

PHYS 101

Ch. 4

Newton's Laws of Motion

Chapter 4

Chapter Four
 Newton's Laws of Motion

- Force and Interactions
- Newton's First Law
- Newton's Second Law
- Mass and Weight
- Newton's Third Low

Force and Interactions

Force

- Forces are vector quantities.
- The direction of a fore is the direction of the acceleration it causes.
- The net force on a body is the vector sum of all the forces acting on the body.

If no net force acts on a body ($\vec{F}_{\text {net }}=0$), the body's velocity cannot change; that
 is, the body cannot accelerate.

Newton's First Law

Newton's First Law

Newton's First Law: If no force acts on a body, the body's velocity cannot change; that is, the body cannot accelerate.

Newton's First Law

Example 1:

A car travels east at constant velocity. The net force on the car is:

Solution:
(C)
(A) greater than zero
(B) less than zero
(C) zero
(D) 9.8 N

Newton's First Law

Example 2:

A 3 kg box is moving with a constant speed. The net force on the box is:

Solution:
(D)
(A) 245.1 N
(B) 190.2 N
(C) 31.5 N
(D) zero

Newton's Second Law

Newton's Second Law

Newton's Second Law: The net force on a body is equal to the product of the body's mass and its acceleration.

$$
\vec{F}_{\text {net }}=m \vec{a} \quad \text { (Newton's second law) }
$$

which may be written in the component versions

$$
F_{\text {net }, x}=m a_{x}, \quad F_{\text {net }, y}=m a_{y}, \quad \text { and } \quad F_{\text {net }, z}=m a_{z}
$$

- The second low indicates that in SI units

$$
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

Newton's Second Law

Example 3:

Two forces are applied to an object of mass 18.25 kg . One force is 27.5 N to the north and the other is 24.0 N to the west. The magnitude of the acceleration of the object is:

Solution:

(D)
(A) $5.0 \mathrm{~m} / \mathrm{s}^{2}$
(B) $4.0 \mathrm{~m} / \mathrm{s}^{2}$
(C) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(D) $2.0 \mathrm{~m} / \mathrm{s}^{2}$

Newton's Second Law

Example 4:

Three forces act on a particle in which it moves with constant speed, if $\overrightarrow{F_{1}}=(-8 \hat{\mathrm{i}}) \mathrm{N}$ and $\overrightarrow{F_{2}}=(-10 \hat{\mathrm{j}}) \mathrm{N}$. Then $\overrightarrow{F_{3}}$ is:

Solution:
(A)
(A) $8 \hat{i}+10 \hat{j}$
(B) $8 \hat{\mathrm{i}}$
(C) $-8 \hat{i}-10 \hat{j}$
(D) $10 \hat{j}$

Mass and Weight

Mass

- Masses are scalar quantities.
- The mass of a body is the
 characteristic of that body.
- It relates the body's acceleration to the net force causing the acceleration.

Mass and Weight

Some Particular Forces

The Gravitational Force

$$
F_{g}=m g
$$

Weight

$$
W=m g
$$

The Normal Force

$$
\begin{gathered}
F_{N}-m g=m a_{y} . \\
F_{N}=m g .
\end{gathered}
$$

Mass and Weight

Friction

Tension

Physics Department

Mass and Weight

Example 5:

A 60 kg person weighs 100 N on the moon. The acceleration of gravity on the moon is:

Solution:
(B)
(A) zero
(B) $1.67 \mathrm{~m} / \mathrm{s}^{2}$
(C) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Mass and Weight

Example 6:

A man of mass 50 kg . His weight is:
Solution:
(A)
(A) 490 N
(B) 98 N
(C) 50 N
(D) zero

Newton's Third Low

Newton's Third Law

Newton's Third Law: When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

$$
\begin{aligned}
& F_{B C}=F_{C B} \quad \text { (equal magnitudes) } \\
& \vec{F}_{B C}=-\vec{F}_{C B} \quad \text { (equal magnitudes and opposite directions) }
\end{aligned}
$$

Earth E

Newton's Third Low

Applying Newton's Laws

Newton's Third Low

Newton's Third Low

