Temperature

Temperature: is a measure of hotness or coldness of an object.

Basic Temperature Scales

		Celsius	Kelvin	Fahrenheit	Rankine		
	Boiling	100 C	373 K	212 F	672 R		
	Freezing	0 C	237 K	32 F	492 R		
	Absolut Zero	-273 C	0 K	-460 F	0 R		

Converting equations

$$T_c = \frac{5}{9}(T_F - 32)$$
 $T_K = T_C + 237$ $T_R = T_F + 460$ $T_F = \frac{9}{5}(T_C + 32)$

is a form of internal kinetic and potential energy contained in an object.

transferred from an object at a higher temperature to one at a lower temperature.

*Heat cannot be stored. Heat is a transformed energy.

SI system = Joule (J).

U.S. system = ft lb.

Other
Units

SI system\Metric = kilocalorie (kcal) (Cal).

U.S. system = Btu (British thermal unit).

1 kcal = 4190 J ... 1 cal = 4.19 J

1 Btu = 778 ft lb

Specific Heat The specific heat of a substance is the amount of heat necessary to change the temperature of 1kg of its 1C (SI) or 1 lb of it 1F (U.S.) SI system $Q = cm\Delta T$ U.S. system $Q = cw\Delta T$ $Q = cw\Delta T$

Density				
Density: is a property of all three states of matter.				
Generally, density increases with decreasing temperature.				
Exception is water for which ice is less dense than liquid water				
Mass Density	Weight Density			
Is defined as mass per unit volume.	Is defined as weight per unit volume.			
$D_m = \frac{m}{V}$	$D_{w} = \frac{F_{w}}{V}$			
$D_m = \text{mass density}$	D_{v} = weight density			
m = mass	$F_w = \text{weight}$ $V = \text{volume}$			
V = volume	v — volume			

Change of Phase

is a change in a substance from one form of matter (solid, liquid, or gas) to another.

* No temperature change during change of phase.

Fusio	n	Vaporization	
The change of phase for is called meltin s	•	The change of phase from liquid to a gas or vapor is called vaporization.	
The change from liquid to solid is called freezing or solidification.		The reverse process is called condensation (gas → liquid).	
Heat of fusion L_f		Heat of vaporization L_v	
SI system	U.S. system	SI system	U.S. system
$L_f = \frac{Q}{m}$	$L_f = \frac{Q}{w}$	$L_v = \frac{Q}{m}$	$L_v = \frac{Q}{w}$

Elasticity						
is a measure of a d	eformed object's abil	ity to return to its original size and shape				
once the outside	forces are removed. (like stretch and squeeze a rubber ball).				
The Elas	tic Limit	Stress				
is the point beyond	d which a deformed	Is the ratio of the outside applied force,				
object cannot ret	curn to its original	which tends to cause a distortion, to the				
sha	ipe.	area over which the force acts.				
Stress basic types: -		$S = \frac{F}{A}$				
 Tension Compression Shear Torsion Bending 		$S = \frac{1}{A}$				
		S = stress, usually in N/m ² (Pa) or lb/in ² (psi)				
		F = force applied, N or lb, perpendicular to the				
		surface to which it is applied $A = \text{area}, \text{ m}^2 \text{ or in}^2$				
		A – area, iii oi iii				
	Stress cause strain.	(Strain is unit less).				
6. •	Strain is the deformation of an object due to an applied force.					
Strain	Change (lengh. volum. area)					
	$Strain = rac{Change}{Origonal}$ (lengh. volum. area)					
Hook's Law	$\kappa - \frac{1}{2}$	ge in length $F = $ applied force				
. IOOK 5 East	$\Delta \iota$ Δ (the Gree	k letter delta) = "change in." k = elastic constant				