Chapter 4: MOTIN IN 2D AND 3D

1. If the x component of vector \vec{r} is 2.6 m and the y component is -2.3 m then \vec{r} in unitvector notation is:
(A) $2.6 \hat{i}-2.3 \hat{j}$
(B) $-2.3 \hat{i}+2.6 \hat{j}$
(C) $6.2 \hat{i}+3.2 \hat{j}$
(D) $3.2 \hat{i}-6.2 \hat{j}$
2. The displacement of a particle moving from $\vec{r}_{1}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ to $\vec{r}_{2}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$ is
(A) $-7 \hat{i}+12 \hat{j}$
(B) $3 \hat{i}+4 \hat{k}$
(C) $7 \hat{i}-12 \hat{j}$
(D) $-3 \hat{i}-4 \hat{k}$
3. A particle goes from $\left(x_{1}=-2 m, y_{1}=3 m, z_{1}=1 m\right)$ to $\left(x_{2}=3 m, y_{2}=-1 m, z_{2}=4 m\right)$. Its displacement is:
(a) $\hat{i}+2 \hat{j}+5 \hat{k}$
(b) $5 \hat{i}-4 \hat{j}+3 \hat{k}$
(c) $-5 \hat{i}+4 \hat{j}-3 \hat{k}$
(d) $-\hat{i}-2 \hat{j}-5 \hat{k}$
4. The coordinates of a car's position as function of time is given by: $x=5 t^{2}+16$, and $y=-t^{3}$ +5 , the magnitude of position vector \bar{r} at $\mathrm{t}=2 \mathrm{~s}$ is:
(a) 5 m
(b) 1 m
(c) 2.6 m
(d) 4 m
5. The components of a car's velocity as a function of time are given by :
$\mathrm{V}_{\mathrm{x}}=2 \mathrm{t}+3$, and $\mathrm{V}_{\mathrm{y}}=4 \mathrm{t}-1$, its velocity \vec{V} at ($\left.\mathrm{t}=1 \mathrm{~s}\right)$ is:
(A) $\vec{V}=9 \hat{i}+11 \hat{j}$
(B) $\vec{V}=5 \hat{i}+3 \hat{j}$
(C) $\vec{V}=7 \hat{i}+7 \hat{j}$
(D) $\vec{V}=11 \hat{i}+15 \hat{j}$
6. Velocity is defined as:
(a) rate of change
(b) position of position with divided by time
(c) a speeding up
(d) change of time
7. The position of a particle moving on an x axis is given by: $\mathrm{X}=\mathrm{t}^{2}+2$, its average velocity in the time interval from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $1 \mathrm{~m} / \mathrm{s}$
8. A car travels east at $200 \mathrm{~m} / \mathrm{s}$ and then travels west at $200 \mathrm{~m} / \mathrm{s}$, the change in its velocity is:
(a) zero
(b) $400 \mathrm{~m} / \mathrm{s}$ east
(c) $400 \mathrm{~m} / \mathrm{s}$ west
(d) $200 \mathrm{~m} / \mathrm{s}$ west
9. The position vector for a moving particle is: $\bar{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity and acceleration as a function of time are:
(a) $\begin{aligned} \bar{v} & =8 t \hat{j}+\hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
(b) $\begin{aligned} & \bar{v}=\hat{i}+8 t \hat{j}+\hat{k} \\ & \bar{a}=8 \hat{j}+\hat{k}\end{aligned}$
(C) $\begin{aligned} \bar{v} & =8 t \hat{j} \\ \bar{a} & =\hat{i}+8 \hat{j}\end{aligned}$
(d) $\begin{aligned} \bar{v} & =8 t^{2} \hat{j}+t \hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
10. A particle moves in the xy plane. In which situation of the following V_{x} and V_{y} are both constant

Situation	$X(m)$	$Y(m)$
A	$2 t^{2}$	$4 t+3$
B	$4 t^{3}-2$	+3
C	$5 t$	$2 t+1$
D	$-3 t$	$t^{2}-1$

(a) A
(b) B
(c) C
(d) D
11. The components of a car's velocity as a function of time are given by $v_{x}=6 t^{2}-5, v_{y}=-$ $3 t^{3}$. The acceleration components are:
(A) $a_{x}=10 t$
$a_{y}=-12 t^{2}$
(B) $a_{x}=4 t$
(C) $a_{x}=6 t$
(D) $a_{x}=12 t$
$a_{y}=-6 t^{2}$
$a_{y}=-15 t^{2}$
$a_{y}=-9 t^{2}$
12. A particle moving with initial velocity $\vec{v}_{0}=-2 \hat{i}+4 \hat{j} \mathrm{~m} / \mathrm{s}$, and acceleration $\vec{a}=-5 \hat{i}+8 \hat{j}$ $\mathrm{m} / \mathrm{s}^{2}$, the x -component v_{x} of the final velocity at $(\mathrm{t}=1 \mathrm{~s})$ is ?
(A) $-7 \mathrm{~m} / \mathrm{s}$
(B) $-17 \mathrm{~m} / \mathrm{s}$
(C) $-27 \mathrm{~m} / \mathrm{s}$
(D) $-37 \mathrm{~m} / \mathrm{s}$
13. Acceleration is defined as:
(a) rate of change
(b) speed divided
(c) rate of change
(d) change of of position with time by time of velocity with velocity time
14. A particle had a speed of $18 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction and after 2.4 s its speed was $30 \mathrm{~m} / \mathrm{s}$ in the $-x$ direction. Its average acceleration during this time is:
(a) $a=\frac{-30-18}{2.4}$
(b) $a=\frac{30-18}{2.4}$
(c) $a=\frac{18+30}{2.4}$
(d) $a=\frac{18-30}{2.4}$
15. A particle moving with $\vec{v}_{0}=2 \hat{i}+5 \hat{j}$ and acceleration $\vec{a}=5 \hat{j}$. Its velocity after 2 s is:
(a) $15 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{29} \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{43.2} \mathrm{~m} / \mathrm{s}$
16. A particle leaves the origin with initial velocity $\bar{v}_{0}=8 \hat{i}+12 \hat{j} \mathrm{~m} / \mathrm{s}$ and a constant acceleration $\bar{a}=4 \hat{i}-2 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The particle's velocity at $\mathrm{t}=6 \mathrm{~s}$ is:
(a) $\bar{v}=24 \hat{j}$
$\bar{v}=32 \hat{i}+24 \hat{j}$
(c) $\bar{v}=32 \hat{i}$
(d) $\bar{v}=32 \hat{i}-12 \hat{j}$
17. Acceleration is equal to
(a) $\frac{d \vec{v}}{d t}$
(b) $\frac{d \vec{r}}{d t}$
(c) $\frac{d \vec{v}}{d r}$
(d) $\frac{\Delta \vec{r}}{\Delta t}$
18. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
19. The maximum range of a projectile is at launch angle
(A) $\theta=25^{\circ}$
(B) $\theta=35^{\circ}$
(C) $\theta=45^{\circ}$
(D) $\theta=55^{\circ}$
20. In the projectile motion the acceleration in the horizontal direction is:
(A) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) zero
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
21. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
22. A large cannon fired a ball at an angle of 30° above the horizontal with initial speed 980 m the projectile will travel what horizontal distance before striking the ground?
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
23. A stone thrown from the top of a tall building follows a path that is:
(a) circular
(b) parabolic
(c) hyperbolic
(d) a straight line
24. Two projectiles are in flight at the same time. The acceleration of one relative to the other:
(a) is always $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) can be as large as $19.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) can be horizontal
(d) is zero
25. A ball is thrown at V_{0} and angle θ_{0} above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal
(d) Vertical path
path
26. In question 25, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a) $\mathrm{V}_{\mathrm{x} 0}=$ unchanged
(b) $\mathrm{V}_{\mathrm{x} 0}=$ zero
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed
27. In question 25, at the maximum height, the vertical component of the ball's velocity V_{y} is:
(a) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{x}}$
(b) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{0}$
(c) $V_{y}=z e r o$
(d) $V_{y}=V_{0 y}$
28. A ball is thrown with initial velocity $\mathrm{v}_{0}=120 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=60^{\circ}$ above the horizontal, the velocity v_{0} in unit vector notation is:
(a) $\bar{v}_{0}=104 \hat{i}+60 \hat{j}$
(b) $\bar{v}_{0}=60 \hat{i}+104 \hat{j}$
(c) $\bar{v}_{0}=60 \hat{i}$
(d) $\bar{v}_{0}=104 \hat{j}$
29. In question 28, the acceleration in the horizontal direction when $t=5 \mathrm{~s}$ is:
(a) $24 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) zero
(d) $600 \mathrm{~m} / \mathrm{s}^{2}$
30. In question 28, the maximum range of the ball is:
(a) 1469.4 m
(b) 1272.5 m
(c) 1649.4 m
(d) 1722.5 m
31. The horizontal range is the horizontal distance the projectile has traveled when it returns to
(a) the origin
(b) its max. height
(c) its final height
(d) its initial
height
32. You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\bar{v}_{0}=20 \hat{i}+70 \hat{j}$, (2) $\bar{v}_{0}=-20 \hat{i}+70 \hat{j}$, (3) $\bar{v}_{0}=20 \hat{i}-70 \hat{j}$, (4) $\bar{v}_{0}=-20 \hat{i}-70 \hat{j}$. Rank the vector according to the launch speed greatest first.
(a) $4>3>2>1$
(b) $4>2>3>1$
(c) $1>2>3>4$
(d) all the same
33. In the projectile motion, the vertical velocity component v_{y}
(a)changes continuously
(b) remains
(c) equals
(d) v_{y} equals v_{x}
34. The maximum range of a projectile is at launch angle
(a) $\theta=25^{\circ}$
(b) $\theta=35^{\circ}$
(c) $\theta=45^{\circ}$
(d) $\theta=55^{\circ}$
35. In the projectile motion the horizontal velocity component v_{x} remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}>0$
(b) $a_{x}=g$
(c) $a_{x}>g$
(d) $a_{x}=0$
36. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(a) 318.1 m
(b) 267.3 m
(c) 373.4 m
(d) 220.9 m
37. A ball is thrown at an angle of 30° above the horizontal with an intial speed $980 \mathrm{~m} / \mathrm{s}$. The ball's range is:
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
38. In the projectile motion the horizontal velocity component v_{x} remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}=0$
(b) $a_{x}>0$
(c) $a_{x}=g$
(d) $a_{x}>g$
39. A ball is thrown at V_{0} and angle θ_{0} above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal path
(d) Vertical path
40. In question 39, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a)
$V_{x 0}=(b) V_{x 0}=z e r o$
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed unchanged
41. In question 39, at the maximum height, the vertical component of the ball's velocity V_{y} is:
(a) $V_{y}=V_{x}$
(b) $V_{y}=V_{0}$
(c) $\mathrm{V}_{\mathrm{y}}=$ zero
(d) $V_{y}=V_{0 y}$
42. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\pi \underline{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
43. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\underline{\pi} \mathrm{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
44. A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are:
(a) both tangent to the circular path
(b) both
perpendicular to the circular path
(c) perpendicular
(d) opposite to each other
45. For a biological sample in a 1:0-m radius centrifuge to have a centripetal acceleration of 25 g , its speed must be:
(a) $11 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $50 \mathrm{~m} / \mathrm{s}$
(d) $122 \mathrm{~m} / \mathrm{s}$
46. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the top of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down
down
47. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the bottom of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down down
48. A car rounds a $20-\mathrm{m}$ radius curve at $10 \mathrm{~m} / \mathrm{s}$. The magnitude of its acceleration is:
(a) zero
(b) $0.2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $40 \mathrm{~m} / \mathrm{s}^{2}$
49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ is:
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $100 \mathrm{~m} / \mathrm{s}$
(c) $4 \mathrm{~m} / \mathrm{s}$
(d) $2000 \mathrm{~m} / \mathrm{s}$
50. The period of a plane that enters a horizontal circular turn with $\bar{v}_{i}=200 \hat{i}+600 \hat{j} \mathrm{~m} / \mathrm{s}$ and 32 s later leaves the turn with $\bar{v}_{f}=200 \hat{i}+600 \hat{j}$ is:
(a) 12
(b) 16
(c) 32
(d) 64
51. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(a) $\pi \mathrm{s}$
(b) $2 \pi \mathrm{~s}$
(c) $4 \pi \mathrm{~s}$
(d) $8 \pi \mathrm{~s}$
52. Referring to question 51 , the acceleration of the object is:
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $8 \mathrm{~m} / \mathrm{s}^{2}$
53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v}=3 \hat{i}+4 \hat{j}$ at which point the velocity is $\vec{v}=-3 \hat{i}-4 \hat{j}$

(a) A
(b) B
(c) C
(d) D

Chapter 5: FORCE AND MOTIN I

1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the greatest acceleration?
(a)

(b)

(c)

(d)

2. A force of $\mathbf{0 . 2} \mathbf{N}$ acts on a mass of $\mathbf{1 0 0} \mathbf{~ g}$, what is its acceleration?
(a) $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $2 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
3. A man pulls a box of mass $\mathbf{3}$ kgvertically upward with a force of magnitude $\mathbf{4 0} \mathbf{N}$. What is the acceleration of the box?
(a) $a=\frac{T-m g}{m}$
(b) $a=\frac{m g-T}{m}$
(c) $a=\frac{T+m g}{m}$
(d) $a=\frac{m}{T+m g}$
4. Which of the following figures correctly show the vector addition of forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$?
F_{1}
(a)

(b)

(c)

(d)

5. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2 ~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x -axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$
6. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$, what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
7. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $m=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
$W=2.2 \mathrm{~N}$
(c) $\begin{aligned} \mathrm{m} & =0.45 \mathrm{~kg} \\ \mathrm{~W} & =0\end{aligned}$
(d) $\mathrm{m}=0$
$W=45 \mathrm{~N}$
8. In which figure of the following the y-component of the net force is zero?
(a)

(b)

(c)

(d)

9. In the figure a cord holds stationary a block of mass $\mathbf{m}=\mathbf{8 . 5} \mathbf{~ k g}$ on a frictionless plane that is inclined at An angle $\boldsymbol{\theta}=\mathbf{3 0}^{\circ}$, the tension in the cord \mathbf{T} equals:
(a) 72.14 N
(b) 83.3 N
(c) 53.14 N
(d) 41.65 N

10. In question9, the Normal forceN acting on the block is:
(a) $N=F_{g}-m g \cos \theta$
(b) $N=F_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{mg} \cos \theta$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$
11. In question9, if the cord is cut then the mass will slide with acceleration equals:
(a) $\mathrm{a}=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\mathrm{a}=-8.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\mathrm{a}=-3.4 \mathrm{~m} / \mathrm{s}^{2}$
12. A block of mass $\mathbf{M}=\mathbf{2 0} \mathbf{~ k g}$ hangs from three cords by means of a knot, (the mass \mathbf{M} does not move), what is the value of tensionT3 ${ }_{3}$?
(a) 230 N
(b) 196 N
(c) 426 N
(d) 226 N

M
13. What is the net force acting on a body of a mass of $48 \mathbf{k g}$, when its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$?
(a) 758 N
(b) 182 N
(c) 288 N
(d) 470 N
14. Which figure of the following shows the right direction of the tension \mathbf{T} ? (the two masses are stationary).
(a)

(b)

(c)

(d)

أعداد: أ.خذيجة سعيد إشراف: د. هناء فرحان
15. Two forces act on a block of mass $\mathbf{m}=\mathbf{0 . 5} \mathbf{~ k g}$ that Moves along the x -axis on a frictionless table, $\mathbf{F}_{\mathbf{1}}=\mathbf{3} \mathbf{N}$ and $\mathbf{F}_{\mathbf{2}}=\mathbf{1} \mathbf{N}$ directed at angle $\boldsymbol{\theta}=\mathbf{3 0 ^ { \circ }}$ as shown, What is the acceleration of the block?

(a) $-4.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-7.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-7 \mathrm{~m} / \mathrm{s}^{2}$
16. If $m_{1}=\mathbf{2 k g}$ and $m_{2}=4 \mathbf{k g}$ and the same force is applied to both masses, then the ratio of their accelerations is:
(a) $\frac{a_{2}}{a_{1}}=\frac{1}{2}$
(b) $\frac{a_{2}}{a_{1}}=2$
(c) $\frac{a_{2}}{a_{1}}=\frac{1}{4}$
(d) $\frac{a_{2}}{a_{1}}=4$
17. A force \mathbf{F} applied to a body of mass $\mathbf{m}_{\mathbf{0}}$ giving it an acceleration $\mathbf{a}_{\mathbf{0}}$, what is the mass of a body \mathbf{x} if the same force is applied to it and accelerate it by $\mathbf{a}_{\mathbf{x}}$?
(a) $m_{x}=m_{0} \frac{a_{x}}{a_{0}}$
(b) $m_{x}=m_{0} \frac{a_{0}}{a_{x}}$
(c) $m_{x}=\frac{a_{x}}{a_{0}}$
(d) $m_{x}=\frac{a_{0}}{a_{x}}$
18. In the figure, two forces acting on a box of mass \mathbf{m} moving over a frictionless ice along the \mathbf{x}-axis .
What is the acceleration of the box?

(a) $a_{x}=\frac{F_{1}+F_{2} \cos \theta}{m}$
(b) $a_{x}=\frac{F_{2} \cos \theta-F_{1}}{m}$
(c) $a_{x}=\frac{F_{2} \cos \theta}{m}$
(d) $a_{x}=\frac{F_{1}-F_{2}}{m}$
19. The magnitude of the centripetal force is
(a) $F=m \frac{v^{2}}{R^{2}}$
(b) $F=\frac{v^{2}}{R}$
(c) $F=m \frac{v}{R}$
(d) $F=m \frac{v^{2}}{R}$

1. What is the gravitational force on a man of mass \mathbf{m} when he is sitting in a car that accelerates at a ?
(a) $\mathrm{F}_{\mathrm{g}}=\mathrm{ma}$
(b) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
(c) $F_{g}=\mathrm{mg}$
(d) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{a}-\mathrm{g})$
2. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$,what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
3. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right byCord $\mathbf{2}$?

أعداد: أ.خديجة سعيد إشراف: د. هناء فرحان
(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) 7 kg
4. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g} \mathbf{= 9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $\mathrm{m}=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
(c) $\mathrm{m}=0.45 \mathrm{~kg}$
(d) $\mathrm{m}=0$
$W=0$
$\mathrm{W}=2.2 \mathrm{~N}$
$\mathrm{W}=0$
$\mathrm{W}=45 \mathrm{~N}$
5. In which figure of the following the y-component of the net force is zero?
(a)

(b)

(c)

6. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right by force \vec{F} ?

(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) $245 \mathrm{~m} / \mathrm{s}$
7. Three forces act on a particle that moves with unchanging velocity $\bar{v}=2 \hat{i}-7 \hat{j}$, two of the forces are $\vec{F}_{1}=2 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}-2 \hat{k}$. what is the third force ?
(a) $3 \hat{i}-11 \hat{j}+4 \hat{k}$
(b) $7 \hat{i}-5 \hat{j}$
(c) $-3 \hat{i}+11 \hat{j}-4 \hat{k}$
(d) $-7 \hat{i}+5 \hat{j}$
8. An $\mathbf{1 1} \mathbf{~ k g}$ object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.

What is the reading on the scale?

(a) 11 N
(b) 9.8 N
(c) 107.8 N
(d) 215.6 N

(b)
27. A block of mass $\mathbf{m}_{\mathbf{1}}=\mathbf{3 . 7} \mathbf{~ k g}$ on frictionless inclined plane of angle 30° is connected by a cord over a massless frictionless pulley to a second block of mass $\mathbf{m}_{\mathbf{2}}=\mathbf{2 . 3} \mathbf{~ k g}$ hanging vertically as shown.

If the magnitude of the acceleration of each block is $0.735 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$, what is the tension in the cord ?

(a) 36.3 N
(b) 22.5 N
(c) 20.8 N
(d) 18.1 N
28. In question $\mathbf{2 7}$, what is the normal force acting on the block $\mathbf{m}_{\mathbf{1}}$?
(a) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}-\mathrm{m}_{1} \mathrm{~g}$
(b) $\mathrm{N}=\mathrm{F}_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{m}_{1} \mathrm{~g}$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$ $\cos \theta$ $\cos \theta$
29. In question 27, if the cord is cut what is the acceleration of mass $\mathbf{m}_{\mathbf{2}}$?
(a) $a=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=-0.735$
(d) a = zero $\mathrm{m} / \mathrm{s}^{2}$
30. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x-axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$

Chapter 6: FORCE AND MOTIN II

1. In the figure a woman pulls a loaded sled of mass \mathbf{m} along a horizontal surface at constant velocity. The coefficient of kinetic friction between the runners and the snow is $\mu_{\mathbf{k}}$.
Which figure shows the correct free body diagram for the sled and load?

(a)

(b)

(c)

(d)

2. In question 2 , The equation of the forces acting on the load and sled (from Newton's second law) is:
(a) $\bar{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=0$
(b) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=0$
(c) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=m \vec{a}$
(d) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=m \vec{a}$
3. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41
4. A car has a weight of $\mathbf{1 . 1 ~ \mathbf { N }}$ slides on the road with acceleration $\mathbf{a}=\mathbf{1 . 2 4} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what is the force of friction between the car and the road?
(a) -1.13 N
(b) -11 N
(c) -1.4 N
(d) -0.14 N
5. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41

6. A block lies on a floor. If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{8} \mathbf{N}$?
(a) 10 N
(b) 8 N
(c) 2 N
(d) 18 N
7. A $470 \mathbf{N}$ horizontal force pushes a block of mass $79 \mathbf{k g}$ to make it move with constant speed, what is the value of the coefficient of friction μ_{k} ?
(a) 0.61
(b) 6
(c) 1.6
(d) 0.06
8. A block lies on a floor.If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{1 2} \mathbf{N}$?
(a) 10 N
(b) 12 N
(c) 2 N
(d) 22 N
9. In the figure, block B weighs $711 \mathbf{N}$. The coefficient of static friction between the block and the table is $\mathbf{0 . 2 5}$ assume that the cord between B and the knot is horizontal

What is the magnitude of the tension T ?

(a) 205.2 N
(b) 355.5 N
(c) 820.1 N
(d) 1422 N
10. In question 9, the weight of block \mathbf{A} is :
(a) $\mathrm{T} \cos 30$
(b) $\mathrm{T} \sin 30$
(c) $\mathrm{F}_{\mathrm{g}}-\mathrm{T} \cos 30$
(d) $F_{g}-T \sin 30$

