

At t � 0, the displacement x(0) of the block in a linear oscil-
lator like that of Fig. 15-7 is �8.50 cm. (Read x(0) as “x at
time zero.”) The block’s velocity v(0) then is �0.920 m/s,
and its acceleration a(0) is �47.0 m/s2.

(a) What is the angular frequency v of this system?

KEY IDEA

With the block in SHM, Eqs. 15-3, 15-6, and 15-7 give its dis-
placement, velocity, and acceleration, respectively, and each
contains v.

Calculations: Let’s substitute t � 0 into each to see
whether we can solve any one of them for v.We find

x(0) � xm cos f, (15-15)

v(0) � �vxm sin f, (15-16)

and a(0) � �v2xm cos f. (15-17)

In Eq. 15-15, v has disappeared. In Eqs. 15-16 and 15-17, we
know values for the left sides, but we do not know xm and f.
However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim-
inate both xm and f and can then solve for v as

� 23.5 rad/s. (Answer)

(b) What are the phase constant f and amplitude xm?

v � A�
a(0)
x(0)

� A�
47.0 m/s2

�0.0850 m

Additional examples, video, and practice available at WileyPLUS

15-2 ENERGY IN SIMPLE HARMONIC MOTION

After reading this module, you should be able to . . .

15.19 For a spring–block oscillator, calculate the kinetic energy
and elastic potential energy at any given time.

15.20 Apply the conservation of energy to relate the total en-
ergy of a spring–block oscillator at one instant to the total
energy at another instant. 

15.21 Sketch a graph of the kinetic energy, potential energy,
and total energy of a spring–block oscillator, first as a func-
tion of time and then as a function of the oscillator’s position.

15.22 For a spring–block oscillator, determine the block’s po-
sition when the total energy is entirely kinetic energy and
when it is entirely potential energy.

● A particle in simple harmonic motion has, at any time, ki-
netic energy K mv2 and potential energy U kx2. If no1

2�1
2�

friction is present, the mechanical energy E K U
remains constant even though K and U change.

��

Learning Objectives

Key Ideas

Energy in Simple Harmonic Motion
Let’s now examine the linear oscillator of Chapter 8, where we saw that the energy
transfers back and forth between kinetic energy and potential energy, while the sum
of the two—the mechanical energy E of the oscillator—remains constant. The 
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The constant k, which is a property of the wire, is the same for
both figures; only the periods and the rotational inertias differ.

Let us square each of these equations, divide the second
by the first, and solve the resulting equation for Ib.The result is

� 6.12 � 10�4 kg �m2. (Answer)

Ib � Ia
T 2

b

T 2
a

� (1.73 � 10�4 kg �m2)
(4.76 s)2

(2.53 s)2

Ta � 2pA
Ia

k
  and  Tb � 2pA

Ib

k
.

Sample Problem 15.04 Angular simple harmonic oscillator, rotational inertia, period

Figure 15-10a shows a thin rod whose length L is 12.4 cm and
whose mass m is 135 g, suspended at its midpoint from a long
wire. Its period Ta of angular SHM is measured to be 2.53 s.
An irregularly shaped object, which we call object X, is then
hung from the same wire, as in Fig. 15-10b, and its period Tb is
found to be 4.76 s. What is the rotational inertia of object X
about its suspension axis?

KEY IDEA

The rotational inertia of either the rod or object X is related
to the measured period by Eq. 15-23.

Calculations: In Table 10-2e, the rotational inertia of a thin
rod about a perpendicular axis through its midpoint is given as

mL2.Thus, we have, for the rod in Fig. 15-10a,

Ia � mL2 � ( )(0.135 kg)(0.124 m)2

� 1.73 � 10�4 kg �m2.

Now let us write Eq. 15-23 twice, once for the rod and once
for object X:

1
12

1
12

1
12

Figure 15-10 Two torsion pen-
dulums, consisting of (a) a
wire and a rod and (b) the
same wire and an irregularly
shaped object.

Suspension
wire

Rod

L

Object X(a) (b)

Additional examples, video, and practice available at WileyPLUS

15-4 PENDULUMS, CIRCULAR MOTION

After reading this module, you should be able to . . .

15.27 Describe the motion of an oscillating simple pendulum.
15.28 Draw a free-body diagram of a pendulum bob with the

pendulum at angle u to the vertical.
15.29 For small-angle oscillations of a simple pendulum, relate

the period T (or frequency f ) to the pendulum’s length L.
15.30 Distinguish between a simple pendulum and a physical

pendulum.
15.31 For small-angle oscillations of a physical pendulum, re-

late the period T (or frequency f ) to the distance h be-
tween the pivot and the center of mass.

15.32 For an angular oscillating system, determine the angu-
lar frequency v from either an equation relating torque t
and angular displacement u or an equation relating angular
acceleration a and angular displacement u.

15.33 Distinguish between a pendulum’s angular frequency
v (having to do with the rate at which cycles are com-
pleted) and its du/dt (the rate at which its angle with the
vertical changes).

15.34 Given data about the angular position u and rate of
change du/dt at one instant, determine the phase constant f
and amplitude um.

15.35 Describe how the free-fall acceleration can be mea-
sured with a simple pendulum.

15.36 For a given physical pendulum, determine the location
of the center of oscillation and identify the meaning of that
phrase in terms of a simple pendulum.

15.37 Describe how simple harmonic motion is related to uni-
form circular motion.

Learning Objectives

k of Eq. 15-22, and we replace the mass m in Eq. 15-13 with its equivalent, the
rotational inertia I of the oscillating disk.These replacements lead to

(torsion pendulum). (15-23)T � 2p A
�

k
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Pendulums
We turn now to a class of simple harmonic oscillators in which the springiness is
associated with the gravitational force rather than with the elastic properties of
a twisted wire or a compressed or stretched spring.

The Simple Pendulum
If an apple swings on a long thread, does it have simple harmonic motion? If so,
what is the period T ? To answer, we consider a simple pendulum, which consists
of a particle of mass m (called the bob of the pendulum) suspended from one end
of an unstretchable, massless string of length L that is fixed at the other end, as in
Fig. 15-11a.The bob is free to swing back and forth in the plane of the page, to the
left and right of a vertical line through the pendulum’s pivot point.

The Restoring Torque. The forces acting on the bob are the force from the
string and the gravitational force g, as shown in Fig. 15-11b, where the string makes
an angle with the vertical. We resolve g into a radial component Fg cos and a
component Fg sin that is tangent to the path taken by the bob.This tangential com-
ponent produces a restoring torque about the pendulum’s pivot point because the
component always acts opposite the displacement of the bob so as to bring the bob
back toward its central location. That location is called the equilibrium position
( ) because the pendulum would be at rest there were it not swinging.

From Eq. 10-41 , we can write this restoring torque as

t � �L(Fg sin u), (15-24)

where the minus sign indicates that the torque acts to reduce u and L is the moment
arm of the force component Fg sin u about the pivot point. Substituting Eq. 15-24 into
Eq.10-44 (t � Ia) and then substituting mg as the magnitude of Fg,we obtain

�L(mg sin u) � Ia, (15-25)

where I is the pendulum’s rotational inertia about the pivot point and a is its
angular acceleration about that point.

We can simplify Eq. 15-25 if we assume the angle u is small, for then we can
approximate sin u with u (expressed in radian measure). (As an example, if u �
5.00	 � 0.0873 rad, then sin u � 0.0872, a difference of only about 0.1%.) With
that approximation and some rearranging, we then have

(15-26)

This equation is the angular equivalent of Eq. 15-8, the hallmark of SHM. It tells
us that the angular acceleration a of the pendulum is proportional to the angular
displacement u but opposite in sign. Thus, as the pendulum bob moves to the
right, as in Fig. 15-11a, its acceleration to the left increases until the bob stops and

a � �
mgL

I
u.

(t � r�F)
u � 0

u
uF

:
u

F
:

T
:

● A simple pendulum consists of a rod of negligible mass that
pivots about its upper end, with a particle (the bob) attached
at its lower end. If the rod swings through only small angles,
its motion is approximately simple harmonic motion with a pe-
riod given by

(simple pendulum),

where I is the particle’s rotational inertia about the pivot, m is
the particle’s mass, and L is the rod’s length.

T � 2pA
I

mgL

● A physical pendulum has a more complicated distribution
of mass. For small angles of swinging, its motion is simple
harmonic motion with a period given by

(physical pendulum),

where I is the pendulum’s rotational inertia about the pivot, m
is the pendulum’s mass, and h is the distance between the
pivot and the pendulum’s center of mass.

● Simple harmonic motion corresponds to the projection of
uniform circular motion onto a diameter of the circle.

T � 2pA
I

mgh

Key Ideas

Figure 15-11 (a) A simple pendulum. (b) The
forces acting on the bob are the gravitational
force g and the force from the string.
The tangential component Fg sin u of the
gravitational force is a restoring force that
tends to bring the pendulum back to its cen-
tral position.

T
:

F
:

θ L

θ 
θ Fg sin 

θ Fg cos 
m

s = Lθ 

L

m

(a)

(b)

Pivot
point

T

Fg

This
component
merely
pulls on 
the string.

This
component
brings the 
bob back 
to center.
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Figure 15-12 A physical pendulum. The
restoring torque is hFg sin u. When u � 0,
center of mass C hangs directly below
pivot point O.

begins moving to the left. Then, when it is to the left of the equilibrium position,
its acceleration to the right tends to return it to the right, and so on, as it swings
back and forth in SHM. More precisely, the motion of a simple pendulum swing-
ing through only small angles is approximately SHM. We can state this 
restriction to small angles another way: The angular amplitude um of the motion
(the maximum angle of swing) must be small.

Angular Frequency. Here is a neat trick. Because Eq. 15-26 has the same
form as Eq. 15-8 for SHM, we can immediately identify the pendulum’s angular
frequency as being the square root of the constants in front of the displacement:

.

In the homework problems you might see oscillating systems that do not seem to
resemble pendulums. However, if you can relate the acceleration (linear or angu-
lar) to the displacement (linear or angular), you can then immediately identify
the angular frequency as we have just done here.

Period. Next, if we substitute this expression for v into Eq. 15-5 ( ),
we see that the period of the pendulum may be written as

(15-27)

All the mass of a simple pendulum is concentrated in the mass m of the particle-
like bob, which is at radius L from the pivot point. Thus, we can use Eq. 10-33 
(I � mr2) to write I � mL2 for the rotational inertia of the pendulum.
Substituting this into Eq. 15-27 and simplifying then yield

(simple pendulum, small amplitude). (15-28)

We assume small-angle swinging in this chapter.

The Physical Pendulum
A real pendulum, usually called a physical pendulum, can have a complicated
distribution of mass. Does it also undergo SHM? If so, what is its period?

Figure 15-12 shows an arbitrary physical pendulum displaced to one side
by angle u. The gravitational force g acts at its center of mass C, at a distance h
from the pivot point O. Comparison of Figs. 15-12 and 15-11b reveals only one
important difference between an arbitrary physical pendulum and a simple
pendulum. For a physical pendulum the restoring component Fg sin u of the grav-
itational force has a moment arm of distance h about the pivot point, rather than
of string length L. In all other respects, an analysis of the physical pendulum
would duplicate our analysis of the simple pendulum up through Eq. 15-27.
Again (for small um), we would find that the motion is approximately SHM.

If we replace L with h in Eq. 15-27, we can write the period as

(physical pendulum, small amplitude). (15-29)

As with the simple pendulum, I is the rotational inertia of the pendulum about O.
However, now I is not simply mL2 (it depends on the shape of the physical pen-
dulum), but it is still proportional to m.

A physical pendulum will not swing if it pivots at its center of mass.
Formally, this corresponds to putting h � 0 in Eq. 15-29. That equation then pre-
dicts T : �, which implies that such a pendulum will never complete one swing.

T � 2p A
I

mgh

F
:

T � 2p A
L
g

T � 2p A
I

mgL
.

v � 2p/T

v � A
mgL

I

θ h

θ 

θ θ Fg sin 
Fg cos 

O

C

Fg

This component 
brings the 
pendulum
back to center.
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Corresponding to any physical pendulum that oscillates about a given pivot
point O with period T is a simple pendulum of length L0 with the same period T.
We can find L0 with Eq. 15-28.The point along the physical pendulum at distance
L0 from point O is called the center of oscillation of the physical pendulum for the
given suspension point.

Measuring g
We can use a physical pendulum to measure the free-fall acceleration g at a par-
ticular location on Earth’s surface. (Countless thousands of such measurements
have been made during geophysical prospecting.)

To analyze a simple case, take the pendulum to be a uniform rod of length L,
suspended from one end. For such a pendulum, h in Eq. 15-29, the distance
between the pivot point and the center of mass, is L. Table 10-2e tells us that the
rotational inertia of this pendulum about a perpendicular axis through its center
of mass is mL2. From the parallel-axis theorem of Eq. 10-36 (I � Icom � Mh2),
we then find that the rotational inertia about a perpendicular axis through one
end of the rod is

I � Icom � mh2 � mL2 � m( L)2 � mL2. (15-30)

If we put h � L and I � mL2 in Eq. 15-29 and solve for g, we find

. (15-31)

Thus, by measuring L and the period T, we can find the value of g at the pendu-
lum’s location. (If precise measurements are to be made, a number of refine-
ments are needed, such as swinging the pendulum in an evacuated chamber.)

g �
8p 2L
3T 2

1
3

1
2

1
3

1
2

1
12

1
12

1
2

Checkpoint 5
Three physical pendulums, of masses m0, 2m0, and 3m0, have the same shape and size
and are suspended at the same point. Rank the masses according to the periods of the
pendulums, greatest first.

Sample Problem 15.05 Physical pendulum, period and length

In Fig. 15-13a, a meter stick swings about a pivot point at
one end, at distance h from the stick’s center of mass.

(a) What is the period of oscillation T?

KEY IDEA

The stick is not a simple pendulum because its mass is not
concentrated in a bob at the end opposite the pivot point—
so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is
given by Eq. 15-29, for which we need the rotational 
inertia I of the stick about the pivot point. We can treat
the stick as a uniform rod of length L and mass m. Then
Eq. 15-30 tells us that I � mL2, and the distance h in1

3

Figure 15-13 (a) A meter stick suspended from one end as a 
physical pendulum. (b) A simple pendulum whose length L0 is
chosen so that the periods of the two pendulums are equal.
Point P on the pendulum of (a) marks the center of oscillation.

P

C

h

L0

(a) (b)

O

Eq. 15-29 is L. Substituting these quantities into Eq. 15-29,1
2



428 CHAPTER 15 OSCILLATIONS

we find

(15-32)

(15-33)

(Answer)

Note the result is independent of the pendulum’s mass m.

(b) What is the distance L0 between the pivot point O of the
stick and the center of oscillation of the stick?

Calculations: We want the length L0 of the simple pendu-

� 2pA
(2)(1.00 m)

(3)(9.8 m/s2)
� 1.64 s.

� 2p A
2L
3g

T � 2p A
I

mgh
� 2pA

1
3 mL2

mg(1
2L)

Additional examples, video, and practice available at WileyPLUS

Simple Harmonic Motion and Uniform Circular Motion
In 1610, Galileo, using his newly constructed telescope, discovered the four prin-
cipal moons of Jupiter. Over weeks of observation, each moon seemed to him to
be moving back and forth relative to the planet in what today we would call
simple harmonic motion; the disk of the planet was the midpoint of the motion.
The record of Galileo’s observations, written in his own hand, is actually still
available. A. P. French of MIT used Galileo’s data to work out the position of the
moon Callisto relative to Jupiter (actually, the angular distance from Jupiter as
seen from Earth) and found that the data approximates the curve shown in Fig.
15-14. The curve strongly suggests Eq. 15-3, the displacement function for simple
harmonic motion.A period of about 16.8 days can be measured from the plot, but
it is a period of what exactly? After all, a moon cannot possibly be oscillating back
and forth like a block on the end of a spring, and so why would Eq. 15-3 have
anything to do with it?

Actually, Callisto moves with essentially constant speed in an essentially cir-
cular orbit around Jupiter. Its true motion—far from being simple harmonic—
is uniform circular motion along that orbit.What Galileo saw—and what you can
see with a good pair of binoculars and a little patience—is the projection of this
uniform circular motion on a line in the plane of the motion. We are led by
Galileo’s remarkable observations to the conclusion that simple harmonic

lum (drawn in Fig. 15-13b) that has the same period as the
physical pendulum (the stick) of Fig. 15-13a. Setting Eqs.
15-28 and 15-33 equal yields

(15-34)

You can see by inspection that

L0 � L (15-35)

� ( )(100 cm) � 66.7 cm. (Answer)

In Fig. 15-13a, point P marks this distance from suspension
point O. Thus, point P is the stick’s center of oscillation for
the given suspension point. Point P would be different for a
different suspension choice.

2
3

2
3

� 2p A
2L
3g

.T � 2pA
L0

g

Figure 15-14 The angle between Jupiter and its moon Callisto as seen from Earth. Galileo’s 1610
measurements approximate this curve, which suggests simple harmonic motion. At Jupiter’s
mean distance from Earth, 10 minutes of arc corresponds to about 2 � 106 km. (Based on A. P.
French, Newtonian Mechanics, W. W. Norton & Company, New York, 1971, p. 288.)
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motion is uniform circular motion viewed edge-on. In more formal language:

ω
ω

ω

O

y

x
φ

P'

Pv(t)

φ
xm

t +

t +

v

This relates the
velocities of
P and P´.

O

y

x

P'

Pa(t)

2xm

t + φω

ω
a

This relates the
accelerations of
P and P´.

O

y

x
   t + φω

x m

P'

Px(t)

P´ is a particle
moving in a circle.

P is a projection
moving in SHM.

(b) (c)(a)

Figure 15-15 (a) A reference particle P� moving with uniform circular motion in a reference
circle of radius xm. Its projection P on the x axis executes simple harmonic motion. (b) The
projection of the velocity of the reference particle is the velocity of SHM. (c) The projec-
tion of the radial acceleration of the reference particle is the acceleration of SHM.a:

v:

Simple harmonic motion is the projection of uniform circular motion on a diame-
ter of the circle in which the circular motion occurs.

Figure 15-15a gives an example. It shows a reference particle P� moving in
uniform circular motion with (constant) angular speed v in a reference circle. The
radius xm of the circle is the magnitude of the particle’s position vector. At any
time t, the angular position of the particle is vt � f, where f is its angular posi-
tion at t � 0.

Position. The projection of particle P� onto the x axis is a point P, which we
take to be a second particle. The projection of the position vector of particle P�
onto the x axis gives the location x(t) of P. (Can you see the x component in the
triangle in Fig. 15-5a?) Thus, we find

x(t) � xm cos(vt � f), (15-36)

which is precisely Eq. 15-3. Our conclusion is correct. If reference particle P�
moves in uniform circular motion, its projection particle P moves in simple
harmonic motion along a diameter of the circle.

Velocity. Figure 15-15b shows the velocity of the reference particle. From
Eq. 10-18 (v r), the magnitude of the velocity vector is xm; its projection on
the x axis is

v(t) � �vxm sin(vt � f), (15-37)

which is exactly Eq. 15-6.The minus sign appears because the velocity component
of P in Fig. 15-15b is directed to the left, in the negative direction of x. (The minus
sign is consistent with the derivative of Eq. 15-36 with respect to time.)

Acceleration. Figure 15-15c shows the radial acceleration of the reference
particle. From Eq. 10-23 (ar r), the magnitude of the radial acceleration vec-
tor is 2xm; its projection on the x axis is

a(t) � �v2xm cos(vt � f), (15-38)

which is exactly Eq. 15-7.Thus, whether we look at the displacement, the velocity,
or the acceleration, the projection of uniform circular motion is indeed simple
harmonic motion.

v
� v2

a:

v� v
v:
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C H A P T E R  3

Vectors

3-1 VECTORS AND THEIR COMPONENTS

3.01 Add vectors by drawing them in head-to-tail arrange-
ments, applying the commutative and associative laws.

3.02 Subtract a vector from a second one.
3.03 Calculate the components of a vector on a given coordi-

nate system, showing them in a drawing. 

3.04 Given the components of a vector, draw the vector
and determine its magnitude and orientation. 

3.05 Convert angle measures between degrees and radians.

● Scalars, such as temperature, have magnitude only. They
are specified by a number with a unit (10°C) and obey the
rules of arithmetic and ordinary algebra. Vectors, such as dis-
placement, have both magnitude and direction (5 m, north)
and obey the rules of vector algebra.

● Two vectors and may be added geometrically by draw-
ing them to a common scale and placing them head to tail.
The vector connecting the tail of the first to the head of the
second is the vector sum . To subtract from , reverse the
direction of to get � ; then add � to . Vector addition is
commutative and obeys the associative law.

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

● The (scalar) components and of any two-dimensional
vector along the coordinate axes are found by dropping
perpendicular lines from the ends of onto the coordinate
axes. The components are given by

ax � a cos u and ay � a sin u,

where u is the angle between the positive direction of the x
axis and the direction of . The algebraic sign of a component
indicates its direction along the associated axis. Given its
components, we can find the magnitude and orientation of
the vector with

and .tan � �
ay

ax
a � 2a2

x � a2
y

a:

a:

a:
a:

ayax

What Is Physics?
Physics deals with a great many quantities that have both size and direction, and it
needs a special mathematical language—the language of vectors—to describe
those quantities. This language is also used in engineering, the other sciences, and
even in common speech. If you have ever given directions such as “Go five blocks
down this street and then hang a left,” you have used the language of vectors. In
fact, navigation of any sort is based on vectors, but physics and engineering also
need vectors in special ways to explain phenomena involving rotation and mag-
netic forces, which we get to in later chapters. In this chapter, we focus on the basic
language of vectors.

Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

Key Ideas

Learning Objectives
After reading this module, you should be able to . . . 
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A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of �40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle changes
its position by moving from A to B in Fig. 3-1a, we say that it undergoes a displace-
ment from A to B, which we represent with an arrow pointing from A to B.The ar-
row specifies the vector graphically. To distinguish vector symbols from other
kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3-1a, the arrows from A to B, from A� to B�, and from A� to B� have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol � in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Properties. Vector addition, defined in this way, has two important proper-
ties. First, the order of addition does not matter. Adding to gives the sameb

:
a:

b
:

a:
s:a:

b
:

a:
b
:

a:

b
:

a:s:

s: � a: � b
:

,

a:

Figure 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

Figure 3-2 (a) AC is the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.

A
C

B

(a)

Actual
path

Net displacement 
is the vector sum 

(b)

a

s

b

This is the 
resulting vector, 
from tail of a
to head of b.

To add a and b,
draw them 
head to tail.
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result as adding to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)(a: � b
:

) � c: � a: � (b
:

� c:)

a:
c:b

:
c:

b
:

a:c:b
:

a:

a: � b
:

� b
:

� a:

a:b
:

Figure 3-3 The two vectors and can be
added in either order; see Eq. 3-2.

b
:

a:

a + b

b + a
FinishStart

Vector sum 
a

a

b

b

You get the same vector
result for either order of
adding vectors.

Figure 3-4 The three vectors , , and can be grouped in any way as they are added; see
Eq. 3-3.

c:b
:

a:

b
+

c

a + b

aa

c c

b

a + b

(a
+

b) +
c

a
+

b +
c

a
+ (b + c )

b
+

c

You get the same vector result for
 any order of adding the vectors.

Figure 3-5 The vectors and have the�b
:

b
:

b

–b

Figure 3-6 (a) Vectors , , and .
(b) To subtract vector from vector ,
add vector to vector .a:�b

:
a:b

:
�b

:
b
:

a:

d = a – b

(a)

(b)

Note head-to-tail
arrangement for 

addition

a

a

b

–b

–b Checkpoint 1
The magnitudes of displacements and are 3 m and 4 m, respectively, and .
Considering various orientations of and , what are (a) the maximum possible 
magnitude for and (b) the minimum possible magnitude?c:

b
:

a:
c: � a: � b

:
b
:

a:

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield

Thus, adding has the effect of subtracting . We use this property to define
the difference between two vectors: let . Then

(vector subtraction); (3-4)

that is, we find the difference vector by adding the vector to the vector .
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from
one side of a vector equation to the other, but we must change its sign. For example,
if we are given Eq. 3-4 and need to solve for , we can rearrange the equation as

Remember that, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.

d
:

� b
:

� a:  or  a: � d
:

� b
:

.

a:

a:�b
:

d
:

d
:

� a: � b
:

� a: � (�b
:

)

d
:

� a: � b
:

b
:

�b
:

b
:

� (�b
:

) � 0.

b
:

�b
:

Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system.The x and y axes are usually drawn in the plane of the page, as shown

same magnitude and opposite directions.
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in Fig. 3-7a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In
Fig. 3-7a, for example, ax is the component of vector on (or along) the x axis and
ay is the component along the y axis. To find the projection of a vector along an
axis, we draw perpendicular lines from the two ends of the vector to the axis, as
shown.The projection of a vector on an x axis is its x component, and similarly the
projection on the y axis is the y component. The process of finding the
components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-7, ax and ay are both positive because extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector , then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector in
Fig. 3-8 yields a positive component bx and a negative component by.

In general, a vector has three components, although for the case of Fig. 3-7a
the component along the z axis is zero.As Figs. 3-7a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

Finding the Components. We can find the components of in Fig. 3-7a geo-
metrically from the right triangle there:

ax � a cos u and ay � a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-7c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, in
Fig. 3-7a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

and tan (3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

� �
ay

ax
a � 2a2

x � ay
2

a:

a:a:
a:

a:

b
:

a:

a:

a:

Figure 3-8 The component of on the 
x axis is positive, and that on the y axis is
negative.

b
:

O

y (m) 

θ x (m)
bx = 7 m 

b y
=

–5
 m

 

b

This is the x component
of the vector.

This is the y component
of the vector.
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Figure 3-7 (a) The components ax and ay of
vector . (b) The components are unchanged if
the vector is shifted, as long as the magnitude
and orientation are maintained. (c) The com-
ponents form the legs of a right triangle whose
hypotenuse is the magnitude of the vector.

a:

y

x
O ax

ay

θ θ 

(a) (b)

y

x
Oax

ay
a a

θ
(c)

ay

ax

a

This is the y component
of the vector.

This is the x component
of the vector.

The components 
and the vector 
form a right triangle.

Checkpoint 2
In the figure, which of the indicated methods for combining the x and y components of vector are proper to determine that vector?a:

y

x
ax

ay

(a)

a

y

x

ax

ay

(d)

a

y

x
ax

ay

(e)

a

x
ax

ay

y

( f )

a

y

x
ax

ay

(b)

a

y

x
ax

ay

(c)

a
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KEY IDEA

We are given the magnitude (215 km) and the angle (22° east
of due north) of a vector and need to find the components
of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
(We don’t have to do this. We could shift and misalign the
coordinate system but, given a choice, why make the prob-
lem more difficult?) The airplane’s displacement points
from the origin to where the airplane is sighted.

To find the components of , we use Eq. 3-5 with u �
68° (� 90° � 22°):

dx � d cos u � (215 km)(cos 68°)
� 81 km (Answer)

dy � d sin u � (215 km)(sin 68°)

� 199 km � 2.0 � 102 km. (Answer)

Thus, the airplane is 81 km east and 2.0 � 102 km north of
the airport.

d
:

d
:

Sample Problem 3.02 Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. This means that the direction is not
due north (directly toward the north) but is rotated 22° to-
ward the east from due north. How far east and north is the
airplane from the airport when sighted?

Additional examples, video, and practice available at WileyPLUS

Figure 3-10 A plane takes off from an airport at the origin and is
later sighted at P.

21
5 

km
 

100

y

x

200

0
0 100 

22°

θ 

D
is

ta
n

ce
 (

km
) 

Distance (km) 

P
d

order, because their vector sum is the same for any order.
(Recall from Eq. 3-2 that vectors commute.) The order
shown in Fig. 3-9b is for the vector sum

Using the scale given in Fig. 3-9a, we measure the length d of
this vector sum, finding

d � 4.8 m. (Answer)

d
:

� b
:

� a: � (�c:).

Sample Problem 3.01 Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by
making three straight-line moves. You may use the follow-
ing displacements in any order: (a) , 2.0 km due east 
(directly toward the east); (b) , 2.0 km 30° north of east
(at an angle of 30° toward the north from due east);
(c) , 1.0 km due west. Alternatively, you may substitute
either for or for . What is the greatest distance
you can be from base camp at the end of the third displace-
ment? (We are not concerned about the direction.)

Reasoning: Using a convenient scale, we draw vectors ,
, , , and as in Fig. 3-9a. We then mentally slide the

vectors over the page, connecting three of them at a time
in head-to-tail arrangements to find their vector sum .
The tail of the first vector represents base camp. The head
of the third vector represents the point at which you stop.
The vector sum extends from the tail of the first vector
to the head of the third vector. Its magnitude d is your dis-
tance from base camp. Our goal here is to maximize that
base-camp distance.

We find that distance d is greatest for a head-to-tail
arrangement of vectors , , and . They can be in any�c:b

:
a:

d
:

d
:

�c:�b
:

c:b
:

a:

c:�c:b
:

�b
:

c:

b
:

a:

Figure 3-9 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo 
displacements , , and , in any order.�c:b

:
a:

30°

0 1 

Scale of km 

2

d = b + a – c

(a) (b)

a

a

c

b b
–b

–c

–c

This is the vector result
for adding those three
vectors in any order.
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the x axis. If it is measured relative to some other direc-
tion, then the trig functions in Eq. 3-5 may have to be in-
terchanged and the ratio in Eq. 3-6 may have to be
inverted. A safer method is to convert the angle to one
measured from the positive direction of the x axis. In
WileyPLUS, the system expects you to report an angle of
direction like this (and positive if counterclockwise and
negative if clockwise).

Problem-Solving Tactics Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are
positive if they are measured in the counterclockwise direc-
tion and negative if measured clockwise. For example, 210°
and �150° are the same angle.

Angles may be measured in degrees or radians (rad).To
relate the two measures, recall that a full circle is 360° and
2p rad.To convert, say, 40° to radians, write

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and
tangent—because they are part of the language of science
and engineering. They are given in Fig. 3-11 in a form that
does not depend on how the triangle is labeled.

You should also be able to sketch how the trig functions
vary with angle, as in Fig. 3-12, in order to be able to judge
whether a calculator result is reasonable. Even knowing
the signs of the functions in the various quadrants can be
of help.

Tactic 3: Inverse Trig Functions When the inverse trig
functions sin�1, cos�1, and tan�1 are taken on a calculator,
you must consider the reasonableness of the answer you
get, because there is usually another possible answer that
the calculator does not give. The range of operation for a
calculator in taking each inverse trig function is indicated
in Fig. 3-12. As an example, sin�1 0.5 has associated angles
of 30° (which is displayed by the calculator, since 30° falls
within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note
where it cuts the sine curve. How do you distinguish a cor-
rect answer? It is the one that seems more reasonable for
the given situation.

Tactic 4: Measuring Vector Angles The equations for 
cos u and sin u in Eq. 3-5 and for tan u in Eq. 3-6 are valid
only if the angle is measured from the positive direction of

40�
2
 rad

360�
� 0.70 rad.

Figure 3-11 A triangle used to define the trigonometric 
functions. See also Appendix E.

θ 

Hypotenuse

Leg adjacent to θ 

Leg
opposite θ 

sin θ 
leg opposite θ 
hypotenuse=

cos θ hypotenuse=
leg adjacent to θ 

tan θ = leg adjacent to θ 
leg opposite θ 
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Additional examples, video, and practice available at WileyPLUS

Figure 3-12 Three useful curves to remember. A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.

90° 270° –90°

+1

–1

IV I II III IV 
Quadrants
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0

sin

180° 360° 

(b)

0

cos

90° 180° 270° 360° –90°

+1

–1

(c)

90° 270°–90°

+1

+2

–1

–2

tan

180° 360°0
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3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

After reading this module, you should be able to . . .

3.06 Convert a vector between magnitude-angle and unit-
vector notations.

3.07 Add and subtract vectors in magnitude-angle notation
and in unit-vector notation.

3.08 Identify that, for a given vector, rotating the coordinate
system about the origin can change the vector’s compo-
nents but not the vector itself.

● Unit vectors , , and have magnitudes of unity and are 
directed in the positive directions of the x, y, and z axes,
respectively, in a right-handed coordinate system. We can
write a vector in terms of unit vectors as

� axî � ayĵ � azk̂ ,a:
a:

k̂ ĵ î in which , , and are the vector components of and
ax, ay, and az are its scalar components.

● To add vectors in component form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz.

Here and are the vectors to be added, and is the vector
sum. Note that we add components axis by axis.

r:b
:

a:

a:azk̂ayĵaxî

Learning Objectives

Key Ideas

ˆ

ˆ

y

x
O axi

ay j

θ

(a)

a bx î

ˆ

θ O x

y

by j

(b)

b

This is the x vector
component.

This is the y vector component.

Figure 3-14 (a) The vector components
of vector . (b) The vector components
of vector .b

:
a:

Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-7 and 3-8 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).a:

a:
ĵî

b
:

� bxî � by ĵ

a: � axî � ay ĵ

b
:

a:

ˆk̂ĵî

Adding Vectors by Components
We can add vectors geometrically on a sketch or directly on a vector-capable
calculator.A third way is to combine their components axis by axis.

Figure 3.13 Unit vectors î, , and define the
directions of a right-handed coordinate
system.

k̂ĵ

y

x

z

ĵ

îk̂

The unit vectors point
along axes.
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To start, consider the statement

, (3-9)

which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :

rx � ax � bx (3-10)

ry � ay � by (3-11)

rz � az � bz. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get

dx � ax � bx, dy � ay � by, and dz � az � bz,

where . (3-13)d
:

� dxî � dyĵ � dzk̂

�b
:

a:d
:

� a: � (�b
:

)
d
:

� a: � b
:

r:r:r:
r:

b
:

a:

(a: � b
:

)r:
(a: � b

:
)r:

r: � a: � b
:

Checkpoint 3
(a) In the figure here, what are the signs of the x
components of and ? (b) What are the signs of
the y components of and ? (c) What are thed2

:
d1
:
d2
:

d1
:

y

x

d2
d1

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

Vectors and the Laws of Physics
So far, in every figure that includes a coordinate system, the x and y axes are par-
allel to the edges of the book page. Thus, when a vector is included, its compo-
nents ax and ay are also parallel to the edges (as in Fig. 3-15a).The only reason for
that orientation of the axes is that it looks “proper”; there is no deeper reason.
We could, instead, rotate the axes (but not the vector ) through an angle f as ina:

a:

Figure 3-15 (a) The vector and its 
components. (b) The same vector, with the
axes of the coordinate system rotated
through an angle f.

a:

a

y

xax

ay

θ

(a)

O

a

y

x

a'x
x'

(b)

θ
a'y

φ
O

y'

'

Rotating the axes
changes the components
but not the vector.

Fig. 3-15b, in which case the components would have new values, call them a�x and
a�y. Since there are an infinite number of choices of f, there are an infinite num-
ber of different pairs of components for .

Which then is the “right” pair of components? The answer is that they are all
equally valid because each pair (with its axes) just gives us a different way of de-
scribing the same vector ; all produce the same magnitude and direction for the
vector. In Fig. 3-15 we have

(3-14)
and

u � u� � f. (3-15)

The point is that we have great freedom in choosing a coordinate system, be-
cause the relations among vectors do not depend on the location of the origin or
on the orientation of the axes.This is also true of the relations of physics; they are
all independent of the choice of coordinate system.Add to that the simplicity and
richness of the language of vectors and you can see why the laws of physics are 
almost always presented in that language: one equation, like Eq. 3-9, can repre-
sent three (or even more) relations, like Eqs. 3-10, 3-11, and 3-12.

a � 2a2
x � a2

y � 2a�2
x � a�2

y

a:

a:

signs of the x and y components of � ?d2
:

d1
:
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Calculations: To evaluate Eqs. 3-16 and 3-17, we find the x and
y components of each displacement. As an example, the com-
ponents for the first displacement are shown in Fig. 3-16c. We
draw similar diagrams for the other two displacements and
then we apply the x part of Eq. 3-5 to each displacement, using
angles relative to the positive direction of the x axis:

dlx � (6.00 m) cos 40° � 4.60 m 

d2x � (8.00 m) cos (�60°) � 4.00 m 

d3x � (5.00 m) cos 0° � 5.00 m.

Equation 3-16 then gives us

dnet, x � �4.60 m � 4.00 m � 5.00 m

� 13.60 m.

Similarly, to evaluate Eq. 3-17, we apply the y part of Eq. 3-5
to each displacement:

dly � (6.00 m) sin 40° = 3.86 m

d2y � (8.00 m) sin (�60°) = �6.93 m

d3y � (5.00 m) sin 0° � 0 m.

Equation 3-17 then gives us

dnet, y � �3.86 m � 6.93 m � 0 m

� �3.07 m.

Next we use these components of net to construct the vec-
tor as shown in Fig. 3-16d: the components are in a head-to-
tail arrangement and form the legs of a right triangle, and

d
:

Sample Problem 3.03 Searching through a hedge maze

A hedge maze is a maze formed by tall rows of hedge.
After entering, you search for the center point and then
for the exit. Figure 3-16a shows the entrance to such a
maze and the first two choices we make at the junctions
we encounter in moving from point i to point c. We un-
dergo three displacements as indicated in the overhead
view of Fig. 3-16b:

d1 � 6.00 m �1 � 40°

d2 � 8.00 m �2 � 30°

d3 � 5.00 m �3 � 0°,

where the last segment is parallel to the superimposed
x axis. When we reach point c, what are the magnitude and
angle of our net displacement net from point i?

KEY IDEAS

(1) To find the net displacement net, we need to sum the
three individual displacement vectors:

net � 1 � 2 � 3.

(2) To do this, we first evaluate this sum for the x compo-
nents alone,

dnet,x � dlx � d2x � d3x, (3-16)

and then the y components alone,

dnet,y � d1y � d2y � d3y. (3-17)

(3) Finally, we construct net from its x and y components.d
:

d
:

d
:

d
:

d
:

d
:

d
:

Figure 3-16 (a) Three displacements through a hedge maze. (b) The displacement vectors. (c) The first displacement vector and its
components. (d) The net displacement vector and its components.
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dnet,y

c

(d)

d1 d2

d3

d1

i

dnet

Three
vectors

First
vector

Net
vector



49

the vector forms the hypotenuse.We find the magnitude and
angle of net with Eq. 3-6. The magnitude is

dnet � (3-18)

� � 13.9 m. (Answer)

To find the angle (measured from the positive direction of x),
we take an inverse tangent:

� � tan�1 (3-19)

� tan�1 � �12.7°. (Answer)

The angle is negative because it is measured clockwise from
positive x. We must always be alert when we take an inverse

� –3.07 m
13.60 m �

� dnet,y

dnet,x
�

2(13.60 m)2 � (�3.07 m)2

2d2
net,x � d2

net,y

d
:

tangent on a calculator. The answer it displays is mathe-
matically correct but it may not be the correct answer for
the physical situation. In those cases, we have to add 180°
to the displayed answer, to reverse the vector. To check,
we always need to draw the vector and its components as
we did in Fig. 3-16d. In our physical situation, the figure
shows us that � � �12.7° is a reasonable answer, whereas
�12.7° � 180° � 167° is clearly not.

We can see all this on the graph of tangent versus angle
in Fig. 3-12c. In our maze problem, the argument of the in-
verse tangent is �3.07/13.60, or �0.226. On the graph draw
a horizontal line through that value on the vertical axis. The
line cuts through the darker plotted branch at �12.7° and
also through the lighter branch at 167°. The first cut is what
a calculator displays.

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

KEY IDEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx � ax � bx � cx

� 4.2 m � 1.6 m � 0 � 2.6 m.

Similarly, for the y axis,

ry � ay � by � cy

� �1.5 m � 2.9 m � 3.7 m � �2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-17b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the �x direction) is

(Answer)

where the minus sign means clockwise.

� � tan�1 � �2.3 m
2.6 m � � �41�,

r � 2(2.6 m)2 � (�2.3 m)2 � 3.5 m

r:

r:
�

r:

r: � (2.6 m)î � (2.3 m)ĵ,

r:

r:c:,b
:

,
a:,

r:

Sample Problem 3.04 Adding vectors, unit-vector components

Figure 3-17a shows the following three vectors:

and

What is their vector sum which is also shown?r:
c: � (�3.7 m)ĵ.

b
:

� (�1.6 m)î � (2.9 m)ĵ,

a: � (4.2 m)î � (1.5 m)ĵ,

Additional examples, video, and practice available at WileyPLUS

x

y

–1 3 4 –2–3 2 

–3

–2

–1

1

x

y

–1 3 4 –2–3 2 

–3

–2

–1

2

3

1

1

(a)

2.6i

(b)

r

r

a

c

b

ˆ

–2.3ĵ

To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Figure 3-17 Vector is the vector sum of the other three vectors.r:
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Multiplying Vectors*
There are three ways in which vectors can be multiplied, but none is exactly like
the usual algebraic multiplication. As you read this material, keep in mind that a
vector-capable calculator will help you multiply vectors only if you understand
the basic rules of that multiplication.

Multiplying a Vector by a Scalar
If we multiply a vector by a scalar s, we get a new vector. Its magnitude is
the product of the magnitude of and the absolute value of s. Its direction is the
direction of if s is positive but the opposite direction if s is negative. To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

a:
a:a:

a:
a:

Key Ideas
● The vector (or cross) product of two vectors and is 
written � and is a vector whose magnitude c is given by

c � ab sin �,

in which � is the smaller of the angles between the directions
of and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown
in Fig. 3-19. Note that � � �( � ). In unit-vector
notation,

� � �

which we may expand with the distributive law.

● In nested products, where one product is buried inside an-
other, follow the normal algebraic procedure by starting with
the innermost product and working outward.

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:
b
:

a:

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec-
tor products), and so your instructor may wish to postpone it.

● The product of a scalar s and a vector is a new vector
whose magnitude is and whose direction is the same as
that of if s is positive, and opposite that of if s is negative.
To divide by s, multiply by 1/s.

● The scalar (or dot) product of two vectors and is writ-
ten � and is the scalar quantity given by

� � ab cos �,

in which � is the angle between the directions of and .
A scalar product is the product of the magnitude of one vec-
tor and the scalar component of the second vector along the
direction of the first vector. In unit-vector notation,

� � �

which may be expanded according to the distributive law.
Note that � � � .a:b

:
b
:

a:

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

b
:

a:
b
:

a:
b
:

a:
b
:

a:
v:v:

v:v:
sv

v:

3-3 MULTIPLYING VECTORS 
Learning Objectives

3.13 Given two vectors, use a dot product to find how much
of one vector lies along the other vector.

3.14 Find the cross product of two vectors in magnitude-
angle and unit-vector notations.

3.15 Use the right-hand rule to find the direction of the vector
that results from a cross product.

3.16 In nested products, where one product is buried inside
another, follow the normal algebraic procedure by starting
with the innermost product and working outward.

After reading this module, you should be able to . . .

3.09 Multiply vectors by scalars.
3.10 Identify that multiplying a vector by a scalar gives a vec-

tor, taking the dot (or scalar) product of two vectors gives a
scalar, and taking the cross (or vector) product gives a new
vector that is perpendicular to the original two.

3.11 Find the dot product of two vectors in magnitude-angle
notation and in unit-vector notation.

3.12 Find the angle between two vectors by taking their dot prod-
uct in both magnitude-angle notation and unit-vector notation.
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°,
the component of one vector along the other is zero, and so is the dot product.

�
�

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

� ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:�

b
:

b
:

a:
b
:

�
a:

b
:

a: �
b
:

a: ��

� ��
b
:

a:b
:

a:
�b

:
a:

a: � b
:

a: � b
:

b
:

a:

51

Figure 3-18 (a) Two vectors 
and , with an angle f between
them. (b) Each vector has a
component along the direction
of the other vector.

b
:

a:

a

a

b

b
φ 

(a)

(b)

Component of b
along direction of 

a is b cos φ 

Component of a

along direction of 

b is a cos φ 

φ 

Multiplying these gives
the dot product.

Or multiplying these
gives the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:

� � (a cos f)(b) � (a)(b cos f). (3-21)

The commutative law applies to a scalar product, so we can write

� � � .

When two vectors are in unit-vector notation, we write their dot product as

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

� � axbx � ayby � azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

b
:

a:
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If and are parallel or antiparallel, � � 0. The magnitude of � , which can
be written as , is maximum when and are perpendicular to each other.b

:
a:�a: � b

:
�

b
:

a:b
:

a:b
:

a:

where f is the smaller of the two angles between and . (You must use theb
:

a:

The direction of is perpendicular to the plane that contains and .b
:

a:c:

Checkpoint 4
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?�

D
:

C
:

�D
:

C
:

D
:

C
:

The Vector Product
The vector product of and , written � , produces a third vector whose
magnitude is

c � ab sin f, (3-24)

c:b
:

a:b
:

a:

them is 90°.) Also, we used the right-hand rule to get the direction of � as
being in the positive direction of the z axis (thus in the direction of ).k̂

ĵî

smaller of the two angles between the vectors because sin f and sin(360° � f)
differ in algebraic sign.) Because of the notation, � is also known as the cross
product, and in speech it is “a cross b.”

b
:

a:

Figure 3-19a shows how to determine the direction of � � with what is
known as a right-hand rule. Place the vectors and tail to tail without altering
their orientations, and imagine a line that is perpendicular to their plane where
they meet. Pretend to place your right hand around that line in such a way that
your fingers would sweep into through the smaller angle between them.Your
outstretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep 
into through the smaller angle. The thumb ends up in the opposite direction
from previously, and so it must be that ; that is,

. (3-25)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-26, we have

ax � bx � axbx( � ) � 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax � by � axby( � ) � axby .

In the last step we used Eq. 3-24 to evaluate the magnitude of � as unity.
(These vectors and each have a magnitude of unity, and the angle betweenĵî

ĵî

k̂ĵîĵî

îî

îîîî

k̂ĵîk̂ĵîb
:

a:

b
:

� a: � �(a: � b
:

)

c�: � �c:
a:

b
:

c�: � b
:

� a:

c:
b
:

a:

b
:

a:
b
:

a:c:
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Continuing to expand Eq. 3-26, you can show that

� � (aybz � byaz) � (azbx � bzax) � (axby � bxay) . (3-27)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product � � with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

ĵî
k̂ĵî

k̂ĵîb
:

a:

Checkpoint 5
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the an-
gle between the directions of  and  if the magnitude of the vector product 
is (a) zero and (b) 12 units?

D
:

C
:

�D
:

C
:

D
:

C
:

Figure 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector into vector with the fingers of your right hand.
Your outstretched thumb shows the direction of vector . (b) Showing that is the reverse of .a: � b

:
b
:

� a:c: � a: � b
:

b
:

a:

a

b b b

c

a

b

a a

(a)

(b)

c �

A
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gives the direction of .Thus, as shown in the figure, lies in
the xy plane. Because its direction is perpendicular to the
direction of (a cross product always gives a perpendicular
vector), it is at an angle of

250° � 90° � 160° (Answer)

from the positive direction of the x axis.

a:

c:c:

Sample Problem 3.06 Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units, and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product � � ?

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-24 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write

c � ab sin f � (18)(12)(sin 90°) � 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of and (the line on which is shown) such that
your fingers sweep into . Your outstretched thumb thenb

:
a:

c:b
:

a:

b
:

a:c:

b
:

a:

Figure 3-20 Vector (in the xy plane) is the vector (or cross) 
product of vectors and .b

:
a:

c:

z

250° 
160° 

yx

a b
c = a b

This is the resulting
vector, perpendicular to
both a and b.

Sweep a into b.

Calculations: Here we write

� (3 � 4 ) � (�2 � 3 )

� 3 � (�2 ) � 3 � 3 � (�4 ) � (�2 )

� (�4 ) � 3 .k̂ĵ

îĵk̂îîî

k̂îĵîc:

Sample Problem 3.07 Cross product, unit-vector notation

If � 3 � 4 and � �2 � 3 , what is � � ?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

b
:

a:c:k̂îb
:

ĵîa:

We can separately evaluate the left side of Eq. 3-28 by
writing the vectors in unit-vector notation and using the
distributive law:

� � (3.0 � 4.0 ) �(�2.0 � 3.0 )

� (3.0 ) �(�2.0 ) � (3.0 ) �(3.0 )

� (�4.0 ) �(�2.0 ) � (�4.0 ) �(3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

� � �(6.0)(1) � (9.0)(0) � (8.0)(0) � (12)(0)
� �6.0.

Substituting this result and the results of Eqs. 3-29 and 3-30
into Eq. 3-28 yields

�6.0 � (5.00)(3.61) cos f,

so (Answer)� � cos�1 �6.0
(5.00)(3.61)

� 109� �110�.

b
:

a:

îî

k̂ĵîĵ

k̂îîî

k̂îĵîb
:

a:

Sample Problem 3.05 Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following

steps can be bypassed with a vector-capable calculator, you
will learn more about scalar products if, at least here, you
use these steps.)

KEY IDEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

� � ab cos f. (3-28)

Calculations: In Eq. 3-28, a is the magnitude of , or

(3-29)

and b is the magnitude of , or

(3-30)b � 2(�2.0)2 �  3.02 � 3.61.

b
:

a �23.02 � (�4.0)2 � 5.00,

a:

b
:

a:

k̂î ��
b
:

�ĵî �a: ��



55REVIEW & SUMMARY

Scalars and Vectors Scalars, such as temperature, have magni-
tude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors and may 
be added geometrically by drawing them to a common scale 
and placing them head to tail. The vector connecting the tail of
the first to the head of the second is the vector sum . To
subtract from , reverse the direction of to get � ; then 
add � to  . Vector addition is commutative

and obeys the associative law

.

Components of a Vector The (scalar) components ax and ay of
any two-dimensional vector along the coordinate axes are found
by dropping perpendicular lines from the ends of onto the coor-
dinate axes.The components are given by

ax � a cos u and ay � a sin u, (3-5)

where u is the angle between the positive direction of the x axis
and the direction of . The algebraic sign of a component indi-
cates its direction along the associated axis. Given its compo-
nents, we can find the magnitude and orientation (direction) of
the vector by using

and      

Unit-Vector Notation Unit vectors , , and have magnitudes of
unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system (as defined
by the vector products of the unit vectors). We can write a vector 
in terms of unit vectors as

� ax � ay � az , (3-7)

in which ax , ay , and az are the vector components of and ax, ay,
and az are its scalar components.

a:k̂ĵî

k̂ĵîa:

a:

k̂ĵî

a � 2a2
x � a2

y

a:

a:

a:
a:

(a: � b
:

) � c: � a: � (b
:

� c:)

a: � b
:

� b
:

� a:

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

Review & Summary

Adding Vectors in Component Form To add vectors in com-
ponent form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz. (3-10 to 3-12)

Here and are the vectors to be added, and is the vector sum.
Note that we add components axis by axis.We can then express the
sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar s and
a vector is a new vector whose magnitude is sv and whose direc-
tion is the same as that of if s is positive, and opposite that of if
s is negative. (The negative sign reverses the vector.) To divide by
s, multiply by 1/s.

The Scalar Product The scalar (or dot) product of two vectors 
and is written � and is the scalar quantity given by

� � ab cos f, (3-20)

in which f is the angle between the directions of and . A scalar
product is the product of the magnitude of one vector and the
scalar component of the second vector along the direction of the
first vector. Note that � � � which means that the scalar
product obeys the commutative law.

In unit-vector notation,

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which may be expanded according to the distributive law.

The Vector Product The vector (or cross) product of two vectors
and is written � and is a vector whose magnitude c is

given by
c � ab sin f, (3-24)

in which f is the smaller of the angles between the directions of 
and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown in
Fig. 3-19. Note that � � �( � ), which means that the vec-
tor product does not obey the commutative law.

In unit-vector notation,

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which we may expand with the distributive law.

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:,b
:

b
:

a:

b
:

a:

b
:

a:

b
:

a:b
:

a:

v:
v:
v:v:

v:

r:b
:

a:

Additional examples, video, and practice available at WileyPLUS

We next evaluate each term with Eq. 3-24, finding the
direction with the right-hand rule. For the first term here,
the angle f between the two vectors being crossed is 0. For
the other terms,f is 90°.We find

� �6(0) � 9(� ) � 8(� ) � 12

� �12 � 9 � 8 . (Answer)k̂ĵî

îk̂ĵc:

This vector is perpendicular to both and , a fact youb
:

a:c:

can check by showing that � = 0 and � = 0; that is, there
is no component of along the direction of either or .

In general: A cross product gives a perpendicular
vector, two perpendicular vectors have a zero dot prod-
uct, and two vectors along the same axis have a zero
cross product.

b
:

a:c:
b
:

c:a:c:

(3-2)

(3-3)

tan � �
ay

ax
(3-6)
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10 Figure 3-25 shows vector and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with ? (b)
Which have a negative dot product
with ?

11 In a game held within a three-
dimensional maze, you must move
your game piece from start, at xyz co-
ordinates (0, 0, 0), to finish, at coordinates (�2 cm, 4 cm, �4 cm).
The game piece can undergo only the displacements (in centime-
ters) given below. If, along the way, the game piece lands at coordi-
nates (�5 cm, �1 cm, �1 cm) or (5 cm, 2 cm, �1 cm), you lose the
game. Which displacements and in what sequence will get your
game piece to finish?

� �7 � 2 � 3 � 2 � 3 � 2

� 2 � � 4 � 3 � 5 � 3 .

12 The x and y components of four vectors , , , and are given
below. For which vectors will your calculator give you the correct an-
gle u when you use it to find u with Eq. 3-6? Answer first by examin-
ing Fig. 3-12, and then check your answers with your calculator.

ax � 3 ay � 3 cx � �3 cy � �3

bx � �3 by � 3 dx � 3 dy � �3.

13 Which of the following are correct (meaningful) vector 
expressions? What is wrong with any incorrect expression?

(a) � ( � ) (f) � ( � )

(b) � ( � ) (g) 5 �

(c) � ( � ) (h) 5 � ( � )

(d) � ( � ) (i) 5 � ( � )

(e) � ( � ) (j) ( � ) � ( � )C
:

B
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

d
:

c:b
:

a:

k̂ĵîs:k̂ĵîq:
k̂ĵîr:k̂ĵîp:

A
:

A
:

A
:

B

A

C
E

D

θ 
θ 

θ 
θ 

Figure 3-25 Question 10.
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v v
xxx

z z z

yyy
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Figure 3-24 Question 9.

Figure 3-23 Question 5.

Questions

1 Can the sum of the magnitudes
of two vectors ever be equal to the
magnitude of the sum of the same
two vectors? If no, why not? If yes,
when?

2 The two vectors shown in Fig. 3-21
lie in an xy plane. What are the signs
of the x and y components, respec-
tively, of (a) , (b) , and
(c) ?

3 Being part of the “Gators,” the
University of Florida golfing team
must play on a putting green with an
alligator pit. Figure 3-22 shows an
overhead view of one putting chal-
lenge of the team; an xy coordinate
system is superimposed. Team mem-
bers must putt from the origin to the
hole, which is at xy coordinates (8 m,
12 m), but they can putt the golf ball
using only one or more of the fol-
lowing displacements, one or more
times:

, .

The pit is at coordinates (8 m, 6 m). If a team member putts the
ball into or through the pit, the member is automatically trans-
ferred to Florida State University, the arch rival. What sequence
of displacements should a team member use to avoid the pit and
the school transfer?

4 Equation 3-2 shows that the addition of two vectors and is
commutative. Does that mean subtraction is commutative, so that

� � � ?

5 Which of the arrangements of axes in Fig. 3-23 can be labeled
“right-handed coordinate system”? As usual, each axis label indi-
cates the positive side of the axis.

a:b
:

b
:

a:

b
:

a:

d3
:

� (8 m)îd2
:

� (6 m)ĵ,d
1

:
� (8 m)î � (6 m)ĵ

d2
:

� d1
:

d1
:

� d2
:

d1
:

� d2
:

6 Describe two vectors and such that

(a) � � and a � b � c;

(b) � � � ;

(c) � � and a2 � b2 � c2.

7 If � � � (� ), does (a) � (� ) � � (� ), (b) �
(� ) � � , and (c) � (� ) � � ?

8 If � � � , must equal ?

9 If � q( � ) and is perpendicular to , then what is the
direction of in the three situations shown in Fig. 3-24 when con-
stant q is (a) positive and (b) negative?
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:
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:
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:
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:
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:
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b
:

a:y

x

d2

d1
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tors and in Fig. 3-28 have equal
magnitudes of 10.0 m and the angles
are 30° and 105°. Find the
(a) x and (b) y components of their
vector sum , (c) the magnitude of ,
and (d) the angle makes with the
positive direction of the x axis.

•16 For the displacement vectors
and

, give in
(a) unit-vector notation, and as (b) a
magnitude and (c) an angle (rela-
tive to ). Now give in (d) unit-vector notation, and as (e) a
magnitude and (f) an angle.

•17 Three vectors , , and each have a magnitude of
50 m and lie in an xy plane. Their directions relative to the positive
direction of the x axis are 30°, 195°, and 315°, respectively.What are
(a) the magnitude and (b) the angle of the vector , and
(c) the magnitude and (d) the angle of ? What are the
(e) magnitude and (f) angle of a fourth vector such that

?

•18 In the sum , vector has a magnitude of 12.0 m
and is angled 40.0° counterclockwise from the direction, and vec-
tor has a magnitude of 15.0 m and is angled 20.0° counterclock-
wise from the direction. What are (a) the magnitude and (b) the
angle (relative to ) of ?

•19 In a game of lawn chess, where pieces are moved between
the centers of squares that are each 1.00 m on edge, a knight is
moved in the following way: (1) two squares forward, one square
rightward; (2) two squares leftward, one square forward; (3) two
squares forward, one square leftward. What are (a) the magnitude
and (b) the angle (relative to “forward”) of the knight’s overall dis-
placement for the series of three moves?

B
:

�x
�x

C
:

�x
A
:

A
:

� B
:

� C
:

(a: � b
:

) � (c: � d
:

) � 0
d
:

a: � b
:

� c:
a: � b

:
� c:

c:b
:

a:ILW

b
:

� a:î

a: � b
:

(5.0 m)î � (�2.0 m)ĵ
b
:

�a: � (3.0 m)î � (4.0 m)ĵ

r:
r:r:

�2 ��1 �

b
:

a:

Module 3-1 Vectors and Their Components
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250°
counterclockwise from the positive direction
of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy plane
is 15 m long and directed at angle u � 30° in
Fig. 3-26. Determine (a) the x component
and (b) the y component of the vector.

•3 The x component of vector is 
25.0 m and the y component is 40.0 m. (a) What is the magni-

tude of ? (b) What is the angle between the direction of and
the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°,
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad,
(e) 2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its 
starting point. (a) How far and (b) in what direction must it now
sail to reach its original destination?

•6 In Fig. 3-27, a heavy piece of 
machinery is raised by sliding it a 
distance d � 12.5 m along a plank
oriented at angle u � 20.0° to the
horizontal. How far is it moved 
(a) vertically and (b) horizontally?

•7 Consider two displacements,
one of magnitude 3 m and another
of magnitude 4 m. Show how the
displacement vectors may be combined to get a resultant displace-
ment of magnitude (a) 7 m, (b) 1 m, and (c) 5 m.

Module 3-2 Unit Vectors, Adding Vectors by Components
•8 A person walks in the following pattern: 3.1 km north, then
2.4 km west, and finally 5.2 km south. (a) Sketch the vector dia-
gram that represents this motion. (b) How far and (c) in what di-
rection would a bird fly in a straight line from the same starting
point to the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.

•11 (a) In unit-vector notation, what is the sum if 
(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What

are the (b) magnitude and (c) direction of ?a: � b
:

ĵ�î��b
:

ĵ�î�a:
a: � b

:
SSM

�� ��� �� ��
d
:

c:
r:

a: � b
:

� c: � 0c:
a: � b

:
a: � b

:

b
:

� (�1.0 m)î � (1.0 m)ĵ � (4.0 m)k̂

a: � (4.0 m)î � (3.0 m)ĵ � (1.0 m)k̂

A
:

A
:

��
A
:

SSM

r:

a:
SSM
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θ 

d

Figure 3-27 Problem 6.

•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates (�140 m, 30 m). The x component and y
component of your moves are the following, respectively, in me-
ters: (20 and 60), then (bx and �70), then (�20 and cy), then (�60
and �70). What are (a) component bx and (b) component cy?
What are (c) the magnitude and (d) the angle (relative to the pos-
itive direction of the x axis) of the overall displacement?

•15 The two vec-WWWILWSSM

θ 
x

y

r

Figure 3-26
Problem 2.
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θ 1
a

b

Figure 3-28 Problem 15.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


•••32 In Fig. 3-31, a cube of edge
length a sits with one corner at the ori-
gin of an xyz coordinate system. A
body diagonal is a line that extends
from one corner to another through
the center. In unit-vector notation,
what is the body diagonal that extends
from the corner at (a) coordinates (0,
0, 0), (b) coordinates (a, 0, 0), (c) coor-
dinates (0, a, 0), and (d) coordinates (a, a, 0)? (e) Determine the
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••30 Here are two vectors:

What are (a) the magnitude and (b) the angle (relative to ) of ?
What are (c) the magnitude and (d) the angle of ? What are (e)
the magnitude and (f) the angle of (g) the magnitude and
(h) the angle of ; and (i) the magnitude and (j) the angle of

? (k) What is the angle between the directions of 
and ?

••31 In Fig. 3-30, a vector with a magnitude of 17.0 m is
directed at angle 56.0° counterclockwise from the axis.
What are the components (a) ax and (b) ay of the vector? A sec-
ond coordinate system is inclined by angle 18.0° with respect
to the first. What are the components (c) and (d) in this
primed coordinate system?

a�ya�x

�� �

�x� �
a:

a: � b
:

b
:

� a:a: � b
:

b
:

� a:
a: � b

:
;

b
:

a:î

a: � (4.0 m)î � (3.0 m)ĵ and b
:

� (6.0 m)î � (8.0 m)ĵ.

••20 An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that
he actually traveled 7.8 km at 50° north of due east. (a) How far
and (b) in what direction must he now travel to reach base camp?

••21 An ant, crazed by the Sun on a hot Texas afternoon, darts
over an xy plane scratched in the dirt. The x and y components of
four consecutive darts are the following, all in centimeters: (30.0,
40.0), (bx, �70.0), (�20.0, cy), (�80.0, �70.0). The overall displace-
ment of the four darts has the xy components (�140, �20.0). What
are (a) bx and (b) cy? What are the (c) magnitude and (d) angle
(relative to the positive direction of the x axis) of the overall
displacement?

••22 (a) What is the sum of the following four vectors in unit-
vector notation? For that sum, what are (b) the magnitude, (c) the
angle in degrees, and (d) the angle in radians?

••23 If is added to , the result is a vector in the
positive direction of the y axis, with a magnitude equal to that of .
What is the magnitude of ?

••24 Vector , which is directed along an x axis, is to be addedA
:

B
:

C
:

C
:

� 3.0î � 4.0ĵB
:

G
:

: 4.00 m at �1.20 rad    H
:

: 6.00 m at �210�

E
:

: 6.00 m at �0.900 rad    F
:

: 5.00 m at �75.0�
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Figure 3-29 Problem 29.
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Figure 3-30 Problem 31.

an ant’s displacement from the nest (find it in the figure) if the
ant enters the trail at point A? What are the (c) magnitude and
(d) angle if it enters at point B?

to vector , which has a magnitude of 7.0 m.The sum is a third vec-
tor that is directed along the y axis, with a magnitude that is 3.0
times that of .What is that magnitude of ?

••25 Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction 15° south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

••26 What is the sum of the following four vectors in (a) unit-
vector notation, and as (b) a magnitude and (c) an angle?

••27 If and thend
:

3 � 2î � 4ĵ,d
:

1� d
:

2 � 5d
:

3, d
:

1 � d
:

2 � 3d
:

3,

C
:

� (�4.00 m)î � (�6.00 m)ĵ  D:
:

5.00 m, at �235�

A
:

� (2.00 m)î � (3.00 m)ĵ         B:
:

4.00 m, at �65.0�

A
:

A
:

B
:

what are, in unit-vector notation, (a) and (b) 

••28 Two beetles run across flat sand, starting at the same point.
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east.
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due
north. What must be (a) the magnitude and (b) the direction of its
second run if it is to end up at the new location of beetle 1?

••29 Typical backyard ants often create a network of
chemical trails for guidance. Extending outward from the nest, a
trail branches (bifurcates) repeatedly, with 60° between the
branches. If a roaming ant chances upon a trail, it can tell the
way to the nest at any branch point: If it is moving away from
the nest, it has two choices of path requiring a small turn in
its travel direction, either 30° leftward or 30° rightward. If
it is moving toward the nest, it has only one such choice.
Figure 3-29 shows a typical ant trail, with lettered straight sec-
tions of 2.0 cm length and symmetric bifurcation of 60°. Path v is
parallel to the y axis. What are the (a) magnitude and (b) angle
(relative to the positive direction of the superimposed x axis) of

d
:

2?d
:

1



culate the angle between the two vectors given by 
and .

••42 In a meeting of mimes, mime 1 goes through a displacement
and mime 2 goes through a displacement

. What are (a) , (b) ,
(c) , and (d) the com-
ponent of along the direction of

? (Hint: For (d), see Eq. 3-20 and
Fig. 3-18.)

••43 The three vectors in
Fig. 3-33 have magnitudes a 3.00 m,
b 4.00 m, and c 10.0 m and angle

30.0°. What are (a) the x compo-
nent and (b) the y component of ; (c)
the x component and (d) the y com-

a:
� �

��
�

ILWSSM

d
:

2

d
:

1

(d
:

1 � d
:

2) � d
:

2

d
:

1 � d
:

2d
:

1 � d
:

2d
:

2 � (�3.0 m)î � (4.0 m)ĵ
d
:

1 � (4.0 m)î � (5.0 m)ĵ

b
:

� 2.0î � 1.0ĵ � 3.0k̂3.0ĵ � 3.0k̂
a: � 3.0î �

(a) , (b) , (c) , and(a: � b
:

) � b
:

a: � b
:

a: � b
:

is not shown.)

•34 Two vectors are presented as
and . Findb

:
� 2.0î � 4.0ĵa: � 3.0î � 5.0ĵ
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angles that the body diagonals make with the adjacent edges.
(f) Determine the length of the body diagonals in terms of a.

Module 3-3 Multiplying Vectors
•33 For the vectors in Fig. 3-32, with a 4, b 3, and c 5, what
are (a) the magnitude and (b) the direction
of , (c) the magnitude and (d) the di-
rection of , and (e) the magnitude
and (f) the direction of ? (The z axisb

:
� c:

a: � c:
a: � b

:

���

ponent of ; and (e) the x component and (f) the y component of ? If
,what are the values of (g) p and (h) q?

••44 In the product , take q � 2,

.

What then is in unit-vector notation if Bx � By?

Additional Problems

45 Vectors and lie in an xy plane. has magnitude 8.00 and
angle 130°; has components Bx 7.72 and By 9.20. (a)
What is What is in (b) unit-vector notation and
(c) magnitude-angle notation with spherical coordinates (see
Fig. 3-34)? (d) What is the angle between the directions of and

(Hint: Think a bit before you resort to a calculation.)
What is in (e) unit-vector notation and (f) magnitude-
angle notation with spherical coordinates?
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� 3.00k̂
4A
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� 3B
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� �� �B
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Figure 3-33 Problem 43.
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Figure 3-34 Problem 45.

46 Vector has a magnitude of 5.0 m and is directed east.a:

(d) the component of along the direc-
tion of . (Hint: For (d), consider Eq. 3-20
and Fig. 3-18.)

•35 Two vectors, and , lie in the xy plane.Their magnitudes are
4.50 and 7.30 units, respectively, and their directions are 320° and
85.0°, respectively, as measured counterclockwise from the positive
x axis.What are the values of (a) and (b) ?

•36 If and , then what is
?

•37 Three vectors are given by 
and . Find (a)

, (b) , and (c) .

••38 For the following three vectors, what is ?

••39 Vector has a magnitude of 6.00 units, vector has a mag-B
:

A
:

B
:

� �3.00î � 4.00ĵ � 2.00k̂  C
:

� 7.00î � 8.00ĵ

A
:

� 2.00î � 3.00ĵ � 4.00k̂

3C
:

� (2A
:

� B
:

)

a: � (b
:

� c:)a: � (b
:

� c:)a: � (b
:

� c:)
c: � 2.0î � 2.0ĵ � 1.0k̂b

:
� �1.0î � 4.0ĵ � 2.0k̂,

a: � 3.0î � 3.0ĵ � 2.0k̂,

(d
:

1 � d
:

2) � (d
:

1 � 4d
:

2)
d
:

2 � �5î � 2ĵ � k̂d
:

1 � 3î � 2ĵ � 4k̂

r: � s:r: � s:

s:r:
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Figure 3-32
Problems 33 and 54.

nitude of 7.00 units, and has a value of 14.0. What is the angle
between the directions of and ?

••40 Displacement is in the yz plane 63.0° from the positive
direction of the y axis, has a positive z component, and has a mag-
nitude of 4.50 m. Displacement is in the xz plane 30.0° from the
positive direction of the x axis, has a positive z component, and has
magnitude 1.40 m. What are (a) , (b) , and (c) the an-
gle between and ?

••41 Use the definition of scalar product,
, and the fact that to cal-a: � b

:
� axbx � ayby � azbza: � b

:
� ab cos �

WWWILWSSM

d
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2d
:

1

d
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1 � d
:

2d
:

1 � d
:

2

d
:

2

d
:

1

B
:

A
:

A
:

� B
:

ax � 3.2, ay 1.6, bx 0.50, by 4.5. (a) Find the angle between
the directions of and .There are two vectors in the xy plane that
are perpendicular to and have a magnitude of 5.0 m. One, vector

, has a positive x component and the other, vector , a negative x
component. What are (b) the x component and (c) the y compo-
nent of vector , and (d) the x component and (e) the y component
of vector ?

49 A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far
and (b) in what direction must the sailor now sail to reach the orig-
inal destination?

50 Vector is in the negative direction of a y axis, and vector 
is in the positive direction of an x axis. What are the directions of
(a) and (b) What are the magnitudes of products (c)

and (d) What is the direction of the vector result-
ing from (e) and (f) ? What is the magnitude of the
vector product in (g) part (e) and (h) part (f)? What are the (i)
magnitude and (j) direction of ?d

:

1 � (d
:

2/4)

d
:

2 � d
:

1d
:

1 � d
:

2

d
:

1 � (d
:

2 /4)?d
:

1 � d
:

2

d
:

1/(�4)?d
:

2/4

d
:

2d
:

1

SSM

d
:

c:

d
:

c:
a:

b
:

a:
���

Vector has a magnitude of 4.0 m and is directed 35° west of due
north. What are (a) the magnitude and (b) the direction of ?
What are (c) the magnitude and (d) the direction of ? (e)
Draw a vector diagram for each combination.

47 Vectors and lie in an xy plane. has magnitude 8.00
and angle 130°; has components Bx � �7.72 and By � �9.20.
What are the angles between the negative direction of the y axis
and (a) the direction of , (b) the direction of the product

, and (c) the direction of ?

48 Two vectors and have the components, in meters,b
:

a:
A
:

� (B
:

� 3.00k̂)A
:

� B
:

A
:

B
:

A
:

B
:

A
:

b
:

� a:
a: � b

:
b
:
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51 Rock faults are ruptures along which opposite faces of rock
have slid past each other. In Fig. 3-35, points A and B coincided be-
fore the rock in the foreground slid down to the right. The net dis-
placement is along the plane of the fault.The horizontal compo-
nent of is the strike-slip AC. The component of that is
directed down the plane of the fault is the dip-slip AD. (a) What is the
magnitude of the net displacement if the strike-slip is 22.0 m and
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at angle

52.0° to the horizontal, what is the vertical component of ?AB
9:

� �

AB
9:

AB
9:

AB
9:

AB
9:

58 A vector has a magnitude of 2.5 m and points north. What
are (a) the magnitude and (b) the direction of ? What are (c)
the magnitude and (d) the direction of ?

59 has the magnitude 12.0 m and is angled 60.0° counterclock-
wise from the positive direction of the x axis of an xy coordinate
system. Also, on that same coordinate
system. We now rotate the system counterclockwise about the origin
by 20.0° to form an x�y� system. On this new system, what are (a) 
and (b) ,both in unit-vector notation?

60 If and , then what are
(a) and (b) ?

61 (a) In unit-vector notation, what is if 
5.0 4.0 6.0 , 2.0 2.0 3.0 , and 4.0

3.0 2.0 ? (b) Calculate the angle between and the positive z
axis. (c) What is the component of along the direction of ? (d)
What is the component of perpendicular to the direction of but
in the plane of and ? (Hint: For (c), see Eq. 3-20 and Fig. 3-18;
for (d), see Eq. 3-24.)

62 A golfer takes three putts to get the ball into the hole. The
first putt displaces the ball 3.66 m north, the second 1.83 m south-
east, and the third 0.91 m southwest. What are (a) the magnitude
and (b) the direction of the displacement needed to get the ball
into the hole on the first putt?

63 Here are three vectors in meters:

What results from (a) (b) and
(c) ?

64 A room has dimensions 3.00 m (height)
3.70 m 4.30 m. A fly starting at one corner flies around, ending
up at the diagonally opposite corner. (a) What is the magnitude of
its displacement? (b) Could the length of its path be less than this
magnitude? (c) Greater? (d) Equal? (e) Choose a suitable coordi-
nate system and express the components of the displacement vec-
tor in that system in unit-vector notation. (f) If the fly walks, what
is the length of the shortest path? (Hint: This can be answered
without calculus. The room is like a box. Unfold its walls to flatten
them into a plane.)

65 A protester carries his sign of protest, starting from the ori-
gin of an xyz coordinate system, with the xy plane horizontal. He
moves 40 m in the negative direction of the x axis, then 20 m
along a perpendicular path to his left, and then 25 m up a water
tower. (a) In unit-vector notation, what is the displacement of
the sign from start to end? (b) The sign then falls to the foot of
the tower. What is the magnitude of the displacement of the sign
from start to this new end?

66 Consider in the positive direction of x, in the positive di-
rection of y, and a scalar d. What is the direction of if d is
(a) positive and (b) negative? What is the magnitude of (c) 
and (d) ? What is the direction of the vector resulting from
(e) and (f) ? (g) What is the magnitude of the vector
product in (e)? (h) What is the magnitude of the vector product in
(f)? What are (i) the magnitude and (j) the direction of � if d
is positive?
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Figure 3-35 Problem 51.

52 Here are three displacements, each measured in meters:
and

. (a) What is ? (b) What is the
angle between and the positive z axis? (c) What is the compo-
nent of along the direction of (d) What is the component of

that is perpendicular to the direction of and in the plane of 
and (Hint: For (c), consider  Eq. 3-20 and Fig. 3-18; for (d), con-
sider Eq. 3-24.)

53 A vector of magnitude 10 units and another vector 
of magnitude 6.0 units differ in directions by 60°. Find (a) the
scalar product of the two vectors and (b) the magnitude of the vec-
tor product .

54 For the vectors in Fig. 3-32, with a � 4, b � 3, and c � 5, calcu-
late (a) , (b) , and (c) .

55 A particle undergoes three successive displacements in a
plane, as follows: 4.00 m southwest; then 5.00 m east; and
finally 6.00 m in a direction 60.0° north of east. Choose a coor-
dinate system with the y axis pointing north and the x axis pointing
east.What are (a) the x component and (b) the y component of ?
What are (c) the x component and (d) the y component of  ?
What are (e) the x component and (f) the y component of ?
Next, consider the net displacement of the particle for the three
successive displacements. What are (g) the x component, (h) the y
component, (i) the magnitude, and ( j) the direction of the net dis-
placement? If the particle is to return directly to the starting point,
(k) how far and (l) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector
notation, and as (b) a magnitude and (c) an angle relative to �x.

: 10.0 m, at 25.0° counterclockwise from �x

: 12.0 m, at 10.0° counterclockwise from �y

: 8.00 m, at 20.0° clockwise from �y

: 9.00 m, at 40.0° counterclockwise from �y

57 If is added to , the result is 6.0 � 1.0 . If is subtracted
from , the result is 4.0 7.0 .What is the magnitude of ?A
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61PROBLEMS

67 Let be directed to the east, be directed to the north, and k̂ĵî 72 A fire ant, searching for hot sauce in a picnic area, goes
through three displacements along level ground: l for 0.40 m
southwest (that is, at 45° from directly south and from directly
west), 2 for 0.50 m due east, 3 for 0.60 m at 60° north of east.
Let the positive x direction be east and the positive y direction
be north. What are (a) the x component and (b) the y compo-
nent of l? Next, what are (c) the x component and (d) the y
component of 2? Also, what are (e) the x component and (f)
the y component of 3?

What are (g) the x component, (h) the y component, (i) the
magnitude, and (j) the direction of the ant’s net displacement? If
the ant is to return directly to the starting point, (k) how far and (1)
in what direction should it move?

73 Two vectors are given by � 3.0 � 5.0 and � 2.0 � 4.0 .ĵîb
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Figure 3-38 Problem 79.
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Figure 3-36 Problem 68.

be directed upward. What are the values of products (a) � , (b)
(� ) � (� ), and (c) � (� )? What are the directions (such as eastĵĵĵk̂

k̂î

or down) of products (d) � , (e) (� ) � (� ), and (f) (� ) � (� )?

68 A bank in downtown Boston is robbed (see the map in 
Fig. 3-36). To elude police, the robbers escape by helicopter, mak-
ing three successive flights described by the following displace-
ments: 32 km, 45° south of east; 53 km, 26° north of west; 26 km, 18°
east of south. At the end of the third flight they are captured. In
what town are they apprehended?

ĵk̂ĵîĵk̂

69 A wheel with a radius of 45.0 cm
rolls without slipping along a hori-
zontal floor (Fig. 3-37). At time t1,
the dot P painted on the rim of the
wheel is at the point of contact be-
tween the wheel and the floor. At a
later time t2, the wheel has rolled
through one-half of a revolution.
What are (a) the magnitude and (b)
the angle (relative to the floor) of
the displacement of P?

70 A woman walks 250 m in the direction 30° east of north, then
175 m directly east. Find (a) the magnitude and (b) the angle of her
final displacement from the starting point. (c) Find the distance she
walks. (d) Which is greater, that distance or the magnitude of her
displacement?

71 A vector has a magnitude 3.0 m and is directed south. What
are (a) the magnitude and (b) the direction of the vector 5.0 ? What
are (c) the magnitude and (d) the direction of the vector �2.0 ?d

:
d
:

d
:

P

At time t1 At time t2

P

Figure 3-37 Problem 69.

Find (a) � , (b) , (c) , and (d) the component of
along the direction of .

74 Vector lies in the yz plane 63.0� from the positive direction
of the y axis, has a positive z component, and has magnitude 3.20
units. Vector lies in the xz plane 48.0� from the positive direction
of the x axis, has a positive z component, and has magnitude 1.40
units. Find (a) � , (b) � , and (c) the angle between and .

75 Find (a) “north cross west,” (b) “down dot south,” (c) “east
cross up,” (d) “west dot west,” and (e) “south cross south.” Let each
“vector” have unit magnitude.

76 A vector , with a magnitude of 8.0 m, is added to a vector ,
which lies along an x axis. The sum of these two vectors is a third
vector that lies along the y axis and has a magnitude that is twice
the magnitude of .What is the magnitude of ?

77 A man goes for a walk, starting from the origin of an xyz
coordinate system, with the xy plane horizontal and the x axis east-
ward. Carrying a bad penny, he walks 1300 m east, 2200 m north,
and then drops the penny from a cliff 410 m high. (a) In unit-vector
notation, what is the displacement of the penny from start to its
landing point? (b) When the man returns to the origin, what is the
magnitude of his displacement for the return trip?

78 What is the magnitude of � ( � ) if a � 3.90, b � 2.70,
and the angle between the two vectors is 63.0°?

79 In Fig. 3-38, the magnitude of is 4.3, the magnitude of is
5.4, and � � 46°. Find the area of the triangle contained between
the two vectors and the thin diagonal line.
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