

d) 8.72×10^{-2} M

2. How many milliliters would you need to prepare 60.0 mL of 0.200 M HNO₃ from a stock solution of 4.00 M HNO₃?

- a) 3 mL
- b) 240 mL
- c) 24 mL
- d) 1000 mL

3. What is the concentration (M) of CH_3OH in a solution prepared by dissolving 11.7 g of CH_3OH in sufficient water to give exactly 230 mL of solution?

a) 11.7
b) 2.30 x 10⁻²
c) 0.0841
d) 1.59

Explanation: Need to convert the grams of CH3OH to moles and then find the molarity of the solution by using the molarity formula. Do not forget to convert the ml to L.

11.7 g CH₃OH ×
$$\frac{1 \text{ mole CH}_3\text{OH}}{32.042 \text{ g}}$$
 × $\frac{1}{0.230 \text{ L}}$ = 1.59 M

4. How many grams of H₃PO₄ are in 35.1 mL of a 2.75 M solution of H₃PO₄?

a) 0.61
b) 9.46
c) 20
d) 4.9

Explanation: Need to convert the ml of H_3PO_4 to liters and then find the # of moles of phosphoric acid. The moles of phosphoric acid can then be converted to grams of phosphoric acid.

$$35.1 \text{ ml} \times \frac{1 \text{ L}}{1000 \text{ ml}} \times 2.75 \text{ M} \times \frac{97.99 \text{ g} \text{ H}_3 \text{ PO}_4}{1 \text{ mole}} = 9.46 \text{ g} \text{ H}_3 \text{ PO}_4$$

5.What is the concentration (M) of a Na₂SO₄ solution prepared by dissolving 5.35 g of Na₂SO₄ in sufficient water to give 330 mL of solution?

a) 1.14 x 10²
b) 0.016
c) 61.7
d) 0.114

reaction in aqueous solution

Explanation: Convert grams of Na₂SO4 to moles of Na₂SO4, ml of water to liters of water and then find the molarity of the solution by using the molarity formula.

5.35 g Na₂SO₄ × $\frac{1 \text{ mole Na}_2 \text{SO}_4}{142.035 \text{ g Na}_2 \text{SO}_4}$ × $\frac{1}{0.330 \text{ L}}$ = 0.114 M Na₂SO₄

6. How many grams of LiOH are there in 750.0 mL of a 0.0158 M LiOH

solution?

a) 2.11 x 10⁻⁵ b) 11.3 c) **0.284** d) 3.50

Explanation: Calculate the number of moles of LiOH present in this solution using the molarity formula and the convert the number of moles to grams of LiOH.

 $7.50 \times 10^{-1} \text{ L} \times 0.0158 \text{ M} \times \frac{23.948 \text{ g}}{1 \text{ mole LiOH}} = 0.284 \text{ g LiOH}$

7. A 50.0 mL sample of 0.436 M NH₄NO₃ is diluted with water to a total volume of 250.0 mL. What is the ammonium nitrate concentration in the resulting

solution? a) 21.8 M b) 0.459 M c) 2.18 × 10⁻² M d) 8.72 × 10⁻² M

8. A 3.682 g sample of potassium chlorate KClO₃ is dissolved in enough water to give 375 mL of solution. What is the chlorate ion concentration in this solution?

a) 3.00 M b) 4.41 × 10 ⁻² M c) 0.118 M d) 8.01 × 10⁻² M