

(Chem 109 Chapter 10)

Ques. no.			Que	stio	n					
1	Select the correct for	mula				ind.				
	A NaCl	B	BaSO ₄	C	HCl	D	$C_4 H_{10}$			
2	How many covalent h	ond	s does carbon ge	enera	lly form in orga	nic c	ompounds?			
	A 2	B	3	C	4	D	6			
3	Select element, which	repr	esents as hetero	atom	ı in organic com	poun	ds.			
	AC	B	Ν	C	Н	D	None			
4	Identify the molecule, which have covalent bonding.									
	A NaCl	B	CH ₄	C	Na ₂ CO ₃	D	H ₂ O			
5	When hydrocarbons are added to water, they are									
	A soluble	B	insoluble	C	Partially soluble	D	Convert to gas			
6	Functional group 'Amide' is:									
	А	B		C		D	NH ₂			
7	Identify the function:	al gro	oup in given org	anic	compound, whic	h is.	•••			
		1	1	$\left \bigcirc \right $	<u> </u>	1				
	A Carboxylic acid	B	Ester	C	Aldehyde	D	Ketone			
8	Functional group wh	ich r	epresents Alken	es is.	••					
	A Hydroxyl group	B	Carbon-carbon triple bond	C	Carbon-carbon double bond	D	Aldehyde group			
9	Identify thelone pairs	elec	trons in CH ₃ -O-	CH ₃	organic molecul	e.				
	A 2	B	3	C	1	D	4			
10	Which of the following is true for element Carbon?									
	A Monovalent	B	Divalent	C	Trivalent	D	Tetravalent			

Ques. no.				Que	stic	n				
11	Ge	neral molecular f	form	ula of <i>Alkane</i> is.	••••	•••				
	A	C _n H _{2n-2}	B	C_nH_{2n+2}	C	C_nH_{2n}	D	C_nH_{2n+1}		
12	Nu	mbers of Constit					H ₁₂ 8	are		
	A	2	B	3	C	4	D	5		
13	Iso	mers are the com					•	<u>.</u>		
	A	Structural formula	B	Chemical Properties	C	Molecular formula	D	Physical properties		
14	Wł	nich structure has	s all	of the hydrogens						
	compound shown below? $C = C = N = C = O$ $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$									
	A	н с н с с н с с н н н	B	н сі н н н—с—с—м—с=ё н н н	C	н сі сі н—с—с—й—с <u>—</u> ё 	D	н :сі: н—с—с—й—с <u>—ё</u> 		
15	Which represents a condensed structure for a four-carbon hydrocarbon?									
	A	CH ₃ CH ₂ CH ₂ CH ₃	B	C_4H_{10}	C	H H H H H	D	\searrow		
16		w many H atoms								
	A	C1 has 2Hs and C2 has 2Hs	B	C1 has 1H and C2 has no Hs	C	C1 has 2Hs and C2 has 1H	D	C1 has 1H and C2 has 1 H		
17		w many total H a								
		1	I	\bigcirc	ē~~~		I			
10					_	17 H atoms	D	19 H atoms		
18		ssification of give	en nj	ydrocardon is as H_3C		• H ₂ CH ₃				
		A 11-1-1-1-0	Б	H Hrono		Alkene	D	Aromatic		
19	A Cla	Alkyne	B en h	Alkane vdrocarbon is as			υ	hydrocarbon		
17	Classification of given hydrocarbon is as									
			1		CH3		I	Aromatia		
	A	Alkyne	B	Alkane	C	Alkene	D	Aromatic hydrocarbon		
20	Sel	ect the compound		ICH represent as	an a C	uaenyae?	D	Î		
	Α	н—с_с_с_с_о_н н н н	B	н—с—о—с—н н н		н—с−сн₂−сн₃		Н₃С — С́ — СН₃		

Ques. no.				Quest	ion				
21	Ide	ntify the organic	com	pound that classifi	ied a	s an alcohol.	1		
	A	H H H H—C—C—C—O—H H H H	B	н н н—с—о—с—н н н	С	н—С—СН ₂ —СН ₃	D	H ₃ C — C — CH ₃	
22				pound that classifi					
	A	H ₃ C-C-O-CH ₂ -CH ₃	B	H H H-C-O-C-H H H	С	н—с-сн ₂ -сн ₃	D	Н ₃ С — СН ₃	
23	Ide	ntify the organic	com	pound that classifi	ied a	s an alcohol.			
	A	Carboxylic acid	B	Ether	С	Ester	D	Ketone	
24		-		ondensed structure			can	be represented	
	as a	a skeletal structu	re as	s which of the follo	wing	<u>;</u> ?			
	A		B	он	С	0	D		
25	Which structure is not possible?								
	A	$H \xrightarrow{C} CH_2CH(CH_3)_2$	B	н ₃ с—с—сн ₃	C	CH ₃ O O CH ₃ —C=C—C—CH	D	Н Н Н—С—О—С—Н Н Н Н	
26	Which formula represents an inorganic compound?								
	A	CH ₃ NHCH ₂ CH ₃	B	ClCH ₂ CH ₂ Cl	С	CH ₃ CO ₂ CH ₂ CH ₃	D	CaCl ₂	
27		• •	rs of	electrons are prese	ent b	ut not shown in	the	molecule	
	Del	ow?		р II					
	ī				NH ₂	1	1		
	Α		B				D	4	
28	Wh	at is the condens	sed f	ormula for the mol $\frac{1}{2}$	ecul	e shown below?			
					—н –с– –н	-н			
	A	CH ₃ CCH ₃ CH ₃ CH ₃	B	$(CH_3)_2(CH_2)_2CH_3$	С	(CH ₃) ₄ C	D		
29	The	e compound give	n be	low is classified as	a/an	••••			
				н—С—й н	н				
	A	Ether	B	Amine	С	Amide	D	Aldehyde	
30	Hov	w many covalent b	onds	does nitrogen typica	ally f	orm in organic co	mpo	unds?	
	A	1	B	2	С	3	D	4	

Ques. no.				Quest	ion					
41	Wł	nat is the IUPAC	nam	e of this compound CH2CH3	1?					
				CH ₃ CH ₂ CHCH ₂ CHC	H_3					
				L CH ₂ C	$\mathbf{CH}_{2}\mathbf{C}$	$H_2CH_2CH_3$				
	•	3-Ethyl-5-	Б	3-Ethyl-5-	C	3-Ethyl-2-	Б	8-Ethyl-6-		
	A	methyldecane	B	pentylhexane		pentylhexane	D	methyldecane		
42	VV I	iat is the IUPAC	nam	e of this compound	1:					
					$-CH_2C$	CH ₃				
	A	Ethyl-2- methylcyclobutane	B	1-Ethyl-2- methylcyclopropane	С	1-Ethyl-2- methylcyclobutane	D	Ethyl-methyl- cyclopropane		
43	Ide		re of	2-methylhexane , v	vhicł			cyclopropane		
_	A	(CH ₃) ₂ CHCH ₂ CH ₂ CH ₃	R	(CH ₃) ₃ CCH ₂ CH ₂ CH ₂ CH ₃	С	(CH ₃) ₂ CH(CH ₂) ₃ CH ₃	D	CH ₃		
44				2-methylhexane, v	vhich	1 is	D	CH ₃ —ĊH—CH ₂ CH ₂ CH ₃		
		CH ₂ CH ₂ CH ₃	l			CH2CH3	-	CH ₂ CH ₂ CH ₃		
	A		B	CH2CH2CH2CH3	C	СH ₃ —CH ₂ —CH—CH ₂ -CH ₃	D	CH ₃ -CH ₂ -CH-CH ₂ -CH ₃		
45	Which alkane has the lowest boiling point?									
	A	Ethane	B	Propane	С	Butane	D	Hexane		
46	Wł	nich name is not a	a val	id IUPAC name fo	r an	alkane?				
	A	2,3,4-	B	1-Ethyl-2-	С	1-Butyl-2-	D	5-Butyl-2-		
47		Trimethylhexane		butylpentane e lowest melting po	oint?	ethylcyclopentane	2	methylnonane		
• /		-	D		a	CH ₃ (CH ₂) ₅ CH ₃		CH ₃ (CH ₂) ₇ CH ₃		
40	A	CH ₃ (CH ₂) ₃ CH ₃	B	CH ₃ (CH ₂) ₆ CH ₃	C		D	CH3(CH2)7CH3		
48	VV I	nen compound n	as u	e highest melting p	οπι					
	A	CH ₃ (CH ₂) ₃ CH ₃	B	CH ₃ (CH ₂) ₆ CH ₃	С	CH ₃ (CH ₂) ₅ CH ₃	D	CH ₃ (CH ₂) ₇ CH ₃		
49	Wł	nat is the IUPAC	nam	e of this molecule?						
	$CH_3 \qquad CH_3 \qquad CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 CH_3 \\ CH_3 - CH_2 - CH$									
				CH ₂ CH ₃						
	A	2-Ethyl-2,4- dimethylhexane	B	2,4-Dimethyl-2- ethylhexane	С	3,3,5- Trimethylheptane	D	5-Ethyl-3,5- dimethylhexane		
50		l in the blank " emical and physic		an atom or a gro	up o	f atoms with cha	aract	teristic		
	CIIE	and and physic		-			I			
	A	Hydrocarbons	B	Constitutional isomers	С	Stereoisomers	D	Functional group		

Kingdom of Saudi Arabia
Ministry of Higher Education
Jazan University
Preparatory Year DeanshipImage: Compare the second seco

Ques. no.				Quest	ion					
51	Selec	ct the correct <i>IUPAC</i>	^C nai	me for: (CH ₃ CH ₂) ₃ (CCH	I ₂ CH ₂ CH(CH ₃) ₂				
	A	5-Diethyl-2- methylheptane	B	5,5-Diethyl-2- methylheptane	C	2-Methyl-5,5- diethylheptane	D	3,3-Diethyl-6- methylheptane		
52	The	IUPAC name of the	follo	owing a cycloalkan	e is :					
					CH ₃ CH ₂ CH ₂ CH ₃	CH ₃				
		1,2-Dimethyl-1,2-	n	1,1-Diethyl-2,2-	$\leq^{CH_3}_{CH_2G}$	1,2-Diethyl-1,2-		1,2-Diethyl-2-		
52	A	diethylcyclohexane	B	dimethylcyclohexane		dimethylcyclohexane	υ	dimethylcyclohexane		
53	Identify the labeled functional groups in the following compound. $\sum_{i=1}^{n} \frac{1}{2}$									
						OCH3				
	A	1Amine, 2 alcohol, 3 ketone	B	1Amine, 2 ether, 3 ester	C	1Amine, 2 alcohol, 3 ester	D	1 Amine, 2 alcohol, 3 ether		
54	Cycl	ohexane represents	cons	titutional isomer fo	or	••••				
	A	1-Ethyl-2-pentene	B	3-Methyl-2-pentyne	C	3-Methyl-1-hexene	D	2-Methyl-2-pentene		
55	The	following pair of con	npo	unds is classified as	:		1	L		
				CH3 C	$\overline{}$					
		1		CH3	_∕−c I	H ₃	1			
	A	Constitutional isomers	B	stereoisomers	C	Identical molecules	D	Not isomer		
56	Whi	ch of the following s	truc	tures represents <i>Ne</i>	eopei	itane?				
	Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	B	CH₃ │ CH₃CHCH₂CH₃	C	СН ₃ СН ₃	D	сн ₃ сн ₃ снснсн ₃ сн ₃ сн		
	Orga	anic molecule which	con	tain hetero atom is:	:					
57	Α	CH ₃ -CH ₂ -CH ₂ -CH ₃	B	CH ₃ -O-CH ₂ -CH ₃	C	CH ₃ -CH=CH-CH ₃	D	CH ₃ -CH=CH ₂		
58	IUP	AC name of the follo	win	g compound is:	H ₂ CH ₃	·				
				CH ₃ CH ₂ CH ₂ CHCHC	H_2CH_2	CH ₃				
	A	4-propyl-3- methylheptane	B	4-propyl-5- methylheptane	C	3-methyl-4- propylheptane	D	4-ethyl-3- methylheptane		
59	The	IUPAC name of the	follo		:		I			
	Α	1-methyl-3- ethylcyclohexane	B	3-ethyl-1- methylcyclohexane		1-ethyl-3- methylcyclohexane	D	1-ethyl-3- methylhexane		
60		IUPAC name of the			:					
	A	1,1-dimethyl-2- ethylcyclopropane	B	1,1-diethyl-2- methylcyclopropane	C	1,2,3- trimethylcyclopropane	D	1-ethyl-2,2- dimethylcyclopropane		

			Quest	ion					
The I	UPAC name of the	follo	owing compound is						
			$\langle \cdot \rangle$	/					
				X					
A	1-ethyl-2,4,4- trimethylcyclopentane	B	1-ethyl-3,3,5- trimethylcyclopentane	C	1,1,3-trimethyl-4- ethylcyclopentane	D	1,3,3-trimethyl-5- ethylcyclopentane		
The I		follo		5					
$(CH_3)_2CH-CH(CH_3)_2$									
1		i		1		1			
A	Hexane	B	1,1,2,2- tetramethylethane	C	2,3-dimethyl butane	D	1,4-dimethylbutane		
The I	UPAC name of the	follo	owing compound is	:					
CH ₃ CH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃									
			CH_2CH_2C	CH ₃					
A	6-ethylnonane	B	4-ethylnonane	C	3-propyloctane	D	6-propyloctane		
Gene	ral molecular form	ula c	of cyclo <i>alknaes</i> is	•••	· · · · · · ·	-			
•		n	l		СЦ		СЦ		
A		_		C	$C_n H_{2n}$	D	C_nH_{2n+1}		
•••••	is a pairs Co	onsti	tutional Isomer.						
•		р		C	Ethanol & dimethyl	n	Acetaldehyde &		
	-	В	Acetic acid & ethanol	U	ether	υ	acetone		
Alka	nes are soluble in:								
A	Water	B	Organic solvent	C	Inorganic solvent	D	None of these		
	nes and alkanes are		ed		1				
A	Saturated hydrocarbones	B	Unsaturated hydrocarbones	C	Aromatic compounds	D	Carbohydrates		
	A The I A The I A Gene A Alkan Alkan	A 1-ethyl-2,4,4- trimethylcyclopentane The IUPAC name of the A Hexane A 6-ethylnonane General molecular formular A C _n H _{2n-2}	A 1-ethyl-2,4,4- trimethylcyclopentane B The IUPAC name of the follo B A Hexane B A Hexane B The IUPAC name of the follo B A 6-ethylnonane B General molecular formula of the follo B A C _n H _{2n-2} B A Butane &iso-pentane B A Butane &iso-pentane B A Water B A Water B A Saturated B	A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane Fhe IUPAC name of the following compound is (CH ₃) ₂ CH-C B 1,1,2,2- tetramethylethane A Hexane B 1,1,2,2- tetramethylethane The IUPAC name of the following compound is CH ₃ CH ₂ CHCH ₂ CH CH ₃ CH ₂ CHCH ₂ CH A 6-ethylnonane B 4-ethylnonane General molecular formula of cycloalknaes is B C _n H _{2n-2} B C _n H _{2n+2} B C _n H _{2n+2}	A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C Fhe IUPAC name of the following compound is (CH3)2CH-CH(C B 1,1,2,2- tetramethylethane C A Hexane B 1,1,2,2- tetramethylethane C The IUPAC name of the following compound is: CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH3 C A 6-ethylnonane B 4-ethylnonane C General molecular formula of cycloalknaes is A C_nH2n-2 C A C_nH2n-2 B C_nH2n+2 C A Butane &iso-pentane B Acetic acid & ethanol C A Butane &iso-pentane B Organic solvent C A Water B Organic solvent C A Water B Organic solvent C	A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane Flex D 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane Flex D 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane A Hexane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane A Hexane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,2,2- tetramethylethane C 2,3-dimethyl butane A Hexane B 1,1,2,2- tetramethylethane C 2,3-dimethyl butane The IUPAC name of the following compound is: CH_3CH_2CH_2CH_2CH_2CH_2CH_3 C 2,3-dimethyl butane A 6-ethylnonane B 4-ethylnonane C 3-propyloctane General molecular formula of cycloalknaes is C G_nH_{2n} C G_nH_{2n} A G_nH_{2n-2} B G_nH_{2n+2} C G_nH_{2n} A Butane &iso-pentane B Acetic acid & ethanol C Ethanol & dimethyl ether A </th <th>A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane D A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,1,3-trimethyl-4- ethylcyclopentane D The IUPAC name of the following compound is: (CH₃)₂CH-CH(CH₃)₂ C 2,3-dimethyl butane D A Hexane B 1,1,2,2- tetramethylethane C 2,3-dimethyl butane D The IUPAC name of the following compound is: CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂</th>	A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,3-trimethyl-4- ethylcyclopentane D A 1-ethyl-2,4,4- trimethylcyclopentane B 1-ethyl-3,3,5- trimethylcyclopentane C 1,1,1,3-trimethyl-4- ethylcyclopentane D The IUPAC name of the following compound is: (CH ₃) ₂ CH-CH(CH ₃) ₂ C 2,3-dimethyl butane D A Hexane B 1,1,2,2- tetramethylethane C 2,3-dimethyl butane D The IUPAC name of the following compound is: CH ₃ CH ₂		

(Chem 109 Chapter 11)

Ques. no.				Que	sti	0 n				
1	W	hich types of comp	oun	ds are saturated hy	dro	carbons?				
	A	Alkenes	B	Aromatic compounds	C	Alkanes	D	Alkynes		
2	W	hich statement is t	rue	about Unsaturated	Hyd	lrocarbons				
	A	single covalent bond	B	Alkane	C	Multiplebonds (double, triple bonds)	D	All statement are correct		
3	General Molecular Formula and bond angle for Alkene is:									
	Α	$C_nH_{2n}and 109^{\circ}$	B	C_nH_{2n+2} and 120°	C	C_nH_{2n-2} and 120°	D	C_nH_{2n} and 120°		
4	General molecular formula and bond angle for <i>Alkyne</i> are:									
	A	C_nH_{2n+2} and 109°	B	C_nH_{2n} and 120°	C	C_nH_{2n-2} and 180°	D	C_nH_{2n+2} and 180°		
5	General formula C ₂₀ H ₃₈ is correspond to which of the following									
	Α	Alkanes	B	Alkenes	C	Alkynes	D	None of this		
6	Alkene that has eleven carbons, general molecular formula is:									
	Α	$C_{11}H_{24}$	B	$C_{11}H_{23}$	C	$C_{11}H_{22}$	D	$C_{11}H_{21}$		
7	IU	PAC name of the f	follo	wing compound is.	••••	•				
					CH I	•				
				CH ₃	сн Сн	CH_2 - CH = CH_2				
	A	2,2-dimethyl-4- pentene	B	4,4-dimethyl-1- pentene	C	2,2-dimethyl-4- butene	D	4,4-dimethyl-1- butene		
8	IU		win	g compound is	•	<u> </u>	11			
				H ₂ C	<u> </u>	СН3				
	A	Pentane	B	Pentene	C	Butene	D	4-methyl-butene		
9	IUPAC name of following compound is									
					1	\checkmark				
	A	4-methyl-3- heptene	B	4-methyl-4-heptene	C	4-ethyl-3-heptene	D	4-ethyl-4-heptene		
10	W	hich is the molecular	for	mula of an alkyne?						
	A	$C_{10}H_{18}$	B	C ₉ H ₁₈	C	C ₈ H ₁₈	D	$C_{10}H_{20}$		

Ques. no.				Q	ues	stion					
11	IUPAC	name of follo	owin	ng compound is							
				CH₃ CH₃−C≡C−CH−	-CH ₂ ·	-CH3					
	A 4-met	hyl-2-hexyne	B	4-methyl-1-hexyne		4-methyl-2-pentyne]	D 4-methyl-1-pentyne			
12	What is	the IUPAC	nam	ne of this compour	nd?						
				~		\sim					
	A 5-Ethy	yl-4-methyl-4-	B	3-Ethyl-4-methyl-3- hexene	(2 3-Ethyl-4-methyl-4- heptene]	D 3-Ethyl-4-methyl-3- heptene			
13	*		owin	ng compound is	••••	neptene		lieptene			
	$\mathbf{A} \stackrel{3,7-\mathrm{di}}{\mathrm{nonym}}$	methyl-5- Ie	B	2-ethyl-6-methyl-3- octyne	(2,6-diethyl-5-nonyne]	D 3,7-dimethyl-4- nonyne			
14	What is 1	the IUPAC na	me	of this compound?		CH ₂ CH ₃	•				
				. H	\geq	н					
	A cis-3-	Pentene	B	cis-2-Pentene	0	E Ethylpropene]	D ^{2-ethylpentene}			
15	What is t	the IUPAC na	me	of this compound?	=\						
	I		1			CH ₃	ī				
	A Methy	lbenzene	B	2-Methyl-1,3- cyclohexadiene	(3-Methyl-1,3- cyclohexadiene]	D phenol			
16	What is	the structure of	of 2-	-methyl-3-hexene?							
	CH ₃ -CH ₂	CH ₃	I	Сн3 н		→ (CH ₃) ₂ C=CH(CH ₂)CH ₃	1	(CH ₃) ₂ CHCH=CHCH ₂ CH ₃			
	A , C=	=C'CH ₂ -CH ₃	B	CH ₃ CH ₂ C=C CH ₂ -CH ₂ -CH ₂ -CH ₃							
17	Correct	IUPAC name	of t	he following compo	und	is:					
				\sim		/					
	A 2-et	thyloctane	B	2-ethyloctanal	С	6-ethyl-6-octene	D	3-ethyl-2-octene			
18	Correct	IUPAC name	of t	he following compo	und	is:					
				\sim	\bigvee	/					
		yl-7-methyl-	B	7-ethyl-6-methyl-3-		C 6-ethyl-7-	D	7-ethyl-6-methyloctene			
19	3-00			octene re for IUPAC name	d 1.4	methyloctene 4-dimethylcyclohexa	ne :				
17	$\mathbf{A} \mid \prec$		B	\triangleleft	Ċ		D	$\langle \rangle$			
20	What is 1	the IUPAC na	me	for the compound (CH-	L CH=CHCH,CH,?					
20	1	1	1	-			, ı				
	A Pen	itene	B	2,3-Pentene	C	3-Pentene	D	2-Pentene			

Ques.				Quest	ion			
no.	Th	e compounds 1-pen	tene	ę			of a r	pair of
4 1	Α	Isotopes	B	Stereoisomers	С	Constitutional	D	Identical
		-			<u> </u>	isomers		molecules
22		e molecules (z) or <i>c</i> . r of	ls-Z	-pentene and (E) of	r <i>tra</i> i	<i>ns</i> -2-pentene are a	n exa	imple of a
	A	Isotopes	В	Stereoisomers	С	Constitutional	D	Identical
	A	Isotopes	D	Stereoisoiners	U	isomers	D	molecules
23	Wł	nich statement is tru	le al	bout stereoisomer i	n giv	ven structure:		
				\rightarrow				
		I	I	В́	Ē		I	Name of this
	Α	D=E,and A= B	B	$D \neq E$, and $A = B$	C	$D \neq E$, and $A \neq B$	D	None of this
24	Wh	ich name is correct fo	or th	$\begin{array}{c} \textbf{ne given molecule bel} \\ CH_3CH_2 & CH_3 \end{array}$	ow:			
				CH ₃ CH ₂ CH ₃				
	٨	cis-2-methyl-3-	р	trans-3,4-dimethyl-	C	cis-5-methyl-4-	D	trans-5-methyl-
	Α	heptene	B	3-hexene	U	heptene	ν	4-heptene
25	Ste	reoisomers are ison	iers	that differ only in	the.	•••••		
	٨	3-D arrangement of	В	2-D arrangement of	С	1-D arrangement of	D	All of this
	A	atoms		atoms	U	atoms	ν	
26	Re	lation between (I) an	nd (CH3			
					-			
		I	1	(I) (II)	~		-	None of the above
	Α	Stereoisomers	B	Constitutional Isomers	C	Identical molecules	D	None of the above
27	Re	lation between (I) a	nd (
				CH_3CH_2 CH_3 (CH ₃ CI	$\stackrel{\text{H}_2}{=}$		
		1		, ^Ĥ Ì Ĥ	l			
	Α	same molecules	B	Constitutional isomers	С	Stereoisomers	D	All of this
28	Wł	nich statement is tru	le al		d Be	nzene is:		I
		1		-	I	1	i	
	A	When Benzene ring have one substituent	В	When Benzene ring have two substituent	С	When Benzene ring have three or more	D	Above all statements are
	A	only	D	only		substituent		true
29	Wł	nich structure is <i>trai</i>	ıs-3	-hexene?				
		CH ₃ CH ₂ CH ₂ CH ₃	1	сн ₃ сн ₂ н	C	CH3 H	n	CH3CH2CH2CH3
	Α	LC=C	B	CH2CH3	U	HC=CCH2CH2CH3	D	
30	Wł	hich name is a valid	IUI	- a J	isatu	irated hydrocarboi	n?	<u>.</u>
		2.3 Dimother 2	İ	I	~	trans 2 Dantura	-	2 Mathul 2
	Α	2,3-Dimethyl-3- hexyne	B	trans-1-Hexene	C	trans-3-Pentyne	D	2-Methyl-2- butene

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University Preparatory Year Deanship

بنك الأسئلة في مقرر الكيمياء الطبية 2 (109-تحض)

Ques. no.				Que	estic)n				
31	W	hat is the product	of t	he reaction 2-penter	ne +	$H_2 \xrightarrow{Pd} ?$				
	A	Pentane	B	2-Pentane		Ethane+ Propane	D	2-Pentyne		
32	H		lken	e in the presence of	1 1	•				
	A	Addition of H ₂ at Alkene double bond	B	Removing of H ₂ from Alkane		There will be no reaction	D	Addition of water at Alkene double bond		
33	Dı	ring Hydrogenation	n of	Alkene, which catalys	st is n	ecessary:				
	A	H ₂ SO ₄ as catalyst	B	HNO ₃ as catalyst	C	Pd metal catalyst	D	HCl as catalyst		
34	Dı	ring Hydration (ad	ditio	on of H ₂ O) of Alkene,	whic	h catalyst is necessary				
	A	H ₂ SO ₄ as catalyst	B	Pt metal catalyst	C	Pd metal catalyst	D	Zn as catalyst		
35				om the reaction below	w?	1		L		
	$CH_3 + H_2 \xrightarrow{Pd}$									
	A	\bigcirc	B	\sim	C	\downarrow	D	No reaction		
36	Pr	oduct (A) in given	rea	ction is:	1					
				CH ₃ + H	2 Pc	<u>d</u> → (A)				
	A	CH ₃ CH ₃	B	CH3	C	СН3	D			
37	Dı	iring hydrogenati	on o	f 1-pentene in the p	rese	nce of Pd catalyst, th	e pr	oduct [A] is:		
	A	Propane	В	Butane	С	Pentane	D	Hexane		
38		1		ect for the hydroger	natio	on of Alkene:	D			
•••		Pd catalyst is	1	Pd catalyst is needed		Pd catalyst is NOT	h	Pd catalyst is NOT		
	A	needed and Alkene	B	and Alkene convert to	C	needed, Alkene	D	needed and Alkene		
39	W	convert to Alkyne	ned	Alkane in the hydration rea	actio	convert to Alkyne	<u> </u>	convert to Alkane		
		-		-						
					+ H ₂	$_{2}O$ $H_{2}SO_{4}$				
	A	OH OH	B	ОН	C	OH	D	ОН		
40	Co	mplete the followi	ing 1	eaction and find co	mpo	und [A]:		<u> </u>		
τU	$\begin{array}{c} \begin{array}{c} CH_2 \\ H_2O/H_2SO_4 \end{array} \end{array} \left[A \right] \end{array}$									
		\bigwedge	р	ОН	C	CH ₃	D	CH ₃		
	A		B			Un Un		ОН		

0										
Ques. no.				Questio	n					
41	W	hich statement is	cori	rect about Polymers:						
_		1								
		Polymers are		Polymers are large molecules made of	C	Polymers made of one unit of	D	None of the above		
	Α	small molecule	B	repeating units of		monomers		above		
				monomers						
42	Given below is a Polymer, the name of monomer from which it made is?									
				}-CH ₂ -C+CH ₂ -CH ₂ -C						
				polystyrene						
	Α	Methyl Benzene	B	Ethyl Benzene	C	Styrene	D	Propyl Benzene		
43	W	hat monomer is u	ised	to form the polymer b	elov	w?				
				$\begin{cases} CH_3 & Br & CH_3 & Br & CH_4 \\ \xi & & & & \\ \xi - C - C - C - C - C - C - C - C - C -$	-C					
		CH ₃ Cl		$\begin{cases} -c c - c - c - c - c - c - c - c -$		CH ₃ Br	n	CH ₃ CI		
	Α	н—с—с—н 	B	н—с—с—н 	U		ν			
44	Po	Br ČN Ivmerization is t	he in	$\begin{array}{c} \begin{array}{c} CH_3 & Br \\ & \\ H - C - C - C - H \\ & \\ Cl & CN \end{array}$ ining together of		to make poly	mei	br CN		
44	10		it ju	ining together of	••••	to make poly	mei			
	Α	Monomer	B	Atoms	C	Compound	D	None of the above		
45	During polymerization of vinyl chloride, the polymer name is:									
	٨	Polyginylacetate	D	Polyvinylchloride	C	Polystyrene	n	Polyethylene		
16				With three double bone		5 5	ν	5 5		
46	D		••••		us.					
	A	Aromatic	B	Tetrahedralin shape	C	Linear in shape	D	Polar compound		
47	W	compound hich statement is								
47	**1	inch statement is	uu	about Delizene.						
		Benzene is planer		Benzene is planer	C	Benzene is	D	Option (a) and		
	A	molecule and have bond angle	B	molecule and have Bond		planer molecule and have bond		(b) are correct		
		109°		angle 90°		angle 120°				
48	Th	e compounds o-c	hlor	ophenol and <i>m</i> -chloro	phe	nol are example	s of			
		Molecules those	Б	Molecules that are		Molecules that	р	Molecules		
	Α	are identical.	B	constitutional isomers		are stereoisomers	D	thatare isotopes.		
49	W	hich structure is	<i>m</i> -b	romoaniline:						
		NH ₂	I	l	_	NHa	I —	NH ₂		
	٨		р	NH ₂	C	Br	D			
	A		B	Br						
50	Aminobenzene structure is given below which is also known as:									
50				0						
	A	Phenol	В	Methyl benzene	C	Aniline	D	None of the above		

(Chem 109 Chapter 12)

Ques. no.				Que	stic	n				
1	Ide	ntify the Alcohols	s fur	nctional group, whi	ch r	efers to				
-	A	Carboxylate group	B	Hydroxyl group	C	Sulfhydryl group	D	Carbonyl group		
2	Wł	hich is a secondary	y alo	cohol?	i	<i></i>	1			
	A	0 Ш н—о—с—о—н	B	нннн н—С—С—С—С—о—н нннн	C	СH ₃ H — С — СH ₂ —ОН СH ₃	D	CH ₃ —C—CH ₂ CH ₂ CH ₃ OH		
3	Ide	ntify the primary	alc	ohol, which refers t	t o .					
	A	ОН	В	ОН	C	OH	D	ОН		
4	Cla	ssify the given co	mpo	ound as the type of	alco	hol which refers t	t o			
	он									
		I	1]	T	I	Manage Calabration		
	Α	-		Primary alcohol	U	Tertiary alcohol	D	None of the above		
5	What is the shape around the oxygen atom in an alcohol?									
	A	Tetrahedral bond angle of 109.5°(bent shape)	B	Trigonal pyramidal	C	Trigonal planar	D	None of the above		
6	Wł	ich alcohol is mos	st so	bluble in water?						
Ū	Α	(CH ₃) ₂ CHCH ₂ OH	B	CH ₃ (CH ₂) ₆ OH	C	CH ₃ (CH ₂) ₁₁ OH	D	All of the above		
7	Co	mpound which ha	s th	e higher boiling po						
	A	CH ₃	B	ОН	C	CH3	D			
8	Wł	nat is the major pi	odu	ict of the dehydrat	ion c	of the compound g	giver	n below?		
				$\langle \rangle$	CH₂C					
	A	СН ₃ -с-сн ₃ сн ₃	В	OH C-CH₃	C	CH3 -C+3 H -C+3	D	C=CH2		
9	Ide	ntify the common	ly u	sed reagent for alc	ohol	dehydration.				
	A	$K_2Cr_2O_7$	B	H_2SO_4	C	Cl ₂	D	H ₂ O		
10			•	l product(s) formed	d wh	en the alcohol giv	ven b	below is oxidized		
	with $K_2Cr_2O_7/H_2SO_4$?									
	$H_3C \longrightarrow \begin{bmatrix} c & -b \\ -b & -c \end{bmatrix} \longrightarrow \begin{bmatrix} c & -b \\ -b & -c \end{bmatrix} \longrightarrow CH_3$									
	A	CH ₃ (CH ₂) ₄ COOH	B	н СH ₃ —СH ₂ с=с Н СH ₃	н сн	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	No reaction		

للمملكة العربية السعودية المملكة العربية السعودية المملكة العربية السعودية العلي المملكة العلي المعلي المملكة العلي المعلي المحمد العلي المحمد ا محمد محمد المحمد المحم

Ques. no.				Que	stic)n				
<u>11</u>			-	l product(s) formed			ven l	pelow is oxidized		
	with $K_2Cr_2O_7 / H_2SO_4$?									
		1	1				Í			
	A	О H ₃ C—CH ₂ —C—CH ₃	B	CH ₃ —CH ₂ CH ₃ —CH ₃	C	Н ₃ С—СН ₂ —С—ОН	D	No reaction		
12	Ide			pound with functio	nal	group of ether.	<u> </u>	<u> </u>		
	A	Н ₃ С—СН ₂ —С—СН ₃	B	CH ₃ —C—O—CH ₂ —CH ₃	C		D	None of the above		
13	Ch			own below, identify	the	final product.		<u> </u>		
					K	₂ Cr ₂ O ₇ / H ₂ SO ₄ ►				
		2,5-dimethylcyclo	р	2,5-dimethyl cyclopentanone	C	2,5-dimethyl	D	2,5-dimethyl		
14	A			cyclopentanone which has the highe			ν	cyclopentane		
14	A		B	$CH_3(CH_2)_2O(CH_2)_2$			D	None of this		
15				CH ₃ me of CH ₃ (CH ₂) ₂ –C)-(C	CH ₂) ₂ CH ₃				
10					i I	1	1			
	Α	Diethyl ether	B			Dipropyl ether	D	Ethylmethyl ether		
16	Wł	nat is the structur	e of	Butylmethylether?						
	•		D	О-СН3	C	CH ₃	D	CH ₃		
				\rightarrow						
17	wr	hat is the IUPAC	nam	te of the compound CH_3	٥ŀ	1				
				$\begin{array}{c} H_2C \overset{ }{-} \overset{ }{-} CH_2CH_2^-\\ \overset{ }{-} \overset{ }{-} CH_2^-CH_3^-\\ CH_3^-CH_2^-CH_3^-\end{array}$		$-CH_2CH_2CH_2CH_3$				
		3,6-Diethyl-3-	B	3,6-Diethyl-3-	رب C	5,8-Diethyl-8-	D	3-Butyl-6-ethyl-6-		
18	A Ide	methyl-8-decanol		methyl-8-decanol en CH ₃ CH ₂ CH ₂ CH	<u> </u>	methyl-5-decanol H is oxidize		methyl-3-octanol		
10				$ \begin{array}{c} H \\ H \\ CH_3CH_2C \\ H \\ H \end{array} $	$\mathbf{\hat{C}}$		D			
	Α	 	В	СН ₃ СН ₂ С—С—ОСН ₃ Н		H		Сп ₃ сп ₂ с – с – с н ₃ Н		
19	Wł	nat will be the pro	duc	t when ethanol is d _H	ehyo	dration by conc.	H_2SC	D ₄		
				H ₃ C	Х. Of					
	A	H H H	B	HO H CH ₃	C	H ₃ C H H CH ₃	D	H ₃ C H H OH		
20	Wł	nich compound ca	n oz	kidize and finally co	onve	ert to a carboxyli	c acio			
				он		CH3	n	CH ₂		
	A		B			CH ₃ —CH—CH—OH	D	ОН		
			1			CH ₂ CH ₂ CH ₃		\sim		

Ques. no.				Ques	stio	on						
21	What is th	he IUPAC na	me	of the compound b	elov							
				HO	жн₃ ∽С	ЭН						
	2-Methylcyclo 2-Methyl-3- 2.6-dihydroxy 1-Methyl-2,6-											
	A 2-Methy hexane-		B	hydroxyphenol	C	2,6-dihydroxy toluene	D	cyclohexanediol				
22	Which sta	atement is inc	orr	ect for the followin	g gi	ven organic compo	ound	?				
	A It is a te	rtiary alcohol	B	Its name is 2- methyl-2-pentanol	C	Its molecular formula is C ₆ H ₁₄ O	D	It can be oxidized to give a ketone				
23	Choose th	e correct stat	tem	ent for the followir	ng cl	hemical reaction.						
				H_2SO_4								
	An H at	tom and an OH		The OH group was	C	The OH group was	D	Two H atoms were				
	A group removed	have been d from the	B	removed from the	V	replaced by an H atom	ν	removed from the reactant				
	reactant			reactant								
24	which of	the following	; rep	bresents the genera	l co	ndensed formula f	or ai	n aldehyde?				
	A RCOC	ЭH	B	RCHO	C	RCOR	D	RCH ₂ OH				
25	What is the	he common n	ame	e of the compound	sho	wn below?						
	A Hydrox	yBenzene	B	Acetaldehyde	C	Phenol	D	Benzaldehyde				
26	What is the	he IUPAC na	me	of the compound s	how	n below?						
				CH ₃ CH ₂ CHCH ₂ CH — C—	н							
	A 5-Chlor methylh	o-3- nexanal	B	3-Chloro-5- methylhexanone	C	2-Chloro-4- methylhexanal	D	2-Chloro-4- methylhexanone				
27	What is tl	he IUPAC na	me	of the compound s	how	n below?						
				o								
	A 2-Pent	anone	B	Cyclopentanone	C	Cyclopropanone	D	Cyclobutanone				
28	Identify t	he organic co	mp	ound, which has hi	ghe	st boiling point.	_					
		$CH_2)_5CH_3$	В	CH ₃ (CH ₂) ₄ CHO	C	CH ₃ (CH ₂) ₄ CH ₂ OH	D	CH ₃ CH ₂ OH				
29	-	-		y miscible in water	<u> </u>		D					
29	1	L	ر- ی ا				I					
	A CH ₃ (CH	H ₂) ₅ CHO	B	CH ₃ (CH ₂) ₄ COCH ₂ C H ₃	C	CH ₃ CH ₂ CHO	D	CH ₃ CH ₂ CH ₃				
30	Which co	mpound is so	lub	le in heptane, but r	not s	soluble in water?						
	A (CH ₃) ₂ C	CH(CH ₂) ₅ CHO	B	CH ₃ CH ₂ CH ₃	C	CH ₃ CH ₂ CHO	D	None of the above				

Ques.				Que	estid	on		
no. 31	Ide	ntify the Tollens r	eag					
51	A	$K_2Cr_2O_7$	B	H_2SO_4	C	Ag₂O in aqueous NH₄OH	D	Cl ₂
32	Wh	lich compound(s)	woi	ld give a positive	e Tol			
52				0		0		
	A	Alcohols	B	Aldehydes	C	Ketones	D	Ethers
33	Wh	at is the product	of tl	he reduction of a	n ald	lehyde?		
		l		l		Carboxylic acids		Amines
	A	Primary alcohols	B		Ċ	-	D	Annies
34	Wh	at is the IUPAC r	am			C compound?		
				o=	-CI			
	A	4-Chloro-3- pentylcycloheptanone	В	1-Chloro-2-pentyl-	C	4-Chloro-3- pentylcyclohexanone	D	4-Chloro-3- pentylhexanone
		ne		4-cyclohexanone				
35	wh	They differ in the	rue		mpo C	unds when refer as They have the same	s Ison D	All of the above
	A	way that atoms are connected to one	B	They have different functional groups	C	molecular formula but the different structures	ν	statements are correct
26	XX /L	another	inal					
36		hich molecule is ch			C	ОН	D	
	Α	ОН	B	ОН	C		D	ОН
37	Ide	ntify number of C	hir	ality Centers in g	given	organic compound	d.	
					-J	PH		
	Α	1	B	2	C	3	D	4
38	Ide	ntify number of C	hir	ality Centers in gi		organic compound	•	
					\sim	_OH		
	A	1	B	2	\mathbf{C}^{c}	3	D	4
39		ntify the Chirality	v Ce	enters at labelled	carb	on C1 and C2		
•••								
		C1 is a chirality	I	C1 is not a		C1 and C2 are both		Neither C1 nor
	A	center and C2 is	B	chirality center	C	chirality centers	D	C2 are chirality
	Α	not a chirality center	D	and C2 is a chirality center				centers
40	Ho		Ce		in th	e compound given	belo	w?
					СН	₂ CH ₃		
				o=	≺ `	2013 Ж ₃		
	A	2	B	3	C		D	5
	A	~	D	5	U		ע	

ſ

(Chem 109 Chapter 13)

Ques. no.				Que	sti	0 n		
1	Wł	nich of these comp	our	ds is a secondary	ami	ide?		
	A	H ₃ C — C — CH ₂ — NH ₂	B	0 H ₃ C-C-CH ₂ -N CH ₃	C	H ₃ C-CH ₂ -C-N CH ₃	D	$\begin{matrix} H & O \\ I & \parallel \\ H_3C - N - C - CH_3 \end{matrix}$
2	Wł			e of the compound				
				СН ₃ О сH ₃ —С—С—О СH ₂ CH ₂ CH ₃	н			
	Α	2-Methyl-2- propylpropanoic acid	B	2-Methyl-2-propyl-1- propanoic acid	С	2,2-Dimethyl	D	2,2-Dimethyl-1- pentanoic acid
3	Wł			the labeled carbor				
5				$\begin{array}{cccc} C1 & C2 & C3 & O \\ \swarrow & \checkmark & \checkmark & \parallel \\ H_3C - CH_2 - C - NH_2 \end{array}$		-		
	A	C1 is an α carbon and C2 is a β carbon	B	C2 is an α carbon and C1 is a β carbon	C	C3 is an α carbon and C2 is a β carbon	D	C2 is an α carbon and C3 is a β carbon
4	Wł	nat is the common	nai	me of the compour	nd g	given below?		
			1	Br				
	Α	<i>m</i> -Bromobenzoic acid	B	3-Bromoaceto benzenoic acid	C	o-Bromobenzene carboxylic acid	D	3-Bromo-1- acetobenzoic acid
5	Wł	nat is the IUPAC 1	nam	e of the compound	d gi	ven below?		
				₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ — ^{III} —	-OCH	I ₂ CH ₂ CH ₃ Propyl heptanoate	D	4-Decanoate
	A	Heptyl propanoate		Hexyl propanoate	U	15 1	D	
6	111	e general test for o	cart	oxylic actus is:				
	A	Reduction test	B	Iodoform test	С	Acidity test	D	Oxidation test
7	Re	action between an	alc	ohol and a carbox	ylic	acid is called:		
	۸	Neutralization	R	Dehydration	C	Esterification	П	Reduction
8				e of the compound			ν	
o			14111		- 5 -			
		_	_	H_3C-CH_2-C			_	
	Α	N,N-dimethyl propanamide	B	<i>N,N</i> -dimethyl ethylamide	C	Dimethyl propanamide	D	Dimethylamino propanamide
9	Wł		e of	2-chloro-3-hydrox	xy-4	-methylpentanoic	ació	1?
	A	OH CI OH	B	OH CI	C	OH OH	D	CI OH
10	Wł	nich compound ha	s th	e highest boiling j	ooin	t?		
	A	(CH ₃) ₂ CHCH ₂ CHO	B	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COO H	C	(CH ₃) ₂ CHCH ₂ CH ₂ CH ₂ OH	D	CH ₃ (CH ₂) ₆ CH ₃

Ques. no.				Que	stic	on		
11	Wh	ich amide has the	lov	vest boiling point?				
	A	CH ₃ (CH ₂) ₅ CONH ₂	B	CH ₃ CH ₂ CON(CH ₂ CH ₃) ₂	C	CH ₃ (CH ₂) ₄ CONHCH ₃	D	CH ₃ (CH ₂) ₇ CONH ₂
12						Carboxylic acids r		
	A	Alcohols	B	Carboxylate salts	С	Esters	D	amides
13	Hy	drolysis of an este	r by	y an aqueous base	is ca	alled as:		
	A	Esterification	B	Saponification	С	Neutralization	D	Dehydration
14	Wh	ich of the followin	ng p	properly describes	soa]	ps?		
	A	Fatty acids	B	Salts of carboxylic acids that have a long hydrocarbon chain	C	Salts of carboxylic acids that have a short hydrocarbon chain	D	Carboxylic acids
15		at organic produ- sence of conc. sult			arbo	oxylic acid reacts v	with	an alcohol in the
	pre	I	1	1		Veterre		A
1.6	A	Ether				Ketone	D	Amide
16	Ide	ntily the products	5 Of	hydrolysis in the f	tollo	owing amide.		
				Č_N(CH ₃) ₂	+ H	I₂O <u>NaOH</u> ►		
	A	$\begin{array}{ll} C_6H_5COOH & + \\ (CH_3)_2NH & \end{array}$	B	C ₆ H ₅ COOH + CH ₃ NH ₂	C	$\begin{array}{ll} C_6H_5COONa & + \\ (CH_3)_2NH + H_2O \end{array}$	D	$\begin{array}{ll} C_6H_5CON(CH_3)_2 & + \\ H_2O + NaOH \end{array}$
17	Arı		-	-		increasing boiling	-	
	•	a)CH ₃ CH ₂ CH	i(CF	$(H_3)_2$ b)CH ₃	CH_2	cooh $c)Cl$	H ₃ C	$H_2 COCH_3$
10	A	b < c < a	B	b < a < c	\mathbf{C}	a < c< b	D	a < 0 < c
18	VV II	lat are the product	15 0	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COOH	₩Π : +	→ОН <u>H₂SO4</u> →		
	A			Cyclopentyl hexanoate	\mathbf{C}	Pentyl cyclopentanoate	D	Cyclopentyl pentanoate
19		_	n rea	acted with dimethy	ylan	nine, would produ	ce t	he compound
	sho	wn below?		CH ₃) 			
					, N−С сн₃	H ₃		
		CH ₃		CH3	C	CH3	D	N(CH _a) _a
	A		B	С-он	C	СН3	D	N(CH3)3
20	Wh	at products are fo	orm	0		sis of the ester sho	wn	below?
				сн3 сн3	CH ₂	₂ CH ₃		
	A	Ethanol and acetic acid	B	Acetic acid and water	C	Propanoic acid and ethanol	D	Acetic acid and ethane

Ques.				Questio	n							
no.	Wha	at products are form	od in	the base hydrolysis of		ostor shown hala		th NoOU?				
21	VV 112	it products are form	icu ili		л ш	e ester snown bei	· • • • • •					
	$CH_3 \longrightarrow C \longrightarrow CH_2 \longrightarrow CH_3$											
	A	Ethanol and acetic acid	B	Acetic acid and sodium ethoxide		Methanol and sodium propanoate	D	Sodium acetate and water				
22	The	IUPAC name of the	e comj	pound CH ₃ CH ₂ CON	HCH			1				
	A	Methylpropylamine	B	Butylamine	С	N-methyl propanamide	D	All are correct				
23	Whi	ch compound is the	most	soluble in water?								
	Α	CH ₃ CH ₂ CH ₂ COOH	B	CH ₃ (CH ₂) ₆ COOH	С	CH ₃ (CH ₂) ₆ CH ₃	D	CH ₃ (CH ₂) ₆ NH ₂				
24	Whi	ch statement concer	ning	carboxylic acids is in	corre		I					
	A	The functional group of a carboxylic acid is abbreviated as COOH or CO_2H .	B	Carboxylic acids are hydrogen ion donors.	С	The presence of carboxylic acid increases [H3O+] in an aqueous solution relative to water.	D	Carboxylic acid with a strong base produces a water- insoluble carboxylate salt.				
25	Identify the reagents which can be used to carry out the following reaction.											
-0				Сн₃соон►	CH ₃ C	OOC ₂ H ₅						
	A	C ₂ H ₅ OH	B	CH ₃ OH	С	C ₂ H ₅ OH/H ₂ SO ₄	D	CH ₃ OH/H ₂ SO ₄				
26	Sele	ct the correct name	of the	following structure	(CH ₃		COOI					
	Α	Pentanoic acid	B	4-Methylpentanoic acid	C	Hexanoic acid	D	2-Methyl pentanoic acid				
27	Clas	sify the following a	nine a	ns:								
					H ₃							
	A	Primary amine	B	Tertiary amine	С	Secondary amine	D	Quaternary amine				
28	Wha	at is the IUPAC nam		he compound shown								
				CH_2CH_2 $$ $\overset{H}{N}$ $$ CH_2C								
	Α	Propylhexylamine	B	N-propyl-1- hexanamine	С	N-hexyl-1- propanamine	D	Hexylpropylamine				
29	Wha	at amide is formed v	vhen p	pentanoic acid is heat	ted w	vith ethylamine	1	0				
	Α		B		С		D					
30	Whi	ch compound has th	ne hig	hest boiling point?								
	A	(CH ₃) ₂ CHCH ₂ COOCH ₃	B	CH ₃ (CH ₂) ₆ NH ₂	C	(CH ₃) ₂ CH(CH ₂) ₄ OH	D	CH ₃ (CH ₂) ₆ CH ₃				

ſ

Ques.				Ou	esti	on						
no. 31	Wł	at is the IUPAC	c nar									
	$\begin{array}{c} CH_{3}\\ CH_{3}CH_{2}CH_{2} - N \xrightarrow{H} CH_{2}CH_{3} & CI^{-} \end{array}$											
				N-Ethyl-N-methyl-1-	H H	N-Ethyl-N-methyl-N-		N-Methyl-N-				
	A	Ethylmethylpropyla mmonium chloride	B	propanammonium chloride	C	propylammonium chloride	D	propylethanammoniu m chloride				
32	Which amine has the highest boiling point?											
	A	CH ₃ (CH ₂) ₅ CH ₂ NH ₂	B	HN(CH ₂ CH ₃) ₂	C	CH ₃ (CH ₂) ₅ NHCH ₂ CH ₃	D	(CH ₂ CH ₃) ₃ N				
33	Wł	at products are	forr	ned when (Dime	ethyl	amine) reacts wi	th HC	21?				
	A	$(CH_3)_2NH^+Cl^-$	B	$(CH_3)_2NH_2$	C	$(CH_3)_2NH_2^+Cl^-$	D	$(CH_3)_3N^+Cl^-$				
34	Wł	nat is the name o	of the	e compounds wi	th th	e general formula	a of R	₄ N+ X-?				
	Λ	Tertiary	В	Quaternary	C	Tetraammonium	D	Tertiary ammonia				
35		ammonium salts		ammonium salts	nree	salts		salts				
33	Which of these functional groups is not present in atorvastatin?											
						л, снсн,2снсн,2—с—он						
				$\langle \rangle$		>						
	A	Carboxylic acid	B	Benzene	C	Ketone	D	Amine				
36	Wł	hat are the produ	ucts	in the acid–base	rea	ction shown below	v?					
					+ H	Br —						
	Α	+ Br	B	N + H ₂	C	N + H ⁺ H Br	D					
37	Ide	ntify the organi	c coi	npound which is	s mo	re soluble in wate	er:	1				
	A	CH ₃ (CH ₂) ₄ COOH	В	CH ₃ (CH ₂) ₅ COOH	C	CH ₃ (CH ₂) ₆ COONa	D	CH ₃ (CH ₂) ₆ COOH				
38			_		s the	higher boiling po	_					
			D			CH ₃ COOCH ₃		CH ₃ (CH ₂) ₃ OH				
20	A	CH ₃ CH ₂ COOH thyl formate is a	B	CH ₃ (CH ₂) ₂ OCH ₃	C		D					
39	IVIE	unyi tormate is a	ı/a11.									
	A	Aldehydes	B	Carboxylic acid	C	Alcohol	D	Ester				
40	Na	2CO ₃ solution gi	ves s	strong effervesce	ences	s with:						
	Α	Aldehydes	В	Carboxylic acid	C	Alcohol	D	Ester				

ſ

(Chem 109 Chapter 14)

Ques. no.				Quest	ion	S					
1		at is the name of the bo	nd	formed between glue	cose	and galactosemonos	sacc	harides to produce			
	the A	disaccharide lactose? α-1,2-glycosidic bond	R	β-1,4-glycosidic bond	C	a-1 A-glycosidic bond	D	β -1,2-glycosidic bond			
		ect the cyclic structures					ν				
2	A	$\begin{array}{c} \begin{array}{c} CH_3 \\ H \\ H \\ OH \end{array} \begin{array}{c} O \\ H \end{array} \begin{array}{c} O \\ H \end{array} \begin{array}{c} CH_2 OH \\ OH \end{array} \end{array}$	B		C		D	CH2OH O OH H H H H CH2OH			
3	Wh	en D-glucose is treated	wit	h Benedict's reagent	a l	blue solution)					
	A	No reaction takes place	B	Brick red ppt is formed	C	Violet colour is formed	D	Odour of formaldehyde			
4	Nu	mber of chirality center	(s) i	in Ketotriose is/ are.	••••						
	A	0	B	1	C	2	D	3			
5	Wh	ich of the following mo	nos	accharides represent	ts L						
		СНО		СН2ОН		сно н——он					
	A	но———н н———он	В	но—н	C	но———н	D	н——он			
	A	н———он	D	но——н		но——н	ν	н———он			
		 СН₂ОН		 СН ₂ ОН		 СН₂ОН		СН ₂ ОН			
6	6 The structure given below corresponds to a disaccharide in the form of :										
					Çн₂он						
					H OH						
		1	п				р				
	A	α-glycoside	B	β-glycoside	C	δ-glycoside	D	None of the above			
7	Ine	e hydrolysis of monosac	cna	rides gives		One unit of glucose					
	A	One unit of glucose and one unit of fructose	B	Two units of glucose	C	and one unit of	D	None of the above			
						galactose					
8	-	e hydrolysis of maltose	giv	es two units of gluc	ose	(C6H12O6), molecu	llar	formula of maltose			
	is A	$C_{12}H_{23}O_{12}$	B	$C_{12}H_{22}O_{11}$	C	$C_{12}H_{22}O_{10}$	D	$C_{12}H_{12}O_{6}$			
9		en a D-aldotetrose is tr			pro		_				
		СНО		Сн ₂ ОН		СООН		CH ₃			
	•	Н—————————————————————————————————————	п	н———он		н——он	n	Н———ОН			
	Α	н———он	B	н———он	C	н——он	D	н——он			
		 СН ₂ ОН		 СН₂ОН		 СН ₂ ОН		СH ₂ OH			
10	D-g	lucose and D-fructose a			t re						
	A	Constitutional isomers	B	Cis-trans isomers	C	Enantiomers	D	Identical molecules			

Ques. no.				Quest	ion	S				
11	Cel	lulose is an unbranche	d po		epe		ts jo	ined in a		
	A	$1 \rightarrow 4-\beta$ -glycosidic	В	$1 \rightarrow 4 - \alpha$ -glycosidic	С	$1 \rightarrow 2\beta$ -glycosidic	D	$1 \rightarrow 2 - \alpha$ -glycosidic		
10		linkage	the	linkage		linkage		linkage		
12	a-Isomer of cyclic form of the given sugar will be as Η ΟΗ Η ΟΗ									
	$HOCH_2 - \dot{C} - \dot{C} - \dot{C} - CHO$									
	ļ	CH ₂ OH		ОН СН ₂ ОН	н С	он й СН ₂ ОН		CH ₂ OH		
	٨	OH H H	B		C	OH O OH	n			
	A	Н Н ОН	D	он он	U	й Н Н	D	Н ОН ОН		
	1371	ÓH ÓH		он н	Т	<u> </u>		О́Н Н́		
13	vv h	ich of the following mo сно	nos	accharides represent c₊₂oн	ts L	-ketopentose? çнo		ÇH₂OH		
		но——н				н———он		0		
	A	Н—————————————————————————————————————	В	но——н	C	но——н	D	нон		
	A	нон	D	но—н	U	но——н		н он		
		СН₂ОН		СН₂ОН				СН2ОН		
11	Th	e following given sugar	is cl			ĊH ₂ OH				
14	1 110	ionoming given sugar	15 U		(DH				
				H	H					
				Н	ОН	CH ₂ OH				
	A	α-isomer	B	β-isomer	C	D-isomer	D	L-isomer		
15		e number of Chirality (1	e be	low is/ are :				
		•		OH H	ОН 	H 				
				$HOCH_2 - \dot{C} - \dot{C} - \dot{C} - \dot{C}$		Ċ—-СНО 				
		2	р	н́ О́н	Ĥ	ÓH		0		
	A	2	B	4 L Chucoso in given (U	6	D	ō		
16	Sele	ect the correct structur сно		L-Glucose in given (сн₂он	pu	сно		сн₂он		
		н——он		o		но——н		o—		
		но———н		но———н		н———он		н—————————————————————————————————————		
	A	н———он	B	н————ОН	C	но———н	D	но———н		
		н———он		н———Он		НО———Н		НО———Н		
		 СН₂ОН		CH₂OH		CH ₂ OH		∣ Сн₂ОН		
17	Ide	ntify the cyclic structur	es o	of β-D-fructose:			1			
		сн₂он_о_ сн₂он		CH ₂ OH CH ₂ OH		CH₂OH O OH		CH ₂ OH O CH ₂ OH		
	A	HOF	B		С	H OF	D	ОН ОН		
		Н Н ОН		н јон он		н <mark>т</mark> сн₂он он н		н Гон н Н		

Ques									
Ques. no.		Questions							
31	Identify two compounds of the following that are enantiomers								
		н он но но но но но							
		н——он но——н н——он но——н							
		ĊH₂OH ĊH₂OH ĊH₂OH ĊH₂OH A B C D							
	A A, B	$\mathbf{B} \mid \mathbf{A}, \mathbf{D} \mathbf{C} \mid \mathbf{B}, \mathbf{C}$	D C, D						
32		onal isomers in given structures							
52		СН₂ОН СН2 							
		—о но—н							
		Н——ОН НО——Н НО——Н							
		Н—ОН НО—Н Н—ОН							
		ĊH ₃ ĊH ₂ OH ĊH ₂ OH А в С							
	A A,B	B A,C C B,C	D None of the above						
33	Which carbohydrates cann	ot be converted to simpler compounds by hydr	rolysis?						
	A Disaccharides	B Monosaccharides C Polysaccharides	D Starches						
34	Monosaccharides with a ca	bonyl group at C1 are called?							
	A Anomers	B Aldoses C Ketoses	D Alditols						
35	Classify the compound sho								
		сно н—с—он							
		но-с-н							
		 н—ç—он							
		н — с — он							
		CH ₂ OH							
	A Aldohexose	B Ketohexose C Aldopentose	D Ketopentose						
36	Classify the compound sho								
		н—с—он Спон							
	A Tetraketose	B Ketotriose \mathbf{C} Ketotetrose	D Aldotriose						
27	A Tenaketose Which monosaccharide is a								
37	CH ₂ OH								
		СНО СНО	СНО						
	\mathbf{A}	\mathbf{B} HO- $\dot{\mathbf{c}}$ -OH \mathbf{C} H- $\dot{\mathbf{c}}$ -OH	\mathbf{D} $\dot{\mathbf{c}} = \mathbf{o}$						
	H-C-OH								
	CH ₂ OH	CH ₂ OH CH ₂ OH	ĊH ₂ OH						

Ques. no.				Quest	ion	IS		
50	Whic	h naturally-occurring	g me	onosaccharide forms	the	Haworth structure	sho	wn below?
					ОН	н		
	A	СНО H — С — ОН HO — С — Н HO — С — Н H — С — ОН I — С — ОН CH ₂ OH	B	СНО НО—С—Н Н—С—ОН Н—С—ОН Н—С—ОН Ц СН ₂ ОН	C	$CH_{2}OH$ $C==0$ $HO=-C=-H$ $HO=-C=-H$ $H=-C=-OH$ $CH_{2}OH$	D	$\begin{array}{c} CHO \\ \\ HO - C - H \\ H - C - OH \\ \\ H - C - OH \\ \\ HO - C - H \\ \\ CH_2OH \end{array}$
51		Fischer projections of		monosaccharides a	re s	hown below. Which	ter	m best describes the
	relati	onship between the tv	wo?	СНО		СНО		
				но—н	Н	о н		
				НО НО	Н	о———н		
				НО Н		о н		
				Н ОН СН ₂ ОН	Н	O H CH ₂ OH		
	Α	Enantiomers	B	Anomers	C	Constitutional	р	Diastereomers
50						isomers		
52		n a monosaccharide f ew chirality center, c		÷		e carbon atom that i	s pa	irt of the heimacetai
	Α	True			B	False		
53		<i>a</i> anomer of a cyclic n	ion	osaccharide has the	-OF	I group drawn down	, be	low the ring.
55	Α	True			B	False	,	0
54	The r	nonosaccharide show	n b	elow is an α anomer.				
				H	-0_H	×		
				HO	\dashv	ОН		
		I		H H OF	1			
	Α	True			B	False		
55		uilibrium, a solution he acyclic aldehyde.	of g	glucose in water is a	n eq	ual mixture of the o	and	omer, the β anomer,
	Α	True			B	False		
56	Certa	in monosaccharides-	—n	otably aldopentoses	and	l ketohexoses—forn	n fiv	ve-membered rings,
		x-membered rings, ir	n sol	lution.	-			
	Α	True		_		False		
57	The r	nonosaccharide show	n b	elow is an β anomer.	үн			
						ЭН		
	Α	True			B	False		

Ques. no.		Questions	
58		carbonyl group of an aldose is reduced to a secondary alcohol using hydrogen	$(\mathbf{H}_2), \mathbf{in}$
	_	sence of palladium (Pd) metal.	
	A	True B False	
59		alditol contains an –OH group on every carbon atom. True B False	
(0)	A Corb		ico thou
60		bohydrates that are oxidized with Benedict's reagent are called reducing sugars, becau uce the Cu ²⁺ in Benedict's reagent to Cu ⁺ during the reaction.	ise they
	Α	True B False	
61	All al	aldoses and ketoses are reducing sugars.	
01	Α	True B False	
62	All di	disaccharides contain at least one acetal that joins the rings together.	
	٨	True B False	
	A		
63	The d	disaccharide shown below has anβ-glycosidic linkage.	
	A	True B False	
64	Hydr	Irolysis of the disaccharide below yields the indicated products.	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	A	он он н он он он н он True В False	
65		ulose is a highly branched polymer composed of repeating glucose units joined in a	$1 \rightarrow 4 - \alpha$
65		cosidic linkage.	i 1→4-u
	Ă	True B False	
66		Idohexoses, it is the -OH group on C5 that reacts with the aldehyde carbonyl to fo	rm two
	cyclic	ic hemiacetals, called anomers.	
	A	True B False	
67		-galactose and β -D-galactose are enantiomers.	
(0)	A	True B False	
68	The s	structure shown has four (4) chirality centers and is a D monosaccharide.	
		нон	
		н—с—он	
		н—с—он он	
		Н—С—ОН СН ₂ ОН	
	Α	True B False	

Ques. no.			Quest	ion	IS
69	Gluce	ose and other naturally oc			
	A	True		R	False
70			ow is oxidized by Bo		ict's reagent, the indicated product results.
10			СНО		СНО
			но н	.2	HO H
			НО Н <u>2 Cu⁴</u> H ОН ОН	-	НО — Н Н — ОН
			н—————————————————————————————————————		Н ОН
			 СН ₂ ОН		Соон
	Α	True		B	
71		ohydrates are structura ounds that can be hydrol	• • •	•	roxyaldehydes ORpolyhydroxyketones, or
	comp	ounus that can be hydror	yzeu to any of them	•	
	Α	True		B	False
72	Disac	ccharides contain two car	oonyl groups.		
	Α	True		B	False
73		osaccharides with a carbo	nyl group at C2 are		
10		1		1	
	A	True			False
74	All Ca	ardonyarates, except for a	unyaroxyacetone, c	onta	in one or more chirality centers.
	Α	True		B	False
75	The t	wo monosaccharides show	wn below are related	d as	enantiomers.
			ÇНО		СНО
			но——н	НО	н
			но—н	НО	н
			но——н	НО	H
			н——он	НО	
	•	True	CH ₂ OH	п	ĊH ₂ OH
	Α	True		B	False

(Chem 109 Chapter 16)

Ques. no.	Question											
1	Which is the simplest amino acid?											
	A	Serine	В	Glutamine	С	Cysteine	D	Glycine				
2	What is the three-letter abbreviation of asparagine?											
	A	Asp	B	Asg	C	Asn	D	Arg				
3		What is the charge on a zwitterion?										
	A	Positive	B	Neutral	C	Negative	D	None of this				
4	What is the charge on an amino acid at a pH below its pI?											
	A	Positive	B	Neutral	C	Negative	D	None of this				
5	How many different dipeptides can be formed when one valine reacts with one glycine?											
		1	n		C	2	Б	4				
(A	1 many different	B		C		D					
6	How many different tripeptides can be formed when one isoleucine, one alanine, and one glycine react?											
		1	I	I	1	I	1					
	Α	3	B	6	C	18	D	27				
7	What	is the C-terminal	l amir	no acid in the tetra	apepti	ide glycylalanyis	oleucy	Imethionine?				
	Α	Alanine	B	Glycine	С	Methionine	D	Isoleucine				
8	What	is the N-termina	l amiı	no acid in the tetra	apepti	ide glycylalanyis	oleucy	Imethionine?				
	Α	Alanine	B	Glycine	С	Methionine	D	Isoleucine				
9	How	many chirality	cente	rs are in leu-enk	kepha	lin (structure s	hown)?				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
		1	I	OH	1		1					
	Α	3	B	4	С	5	D	6				
10	All amino acids have at least one chirality center.											
	Α	True	В	False	C		D					
	1		U									

Ques. no.	Question										
11	Humans can synthesize only twenty of the amino acids needed for proteins.										
	Α	True		False			D				
12	D-Amino acids have the $-NH_3^+$ group on the left side in the Fischer projection.										
	Α	True	B	False	C		D				
13	The Fischer projection below represents a naturally occurring amino acid.										
					çoo -						
	$H - NH_3$										
		_	-	1	I CH ₂ CC	00	.				
	A	True	B	False	C		D				
14	A dip	eptide contains t	wo a	mino acids joine	ed tog	gether by two ar	nide b	oonds.			
	Α	True	B	False	C		D				
15	The a	mide bonds in pe	eptid	es and proteins	are c	alled peptide bo	onds.				
	Α	True	B	False	C		D				
16	•	,				•	at th	e right end of the			
	pepti	de chain and the	in-tei			the left.					
	Α	True	B	False	C		D				
17	Acidic amino acids have lower p <i>I</i> values than basic amino acids.										
	Α	True	B	False	C		D				
18	Glyci	ne exists primari	ly in	its neutral form	n at a						
	Α	True	B	False	C		D				
19		eptide leucylpheny			_	viated as Leu–Phe		–Val–Val.			
17	•	True	B	False	C		D	I			
20	A Amin					in the side chai		classified as acidic			
20		o acids.	-	- 8-	T.		-				
	Α	True	B	False	C		D				

Kingdom of Saudi Arabia
Ministry of Higher Education
Jazan University
Preparatory Year DeanshipImage: Constraint of the second secon

Ques.	Question											
no. 21	Fill in the blank. 'Proteins are											
	A	Amino acids connected through hydrogen bonds linkage	B	Polypeptide chains connected through amide linkages	C	Polypeptide chains connected through glycosidic linkages	D	None of the above				
22	After addition of an acid in zwitter ion of an amino acid (X) has net positive charge is											
	1, the pH of amino acid will be											
	A	pH=6	B	pH≤2	С	pH≥2	D	pH=10				
23	Classification of the given amino acid is											
	$\bar{o}oc - CH_2 - co\bar{o}$											
	NH ₃											
	A	Neutral	B	Basic	C	Acidic	D	Zwitterion				
24	Cla	ssification of the giver		ino acid is	-							
	A	Neutral	B	с́н₂сн₂сом Basic	IH ₂	Acidic	D	Zwitterion				
25	Th	A Neutral D Dasc C D D The net charge of the zwitterion of an amino acid is :										
	A		B		C	zero	D	+1				
26	Th	e pH at which the amin	no ao	cid exists primarily	7 in 1	its neutral form i	s cal	led as				
	A	Hydrogen bond	B	Melting point	C	Isoelectric point	D	Boiling point				
27	Tw	o amino acids joined t						•••••				
	Δ	Tripeptide	B	Dipeptide	С	Polypeptide	П	Tetrapeptide				
28	Ne	utral amino acid at pH			ted	form which will b	be as	S				
		l		l		Cationic	р	all of them				
	Α	Zwitterion	B	Anionic form (-1)	C	form(+1)	D					
29	Sel	ect the amino acid whi	ich d	oes not have <i>Chira</i>	lity	Center.						
	A	Alanine	B	Glycine	C	Histidine	D	Aspartic acid				
30	On	e peptide structure is g	giver	ı below; classificat	ion	of this peptide is.	•••••	<u>.</u>				
	$\begin{array}{c} & & & & \\ H_3\dot{N}-CH-C-N-CH-C-N-CH-C-O-\\ & & & \\ H_2 & H & CH_3 & H & CH_2 \\ & & & CH_2 -CH_2 \\ & & & CH_2 -CH_2 \end{array} $											
	A	Dipeptide	B	Tetrapeptide	C	Monopeptide	D	Tripeptide				

