

Motion tracking

Contents:

を The Problem

🕹 Approaches

The Optical Flow Method

🕹 Algorithm

The Problem

 Given a set of images in time which are similar but not identical, derive a method for identifying the motion that has occurred (in 2d) between different images.

Goals

を Input:

- ➤ an image sequence
- captured with a fixed camera
- containing one or more moving objects of interest
- Processing goals: determine the image regions where significant motion has occurred
- We output: an outline of the motion within the image sequence

Motion Detection and Estimation

- ✤ Image differencing
 - based on the thresholded difference of successive images
 - difficult to reconstruct moving areas
- Background subtraction
 - foreground objects result by calculating the difference between an image in the sequence and the background image (previously obtained)
 - remaining task: determine the movement of these foreground objects between successive frames
- Block motion estimation
 - Calculates the motion vector between frames for sub-blocks of the image
 - mainly used in image compression
 - too coarse
- Optical Flow

What Is Optical Flow?

Optical flow is the displacement field for each of the pixels in an image sequence.
For every pixel, a velocity vector (dx/dt, dy/dt) is found which says:

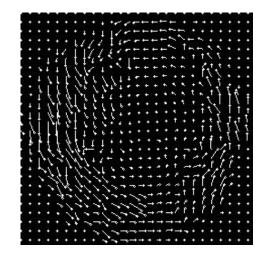
≻how quickly a pixel is moving across the image

 \succ the direction of its movement.

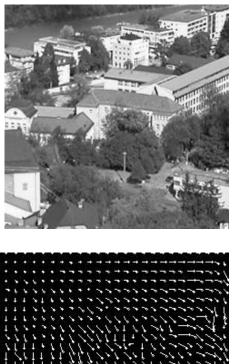
Optical Flow Examples

Translation

Rotation



Scaling



Algorithm

- Optical flow: maximum one pixel large movements
- Optical flow: larger movements
- Morphological filter
- Contour detection (demo purposes)

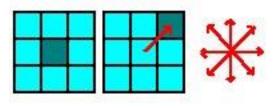
Optical Flow: maximum one pixel large movements

The optical flow for a pixel (i, j) given 2 successive images k and k+1:

$$m_k(i, j) = (x, y)$$
 so that

$$I_k(i, j) - I_{k+1}(i+x, j+y)$$
 (1)

is minimum for $-1 \le x \le 1, -1 \le y \le 1$

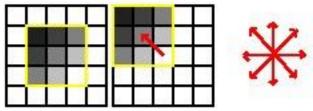


k+1

k

Optical Flow: maximum one pixel large movements (2)

Wore precision: consider a 3×3 window around the pixel:



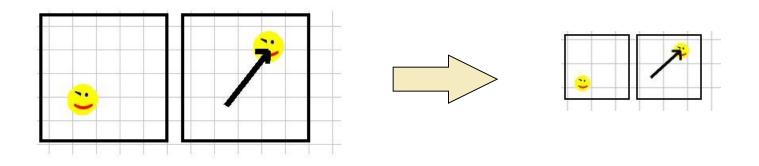
W Optical flow for pixel (i, j) becomes:

$$\overline{m_k(i, j)} = (x, y) \text{ so that}$$

$$\left| \sum_{u=-1}^{1} \sum_{v=-1}^{1} I_k(i+u, j+v) - \sum_{u=-1}^{1} \sum_{v=-1}^{1} I_{k+1}(i+u+x, j+v+y) \right| \quad (2)$$
is minimum for $-1 \le x \le 1, -1 \le y \le 1$
11

Optical Flow: larger movements

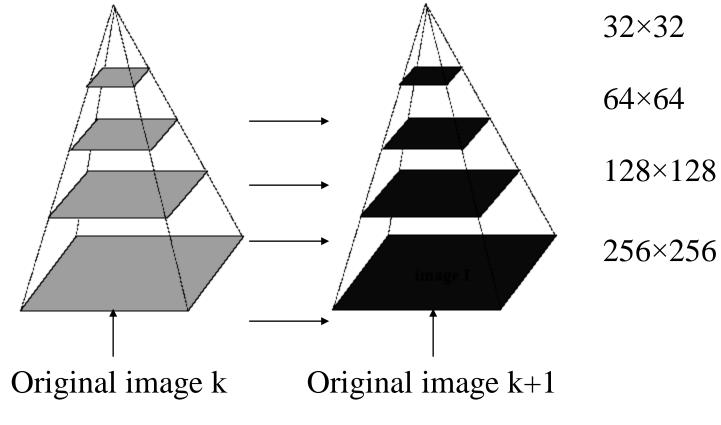
We have a size of the image => reduced size of the movement



Solution: multi-resolution analysis of the images
Advantages: computing efficiency, stability

Multi-resolution Analysis

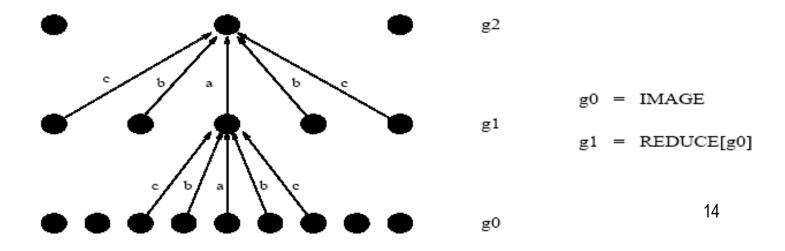
W Coarse to fine optical flow estimation:



Gaussian Pyramid

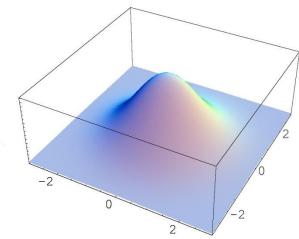
Lowest level \$\mathcal{B}_0\$ - the original image
 Level \$\mathcal{B}_l\$ - the weighed average of values in \$\mathcal{B}_{l-1}\$ in a 5×5 window:

$$g_{l}(i,j) = \sum_{m=-2n=-2}^{2} \sum_{m=-2}^{2} w(m,n) g_{l-1}(2i+m,2j+n)$$
(3)



Gaussian Pyramid (2)

The mask G(m, n) is an approximation of the 2D Gaussian:



0.003	0.013	0.022	0.013	0.003
0.013	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

(4)

The mask is symmetric and separable:

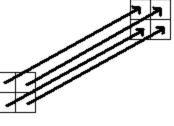
Dr. George Karraz, Ph. D. $G(m, n) = G_r(m) * G_c(n)$

Optical Flow: Top-down Strategy

Algorithm (1/4 scale of resolution reduction):

- Step 1: compute optical flow vectors for the highest level of the pyramid I (smallest resolution)
- Step 2: double the values of the vectors
- Step 3: first approximation: optical flow vectors for the (2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1) pixels in the I-1 level are assigned the value of the optical flow vector for the (i,j) pixel from the I level

Level 1



Level 1-1

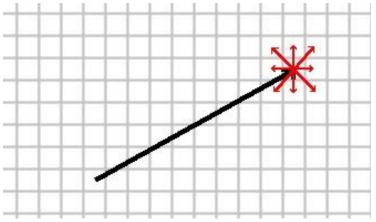
16

Optical Flow: Top-down Strategy (2)

🕹 Step 4:

> adjustment of the vectors of the I-1 level in the pyramid

method: detection of maximum one pixel displacements around the initially approximated position



Step 5: smoothing of the optical flow field (Gaussian filter)
Dr. George Karraz, Ph. D.

Filtering the Size of the Detected Regions

- Small isolated regions of motion detected by the optical flow method are classified as noise and are eliminated with the help of morphological operations:
- Step 1: Apply the **opening:**
- Step 2: Apply the **closing**:

Contour Detection

- For demonstration purposes, the contours of the moving regions detected are outlined
- Wethod: the **Sobel edge detector:**

$$\blacktriangleright \text{ Compute the intensity gradient:} \quad \nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(f_x, f_y\right) \quad (5)$$

using the Sobel masks:

$$G_{x} = \frac{1}{4} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_{y} = \frac{1}{4} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
(6)

> Compute the magnitude of the gradient:

$$M(x, y) = \|\nabla f(x, y)\| = \sqrt{f_x^2 + f_y^2}$$
(7)

> if M(x, y)>threshold then edge pixel
else non-edge pixel

A Block Diagram of the System

