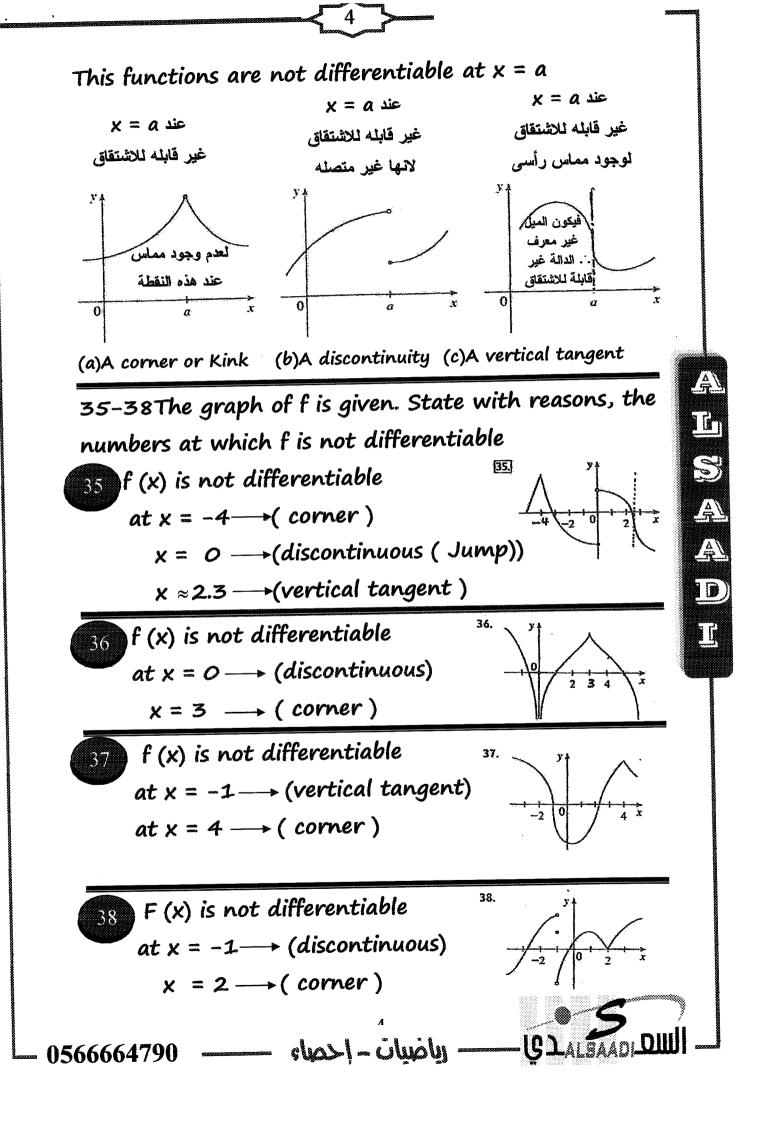
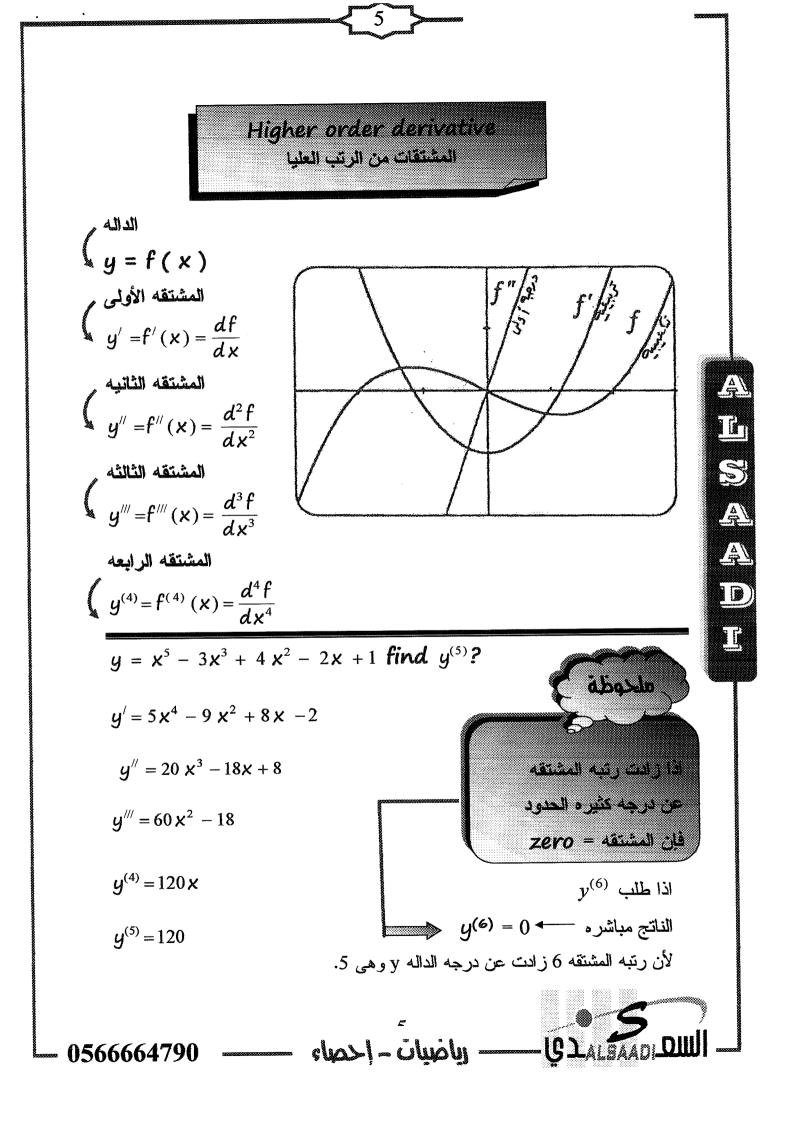
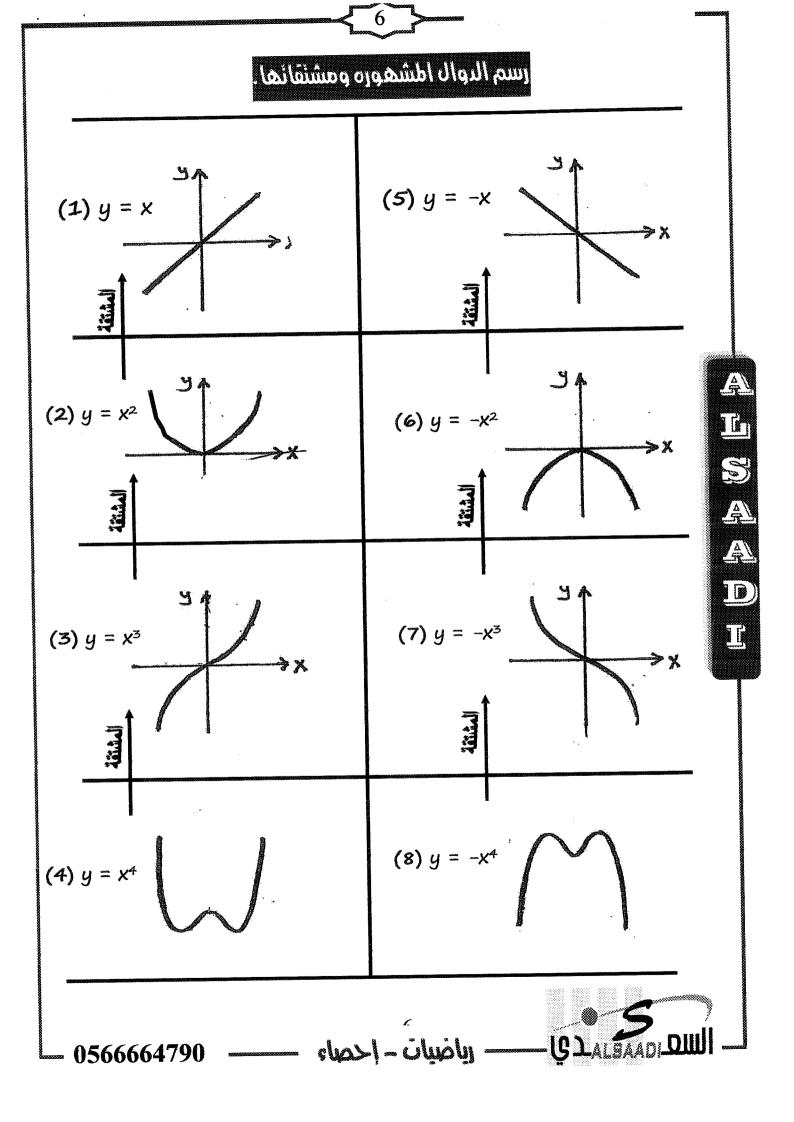
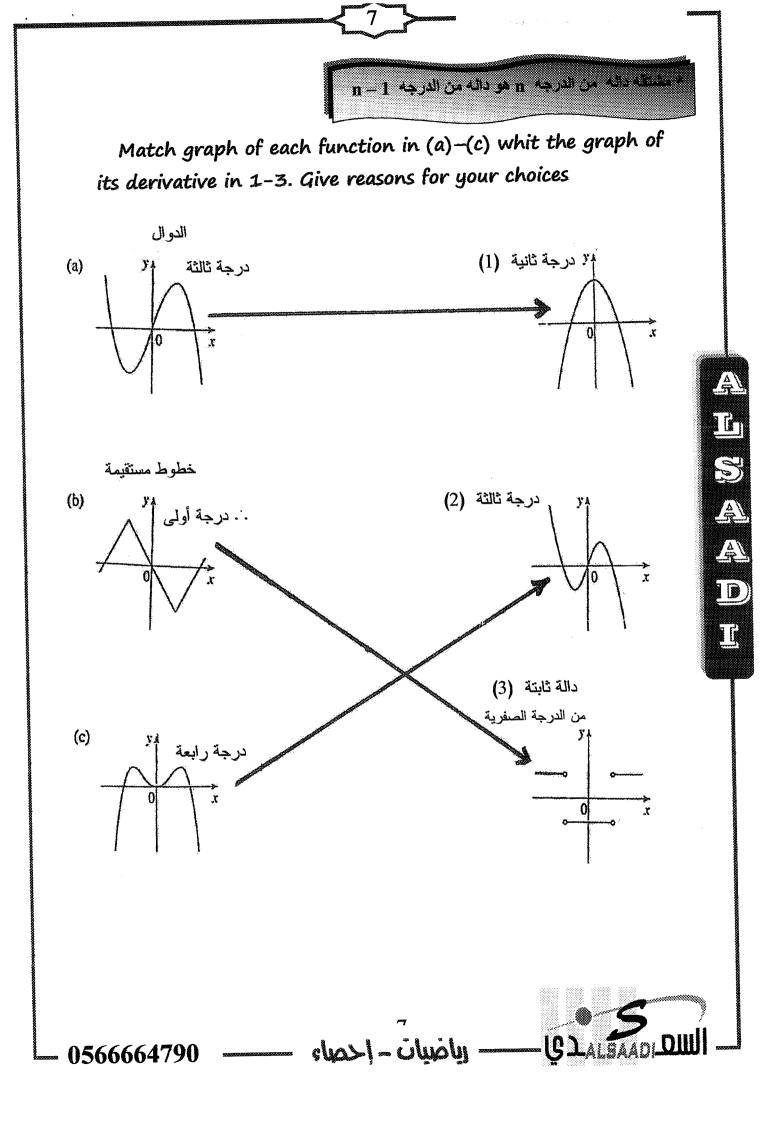
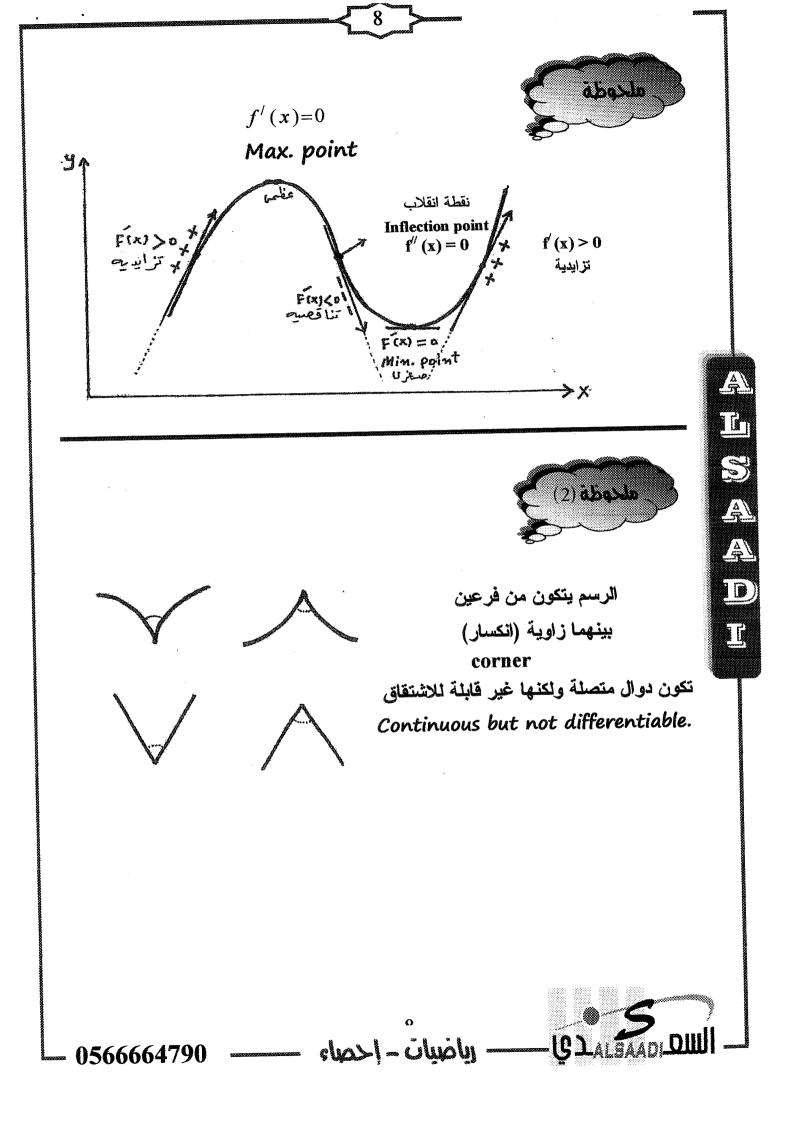

Chapter Four Differentiation 4.1 The Derivative as a Functions

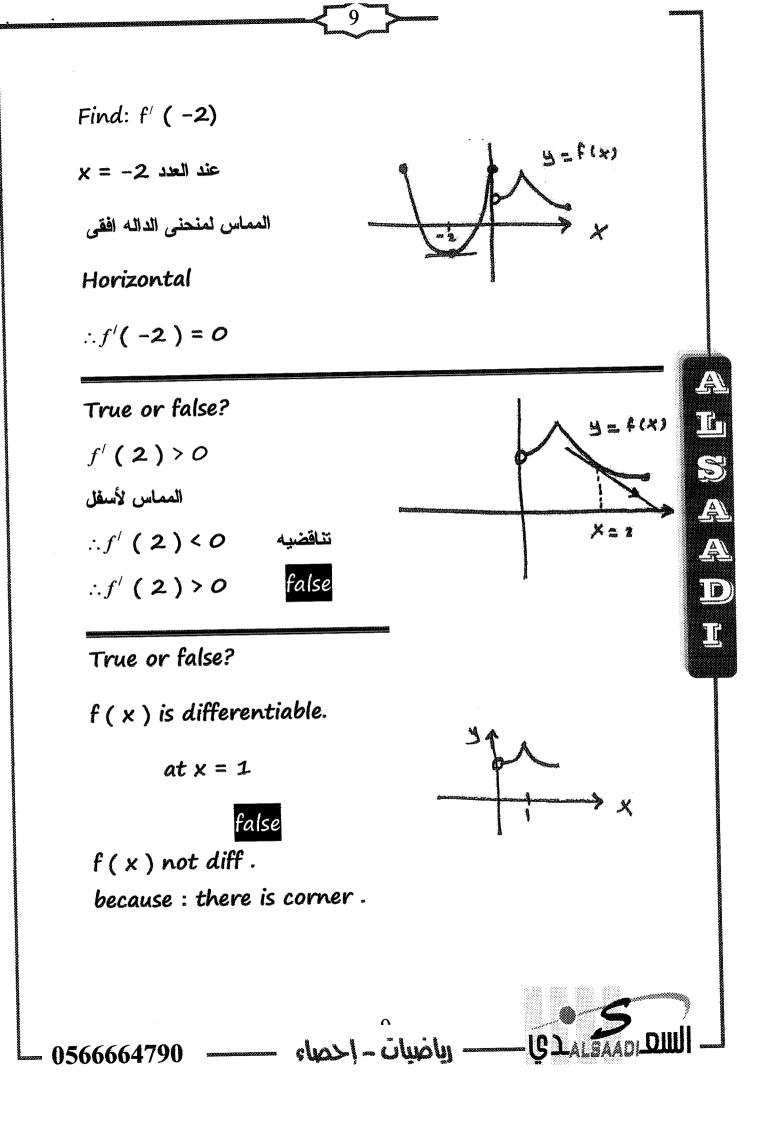



جمال السعـدي رياضيات - إحصاء





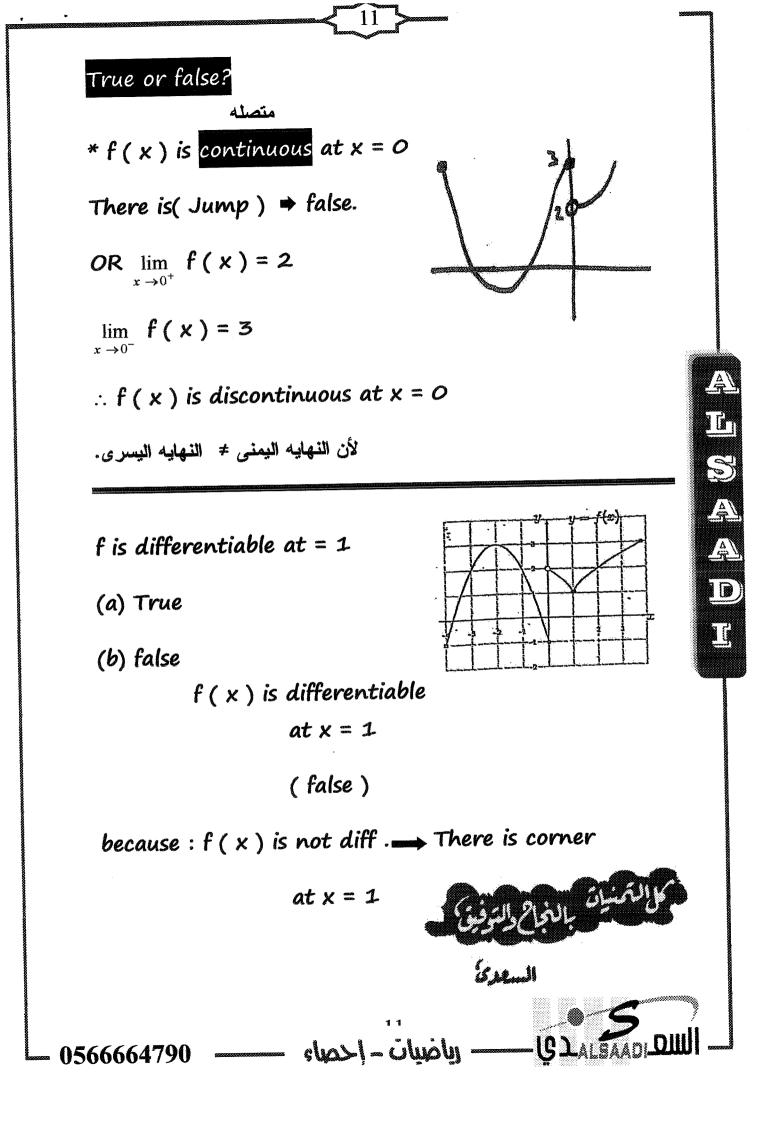


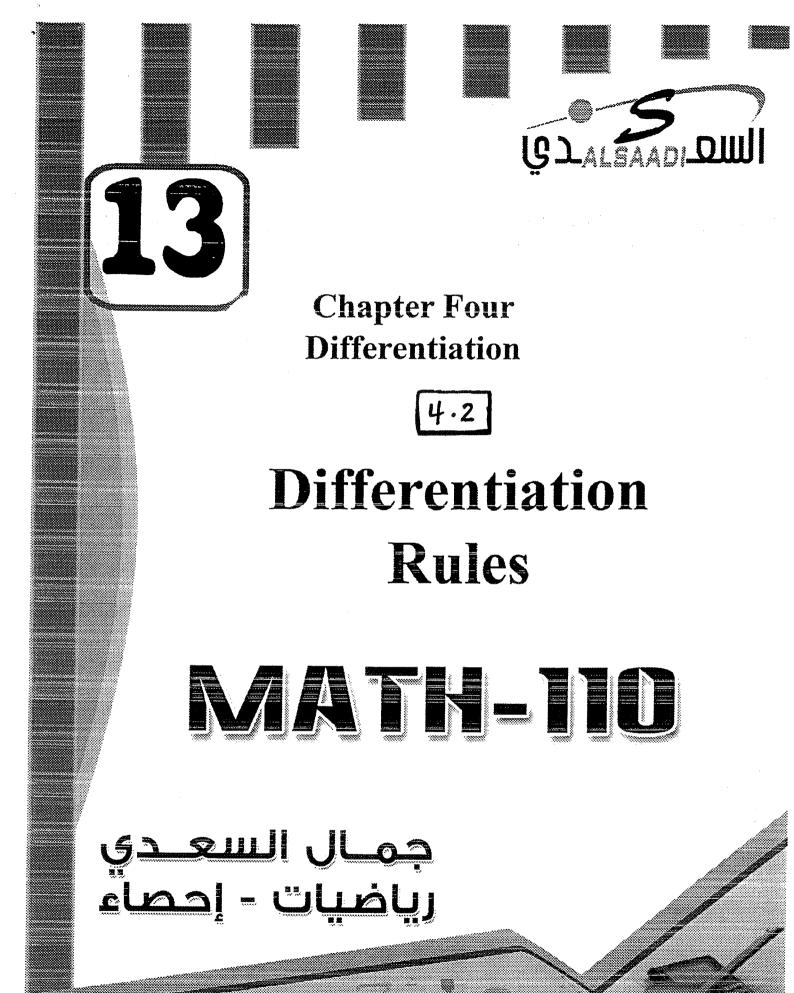


(c) 1 (d) 3

f'(-2)

عند العدد = - x = - 2


Horizontal


 $\therefore f'(-2)=0$

The accompanying figure shows the graph of y = f(x)

S

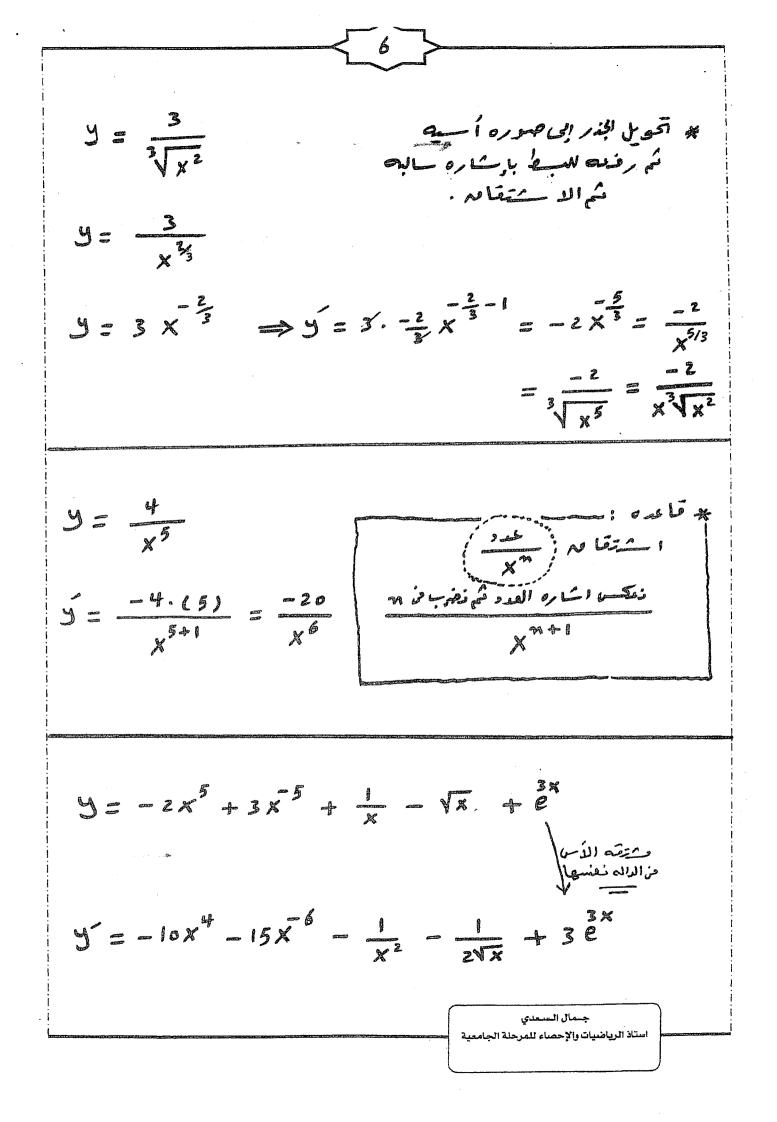
$$\frac{(H + 2)}{(H + 2)}$$
Derivatives of polynomials and exponential function.
The product and quotient Rules.
Differentiation Rules
(1) $F(x) = C$ where c is constant.
 $F'(x) = 0$ (zero $-ixin$ function)
(2) $F(x) = ax$ where a is constant.
 $F'(x) = a$ (Jain during the second stant)
(3) $F(x) = ax^{m}$ where a is constant.
 $F'(x) = m \cdot ax^{m-1}$ (Join during the second stant)
(4) $F(x) = a(x) \cdot h(x)$ (Join during the second stant)
(4) $F(x) = a(x) \cdot h(x)$ (Join during the second stant)
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x) = \frac{(x)}{(h(x))}$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x) = \frac{(x)}{(h(x))}$ (x) $f(x) = \frac{(x)}{(h(x))}$ (x) $f(x)$
 $F'(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ (x) $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ (x) $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f(x)$ (x) $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f(x)$ (x) $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f(x)$ $f(x)$ $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f(x)$ $f(x)$ $f(x)$ $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f(x)$ $f(x)$ $f(x)$
(5) $F(x) = \frac{(x)}{h(x)}$ (x) $f(x)$ $f($

$$\frac{2}{F(x) = n()^{n-1} \cdot u^{n} du | u^{n} u^{n} u^{n} u^{n} du | u^{n} u^{n}$$

$$y = \frac{2x^{3} - 6x^{4}}{2x^{2}}$$

$$y = \frac{2x^{3}}{2x^{2}} - \frac{6x^{4}}{2x^{2}}$$

$$y = \frac{2x^{3}}{2x^{2}} + \frac{x^{5}}{x^{\frac{1}{2}}}$$


$$y = \frac{2x^{3}}{2x^{2}} + \frac{2x^{5}}{x^{\frac{1}{2}}}$$

$$y = \frac{2x^{3}}{2x^{2}} + \frac{2x^{2}}{x^{\frac{1}{2}}}$$

$$y = \frac{2x^{3}}{2x^{2}} + \frac{2x^{3}}{2x^{2}}$$

$$y = \frac{2x^{3}}{2x^{2}} + \frac{2x^{3}}{2x^{3}} + \frac{2x^{3}}{2x^{3}} + \frac{2x^{3}}{2x^{3}} + \frac{2x^{3}}{2x^$$

• •

$$\frac{Page 187}{(3)} = \frac{(3)x - 1}{(2x + 1)^2} \quad \text{Find } g'(x) ?$$

$$g'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$g'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$g'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$g'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$F(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$F(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(-1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

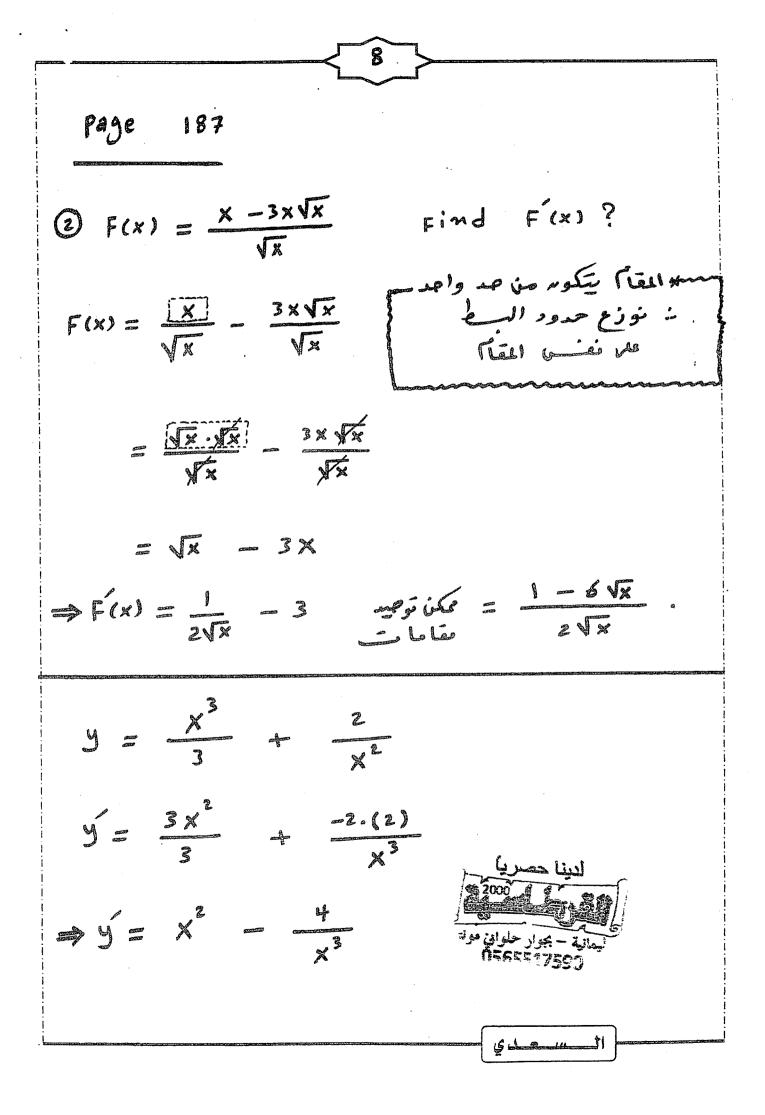
$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$


$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

$$f'(x) = \frac{(3)(1) - (2)(1)}{(2x + 1)^2} \quad \text{find } g'(x) ?$$

9
•
$$F(x) = X \cdot (\sqrt{x} + 3)$$
 Find $F(x)$? $\frac{1}{2}$
• $F(x) = x\sqrt{x} + 3x$
 $F(x) = x\sqrt{x} + 3x$
 $f(x) = x\sqrt{x} + 3x$
 $f(x) = \frac{3}{2}\sqrt{x} + 3$
 $f(x) = \frac{3}{2}\sqrt{x} + 3$
• $f(x) = \frac{3}{2}\sqrt{x} + 3$
• $f(x) = \frac{5}{(5x-1)} \Rightarrow y = 5(5x-1)^{-3}$
• $y = \frac{5}{(5x-1)} \Rightarrow y = 5(5x-1)^{-3}$
 $f(x) = \frac{-25}{(5x-1)}$
 $f(x) = \frac{-25}{(5x-1)}$
 $f(x) = \frac{-25}{(5x-1)^{4}}$
 $f(x) = \frac{-25}{(5x-1)^{4}}$
• $y = x\sqrt{x}$
 $f(x) = \frac{1}{2\sqrt{x}} - 2e^{x}$
 $f(x) = \frac{1}{2\sqrt{x}} - 2e^{x}$
 $f(x) = \frac{1}{2\sqrt{x}} - 2e^{x}$

$$\frac{10}{10}$$

$$\frac{10$$

(3)
$$z = \frac{A}{y^{10}} + Be^{y}$$

 $z' = \frac{-10A}{y^{11}} + Be^{y}$
(3) $y = e^{x+1} + 1$
 $y' = e^{x+1} + 1$
 $y' = e^{x+1} = e^{x+1}$
(32) $y = e^{x+1} + 1$
 $y' = e^{x+1} = e^{x+1}$
 $y' = e^{x+1} = e^{x+1}$
 $y' = e^{x+1} + 1$
 $y' = e^{x+1} = e^{x+1}$
 $y' = 2x e^{x} = 2x e^{x} = 2(x - 0)$
 $x_{1} = x_{1}$
 $y' = 2x e^{x} + e^{x} \cdot 2x$
 $m = 2e^{x} + e^{x} \cdot 2x$
 $y = m(x - x_{1}) + y$,
 $y = 2(x - 0) + 0$
 $y' = -\frac{1}{2}(x - 0) + 0$
 $y' = -\frac{1}{2}(x - 0) + 0$
 $y' = -\frac{1}{2}(x - 0) + 0$

$$(3) \quad y = \frac{e^{x}}{x} \quad \text{at } (1, e)$$

$$\lim_{X_{1} \to \infty} \lim_{X_{1} \to 1} \lim_{X_{1} \to 1} \frac{e^{x}}{x_{1} \to 1} \quad x_{1} \to y_{1}$$

$$y' = \frac{e^{x} - 1 \cdot e^{x}}{x^{2}} \quad x \to x \text{ and } x \text{ and } y_{2}$$

$$m = \frac{e \cdot 1 - 1 \cdot e^{x}}{1^{2}} = e - e = 0$$

$$(1, e) \leftarrow 0 \text{ fragent line } y = m(x - x_{1}) + y_{1}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y = e^{(x - 1)} + e^{(x - 1)} + y_{1}$$

$$y' = e^{(x - 1) + e^{(x - 1)}} \quad y' = e^{(x - 1) + e^{(x - 1)}}$$

$$y' = e^{(x - 1) + e^{(x - 1)}} \quad y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}} \quad y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(1, e) \leftarrow 0 \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(2) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(2) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(2) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(2) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(3) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(4) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(4) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(4) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(4) \text{ fragent line } y' = e^{(x - 1) + e^{(x - 1)}}$$

$$(4) \text{ fragent line } y' = e^{(x$$

13 Page 181 (51) Find the points on the curve $y = 2x^{3} + 3x^{2} - 12x + 1$ أفق where the tangent is horizontal, بن الم ما أ فاتم æ) :. Y = 0 6x2+6x-12=0 (-6) July -1* X + X - 2 = 0 (x+2)(x-1) = 0X -1 so X + Z = 0 لا حاد و ندوم م ۲ بر <u>۲ = = ۲</u> لإ يجا د لا نغوم س ۲ + 2 -مَرُ الداله الأجليه وز الداله الأجلية $y = 2(1)^{3} + 3(1)^{2} - 12(1) + 1$ Y = 2(-2) + 3(-2) - 12(-2) + 1= 2 + 3 - 12 + 1 = -16 + 12 + 24 + 1 = [-6] = [21] . The tangent is horizontal at the points: (-2,21) and (1,-6) المسعد الم

(b) Find the acceleration after 1 second.
(5) Find the acceleration after 1 second.
(a) Find the acceleration after 1 second.
(b) Find the acceleration after 1 second.
(c)
$$a(1) = b(1) = b$$

15X
$$\sqrt{x} = x \cdot x^{\frac{1}{2}} = x^{\frac{3}{2}}$$
X $\sqrt{x} = x \cdot x^{\frac{1}{2}} = x^{\frac{3}{2}}$ Y \sqrt{x}

•

16 Page 182 let $f(x) = \begin{cases} x^2 & \text{if } x \leq 2 \\ mx+b & \text{if } x > 2 \end{cases}$ 75) find the values of m and b that make f differentiable every كالله للد شتقام معناه لاب من rison - ném (m) (2x) المشقولسيرى = المشتقة العيني x=2 من ع K=2 is atta al.J = 2(2) M 4(2)+6 = 4 1 944 4 8 + 6 = 4 6 = 4 - 8 . 6 = + ; x(1) If: $y = x^{3} + 3(\pi^{2} + x^{2})$ Find y^{2} ? A(2) IF: y = sinx + cosx find y? x¹⁰⁰⁰ = 1 * (3) Find: lim X 6 Janu 11

$$17$$
• Suppose u and v
are differentiable functions where:

$$u(1) = 2 \quad c \quad u'(1) = 0$$

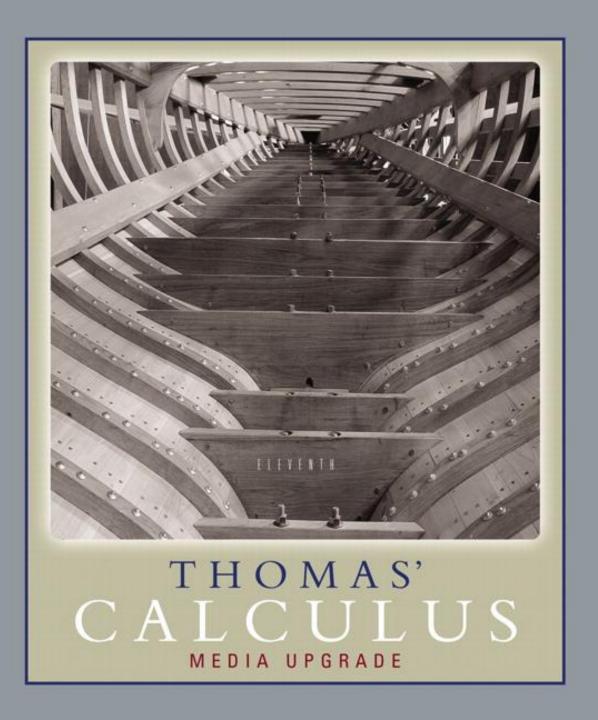
$$V(1) = 5 \quad c \quad V'(1) = -1$$
Find:

$$0 \quad \frac{d}{dx} \quad (u \lor) = u' \cdot \lor + v' \cdot U$$

$$a^{\dagger} \quad (x = 1) = 0 \quad (5) \quad + (-1) \cdot (2) = \overline{-2}$$

$$2 \quad \frac{d}{dx} \quad (\frac{u}{\lor}) = \frac{u' \cdot \lor - \lor' \cdot u}{\lor^2}$$

$$a^{\dagger} \quad (x = 1) = \frac{(0)(5) - (-1)(2)}{(5)^2} = \frac{2}{25}$$


$$3 \quad \frac{d}{dx} \quad (7\lor - 2u^2) = 7\lor' - 4uU$$

$$a^{\dagger} \quad (x = 1) = 7(-1) - 4(2)(0)$$

$$a^{\dagger} \quad (x = 1) = 7(-1) - 4(2)(0)$$

$$a^{\dagger} \quad (u = 1) = 7 - 0 = -7$$

Find y⁽⁵⁾ • $y = e^{x} - 3x^{4}$ 2 (4 = degree) 12 12 ap > * (5 = order) ain any - المشتقة الخام و المذا الد Zero و اما في فمشتقتها دائماً مهما كان عدد م ا = الا شتقام $\begin{array}{ccc} (5) & \chi \\ y & = e - o = e \end{array}$ 22 3 X + 0 Find y? e 2 K P * المقاكا بتكون من حد واجد فقط - توزيع حدود السب عما نف المقا) ثم الاختصار ثم لا شقافه $y = \frac{e}{e} + \frac{e}{e^{x}}$ J = e 4 \Rightarrow y' = e^x ýze + o 3? Find y = x + 1 $\frac{1}{x} = \frac{1}{x^2} \sqrt{\frac{1}{x^2}}$ مار دار بالتدفئة 5 seul

Chapter 4

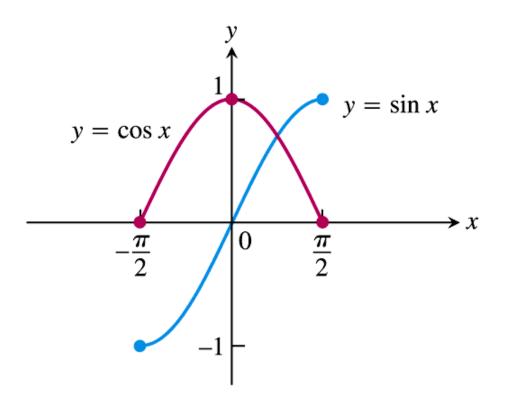
Applications of Derivatives

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

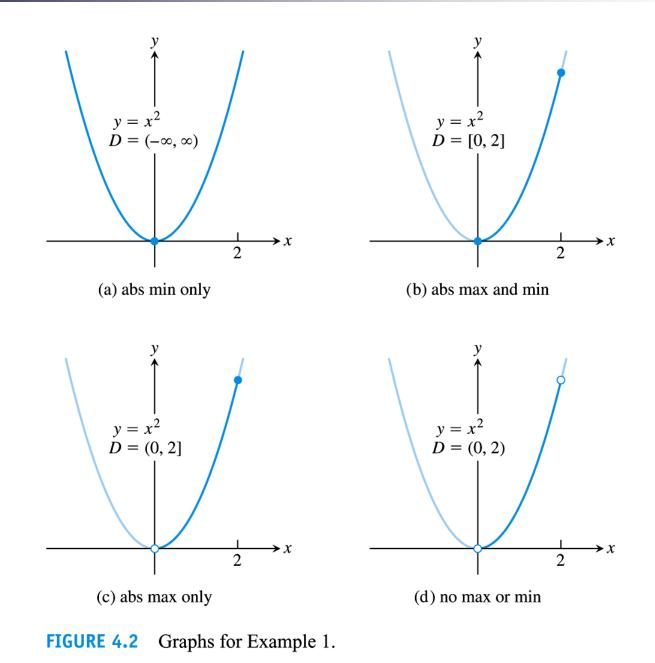
4.1

Extreme Values of Functions

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


DEFINITIONS Absolute Maximum, Absolute Minimum

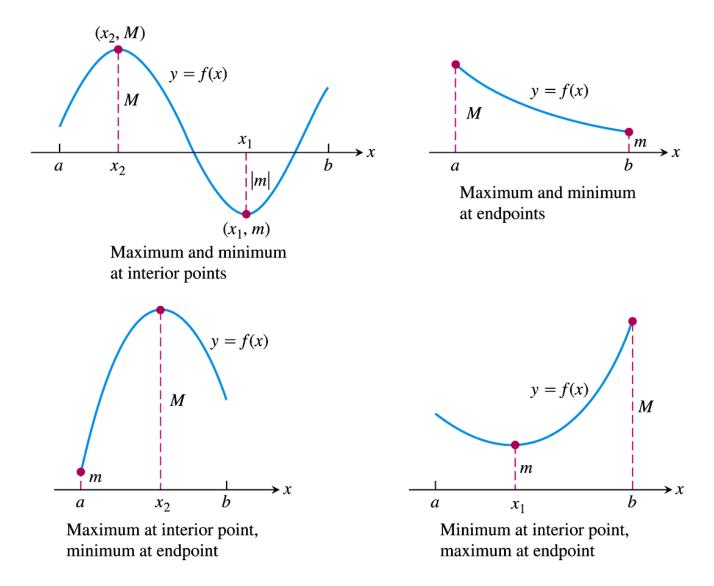
Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if


 $f(x) \le f(c)$ for all x in D

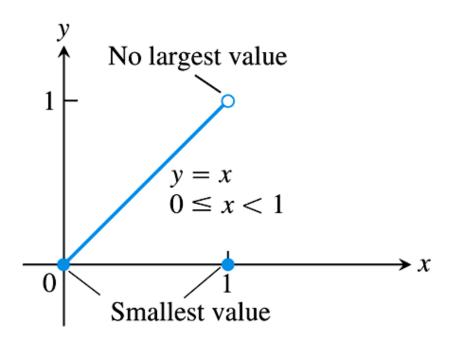
and an **absolute minimum** value on D at c if

 $f(x) \ge f(c)$ for all x in D.

FIGURE 4.1 Absolute extrema for the sine and cosine functions on $[-\pi/2, \pi/2]$. These values can depend on the domain of a function.



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


Slide 4 - 6

THEOREM 1 The Extreme Value Theorem

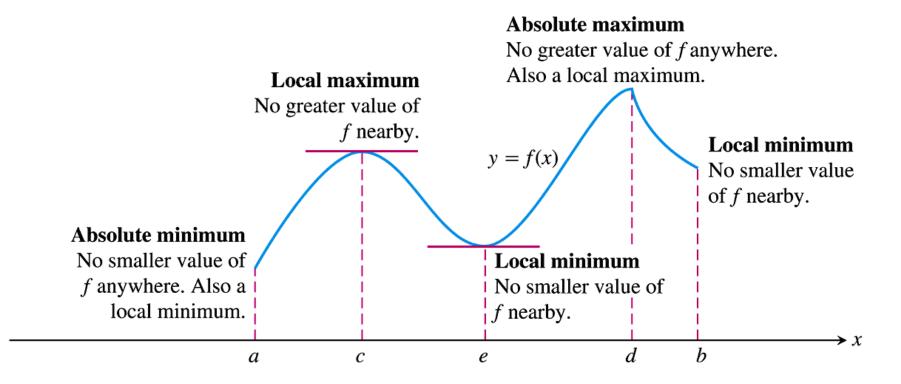
If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b] (Figure 4.3).

FIGURE 4.3 Some possibilities for a continuous function's maximum and minimum on a closed interval [a, b].

FIGURE 4.4 Even a single point of discontinuity can keep a function from having either a maximum or minimum value on a closed interval. The function

$$y = \begin{cases} x, & 0 \le x < 1 \\ 0, & x = 1 \end{cases}$$

is continuous at every point of [0, 1]except x = 1, yet its graph over [0, 1]does not have a highest point.


DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if

 $f(x) \le f(c)$ for all x in some open interval containing c.

A function f has a local minimum value at an interior point c of its domain if

 $f(x) \ge f(c)$ for all x in some open interval containing c.

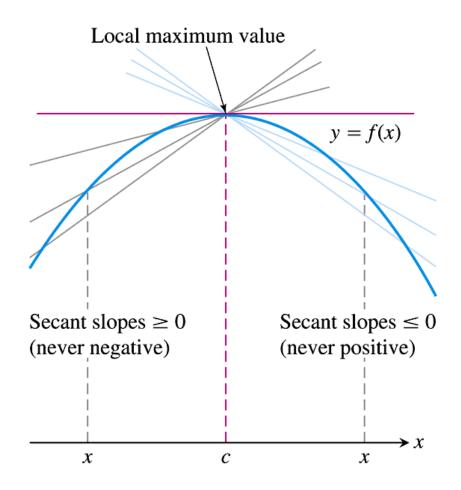
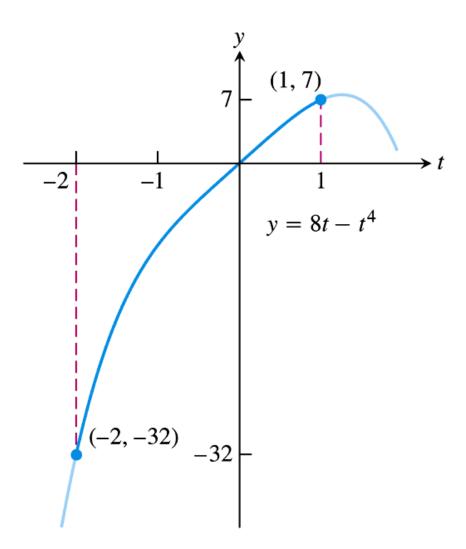


FIGURE 4.5 How to classify maxima and minima.

THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$


FIGURE 4.6 A curve with a local maximum value. The slope at c, simultaneously the limit of nonpositive numbers and nonnegative numbers, is zero.

DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

How to Find the Absolute Extrema of a Continuous Function *f* on a Finite Closed Interval

- **1.** Evaluate f at all critical points and endpoints.
- 2. Take the largest and smallest of these values.

FIGURE 4.7 The extreme values of $g(t) = 8t - t^4$ on [-2, 1] (Example 3).

Slide 4 - 15

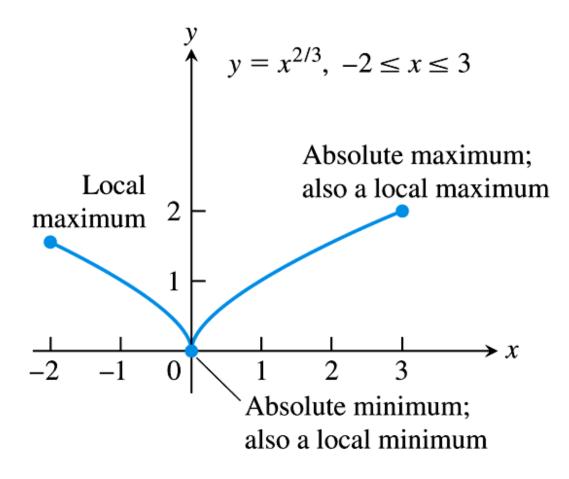


FIGURE 4.8 The extreme values of $f(x) = x^{2/3}$ on [-2, 3] occur at x = 0 and x = 3 (Example 4).

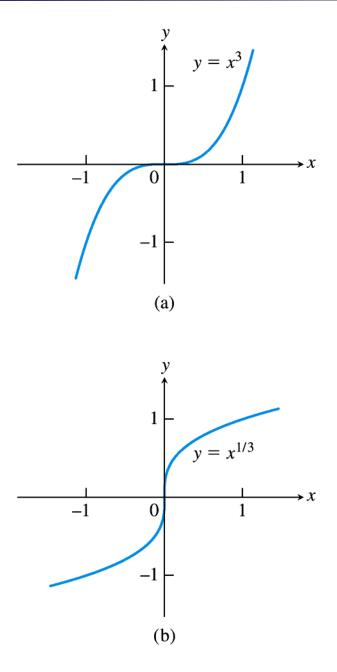


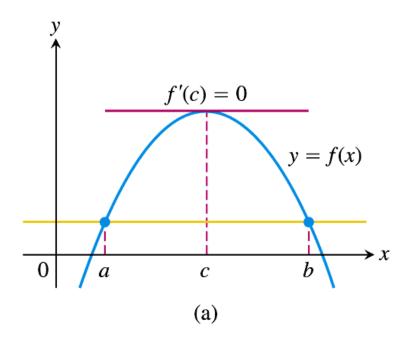
FIGURE 4.9 Critical points without extreme values. (a) $y' = 3x^2$ is 0 at x = 0, but $y = x^3$ has no extremum there. (b) $y' = (1/3)x^{-2/3}$ is undefined at x = 0, but $y = x^{1/3}$ has no extremum there.

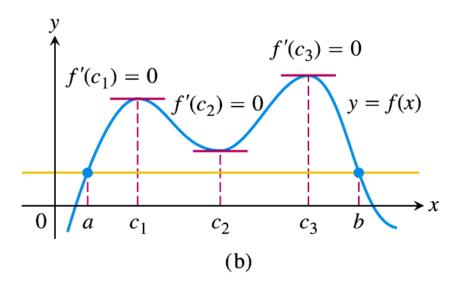
Slide 4 - 17

4.2

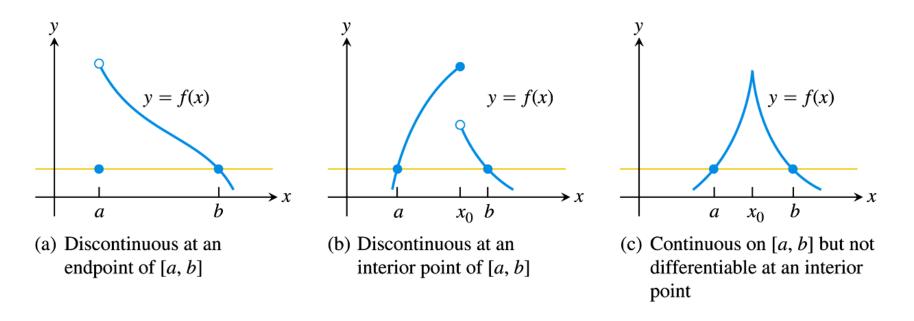
The Mean Value Theorem

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


THEOREM 3 Rolle's Theorem


Suppose that y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b). If

$$f(a)=f(b),$$


then there is at least one number c in (a, b) at which

$$f'(c)=0.$$

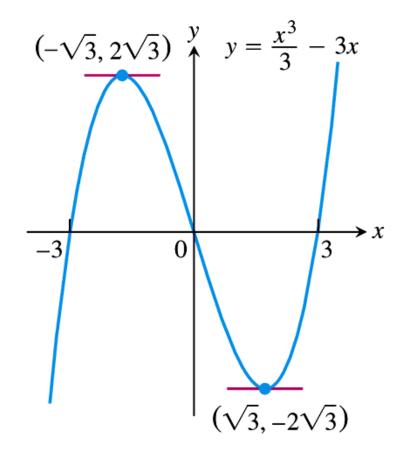


FIGURE 4.10 Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle's Theorem do not hold.

FIGURE 4.12 As predicted by Rolle's Theorem, this curve has horizontal tangents between the points where it crosses the *x*-axis (Example 1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

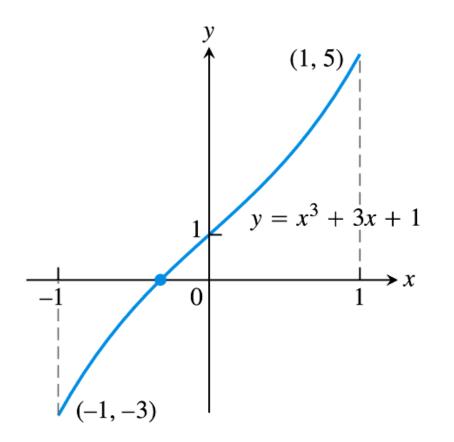
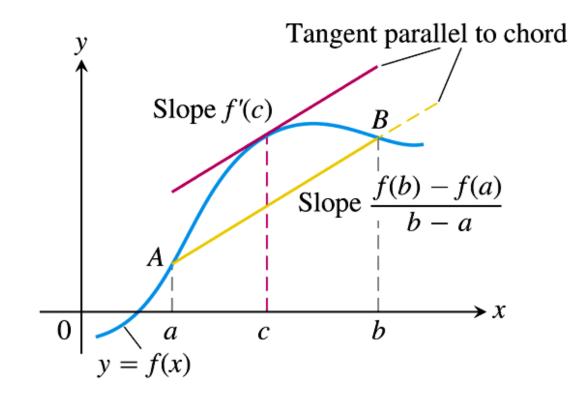
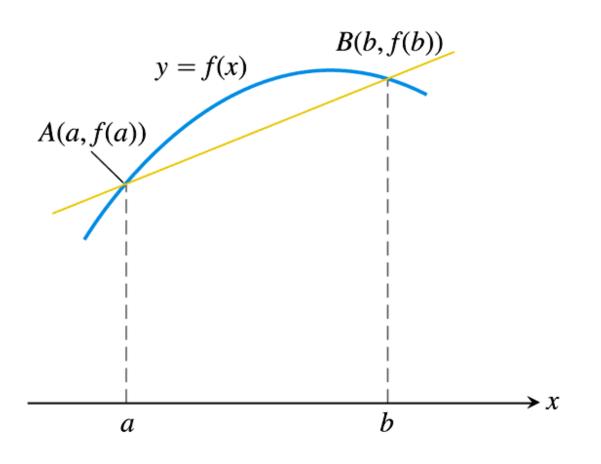
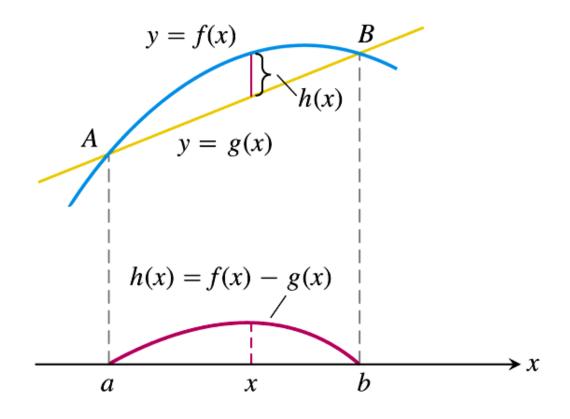
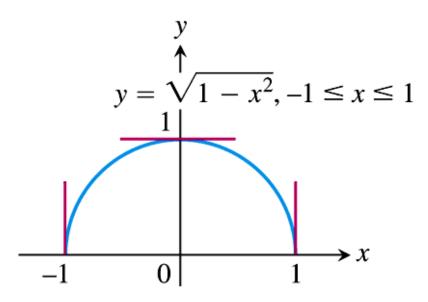



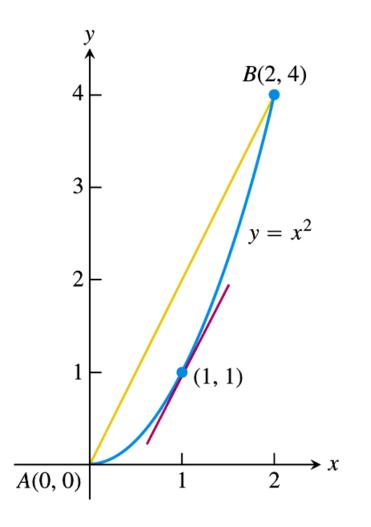
FIGURE 4.13 The only real zero of the polynomial $y = x^3 + 3x + 1$ is the one shown here where the curve crosses the *x*-axis between -1 and 0 (Example 2).


THEOREM 4 The Mean Value Theorem

Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval's interior (a, b). Then there is at least one point c in (a, b) at which


$$\frac{f(b) - f(a)}{b - a} = f'(c).$$
 (1)


FIGURE 4.14 Geometrically, the Mean Value Theorem says that somewhere between *A* and *B* the curve has at least one tangent parallel to chord *AB*.


FIGURE 4.15 The graph of f and the chord *AB* over the interval [a, b].

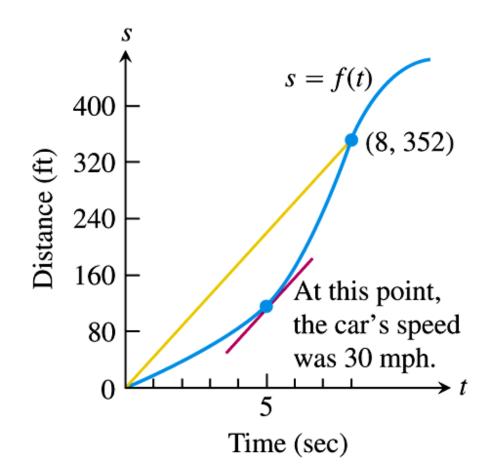

FIGURE 4.16 The chord *AB* is the graph of the function g(x). The function h(x) =f(x) - g(x) gives the vertical distance between the graphs of *f* and *g* at *x*.

FIGURE 4.17 The function $f(x) = \sqrt{1 - x^2}$ satisfies the hypotheses (and conclusion) of the Mean Value Theorem on [-1, 1] even though f is not differentiable at -1 and 1.

FIGURE 4.18 As we find in Example 3, c = 1 is where the tangent is parallel to the chord.

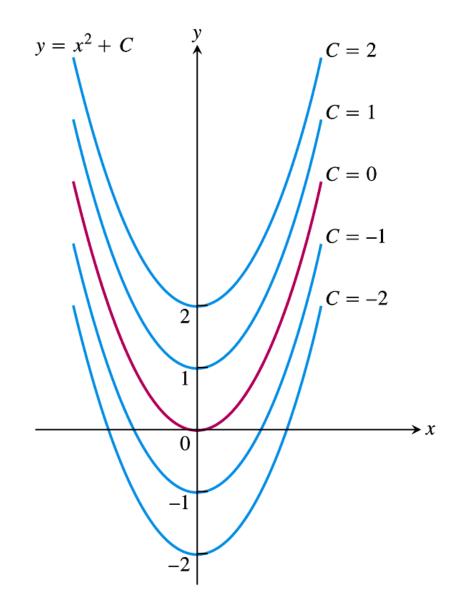


FIGURE 4.19 Distance versus elapsed time for the car in Example 4.

COROLLARY 1 Functions with Zero Derivatives Are Constant If f'(x) = 0 at each point x of an open interval (a, b) then f(x) = C

If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all $x \in (a, b)$, where C is a constant.

COROLLARY 2 Functions with the Same Derivative Differ by a Constant If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a constant C such that f(x) = g(x) + C for all $x \in (a, b)$. That is, f - g is a constant on (a, b).

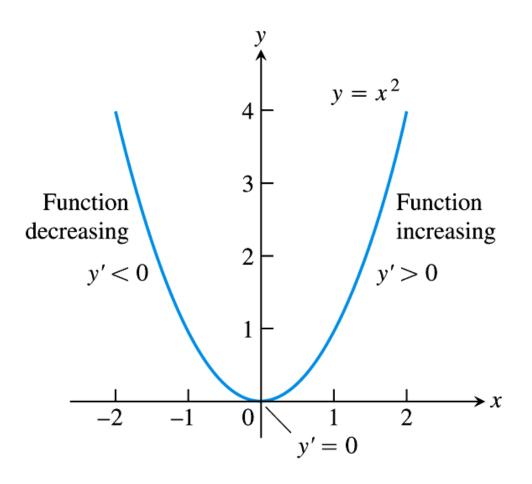
FIGURE 4.20 From a geometric point of view, Corollary 2 of the Mean Value Theorem says that the graphs of functions with identical derivatives on an interval can differ only by a vertical shift there. The graphs of the functions with derivative 2x are the parabolas $y = x^2 + C$, shown here for selected values of *C*.

4.3

Monotonic Functions and The First Derivative Test

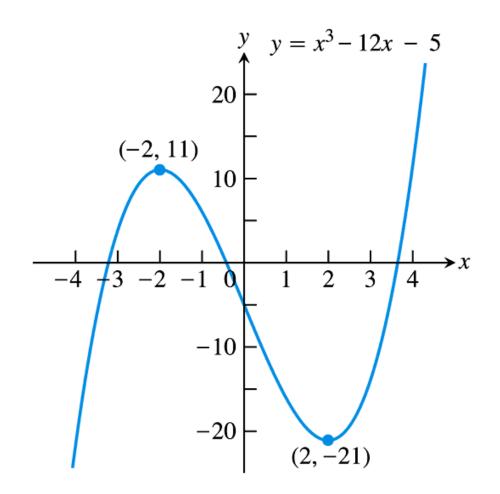
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITIONS Increasing, Decreasing Function


Let *f* be a function defined on an interval *I* and let x_1 and x_2 be any two points in *I*.

- 1. If $f(x_1) < f(x_2)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- 2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be decreasing on I.

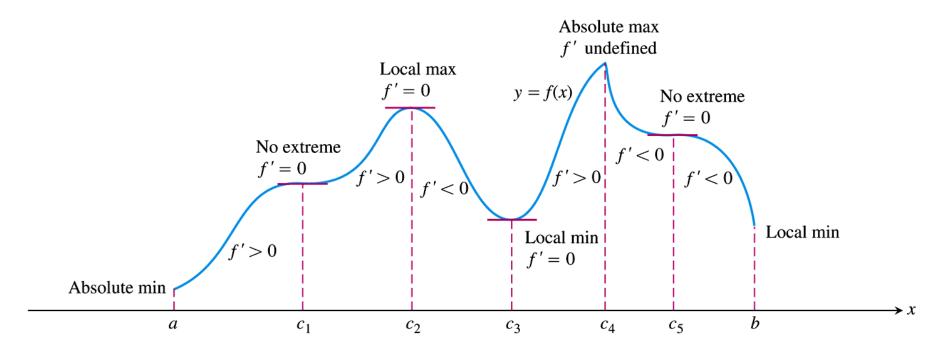
A function that is increasing or decreasing on *I* is called **monotonic** on *I*.


COROLLARY 3 First Derivative Test for Monotonic Functions Suppose that f is continuous on [a, b] and differentiable on (a, b).

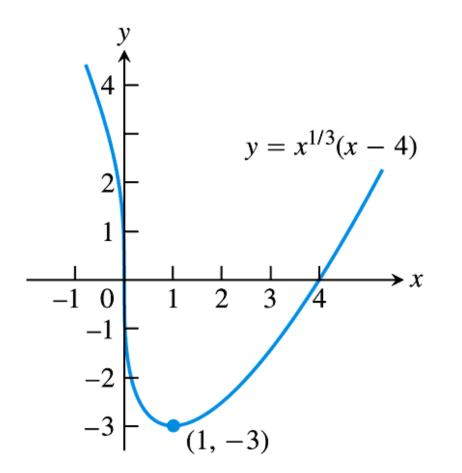
If f'(x) > 0 at each point $x \in (a, b)$, then f is increasing on [a, b]. If f'(x) < 0 at each point $x \in (a, b)$, then f is decreasing on [a, b].

FIGURE 4.21 The function $f(x) = x^2$ is monotonic on the intervals $(-\infty, 0]$ and $[0, \infty)$, but it is not monotonic on $(-\infty, \infty)$.

Slide 4 - 36


FIGURE 4.22 The function $f(x) = x^3 - 12x - 5$ is monotonic on three separate intervals (Example 1).

Slide 4 - 37


First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across c from left to right,

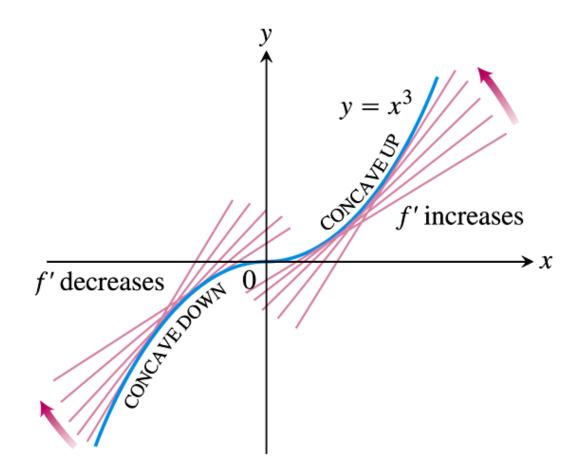
- 1. if f' changes from negative to positive at c, then f has a local minimum at c;
- 2. if f' changes from positive to negative at c, then f has a local maximum at c;
- 3. if f' does not change sign at c (that is, f' is positive on both sides of c or negative on both sides), then f has no local extremum at c.

FIGURE 4.23 A function's first derivative tells how the graph rises and falls.

FIGURE 4.24 The function $f(x) = x^{1/3}(x - 4)$ decreases when x < 1 and increases when x > 1 (Example 2).

4.4

Concavity and Curve Sketching



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Concave Up, Concave Down

The graph of a differentiable function y = f(x) is

- (a) concave up on an open interval I if f' is increasing on I
- (b) concave down on an open interval I if f' is decreasing on I.

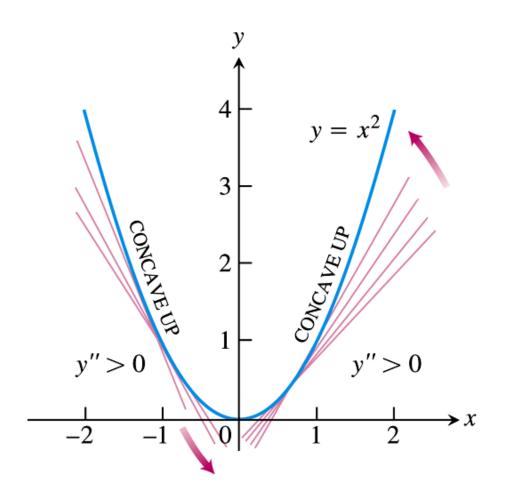
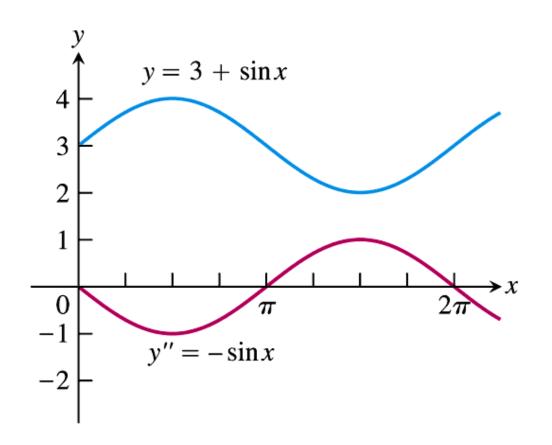
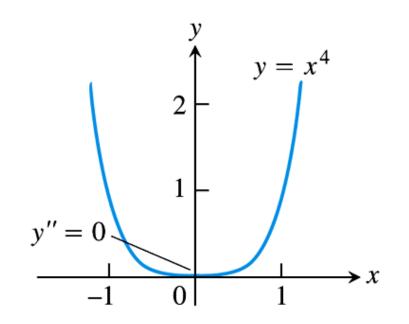


FIGURE 4.25 The graph of $f(x) = x^3$ is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$ (Example 1a).

The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval *I*.


- 1. If f'' > 0 on *I*, the graph of *f* over *I* is concave up.
- 2. If f'' < 0 on *I*, the graph of *f* over *I* is concave down.


FIGURE 4.26 The graph of $f(x) = x^2$ is concave up on every interval (Example 1b).

DEFINITION Point of Inflection

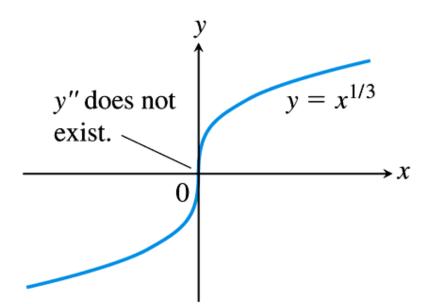
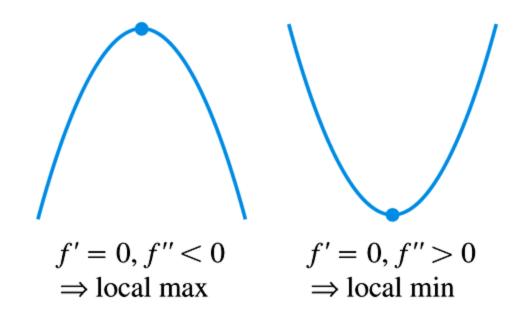
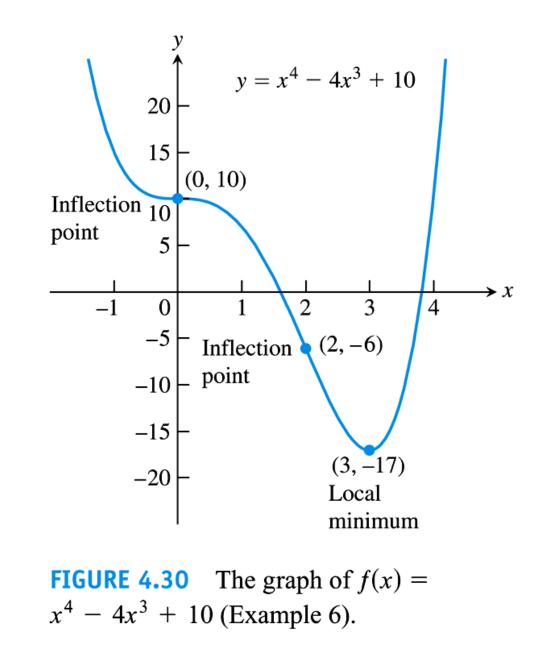

A point where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

FIGURE 4.27 Using the graph of y'' to determine the concavity of *y* (Example 2).

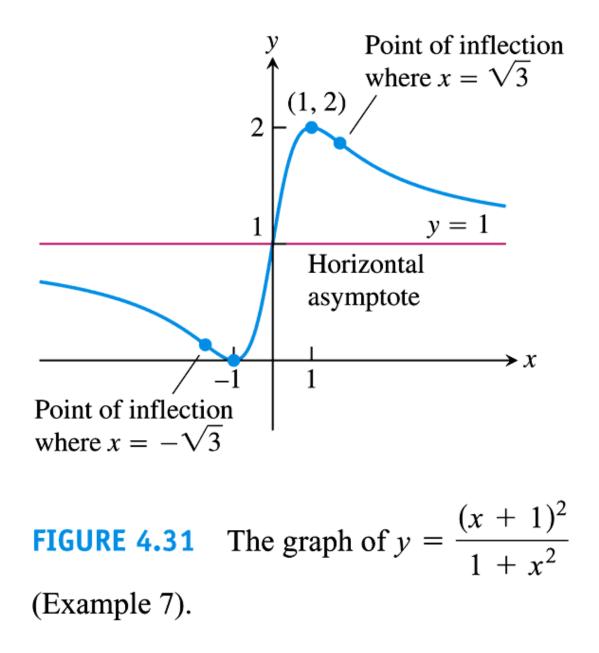
FIGURE 4.28 The graph of $y = x^4$ has no inflection point at the origin, even though y'' = 0 there (Example 3).

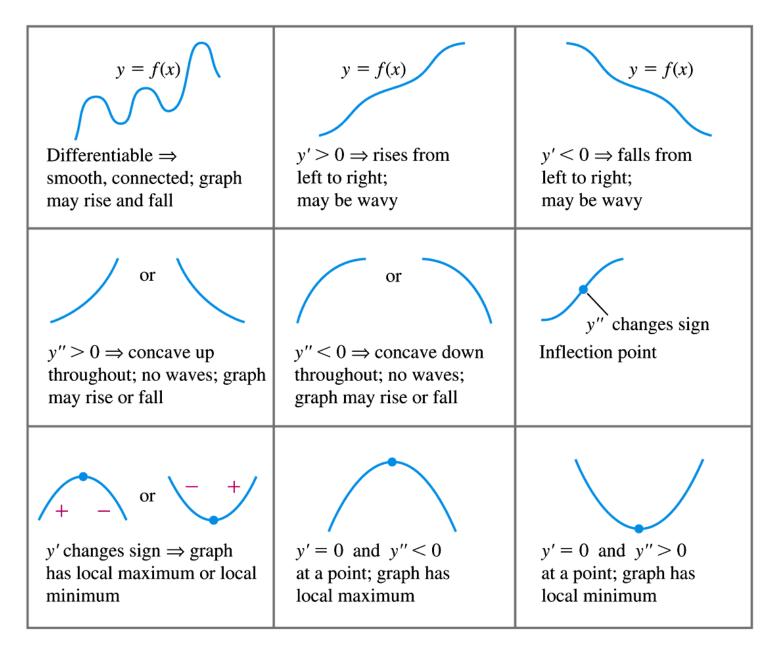



FIGURE 4.29 A point where y'' fails to exist can be a point of inflection (Example 4).

THEOREM 5 Second Derivative Test for Local Extrema

Suppose f'' is continuous on an open interval that contains x = c.

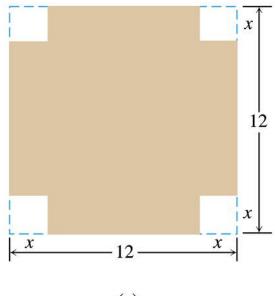

- 1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- 3. If f'(c) = 0 and f''(c) = 0, then the test fails. The function f may have a local maximum, a local minimum, or neither.



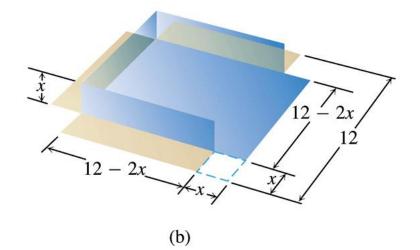
Strategy for Graphing y = f(x)

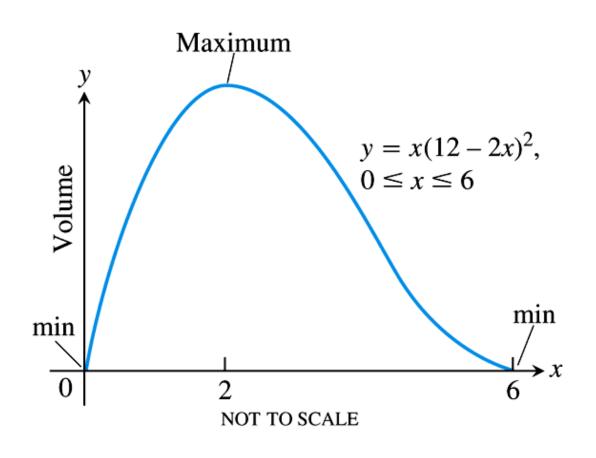
- 1. Identify the domain of *f* and any symmetries the curve may have.
- **2.** Find y' and y''.
- 3. Find the critical points of f, and identify the function's behavior at each one.
- 4. Find where the curve is increasing and where it is decreasing.
- 5. Find the points of inflection, if any occur, and determine the concavity of the curve.
- 6. Identify any asymptotes.
- 7. Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve.

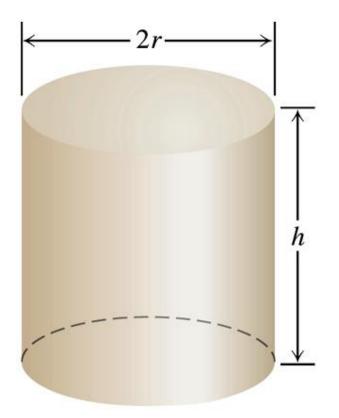
Slide 4 - 54



4.5


Applied Optimization Problems


Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


(a)

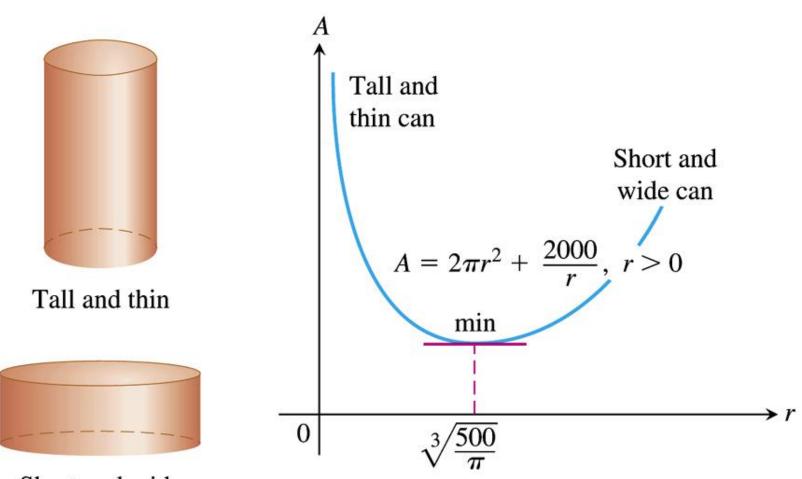
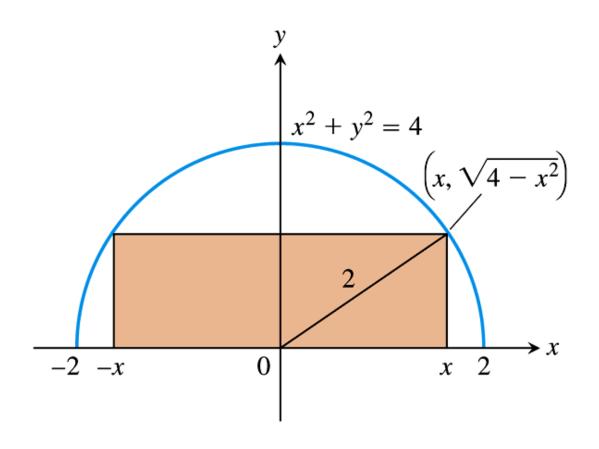

FIGURE 4.32 An open box made by cutting the corners from a square sheet of tin. What size corners maximize the box's volume (Example 1)?

FIGURE 4.33 The volume of the box in Figure 4.32 graphed as a function of *x*.

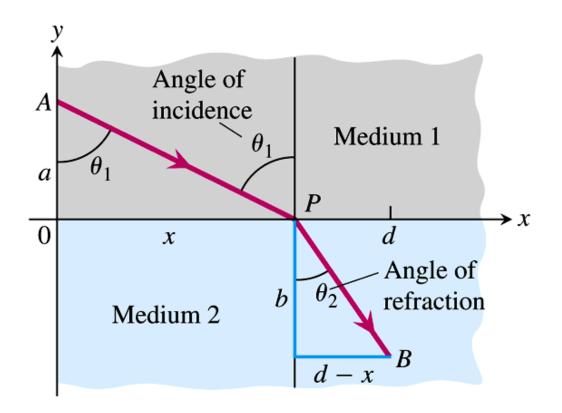
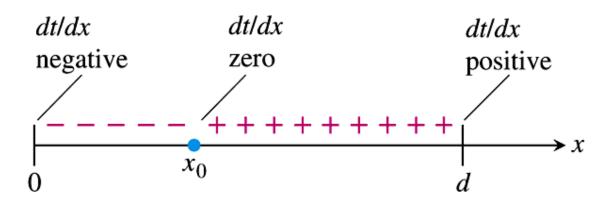
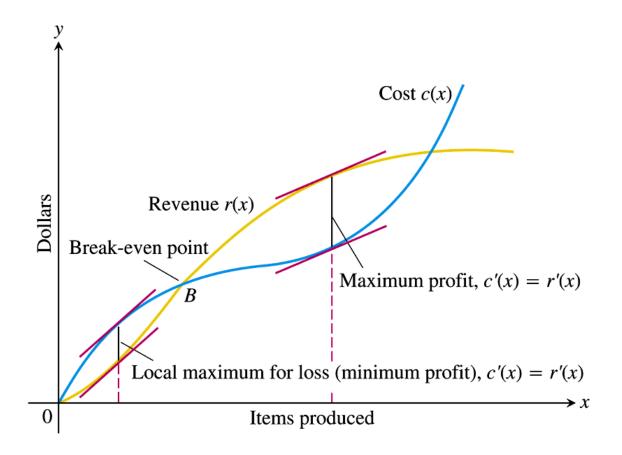

FIGURE 4.34 This 1-L can uses the least material when h = 2r (Example 2).

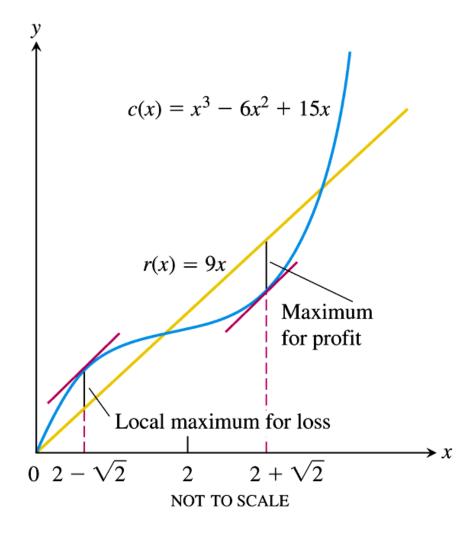
Short and wide

FIGURE 4.35 The graph of $A = 2\pi r^2 + 2000/r$ is concave up.

Slide 4 - 60

FIGURE 4.36 The rectangle inscribed in the semicircle in Example 3.


FIGURE 4.37 A light ray refracted (deflected from its path) as it passes from one medium to a denser medium (Example 4).

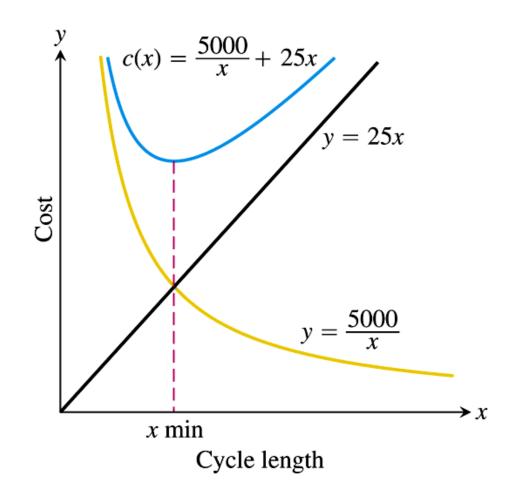

FIGURE 4.38 The sign pattern of dt/dx in Example 4.

FIGURE 4.39 The graph of a typical cost function starts concave down and later turns concave up. It crosses the revenue curve at the break-even point *B*. To the left of *B*, the company operates at a loss. To the right, the company operates at a profit, with the maximum profit occurring where c'(x) = r'(x). Farther to the right, cost exceeds revenue (perhaps because of a combination of rising labor and material costs and market saturation) and production levels become unprofitable again.

FIGURE 4.40 The cost and revenue curves for Example 5.

FIGURE 4.41 The average daily $\cot c(x)$ is the sum of a hyperbola and a linear function (Example 6).

4.6

Indeterminate Forms and L'Hôpital's Rule

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

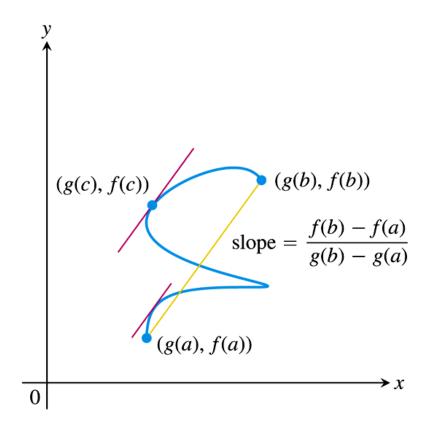
THEOREM 6 L'Hôpital's Rule (First Form)

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that $g'(a) \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

THEOREM 7 L'Hôpital's Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then


$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side exists.

THEOREM 8 Cauchy's Mean Value Theorem

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a, b) and also suppose $g'(x) \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which

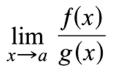

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

FIGURE 4.42 There is at least one value of the parameter t = c, a < c < b, for which the slope of the tangent to the curve at (g(c), f(c)) is the same as the slope of the secant line joining the points (g(a), f(a)) and (g(b), f(b)).

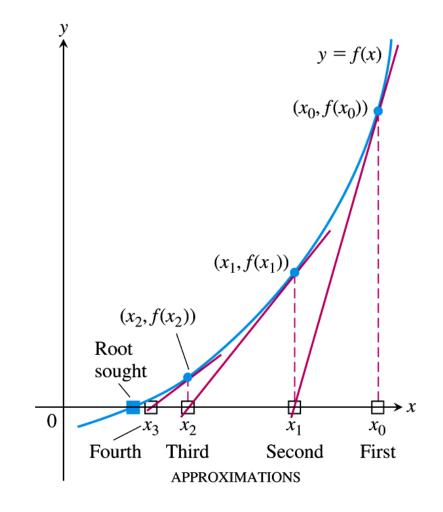
Using L'Hôpital's Rule

To find

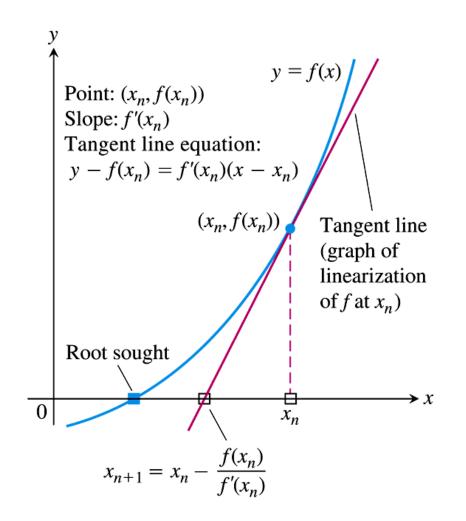
by l'Hôpital's Rule, continue to differentiate f and g, so long as we still get the form 0/0 at x = a. But as soon as one or the other of these derivatives is different from zero at x = a we stop differentiating. L'Hôpital's Rule does not apply when either the numerator or denominator has a finite nonzero limit.

4.7

Newton's Method



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


Procedure for Newton's Method

- 1. Guess a first approximation to a solution of the equation f(x) = 0. A graph of y = f(x) may help.
- 2. Use the first approximation to get a second, the second to get a third, and so on, using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad \text{if } f'(x_n) \neq 0$$
 (1)

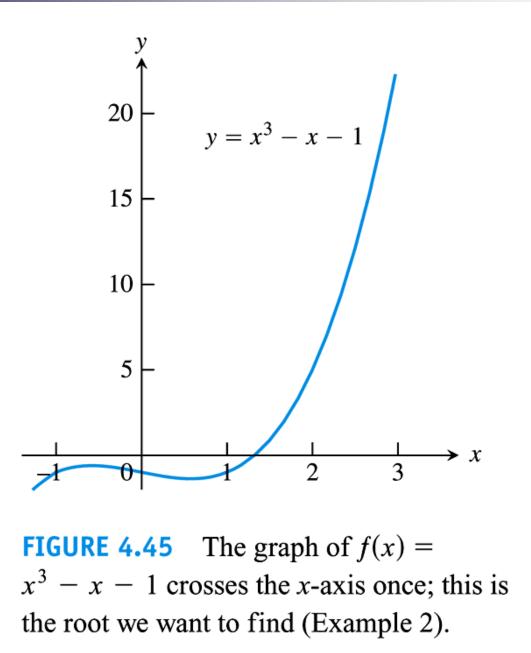
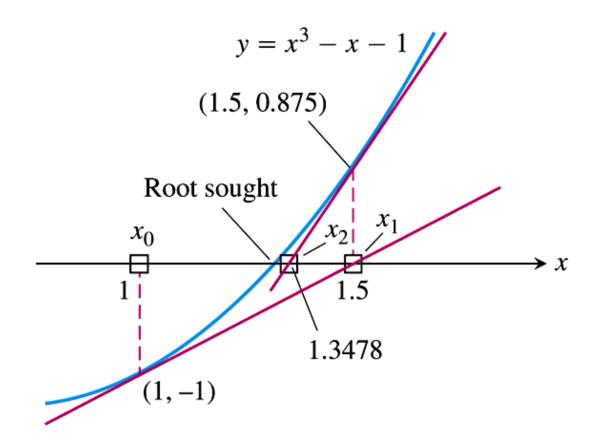

FIGURE 4.43 Newton's method starts with an initial guess x_0 and (under favorable circumstances) improves the guess one step at a time.

FIGURE 4.44 The geometry of the successive steps of Newton's method. From x_n we go up to the curve and follow the tangent line down to find x_{n+1} .

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


Slide 4 - 76

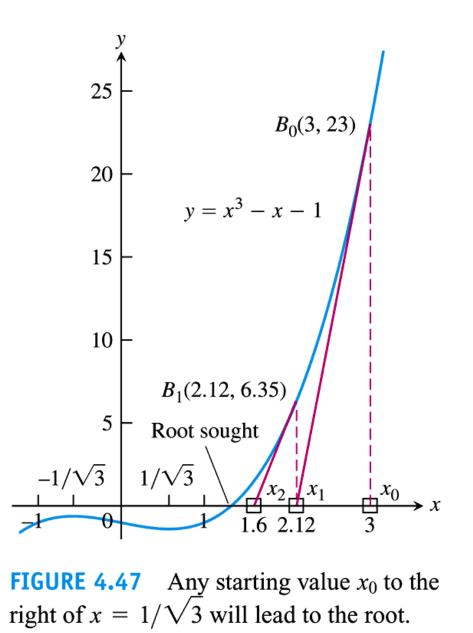

Slide 4 - 77

TABLE 4.1 The result of applying Newton's method to $f(x) = x^3 - x - 1$ with $x_0 = 1$

n	x_n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	1	-1	2	1.5
1	1.5	0.875	5.75	1.3478 26087
2	1.3478 26087	0.1006 82173	4.4499 05482	1.3252 00399
3	1.3252 00399	0.0020 58362	4.2684 68292	1.3247 18174
4	1.3247 18174	0.0000 00924	4.2646 34722	1.3247 17957
5	1.3247 17957	-1.8672E-13	4.2646 32999	1.3247 17957

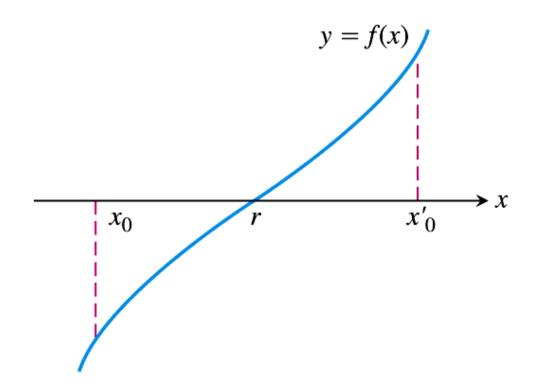
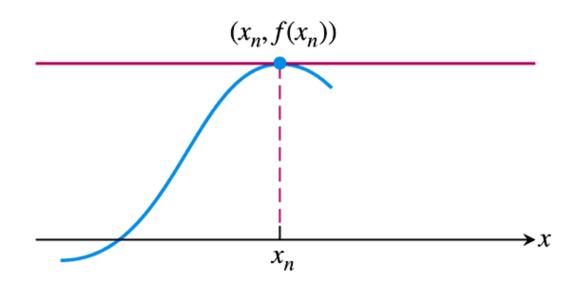
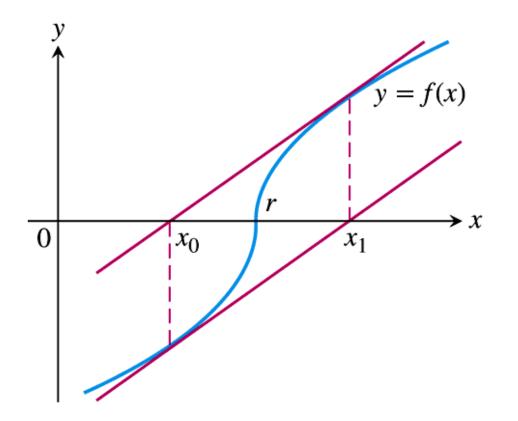
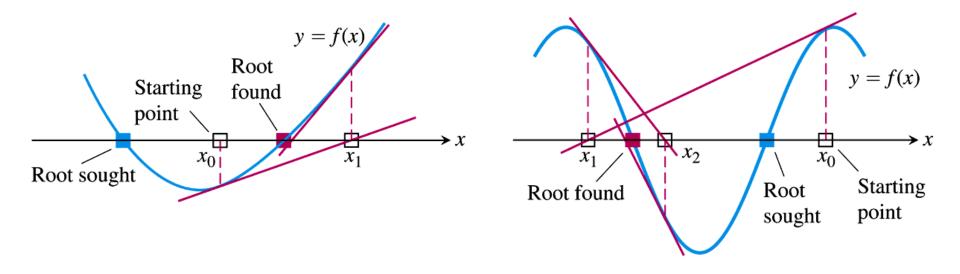


FIGURE 4.46 The first three *x*-values in Table 4.1 (four decimal places).



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


Slide 4 - 80


FIGURE 4.48 Newton's method will converge to *r* from either starting point.

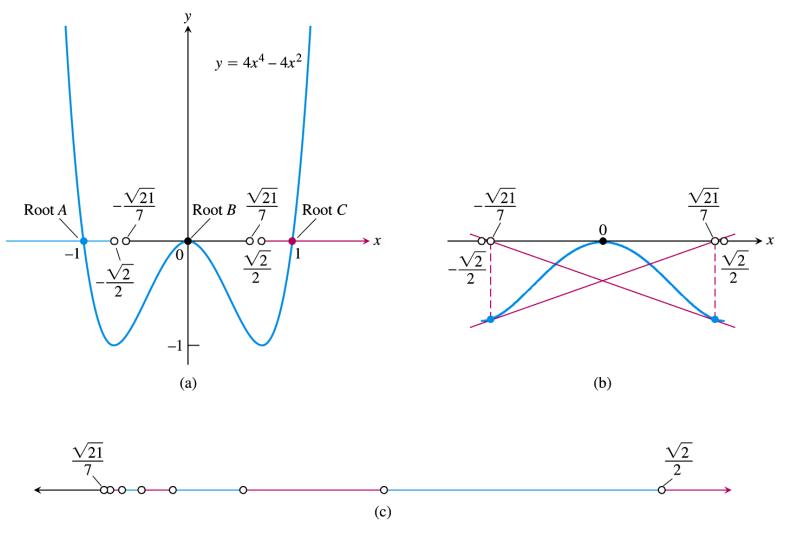

FIGURE 4.49 If $f'(x_n) = 0$, there is no intersection point to define x_{n+1} .

FIGURE 4.50 Newton's method fails to converge. You go from x_0 to x_1 and back to x_0 , never getting any closer to *r*.

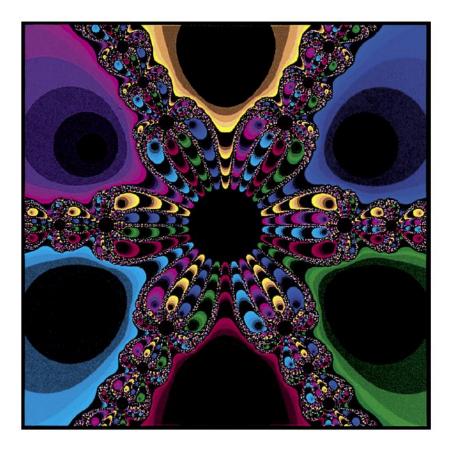

FIGURE 4.51 If you start too far away, Newton's method may miss the root you want.

FIGURE 4.52 (a) Starting values in $(-\infty, -\sqrt{2}/2)$, $(-\sqrt{21}/7, \sqrt{21}/7)$, and $(\sqrt{2}/2, \infty)$ lead respectively to roots *A*, *B*, and *C*. (b) The values $x = \pm \sqrt{21}/7$ lead only to each other. (c) Between $\sqrt{21}/7$ and $\sqrt{2}/2$, there are infinitely many open intervals of points attracted to *A* alternating with open intervals of points attracted to *C*. This behavior is mirrored in the interval $(-\sqrt{2}/2, -\sqrt{21}/7)$.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 4 - 85

FIGURE 4.53 This computer-generated initial value portrait uses color to show where different points in the complex plane end up when they are used as starting values in applying Newton's method to solve the equation $z^6 - 1 = 0$. Red points go to 1, green points to $(1/2) + (\sqrt{3}/2)i$, dark blue points to $(-1/2) + (\sqrt{3}/2)i$, and so on. Starting values that generate sequences that do not arrive within 0.1 unit of a root after 32 steps are colored black.

4.8

Antiderivatives

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Antiderivative

A function *F* is an **antiderivative** of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*.

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

	Function	General antiderivative
1.	x^n	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n \text{ rational}$
2.	sin kx	$-\frac{\cos kx}{k} + C, k \text{ a constant, } k \neq 0$
3.	$\cos kx$	$\frac{\sin kx}{k} + C, k \text{ a constant, } k \neq 0$
4.	$\sec^2 x$	$\tan x + C$
5.	$\csc^2 x$	$-\cot x + C$
6.	$\sec x \tan x$	$\sec x + C$
7.	$\csc x \cot x$	$-\csc x + C$

TABLE 4.3 Antiderivative linearity rules							
Function General antiderivative							
1.	Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant				
2.	Negative Rule:	-f(x)	-F(x) + C,				
3.	Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$				

FIGURE 4.54 The curves $y = x^3 + C$ fill the coordinate plane without overlapping. In Example 5, we identify the curve $y = x^3 - 2$ as the one that passes through the given point (1, -1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 4 - 92

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the **indefinite integral** of f with respect to x, denoted by

 $\int f(x) dx.$

The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Workshop Solutions to Sections 5.1 and 5.2

1) The absolute maximum value of $f(x) = x^3 - 2x^2$ in [-1,2] is at $x =$ Solution: Since $f(x)$ is a continuous on [-1,2], we can use the Closed Interval Method, $f(x) = x^3 - 2x^2$ $f'(x) = 3x^2 - 4x$ Now, we find the critical numbers of $f(x)$ when $f'(x) = 0 \implies 3x^2 - 4x = 0 \implies x(3x - 4) = 0$ $\implies x = 0 \text{ or } x = \frac{4}{3}$ Thus, $f(-1) = (-1)^3 - 2(-1)^2 = -1 - 2 = -3$ $f(2) = (2)^3 - 2(2)^2 = 8 - 8 = 0$ $f(0) = (0)^3 - 2(0)^2 = 0 - 0 = 0$ $f(\frac{4}{3}) = (\frac{4}{3})^3 - 2(\frac{4}{3})^2 = \frac{64}{27} - \frac{32}{9} = -\frac{32}{27}$ Hence, we see that the absolute maximum value is 0 at x = 0 and $x = 23) The absolute maximum point of f(x) = 3x^2 - 12x + 1in [0,3] isSolution:Since f(x) is a continuous on [0,3], we can use the ClosedInterval Method,f(x) = 3x^2 - 12x + 1f'(x) = 6x - 12Now, we find the critical numbers of f(x) whenf'(x) = 0 \implies 6x - 12 = 0 \implies 6x = 12\implies x = 2Thus,f(0) = 3(0)^2 - 12(0) + 1 = 0 - 0 + 1 = 1f(3) = 3(3)^2 - 12(3) + 1 = 27 - 36 + 1 = -8f(2) = 3(2)^2 - 12(2) + 1 = 12 - 24 + 1 = -11Hence, we see that the absolute maximum point is (0,1).$	2) The absolute minimum value of $f(x) = x^3 - 3x^2 + 1$ in $\left[-\frac{1}{2}, 4\right]$ is Solution: Since $f(x)$ is a continuous on $\left[-\frac{1}{2}, 4\right]$, we can use the Closed Interval Method, $f(x) = x^3 - 3x^2 + 1$ $f'(x) = 3x^2 - 6x$ Now, we find the critical numbers of $f(x)$ when $f'(x) = 0 \implies 3x^2 - 6x = 0 \implies 3x(x-2) = 0$ $\implies x = 0 \text{ or } x = 2$ Thus, $f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right)^2 + 1 = -\frac{1}{8} - \frac{3}{4} + 1 = \frac{1}{8}$ $f(4) = (4)^3 - 3(4)^2 + 1 = 64 - 48 + 1 = 17$ $f(0) = (0)^3 - 3(0)^2 + 1 = 0 - 0 + 1 = 1$ $f(2) = (2)^3 - 3(2)^2 + 1 = 8 - 12 + 1 = -3$ Hence, we see that the absolute minimum value is -3 at x = 2 4) The absolute minimum point of $f(x) = 3x^2 - 12x + 1$ in $[0,3]$ is Solution: Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method, $f(x) = 3x^2 - 12x + 1$ f'(x) = 6x - 12 Now, we find the critical numbers of $f(x)$ when $f'(x) = 0 \implies 6x - 12 = 0 \implies 6x = 12$ $\implies x = 2$ Thus, $f(0) = 3(0)^2 - 12(0) + 1 = 0 - 0 + 1 = 1$ $f(3) = 3(3)^2 - 12(3) + 1 = 27 - 36 + 1 = -8$ $f(2) = 3(2)^2 - 12(2) + 1 = 12 - 24 + 1 = -11$ Hence, we see that the absolute minimum point is $(2, -11)$.
$x = 0 \text{ and } x = 2$ 3) The absolute maximum point of $f(x) = 3x^2 - 12x + 1$ in [0,3] is Solution:	$x = 2$ 4) The absolute minimum point of $f(x) = 3x^2 - 12x + 1$ in [0,3] is Solution:
Interval Method, $f(x) = 3x^2 - 12x + 1$ $f'(x) = 6x - 12$	Interval Method, $f(x) = 3x^2 - 12x + 1$ $f'(x) = 6x - 12$
$ \begin{array}{cccc} f'(x) = 0 & \Longrightarrow & 6x - 12 = 0 & \Longrightarrow & 6x = 12 \\ & & \Rightarrow & x = 2 \end{array} \\ \text{Thus,} \end{array} $	$f'(x) = 0 \implies 6x - 12 = 0 \implies 6x = 12$ $\implies x = 2$ Thus,
$f(3) = 3(3)^2 - 12(3) + 1 = 27 - 36 + 1 = -8$ $f(2) = 3(2)^2 - 12(2) + 1 = 12 - 24 + 1 = -11$ Hence, we see that the absolute maximum point is (0,1).	$f(3) = 3(3)^2 - 12(3) + 1 = 27 - 36 + 1 = -8$ $f(2) = 3(2)^2 - 12(2) + 1 = 12 - 24 + 1 = -11$ Hence, we see that the absolute minimum point is (2, -11).
5) The absolute minimum point of $f(x) = 3x^2 - 12x + 2$ in [0,3] is Solution: Since $f(x)$ is a continuous on [0,3], we can use the Closed	 6) The values in (-3,3) which make f(x) = x³ - 9x satisfy Rolle's Theorem on [-3,3] are Solution: ☆ f(x) is a polynomial, then
Interval Method, $f(x) = 3x^2 - 12x + 2$ $f'(x) = 6x - 12$ Now, we find the critical numbers of $f(x)$ when	1- $f(x)$ is a continuous on $[-3,3]$. 2- $f(x)$ is differentiable on $(-3,3)$, $f'(x) = 3x^2 - 9$ 3- $f(-3) = (-3)^3 - 9(-3) = -27 + 27 = 0 = f(3)$
$ \begin{array}{cccc} f'(x) = 0 & \Longrightarrow & 6x - 12 = 0 & \Longrightarrow & 6x = 12 \\ & & \Rightarrow & x = 2 \end{array} \\ \text{Thus,} \end{array} $	Then there is a number $c \in (-3,3) = -27 + 27 = 0 = f(3)$ $f'(c) = 0 \implies 3c^2 - 9 = 0 \implies 3c^2 = 9$ $\implies c^2 = 3 \implies c = \pm\sqrt{3}$
$f(0) = 3(0)^{2} - 12(0) + 2 = 0 - 0 + 2 = 2$ $f(3) = 3(3)^{2} - 12(3) + 2 = 27 - 36 + 2 = -7$ $f(2) = 3(2)^{2} - 12(2) + 2 = 12 - 24 + 2 = -10$ Hence, we see that the absolute minimum point is (2, -10).	Hence, the values are $\pm\sqrt{3} \in (-3,3)$.

7) The values in $(0,2)$ which make	8) The value c in (0,5) which makes $f(x) = x^2 - x - 6$
$f(x) = x^3 - 3x^2 + 2x + 5$ satisfy Rolle's Theorem on	satisfy the Mean Value Theorem on [0,5] is
[0,2] are	Solution:
Solution:	$\therefore f(x)$ is a polynomial, then
$\therefore f(x)$ is a polynomial, then	1- $f(x)$ is a continuous on [0,5].
1- $f(x)$ is a continuous on $[0,2]$.	2- $f(x)$ is differentiable on (0,5),
2- $f(x)$ is differentiable on (0,2),	f'(x) = 2x - 1
$f'(x) = 3x^2 - 6x + 2$	Then there is a number $c \in (0,5)$ such that
3- $f(0) = (0)^3 - 3(0)^2 + 2(0) + 5 = 5 = f(2)$	$f'(c) = \frac{f(5) - f(0)}{5 - 0}$
Then there is a number $c \in (0,2)$ such that	$f'(c) = \frac{1}{5-0}$
$f'(c) = 0 \implies 3c^2 - 6c + 2 = 0$	$[(5)^2 - (5) - 6] - [(0)^2 - (0) - 6]$
$\int (t) = 0 \implies 3t = 0t + 2 = 0$	$\Rightarrow 2c - 1 = \frac{\lfloor (5)^2 - (5) - 6 \rfloor - \lfloor (0)^2 - (0) - 6 \rfloor}{5}$
$\implies c = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(2)}}{-6 \pm \sqrt{36 - 24}}$	0
2(3) $ -$	$\implies 2c - 1 = \frac{(14) - (-6)}{11 + \frac{5}{2}}$
$6 \pm \sqrt{12}$ $6 \pm \sqrt{3 \times 4}$ $6 \pm 2\sqrt{3}$	5
$\Rightarrow c = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(2)}}{2(3)} = \frac{6 \pm \sqrt{36 - 24}}{6}$ $= \frac{6 \pm \sqrt{12}}{6} = \frac{6 \pm \sqrt{3 \times 4}}{6} = \frac{6 \pm 2\sqrt{3}}{6}$	$\Rightarrow 2c-1 = \frac{14+\tilde{6}}{5}$
	5
$=\frac{2(3\pm\sqrt{3})}{6}=\frac{3\pm\sqrt{3}}{3}=\frac{3}{3}\pm\frac{\sqrt{3}}{3}$	$\Rightarrow 2c-1=4$
	$\Rightarrow 2c = 4 + 1$
$=1\pm\frac{\sqrt{3}}{2}$	$ \Rightarrow 2c - 1 = 4 \Rightarrow 2c = 4 + 1 \Rightarrow c = \frac{5}{2} $
$=1\pm\frac{1}{2}$	$\Rightarrow c = \frac{1}{2}$
5	
Hence, the values are $1 \pm \frac{\sqrt{3}}{3} \in (0,2)$.	
	Hence, the value c is $\frac{5}{2} \in (0,5)$.
9) The value c in (0,2) makes $f(x) = x^3 - x$ satisfied the	10) The value in (0,1) which makes $f(x) = 3x^2 + 2x + 5$
Mean Value Theorem on [0,2] are	satisfy the Mean Value Theorem on [0,1] is
Solution:	Solution:
f(x) is a polynomial, then	f(x) is a polynomial, then
1- $f(x)$ is a continuous on $[0,2]$.	1- $f(x)$ is a continuous on $[0,1]$.
2- $f(x)$ is differentiable on (0,2),	2- $f(x)$ is differentiable on (0,1),
$f'(x) = 3x^2 - 1$	f'(x) = 6x + 2
Then there is a number $c \in (0,3)$ such that	Then there is a number $c \in (0,1)$ such that
$f'(c) = \frac{f(2) - f(0)}{2 - 0}$	$f'(c) = \frac{f(1) - f(0)}{1 - 0}$
2-0 [(2)] [(2)] [(2)] [(2)]	$ \Rightarrow 6c + 2 = \frac{[3(1)^2 + 2(1) + 5] - [3(0)^2 + 2(0) + 5]}{1} $
$\Rightarrow 3c^2 - 1 = \frac{[(2)^3 - (2)] - [(0)^3 - (0)]}{2}$	$\implies 6c + 2 - \frac{[3(1)^2 + 2(1) + 5] - [3(0)^2 + 2(0) + 5]}{[3(1)^2 + 2(0) + 5]}$
$\Rightarrow 3c^2 - 1 = \frac{(6) - (0)}{2}$	$\implies 6c + 2 = (3 + 2 + 5) - (0 + 0 + 5)$
$\Rightarrow 3c^2 - 1 = \frac{2}{2}$	$\Rightarrow 6c + 2 = 10 - 5$
6	$\Rightarrow 6c + 2 = 5$
$\Rightarrow 3c^2 - 1 = \frac{6}{2}$	$\Rightarrow 6c = 5 - 2$
$\Rightarrow 3c^2 - 1 = 3$	$\Rightarrow 6c = 3$
$\Rightarrow 3c^2 = 3 + 1$	$\rightarrow 0c = 3$
- 3 C - 3 C	$\Rightarrow c = \frac{3}{6}$ $\Rightarrow c = \frac{1}{2}$
$\Rightarrow c^2 = \frac{4}{3}$	6
5	$\Rightarrow c = \frac{1}{2}$
$\Rightarrow c = \pm \sqrt{\frac{4}{3}}$ $\Rightarrow c = \pm \frac{2}{\sqrt{3}}$	
$\Rightarrow c = \pm \left \frac{1}{2} \right $	Hence, the values are $\frac{1}{2} \in (0,1)$.
$\sqrt{3}$	
2	
$\Rightarrow c = \pm \frac{1}{\sqrt{2}}$	
Hence, the value c is $\frac{2}{\sqrt{3}} \in (0,2)$ but $-\frac{2}{\sqrt{3}} \notin (0,2)$.	
11) The critical numbers of the function	
$f(x) = x^3 + 3x^2 - 9x + 1$ are	
Solution:	
$f'(x) = 3x^2 + 6x - 9$	
$f'(x) = 0 \implies 3x^2 + 6x - 9 = 0$	
$\implies 3(x^2 + 2x - 3) = 0$	
$\Rightarrow x^2 + 2x - 3 = 0$	
$\Rightarrow (x+3)(x-1) = 0$	
\rightarrow $r2$ or $r - 1$	
\Rightarrow $x = -3$ or $x = 1$	

12) The function $f(x)$	$x^3 + 3x^2 - 9$	x + 1 is decreasing	13) The function $f(x) = x^3 + 3x^2 - 9x + 1$ is increasing						
on <u>Solution:</u>				on Solution:					
$f'(x) = 3x^2 + 6x - 9$				Solution: $f'(x) = 3x^2 + 6x - 9$					
$f'(x) = 0 \implies 3x^2 + 6x - 9 = 0$				$f'(x) = 0 \implies 3x^2 + 6x - 9 = 0$					
	$x^{2} + 2x - 3) = 0$ + 2x - 3 = 0					$x^2 + 2x + 2x - 2x + 2x - 2x + 2x - 2x + 2x - 2x + 2x +$	(-3) = 0 (3 - 0)		
$ \Rightarrow x + 2x - 3 = 0 \Rightarrow (x + 3)(x - 1) = 0 $							(-1) = 0		
$\Rightarrow x =$		=	$\Rightarrow x =$		or $x = 1$				
-3	1	Cian of			3	1	L I .	Cian	-f
+ -	- +	Sign of $f'(x)$		+		_	+	Sign	
		▼ Kind of		X	/			🗶 Kinc	-
		monotonicit						monot	onicit
Hence, the function <i>f</i> ((x) is decreasing	y		Hence, the function $f(x)$ is increasing on					
Thence, the function <i>f</i> (011 (-3,1)	(-	-∞, -3) ∪ (1	l,∞)́		-		
14) The function $f(x)$		x + 1 has a relative		5) The function	on $f(x)$: + 1 has a	relative
maximum value at	t the point			minimum v	alue at	t the poi	nt		
Solution:	$x) = 3x^2 + 6x - $	9	<u>So</u>	lution:	f'((r) - 2r	$x^{2} + 6x - 9$	C	
$\int f'(x) = 0 \implies 3x^2$		2	f'	$(x) = 0 \implies$				7	
\Rightarrow 3(x	$x^2 + 2x - 3) = 0$		ĺ	\Rightarrow	⇒ 3(<i>x</i>	$x^{2} + 2x$	(-3) = 0		
	+2x-3=0					+2x -			
	(x - 1) = 0 = -3 or $x = 1$			$\Rightarrow (x+3)(x-1) = 0$ $\Rightarrow x = -3 \text{ or } x = 1$					
-3	$\frac{1}{1}$		$\begin{array}{cccc} -3 & -3 & 0 & x - 1 \\ -3 & 1 & \end{array}$						
+ -	- +	Sign of $f'(x)$		+		_	+	Sign $f'($	
		▼ Kind of		~	/			🗶 Kinc	-
		monotonicit						monot	onicit
Hence, the function <i>f</i> ((r) has a relative	y y		ence, the fund	tion f	(r) has a	 a relative m	y jinimum valı	le at
the point $(-3,28)$.				e point $(1, -$	-	(1) 1105 (
$f(-3) = (-3)^3 + 3(-3)^3$			f($(1) = (1)^3 +$	$3(1)^2$				
= -27 + 27 + 16) The function $f(x)$	$\frac{27+1}{28} = 28$		17	$\frac{1+3-1}{2}$	-9+1	= -4	<u>- 2</u> 2 0.	1	-
upward on	$y = x^{\circ} + 3x^{2} - 9$	x + 1 concave	1/	downward		$) = x^{\circ} -$	$+3x^{-}-9x$	C + 1 concav	'e
Solution:			So	lution:					
f'(z)	$x) = 3x^2 + 6x - $	9		$f'(x) = 3x^2 + 6x - 9$					
	f''(x) = 6x + 6		£1	f''(x) = 6x + 6 $f''(x) = 0 \implies 6x + 6 = 0$					
$ \begin{cases} f''(x) = 0 \implies 6x \\ \implies 6x \end{cases} $			ſ	$ \begin{aligned} f''(x) &= 0 \implies 6x + 6 = 0 \\ \implies 6x = -6 \end{aligned} $					
	6								
$\Rightarrow x =$	$-\frac{-6}{6}$		$\Rightarrow x = -\frac{6}{6}$						
$\Rightarrow x = -1$	= -1			=	⇒ x =				
	+	Sign of $f''(x)$		-			+	Sign of f''	(<i>x</i>)
	IJ	Kind of		\cap		l	J	Kind of	
Hence, the function <i>f</i> ((x) is concave up	concavity ward on $(-1, \infty)$	Н	ence, the fund	rtion f	(x) is co	ncave dow	concavity	/
				-∞, −1)					

18) The function $f(x) = x^3 + 3x^2 - 9x + 1$ has an	19) The critical numbers of the function				
inflection point at	$f(x) = x^3 - 3x^2 - 9x + 1$ are				
Solution:	Solution:				
$f'(x) = 3x^2 + 6x - 9$	$f'(x) = 3x^2 - 6x - 9$				
f''(x) = 6x + 6 $f''(x) = 0 \implies 6x + 6 = 0$	$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$ $\implies 3(x^2 - 2x - 3) = 0$				
$\begin{array}{cccc} y & (x) = 0 & \implies & 0x + 0 = 0 \\ & \implies & 6x = -6 \end{array}$	$\implies 5(x - 2x - 3) = 0$ $\implies x^2 - 2x - 3 = 0$				
	$\Rightarrow x 2x 3 = 0$ $\Rightarrow (x+1)(x-3) = 0$				
$\Rightarrow x = -\frac{6}{6}$	\Rightarrow $x = -1$ or $x = 3$				
$\Rightarrow x = -1$					
-1 $-$ + Sign of $f''(x)$					
- + Sign of $f''(x)$					
Kind of					
O U concavity					
Hence, the function $f(x)$ has an inflection point at					
(-1,12).					
$f(-1) = (-1)^3 + 3(-1)^2 - 9(-1) + 1$					
$= -1 + 3 + 9 + 1 = 12$ 20) The function $f(x) = x^3 - 3x^2 - 9x + 1$ is decreasing	21) The function $f(x) = x^3 - 2x^2 - 0x + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$				
20) The function $f(x) = x^3 - 3x^2 - 9x + 1$ is decreasing on	21) The function $f(x) = x^3 - 3x^2 - 9x + 1$ is increasing on				
Solution:	Solution:				
$f'(x) = 3x^2 - 6x - 9$	$f'(x) = 3x^2 - 6x - 9$				
$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$	$f'(x) = 0 \Longrightarrow 3x^2 - 6x - 9 = 0$				
$\implies 3(x^2 - 2x - 3) = 0$	$\implies 3(x^2 - 2x - 3) = 0$				
$\implies x^2 - 2x - 3 = 0$	$\implies x^2 - 2x - 3 = 0$				
$\Rightarrow (x+1)(x-3) = 0$ $\Rightarrow x = -1 \text{ or } x = 3$	$\Rightarrow (x+1)(x-3) = 0$ $\Rightarrow x = -1 \text{ or } x = 3$				
$ \Rightarrow x = -1 \text{of} x = 5 \\ -1 \qquad 3 $					
+ - + Sign of $f'(x)$	+ - + Sign of $f'(x)$				
Kind of	Kind of				
monotonicity	monotonicity				
Hence, the function $f(x)$ is decreasing on $(-1,3)$	Hence, the function $f(x)$ is increasing on				
22) The function $f(u) = u^3 - 2u^2 - 0u + 1$ has a relative	$(-\infty, -1) \cup (3, \infty)$ 23) The function $f(x) = x^3 - 3x^2 - 9x + 1$ has a relative				
22) The function $f(x) = x^3 - 3x^2 - 9x + 1$ has a relative maximum value at the point	minimum value at the point				
Solution:	Solution:				
$f'(x) = 3x^2 - 6x - 9$	$f'(x) = 3x^2 - 6x - 9$				
$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$	$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$				
$\implies 3(x^2 - 2x - 3) = 0$	$\implies 3(x^2 - 2x - 3) = 0$				
$\implies x^2 - 2x - 3 = 0$	$\implies x^2 - 2x - 3 = 0$				
$\Rightarrow (x+1)(x-3) = 0$ $\Rightarrow x = -1 \text{ or } x = 3$	$\Rightarrow (x+1)(x-3) = 0$ $\Rightarrow x = -1 \text{ or } x = 3$				
$ \Rightarrow x = -1 \text{of} x = 5 \\ -1 \qquad 3 $					
+ $ +$ Sign of $f'(x)$	+ - + Sign of $f'(x)$				
Kind of	Kind of				
monotonicity	monotonicity				
Hence, the function $f(x)$ has a relative maximum value at the point (-1.6)	Hence, the function $f(x)$ has a relative minimum value at the point $(2, -26)$				
the point $(-1,6)$. $f(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + 1$	the point $(3, -26)$. $f(3) = (3)^3 - 3(3)^2 - 9(3) + 1$				
= -1 - 3 + 9 + 1 = 6.	= 27 - 27 - 27 + 1 = -26.				

24) The function $f(x)$ upward on	25) The function $f(x) = x^3 - 3x^2 - 9x + 1$ concave downward on							
Solution:				Solution:				
$f'(x) = 3x^2 - 6x - 9$				$f'(x) = 3x^2 - 6x - 9$				
$f^{\prime\prime}(x) = 6x - 6$				$'(x) = 0 \Rightarrow$	$f^{\prime\prime}(x) =$	= 6x - 6		
$f''(x) = 0 \implies 6x - 6 = 0$ $\implies 6x = 6$				$f'(x) = 0 \implies $	6x - 6 = 6 $6x = 6$	0		
				\rightarrow	6 = 0			
$\implies x = \frac{6}{6}$				\Rightarrow	$x = \frac{6}{6}$			
$\Rightarrow x$				\Rightarrow	x = 1			
-	+	Sign of $f''(x)$		_		+	Sig	n of $f''(x)$
	U	Kind of		\cap		J		Kind of
Hence, the function <i>f</i>	$\int (x) ic concovo upv$	concavity		ence, the function	f(x) is co			oncavity
Hence, the function <i>j</i>	(x) is concave upw	$\operatorname{Varu}(1,\infty)$	пе	ence, the function	$\int \int (x) \sin t \theta$	illave uow	/IIWdl	$10011(-\infty,1)$
26) The function $f(x)$	$x) = x^3 - 3x^2 - 9x^3$	x + 1 has an	27	') The critical nu	umbers of th	e function		
inflection point a	t			$f(x) = x^3 + 3$	$3x^2 - 9x +$	5 are		
Solution:	$(1) 2^{2}$	0	<u>So</u>	olution:		2	0	
,	$ (x) = 3x^2 - 6x - f''(x) = 6x - 6 $	У	f'	$(x) = 0 \implies$	$f'(x) = 3x$ $3x^2 + 6x - 3x^2$		9	
$f''(x) = 0 \implies 6x$)		$3x^{2} + 0x^{2}$			
$\Rightarrow 62$				\Rightarrow	$x^{2} + 2x -$	3 = 0		
$\Rightarrow x$	$=\frac{6}{4}$				(x+3)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1			
$\Rightarrow x$				\Rightarrow	x = -3 c	or $x = 1$		
	1							
_	+	Sign of $f''(x)$						
\cap	U	Kind of concavity						
Hence, the function f	f(x) has an inflecti	on point at						
(1, -10). $f(1) =$	$(1)^3 - 3(1)^2 - 9(1)^3 - 9($	(1) + 1						
= 28) The function $f(x)$	$\frac{1-3-9+1}{2} = -\frac{1}{2}$	-10	20		f()3	<u>- 2</u> 2		· · · · · · · · · · · · ·
28) The function $f(x)$	$x_{1}^{2} = x_{2}^{2} + 3x_{1}^{2} - 9$	x + 5 is decreasing	29) The function on	$f(x) = x^{3} - $	$+ 3x^2 - 92$	x + 5	is increasing
Solution:			So	olution:				
f'	$(x) = 3x^2 + 6x -$	9			f'(x) = 3x		9	
$f'(x) = 0 \implies 3x$	$x^{2} + 6x - 9 = 0$ $x^{2} + 2x - 3) = 0$		f'	$(x) = 0 \implies $	$3x^2 + 6x - 3(x^2 + 2x)$			
	$ x^2 + 2x - 3) = 0 + 2x - 3 = 0 $				$3(x^2 + 2x)$ $x^2 + 2x - 2x$,		
	(x - 1) = 0				(x+3)(x-1)			
$\Rightarrow x$	= -3 or $x = 1$			\Rightarrow	x = -3 c			
-3	1	C:			1	l I .		Cierra (
+	- +	Sign of $f'(x)$		+	_	+		Sign of $f'(x)$
		Kind of		\~		_	~	Kind of
		monotonicit						monotonicit
Hence, the function <i>f</i>	f(x) is decreasing ($y = -\frac{1}{2}$		ence, the functio	$\frac{-}{(x) \text{ is in}}$	creasing o	n	У
				–∞, –3) ∪ (1, °			-	
·								

30) The function $f(x) = x^3 + 3x^2 - 9x + 5$ has a relative					
minimum value at the point Solution:	maximum value at the point <u>Solution:</u>				
$f'(x) = 3x^2 + 6x - 9$	$f'(x) = 3x^2 + 6x - 9$				
$f'(x) = 0 \implies 3x^2 + 6x - 9 = 0$	$f'(x) = 0 \implies 3x^2 + 6x - 9 = 0$				
$\Rightarrow 3(x^2 + 2x - 3) = 0$ $\Rightarrow x^2 + 2x - 3 = 0$	$\Rightarrow 3(x^2 + 2x - 3) = 0$ $\Rightarrow x^2 + 2x - 3 = 0$				
$\Rightarrow x^2 + 2x - 3 = 0$ $\Rightarrow (x + 3)(x - 1) = 0$	$\Rightarrow x^2 + 2x - 3 = 0$ $\Rightarrow (x + 3)(x - 1) = 0$				
$\Rightarrow x = -3 \text{ or } x = 1$	$\Rightarrow x = -3 \text{ or } x = 1$				
-3 1	-3 1				
+ $ +$ Sign of $f'(x)$	+ $ +$ Sign of $f'(x)$				
Kind of	Kind of				
monotonicit	monotonicit				
Hence, the function $f(x)$ has a relative minimum value at	Hence, the function $f(x)$ has a relative maximum value at				
the point (1,0).	the point $(-3,32)$.				
$f(1) = (1)^3 + 3(1)^2 - 9(1) + 5$	$f(-3) = (-3)^3 + 3(-3)^2 - 9(-3) + 5$				
= 1 + 3 - 9 + 5 = 0	= -27 + 27 + 27 + 5 = 32				
32) The function $f(x) = x^3 + 3x^2 - 9x + 5$ has an inflection point at	33) The function $f(x) = x^3 + 3x^2 - 9x + 5$ concave downward on				
Solution:	Solution:				
$f'(x) = 3x^2 + 6x - 9$	$f'(x) = 3x^2 + 6x - 9$				
f''(x) = 6x + 6	f''(x) = 6x + 6				
$ \begin{aligned} f''(x) &= 0 &\implies 6x + 6 = 0 \\ &\implies 6x = -6 \end{aligned} $	$f''(x) = 0 \implies 6x + 6 = 0$				
6	$\implies 6x = -6$				
$\Rightarrow x = -\frac{1}{6}$	$\Rightarrow x = -\frac{1}{6}$				
$\Rightarrow x = -1$	$\Rightarrow x = -1$				
-1 $-$ + Sign of $f''(x)$	-1 $-$ $+$ Sign of $f''(x)$				
∩ U Kind of concavity	∩ U Kind of concavity				
Hence, the function $f(x)$ has an inflection point at	Hence, the function $f(x)$ is concave downward on				
(-1,16).	(−∞, −1).				
$f(-1) = (-1)^3 + 3(-1)^2 - 9(-1) + 5$					
$= -1 + 3 + 9 + 5 = 16$ 34) The function $f(x) = x^3 + 3x^2 - 9x + 5$ concave	35) The critical numbers of the function				
upward on	$f(x) = x^3 - 3x^2 - 9x + 5$ are				
Solution:	Solution:				
$f'(x) = 3x^2 + 6x - 9$	$f'(x) = 3x^2 - 6x - 9$				
f''(x) = 6x + 6 $f''(x) = 0 \implies 6x + 6 = 0$	$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$ $\implies 3(x^2 - 2x - 3) = 0$				
$\begin{array}{cccc} y & (x) = 0 & \implies & 6x + 0 = 0 \\ & \implies & 6x = -6 \end{array}$	$\Rightarrow 3(x - 2x - 3) = 0$ $\Rightarrow x^2 - 2x - 3 = 0$				
$\Rightarrow x = -\frac{6}{6}$	$\implies (x+1)(x-3) = 0$				
$ \begin{array}{ccc} \xrightarrow{} & x & \xrightarrow{} & 6 \\ \xrightarrow{} & x & = -1 \end{array} $	\Rightarrow $x = -1$ or $x = 3$				
$ \rightarrow x = -1 $					
- + Sign of $f''(x)$					
U Kind of concavity					
Hence, the function $f(x)$ is concave upward on $(-1, \infty)$.					

36) The function $f(x) = x^3 - 3x^2 - 9x + 5$ is increasing	37) The function $f(x) = x^3 - 3x^2 - 9x + 5$ is decreasing				
on <u>Solution:</u>	on <u>Solution:</u>				
$f'(x) = 3x^2 - 6x - 9$	$f'(x) = 3x^2 - 6x - 9$				
$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$	$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$				
$\Rightarrow 3(x^2 - 2x - 3) = 0$ $\Rightarrow x^2 - 2x - 3 = 0$	$\Rightarrow 3(x^2 - 2x - 3) = 0$ $\Rightarrow x^2 - 2x - 3 = 0$				
$ \Rightarrow x = 2x = 3 = 0 $ $ \Rightarrow (x+1)(x-3) = 0 $	$\Rightarrow x^2 - 2x - 3 = 0$ $\Rightarrow (x + 1)(x - 3) = 0$				
\Rightarrow $x = -1$ or $x = 3$	$\Rightarrow x = -1 \text{ or } x = 3$				
$\begin{array}{ c c c } & -1 & 3 \\ \hline + & - & + & \text{Sign of } f'(x) \end{array}$	$\begin{vmatrix} -1 & 3 \\ + & - & + & \text{Sign of } f'(x) \end{vmatrix}$				
$\mathbf{X} = \mathbf{X} + \mathbf{X}$ Kind of	Kind of				
monotonicity	monotonicity				
Hence the function $f(x)$ is increasing on	Hence, the function $f(x)$ is decreasing on $(-1,3)$.				
Hence, the function $f(x)$ is increasing on $(-\infty, -1) \cup (3, \infty)$.	Hence, the function $f(x)$ is decreasing on $(-1,3)$.				
38) The function $f(x) = x^3 - 3x^2 - 9x + 5$ has a relative	39) The function $f(x) = x^3 - 3x^2 - 9x + 5$ has a relative				
maximum value at the point	minimum value at the point				
Solution: $f'(x) = 3x^2 - 6x - 9$	Solution: $f'(x) = 3x^2 - 6x - 9$				
$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$	$f'(x) = 0 \implies 3x^2 - 6x - 9 = 0$				
$\Rightarrow 3(x^2 - 2x - 3) = 0$	$\Rightarrow 3(x^2 - 2x - 3) = 0$				
$\Rightarrow x^2 - 2x - 3 = 0$ $\Rightarrow (x+1)(x-3) = 0$	$\Rightarrow x^2 - 2x - 3 = 0$ $\Rightarrow (x + 1)(x - 3) = 0$				
$\Rightarrow (x+1)(x-3) = 0$ $\Rightarrow x = -1 \text{ or } x = 3$	$ \Rightarrow (x+1)(x-3) = 0 \Rightarrow x = -1 \text{ or } x = 3 $				
-1 3	-1 3				
+ - + Sign of $f'(x)$	+ - + Sign of $f'(x)$				
Kind of monotonicity	Kind of monotonicity				
Hence, the function $f(x)$ has a relative maximum value at	Hence, the function $f(x)$ has a relative minimum value at				
the point (-1,10). $f(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + 5$	the point $(3, -22)$. $f(3) = (3)^3 - 3(3)^2 - 9(3) + 5$				
= -1 - 3 + 9 + 5 = 10.	= 27 - 27 - 27 + 5 = -22.				
40) The function $f(x) = x^3 - 3x^2 - 9x + 5$ concave	41) The function $f(x) = x^3 - 3x^2 - 9x + 5$ concave				
upward on	downward on				
Solution: $f'(x) = 3x^2 - 6x - 9$	Solution: $f'(x) = 3x^2 - 6x - 9$				
f''(x) = 6x - 6	f''(x) = 6x - 6 $f''(x) = 0 \implies 6x - 6 = 0$				
$ \begin{aligned} f''(x) &= 0 &\implies 6x - 6 = 0 \\ &\implies 6x = 6 \end{aligned} $	$f''(x) = 0 \implies 6x - 6 = 0$ $\implies 6x = 6$				
	6				
$\Rightarrow x = \frac{6}{6}$	$\Rightarrow x = \frac{6}{6}$				
$\Rightarrow x = 1$	$ \Rightarrow x = 1 \\ 1 $				
- + Sign of $f''(x)$	- + Sign of $f''(x)$				
O U Kind of concevity	O U Kind of concervity				
Hence, the function $f(x)$ is concave upward on $(1, \infty)$.	Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.				

42) The function $f(x) = x^3 - 3x^2 - 9x + 5$ has an inflection point at Solution: $f'(x) = 3x^2 - 6x - 9$ f''(x) = 6x - 6 $f''(x) = 0 \implies 6x - 6 = 0$ $\implies 6x = 6$ $\implies x = \frac{6}{6}$ $\implies x = 1$ 1	43) The critical numbers of the function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1 \text{ are}$ Solution: $f'(x) = 3\left(\frac{1}{3}\right)x^2 - 2\left(\frac{1}{2}\right)x - 2 = x^2 - x - 2$ $f'(x) = 0 \implies x^2 - x - 2 = 0$ $\implies (x+1)(x-2) = 0$ $\implies x = -1 \text{ or } x = 2$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$= 1 - 3 - 9 + 5 = -6$ 44) The function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$ is increasing on Solution: $f'(x) = 3\left(\frac{1}{3}\right)x^2 - 2\left(\frac{1}{2}\right)x - 2 = x^2 - x - 2$ $f'(x) = 0 \implies x^2 - x - 2 = 0$ $\implies (x + 1)(x - 2) = 0$ $\implies x = -1 \text{ or } x = 2$ $-1 \qquad 2$ $+ \qquad - \qquad + \qquad \text{Sign of } f'(x)$ $\text{Kind of monotonicity}$ Hence, the function $f(x)$ is increasing on $(-\infty, -1) \cup (2, \infty)$. 46) The function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$ has a relative maximum point Solution: $f'(x) = 3\left(\frac{1}{3}\right)x^2 - 2\left(\frac{1}{2}\right)x - 2 = x^2 - x - 2$ $f'(x) = 0 \implies x^2 - x - 2 = 0$ $\implies (x + 1)(x - 2) = 0$ $\implies x = -1 \text{ or } x = 2$	45) The function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$ is decreasing on Solution: $f'(x) = 3\left(\frac{1}{3}\right)x^2 - 2\left(\frac{1}{2}\right)x - 2 = x^2 - x - 2$ $f'(x) = 0 \implies x^2 - x - 2 = 0$ $\implies (x + 1)(x - 2) = 0$ $\implies x = -1$ or $x = 2$ -1 2 + $ +$ Sign of $f'(x)Hence, the function f(x) is decreasing on (-1,2).47) The function f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1has a relative minimum pointSolution:f'(x) = 3\left(\frac{1}{3}\right)x^2 - 2\left(\frac{1}{2}\right)x - 2 = x^2 - x - 2f'(x) = 0 \implies x^2 - x - 2 = 0\implies (x + 1)(x - 2) = 0\implies x = -1 or x = 2$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-1 \qquad 2$ $+ \qquad - \qquad + \qquad \text{Sign of } f'(x)$ Kind of monotonicity Hence, the function $f(x)$ has a relative minimum point at $\left(2, -\frac{7}{3}\right)$. $f(2) = \frac{1}{3}(2)^3 - \frac{1}{2}(2)^2 - 2(2) + 1$ $= \frac{8}{3} - \frac{4}{2} - 4 + 1 = -\frac{7}{3}$		

48) The function $f(x)$	$x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 $	2x + 1 concave	49) The function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$ concave				
upward on			downward on				
Solution:	(1)		Solution:				
$f'(x) = 3\left(\frac{1}{2}\right)$	$x^2 - 2\left(\frac{1}{2}\right)x - 2$	$=x^{2}-x-2$	$f'(x) = 3\left(\frac{1}{2}\right)$	$x^2 - 2\left(\frac{1}{2}\right)x - 2$	$= x^2 - x - 2$		
(3/	f''(x) = 2x - 1		$f''(x) = 0 \implies 2x \implies 2x$	f''(x) = 2x - 1			
$\int f''(x) = 0 \implies 2x$	c - 1 = 0		$\int f''(x) = 0 \implies 2x$	x - 1 = 0			
$\Rightarrow 2x$	c = 1		$\Rightarrow 2x$	c = 1			
$\Rightarrow x$	$=\frac{1}{2}$		$\Rightarrow x$	$=\frac{1}{2}$			
1	2		1	2			
2			2	- -			
-	+	Sign of $f''(x)$	-	+	Sign of $f''(x)$		
		Kind of			Kind of		
$ \cap $	U	concavity	\cap	U	concavity		
Llance the function f			Llance the function f	(x) is concerned on			
Hence, the function f	(x) is concave upv	varu on $\left(\frac{1}{2}, \infty\right)$.	Hence, the function $f(x)$ is concave downward on $\left(-\infty,\frac{1}{2}\right)$.				
	1 2 1 2	0	51) The critical numb	ers of the function			
50) The function $f(x)$	3 2	2x + 1 has an	$f(x) = \frac{1}{2}x^3 + \frac{1}{2}x$				
inflection point a	t		3 Z	-2x+1 are			
Solution:	(1)		Solution:	(1)			
$f'(x) = 3\left(\frac{1}{3}\right)$	$x^2 - 2\left(\frac{1}{2}\right)x - 2$	$= x^2 - x - 2$	$f'(x) = 3\left(\frac{1}{3}\right)$	$x^{2} + 2\left(\frac{1}{2}\right)x - 2$	$= x^2 + x - 2$		
$f''(x) = 0 \implies 2x$	$f^{\prime\prime}(x) = 2x - 1$		$\int f'(x) = 0 \implies x^2$	+x-2=0			
$\int f''(x) = 0 \implies 2x$	c - 1 = 0		•	+2)(x-1)=0			
$\Rightarrow 2x$			$\Rightarrow x$	= -2 or $x = 1$			
$\Rightarrow x$	$=\frac{1}{2}$						
<u>1</u>	2						
2	+	Sign of $f''(x)$					
	I						
		Kind of					
	U	concavity					
Hence, the function f	(x) has an inflecti	on point at					
$\left(\frac{1}{2},-\frac{1}{12}\right).$							
	$(1)^2$ (1)						
$f\left(\frac{1}{2}\right) = \frac{1}{3}\left(\frac{1}{2}\right)^3 - \frac{1}{2}\left(\frac{1}{2}\right)^3$	$\frac{1}{2} - 2(\frac{1}{2}) + 1$						
$=\frac{1}{24}-\frac{1}{8}-1-$							
				<u> </u>			
52) The function $f(x)$	$x_{1} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - \frac{1}{2}x^{2$	2x + 1 is	53) The function $f(x)$	$x_{1} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - \frac{1}{2}x^{2$	2x + 1 is		
increasing on			decreasing on				
Solution:	71 \		Solution:	/1\			
$f'(x) = 3\left(\frac{1}{2}\right)$	$x^{2} + 2\left(\frac{1}{2}\right)x - 2$	$= x^2 + x - 2$	$f'(x) = 3\left(\frac{1}{2}\right)$	$x^{2} + 2\left(\frac{1}{2}\right)x - 2$	$= x^{2} + x - 2$		
$\int f'(x) = 0 \implies x^2$	+x-2=0		$f'(x) = 0 \implies x^2$	+x-2=0			
\Rightarrow (x	(x-1) = 0		\Rightarrow (x	(x-1) = 0			
	= -2 or $x = 1$			= -2 or $x = 1$			
	- +	Sign of $f'(x)$	-2	<u> </u>	Sign of $f'(x)$		
	1	\checkmark Kind of			✓ Kind of		
		monotonicity		$\langle /$	monotonicity		
Hence, the function f	(x) is increasing of	on	Hence, the function f	f(x) is decreasing $f(x)$	on $(-2,1)$.		
$(-\infty,-2) \cup (1,\infty).$							

54) The function
$$f(x) = \frac{1}{4}x^{2} + \frac{1}{4}x^{2} - 2x + 1$$

has a relative maximum point
Solution:

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies x^{2} + x - 2 = 0$$

$$\Rightarrow x = -2 \text{ or } x = 1$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 3\left(\frac{1}{3}\right)x^{2} + 2\left(\frac{1}{2}\right)x - 2 = x^{2} + x - 2$$

$$f''(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 2x + 1$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

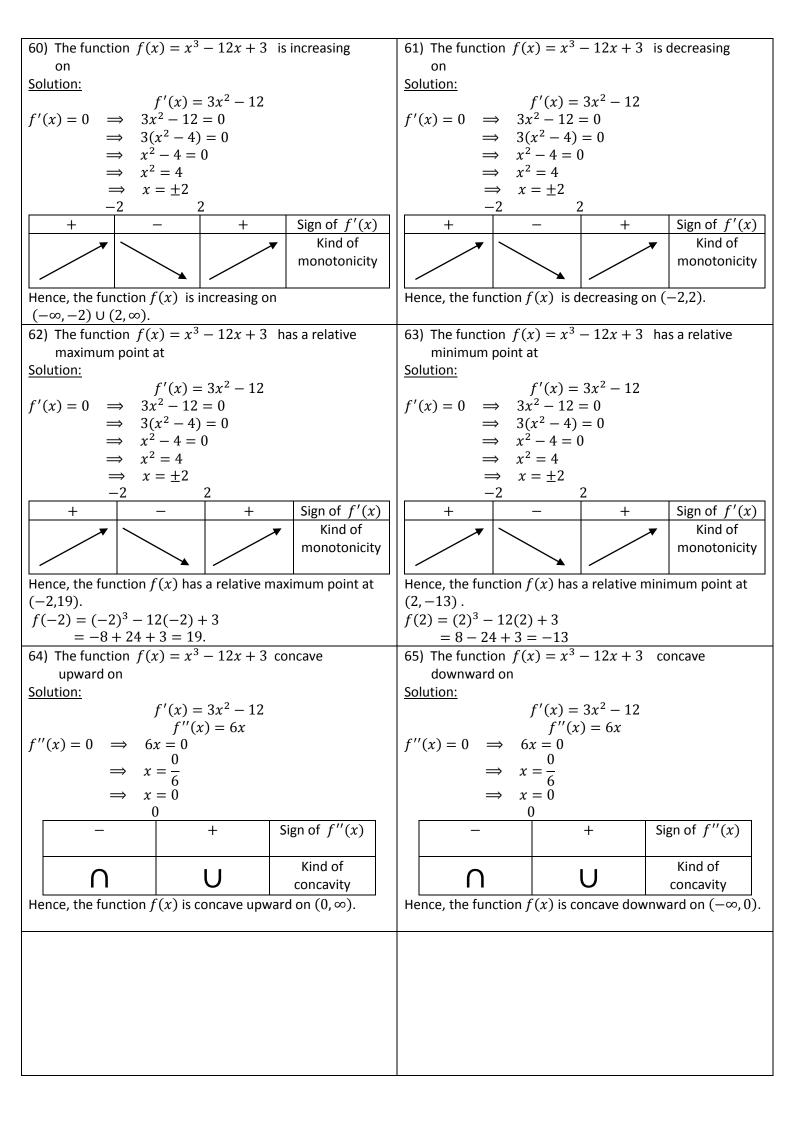
$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$


$$\Rightarrow x^{2} - 1 \implies x = -\frac{1}{2}$$

$$f'(x) = 0 \implies 2x + 1 = 0$$

$$\Rightarrow x^{2} - 1 \implies x^{2} = 4$$

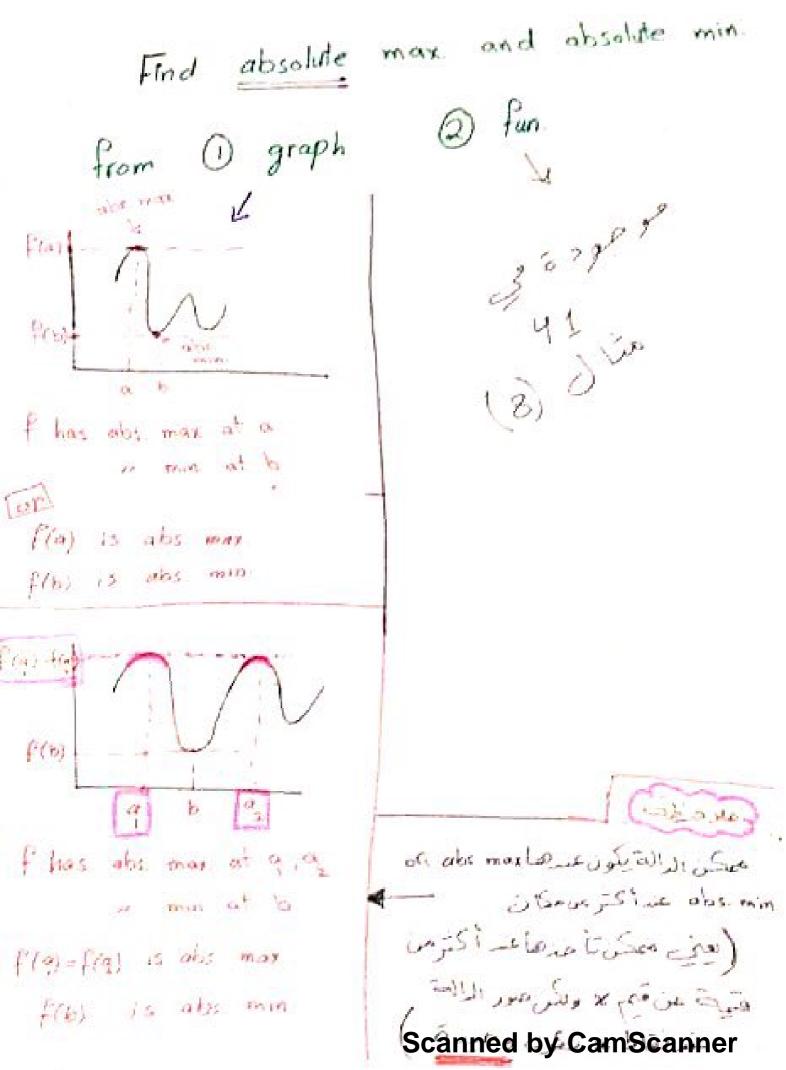
$$\Rightarrow x = \pm 2$$

$$f'($$

66) The function $f(x) = x^3 - 12x + 3$ has an	(7) The critical numbers of the function	
(b) The function $f(x) = x^2 - 12x + 3$ has an inflection point at	67) The critical numbers of the function $f(x) = x^3 - 3x^2 + 1$ are	
Solution:	Solution:	
$f'(x) = 3x^2 - 12$	$f'(x) = 3x^2 - 6x$	
f''(x) = 6x	$f'(x) = 0 \implies 3x^2 - 6x = 0$	
$f''(x) = 0 \implies 6x = 0$	$\implies 3(x^2 - 2x) = 0$	
$\Rightarrow r = \frac{0}{2}$	$\implies x^2 - 2x = 0$	
$\Rightarrow x = \frac{1}{6}$	$\implies x(x-2) = 0$	
$\Rightarrow x = 0$	$\Rightarrow x = 0 \text{ or } x = 2$	
- + Sign of f''(x)		
∩ U Kind of concavity		
Hence, the function $f(x)$ has an inflection point at (0,3). $f(0) = (0)^3 - 12(0)^2 + 3$		
68) The function $f(x) = x^3 - 3x^2 + 1$ is increasing	69) The function $f(x) = x^3 - 3x^2 + 1$ is decreasing	
on	on	
Solution:	Solution:	
$f'(x) = 3x^2 - 6x$	$f'(x) = 3x^2 - 6x$	
$f'(x) = 0 \Rightarrow 3x^2 - 6x = 0$	$f'(x) = 0 \implies 3x^2 - 6x = 0$	
$\Rightarrow 3(x^2 - 2x) = 0$	$\implies 3(x^2 - 2x) = 0$	
$\Rightarrow x^2 - 2x = 0$	$\Rightarrow x^2 - 2x = 0$	
$\Rightarrow x(x-2) = 0$	$\Rightarrow x(x-2) = 0$	
$\implies x = 0 \text{ or } x = 2$	$\Rightarrow x = 0 \text{ or } x = 2$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ - + Sign of $f'(x)$	
Kind of	Kind of	
monotonicity	monotonicity	
Hence, the function $f(x)$ is increasing on	Hence, the function $f(x)$ is decreasing on (0,2).	
$(-\infty,0) \cup (2,\infty).$	2	
70) The function $f(x) = x^3 - 3x^2 + 1$ has a relative	71) The function $f(x) = x^3 - 3x^2 + 1$ has a relative	
maximum point at	minimum point at	
Solution:	Solution:	
$f'(x) = 3x^2 - 6x$ $f'(x) = 0 \implies 3x^2 - 6x = 0$	$f'(x) = 3x^2 - 6x$ $f'(x) = 0 \implies 3x^2 - 6x = 0$	
$ \begin{array}{cccc} f(x) = 0 & \implies & 5x^2 - 6x = 0 \\ & \implies & 3(x^2 - 2x) = 0 \end{array} $	$ \begin{array}{ccc} f(x) = 0 & \implies & 5x^2 - 6x = 0 \\ & \implies & 3(x^2 - 2x) = 0 \end{array} $	
$\Rightarrow 3(x - 2x) = 0$ $\Rightarrow x^2 - 2x = 0$	$\Rightarrow 3(x - 2x) = 0$ $\Rightarrow x^2 - 2x = 0$	
$ \Rightarrow x (x-2) = 0 $		
$\Rightarrow x = 0 \text{ or } x = 2$	$\Rightarrow x = 0 \text{ or } x = 2$	
0 2	0 2	
+ - + Sign of $f'(x)$	+ - + Sign of $f'(x)$	
Kind of	Kind of	
monotonicity	monotonicity	
Hence, the function $f(x)$ has a relative maximum point at	Hence, the function $f(x)$ has a relative minimum point at	
(0,1).	(2, -3).	
$f(0) = (0)^3 - 3(0)^2 + 1$ = 0 - 0 + 1 = 1.	$f(2) = (2)^3 - 3(2)^2 + 1$ = 8 - 12 + 1 = -3.	
	-0 12 1 - 0.	

72) The function $f(x) = x^3 - 3x^2 + 1$ concave	73) The function $f(x) = x^3 - 3x^2 + 1$ concave	
upward on	downward on	
Solution:	Solution:	
$f'(x) = 3x^2 - 6x$	$f'(x) = 3x^2 - 6x$	
f''(x) = 6x - 6	f''(x) = 6x - 6	
$f''(x) = 0 \implies 6x - 6 = 0$ $\implies 6x = 6$	f''(x) = 6x - 6 $f''(x) = 0 \implies 6x - 6 = 0$ $\implies 6x = 6$	
$\implies x = \frac{6}{6}$	$\Rightarrow x = \frac{6}{6}$	
$\Rightarrow x = 1$	$\Rightarrow x = 1$	
$\begin{array}{ c c c c }\hline & 1 \\ \hline & - & + & \text{Sign of } f''(x) \end{array}$	$\begin{array}{ c c c }\hline & 1 \\ \hline & - & + & \text{Sign of } f''(x) \end{array}$	
Kind of	Kind of	
∩ U concavity	∩ U concavity	
Hence, the function $f(x)$ is concave upward on $(1, \infty)$.	Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.	
74) The function $f(x) = x^3 - 3x^2 + 1$ has an inflaction point at	75) The critical numbers of the function $f(x) = x^3 - 3x^2 + 2$ are	
inflection point at <u>Solution:</u>	$\int (x) = x^2 - 3x^2 + 2$ are <u>Solution:</u>	
$f'(x) = 3x^2 - 6x$	$f'(x) = 3x^2 - 6x$	
f''(x) = 6x - 6	$f'(x) = 0 \implies 3x^2 - 6x = 0$	
$f''(x) = 0 \implies 6x - 6 = 0$	$\Rightarrow 3(x^2 - 2x) = 0$	
$\Rightarrow 6x = 6$	$\Rightarrow x^2 - 2x = 0$	
$\implies x = \frac{6}{6}$	$\Rightarrow x(x-2) = 0$ $\Rightarrow x = 0 \text{ or } x = 2$	
$\Rightarrow x = 1$	$\rightarrow x = 0 01 x = 2$	
1		
- + Sign of $f''(x)$		
Kind of		
U Concavity		
Hence, the function $f(x)$ has an inflection point at $(1, -1)$.		
$f(1) = (1)^3 - 3(1)^2 + 1$		
= 1 - 3 + 1 = -1		
76) The function $f(x) = x^3 - 3x^2 + 2$ is increasing on	77) The function $f(x) = x^3 - 3x^2 + 2$ is decreasing on	
$\frac{\text{Solution:}}{f'(x) = 3x^2 - 6x}$	Solution: $f'(x) = 2x^2 + 6x$	
$f'(x) = 0 \implies 3x^2 - 6x = 0$	$f'(x) = 3x^2 - 6x$ $f'(x) = 0 \implies 3x^2 - 6x = 0$	
$\Rightarrow 3(x^2 - 2x) = 0$	$\Rightarrow 3(x^2 - 2x) = 0$	
$\Rightarrow x^2 - 2x = 0$	$\Rightarrow x^2 - 2x = 0$	
$\implies x(x-2) = 0$	$\implies x(x-2) = 0$	
$\implies x = 0 \text{ or } x = 2$ $0 \qquad 2$		
$\begin{vmatrix} 0 & 2 \\ + & - & + \\ \end{vmatrix}$ Sign of $f'(x)$	$\begin{vmatrix} 0 & 2 \\ + & - & + \\ \end{vmatrix}$ Sign of $f'(x)$	
Kind of	Kind of	
monotonicity	monotonicity	
Hence, the function $f(x)$ is increasing on	Hence, the function $f(x)$ is decreasing on (0,2).	
$(-\infty,0) \cup (2,\infty).$		

78) The function $f(x) = x^3 - 3x^2 + 2$ has a relative minimum point at Solution: $f'(x) = 3x^2 - 6x = 0$ $\Rightarrow 3(x^2 - 2x) = 0$ $\Rightarrow x^2 - 2x = 0$ $\Rightarrow x(x - 2) = 0$ $\Rightarrow x = 0$ or $x = 2$ 0 2 + $ +$ Sign of $f'(x)Kind ofmonotonicityHence, the function f(x) has a relative minimum point at(2, -2)$. $f(2) = (2)^3 - 3(2)^2 + 2$ = 8 - 12 + 2 = -2. 80) The function $f(x) = x^3 - 3x^2 + 2$ concave downward on Solution: $f'(x) = 3x^2 - 6x$ $f''(x) = 0 \Rightarrow 6x - 6 = 0$ $\Rightarrow 6x = 6$ $\Rightarrow x = \frac{6}{7}$	79) The function $f(x) = x^3 - 3x^2 + 2$ has a relative maximum point at Solution: $f'(x) = 3x^2 - 6x = 0$ $\Rightarrow 3(x^2 - 2x) = 0$ $\Rightarrow x^2 - 2x = 0$ $\Rightarrow x(x - 2) = 0$ $\Rightarrow x = 0 \text{ or } x = 2$ 0 2 f(x) = 0 $\Rightarrow x = 0 \text{ or } x = 2$ 0 $f(0) = (0)^3 - 3(0)^2 + 2$ = 0 - 0 + 2 = 2. 81) The function $f(x) = x^3 - 3x^2 + 2$ concave upward on Solution: $f'(x) = 3x^2 - 6x$ f''(x) = 0 $\Rightarrow 6x - 6 = 0$ $\Rightarrow 6x = 6$ $\Rightarrow x = \frac{6}{7}$
$\Rightarrow x = \frac{3}{6}$ $\Rightarrow x = 1$ $\boxed{1}$ $\boxed{-} + \frac{\text{Sign of } f''(x)}{(x)}$ $\boxed{\cap \qquad U} \qquad \frac{\text{Kind of } \text{concavity}}{\text{concavity}}$ Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$. 82) The function $f(x) = x^3 - 3x^2 + 2$ has an inflection point at Solution: $f'(x) = 3x^2 - 6x$ $f''(x) = 0 \Rightarrow 6x - 6 = 0$ $\Rightarrow 6x = 6$ $\Rightarrow x = \frac{6}{6}$ $\Rightarrow x = 1$ $\boxed{-} + \frac{\text{Sign of } f''(x)}{(x)}$ Hence, the function $f(x)$ has an inflection point at $(1,0)$. $f(1) = (1)^3 - 3(1)^2 + 2$ $= 1 - 3 + 2 = 0$	$\Rightarrow x = \frac{6}{6}$ $\Rightarrow x = 1$ 1 $\boxed{-} + Sign of f''(x)}$ $\boxed{\cap} U Kind of concavity}$ Hence, the function $f(x)$ is concave upward on $(1, \infty)$. 83) The critical numbers of the function $f(x) = x^3 - 6x^2 - 36x \text{ are}$ Solution: $f'(x) = 3x^2 - 12x - 36$ $f'(x) = 0 \Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3(x^2 - 4x - 12) = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$


BA) The function $f(x) = x^3 - 6x^2 - 36x$ is decreasing on Solution: $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 12x - 36 = 0$ $f'(x) = 3x^2 - 4x - 12 = 0$ $f'(x) = -2 = 6$ $f'(x) = -2 = -24 =$
$f'(x) = 3x^2 - 12x - 36$ $f'(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow 3x^2 - 4x - 12 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $= 2 - 6$ $f'(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $= 2 - 6$ $f'(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $= 2 - 6$ $f'(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $= 3x^2 - 4x - 12 = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3x^2 - 4x - 12 = 0$ $\Rightarrow 3x^2 - 4x - 12 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x = -2$ $f'(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow x = 2$ $= 2$ $= 12$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$
$ \begin{aligned} f'(x) &= 0 \implies 3x^2 - 12x - 36 = 0 \\ &\Rightarrow 3(x^2 - 4x - 12) = 0 \\ &\Rightarrow x^2 - 4x - 12 = 0 \\ &\Rightarrow x = -2 \text{ or } x = 6 \\ \hline -2 & 6 \\ \hline \\$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Hence, the function $f(x)$ is decreasing on $(-2,6)$. Hence, the function $f(x)$ is increasing on $(-\infty, -2) \cup (6, \infty)$. Below the point $f(x) = x^3 - 6x^2 - 36x$ has a relative maximum value at the point $(-\infty, -2) \cup (6, \infty)$. Below the point $f(x) = x^3 - 6x^2 - 36x$ has a relative maximum value at the point $f(x) = x^3 - 6x^2 - 36x$ has a relative maximum value at the point $f(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow 3(x^2 - 4x - 12) = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow x = -2$ or $x = 6$ -2 -2 $-6f'(x) = 0 \Rightarrow 3x^2 - 12x - 36 = 0\Rightarrow x^2 - 4x - 12 = 0\Rightarrow x = -2 or x = 6-2$ -2 $-6f'(x) = 0 \Rightarrow 3x^2 - 12x - 36 = 0\Rightarrow (x + 2)(x - 6) = 0\Rightarrow x = -2 or x = 6-2$ -2 $-6f'(x) = 0 \Rightarrow 3x^2 - 4x - 12 = 0\Rightarrow (x + 2)(x - 6) = 0\Rightarrow x = -2 or x = 6-2$ -2 $-6f'(x) = 0 \Rightarrow -2 - 6 f'(x) = 0\Rightarrow (x - 2)(x - 6) = 0= -8 - 24 + 72 = 40Below the function f(x) = x^3 - 6x^2 - 36x concave downward onSolution:f'(x) = 3x^2 - 12x - 36f''(x) = 6x - 12f''(x) = 0 \Rightarrow 6x - 12 = 0\Rightarrow 6x = 12\Rightarrow x = 22x = 2x = 2x = 2$
$\begin{array}{c} (-\infty, -2) \cup (6, \infty). \\ \hline (-1, -2) \cap (2, -2) - 36(-2) \\ \hline (-1, -2) \cap (-2, -2) - 2 \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) $
$\begin{array}{c} (-\infty, -2) \cup (6, \infty). \\ \hline (-1, -2) \cap (2, -2) - 36(-2) \\ \hline (-1, -2) \cap (-2, -2) - 2 \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2) \cap (-2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \cap (-2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) \\ \hline (-1, -2, -2) \cap (-2, -2) $
86) The function $f(x) = x^3 - 6x^2 - 36x$ has a relative minimum value at the point Solution: $f'(x) = 3x^2 - 12x - 36 = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3(x^2 - 4x - 12) = 0$ $\Rightarrow x^2 - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2$ or $x = 6$ -2 $6+$ $ +$ Sign of $f'(x)Hence, the function f(x) has a relative minimum value at the point (6, -216).f(6) = (6)^3 - 6(6)^2 - 36(6)= 216 - 216 - 216 = -21688) The function f(x) = x^3 - 6x^2 - 36x has an inflection point atSolution:f'(x) = 3x^2 - 12x - 36f'(x) = 0 \Rightarrow 3x^2 - 12x - 36 = 0\Rightarrow x^2 - 4x - 12 = 0\Rightarrow x^2 - 4x - 12 = 0\Rightarrow x = -2 or x = 6-2$ $6+$ $ +$ Sign of $f'(x)+$ $ +$ $ +$ Sign of $f'(x)+$ $ +$ $ -$
minimum value at the point Solution: $f'(x) = 3x^{2} - 12x - 36 = 0$ $\Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 6x^{2} - 36(6)$ $= 216 - 216 - 216 - 216$ $= -216 - 216 - 216 - 216 - 216$ $= -216 - 216 $
Solution: $f'(x) = 3x^{2} - 12x - 36$ $f'(x) = 0 \Rightarrow 3x^{2} - 12x - 36 = 0$ $\Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow x^{2} - 4x - 12 = 0$ $\Rightarrow x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 12x - 36 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 12x - 36$ $f'(x) = 0 \Rightarrow 3x^{2} - 12x - 36$ $f'(x) = 0 \Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $f'(x) = 3x^{2} - 12x - 36$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow (x + 2)(x$
$f'(x) = 3x^{2} - 12x - 36$ $f'(x) = 3x^{2} - 12x - 36 = 0$ $\Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 3x^{2} - 12x - 36 = 0$ $\Rightarrow 3x^{2} - 4x - 12 = 0$ $\Rightarrow (x + 2)(x - 6) = 0$ $\Rightarrow x = -2 \text{ or } x = 6$ $-2 6$ $f'(x) = 0 \Rightarrow 6(6)^{2} - 36(6)$ $= 216 - 216 - 216 - 216$ $= 216 - 216 - 216 - 216$ $= 216 - 216 - 216 - 216$ $= 216 - 216 - 216 - 216$ $= 216 - 216 - 216 - 216$ $= 216 - 216 - 216 - 216$ $= -216$
$f'(x) = 0 \implies 3x^2 - 12x - 36 = 0$ $\implies 3(x^2 - 4x - 12) = 0$ $\implies x^2 - 4x - 12 = 0$ $\implies x^2 - 12$
$ \begin{array}{c} \Rightarrow 3(x^2 - 4x - 12) = 0 \\ \Rightarrow x^2 - 4x - 12 = 0 \\ \Rightarrow (x + 2)(x - 6) = 0 \\ \Rightarrow x = -2 \text{ or } x = 6 \\ \hline \end{array} \\ \hline \begin{array}{c} + & - & + \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} + & - \\ \hline \end{array} \\ \hline \begin{array}{c} + & - \\ \hline \end{array} \\ \hline \begin{array}{c} + & - \\ \hline \end{array} \\ \hline \begin{array}{c} + & - \\ \hline \end{array} \\ \hline \begin{array}{c} + & - \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} $ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\
$ \begin{array}{c} \Rightarrow (x+2)(x-6) = 0 \\ \Rightarrow x = -2 \text{ or } x = 6 \\ \hline -2 & 6 \\ \hline \\$
$\Rightarrow x = -2 \text{ or } x = 6$ $\Rightarrow x = 2$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ $\Rightarrow x = 2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Kind of monotonicityKind of monotonicityKind of monotonicityHence, the function $f(x)$ has a relative minimum value at the point $(6, -216)$.Hence, the function $f(x)$ has a relative maximum value at the point $(-2,40)$. $f(6) = (6)^3 - 6(6)^2 - 36(6)$ $= 216 - 216 - 216 = -216$ Hence, the function $f(x)$ has a relative maximum value at the point $(-2,40)$.88) The function $f(x) = x^3 - 6x^2 - 36x$ has an inflection point at89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward onSolution: $f'(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 6x - 12$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow 6x = 12$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow x = 2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Hence, the function $f(x)$ has a relative minimum value at the point $(6, -216)$.Hence, the function $f(x)$ has a relative maximum value at the point $(6, -216)$. $f(6) = (6)^3 - 6(6)^2 - 36(6)$ $= 216 - 216 - 216 = -216$ Hence, the function $f(x)$ has a relative maximum value at the point $(-2,40)$.88) The function $f(x) = x^3 - 6x^2 - 36x$ has an inflection point at89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward onSolution: $f'(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ 89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward onSolution: $f'(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 6x - 12$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow 6x = 12$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$
the point $(6, -216)$. the point $(-2,40)$. $f(6) = (6)^3 - 6(6)^2 - 36(6)$ $= (-2)^3 - 6(-2)^2 - 36(-2)$ $= 216 - 216 - 216 = -216$ $= -8 - 24 + 72 = 40$ 88) The function $f(x) = x^3 - 6x^2 - 36x$ has an inflection point at 89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward on Solution: $f''(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $f''(x) = 6x - 12$ $\Rightarrow 6x = 12$ $\Rightarrow 6x = 12$ $\Rightarrow x = 2$ $\Rightarrow x = 2$ 2 2
the point $(6, -216)$. the point $(-2,40)$. $f(6) = (6)^3 - 6(6)^2 - 36(6)$ $= (-2)^3 - 6(-2)^2 - 36(-2)$ $= 216 - 216 - 216 = -216$ $= -8 - 24 + 72 = 40$ 88) The function $f(x) = x^3 - 6x^2 - 36x$ has an inflection point at 89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward on Solution: $f''(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $f''(x) = 6x - 12$ $\Rightarrow 6x = 12$ $\Rightarrow 6x = 12$ $\Rightarrow x = 2$ $\Rightarrow x = 2$ 2 2
$ \begin{array}{c} f(6) = (6)^3 - 6(6)^2 - 36(6) \\ = 216 - 216 - 216 - 216 \\ = 216 - 216 - 216 - 216 \\ = -216 - 216 - 216 \\ = -216 - 216 - 216 \\ = -216 - 216 - 216 \\ = -216 - 216 - 216 \\ = -216 - 216 - 216 \\ = -8 - 24 + 72 = 40 \\ \end{array} $ 89) The function $f(x) = x^3 - 6x^2 - 36x$ concave downward on Solution: $ \begin{array}{c} f'(x) = 3x^2 - 12x - 36 \\ f''(x) = 6x - 12 \\ f''(x) = 6x - 12 \\ f''(x) = 0 \\ \Rightarrow 6x = 12 \\ \Rightarrow x = \frac{12}{6} \\ \Rightarrow x = 2 \\ \hline \end{array} $ $ \begin{array}{c} f''(x) = 3x^2 - 12x - 36 \\ f''(x) = 6x - 12 \\ f''(x) = 0 \\ \Rightarrow 6x - 12 = 0 \\ \Rightarrow 6x = 12 \\ \Rightarrow x = \frac{12}{6} \\ \Rightarrow x = 2 \\ \hline \end{array} $
88) The function $f(x) = x^3 - 6x^2 - 36x$ has an inflection point at Solution: $f'(x) = 3x^2 - 12x - 36$ $f''(x) = 3x^2 - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ 2 $(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ $\implies x = 2$ $\implies x = 2$
inflection point at Solution: $f'(x) = 3x^{2} - 12x - 36$ $f''(x) = 3x^{2} - 12x - 36$ $f''(x) = 3x^{2} - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ 2 $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ $\implies x = 2$
Solution: $f'(x) = 3x^{2} - 12x - 36$ $f''(x) = 6x - 12$ $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ 2 $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$ $\implies x = 2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$f''(x) = 6x - 12$ $f''(x) = 6x - 12$ $f''(x) = 6x - 12$ $\Rightarrow 6x - 12 = 0$ $\Rightarrow 6x = 12$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ 2 $f''(x) = 0 \Rightarrow 6x - 12 = 0$ $\Rightarrow 6x = 12$ $\Rightarrow x = \frac{12}{6}$ $\Rightarrow x = 2$ 2
$ \Rightarrow x = \frac{12}{6} \Rightarrow x = 2 2 2 2 2 2 2 2 2 2$
$ \Rightarrow x = \frac{12}{6} \Rightarrow x = 2 2 2 2 2 2 2 2 2 2$
$ \Rightarrow x = \frac{12}{6} \Rightarrow x = 2 2 2 2 2 2 2 2 2 2$
$ \Rightarrow x = 2 2 2 2 2 2 2 2 2 2$
$ \Rightarrow x = 2 2 2 2 2 2 2 2 2 2$
- + Sign of $f''(x) - + $ Sign of $f''(x) $
Mathematical Mind of Mind of Image: Constructive Image: Constructive Image: Constructive
$ \begin{array}{ c c c c c } \hline I & O & concavity \\ \hline I $
Hence, the function $f(x)$ has an inflection point at $(2, -88)$. Hence, the function $f(x)$ is concave downward on $(-\infty, 2)$
$f(2) = (2)^3 - 6(2)^2 - 36(2)$
= 8 - 24 - 72 = -88

90) The function $f(x) = x^3 - 6x^2 - 36x$ concave upward on Solution: $f'(x) = 3x^2 - 12x - 36$ f''(x) = 6x - 12 $f''(x) = 0 \implies 6x - 12 = 0$ $\implies 6x = 12$ $\implies x = \frac{12}{6}$ $\implies x = 2$	91) The critical numbers of the function $f(x) = -x^{3} - 6x^{2} - 9x + 1 \text{ are}$ Solution: $f'(x) = -3x^{2} - 12x - 9$ $f'(x) = 0 \implies -3x^{2} - 12x - 9 = 0$ $\implies -3(x^{2} + 4x + 3) = 0$ $\implies x^{2} + 4x + 3 = 0$ $\implies x^{2} - 3 \text{ or } x = -1$
$-$ +Sign of $f''(x)$ \bigcap UKind of concavityHence, the function $f(x)$ is concave upward on $(2, \infty)$.	
92) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ is decreasing on Solution: $f'(x) = -3x^2 - 12x - 9$ $f'(x) = 0 \implies -3x^2 - 12x - 9 = 0$ $\implies -3(x^2 + 4x + 3) = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies (x + 3)(x + 1) = 0$ $\implies x = -3$ or $x = -1$ -3 $-1ightarrow Kind ofmonotonicityHence, the function f(x) is decreasing on(-\infty, -3) \cup (-1, \infty).$	93) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ is increasing on Solution: $f'(x) = -3x^2 - 12x - 9$ $f'(x) = 0 \implies -3x^2 - 12x - 9 = 0$ $\implies -3(x^2 + 4x + 3) = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies (x + 3)(x + 1) = 0$ $\implies x = -3$ or $x = -1$ -3 $-1increasing on f'(x)Hence, the function f(x) is increasing on (-3, -1).$
94) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ has a relative minimum value at the point Solution: $f'(x) = -3x^2 - 12x - 9$ $f'(x) = 0 \implies -3x^2 - 12x - 9 = 0$ $\implies -3(x^2 + 4x + 3) = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies (x + 3)(x + 1) = 0$ $\implies x = -3 \text{ or } x = -1$ $-3 \qquad -1$ $\hline +$ $-$ Sign of $f'(x)$ Kind of monotonicity Hence, the function $f(x)$ has a relative minimum value at the point $(-3,1)$. $f(-3) = -(-3)^3 - 6(-3)^2 - 9(-3) + 1$ = 27 - 54 + 27 + 1 = 1.	95) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ has a relative maximum value at the point Solution: $f'(x) = -3x^2 - 12x - 9$ $f'(x) = 0 \implies -3x^2 - 12x - 9 = 0$ $\implies -3(x^2 + 4x + 3) = 0$ $\implies x^2 + 4x + 3 = 0$ $\implies (x + 3)(x + 1) = 0$ $\implies x = -3$ or $x = -1$ -3 -1

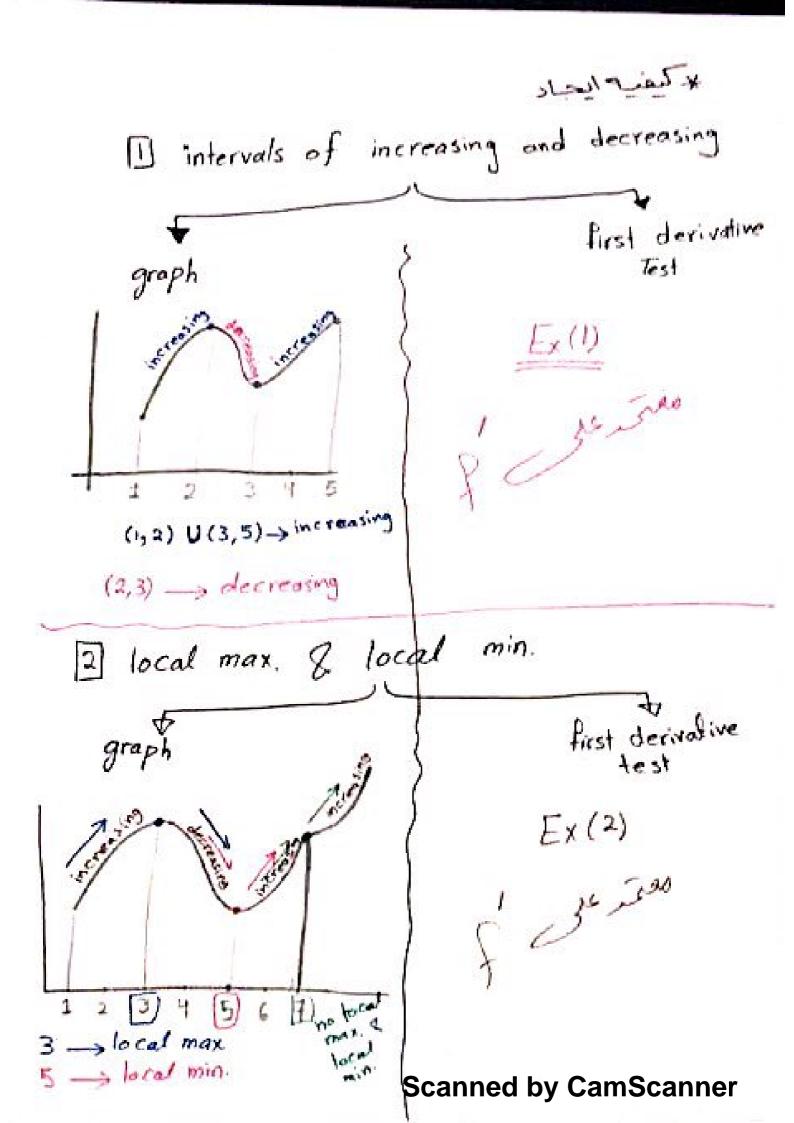
96) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ has an inflection point at	97) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ concave downward on	
Solution:	Solution:	
$f'(x) = -3x^2 - 12x - 9$	$f'(x) = -3x^2 - 12x - 9$	
$f''(x) = -6x - 12 f''(x) = 0 \implies -6x - 12 = 0$	f''(x) = -6x - 12 $f''(x) = 0 \implies -6x - 12 = 0$ $\implies -6x = 12$	
$\Rightarrow -6x = 12$	$\Rightarrow -6r = 12$	
	12	
$\Rightarrow x = -\frac{12}{6}$	$\Rightarrow x = -\frac{12}{6}$ $\Rightarrow x = -\frac{2}{6}$	
$\Rightarrow x = -2$	$\Rightarrow x = -2$	
-2	-2	
+ – Sign of $f''(x)$	+ – Sign of $f''(x)$	
Kind of	Kind of	
U N concavity	U n concavity	
Hence, the function $f(x)$ has an inflection point at $(-2,3)$	Hence, the function $f(x)$ is concave downward on $(-2, \infty)$.	
$f(-2) = -(-2)^3 - 6(-2)^2 - 9(-2) + 1$		
$= 8 - 24 + 18 + 1 = 3$ 98) The function $f(x) = -x^3 - 6x^2 - 9x + 1$ concave		
upward on		
Solution:		
$f'(x) = -3x^2 - 12x - 9$		
f''(x) = -6x - 12		
$f''(x) = -6x - 12 f''(x) = 0 \implies -6x - 12 = 0$		
$\Rightarrow -6x = 12$		
$\implies x = -\frac{12}{6}$		
$\Rightarrow x = -\frac{1}{6}$		
$\Rightarrow x = -2$		
-2		
+ – Sign of $f''(x)$		
Kind of		
U II concavity		
Hence, the function $f(x)$ is concave upward on $(-\infty, -2)$.		

4.1

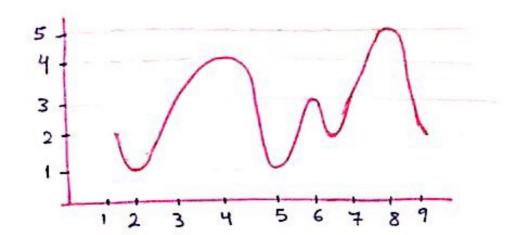
حفظ ذمن النظريات والتعريفات المتاكية : \square Def. (1) \longrightarrow absolute max. and absolute min. 2 Def. (2) -> local max. and local min. 3 The Extreme Value Theorem. f cont. on closed interval [a,b] > f has absolute max. & absolute min. absolute extreme value 4 Def. (6) -> critical number f(c)=0, f(c) does not exist [5] The closed Interval Method To find an absolute extrem value of cont. f on [9,6]: (1) Find all critical numbers (2) Evaluate f(a), f(b), and f at critical numbers (3) The largest value \longrightarrow abs. max. The smallest value -> abs. min. Scanned by CamScanner

4.3 حفظ نص النظريا ت والتويغات التالية، I Increasing & Decreasing Test (first derivative) 2 Local max. & local min. (first derivative) 3 Concavity Test (Second derivative) 日 Def. (Inflection Point) >5 local-max. & local min. (second derivative)

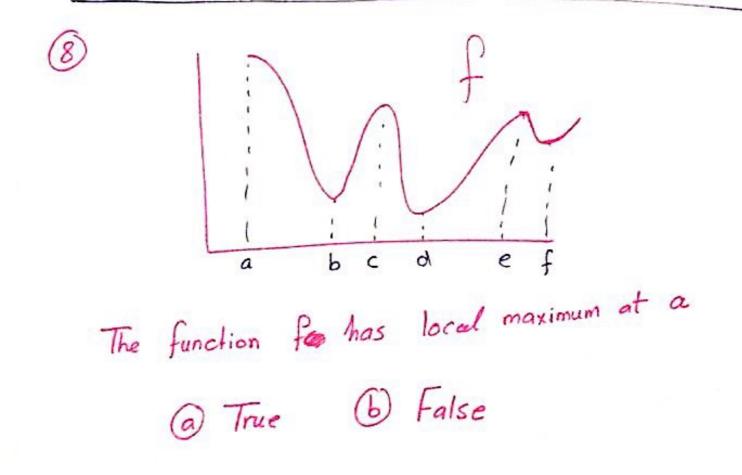
first derivative (f) () increasing 7 (2) decreasing 3 local max. (y) local min.


Second derivative (f") 1) Concare up 2) Gncave down 3 inflection Point

[5] The graph of the function f $f(z) = -\frac{1}{3}z^3 - 4z^2 - 1$ is concave up


on

(a) (-a,-4) (b) (-w, 4) (C) (4,00) (d) (-4, 00)


(6) The inflection point of the function $f(x) = x^3 - 6x^2 - 36x$ is @ (2, f(2)) (b) (-2, f(-2)) ((o, f(o)) a) No inflection point.

1) The absolute minimume of the function

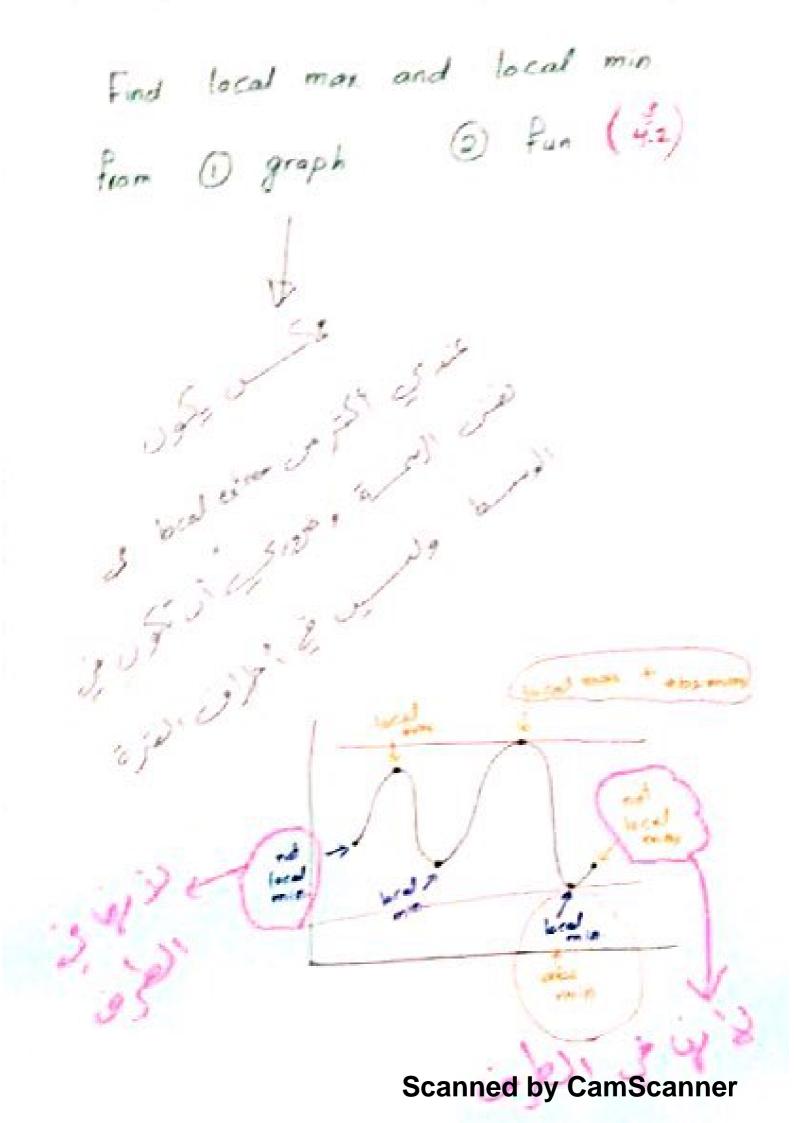
(a) f(2)(b) f(1)(c) f(2), f(5)(a) f(6), f(9)

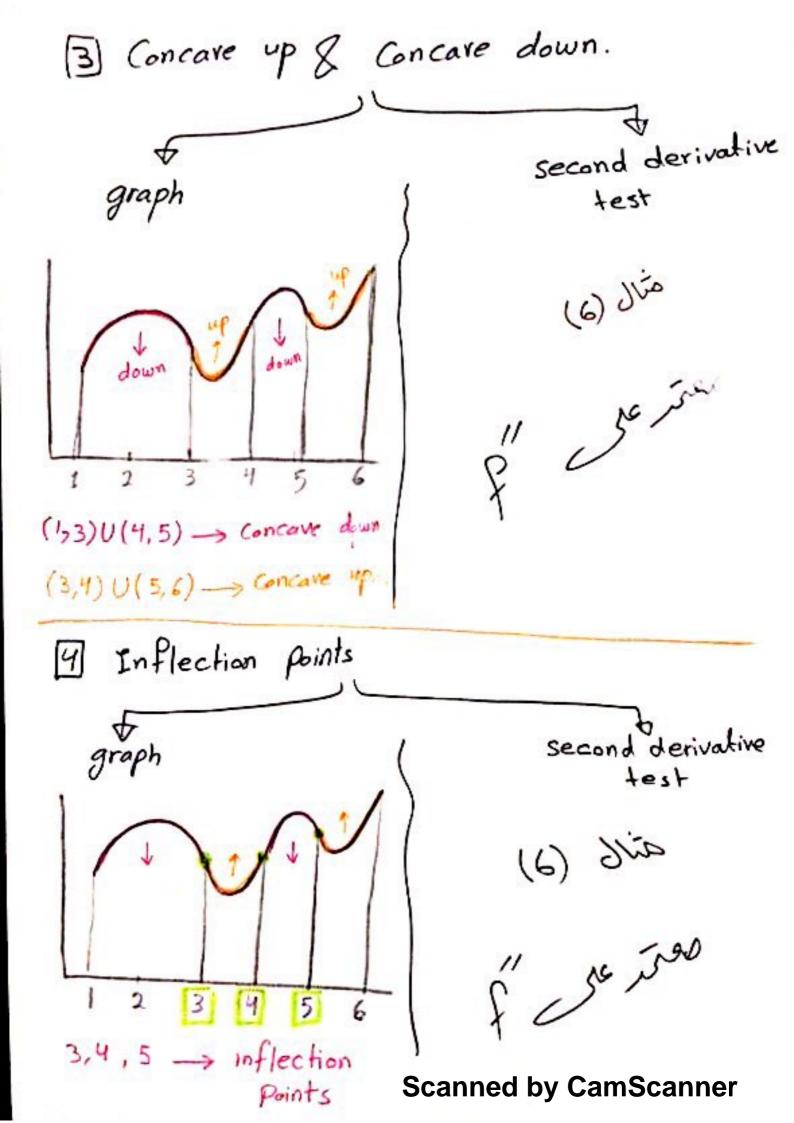
■ The function
$$f(x) = x^3 - 3x$$
 is decreasing on
(a) (-00, -1)
(b) (-1, 00)
(c) (-00, -1) U (1,00)
(d) (-1,1)
■ If $f'(x) > 0$ for $1 < x < 3$, then the graph
of $f(x)$ is concave down on (1,3)
(a) True
(b) False
■ The inflection point of the function
 $f(x) = x^3 - 12x + 2$ is
(a) $(2, -4)$
(b) $(0, 12)$
(c) $(-2, 28)$
(d) f does not have an inflection point.
■ The function $f(x) = x^3 + 3x^2$ has
@ a local maximum at $x = -2$
@ a local max, at $x = 0$
@ a local max, at $x = 2$

Find critical numbers of the function f(x) = 5x2+4x ٣ حطوت لا ياد Critical numbers $O_f = R (Polynominals)$ 3 f(x) = 10 x + 4 f(x) = 0Fdoes not exist > 10x+4=0 => 10x = -4 $\Rightarrow x = \frac{-4}{10} = -\frac{2}{5}$ $(x=\frac{2}{5}) \in \mathbb{R} = D_{c}$: Critical number is

		lute extreme values of the
1	function for	$x) = x^2 - 4$ on [-1,3] are
a) f (1), f (0)	
6	f(3), f(1)	
O	f(3), f(-1)	
d	F(3), F(0)	
2		l numbers of the function
	f(x) = x	3-3x2-24x are
6	1) 2,4	
E) _2,-4	
C		
-	2, - 4	
3	The absolute	extreme of the function
		-5 on [0,3] are
	absolute min.	absolute max.
0	f(3)	F(0)
6	f(0)	f(1)
0	F10)	F(3)
0	F(1)	f(3) Scanned by CamScann

(1) The absolute maximum value of $f(r) = 3x^2 - 12x + 1$ on [1,3] is (are)


 $\begin{array}{c} \bigcirc & f(\alpha) \\ \hline \end{array} \end{array}$


and the second of the second second of the s

(3) If f is continuous function on a closed interval [a, b], then f alternis an absolute maximum value f(m) at some number

min [a, b] (a) True (b) False.

6 let h be another in the domain D of a function f, then f(h) is the absolute maximum value of f on D if f(c) < f(x) for all x ED 6 True 6 FSCanned by CamScanner

