Test bank chapter (4)

Choose the correct answer

1. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution?
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
2. How many milliliters would you need to prepare 60.0 mL of $0.200 M \mathrm{HNO}_{3}$ from a stock solution of $4.00 M \mathrm{HNO}_{3}$?
a) 3 mL
b) 240 mL
c) 24 mL
d) 1000 mL
3. What is the concentration (M) of $\mathrm{CH}_{3} \mathrm{OH}$ in a solution prepared by dissolving 11.7 g of $\mathrm{CH}_{3} \mathrm{OH}$ in sufficient water to give exactly 230 mL of solution?
a) 11.7
b) 2.30×10^{-2}
c) 0.0841
d) 1.59

Explanation: Need to convert the grams of CH 3 OH to moles and then find the molarity of the solution by using the molarity formula. Do not forget to convert the ml to L .

$$
11.7 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mole} \mathrm{CH}_{3} \mathrm{OH}}{32.042 \mathrm{~g}} \times \frac{1}{0.230 \mathrm{~L}}=1.59 \mathrm{M}
$$

4. How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are in 35.1 mL of a 2.75 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
a) 0.61
b) 9.46
c) 20
d) 4.9

Explanation: Need to convert the ml of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to liters and then find the \# of moles of phosphoric acid. The moles of phosphoric acid can then be converted to grams of phosphoric acid.

$$
35.1 \mathrm{ml} \times \frac{1 \mathrm{~L}}{1000 \mathrm{ml}} \times 2.75 \mathrm{M} \times \frac{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}{1 \mathrm{~mole}}=9.46 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}
$$

reaction

 in aqueous solution5. What is the concentration (M) of a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution prepared by dissolving 5.35 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in sufficient water to give 330 mL of solution?
a) 1.14×10^{2}
b) 0.016
c) 61.7
d) 0.114

Explanation: Convert grams of $\mathrm{Na}_{2} \mathrm{SO} 4$ to moles of $\mathrm{Na} 2 \mathrm{SO} 4, \mathrm{ml}$ of water to liters of water and then find the molarity of the solution by using the molarity formula.

$$
5.35 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.035 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{1}{0.330 \mathrm{~L}}=0.114 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

6. How many grams of LiOH are there in 750.0 mL of a 0.0158 M LiOH
solution?
a) 2.11×10^{-5}
b) 11.3
c) 0.284
d) 3.50

Explanation: Calculate the number of moles of LiOH present in this solution using the molarity formula and the convert the number of moles to grams of LiOH .

$$
7.50 \times 10^{-1} \mathrm{~L} \times 0.0158 \mathrm{M} \times \frac{23.948 \mathrm{~g}}{1 \text { mole } \mathrm{LiOH}}=0.284 \mathrm{~g} \mathrm{LiOH}
$$

7. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting
solution?
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
8. A 3.682 g sample of potassium chlorate KClO_{3} is dissolved in enough water to give 375 mL of solution. What is the chlorate ion concentration in this solution?
a) 3.00 M
b) $4.41 \times 10^{-2} \mathrm{M}$
c) 0.118 M
d) $8.01 \times 10^{-2} \mathrm{M}$
