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General Revision on Chapter Preliminaries

Q1: The solution set of the inequality 3x +5<8 is

A) (—»,1) B) (—o0,1] C) [L ) D) (1,0)

Q2: The solution set of the inequality 5x —3>7—3x is

A) (—oo §j B) {§ ooj C) (E ooj D) (—oo §}
"4 4’ 4’ "4

Q3: The solution set of the inequality 2<3x —4<5 is

A) (2,3] B) [2,3) C) (2,3) D) [2,3]

Q4: The solution set of the inequality x 2 <9 is

A) (—o0,—3)U(3,») B) [-3,3] C) (—o0,—3]U[3,0) D) (-3,3)

Q5: The solution set of the inequality x 2 >9 is

A) (—0,—3)U(3,») B) [-3,3] C) (—o0,—3]U[3,0) D) (-3,3)

Q6: The solution set of the inequality x 2_2x <0is

A) (—0,0)U(2,) B) (0,2) C) (—o0,0]U[2,0) D) [0,2]

Q7: The solution set of the inequality x 2 —8x +12>0 is

A) (-0,2]U[6,0) B) [2,6] C) (-,3]U[4,) D) [3,4]

Q8: The solution set of the equality [x —3/=7 is

A) {410} B) {-4,10} C) {-10,-4} D) {-10,4}

Q9: The solution set of the inequality [2x +5/>7 is

A) (-6,1) B) (—o0,—6)U(L ) C) (—o0,—6]U[L ) D) [-6.1]

Q10: The solution set of the inequality [3x —7| <2 is

o3

B) (—w,g)U(B,OO)

o) (-oo,g}U[s,oo)
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Q11: The distance between the two points (0,3) and (4,0) is

A) /50 B) V10 C) 25 D) 5
Q12: The distance between the two points (3,2) and (-1,—2) is
A) V32 B) V8 4 D) V18
Q13: The equation of the vertical line passes through the point (-2,5/3) is
A) x =5/3 [B)y=-2 [C) y=5/3 [D) x =2
Q14: The equation of the horizontal line passes through the point (—2,5/3) is
A) x =5/3 |B)y=-2 |C) y=5/3 D) x =-2
Q15: The slope of the equation of the line 2y —5x +7 =0 is
5 5 2 2

A) = B) —= C) = D) -=

) 2 ) 2 ) 5 ) 5
Q16: The equation of the line with slope —6 and y-intercept 5 is
A) y =—6x +5 |B) y =6x +5 [C)y=—6x-5 D)y =6x-5
Q17: The y-intercept of the equation of line x +2y =—4 is
A)?2 | B) -2 [C) 4 | D) -4
Q18: The x-intercept of the equation of line x +2y =—4 is
A)?2 | B) -2 [C) 4 | D) -4
Q19: The slope of the line through the points (4,1) and (-2,3) is
A) -3 |B)1/3 | C) -1/3 | D) 3
Q20: The equation of the line through the point (-1,1) with slope 1 is
A y=-Xx+2 ‘B)y=x—2 ‘C)y=x+2 ‘D)y=—x—2
Q21: The equation of the line through the point (1,2) with slope 5 is
A) y =-5x +3 |B) y =5x +3 [C) y=-5x-3 |D) y =5x -3
Q22: The equation of the line through the points (4,1) and (-2,3) is
A) X +3y +7=0 |B) x +3y —-7=0 | C) x -3y —7=0 | D) x -3y +7=0
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Q23: The equation of the line passes through the point (2,1) and parallel to the line y =x +2 is

Ay =x+1 ‘

B) y=x-1

‘C) y=-X+3

‘D)y:x—3

Q24: The equation of the line passes through the point (2,1) and perpendicular to the line y =x +2 is

A y=x+1 ‘

B) y =x-1

‘C) y =-Xx+3

‘D)y:x—S

Q25: The equation of the line passes through the point (—2,2) and parallel to the line 2x +y =4 is

A) 2x +y =-2 ‘

B) 2x +y =2

‘C)X—Zy:6

‘ D) x -2y =-6

Q26: The equation of the line passes through the point (—2,2) and perpendicular to the line 2x +y =4 is

A) 2x +y =-2 ‘

B) 2x +y =2

‘C)X—Zy:6

‘ D) x -2y =—6

Q27: If the graph of y =1—x 2 is shifting to the left 1 unit and then it is shifting downward 1 unit, thus the
new graph can be represented by

A) y=(x +1)?

B) y =—(x +1)°

C) y =—(x -1*

D) y=(x -1)°

Q28: If the graph of y =+/x is shifting to the right 4 units and then it is shifting downward 2 units, thus the
new graph can be represented by

Ay =JX +4-2

B) y =X —4+2

C)y =vx+4+2

D) y —x—4-2

Q29: If the graph of y =+/X is shifting to the left 4 units and then it is shifting upward 2 units, thus the new

graph can be represented by

A)y:x/x+4—2 B) y =X —4+2 C)y =vXx+4+2 D)y:x/x—4—2
Q30: The domain of the function f (x)=v8-2x is

A) (—oo,4) B) (—oo,4] C) (4,oo) D) [4,oo)

Q31: The domain of the function f (x) =%1 is

AR B) R—{0} C) R—{-1} D) R—{1}

Q32: The domain of the function g(t)= Jzt_t is

A) (2,») B) (—0,2] C) (—o0,2) D) [2,»)
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Q33: The domain of the function f (x)= _ XS IS

X2 _x -12

A) R-{3,4} B) R—{-4,3} C) R—{-3,4} D) R—{-4,-3}

Q34: The domain of the function f (x)=+vx2—-4 is

A) (—0,—2)U(2,) B) [-2,2] C) (-2,2) D) (—o0,—2]U[2,0)

Q35: The function f (x)=x 241is

A) even | B) neither even norodd | C) odd | D) even and odd

Q36: The function f(x):x3+x IS

A) even | B) neither even norodd | C) odd | D) even and odd
. 1 .
Q37: The function f (x)= 7 ] is
X —
A) even | B) neither even norodd | C) odd | D) even and odd

Q38: The function f (x):x3—2 IS

A) even | B) neither even norodd | C) odd | D) even and odd
Q39: The function f (x)= 2X ) is

X —_
A) even | B) neither even nor odd | C) odd | D) even and odd

Q40: The function f (x)=x2—6x is

A) even | B) neither even nor odd | C) odd | D) even and odd

Q41:If f (x)=x and g(x)=+/x —1, then the domain of the function f +g is

A) [1,0) B) (—0.1] C) k D) (1)

Q42:1f f (x)=x and g(x)=+/x —1, then the domain of the function f /g is

A) [L ) B) (—o0,1] C) R D) (L)

Q43:If f (x)=x and g(x)=+/x —1, then the domain of the function f «g is

A) R B) (—o01] C) [L) D) (L)
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Q44:1f f (x)=x and g(x)=+/x —1, then the domain of the function f —g is

A) (—»,1] B) R C) (1,0) D) [1,00)
Q45: If f (x)=x +5 and g(x)=x2-3,then (f cg)(x)=
A) X2 +2 B) x2-2 C) —x2+2 D) —x2-2
Q46: If f (x)=x +5and g(x)=x2-3,then (gof )(x)=
A) X2 +10x —22 B) x 2 +10X +22 C) x 2 -10x +22 D) x 2 -10x —22
Q47:If f (x)=x +5,then (f of )(x)=
A)X2+5 B) x +25 C) x +10 D)X2+10
Q48:If f (x)=x +5 and g(x)=x2-3,then (f g)(0)=
A) 4 | B) -2 [C0)3 | D) 2
Q49: If f (x)=x +5 and g(x)=x2-3,then (gof )(0)=
A) 20 | B) 22 [ C) 22 | D) 21
Q50: If f (x)=$ and g(x)=+x -1, then (f og)(x)=

-1 1 1 1
A B C D

)l— x -1 ) x -1 )1+ x -1 )1— x -1

Q51: If f (x)=$ and g(x) =+/x —1, then the domain of f og is
A) (1) B) [12)U(2,) C) [L») D) R
Q52: If f (x)=$ and g(x)=+x -1, then (geof )(x)=

X B X X D X
A i )5 O \ix )
Q53: If f (x)=$ and g(x) =+/x —1, then the domain of g of is
A) [01] B) [0,1) C) (0,2) D) R
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Q54: If | -3.2]=

A) 3.2 | B) 3.2 [C) -3 (D) -4

Q55: If a circle has radius 3 cm, what is the length of an arc subtended by a central angle of 2?7[ rad ?

A) 2—ﬂcm B) icm C) 2z em D) icm
9 27 2
o
56 — =
Q 3
A) 120° B) 270° C) 300° D) 150°
Q57: 150° =
i Y4 67 i
A) — B) — C) — D) —
) 6 ) 6 ) 5 ) 5
3
58: cos| — |=
s {7
A) -2 B) \2 Q) 1 D) 1
& &
. (27
59: sin| — |=
s s 5
1 B3 NE 1
A) — _Nv N D) ——
) 5 B) > C) > ) 5
Q60: cos(z+x )=
A) —COSX | B) —sinx | C) cosx | D) sinx
Q61: sin[s—”—xj:
2
A) COSX | B) —sinx | C) —cosx | D) sinx
Q62: The function f (x)=ﬂ is
X
A) even | B) neither even norodd | C) odd | D) even and odd
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Q63: cos* x —sin?x =

A) cos? x B)1 C) sin2x D) cos 2x
_ . 3 Vs
Q64: If smH:g,Where E<6’<7r,then tand =
4 3 3
A —— B) — C) —— D) —
) 2 ) n ) n )
Q65: If sinez—%,where 7r<l9<3?”, then cosé@ =
2 2
n - g Y3 0) -2 D) %
2 2 3 J3
Q66: If tanez—%,where %<6’<7r, then cscé =
5 5
A) -= B) —= C) = D) =
)=, ) =3 ) )
Q67: If secd=— \/_ , Where 7<0<27r then tan @ =
B) -2 D) 2
- : 0) :
2
Q68: sec%rz
A) i B) 2 C) -2 D) _i
V3 3

Q69: If sin@>0 and cosd <0, then the angle @ lies in the

A) first quadrant

B) second quadrant

C) third quadrant

D) fourth quadrant

. T T
70: 2sin—Cc0S— =
Q 8 8

A)

Sl

C)

N |~

D) -

N
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CHAPTER P

Preliminaries

‘ ‘ ‘Reeling and Writhing, of course, to begin with,’
the Mock Turtle replied, ‘and the different branches
of Arithmetic — Ambition, Distraction, Uglification,
and Derision.’ , ,

Lewis Carroll (Charles Lutwidge Dodgson) 1832-1898
from Alice’s Adventures in Wonderland

I ntrod u Ct i On This preliminary chapter reviews the most important
things you should know before beginning calculus. Top-
ics include the real number system, Cartesian coordinates in the plane, equations
representing straight lines, circles, and parabolas, functions and their graphs, and, in
particular, polynomials and trigonometric functions.
Depending on your precalculus background, you may or may not be familiar with
these topics. If you are, you may want to skim over this material to refresh your
understanding of the terms used; if not, you should study this chapter in detail.

Real Numbers and the Real Line

Calculus depends on properties of the real number system. Real numbers are numbers
that can be expressed as decimals, for example,

5 = 5.00000. .
—2 = —0.750000. .
1=03333...

V2=14142..
7 =3.14159...

In each case the three dots ... indicate that the sequence of decimal digits goes on
forever. For the first three numbers above, the patterns of the digits are obvious; we
know what all the subsequent digits are. For /2 and 7 there are no obvious patterns.

The real numbers can be represented geometrically as points on a number line,
which we call the real line, shown in Figure P.1. The symbol R is used to denote either
the real number system or, equivalently, the real line.

| L N R N H |
0

- — 3 1 T
2 1_Z i 1 /2 2 3 4

Figure P.1  The real line

The properties of the real number system fall into three categories: algebraic
properties, order properties, and completeness. You are already familiar with the
algebraic properties; roughly speaking, they assert that real numbers can be added,
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PRELIMINARIES

The symbol = means
“implies.”

subtracted, multiplied, and divided (except by zero) to produce more real numbers and
that the usual rules of arithmetic are valid.

The order properties of the real numbers refer to the order in which the numbers
appear on the real line. If x lies to the left of y, then we say that “x is less than y” or
“y is greater than x.” These statements are written symbolically as x < y and y > x,
respectively. The inequality x < y means that either x < y or x = y. The order
properties of the real numbers are summarized in the following rules for inequalities:

Rules for inequalities

If a, b, and ¢ are real numbers, then:

l.a<b S atc<b+c
2.a<b ES a—c<b-c
3.a<bandc >0 - ac < be
4. a<bandc <0 - ac > bc; in particular, —a > ~b
1
5.a>0 ESS - >0
a
1 1
6. 0<a<b — - < -
b a

Rules 14 and 6 (fora > 0) also hold if < and > are replaced by < and >.

Note especially the rules for multiplying (or dividing) an inequality by a number. If the
number is positive, the inequality is preserved; if the number is negative, the inequality
is reversed.

The completeness property of the real number system is more subtle and difficult
to understand. One way to state it is as follows: if A is any set of real numbers having
at least one number in it, and if there exists a real number y with the property that
x < yforevery x in A (such a number y is called an upper bound for A), then there
exists a smallest such number, called the least upper bound or supremum of A, and
denoted sup(A). Roughly speaking, this says that there can be no holes or gaps on
the real line—every point corresponds to a real number. We will not need to deal
much with completeness in our study of calculus. It is typically used to prove certain
important results, in particular, Theorems 8 and 9 in Chapter 1. (These proofs are given
in Appendix III but are not usually included in elementary calculus courses; they are
studied in more advanced courses in mathematical analysis.) However, when we study
infinite sequences and series in Chapter 9, we will make direct use of completeness.

The set of real numbers has some important special subsets:
(i) the natural numbers or positive integers, namely, the numbers 1, 2, 3, 4, ...
(ii) the integers, namely, the numbers 0, +1, £2, £3, ...
(iii) the rational numbers, that is, numbers that can be expressed in the form of a
fraction m/n, where m and n are integers, and n # 0.
The rational numbers are precisely those real numbers with decimal expansions
that are either:
(a) terminating, that is, ending with an infinite string of zeros, for example,
3/4 =0.750000.. ., or

(b) repeating, that is, ending with a string of digits that repeats over and over, for ex-
ample, 23/11 = 2.090909 . .. = 2.09. (The bar indicates the pattern of repeating
digits.)

Real numbers that are not rational are called irrational numbers.
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a open interval (a, b) b
@ <

2 (losed interval [a,b] b

O
=

a . b
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O
O
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half-open interval (a, b]

Figure P.2  Finite intervals
o >
the interval (a, 00)
< @

a
the interval (—o00, a]

<

interval (—00, c0) is the real line

Figure P.3

Infinite intervals

>
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EXAMPLE 1 Show that each of the numbers (a) 1.323232..- = 1.32 and
(b) 0.3405405405 . . . = 0.3405 is a rational number by expressing
it as a quotient of two integers.

Solution
(a) Letx = 1.323232... Thenx — 1 =0.323232...and

100x = 132.323232...=132+0.323232... =132 +x - 1.

Therefore, 99x = 131 and x = 131/99.

(b) Let y = 0.3405405405... Then 10y = 3.405405405... and
10y — 3 =0.405405405... Also,

10000y = 3405.405405405 ... = 3405 + 10y — 3.

Therefore, 9990y = 3402 and y = 3402/9990 = 63/185.

®
The set of rational numbers possesses all the algebraic and order properties of the real
numbers but not the completeness property. There is, for example, no rational number
whose square is 2. Hence, there is a “hole” on the “rational line” where +/2 should
be.! Because the real line has no such “holes,” it is the appropriate setting for studying
limits and therefore calculus.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and
also contains all real numbers between any two of its elements. For example, the set
of real numbers x such that x > 6 is an interval, but the set of real numbers y such that
y # Ois not an interval. (Why?) It consists of two intervals.

If a and b are real numbers and a < b, we often refer to

(i) the open interval from a to b, denoted by (a, b), consisting of all real numbers x
satisfyinga < x < b.

(ii) the closed interval from a to b, denoted by [a, b], consisting of all real numbers
x satisfyinga < x <b.

(iii) the half-open interval [a, b), consisting of all real numbers x satisfying the
inequalities a < x < b.

(iv) the half-open interval (a, b], consisting of all real numbers x satisfying the
inequalities a < x < b.

These are illustrated in Figure P.2. Note the use of hollow dots to indicate endpoints
of intervals that are not included in the intervals, and solid dots to indicate endpoints
that are included. The endpoints of an interval are also called boundary points.

The intervals in Figure P.2 are finite intervals; each of them has finite length b —a.
Intervals can also have infinite length, in which case they are called infinite intervals.
Figure P.3 shows some examples of infinite intervals. Note that the whole real line R
is an interval, denoted by (—o0, 00). The symbol oo (“infinity”) does not denote a real
number, so we never allow co to belong to an interval.

! How do we know that +/2 is an irrational number? Suppose, to the contrary, that /2 is rational.
Then +/2 = m/n, where m and n are integers and 7 7 0. We can assume that the fraction m/n
has been “reduced to lowest terms”; any common factors have been cancelled out. Now m2/rl2 =2,
som? = 2n2, which is an even integer. Hence m must also be even. (The square of an odd integer is
always odd.) Since m is even, we can write i = 2k, where k is an integer. Thus 4k? = 25?% and
n2 = 2k2, which is even. Thus n is also even. This contradicts the assumption that ﬁ could be
written as a fraction m/n in lowest terms; m and 7 cannot both be even. Accordingly, there can be no
rational number whose square is 2.
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The symbol <= means “if
and only if” or “is equivalent
to.” If A and B are two
statements, then A <= B
means that the truth of either
statement implies the truth of
the other, so either both must be
true or both must be false.

0 3

- <4,oo>>
0 3/7
. 9
(—00,3/7]
0 ;75 2
n C ‘ I
(,7/5]

Figure P.4 The intervals for Example 2

Solve the following inequalities. Express the solution sets in terms

EXAMPLE 2 of intervals and graph them.
@ 2x—1>x+3 b —-Z>2—1 © ——>5
3 x -1
Solution
@ 2x—1>x+3 Add 1 to both sides.
2x > x+4 Subtract x from both sides.
x >4 The solution set is the interval (4, 00).

(b) ‘% >2x —1 Multiply both sides by —3.

x < —6x+3 Add 6x to both sides.
Tx <3 Divide both sides by 7.
3
x <= The solution set is the interval (—oo, 3/7].

(c) We transpose the 5 to the left side and simplify to rewrite the given inequality in
an equivalent form:

2 550 2—5()(—1)>
x—=1 x—1

7 — 5x
x—1

> 0.

0 —

The fraction

—JXx . .
is undefined at x = 1 and is 0 at x = 7/5. Between these
x —_—
numbers it is positive if the numerator and denominator have the same sign, and

negative if they have opposite sign. It is easiest to organize this sign information

in a chart:
X 1 7/5
7 — 5x + + + 0 -
x—1 - 0 + + +
(7-5x)/(x—1) - undef + 0 —

Thus the solution set of the given inequality is the interval (1, 7/5].
See Figure P.4 for graphs of the solutions.

Sometimes we will need to solve systems of two or more inequalities that must
be satisfied simultaneously. We still solve the inequalities individually and look for
numbers in the intersection of the solution sets.

Solve the systems of inequalities:

EXAMPLE 3 (@ 3<2x+1<5 (b) 3x—1<5x+3<2x+15.

Solution

(a) Using the technique of Example 2, we can solve the inequality 3 < 2x + 1 to get
2 < 2x,s0 x > 1. Similarly, the inequality 2x + 1 < 5leadsto2x < 4,s0x < 2.
The solution set of system (a) is therefore the closed interval [1, 2].

(b) We solve both inequalities as follows:

3x—1<5x+3 5x+3<2x+15

-1 -3 < 5x —3x S5x —2x<15-3
and
—4 < 2x 3x <12
—2<x x <4



0 2/5 1
<« -0—O0 O

the union (—00,0) U (2/5, 1)

Figure P.5 The solution set for
Example 5
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The solution set is the interval (—2, 4].

L
Solving quadratic inequalities depends on solving the corresponding quadratic equa-
tions.

Quadratic inequalities
EXAMPLE 4 ... (@ x*—5x+6<0 (b) 2x%+1>4x.

Solution

(a) The trinomial x2 — 5x + 6 factors into the product (x —2)(x — 3), which is negative
if and only if exactly one of the factors is negative. Since x — 3 < x — 2, this
happens when x — 3 < O and x — 2 > Q. Thus we need x < 3 and x > 2; the
solution set is the open interval (2, 3).

(b) Theinequality 2x2 41 > 4x is equivalent to 2x> —4x 4+ 1 > 0. The corresponding
quadratic equation 2x> — 4x + 1 = 0, which is of the form Ax? + Bx + C =0,
can be solved by the quadratic formula (see Section P.6):

—B++B2—4AC 44+.16-238 lj:ﬁ
X = = — —_—
2A 4

2
so the given inequality can be expressed in the form
(x—l+%«/§)<x—1—%«/§)>0.

This is satisfied if both factors on the left side are positive or if both are negative.

Therefore, we require that either x < | — %ﬁ orx > 1+ %ﬁ The solution set

is the union of intervals (—oo, 1 — %ﬁ) U (1 + %\/i oo).

Note the use of the symbol U to denote the union of intervals. A real number is in
the union of intervals if it is in at least one of the intervals. We will also need to
consider the intersection of intervals from time to time. A real number belongs to the
intersection of intervals if it belongs to every one of the intervals. We will use N to
denote intersection. For example,

[1,3) N [2,4]1=1[2,3) while [1,3) U [2,4]=[1,4].

3 2
EXAMPLE 5 Solve the inequality P < —— and graph the solution set.
x = x

Solution We would like to multiply by x(x — 1) to clear the inequality of fractions,
but this would require considering three cases separately. (What are they?) Instead,
we will transpose and combine the two fractions into a single one:

3 2 3 2 Sx -2

< +-<0 = —F—<
x—1 x x—1 =x x(x—1)
We examine the signs of the three factors in the left fraction to determine where that
fraction is negative:

0.

x 0 2/5 1
5x -2 - — - 0 + + +
x - 0 + + + + +
x—=1 — — — - - 0 +
S5x -2
_ — undef + 0 — undef +
x(x—1)

The solution set of the given inequality is the union of these two intervals, namely,
(—00,0) U (2/5,1). See Figure P.5.
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It is important to remember that
Va? = |a}. Do not write

Va? = a unless you already
know that @ > O.

Figure P.6
|x — y| = distance from x to y

The Absolute Value

The absolute value, or magnitude, of a number x, denoted |x| (read “the absolute
value of x™), is defined by the formula

|x|_|x ifx>0
- x ifx <O

The vertical lines in the symbol |x| are called absolute value bars.

EXAMPLE 6 1B1=3 101=0.1-51=5

@
Note that |x| > O for every real number x, and |x| = Oonly if x = 0. People sometimes
find it confusing to say that |x| = —x when x is negative, but this is correct since —x

is positive in that case. The symbol ./a always denotes the nonnegative square root
of a, so an alternative definition of |x]| is |x| = VxZ.

Geometrically, |x| represents the (nonnegative) distance from x to O on the real
line. More generally, |x — y| represents the (nonnegative) distance between the points
x and y on the real line, since this distance is the same as that from the point x — y to
0 (see Figure P.6):

x—y, ifx=y
y—x, ifx <y.

S

le— =y — l—— x—y —

The absolute value function has the following properties:

Properties of absolute values

1. | — a| = |a|. A number and its negative have the same absolute value.
2. lab| = |a|lb| and }%| = |TZ—||. The absolute value of a product (or quotient)

of two numbers is the product (or quotient) of their absolute values.

3. la £ b| < |a| + || (the triangle inequality). The absolute value of a
sum of or difference between numbers is less than or equal to the sum of
their absolute values.

The first two of these properties can be checked by considering the cases where either
of a or b is either positive or negative. The third property follows from the first two
because +2ab < |2ab| = 2|a||b|. Therefore, we have

la+b)? = (a+£b)? =a’+2ab+ b?
< lal? + 2lallb] + 6> = (Ja| + |b])?,

and taking the (positive) square roots of both sides we obtain |a £ b| < |a| + |b|. This
result is called the “triangle inequality” because it follows from the geometric fact that
the length of any side of a triangle cannot exceed the sum of the lengths of the other
two sides. For instance, if we regard the points 0, a, and b on the number line as the
vertices of a degenerate “triangle,” then the sides of the triangle have lengths |a], |b],
and |a — b|. The triangle is degenerate since all three of its vertices lie on a straight
line.
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Figure P.7 The solution set for
Example 7(b)
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Equations and Inequalities Involving Absolute Values

The equation |x| = D (where D > 0) has two solutions, x = D and x = —-D:
the two points on the real line that lie at distance D from the origin. Equations and
inequalities involving absolute values can be solved algebraically by breaking them
into cases according to the definition of absolute value, but often they can also be solved
geometrically by interpreting absolute values as distances. For example, the inequality
|[x — a| < D says that the distance from x to a is less than D, so x must liec between
a — D and a + D. (Or, equivalently, a must lic between x — D andx + D.) If Disa
positive number, then

|x] =D — eitherx = —-Dorx =D

x| < D — —D <x<D

lx| < D = -D<x<D

|x| > D = eitherx < —Dorx > D

More generally,

[x —al| =D — eitherx =a—Dorx=a+ D
[x —a|l < D = a—D<x<a+D

|x —al < D = a-D<x<a+D

|x —al > D — eitherx <a—Dorx >a+ D

EXAMPLE 7 Solver (@ [2x+5/=3 (b)) Bx-2/<1.

Solution
(a) 2x +5| =3 <= 2x + 5 = £3. Thus, either2x = -3 -5 =—8or
2x =3 —5 = —=2. The solutions are x = —4 and x = —1.

(b) Bx—-2| <1 & —1<3x—2 < 1. Wesolve this pair of inequalities:

—1<3x-2 3x—2<1
142 <3x and Ix<1+42
1/3 <x x <1

Thus the solutions lie in the interval [1/3, 1].

Remark Here is how part (b) of Example 7 could have been solved geometrically,
by interpreting the absolute value as a distance:

2 2
3x=2|=[3lx—5)|=3]x—=]|.
2= (r-3)| =3k

Thus the given inequality says that
2 2 1
3x—=| <1 or xX—=-| <=
3 3 3

This says that the distance from x to 2/3 does not exceed 1/3. The solutions x therefore
lie between 1/3 and 1, including both of these endpoints. (See Figure P.7.)
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EXAMPLE 8

Solve the equation |x + 1| = |x — 3|.

Solution The equation says that x is equidistant from —1 and 3. Therefore, x is
the point halfway between —1 and 3; x = (—1 + 3)/2 = 1. Alternatively, the given
equation says that either x + 1 = x —3 orx + 1 = —(x — 3). The first of these
equations has no solutions; the second has the solution x = 1.

EXAMPLE 9

Solution We have

2
‘5—— <3

X

What values of x satisfy the inequality

2
= —3<5—;<3

2
5——| <3?
x

2
—8 < —— < =2 Divide each member by —2.
X
4>—>1 Take reciprocals.
X
|
1 <x <.

Subtract 5 from each member.

In this calculation we manipulated a system of two inequalities simultaneously, rather
than split it up into separate inequalities as we have done in previous examples. Note
how the various rules for inequalities were used here. Multiplying an inequality by a
negative number reverses the inequality. So does taking reciprocals of an inequality in
which both sides are positive. The given inequality holds for all x in the open interval

(1/4, 1).

In Exercises 1-2. express the given rational number as a
repeating decimal. Use a bar to indicate the repeating digits.

2 1
1. - 2, —
9 11
In Exercises 3—4, express the given repeating decimal as a
quotient of integers in lowest terms.

3.012 4. 327

88 5. Express the rational numbers 1/7, 2/7,3/7, and 4/7 as
repeating decimals. (Use a calculator to give as many
decimal digits as possible.) Do you see a pattern? Guess the
decimal expansions of 5/7 and 6/7 and check your guesses.

6. Can two different decimals represent the same number?
What number is represented by 0.999 ... = 0.9?

In Exercises 7-12. express the set of all real numbers x satisfying
the given conditions as an interval or a union of intervals.

8. x<2 and x> -3

10. x < -1

7.x>0 and x <5
9. x>—-5 or x <-—6

11. x > -2

In Exercises 13-26, solve the given inequality, giving the solution
set as an interval or union of intervals.

12. x <4 or x>2

13. —2x >4 14. 3x +5<8
15. 5x —3<7—3x 16, 827 5 34
4 2

17. 32— x) <23+ x) 18. x? <9

19. 1 <3 20 2515
2—x X

21, ¥ - 2x <0 22, 6x% —5x < —1

23, x3 > ax 24, x?—x <2

25 L1412 2. > . _2
2 X x—1 x +1

Solve the equations in Exercises 27-32.

27. x| =3 28, |x —3| =7

29, |2t +5|=4 30. [l =t =1

31. 835/ =9 32. ‘%-1‘:1

In Exercises 33-40, write the interval defined by the given
inequality.

33 x| <2 34, x| <2



35. s—1] <2
37. 3Bx =7 <2

39.

: 1‘<1
e

41, |x + 1| > |x = 3|

36. |t+2] <1
38, |2x+5| <1

40.

In Exercises 41-42, solve the given inequality by interpreting it
as a statement about distances on the real line.

42. |x - 3| < 2|x|

SECTION P.2: Cartesian Coordinates in the Plane 11

43. Do not fall into the trap | — a| = a. For what real numbers a
is this equation true? For what numbers is it false?
44. Solve the equation |x — 1] =1 — x.

- 1 45. Show that the inequality

2
la = b = |Ial - 1b]|

holds for all real numbers a and b.

Cartesian Coordinates in the Plane

Yy
3k
A — »_.‘P(a,b)
T :
1 1 1 1 1 1 ;I i
4 3 -2 —1¢g| 1 213 4
a

-2

-3

Figure P.8 The coordinate axes and the

point P with coordinates (a, b)

y
» 23
o(—22) 5|
#(0:5,1.5)
I oG
| _2'“} 1 &) 1 { t
-3 =2 —1I 2 3 4
0(_3'_1) —1F 0(2’_1)
¢—1.5
2t

Figure P.9  Some points with their

coordinates

Figure P.10  The four quadrants

\

The positions of all points in a plane can be measured with respect to two perpendicular
real lines in the plane intersecting at the O-point of each. These lines are called
coordinate axes in the plane. Usually (but not always) we call one of these axes the
x-axis and draw it horizontally with numbers x on it increasing to the right; then we
call the other the y-axis, and draw it vertically with numbers y on it increasing upward.
The point of intersection of the coordinate axes (the point where x and y are both zero)
is called the origin and is often denoted by the letter O.

If P is any point in the plane, we can draw a line through P perpendicular to
the x-axis. If a is the value of x where that line intersects the x-axis, we call a the
x-coordinate of P. Similarly, the y-coordinate of P is the value of y where a line
through P perpendicular to the y-axis meets the y-axis. The ordered pair (a, b) is
called the coordinate pair, or the Cartesian coordinates, of the point P. We refer
to the point as P(a, b) to indicate both the name P of the point and its coordinates
(a,b). (See Figure P.8.) Note that the x-coordinate appears first in a coordinate
pair. Coordinate pairs are in one-to-one correspondence with points in the plane;
each point has a unique coordinate pair, and each coordinate pair determines a unique
point. We call such a set of coordinate axes and the coordinate pairs they determine a
Cartesian coordinate system in the plane, after the seventeenth-century philosopher
René Descartes, who created analytic (coordinate) geometry. When equipped with
such a coordinate system, a plane is called a Cartesian plane. Note that we are using
the same notation (a, b) for the Cartesian coordinates of a point in the plane as we use
for an open interval on the real line. However, this should not cause any confusion
because the intended meaning will be clear from the context.

Figure P.9 shows the coordinates of some points in the plane. Note that all points
on the x-axis have y-coordinate 0. We usually just write the x-coordinates to label
such points. Similarly, points on the y-axis have x = 0, and we can label such points
using their y-coordinates only.

The coordinate axes divide the plane into four regions called quadrants. These
quadrants are numbered I to IV, as shown in Figure P.10. The first quadrant is the
upper right one; both coordinates of any point in that quadrant are positive numbers.
Both coordinates are negative in quadrant III; only y is positive in quadrant II; only x
is positive in quadrant I'V.

Axis Scales

When we plot data in the coordinate plane or graph formulas whose variables have
different units of measure, we do not need to use the same scale on the two axes. If, for
example, we plot height versus time for a falling rock, there is no reason to place the
mark that shows I m on the height axis the same distance from the origin as the mark
that shows 1 s on the time axis.

When we graph functions whose variables do not represent physical measurements
and when we draw figures in the coordinate plane to study their geometry or trigonom-
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Figure P.11  Increments in x and y

Qx2.y2)

Plxi.yy) Ax=x2—x) Clx2.31)

Figure P.12  The distance from P to Q is
D=2 —xD2+ (y2 — y1)?

etry, we usually make the scales identical. A vertical unit of distance then looks the
same as a horizontal unit. As on a surveyor’s map or a scale drawing, line segments
that are supposed to have the same length will look as if they do, and angles that are
supposed to be equal will look equal. Some of the geometric results we obtain later,
such as the relationship between the slopes of perpendicular lines, are valid only if
equal scales are used on the two axes.

Computer and calculator displays are another matter. The vertical and horizontal
scales on machine-generated graphs usually differ, with resulting distortions in dis-
tances, slopes, and angles. Circles may appear elliptical, and squares may appear
rectangular or even as parallelograms. Right angles may appear as acute or obtuse.
Circumstances like these require us to take extra care in interpreting what we see.
High-quality computer software for drawing Cartesian graphs usually allows the user
to compensate for such scale problems by adjusting the aspect ratio (the ratio of vertical
to horizontal scale). Some computer screens also allow adjustment within a narrow
range. When using graphing software, try to adjust your particular software/hardware
configuration so that the horizontal and vertical diameters of a drawn circle appear to
be equal.

Increments and Distances

When a particle moves from one point to another, the net changes in its coordinates are
called increments. They are calculated by subtracting the coordinates of the starting
point from the coordinates of the ending point. An increment in a variable is the net
change in the value of the variable. If x changes from x| to x;, then the increment in
x 18 Ax = xp — x1.

Find the increments in the coordinates of a particle that moves
EXAMPLE 1 from A(3, —3) to B(—1, 2).

Solution The increments (see Figure P.11) are:

Ax=-1-3=—-4 and Ay =2—(=-3)=5.

®
If P(xy, y1) and Q(x2, y2) are two points in the plane, the straight line segment PQ is
the hypotenuse of a right triangle PCQ, as shown in Figure P.12. The sides PC and
CQ of the triangle have lengths

|Ax| = |x2 — x1] and Ayl = ly2 — »1l.

These are the horizontal distance and vertical distance between P and Q. By the
Pythagorean Theorem, the length of P Q is the square root of the sum of the squares
of these lengths.

Distance formula for points in the plane

The distance D between P(x1, y)) and Q(x32, y7) is

D=/(ax7 + (ay2 = J(x2 = x) + (2 — 2.

EXAMPLE 2 The distance between A(3, —3) and B(—1, 2) in Figure P.11 is

V(=1=3)2+ (2~ (=3)? = V(-4)? + 52 = V41 units.




Figure P.13
(a) Thecircle x? + y> =4
(b) The disk x* + y? < 4

(=2,4) (2,4)

-1, D (1,1

Figure P.14  The parabola y = x2
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EXAMPLE 3 The distance from the origin O (0, 0) to a point P(x, y) is

\/(x—0)2+(y—0)2=\/x2+y2.

Graphs

The graph of an equation (or inequality) involving the variables x and y is the set of
all points P (x, y) whose coordinates satisfy the equation (or inequality).

y y
2 2
-2 2 —2 2
o X o X
2 -2
(a) (b)

The equation x% 4+ y? = 4 represents all points P(x, y) whose
EXAMPLE 4 7T o
distance from the origin is y/x2 + y2 = /4 = 2. These points lie
on the circle of radius 2 centred at the origin. This circle is the graph of the equation
x2 + y? = 4. (See Figure P.13(a).)

EXAMPLE § Points (x, y) whose coordinates satisfy the inequality x24+ y2 <4
all have distance < 2 from the origin. The graph of the inequality
is therefore the disk of radius 2 centred at the origin. (See Figure P.13(b).)

EXAMPLE 6§ Consider the equation y = x2. Some points whose coordinates
satisfy this equation are (0, 0), (1, 1), (—1, 1), (2,4), and (-2, 4).
These points (and all others satisfying the equation) lie on a smooth curve called a
parabola. (See Figure P.14.)

Straight Lines

Given two points P (x|, y;) and P>(x2, y2) in the plane, we call the increments Ax =
x2 —x1 and Ay = y» — y|, respectively, the run and the rise between P| and P;.
Two such points always determine a unique straight line (usually called simply a line)
passing through them both. We call the line P| P5.

Any nonvertical line in the plane has the property that the ratio

_rise Ay  yy—yi

run Ax X2 — X|

has the same value for every choice of two distinct points P|(xy, y|) and P (x2, y2)
on the line. (See Figure P.15.) The constant m = Ay/Ax is called the slope of the
nonvertical line.
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Figure P.15  Ay/Ax = Ay’/Ax’ because
triangles P Q P> and P;Q’P] are similar

Figure P.16 Line L has inclination ¢

X

Figure P17  AABD is similar to ACAD

EXAMPLE 7 The slope of the line joining A (3, —3) and B (—1,2) is

Ay 2-(=3) 5 5
w2y -2 _

T Ax 0 —-1-3 -4

The slope tells us the direction and steepness of a line. A line with positive slope rises
uphill to the right; one with negative slope falls downhill to the right. The greater the
absolute value of the slope, the steeper the rise or fall. Since the run Ax is zero for a
vertical line, we cannot form the ratio m; the slope of a vertical line is undefined.

The direction of a line can also be measured by an angle. The inclination of a line
is the smallest counterclockwise angle from the positive direction of the x-axis to the
line. In Figure P.16 the angle ¢ (the Greek letter “phi”) is the inclination of the line L.
The inclination ¢ of any line satisfies 0° < ¢ < 180°. The inclination of a horizontal
line is 0° and that of a vertical line is 90°.

Provided equal scales are used on the coordinate axes, the relationship between
the slope m of a nonvertical line and its inclination ¢ is shown in Figure P.16:

Ay
m=—— = tano.
Ax ¢
(The trigonometric function tan is defined in Section P.7.)

Parallel lines have the same inclination. If they are not vertical, they must therefore
have the same slope. Conversely, lines with equal slopes have the same inclination and
so are parallel.

If two nonvertical lines, Ly and L, are perpendicular, their slopes m| and m>

satisfy mymp = —1, so each slope is the negative reciprocal of the other:
1 1
mg=—-— and my = ——.
my mi

(This result also assumes equal scales on the two coordinate axes.) To see this, observe
in Figure P.17 that

AD AD
m1=—BD and m2=——DC.
AD DC
Since AABD is similar to ACAD, we have — = ——, and so
BD AD

_(DC AD)__I
MM =\4D Dpc) -



linex =3

1| liney=1 3,1

3 x
Figure P.18 Thelinesy =landx =3

S

\b' 2]

(a,0)
a

Figure P.19 Line L has x-intercept a and
y-intercept b
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Equations of Lines

Straight lines are particularly simple graphs, and their corresponding equations are
also simple. All points on the vertical line through the point a on the x-axis have their
x-coordinates equal to a. Thus x = a is the equation of the line. Similarly, y = b is
the equation of the horizontal line meeting the y-axis at b.

The horizontal and vertical lines passing through the point (3, 1)
EXAMPLE 8 ) ‘ ;
(Figure P.18) have equations y = 1 and x = 3, respectively.

®
To write an equation for a nonvertical straight line L, it is enough to know its slope m
and the coordinates of one point P (x|, y;) onit. If P(x, y) is any other pointon L,
then

y =i
=m,
X — X
so that

y—yr=m(x—xy) or y=m(x —x1)+y.

The equation
y=mx —x1) +yi

is the point-slope equation of the line that passes through the point (x1, y)
and has slope m.

EXAMPLE 9 Find an equation of the line of slope —2 through the point (1, 4).

Solution We substitute xy = 1, y; = 4, and m = —2 into the point-slope form of the
equation and obtain

y=-2(x—-1)+4 or y=-2x+6.

EXAMPLE 10 Find an equation of the line through the points (1, —1) and (3, 5).

, 5 (-1
Solution The slope of the line is m = ——g—(l—)

either of the two points to write an equation of the line. If we use (1, —1) we get

= 3. We can use this slope with

y=3x—-1)—-1, which simplifiesto y =3x — 4.
If we use (3, 5) we get
y=3(x—=3)+5, which also simplifiesto y = 3x — 4.

Either way, y = 3x — 4 is an equation of the line.

®
The y-coordinate of the point where a nonvertical line intersects the y-axis is called the
y-intercept of the line. (See Figure P.19.) Similarly, the x-intercept of a nonhorizontal
line is the x-coordinate of the point where it crosses the x-axis. A line with slope m
and y-intercept b passes through the point (0, b), so its equation is

y=mx—-0)+b5b or, more simply, y =mx + b.
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A line with slope m and x-intercept a passes through (a, 0), and so its equation is
y =m(x — a).

The equation y = mx + b is called the slope—y-intercept equation of the
line with slope m and y-intercept b.

The equation y = m(x — a) is called the slope~x-intercept equation of the
line with slope m and x-intercept a.

EXAMPLE 11 Find the slope and the two intercepts of the line with equation
8x + 5y =20.

Solution Solving the equation for y we get

_20—8 8 X4
T T
Comparing this with the general form y = mx + b of the slope-y-intercept equation,
we see that the slope of the line is m = —8/5, and the y-interceptis b = 4.

To find the x-intercept put y = 0 and solve for x, obtaining 8x = 20, orx = 5/2. The
x-interceptis a = 5/2.

®
The equation Ax + By = C (where A and B are not both zero) is called the general

linear equation in x and y because its graph always represents a straight line, and
every line has an equation in this form.

Many important quantities are related by linear equations. Once we know that
a relationship between two variables is linear, we can find it from any two pairs of
corresponding values, just as we find the equation of a line from the coordinates of two
points.

The relationship between Fahrenheit temperature (F) and Celsius
EXAMPLE 12 o . .
temperature (C) is given by a linear equation of the form F =
mC + b. The freezing point of water is F = 32° or C = 0°, while the boiling point is
F =212° or C = 100°. Thus

32=0m+5b and 212 = 100m + b,

sob =32and m = (212 — 32)/100 = 9/5. The relationship is given by the linear

equation
9 5
F==-C+32 or C = —-(F-32).
5 9
®
In Exercises 1-4, a particle moves from A to B. Find the net 6. A particle arrives at the point (—2, —2) after its coordinates
increments Ax and Ay in the particle’s coordinates. Also find the experience increments Ax = —5 and Ay = . From where
distance from A to B. did it start?
1. A(0,3), B@4,0) 2. A(~1,2). B4, —10) Describe the graphs of the equations and inequalities in Exercises
hl k] k] . Al . 1 7_12'
3. A(3,2), B(-1,-2 4. A(0.5,3), B(@2,3
3,2), B( ) 0.5,3), B(,3) 7 ey 8 174 y? =2

5. A particle starts at A(—2, 3) and its coordinates change by
Ax =4 and Ay = —7. Find its new position. 9, X2+ y2 <1 10. 2 + y2 =0



11. y > x?2 12. y < x?

In Exercises 13-14, find an equation for (a) the vertical line and
(b) the horizontal line through the given point.

13. (=2,5/3) 14. (v2,-1.3)

In Exercises 15-18, write an equation for the line through P with
slope m.

15. P(=1,1), m=1 16. P(-2,2), m=1/2
17. P(0,b), m=2 18. P@a,0), m=-2

In Exercises 19-20, does the given poinl P lie on, above, or
below the given line?

19. P2,1), 2x+3y=6 20. PB,—-1), x—-4y=7
In Exercises 21-24, write an equation for the line through the two
points.

21. (0,0), (2,3) 22. (=2, 1), (2.-2)

23. 4, ), (=2,3) 24. (-2.0), (0,2)

In Exercises 25-26, write an equation for the line with slope m
and y-intercept b.

25. m=-2, b=+ 26. m=-1/2, b=-3
In Exercises 27-30, determine the x- and y-intercepts and the
slope of the given lines, and sketch their graphs.

27. 3x+4y =12 28, x+2y=-4

29. V2x -3y =2 30. 1.5x -2y =-3

In Exercises 31-32, find equations for the lines through P that
are (a) parallel to and (b) perpendicular to the given line.

31. P2, ), y=x+2 32, P(-2,2), 2x+y=4

33. Find the point of intersection of the lines 3x + 4y = —6 and
2x — 3y =13.

34. Find the point of intersection of the lines 2x + y = 8 and
S5x —T7y=1.

35. (Two-intercept equations) If a line is neither horizontal
nor vertical and does not pass through the origin, show that
its equation can be written in the form ul + % = 1, where a

a

is its x-intercept and b is its y-intercept.

36. Determine the intercepts and sketch the graph of the line
X Y

Z_ 2
2 3

37. Find the y-intercept of the line through the points (2, 1) and
(3, -1).
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38. A line passes through (—2, 5) and (k, 1) and has x-intercept
3. Find k.

39. The cost of printing x copies of a pamphlet is $C, where
C = Ax + B for certain constants A and B. If it costs
$5.,000 to print 10,000 copies and $6,000 to print 15,000
copies, how much will it cost to print 100,000 copies?

40. (Fahrenheit versus Celsius) In the F C-plane, sketch the
5
graph of the equation C = 5 (F — 32) linking Fahrenheit
and Celsius temperatures found in Example 12. On the same
graph sketch the line with equation C = F. Is there a
temperature at which a Celsius thermometer gives the same

numerical reading as a Fahrenheit thermometer? If so, find
that temperature.

Geometry

41. By calculating the lengths of its three sides, show that the
triangle with vertices at the points A(2, 1), B(6, 4), and
C (5, —3) is isosceles.

42. Show that the triangle with vertices A(0, 0), B(1, V3), and
C (2, 0) is equilateral.

43. Show that the points A(2, —1), B(l, 3), and C(—3,2) are
three vertices of a square and find the fourth vertex.

44. Find the coordinates of the midpoint on the line segment
P P; joining the points Py (x|, y;) and P2(x2, y2).

45. Find the coordinates of the point of the line segment joining
the points Py(xj, y1) and Pa(x3, y2) that is two-thirds of the
way from P to Ps.

46. The point P lies on the x-axis and the point Q lies on the
line y = —2x. The point (2, 1) is the midpoint of PQ. Find
the coordinates of P.

In Exercises 47—48, interpret the equation as a statement about
distances, and hence determine the graph of the equation.

47, J(x =22 +y2 =4

48. \/(x — 224+ y2 z\/x2 +(y—2)2

49, For what value of k is the line 2x + ky = 3 perpendicular to
the line 4x + y = 1? For what value of k are the lines
parallel?

50. Find the line that passes through the point (1, 2) and through
the point of intersection of the two lines x + 2y = 3 and
2x — 3y =—1.

Graphs of Quadratic Equations

This section reviews circles, parabolas, ellipses, and hyperbolas, the graphs that are

represented by quadratic equations in two variables.

Circles and Disks

The circle having centre C and radius « is the set of all points in the plane that are at
distance a from the point C.

The distance from P(x, y) to the point C(h, k) is \/(x — )2 4 (y — k)2, so that
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Figure P.20 Circle
-2+ -372=4

Figure P.21  Circle
C+22+ (-1 =7

exterior

Figure P.22 The interior of a circle
(darkly shaded) and the exterior (lightly
shaded)

the equation of the circle of radius a > 0 with centre at C(h, k) is

\/(x—h)2+(y—k)2=a.

A simpler form of this equation is obtained by squaring both sides.

Standard equation of a circle

The circle with centre (A, k) and radius a > O has equation
(x—h)?+(y—k)?=a>

In particular, the circle with centre at the origin (0, 0) and radius a has equation

The circle with radius 2 and centre (1, 3) (Figure P.20) has

EXAMPLE 1 equation (x — )2 + (y —3)2 =4.

The circle having equation (x + 2)? + (y — 1)2 = 7 has centre at

EXAMPLE 2 the point (—2, 1) and radius ~/7. (See Figure P.21.)

o
If the squares in the standard equation (x — k)% + (y — k)? = a? are multiplied out,
and all constant terms collected on the right-hand side, the equation becomes

x2 = 2hx + y* —2ky = a® — h* — k%

2

A quadratic equation of the form

x>+ y> +2ax +2by =c
must represent a circle, a single point, or no points at all. To identify the graph, we
complete the squares on the left side of the equation. Since x? + 2ax are the first two
terms of the square (x + a)2 = x2 + 2ax + a2, we add a? to both sides to complete the

square of the x terms. (Note that a? is the square of half the coefficient of x.) Similarly,
add b to both sides to complete the square of the y terms. The equation then becomes

x+a)X+ Gy +b2=c+a’+b%

If c+a?% +b? > 0, the graph is a circle with centre (—a, —b) and radius v/c + a2 + b2.
If ¢ + a® + b? = 0, the graph consists of the single point (—a, —b). If c +a> +b* < 0,
no points lie on the graph.

EXAMPLE 3 Find the centre and radius of the circle x2 + y? — 4x + 6y = 3

Solution Observe that x> —4x are the first two terms of the binomial square (x —2)2 =
x2 —4x + 4, and y? + 6y are the first two terms of the square (y + 3)% = y2 + 6y +9.
Hence we add 4 + 9 to both sides of the given equation and obtain

x2—dx+4+y2+6y+9=3+449 or (x—22+(y+3)?%=16.

This is the equation of a circle with centre (2, —3) and radius 4.

®
The set of all points inside a circle is called the interior of the circle; it is also called
an open disk. The set of all points outside the circle is called the exterior of the circle.
(See Figure P.22.) The interior of a circle together with the circle itself is called a
closed disk, or simply a disk. The inequality

(x—h?+ @ —k?<a®

represents the disk of radius |a| centred at (A, k).



Figure P.23 The disk x2 + y2 +2x <8

Fe0,

0, —p)
y=-p L

Figure P.24  The parabola 4py = x? with
focus F (0, p) and directrix y = —p

y=—4x?
Figure P.25 Some parabolas y = ax

2
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EXAMPLE 4 Identify the graphs of:

(a) x2+2x+y2 <8 (b) x2+2x+y2 <8 (¢) x24+2x+y?>8.
Solution We can complete the square in the equation x> + y? + 2x = 8 as follows:
P42+ 14y =8+1
(x+1)2+y2=9.

Thus the equation represents the circle of radius 3 with centre at (—1, 0). Inequality
(a) represents the (closed) disk with the same radius and centre. (See Figure P.23.)
Inequality (b) represents the interior of the circle (or the open disk). Inequality (c)
represents the exterior of the circle.

®
Equations of Parabolas

A parabola is a plane curve whose points are equidistant from a fixed point
F and a fixed straight line L that does not pass through F. The point F is the
focus of the parabola; the line L is the parabola’s directrix. The line through
F perpendicularto L is the parabola’s axis. The point V where the axis meets
the parabola is the parabola’s vertex.

Observe that the vertex V of a parabola is halfway between the focus F and the point
on the directrix L that is closest to F. If the directrix is either horizontal or vertical, and
the vertex is at the origin, then the parabola will have a particularly simple equation.

Find an equation of the parabola having the point F (0, p) as focus
EXAMPLE 5 . . . C
and the line L with equation y = — p as directrix.

Solution 1f P(x, y) is any point on the parabola, then (see Figure P.24) the distances
from P to F and to (the closest point Q on) the line L are given by

PF=\J(x =02 +(y — p)? = \Jx2 + y2 — 2py + p?

PO =/ =0+ (y = (=p)? = /y2 +2py + p2.

Since P is on the parabola, PF = P and so the squares of these distances are also
equal:

xX*4+y?—2py+ pP =y +2py + P,

or, after simplifying,

x2=4 py or y = :— (called standard forms).
p
Figure P.24 shows the situation for p > 0; the parabola opens upward and is symmetric
about its axis, the y-axis. If p < 0, the focus (0, p) will lie below the origin and the
directrix y = — p will lie above the origin. In this case the parabola will open downward
instead of upward.

®

Figure P.25 shows several parabolas with equations of the form y = ax? for positive
and negative values of a.

EXAMPLE 6 An equation for the parabola with focus (0, 1) and directrix y = —1
isy = x%/4,0orx? = 4y. (Wetook p = 1 in the standard equation.)
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axis

/<v7\

Figure P.26  Reflection by a parabola

Figure P.27 Horizontal scaling:

(a) the graph y = 1 — x?2

(b) graph of (a) compressed horizontally
(c) graph of (a) expanded horizontally

4py = x*

Figure P.28 The two parabolas are
similar. Compare the parts inside the
rectangles

EXAMPLE 7 Find the focus and directrix of the parabola y = —x2.

Solution The given equation matches the standard form y = x>/(4p) provided
4p = —1. Thus p = —1/4. The focus is (0, —1/4), and the directrix is the line

y=1/4.

®
Interchanging the roles of x and y in the derivation of the standard equation above
shows that the equation

2
y2 =4px or x = Z— (standard equation)
p
represents a parabola with focus at (p, 0) and vertical directrix x = —p. The axis is

the x-axis.

Reflective Properties of Parabolas

One of the chief applications of parabolas is their use as reflectors of light and radio
waves. Rays originating from the focus of a parabola will be reflected in a beam
parallel to the axis, as shown in Figure P.26. Similarly, all the rays in a beam striking
a parabola parallel to its axis will reflect through the focus. This property is the
reason why telescopes and spotlights use parabolic mirrors and radio telescopes and
microwave antennas are parabolic in shape. We will examine this property of parabolas
more carefully in Section 8.1.

(a) y (b) y © y

y=1-x2 y=1—(2x)?

A L \’

Scaling a Graph

The graph of an equation can be compressed or expanded horizontally by replacing
x with a multiple of x. If a is a positive number, replacing x with ax in an equation
multiplies horizontal distances in the graph of the equation by a factor 1/a. (See
Figure P.27.) Replacing y with ay will multiply vertical distances in a similar way.

You may find it surprising that, like circles, all parabolas are similar geometric
figures; they may have different sizes, but they all have the same shape. We can change
the size while preserving the shape of a curve represented by an equation in x and y by
scaling both the coordinates by the same amount. If we scale the equation 4py = x?2
by replacing x and y with 4px and 4py, respectively, we get 4p(4py) = (4px)?,
or y = x2. Thus the general parabola 4py = x? has the same shape as the specific
parabola y = x2, as shown in Figure P.28.

Shifting a Graph
The graph of an equation (or inequality) can be shifted ¢ units horizontally by replacing
x with x — ¢ or vertically by replacing y with y — c.

Shifts
To shift a graph ¢ units to the right, replace x in its equation or inequality with
x —c¢. (If ¢ < 0, the shift will be to the left.)

To shift a graph ¢ units upward, replace y in its equation or inequality with
y —¢. (If ¢ < 0, the shift will be downward.)

y=1-(x/2?



SECTION P.3:  Graphs of Quadratic Equations 21

The graph of y = (x — 3)? is the parabola y = x? shifted 3 units
EXAMPLE 8 . 5 2
to the right. The graph of y = (x + 1) is the parabola y = x
shifted 1 unit to the left. (See Figure P.29(a).)

y=(x-3)?
Figure P.29 | 3 X
(a) Horizontal shifts of y = x?
(b) Vertical shifts of y = x? (a) (b)
_ 2 1= 2y 2
EXAMPLE 9 Thg graphof y = x +l(ory—1=x gls the parabola y ;c
shifted upward 1 unit. The graphof y = x“—3 (ory —(=3) = x),
is the parabola y = x?2 shifted downward 3 units. (See Figure P.29(b).)
®
The circle with equation (x — n:+ Gy —-k?= a? having centre
EXAMPLE 10 . : o . 22
(h, k) and radius a can be obtained by shifting the circle x~ + y“ =
a? of radius a centred at the origin / units to the right and k units upward. These shifts
y correspond to replacing x with x — & and y with y — k.
\ ®
The graph of y = ax? + bx + c is a parabola whose axis is parallel to the y-axis.
axi 5 The parabola opens upward if a > 0 and downward if a < 0. We can complete the
X =

square and write the equation in the form y = a(x — h)? + k to find the vertex (h, k).

. a2
EXAMPLE 11 Describe the graph of y = x* — 4x + 3.

‘ x Solution The equation y = xt—4x +3 represents a parabola, opening upward. To
find its vertex and axis we can complete the square:

¢ focus (2, —3/4)

i 12, -1 y=x—4dx+4—-1=@x—-2>%-1, SO y—(—l)=(x—2)2.
- This curve is the parabola y = x2 shifted to the right 2 units and down I unit. Therefore,
Figure P.30 The parabola its vertex is (2, —1), and its axis is the line x = 2. Since y = x2 has focus (0, 1/4),
y=x2—4x+3 the focus of this parabola is (0 + 2, (1/4) — 1), or (2, —3/4). (See Figure P.30.)
@

Ellipses and Hyperholas

If a and b are positive numbers, the equation

¥2 2

At
represents a curve called an ellipse that lies wholly within the rectangle —a < x < a,
—b <y <b. (Why?) If a = b, the ellipse is just the circle of radius a centred at the
origin. If a # b, the ellipse is a circle that has been squashed by scaling it by different
amounts in the two coordinate directions.

=1
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minor axis

major axis

The ellipse has centre at the origin, and it passes through the four points (a, 0),
0,b), (—a,0), and (0, —b). (See Figure P.31.) The line segments from (—a, 0) to
(a, 0) and from (0, —b) to (0, b) are called the principal axes of the ellipse; the longer
of the two is the major axis, and the shorter is the minor axis.

2 2

EXAMPLE 12 The equation = + 2 = 1 represents an ellipse with major axis

from (=3, 0) to (3, 0) and minor axis from (0, —2) to (0, 2).

—b

2 2

. . x y
Figure P.31 The ellipse = + 7

Figure P.33  Two rectangular hyperbolas

X2 2
Figure P.32  The hyperbola — — -5 =1 and its
a b

asymptotes

The equation

represents a curve called a hyperbola that has centre at the origin and passes through
the points (—a, 0) and (a,0). (See Figure P.32.) The curve is in two parts (called
branches). Each branch approaches two straight lines (called asymptotes) as it recedes
far away from the origin. The asymptotes have equations

x oy Xy

-—-==0 and -—+==0

a b a b

The equation xy = 1 also represents a hyperbola. This one passes through

the points (—1, —1) and (1, 1) and has the coordinate axes as its asymptotes. It is,
in fact, the hyperbola x> — y? = 2 rotated 45° counterclockwise about the origin,
(See Figure P.33.) These hyperbolas are called rectangular hyperbolas, since their
asymptotes intersect at right angles.

We will study ellipses and hyperbolas in more detail in Chapter 8.

In Exercises 1-4, write an equation for the circle with centre C Describe the regions defined by the inequalities and pairs of
and radius r. inequalities in Exercises 9-16.
1. C©0,0, r=4 2. C0,2), r=2 9. 242> 1 10 22 42 < 4
3. C(-2,0), =3 4. C(3,-4), r=5
( T ( ) 1. (x+ 1> +y* <4 12. 2+ (y—27% <4

In Exercises 5-8, find the centre and radius of the circle having

the given equation.

5. 24y -2x=3 6. x* 4y +4y=0 15

13. x2+y2>1, x*+y* <4
14. 2 +y2 <4, (x+2°4+y> <4
.x2+y2<2x, x2+y2<2y

7.2 +yr—2x+4y=4 8 x2+y2-2x—y+1=0 16. x>+ y> —4x +2y >4, x+y>1



17. Write an inequality that describes the interior of the circle
with centre (—1, 2) and radius +/6.

18. Write an inequality that describes the exterior of the circle
with centre (2, —3) and radius 4.

19. Write a pair of inequalities that describe that part of the
interior of the circle with centre (0, 0) and radius /2 lying
on or to the right of the vertical line through (1, 0).

20. Write a pair of inequalities that describe the points that lie
outside the circle with centre (0, 0) and radius 2, and inside
the circle with centre (1, 3) that passes through the origin.

In Exercises 21-24, write an equation of the parabola having the
given focus and directrix.

21. Focus: (0, 4)
22, Focus: (0, —1/2)
23. Focus: (2,0)
24. Focus: (—1,0)

In Exercises 25-28, find the parabola’s focus and directrix, and
make a sketch showing the parabola, focus, and directrix.

25. y=1x?/2 26. y = —x?
27. x = —y*/4 28. x = y%/16

29. Figure P.34 shows the graph y = x? and four shifted versions
of it. Write equations for the shifted versions.
y

Directrix: y = —4
Directrix: y = 1/2
Directrix: x = —2

Directrix: x =1

Version (¢)

Version (d)

4. -2)

Version (a)

Figure P.34
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30. What equations result from shifting the line y = mx
(a) horizontally to make it pass through the point (a, b)
(b) vertically to make it pass through (a, b)?

In Exercises 31-34, the graph of y = +/x + | is to be scaled in
the indicated way. Give the equation of the graph that results
from the scaling.

31. horizontal distances multiplied by 3

32. vertical distances divided by 4

33. horizontal distances multiplied by 2/3

34. horizontal distances divided by 4 and vertical distances
multiplied by 2

In Exercises 35-38, write an equation for the graph obtained by

shifting the graph of the given equation as indicated.

35, y=1-x2 down 1, left |
36. 2 +y2=5 up 2, left 4
37. y=(x - 1)> =1 down 1, right |
38, y=x down 2, left 4

Find the points of intersection of the pairs of curves in Exercises
39-42.

39, y=x2+3, y=3x+1

40, y=x>-6, y=4x—x°

41. x2+y2 =125, 3x+4y=0

42, 2x2 +2y? =5 xy=1

In Exercises 43-50, identify and sketch the curve represented by
the given equation.

2

43. % Fyi=1 44. 9x? + 16y = 144

x=3?% (+2?* , D
45, 5 2 =1 46, (x — 1) + 7 =4
x2
47.T—y2=] 48, x? —y* =1
49, xy = -4 50. x—D(y+2) =1

51. What is the effect on the graph of an equation in x and y of
(a) replacing x with —x?
(b) replacing y with —y?

52. What is the effect on the graph of an equation in x and y of
replacing x with —x and y with —y simultaneously?

53. Sketch the graph of |x| + |y| = 1.

Functions and Their Graphs

The area of a circle depends on its radius. The temperature at which water boils depends

on the altitude above sea level. The interest paid on a cash investment depends on the
length of time for which the investment is made.

Whenever one quantity depends on another quantity, we say that the former quan-
tity is a function of the latter. For instance, the area A of a circle depends on the radius
r according to the formula

A=nr?
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DEFINITION

Figure P.35 A function machine

1

so we say that the area is a function of the radius. The formula is a rule that tells us
how to calculate a unique (single) output value of the area A for each possible input
value of the radius r.

The set of all possible input values for the radius is called the domain of the
function. The set of all output values of the area is the range of the function. Since
circles cannot have negative radii or areas, the domain and range of the circular area
function are both the interval [0, co) consisting of all nonnegative real numbers.

The domain and range of a mathematical function can be any sets of objects;
they do not have to consist of numbers. Throughout much of this book, however, the
domains and ranges of functions we consider will be sets of real numbers.

In calculus we often want to refer to a generic function without having any partic-
ular formula in mind. To denote that y is a function of x we write

y = fx),

which we read as “y equals f of x.” In this notation, due to eighteenth-century
mathematician Leonhard Euler, the function is represented by the symbol f. Also,
x, called the independent variable, represents an input value from the domain of f,
and y, the dependent variable, represents the corresponding output value f(x) in the
range of f.

A function f on a set D into a set S is arule that assigns a unique element f(x)
in S to each element x in D.

In this definition D = D(f) (read “D of f”) is the domain of the function f. The
range R(f) of f is the subset of S consisting of all values f (x) of the function. Think
of a function f as a kind of machine (Figure P.35) that produces an output value f(x)
in its range whenever we feed it an input value x from its domain.

There are several ways to represent a function symbolically. The squaring function
that converts any input real number x into its square x? can be denoted:

(a) by a formula such as y = x2, which uses a dependent variable y to denote the
value of the function;

(b) by a formula such as f(x) = x2, which defines a function symbol f to name the
function; or

(c) by a mapping rule such as x —> x2. (Read this as “x goes to x2.”)

In this book we will usually use either (a) or (b) to define functions. Strictly speaking, we
should call a function f and not f (x), since the latter denotes the value of the function
at the point x. However, as is common usage, we will often refer to the function as
f(x) in order to name the variable on which f depends. Sometimes it is convenient
to use the same letter to denote both a dependent variable and a function symbol; the
circular area function can be written A = f(r) = mrloras A = A(r) = nr?. In
the latter case we are using A to denote both the dependent variable and the name of
the function.

EXAMPLE 1 The volume of a ball of radius r is given by the function

V) = iJrr3
3
for r > 0. Thus the volume of a ball of radius 3 ft is
V(3) = gn(3)3 = 367 ft°.

Note how the variable r is replaced by the special value 3 in the formula defining the
function to obtain the value of the function at r = 3.
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EXAMPLE 2 A function F is defined for all real numbers ¢ by

F(t) =2t +3.

Find the output values of F that correspond to the input values 0, 2, x 4 2, and F(2).

Solution 1n each case we substitute the given input for ¢ in the definition of F:

F(0)=2(00+3=0+3=3

F(2)=22)+3=443=7
Fx+2)=2x+2)+3=2x+7
F(F2)=F(T)=2(M+3=17.

The Domain Convention

A function is not properly defined until its domain is specified. For instance, the
function f(x) = x2 defined for all real numbers x > 0 is different from the function
g(x) = x? defined for all real x because they have different domains, even though
they have the same values at every point where both are defined. In Chapters [-9 we
will be dealing with real functions (functions whose input and output values are real
numbers). When the domain of such a function is not specified explicitly, we will
assume that the domain is the largest set of real numbers to which the function assigns
real values. Thus, if we talk about the function x? without specifying a domain, we
mean the function g(x) above.

The domain convention

When a function f is defined without specifying its domain, we assume that
the domain consists of all real numbers x for which the value f(x) of the
function is a real number.

In practice, it is often easy to determine the domain of a function f(x) given by an
explicit formula. We just have to exclude those values of x that would result in dividing
by 0 or taking even roots of negative numbers.

EXAMPLE 3 The square root function. The domain of f(x) = ,/x is the
interval [0, c0), since negative numbers do not have real square
roots. We have f(0) =0, f(4) = 2, f(10) = 3.16228. Note that, although there are
two numbers whose square is 4, namely, —2 and 2, only one of these numbers, 2, is the
square root of 4. (Remember that a function assigns a unique value to each element in
its domain; it cannot assign two different values to the same input.) The square root
function /x always denotes the nonnegative square root of x. The two solutions of
the equation x2 = 4are x = +/4=2and x = —/4 = -2,

®
EXAMPLE 4 The domain of the function A(x) = xzx_ ) consists of all real
numbers except x = —2 and x = 2. Expressed in terms of

intervals,
D(f) = (—0c0,=2) U (-2,2) U (2, 00).

Most of the functions we encounter will have domains that are either intervals or unions
of intervals.
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Table 1.
x y=fx)
-2 4
-1 1
0 0
1 1
2 4
Figure P.36

(a) Correct graph of f(x) = x?
(b) Incorrect graph of f(x) = x2

The domain of S(t) = /1 — #2 consists of all real numbers ¢ for
EXAMPLE 5 ; ) . )
which 1 —#° = 0. Thus we require that r- < 1, or =1 <r < 1.
The domain is the closed interval [—1, 1].

®
Graphs of Functions

An old maxim states that “a picture is worth a thousand words.” This is certainly true
in mathematics; the behaviour of a function is best described by drawing its graph.

The graph of a function f is just the graph of the equation y = f(x). It consists
of those points in the Cartesian plane whose coordinates (x, y) are pairs of input—output
values for f. Thus (x, y) lies on the graph of f provided x is in the domain of f and
y = fx).

Drawing the graph of a function f sometimes involves making a table of coordinate
pairs (x, f(x)) for various values of x in the domain of f, then plotting these points
and connecting them with a “smooth curve.”

EXAMPLE 6 Graph the function f(x) = x2.

Solution Make a table of (x, y) pairs that satisfy y = x2. (See Table 1.) Now plot
the points and join them with a smooth curve. (See Figure P.36(a).)

(~2.4) 2. 4) (=2.4) 2.4

(=11 (I 1 (=1LD (a,n

(a) (b)

How do we know the graph is smooth and doesn’t do weird things between the
points we have calculated, for example, as shown in Figure P.36(b)? We could, of
course, plot more points, spaced more closely together, but how do we know how the
graph behaves between the points we have plotted? In Chapter 4, calculus will provide
useful tools for answering these questions.

Some functions occur often enough in applications that you should be familiar
with their graphs. Some of these are shown in Figures P.37-P.46. Study them for a
while; they are worth remembering. Note, in particular, the graph of the absolute
value function, f(x) = |x]|, shown in Figure P.46. It is made up of the two half-lines
y=—xforx <0andy =x forx > 0.

If you know the effects of vertical and horizontal shifts on the equations repre-

senting graphs (see Section P.3), you can easily sketch some graphs that are shifted
versions of the ones in Figures P.37-P.46.

EXAMPLE 7 Sketchthe graphof y = 1 +v/x — 4.

Solution This is just the graph of y = /x in Figure P40 shifted to the right 4 units
(because x is replaced by x — 4) and up 1 unit. See Figure P47.
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Fo) =|x| shifted right 4 units and up 1 unit Figure P.48  The graph of x

y y y
y=x
C y=c
Ln
X X
(-LD
x
Figure P.37 The graph of a Figure P.38 The graph of Figure P.39 The graph of
constant function f(x) = ¢ fx)=x flx) = x?
y Y4 y
(D
{1, n
Y= ﬁ y= x3 y= x!
X X
(D
x =1, -=1 -1, -1
Figure P.40 The graph of Figure P.41 The graph of Figure P.42 The graph of
oy =x foy=x° foo) =x!9
y y y
1 y=yI-x2
x
(=1.-Dh (-1, 1) ¢ ¢
-1 { x
x
Figure P.43 The graph of Figure P.44 The graph of Figure P.45 The graph of
fx)y=1/x fx)=1/x? fx)=+1—x2
y
ys 2—x
y=—x y=x Y . Y=
P \2
- 11 D S~—— X
=1LD ( ) y=14++vx—4 e ——— “f
' /{ 2\ i
1 ix =1
> :
Figure P.46 The graph of Figure P.47 The graphof y = /x 2—x

|
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y
$
y=+v1—x2
T‘_] T] X
\ ,’
I y=-y1-x2

Figure P49  The circle x2 + y? = 1 is not

the graph of a function

DEFINITION

2

2—x

x—1

EXAMPLE 8 Sketch the graph of the function f(x) =

Solution 1t is not immediately obvious that this graph is a shifted version of a known
graph. To see that it is, we can divide x — 1 into 2 — x to get a quotient of —1 and a
remainder of 1:

2—x —x+14+41 —-x-D+1 |

= = =—-l+—-.

x—1 x—1 x—1 x—1
Thus, the graph is that of 1/x from Figure P.43 shifted to the right 1 unit and down 1
unit. See Figure P48.

@
Not every curve you can draw is the graph of a function. A function f can have
only one value f (x) for each x in its domain, so no vertical line can intersect the graph
of a function at more than one point. If @ is in the domain of function f, then the
vertical line x = a will intersect the graph of f at the single point (a, f(a)). The circle
x2 4+ y? = 1 in Figure P49 cannot be the graph of a function since some vertical lines
intersect it twice. It is, however, the union of the graphs of two functions, namely,

y=v1-x? and y=—v1—-x2

which are, respectively, the upper and lower halves (semicircles) of the given circle.

Even and 0dd Functions; Symmetry and Reflections

It often happens that the graph of a function will have certain kinds of symmetry. The
simplest kinds of symmetry relate the values of a function at x and —x.

Even and odd functions

Suppose that —x belongs to the domain of f whenever x does. We say that f is
an even function if
f=x)= f(x)

for every x in the domain of f.

We say that f is an odd function if

f(=x)=—f(x) for every x in the domain of f.
The names even and odd come from the fact that even powers such as x0 =1, x2 x4,
..,x~2,x7% .. .areeven functions, and odd powerssuchas x' = x,x>,... x~! x73,
...are odd functions. Observe, for example, that (—x)* = x* and (—x)73 = —x 3.

Since (—x)? = x2, any function that depends only on x2

absolute value function y = |x| = vx2 is even.

is even. For instance, the

The graph of an even function is symmetric about the y-axis. A horizontal straight
line drawn from a point on the graph to the y-axis will, if continued an equal distance on
the other side of the y-axis, come to another point on the graph. (See Figure P.50(a).)

The graph of an odd function is symmetric about the origin. A straight line drawn
from a point on the graph to the origin will, if continued an equal distance on the other
side of the origin, come to another point on the graph. If an odd function f is defined
at x = 0, then its value must be zero there: f(0) = 0. (See Figure P.50(b).)

If f(x) is even (or odd), then so is any constant multiple of f(x) such as 2 f(x)
or —5 f(x). Sums (and differences) of even functions are even; sums (and differences)
of odd functions are odd. For example, f(x) = 3x* — 5x% — 1 is even, since it is the
sum of three even functions: 3x4, —5x2, and —1 = —x0. Similarly, 453 — (2/x) is an
odd function. The function g(x) = x2 — 2x is the sum of an even function and an odd
function and is itself neither even nor odd.



Figure P.50

(a) The graph of an even function is
symmetric about the y-axis

(b) The graph of an odd function is
symmetric about the origin

Figure P.51

(a) The graph of g(x) = x2 — 2x is
symmelric about x = 1

(b) The graph of y = h(x) = x3+1is
symmetric about (0, 1)
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Y y=f(x) Y

eyl
o
R

T o

(a) (b)

Other kinds of symmetry are also possible. For example, the function
glx) = x% — 2x can be written in the form gx) = (x — )2 — 1. This shows
that the values of g(1 & u) are equal, so the graph (Figure P.51(a)) is symmetric about
the vertical line x = 1; it is the parabola y = x? shifted 1 unit to the right and 1
unit down. Similarly, the graph of 4(x) = x> + 1 is symmetric about the point (0, 1)
(Figure P.51(b)).

y

(a) (b)
Reflections in Straight Lines

The image of an object reflected in a plane mirror appears to be as far behind the mirror
as the object is in front of it. Thus, the mirror bisects at right angles the line from a
point in the object to the corresponding point in the image. Given a line L and a point
P not on L, we call a point Q the reflection, or the mirror image, of P in L if L is
the right bisector of the line segment P Q. The reflection of any graph G in L is the
graph consisting of the reflections of all the points of G.

Certain reflections of graphs are easily described in terms of the equations of the
graphs:

Reflections in special lines

1. Substituting —x in place of x in an equation in x and y corresponds to
reflecting the graph of the equation in the y-axis.

2. Substituting —y in place of y in an equation in x and y corresponds to
reflecting the graph of the equation in the x-axis.

3. Substituting a — x in place of x in an equation in x and y corresponds to
reflecting the graph of the equation in the line x = a/2.

4. Substituting b — y in place of y in an equation in x and y corresponds to
reflecting the graph of the equation in the line y = b/2.

5. Interchanging x and y in an equation in x and y corresponds to reflecting
the graph of the equation in the line y = x.

EXAMPLE 9 Describe and sketch the graphof y = /2 —x — 3.

Solution The graph of y = /2 —x is the reflection of the graph of y = /x
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(Figure P.40) in the vertical line x = 1. The graph of y = /2 — x — 3 is the result of
lowering this reflection by 3 units. See Figure P.52(a).

Figure P.52
(a) Constructing the graph of
y=+2-x-3

(b) Transforming y = |x| to produce the
coloured graph

EXAMPLE 10 Express the equation of the colgured graph in Figure P.52(b) in
terms of the absolute value function |x]|.

Solution 'We can get the coloured graph by first reflecting the graph of | x| (Figure P.46)
in the x-axis and then shifting the reflection left 3 units and up 2 units. The reflection
of y = |x| in the x-axis has equation —y = |x|, or y = —|x|. Shifting this left 3 units
gives y = —|x + 3|. Finally, shifting up 2 units gives y = 2 — |x + 3|, which is the
desired equation.

®
Defining and Graphing Functions with Maple

Many of the calculations and graphs encountered in studying calculus can be produced
using a computer algebra system such as Maple or Mathematica. Here and there,
throughoutthis book, we will include examples illustrating how to get Maple to perform
such tasks. (The examples were done with Maple 10, but most of them will work with
earlier or later versions of Maple as well.)

We begin with an example showing how to define a function in Maple and then
plot its graph. We show in colour the input you type into Maple and in black Maple’s
response. Let us define the function f(x) = - 2x—12x 4+ 1.

> f := x -> x"3-2*x"2-12*x+1; <enters>

fr=x— x3—2x2—12x + 1

Note the use of : = to indicate the symbol to the left is being defined and the use of - >
to indicate the rule for the construction of f(x) from x. Also note that Maple uses the
asterisk * to indicate multiplication and the caret * to indicate an exponent. A Maple
instruction should end with a semicolon ; (or a colon : if no output is desired) before
the Enter key is pressed. Hereafter we will not show the <enters> in our input.

We can now use f as an ordinary function:
> f£(t)+£(1);

B —22 — 12t = 11

The following command results in a plot of the graph of f on the interval [—4, 5] shaon
in Figure P.53.

> plot(f(x), x=-4..5);

We could have specified the expression x"3-2*x"2-12*x+1 directly in the plot
command instead of first defining the function f(x). Note the use of two dots . . to
separate the left and right endpoints of the plot interval. Other options can be included
in the plot command; all such options are separated with commas. You can specify the



Figure P.53 A Maple plot

A
Nymerieal
Monster
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range of values of y in addition to that for x (which is required), and you can specify
scaling=CONSTRAINEDIif you want equal unit distances on both axes. (This would
be a bad idea for the graph of our f(x). Why?)

101

-10
—-201
-30 1

-40

When using a graphing calculator or computer graphing software things can go
horribly wrong in some circumstances. The following example illustrates the catas-
trophic effects that round-off error can have

Consider the function g(x) =

EXAMPLE 11 Htxl-1
X

If x > —1, then |1 + x| = 1 4+ x, so the formula for g(x) simplifies to g(x) =
1 —1
a+n-1 =1 1, at least provided x # 0. Thus the graph of g on an interval

X X
lying to the right of x = —1 should be the horizontal line y = 1, possibly with a hole
in it at x = 0. The Maple commands

> g := X -> (abs(1l+x)-1)/x: plot(g(x), x=-0.5..0.5);

lead, as expected, to the graph in Figure P.54. But plotting the same function on a very
tiny interval near x = 0 leads to quite a different graph. The command

> plot([g(x),1],x=-7*10"(-16)..5*10"(-16),
style=[point, linel] , numpoints=4000) ;
produces the graph in Figure P.55.

04 -02 0

Figure P.54 The graph of
y = g(x) on the interval
[-0.5,0.5]

<i§ 0.4

—6e-16 —de-16 —2e-16 0 2ei1§ 4e-16

Figure P.55 The graphs of y = g(x) (colour) and y = 1 (black) on the
interval [-7 x 107165 x 107'6]

The coloured arcs and short line through the origin are the graph of y = g(x) plotted as
4,000 individual points over the interval from —7 x 10~'® to 5 x 10~'®, For comparison
sake, the black horizontal line y = 1 is also plotted. What makes the graph of g so
strange on this interval is the fact that Maple can only represent finitely many real
numbers in its finite memory. If the number x is too close to zero, Maple cannot tell
the difference between 1 + x and 1, so it calculates | — 1 = O for the numerator,



32 PRELIMINARIES

and uses g(x) = O in the plot. This seems to happen between about —0.5 x 107!°
and 0.8 x 107! (the coloured horizontal line). As we move further away from the
origin, Maple can tell the difference between 1 4+ x and 1, but loses most of the
significant figures in the representation of x when it adds 1, and these remain lost when
it subtracts 1 again. Thus the numerator remains constant over short intervals while the
denominator increases as x moves away from 0. In those intervals the fraction behaves
like constant /x so the arcs are hyperbolas, sloping downward away from the origin.
The effect diminishes the farther x moves away from 0, as more of its significant figures
are retained by Maple. It should be noted that the reason we used the absolute value
of 1 + x instead of just 1 + x is that this forced Maple to add the x to the 1 before
subtracting the second 1. (If we had used (1 + x) — 1 as the numerator for g(x), Maple
would have simplified it algebraically and obtained g(x) = 1 before using any values
of x for plotting.)

®

In later chapters we will encounter more such strange behaviour (which we call
numerical monsters) in the context of calculator and computer calculations with
floating point (i.e. real) numbers. They are a necessary consequence of the limitations
of such hardware and software, and are not restricted to Maple, though they may
show up somewhat differently with other software. It is necessary to be aware of how
calculators and computers do arithmetic in order to be able to use them effectively
without falling into errors that you do not recognize as such.

One final comment about Figure P.55: the graph of y = g(x) was plotted as
individual points, rather than a line as was y = 1, in order to make the jumps between
consecutive arcs more obvious. Had we omitted the style= [point, line) option
in the plot command, the default line style would have been used for both graphs and
the arcs in the graph of g would have been connected with vertical line segments. Note
how the command called for the plotting of two different functions by listing them
within square brackets, and how the corresponding styles were correspondingly listed.

In Exercises 1-6, find the domain and range of each function.
2. fr)=1-4/x
4. Fx)=1/(x — 1)

1. f(x)=1+x?
3. G(x) =+8—-2x
t
5. h(t) = ——
) R

7. Which of the graphs in Figure P.56 are graphs of functions

y = f(x)? Why?

y

graph (a)

<

6. g(x) =

y

graph (c)

N\

graph (d)

Y4 y
graph (a) graph (b)
1
1-vx -2 X \ X
graph (b) Y1 y
graph (¢) graph (d)
x \ x \ x

Figure P.57
8. Figure P.57 shows the graphs of the functions: (i) x — x*,
(i) x3 —x* (i) x(1 —x)2, (iv) x% — x3. Which graph

O corresponds to which function?
In Exercises 9-10, sketch the graph of the function f by first

making a table of values of f(x)atx =0, x =+1/2,x = %I,
x x ==43/2,and x = £2.

X

Figure P.56

9. f(x)=x" 10. f(x) = x?/3
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In Exercises 11-22, what (if any) symmetry does the graph of f 41. f(x+2) 42. f(x—1)
possess? In particular, is f even or odd? 8. — () 44. f(~x)
. — X . -X
11. =x2+1 12. =x*
Jey =2t fo) = 45. f(4-x) 46. 1 f(1-x)
y
13. = . =
f) = — M 1) = —
15. f(x) 16. f()= — PN
. = . X)) = ——
x—2 x+4 y=fx)
17. f(x) = x* — 6x 18. f(x)=x>-2
A d X
19. f(x) = X3 20. f(x)=|x+1] 2
21. f(x) =+2x 22, f(x)=+v(x —1)2
Sketch the graphs of the functions in Exercises 23-38. Figure P.58
2
23. fx)=—x 24. f)=1-x° It is often quite difficult to determine the range of a function
25. f(x)=(x = 1)2 26. f(x)=(x — 12 +1 exactly. In Exercises 4748, use a graphing utilit.y (galculator or
s computer) to graph the function f, and by zooming in on the
27. f)y=1-x 28. f(x)=(x+2)° graph determine the range of f with accuracy of 2 decimal places.
29, fox)= x4+ 1 30. f(r) =Vx+1 247, foo=— T2 48 fo= Tt
31, f(x) = —|x| 32, f(x) = |x| —1 ' X2+ 20 +3 . X2 4 x
In Exercises 49-52, use a graphing utility to plot the graph of the
33. f(x) =|x =2 4. fx)=1+|x—-2] given function. Examine the graph (zooming in or out as
2 necessary) for symmetries. About what lines and/or points are the
35. f(x) = Y12 36. f(x) = 3% graphs symmetric? Try to verify your conclusions algebraically.
7. fo X 3. f X 8249, f)=x*—6xP +9x2 -1
)= — . fx) = _ 2
. x4l o I—x 3 50. f(,c)=32;+"2
In Exercises 39-46, f refers to the function with domain [0, 2] 2—-2x+x
and range [0, 1], whose graph is shown in Figure P.58. Sketch the Y —1 252 4 3x
graphs of the indicated functions and specify their domains and =51 f(x) = — a2 52. f(x)= ArarTs
ranges. 53. What function f(x), defined on the real line R, is both even
39. fx)+2 40. f(x) -1 and odd?

Combining Functions to Make New Functions

DEFINITION

3

Functions can be combined in a variety of ways to produce new functions.

We begin by examining algebraic means of combining functions, that is, addition,
subtraction, multiplication, and division..

Sums, Differences, Products, Quotients, and Multiples

Like numbers, functions can be added, subtracted, multiplied, and divided (except
where the denominator is zero) to produce new functions.

If f and g are functions, then for every x that belongs to the domains of both f
and g we define functions f + g, f — g, fg, and f/g by the formulas:

(f+o)(x)=f(x)+gkx)
(f—g)x)= f(x) —gx)
(fg)(x) = f(x)g(x)

(i) =2 Ghere g(x) £0.
8 g(x)
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Figure P.59
@ (f+8)x) = fx)+gx)
(b) g(x) = (0.5) f (x)

A special case of the rule for multiplying functions shows how functions can be
multiplied by constants. If ¢ is a real number, then the function ¢f is defined for all x
in the domain of f by

(cf)(x) =c fx).

EXAMPLE 1 Figure P.59(a) shows the graphs of f(x) = x?, g(x) =x — 1,

and their sum (f + g)(x) = x% 4+ x — 1. Observe that the height

of the graph of f + g at any point x is the sum of the heights of the graphs of f and g
at that point.

o
y
y=fx)

x x X
y =05f(x)
y=(f+28)x)

(@) (b)

EXAMPLE 2 Figure P.59(b) shows the graphs of f(x) = 2 — x? and the multiple
g(x) = (0.5)f (x). Note how the height of the graph of g at any
point x is half the height of the graph of f there.

EXAMPLE 3 The functions f and g are defined by the formulas

fx)=4x and g(x) =1 —x.

Find formulas for the valuesof 3f, f + g, f — g, fg, f/g, and g/f at x, and specify
the domains of each of these functions.

Solution The information is collected in Table 2;

Table 2. Combinations of f and g and their domains

Function Formula Domain
f fx)=Vx [0, 00)
8 glx)=+1-x (=00, 1]
3f GBfHx) =3/x [0, o0)

fteg (f+o)=f+gx)=/x+/1—-x [0, 11
f—8 (f—8)x)=f(x)—gx)=/x—/1T—x [0, 1

fg (f)(x) = fx)g(x) = V/x(1 —x) [0, 1]
foo_f& [ x

/g E(x) = —V1—x [0.1)
1-—

¢/f B =80 _ j1-x 0. 1]

f fx) Vo ox

Note that most of the combinations of f and g have domains

[0,00) N (=00, 1]=]0, 11,
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Figure P.60  f o g(x) = f(g(x))

4
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the intersection of the domains of f and g. However, the domains of the two quotients
f/g and g/f had to be restricted further to remove points where the denominator was
zero.

Composite Functions

There is another method, called compeosition, by which two functions can be combined
to form a new function.

Composite functions
If f and g are two functions, the compeosite function f o g is defined by

foglx)= flgx)).

The domain of f o g consists of those numbers x in the domain of g for which
g(x) is in the domain of f. In particular, if the range of g is contained in the
domain of f, then the domain of f o g is just the domain of g.

As shown in Figure P.60, forming f o g is equivalent to arranging “function machines”
g and f in an “assembly line” so that the output of g becomes the input of f.

In calculating f o g(x) = f(g(x)) we first calculate g(x) and then calculate f of
the result. We call g the inner function and f the outer function of the composition.
We can, of course, also calculate the composition g o f(x) = g(f(x)), where f is
the inner function, the one that gets calculated first, and g is the outer function, which
gets calculated last. The functions f o g and g o f are usually quite different, as the
following example shows.

EXAMPLE 4 Given f(x) = 4/x and g(x) = x + 1, calculate the four composite
functions f o g{x), g o f(x), f o f(x), and g o g(x), and specify

the domain of each.

Solution Again, we collect the results in a table

Table 3. Composites of f and g and their domains

Function Formula Domain
S f&x)=x [0, 00)

8 gxy=x+1 R
fog fog)=f(gx) = fx+ 1) =~x+1 [—1, c0)
gof go f(x)=g(f(x) =g(Vx)=J/x+1 [0, o0)

fof fof(x)=ff(x) = f(Jx)=/x=x'* [0, c0)
gog gog)=ggxN=gx+DH=x+H+1=x+2 R

To see why, for example, the domain of f o g is [—1, 00), observe that g(x) = x + 1
is defined for all real x but belongs to the domain of f only if x + 1 > 0, that is, if
x> —1.

1
EXAMPLE 5 TfG() =

— , calculate G o G(x) and specify its domain.
x

Solution We calculate
I 1 —x
—x) T l4x _ l+x—t+4x

14

[ 1-+-x-+—1—x=
14+x

1
G<)G(x)=G(G(x))=G<l e
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Because the resulting function, x, is defined for all real x, we might be tempted to say
that the domain of G o G is R. This is wrong'! To belong to the domain of G o G, x
must satisfy two conditions:

(i) x must belong to the domain of G, and
(ii) G(x) must belong to the domain of G.

The domain of G consists of all real numbers except x = —1. If we exclude
x = —1 from the domain of G o G, condition (i) will be satisfied. Now ob-
serve that the equation G(x) = —1 has no solution x, since it is equivalent to
Il —x = —(1l +x)or 1 = —1. Therefore, all numbers G(x) belong to the do-
main of G, and condition (ii) is satisfied with no further restrictions on x. The domain
of G o Gis (—00, —1) U (—1, 00), that is, all real numbers except —1.

@
y . . . .
Piecewise Defined Functions
Sometimes it is necessary to define a function by using different formulas on different
y=H(x) . . - .
parts of its domain. One example is the absolute value function
y=1 .
1——— x| = [x ifx>0
y=0 x ifx < 0.
X
Here are some other examples. (Note how we use solid and hollow dots in their graphs
to indicate, respectively, which endpoints do or do not lie on various parts of the graph.
Figure P.61 The Heaviside function EXAMPLE 6 The Heaviside function. The Heaviside function (or unit step
function) (Figure P.61) is defined by
1 ifx>0
Hw={ I*Z2
x) 0 ifx <O
The function H (¢) can be used, for example, to model the voltage applied to an electric
circuit by a one volt battery if a switch in the circuit is closed at time ¢ = 0.
¢ °
y y=1 EXAMPLE 7 The signum function. The signum function (Figure P.62) is de-

fined as follows:

x x 1 if x >0,
y=—I sgn(x)=|—|=!_1 ifx <0,
—_— undefined if x = 0.
y =sgn(x)
The name signum is the Latin word meaning “sign.” The value of the sgn(x) tells
whether x is positive or negative. Since 0 is neither positive nor negative, sgn (0) is
Figure P.62 The signum function not defined. The signum function is an odd function.

EXAMPLE 8§  [he function

x+D? ifx <—1,
J(x)=13 —x if—-1 <x <1,
x—1 ifx>1,

is defined on the whole real line but has values given by three different formulas
depending on the position of x. Its graph is shown in Figure P.63(a).




Figure P.63 Piecewise defined functions

Figure P.64
(a) The greatest integer function [ x|
(b) The least integer function [x]
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= ST 2,2)

=L=D
(@) (b)

EXAMPLE 9 Find a formula for function g(x) graphed in Figure P.63(b).

Solution The graph consists of parts of three lines. For the part x < —1, the line has
slope —1 and x-intercept —2, so its equation is y = —(x + 2). The middle section is
the line y = x for —1 < x < 2. The right section is y = 2 for x > 2. Combining
these formulas, we write

—x+2) ifx <-1
gxy=1x f—-1<x<2
2 if x > 2.

Unlike the previous example, it does not matter here which of the two possible formulas
we use to define g(—1), since both give the same value. The same is true for g(2).

®
The following two functions could be defined by different formulas on every interval
between consecutive integers, but we will use an easier way to define them.

The greatest integer function. The function whose value at any
EXAMPLE 10 ) ) .
number x is the greatest integer less than or equal to x is called
the greatest integer function, or the integer floor function. It is denoted | x|, or, in
some books, [x] or [[x]]. The graph of y = |x] is given in Figure P.64(a). Observe
that

12.4] =2, 11.9] =1, 10] =0, [-1.2] = -2,
12] =2, 10.2] =0, [-0.3] = —1, [=2] =-2.
®
y y
y = |x] —o y=[x] o—s
—— o—e
—o o—e
| —o lo—>
1 X 1 X
— —e
—o —e
—o —e
—-- o—e
() (b)
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The least integer function. The function whose value at any num-
EXAMPLE 11 . ) )
ber x is the smallest integer greater than or equal to x is called the
least integer function, or the integer ceiling function. It is denoted [x]. Its graph
is given in Figure P.64(b). For positive values of x, this function might represent, for
example, the cost of parking x hours in a parking lot that charges $1 for each hour or
part of an hour.

In Exercises 1-2, find the domains of the functions f + g, f — g,

fg. f/g,and g/f, and give formulas for their values. In Exercises 19-24, f refers to the function with domain [0, 2]
1. f(x)=nx, g(x) = Vvx —1 and range [0, 1], whose graph is shown in Figure P.65. Sketch the
2. fo)y=+T—x gx) = JT+x graphs of the indicated functions, and specify their domains and
ranges.

Sketch the graphs of the functions in Exercises 3—-6 by combining
the graphs of simpler functions from which they are built up.

19. 2f(x) 20. —(1/2)f(x)
3. x-x? 4, 3 —x
5. x+ x| 6. x| +|x —2| 21. f@x) 22. f(x/3)
7. If f(x) = x + 5and g(x) = x? — 3, find the following: 23. 1
. 14+ f(—x/2) 24. 2f((x —1)/2)
@ [ o080 (b) g(f(0) e flx =D/
(¢) f(gl) (d) go flx)
) fof(=3) M g2y
(& fUfx) (h) gogx) (1, D
In Exercises 8-10, construct the following composite functions y = f(x)
and specify the domain of each.
@@ fofwx) () fogx) - x
© gofx) (d) goglx) 2
8. f(x)=2/x, gx) =x/(1—x)
9. =1/(1 — x), =vx—-1
S0 /( o 80 N Figure P.65
10. f(x) =+ 1/(x - 1), g(x) = sgn(x)
Find the missing entries in Table 4 (Exercises 11-16). In Exercises 25-26, sketch the graphs of the given functions.
Tahle 4. ] ifo0<x <l
25'f(")‘lz—x ifl<x<2
fx) gx) foglx) 7 ‘o
_ x if0<x <1
1L x? x+1 26.g(x)_|2_x ifl <x <2
g x+4 . 27. Find all real values of the constants A and B for which the
' v x| function F(x) = Ax + B satisfies:
14. x!/3 2x +3
15. (x + 1)/x X (a) Fo F(x) = F(x) forall x.
16. x—1 1/x% (b) Fo F(x) = x forall x.
- ) B o Greatest and least integer functions
iz 17. ;_ani:lifr::phmg utility to examine in order the graphs of the 28. For what values of x is (a) L] = 07 (b [x] = 0?
u
29. What real numbers x satisfy the equation | x| = [x]?
y=x, y=2+x, 30. True or false: [—x] = —[x ] for all real x?
y=2+v3+x. y=1/Q+~3+x). 31. Sketch the graph of y = x — [x].
Describe the effect on the graph of the change made in the 32. Sketch the graph of the function
function at each stage.
% 18. Repeat the previous exercise for the functions L] ifx>0
=11 ifx <0
y =2x, y=2x-1, y=1-2x, ’
1 1
y=+1-2x, =

= =1 . )
Y V1 =2x Y V1 —=2x Why is f (x) called the integer part of x?
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(a) Show that f is the sum of an even function and an odd

33. Assume that f is an even function, g is an odd function, and function:
both f and g are defined on the whole real line R. Is each of
the following functions even, odd, or neither? fx)y=Ex)+ O(x),

f+s8 fa fle. g/f. fi=ff & =g

fog, gof, fof gog

where E is an even function and O is an odd function.
Hint: Let E(x) = (f(x) + f(—x))/2. Show that
E(—x) = E(x), so that E is even. Then show that
O(x) = f(x) — E(x) is odd.

(b) Show that there is only one way to write f as the sum of
an even and an odd function. Hint: One way is given in

34. If £ is both an even and an odd function, show that f(x) =0 part (a). If also f(x) = E|(x) + O)(x), where E| is

at every point of its domain.

even and Og is odd, show that E — E|, = O, — O and

35. Let f be a function whose domain is symmetric about the then use Exercise 34 to show that £ = E| and O = 0.
origin, that is, —x belongs to the domain whenever x does.

Polynomials and Rational Functions

DEFINITION

D

Among the easiest functions to deal with in calculus are polynomials. These are sums
of terms each of which is a constant multiple of a nonnegative integer power of the
variable of the function:

A polynomial is a function P whose value at x is

l+~~+azx2+a|x+ao,

P(x) = apx" + ap—1x"~
where a,,, an—1, ..., a2, ay, and ag, called the coefficients of the polymonial, are
constants and, if n > 0, then a, # 0. The number r, the degree of the highest
power of x in the polynomial, is called the degree of the polynomial. (The degree
of the zero polynomial is not defined.)

For example,

3 is a polynomial of degree 0.
2—-x is a polynomial of degree 1.

2% —17x + 1 is a polynomial of degree 3.

Generally, we assume that the polynomials we deal with are real polynomials, that is,
their coefficients are real numbers rather than more general complex numbers; often the
coefficients will be integers or rational numbers. Polynomials play a role in the study of
functions somewhat analogous to the role played by integers in the study of numbers.
For instance, just as we always get an integer result if we add, subtract, or multiply
two integers, we always get a polynomial result if we add, subtract, or multiply two
polynomials. Adding or subtracting polynomials produces a polynomial whose degree
does not exceed the larger of the two degrees of the polynomials being combined.
Multiplying two polynomials of degrees m and n produces a product polynomial of
degree m + n. For instance, for the product

(x2+1)(x3—x—2)=x5—2x2—x—2,

the two factors have degrees 2 and 3, so the result has degree 5.
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Just as the quotient of two integers is often not an integer but is called a rational
number, the quotient of two polynomials is often not a polynomial, but is instead called
a rational function.

2x3 —3x24+3x+4

3 is a rational function.
xc+1

When we divide a positive integer a by a smaller positive integer b, we can obtain an
integer quotient g and an integer remainder r satisfying 0 < r < b and hence write the
fraction a/b (in a unique way) as the sum of the integer g and another fraction whose
numerator (the remainder r) is smaller than its denominator b. For instance,

% =24 %; the quotient is 2, the remainder is 1.

Similarly, if A,, and B, are polynomials having degrees m and n, respectively, and if
m > n, then we can express the rational function A,, /B, (in a unique way) as the sum
of a quotient polynomial Q,,—, of degree m — r and another rational function Ry /B,
where the numerator polynomial R, (the remainder in the division) is either zero or
has degree k < n:

Am(x) Omn () + Ry (x)

= . (The Division Algorithm)
B,(x) Bn(x)

We calculate the quotient and remainder polynomials by using “long division” or an
equivalent method.

2x3 —3x2 +3x +4

EXAMPLE 1  Write the division algorithm for T
x

Solution METHOD I. Use long division:

2x — 3

x2+l‘2x3—3x2 + 3x + 4

2x° + 2x
3%+ x 4 4
~3x? -3
x + 7

Thus,

2x3 —3x24+3x +4 x+7
=2x =3 4+ —.
x2+1 x2+1

The quotient is 2x — 3, and the remainder is x + 7.

METHOD I1I. Use short division; add appropriate lower-degree terms to the terms of
the numerator that have degrees not less than the degree of the denominator to enable
factoring out the denominator, and then subtract those terms off again.

2x3 ~3x2 +3x + 4
= 2034+ 2x~3x2—3+4+3x+4-2x+3
22+ 1D =362+ D+x+7,

from which it follows at once that

2x3 —~3x2 +3x +4 x+7
=2x—-34 —=——.
x2 41 x2 41
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Roots, Zeros, and Factors

A number r is called a root or zero of the polynomial P if P(r) = 0. For example,
P(x) = x3 — 4x has three roots: 0, 2, and —2; substituting any of these numbers
for x makes P(x) = 0. In this context the terms “root” and “zero” are often used
interchangeably. It is technically more correct to call a number r satisfying P(r) =0a
zero of the polynomial function P and a root of the equation P(x) = 0, and later in this
book we will follow this convention more closely. But for now, to avoid confusion with
the number zero, we will prefer to use “root” rather than “zero” even when referring to
the polynomial P rather than the equation P(x) = 0.

The Fundamental Theorem of Algebra (see Appendix II) states that every poly-
nomial of degree at least 1 has a root (although the root might be a complex num-
ber). For example, the linear (degree 1) polynomial ax + b has the root —b/a since
a(—b/a) + b = 0. A constant polynomial (one of degree zero) cannot have any roots
unless it is the zero polynomial, in which case every number is a root.

Real polynomials need not always have real roots; the polynomial x2 4 4 is never
zero for any real number x, but it is zero if x is either of the two complex numbers 2i and
—2i, where i is the so-called imaginary unit satisfying i = —1. (See Appendix I for
a discussion of complex numbers.) The numbers 2i and —2i are complex conjugates
of each other. Any complex roots of a real polynomial must occur in conjugate pairs.
(See Appendix II for a proof of this fact.)

In our study of calculus we will often find it useful to factor polynomials into
products of polynomials of lower degree, especially degree 1 or 2 (linear or quadratic
polynomials). The following theorem shows the connection between linear factors and
roots.

The Factor Theorem

The number r is a root of the polynomial P of degree not less than 1 if and only if
x — r is a factor of P(x).

PROOF By the division algorithm there exists a quotient polynomial Q having degree
one less than that of P and a remainder polynomial of degree O (i.e., a constant ¢) such
that

P(x)

X —=r

— O(x) + ——.
X —r

Thus P(x) = (x — r)Q(x) + ¢, and P(r) = 0 if and only if ¢ = 0, in which case
P(x) = (x —r)Q(x) and x — r is a factor of P(x).
|
It follows from Theorem 1 and the Fundamental Theorem of Algebra that every
polynomial of degree n > 1 has n roots. (If P has degree n > 2, then P has a zero
rand P(x) = (x — r)Q(x), where Q is a polynomial of degree n — 1 > 1, which in
turn has aroot, etc.) Of course, the roots of a polynomial need not all be different. The
4th degree polynomial P(x) = x* — 3x3 4 3x2 — x = x(x — 1)3 has four roots; one
1s 0 and the other three are each equal to 1. We say that the root 1 has multiplicity 3
because we can divide P(x) by (x — 1) and still get zero remainder.

If P is areal polynomial having a complex root 7| = u +iv, where u and v are real
and v # 0, then, as asserted above, the complex conjugate of r|, namely, r) = u — iv,
will also be a root of P. (Moreover, r; and ro will have the same multiplicity.) Thus,
both x —u —iv and x — u + iv are factors of P(x), and so, therefore, is their product

(x —u —iv)(x—u—{—iv)=(x—u)2+v2 =x2 — 2ux +u® + v,
which is a quadratic polynomial having no real roots. It follows that every real

polynomial can be factored into a product of real (possibly repeated) linear factors and
real (also possibly repeated) quadratic factors having no real zeros.
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EXAMPLE 2 What is the degree of P(x) = x3(x% + 2x + 5)2? What are the
roots of P and, what is the multiplicity of each root?

Solution 1f P is expanded, the highest power of x present in the expansion is
x3(x2)2 = x7, so P has degree 7. The factor x> = (x — 0)? indicates that 0 is a
root of P having multiplicity 3. The remaining four roots will be the two roots of
x2 4 2x + 5, each having multiplicity 2. Now

[x2 + 20 + 5" = [(x + D2 + 4]
=[x+1+20x+1-20]

Hence the seven roots of P are:

0,0 0 0 has multiplicity 3,
-1 -2, —1-2i —1 — 2{ has multiplicity 2,
142, —14+2i —1 + 2i has multiplicity 2.

Roots and Factors of Quadratic Polynomials

There is a well-known formula for finding the roots of a quadratic polynomial.

The Quadratic Formula

The two solutions of the quadratic equation
Ax 4+ Bx+C =0,

where A, B, and C are constants and A # 0, are given by

—B+ /B2 —-4AC
X = .
24

To see this, just divide the equation by A and complete the square for the terms in x:
B C
2
= Z =0

Fratta

, 2B B* B> C

X — = =

2A 4A? 442 A

L ®  B?-44AC
FToa) T e
B BT —4AC
Xt =k
24 24

The quantity D = B?—4AC that appears under the square root in the quadratic formula
is called the discriminant of the quadratic equation or polynomial. The nature of the
roots of the quadratic depends on the sign of this discriminant.

(a) If D > 0,then D = k2 for some real constant k, and the quadratic has two distinct
roots, (—B + k)/(2A) and (—B — k)/(2A).

(b) If D = 0, then the quadratic has only the root —B/(2A), and this root has
multiplicity 2. (It is called a double root.)

) If D <0,then D = —k? for some real constant k, and the quadratic has two
complex conjugate roots, (—B + ki)/(2A) and (—B — ki)/(2A).

EXAMPLE 3 Find the rooFs of thes'e quadratic polynomials and thereby factor
the polynomials into linear factors:

(@ x2+x—1 b)9x2 —6x + 1 ©)2x2+x+1.
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Solution  We use the quadratic formula to solve the corresponding quadratic equations
to find the roots of the three polynomials.

(@ A=1, B=1, C=-1
“1:/T+4 1 5

X = ——+ —

2 2 2
X4x—-1= x+l—§ x+1+£
- 2 2 2 2 )
b) A=9, B=-6, C=1
6+436-36 1
X=T =3 (double root)

2
1
9x2—6x+1=9( —5) = @Bx — 2

() A=2, B=1, C=1
_—1£J/1-8 1

X -
4 4

2 1
x4+ x+1=2 x+Z

+

i
Tl
—ﬁi)(x+l+£i)
4 4 4

Remark There exist formulas for calculating exact roots of cubic (degree 3) and
quartic (degree 4) polynomials, but, unlike the quadratic formula above, they are
very complicated and almost never used. Instead, calculus will provide us with very
powerful and easily used tools for approximating roots of polynomials (and solutions
of much more general equations) to any desired degree of accuracy.

Miscellaneous Factorings

Some quadratic and higher degree polynomials can be (at least partially) factored by
inspection. Some simple examples include:

(a) Common Factor: ax? + bx = x(ax + b).

(b) Difference of Squares: x2—a?=(x-a)x +a).

(c) Difference of Cubes: x> —a® = (x — a)(x2 + ax + a2).

(d) More generally, a difference of nth powers for any positive integer n:

T—d"=x - ax" P+ %"+ a" i +a N,

Note that x — a is a factor of x" — a” for any positive integer n.

(e) Itis also true that if # is an odd positive integer, then x + a is a factor of x" + a”.
For example,

P4+ =G +a)x? —ax+4?)
2 4+ad= (x + a)(x4 —ax3 +a*x? - ad’x + a4).

Finally, we mention a trial-and-error method of factoring quadratic polynomials some-
times called trinomial factoring. Since

x+px+q) =x>+(p+qx+ pg,
x—p)x—q)=x>—(p+q)x+pg, and
(x+p)x~q)=x*+(p~qg)x ~ pq,

we can sometimes spot the factors of x2 + Bx + C by looking for factors of |C| for
which the sum or difference is B. More generally, we can sometimes factor

Ax? 4+ Bx + C = (ax + b)(cx + d)
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by looking for factors a and ¢ of A and factors b and d of C for which ad + bc = B.
Of course, if this fails you can always resort to the quadratic formula to find the roots
and, therefore, the factors, of the quadratic polynomial.

EXAMPLE 4
=55 +6=(x-3x—-2) p=3,9q=2,pg=6,p+qg =5
x2+7x+6=(x+6)(x+1) p=6,q=1,pg=6,p+q=17

x2+ x—6=(x+3)x—-2) p=3,q=-2,pgq=-6,p+qg=1
2% +x—-10=Qx +5Mx—=2) a=2b=5c=1,d=-2
ac=2,bd = —-10,ad + bc = 1.

EXAMPLE 5 Find the roots of the following polynomials:

@ x3—x2—4x+4, Ox*+3x2-4, @©x°—x*—x%+x.
Solution (a) There is an obvious common factor:
oA+ A= - D= =(x = D —2)(x +2).

The roots are 1, 2, and 2.

(b) This is a trinomial in x 2 for which there is an easy factoring:
43— d= P+ HEE - D = (20 - 2)(x + Dx - 1),
The roots are 1, —1, 2i, and —2i.
(¢) We start with some obvious factorings:
x> —xt—x%4x =x(x4—x3—x + 1)y =x(x — 1)(x3 —1)

x(x = D22 +x+ ).

Thus 0 is a root, and 1 is a double root. The remaining two roots must come from
the quadratic factor x2 + x + 1, which cannot be factored easily by inspection so
we use the formula:

—-1+£/1-4 1 V3.
X == -— 1.

—— =
2 2 2
®
Find the roots of the polynomials in Exercises 1-12. If a root is 11. x> + x> +8x2 + 8 12, X% —4x” — x5 + ax*

repeated, give its multiplicity. Also, write each polynomial as a

) In Exercises 13-16, express the given rational function as the sum
product of linear factors.

of a polynomial and another rational function whose numerator is

1. 2+ 7x + 10 2. 2_3x—10 either zero or has smaller degree than the denominator.
3 xZ+2x+2 4, x2 —6x +13 -1 2
2 3 2 13. 3 14. —
5. 16x* —8x2 + 1 6. x* +6x° +9x xr -2 x245x+3
3 4
7. x" 41 8. x*—1 s 3 y Ayl

9, X0 _3x* 4342~ 1 10. x> — x* — 16x + 16 x2+2x+3 Sl x4
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17. Show that x — 1 is a factor of a polynomial P of positive complex root of a polynomial P having real coefficients,
degree if and only if the sum of the coefficients of P is zero. then its conjugate Z is also a root of P.

18. What condition should the coefficients of a polynomial E120. Continuing the previous exercise, show that if 7 = u + iv
satsify to ensure that x + 1 is a factor of that polynomial? (where u and v are real numbers) is a complex root of a

19. The complex conjugate of a complex number z = u + iv polynomial P with real coefficients, then P must have the

(where u and v are real numbers) is the complex number real quadratic factor x” — 2ux + u? + v%.
Z =u —iv. It is shown in Appendix I that the complex E121. Use the result of Exercise 20 to show that if z = u +iv
conjugate of a sum (or product) of complex numbers is the (where u and v are real numbers) is a complex root of a
sum (or product) of the complex conjugates of those polynomial P with real coefficients, then z and z are roots of
numbers. Use this fact to verify thatif z = u +ivisa P having the same multiplicity.

The Trigonometric Functions

hy
P opp

adj
Figure P.66 cost = adj/hyp

sint = opp/hyp

Figure P.67 If the length of arc AP, is ¢
units, then angle AO P, = r radians

Most people first encounter the quantities cos ¢ and sin¢ as ratios of sides in a right-
angled triangle having r as one of the acute angles. If the sides of the triangle are
labelled “hyp” for hypotenuse, “adj” for the side adjacent to angle ¢, and “opp” for the
side opposite angle ¢ (see Figure P.66), then

adj
29 and sinf = @.

COSt =
hyp hyp

(%)

These ratios depend only on the angle ¢, not on the particular triangle, since all right-
angled triangles having an acute angle ¢ are similar.

In calculus we need more general definitions of cos ¢ and sin ¢ as functions defined
for all real numbers t, not just acute angles. Such definitions are phrased in terms of a
circle rather than a triangle.

Let C be the circle with centre at the origin O and radius 1; its equation is
x2+ y2 = 1. Let A be the point (1,0) on C. For any real number ¢, let P; be the
point on C at distance |¢| from A, measured along C in the counterclockwise direction
if ¢ > 0, and the clockwise direction if # < 0. For example, since C has circumference
2m, the point Py /2 is one-quarter of the way counterclockwise around C from A; it is
the point (0, 1).

We will use the arc length ¢ as a measure of the size of the angle AOF;. See
Figure P.67.

y
Prr/2

P, = (cost, sint)

arc length ¢

t (radians) A=(1,0)

P—rr/2
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DEFINITION

Figure P.68 Arc lengths = rt
Sector area A = r’t/2

DEFINITION

/

The radian measure of angle A O P, is ¢ radians:

/. AOP; =t radians.

We are more used to measuring angles in degrees. Since Py is the point (—1, 0),
halfway (;r units of distance) around C from A, we have

7 radians = 180°.

To convert degrees to radians, multiply by 7/180; to convert radians to degrees,
multiply by 180/7.

Angle convention

In calculus it is assumed that all angles are measured in radians unless degrees
or other units are stated explicitly. When we talk about the angle /3, we
mean 77 /3 radians (which is 60°), not 7 /3 degrees.

Arc length and sector area. An arc of acircle of radius r subtends
EXAMPLE 1 . .
an angle ¢ at the centre of the circle. Find the length s of the arc
and the area A of the sector lying between the arc and the centre of the circle.

Solution The length s of the arc is the same fraction of the circumference 277 of the
circle that the angle ¢ is of a complete revolution 27 radians (or 360°). Thus,

t .
s = — (2mr) = rt units.
2

Similarly, the area A of the circular sector (Figure P.68) is the same fraction of the area
7r? of the whole circle:
2
t ret
A= — (nr?) = — units®.
2 ter?) 2

(We will show that the area of a circle of radius  is 7r2 in Section 1.1.)

@
Using the procedure described above, we can find the point P, corresponding to any
real number ¢, positive or negative. We define cos ¢ and sin¢? to be the coordinates of
P,. (See Figure P.69.)

Cosine and sine

For any real ¢, the cosine of ¢ (abbreviated cost) and the sine of ¢ (abbreviated
sint) are the x- and y-coordinates of the point P;.

cost = the x-coordinate of P,
sin? = the y-coordinate of P,

Because they are defined this way, cosine and sine are often called the circular func-
tions. Note that these definitions agree with the ones given earlier for an acute angle.
(See formulas (x) at the beginning of this section.) The triangle involved is P, O Q; in
Figure P.69.



Figure P.69 The coordinates of P, are
(cost, sint)

Figure P.70  Some special angles
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P, = (cost, sint)

Arc length ¢

isint
f (rad) | A=(1,0 X

cost Q

Po=A=(1,0
0 (1,0} x

P_r2=P3g2=(0,~1)

EXAMPLE 2 Examining the c‘oor(.imates of Py = A, .P,,/z, P, ang
P_z 2 = P35/ in Figure P.70, we obtain the following values:

3
cosO =1 cos% =0 cosm= —1 cos(—%) =cos§ =0
3
sin0 = 0 sinzz 1 sint = 0 sin(—z)zsin—z = —1
2 2 2

Some Useful Identities

Many important properties of cos¢ and sin ¢ follow from the fact that they are coordi-
nates of the point P, on the circle C with equation x? + y? = 1.

The range of cosine and sine. For every real number ¢,

—1<cost <1 and —1 <sint <1.

The Pythagorean identity. The coordinates x = cos¢ and y = sin¢ of P, must
satisfy the equation of the circle. Therefore, for every real number ¢,

cos?t + sin’t = 1.

(Note that cos? t means (cos £)2, not cos(cos ). This is an unfortunate notation, but it
is used everywhere in technical literature, so you have to get used to it!)

Periodicity. Since C has circumference 27, adding 27 to ¢ causes the point P; to
go one extra complete revolution around C and end up in the same place: P12, = FP;.
Thus, for every ¢,
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cos(t + 2m) = cost and sin(t + 2m) = sint.

This says that cosine and sine are periodic with period 2.

Cosine is an even function. Sine is an odd function. Since the circle x? +y2 = |
is symmetric about the x-axis, the points P_,; and P, have the same x-coordinates and
opposite y-coordinates (Figure P.71).

cos(—t) = cost and sin(—t) = —sint?.

Complementary angle identities. Two angles are complementary if their sum is
7 /2 (or 90°). The points P2y, and P; are reflections of each other in the line y = x
(Figure P.72), so the x-coordinate of one is the y-coordinate of the other and vice versa.
Thus,

Cs(ﬂ t)—sint and s'n(ﬂ t)—cost
0 > = i > = .

Supplementary angle identities. Two angles are supplementary if their sum is 7
(or 180°). Since the circle is symmetric about the y-axis, Py_; and P; have the same
y-coordinates and opposite x-coordinates. (See Figure P.73.) Thus,

cos(mr —t) = —cost and sin(ot —t) =sint.
y y y
) Pa—t
fD[ = (costsinn) Pr_y . "--A----—-A--'IPt
¢ . P v v
d E 1 L 1 : t E 1
—t X . X
@
P_, = (cos(—1), sin(—1))
Figure P.71  cos(—t) = cost Figure P.72  cos((m/2) — t) = sint Figure P.73  cos(wr —t) = —cost
sin(—t) = —sint sin((;r/2) — t) = cost sin(r —t) = sint
y Some Special Angles
\ Prya EXAMPLE 3 Find the sine and cosine of /4 (i.e., 45°).
y=x/""1 :
ARG Solution The point Py /4 lies in the first quadrant on the line x = y. To find its
4 E coordinates, substitute y = x into the equation x2 + y? =1 of the circle, obtaining
. x 2x2 = 1. Thus x = y = 1/+/2 (see Figure P.74), and
b 1 b 1
cos(45°) = cos — = —, sin(45°) = sin — = —.
4 N2 4 2

Figure P.74 — =C08S — =
g sin

Sl -

EXAMPLE 4 Find the values of sine and cosine of the angles 7r/3 (or 60°) and
/6 (or 30°).




y
3
Pn/3=(%,‘/7_)
VARV X
T2
3 A
| | X
2 2
Figure P.75 cosm/3=1/2
sin/3 = V/3/2
y
i !
V2 In/4
: /4 \
s X
V2
y
_L |
2
/3 *
_J3i
2 |

Figure P.76  Using suitably placed
triangles to find trigonometric functions of
special angles

Figure P.77 The graph of cos x
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Solution The point P,/3 and the points O(0, 0) and A(1,0) are the vertices of an
equilateral triangle with edge length 1 (see Figure P.75). Thus Py /3 has x-coordinate

1/2 and y-coordinate /1 — (1/2)2 = +/3/2, and

° b4 1 . ° B 1 \/g
c0s(60°) = cos 3 =7 sin(60°) = sin 3=

.. m m 7w S
Since §=3 "3 the complementary angle identities now tell us that

\/§ T T

i 3002'—_—._ — =
sin(30°) sm6 cos3

$(30°) T =sinZ :
cO =COS — =sSsIn — = —=.
3 2

Table 5 summarizes the values of cosine and sine at multiples of 30° and 45° between
0° and 180°. The values for 120°, 135°, and 150° were determined by using the
supplementary angle identities; for example,

cos(120°) = cos (?) = Ccos (n - %) = —Ccos (%) = —cos(60°) = —%.

Table 5. Cosines and sines of special angles
Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180°

T T T T 2n 3 Sm
Radi 0 — — —_ — - bt bl
actans 6 4 3 2 3 1 6
Cosine 1 ﬁ i l 0 — l _ L — £ —1
2 2 2 2 B 2
1
Sine 0 — L £ 1 £ i 1 0
2 V202 2 2 2

EXAMPLE 5 Find: (a) sin(37/4) and (b) cos(4m/3).

Solution We can draw appropriate triangles in the quadrants where the angles lie to
determine the required values. See Figure P.76.

(@) sin(37/4) = sin(mr — (m/4)) = 1/V2.
(b) cos(4rm/3) = cos(mw + (/3)) = _%,

@
While decimal approximations to the values of sine and cosine can be found using a
scientific calculator or mathematical tables, it is useful to remember the exact values in
the table for angles 0, /6, 7 /4, /3, and 7 /2. They occur frequently in applications.

When we treat sine and cosine as functions, we can call the variable they depend on
anything we want (e.g., x, as we do with other functions), rather than ¢. The graphs of
cos x and sinx are shown in Figures P.77 and P.78. In both graphs the pattern between
x = 0 and x = 2x repeats over and over to the left and right. Observe that the graph
of sinx is the graph of cos x shifted to the right a distance /2.

b
l
y = CoSx |
/-\ - /\n/z ] /‘\X
\:/_”/2 \/ i
~1
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Figure P.78 The graph of sin x

THEOREM

2

Figure P.79 Ry P] = S—IA

Remember this!

When using a scientific calculator to calculate any trigonometric functions,
be sure you have selected the proper angular mode: degrees or radians.

The Addition Formulas

The following formulas enable us to determine the cosine and sine of a sum or difference
of two angles in terms of the cosines and sines of those angles.

Addition Formulas for Cosine and Sine
cos(s +t) = cosscost — sins sint
sin(s + t) = sins cost + coss sint

cos(s —t) = cosscost -+ sinssint
sin(s — t) = sinscost — cos s sint

Py

PROOF We prove the third of these formulas as follows: Let s and ¢ be real numbers
and consider the points

Ps_y = (cos(s — t), sin(s — t))
A=1(1,0),

P, = (cost, sint)
P; = (cos s, sin s)
as shown in Figure P.79.
The angle P, O Py = s — t radians = angle A O P;_,, so the distance P P, is equal
to the distance P;_;A. Therefore, (P, P;)? = (P;_;A)%. We express these squared
distances in terms of coordinates and expand the resulting squares of binomials:
(coss — cos t)2 + (sins — sin t)2 = (cos(s — t) — l)2 + sinz(s - 1),

cosls —2cosscost + cos2t + sins — 2sins sin? + sin?¢

= cosz(s —t)y—2cos(s —t)+ 1+ sinz(s —1).
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Since cos? x + sin?x = 1 for every x, this reduces to
cos(s — t) = cosscost + sins sinz.

Replacing ¢ with —¢ in the formula above, and recalling that cos(—¢) = cos¢ and
sin(—t) = —sint, we have

cos(s +t) = cosscost — sins sinz.

The complementary angle formulas can be used to obtain either of the addition formulas
for sine:

sin(s + t) = cos (% —(s+ t))
~eo((5 )1
= cos (% —s)cost + sin (% —s) sin ¢
= sinscos? + cosssint,

and the other formula again follows if we replace ¢ with —¢.

l
EXAMPLE 6 Find the value of cos(;t/12) = cos 15°.
Solution
T T on T e o
cosﬁ=cos(§—z)=cos§cosz+sm§smz
() (%) +(2) (&) 1L
S \2/\2 2 J\V2) 22
@

From the addition formulas, we obtain as special cases certain useful formulas called
double-angle formulas. Put s = r in the addition formulas for sin(s +¢) and cos(s +¢)
to get

sin2¢t = 2sint cost and
cos2t = cos’t — sin’ ¢
=2cos’t—1 (using sin?f 4+ cos’t = 1)

=1—2sin’t

Solving the last two formulas for cos? ¢ and sin? ¢, we obtain

2 1+ cos2t . 1 —cos2t
cost = ——— and sin“t = ————,
2 2
which are sometimes called half-angle formulas because they are used to express
trigonometric functions of half of the angle 2¢. Later we will find these formulas useful
when we have to integrate powers of cos x and sin x.

Other Trigonometric Functions

There are four other trigonometric functions—tangent (tan), cotangent (cot), secant
(sec), and cosecant (csc)—each defined in terms of cosine and sine. Their graphs are
shown in Figures P.80-P.83.
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D E F | N | T | l] N Tangent, cotangent, secant, and cosecant
sint
tant = —— sect = ——
cost cost
cost 1 1
cotf = — = —— csct = —
sin ¢ tant¢ sin¢
1 y 1 | y \
1 [} 1 1
I 1 1 1
| 1 | 1
! ! I 1
1 1 | 1
1 1 | 1
! ! ! !
I 1 1 1
I ! | |
! ! 1 !
! ! 1 I
! 1= A 1 1t I
T oz ! _z I
ik : L2 \ ! 2 : !
— | s ! T bd 4 T \n \
! 4 ! 1 q I
I ! t |
1 ! 1 |
1 ! 1 |
1 1 i 1
1 [} 1 1
! ! I !
I 1 [y=tanx | I
! ! I I
! ! I !
! ! 1 !
! ! I t
! ! 1 !
! ! l t
Figure P.80 The graph of tan x Figure P.81 The graph of cot x
1 y 1 | y |
I 1 | 1
I i 1 !
! ! 1 !
1 ! | |
I i 1 1
I ! | \
| | 1 |
! 1 1 1
1 ! 1 1
! ! | I
I 1 1 1
1 I 1 1 1
[ | I \ - |
o L’ IR |on 2 ki
| | : * ! z ! X
' 1 : " ;2 X
[ r | - |
! ! I I
! ! 1 1
! ! I !
! ! I I
! | ! y=cscx !
1 I | 1
! ! 1 1
! ! 1 1
! ! I !
! ! 1 !
Figure P.82 The graph of sec x Figure P.83 The graph of cscx

Observe that each of these functions is undefined (and its graph approaches vertical
asymptotes) at points where the function in the denominator of its defining fraction
has value 0. Observe also that tangent, cotangent, and cosecant are odd functions and
secant is an even function. Since |sinx| < 1 and |cosx| < | forall x, [cscx| > 1 and
| sec x| > 1 for all x where they are defined.

The three functions sine, cosine, and tangent are called the primary trigonomet-
ric functions, while their reciprocals cosecant, secant, and cotangent are called the
secondary trigonometric functions. Scientific calculators usually just implement the
primary functions; you can use the reciprocal key to find values of the corresponding
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Figure P.84 The CAST rule
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secondary functions. Figure P.84 shows a useful pattern called the “CAST rule” to
help you remember where the primary functions are positive. All three are positive in
the first quadrant, marked A. Of the three, only sine is positive in the second quadrant
S, only tangent in the third quadrant T, and only cosine in the fourth quadrant C.

3
EXAMPLE 7 Find the sine and tangent of the angle 6 in I:JT, 771] for which we

h 6 =—-.
ave cos 3

Solution From the Pythagorean identity sin® 8 + cos? 6 = 1 we get

.2 . ’
0 = 1 - - = 9 3 *
sin > SO sin 0 :I': = :I':

The requirement that 8 should lie in [, 37 /2] makes 6 a third quadrant angle. Its sine
is therefore negative. We have

2 i —2+/2/3
sinf = ——2\/_ and tanf = sin 6 = 2/ =2V2.
3 cosf —1/3

@
Like their reciprocals cosine and sine, the functions secant and cosecant are periodic
with period 277. Tangent and cotangent, however, have period & because

sin(x + ) sinx cos T + cosx sinw —sinx .
= - - = =tanx.
cos(x + ) cosxcosm — sinx sinw — COS X

tan(x + ) =
Dividing the Pythagorean identity sin” x +cos? x = 1 by cos? x and sin? x, respectively,
leads to two useful alternative versions of that identity:

1 + tan? x = sec®x and 1+ cot? x = csc? x.

Addition formulas for tangent and cotangent can be obtained from those for sine and
cosine. For example,

sin{s + t) sins cost + cos s sint

tan(s + 1) = = - —.
cos(s + 1) COS S COSt — sins sint

Now divide the numerator and denominator of the fraction on the right by coss cos ¢
to get

tanGs + 1) tans + tan¢
an(s = —
] —tanstant

Replacing ¢t by —t leads to

tans — tant
] +tanstant’

tan(s — t) =
Maple Calculations

Maple knows all six trigonometric functions and can calculate their values and manip-
ulate them in other ways. It assumes the arguments of the trigonometric functions are
in radians.

> evalf(sin(30)); evalf(sin(Pi/6));
—.9880316241

.5000000000
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Note that the constant Pi (with an uppercase P) is known to Maple. The evalf ()
function converts its argument to a number expressed as a floating point decimal with
10 significant digits. (This precision can be changed by defining a new value for the
variable Digits.) Without it, the sine of 30 radians would have been left unexpanded
because it is not an integer.

> Digits := 20; evalf (100*Pi); sin(30);
Digits := 20

314.15926535897932385

sin(30)

It is often useful to expand trigonometric functions of multiple angles to powers
of sine and cosine, and vice versa.

> expand(sin(5*x));

16 sin(x) cos(x)* — 12 sin(x) cos(x)? + sin(x)
> combine((cos(x))”"5, trig);

1 5 5
T6 cos(Sx) + T6 cos(3x) + 3 cos(x)

Other trigonometric functions can be converted to expressions involving sine and
cosine.
> convert (tan({4*x)* (sec(4*x))”2, sincos); combine(%,trig)
sin(4x)
cos(4x)3

sin(4x)
cos(12x) + 3 cos(4x)

The % in the last command refers to the result of the previous calculation.

Trigonometry Review

The trigonometric functions are so called because they are often used to express the
hyp opp relationships between the sides and angles of a triangle. As we observed at the
beginning of this section, if 8 is one of the acute angles in a right-angled triangle, we
f can refer to the three sides of the triangle as adj (side adjacent 8), opp (side opposite
ad) 8), and hyp (hypotenuse). (SeeFigure P.85.) The trigonometric functions of 8 can then
Figure P.85 be expressed as ratios of these sides, in particular:

sin0=0—, cos@:a—, tan9=0—.
hyp hyp adj

EXAMPLE 8 Find the unknown sides x and y of the triangle in Figure P.86.

Solution Here, x is the side opposite and y is the side adjacent the 30° angle. The
hypotenuse of the triangle is 5 units. Thus,

V3

1
% =sin 30° = 3 and % = c0s 30° = -

5 . 53 .
$0 x = — units and y = —— units.
Figure P.86 2 2
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EXAMPLE 9 Eor the triangle in Figure P.87, express sides x and y in terms of
side a and angle 6.

Solution The side x is opposite the angle 6, and y is the hypotenuse. The side
adjacent @ is a. Thus,

a
= cos6.

X
Figure P.87 — =tanf and -
a y

a
Hence,x =a tanfand y = —— = a secf.
cos 6

o
When dealing with general (not necessarily right-angled) triangles, it is often convenient
to label the vertices with capital letters, which also denote the angles at those vertices,
and refer to the sides opposite those vertices by the corresponding lowercase letters.
See Figure P.88. Relationships between the sides a, b, and ¢ and opposite angles A,
B, and C of an arbitrary triangle ABC are given by the following formulas, called the
Sine Law and the Cosine Law.

THEUREM Sine Law: smA:sn;stmC
a c

A
b Cosine Law: a? =b%+c* — 2bccos A
) C b =a’+c? —2accos B
a c® =a® +b* —2abcosC
B

PROOF  See Figure P.89. Let h be the length of the perpendicular from A to the
Figure P.88 In this triangle the sides are side BC. From right-angled triangles (and using sin(w — t) = sint if required), we
named to correspond to the opposite get csinB = h = bsinC. Thus (sin B)/b = (sinC)/c. By the symmetry of the
angles formulas (or by dropping a perpendicular to another side), both fractions must be equal
to (sin A)/a, so the Sine Law is proved. For the Cosine Law, observe that

h? + (a —bcosC)? if C <

h? + (a + bcos(r — C))? if C >

[y
[ I SN

=h2—|—(a—bcosC)2 (since cos(mr — C) = —cos C)
= b?sin? C + a®> = 2abcos C + b2 cos? C
=a’ + b> = 2abcosC.

The other versions of the Cosine Law can be proved in a similar way.

EXAMPLE 10 A triangle has §|des a = 2and b = 3 and angle C = 40°. Find
side ¢ and the sine of angle B.

Solution From the third version of the Cosine Law:

2 =a’+b*—2abcosC =449 —12c0s40° ~ 13 — 12 x 0.766 = 3.808.

Figure P.89 Side c is about +/3.808 = 1.951 units in length. Now using Sine Law we get

sinC _sind0° 3 x 0.6428

o~ ~ (0.988.
1.951 1.951

sinB=»
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A triangle is uniquely determined by any one of the following sets of data (which
correspond to the known cases of congruency of triangles in classical geometry):

1. two sides and the angle contained between them (e.g., Example 10);

2. three sides, no one of which exceeds the sum of the other two in length;
3. two angles and one side; or

4. the hypotenuse and one other side of a right-angled triangle.

In suchcases you can always find the unknown sides and angles by using the Pythagorean
Theorem or the Sine and Cosine Laws, and the fact that the sum of the three angles of
a triangle is 180° (or 7 radians).

A triangle is not determined uniquely by two sides and a noncontained angle; there
may exist no triangle, one right-angled triangle, or two triangles having such data.

EXAMPLE 11 In triangle ABC, angle B = 30°, b = 2, and ¢ = 3. Find a.

Solution This is one of the ambiguous cases. By the Cosine Law,

b*> =a? +¢? —2accos B

4 =a®+9-6a(+/3/2).

Therefore, a must satisfy the equation a®> —3+/3a + 5 = 0. Solving this equation using
the quadratic formula, we obtain

_3/3+£V27-20
- 2
~ 1.275 or 3.921

There are two triangles with the given data, as shown in Figure P.90.

Figure P.90 Two triangles with b = 2, / /\

c=3,B=30° a =~ 1.275 a =~ 3.921

EXERCISES P.7

Find the values of the qqantitigs in Exercises 1-6 using various 10. cos (3_77 + x) 11. tanx 4+ cotx 12. tan x — cotx
formulas presented in this section. Do not use tables or a 2 tanx 4 cotx
calculator. In Exercises 13-16, prove the given identities.
3 - - 13. cos* x — sin* x = cos(2x)
1. cos = 2. tan —— 3. sin— 1 —cosx sinx x
4 3 14. - = = tan —
sin x 1 +cosx 2
1 —cosx X
. In S5m 117 15. = tan? =
4. sin 12 5. cos B 6. sin T 1+ cosx 5
In Exercises 7-12, express the given quantity in terms of sin x 16, SB8X TSIMX _ oeox — tan2x

cosx + sinx
17. Express sin3x in terms of sin x and cos x.

and cos x.

7. cos( + x) 8. sin27 — x) 9. sin (3_” _ x) 18. Express cos 3x in terms of sinx and cos x.



In Exercises 19-22, sketch the graph of the given function. What

is the period of the function?

19. f(x) =cos2x 20, f(x) = sin%

21. f(x) =sinmx 22. f(x) =cos 7—121

23. Sketch the graph of y = 2 cos (x - %)

24. Sketch the graph of y = 1 + sin (x + %)

In Exercises 25-30, one of sin8, cos 6, and tan @ is given. Find
the other two if 6 lies in the specified interval.

3
25. sinf ==, @in [Z,Tr]
5 2

26. tan6 =2, Hin [0, %]
27. cosf = % 6 in [—%,O]

28. cos :—15—3, 6 in [%,n]

-1 3
29. sin = —, @in |:71, —ﬂ]
2 2

1
30. tan6 = -, &in |:7T, 3—71]
2 2

Trigonometry Review

In Exercises 31-42, ABC is a triangle with a right angle at C.
The sides opposite angles A, B, and C are a, b, and ¢,
respectively. (See Figure P.91.)

A

‘ b

B 7 C
Figure P,91
31. Findaand bifc =2, B = %
32. Findaandcifb=2, B = 73—
33. Findband cifa =5, B = %.

34. Express a in terms of A and c.
35. Express a in terms of A and b.
36. Express a in terms of B and c.
37. Express a in terms of B and b.
38. Express ¢ in tenms of A and a.
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39. Express ¢ in terms of A and b.

40. Express sin A in terms of @ and c.
41, Express sin A in terms of b and c.
42. Express sin A in terms of a and b.

In Exercises 43-50, ABC is an arbitrary triangle with sides a, b,
and ¢, opposite to angles A, B, and C, respectively. (See

Figure P.92.) Find the indicated quantities. Use tables or a
scientific calculator if necessary.

Figure P.92

43. FindsinBifa=4,b=3,A = %.

44, FindcosAifa=2,b=2,¢c=3.
45. FindsinBifa=2,b=3,c=4.
46. Findcifa=2,b=3,C=%
47. Findaifc=3,A=%,B=

48. Findcifa=2,b=3,C =35°.
49. Find bifa =4, B =40°,C = 70°.

50. Findcifa=1,b= \/f, A = 30°. (There are two possible
answers.)

o w|d

51. Two guy wires stretch from the top T of a vertical pole to
points B and C on the ground, where C is 10 m closer to the
base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal, and wire CT makes an angle of 50° with
the horizontal, how high is the pole?

52. Observers at positions A and B 2 km apart simultaneously
measure the angie of elevation of a weather balloon to be 40°
and 70°, respectively. If the balioon is directly above a point
on the line segment between A and B, find the height of the
balloon.

53. Show that the area of triangle ABC is given by
(1/2)absinC = (1/2)bcsin A = (1/2)ca sin B.

54. Show that the area of triangle ABC is given by

Vs(s —a)(s —b)(s —¢), where s = (@ + b + ¢)/2 isthe
semi-perimeter of the triangle.

This symbol is used throughout the book to indicate an exercise

that is somewhat more difficult and/or theoretical than most
exercises.
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1-B 11-D | 21-D | 31-D | 41-A | 51-A | 61-C
2-C 12-A | 22-B | 32-C | 42-D | 52-C | 62-A
3-A 13-D | 23-B | 33-C | 43-C | 53-B | 63-D
4-D 14-C | 24-C | 34-D | 44-D | 54-D | 64-C
5-C 15-A | 25-A | 35-A | 45-A | 55-C | 65-A
6-D 16-A | 26-D | 36-C | 46-B | 56-C | 66-C
7-A 17-B | 27-B | 37-A | 47-C | 57-B | 67-C
8-B 18-D | 28-D | 38-B | 48-D | 58-D | 68-C
9-C 19-C | 29-C | 39-C | 49-C | 59-C | 69-B
10-A | 20-C | 30-B | 40-B | 50-D | 60-A | 70-A




