

PHYS 101

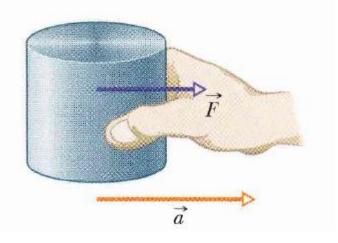
Ch. 4

Newton's Laws of Motion

Chapter 4

Chapter Four Newton's Laws of Motion

- Force and Interactions
- Newton's First Law
- Newton's Second Law
- Mass and Weight
- Newton's Third Low



Force and Interactions

Force

- Forces are vector quantities.
- The direction of a fore is the direction of the acceleration it causes.
- The net force on a body is the vector sum of all the forces acting on the body.

If no *net* force acts on a body ($\vec{F}_{net} = 0$), the body's velocity cannot change; that is, the body cannot accelerate.

Newton's First Law

Newton's First Law

Newton's First Law: If no force acts on a body, the body's velocity cannot change; that is, the body cannot accelerate.

Newton's First Law

Example 1:

A car travels east at constant velocity. The net force on the car is:

Solution:

(C)

- (A) greater than zero
- (B) less than zero
- (C) zero
- (D) 9.8 N

Newton's First Law

Example 2:

A 3 kg box is moving with a constant speed. The net force on the box is:

Solution:

(D)

- (A) 245.1 N
- (B) 190.2 N
- (C) 31.5 N
- (D) zero

Newton's Second Law

Newton's Second Law

Newton's Second Law: The net force on a body is equal to the product of the body's mass and its acceleration.

$$\vec{F}_{\text{net}} = m\vec{a}$$
 (Newton's second law)

which may be written in the component versions

$$F_{\text{net},x} = ma_x$$
, $F_{\text{net},y} = ma_y$, and $F_{\text{net},z} = ma_z$

The second low indicates that in SI units

$$1 \text{ N} = (1 \text{ kg})(1 \text{ m/s}^2) = 1 \text{ kg} \cdot \text{m/s}^2$$

Newton's Second Law

Example 3:

Two forces are applied to an object of mass 18.25 kg. One force is 27.5 N to the north and the other is 24.0 N to the west. The magnitude of the acceleration of the object is:

Solution:

(A) 5.0 m/s^2

(B) 4.0 m/s^2

(C) 3.0 m/s^2

(D) 2.0 m/s^2

University of Jeddah

Newton's Second Law

Example 4:

Three forces act on a particle in which it moves with constant speed, if $\overrightarrow{F_1} = (-8i)N$ and $\overrightarrow{F_2} = (-10j)N$. Then $\overrightarrow{F_3}$ is:

Solution:

(A)

- (A) $8\hat{i} + 10\hat{j}$
- (B) 8î
- (C) $-8\hat{i} 10\hat{j}$
- (D) 10ĵ

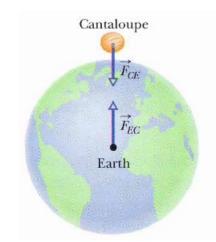
Mass

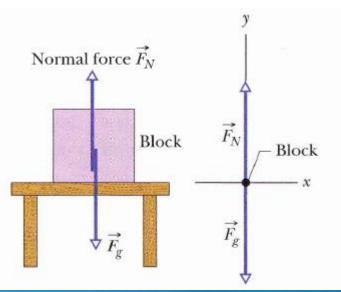
- Masses are scalar quantities.
- The mass of a body is the characteristic of that body.
- It relates the body's acceleration to the net force causing the acceleration.

Some Particular Forces

The Gravitational Force

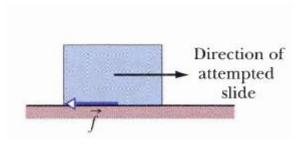
$$F_g = mg$$
.

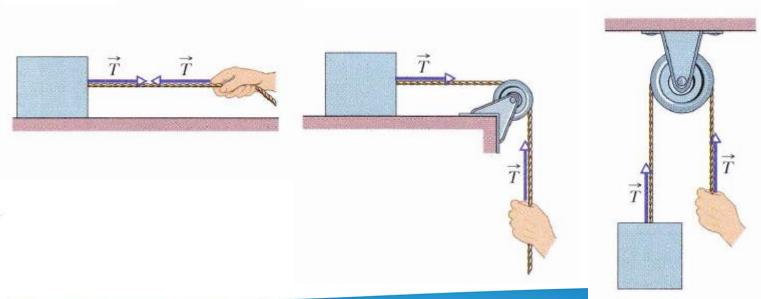

Weight


$$W = mg$$

The Normal Force

$$F_N - mg = ma_y.$$


$$F_N = mg$$
.



Friction

Tension

Example 5:

A 60 kg person weighs 100N on the moon. The acceleration of gravity on the moon is:

Solution:

(B)

- (A) zero
- (B) 1.67 m/s^2
- (C) 4.9 m/s^2
- (D) 9.8 m/s^2

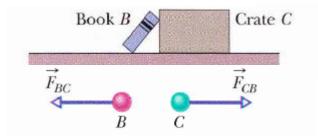
Example 6:

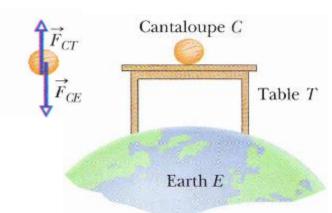
A man of mass 50 kg. His weight is:

Solution:

(A)

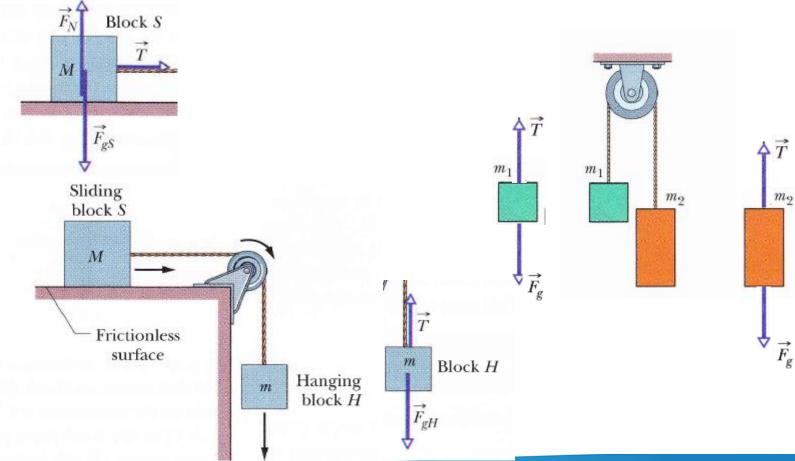
- (A) 490 N
- (B) 98 N
- (C) 50 N
- (D) zero

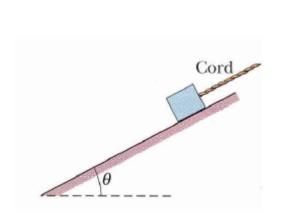

Newton's Third Law

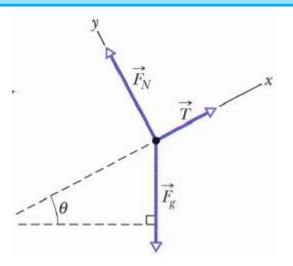


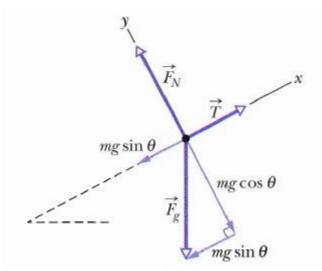
Newton's Third Law: When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

$$F_{BC} = F_{CB}$$
 (equal magnitudes)


$$\vec{F}_{BC} = -\vec{F}_{CB}$$
 (equal magnitudes and opposite directions),







Applying Newton's Laws

