Chapter 4: MOTIN IN 2D AND 3D

			4 🔮 📲 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤
 If the x comp vector notation 	conent of vector \vec{r} is ion is:	s 2.6 m and the y co	mponent is -2.3 m then \vec{r} in unit-
(A) 2.6 $\hat{i} - 2.3 \hat{j}$	(B) – 2.3 \hat{i} + 2.6 \hat{j}	(C) 6.2 $\hat{i} + 3.2 \hat{j}$	(D) 3.2 $\hat{i} - 6.2 \hat{j}$
2. The displace	ement of a particle i	moving from $\vec{r}_1 = 5\hat{i}$	$1-6\hat{j}+2\hat{k}$ to
$\vec{r}_2 = -2\hat{i} + $	$6\hat{j}+2\hat{k}$ is		
$(\underline{A}) -7\hat{i} + 12\hat{j}$	(B) $3\hat{i} + 4\hat{k}$	(C) $7\hat{i} - 12\hat{j}$	$(D) - 3\hat{i} - 4\hat{k}$
3. A particle displacement	goes from (x ₁ =-2 nt is:	2m, y ₁ =3m, z ₁ =1m)) to $(x_2=3m, y_2=-1m, z_2=4m)$. Its
(a) $\hat{i} + 2\hat{j} + 5\hat{k}$	(b) $5\hat{i} - 4\hat{j} + 3\hat{k}$	(c) $-5\hat{i}+4\hat{j}-3\hat{k}$	(d) $-\hat{i}-2\hat{j}-5\hat{k}$
4. The coordin	ates of a car's posi	tion as function of tir	ne is given by: $x = 5t^2 + 16$, and $y = -t^3$
+5, the mag (a) 5 m	(b) 1 m	ector <i>r</i> at t=2s is: (c) 2.6 m	(d) 4 m
	€		
5. The compor	nents of a car's velo	ocity as a function of	time are given by :
$V_x=2t+3$, and V_y	e 4 t − 1, its velocit	y \vec{V} at (t= 1 s) is:	
(A) $\vec{V} = 9\hat{i} + 11\hat{j}$	(B) $\vec{V} = 5\hat{i} + 3\hat{j}$	(C) $\vec{V} = 7\hat{i} + 7\hat{j}$	(D) $\vec{V} = 11\hat{i} + 15\hat{j}$
6. Velocity is d	efined as:		
(a) rate of change of position with time	(b) position divided by time	(c) a speeding up or slowing down	(d) change of position
7. The position in the time in	of a particle movin nterval from t=1s to	g on an x axis is give t=2s is:	en by: X= t ² + 2 , its average velocity
(a) 4 m/s	(b) 2 m/s	(c) 3 m/s	(d) 1 m/s

8. A car travels east at 200 m/s and then travels west at 200 m/s, the change in its velocity is:

(a) zero (b) 400 m/s east (c) 400 m/s west (d) 200 m/s west

9. The position vector for a moving particle is: $\bar{r} = \hat{i} + 4t^2\hat{j} + t\hat{k}$, its velocity and acceleration as a function of time are:

(a) $\frac{\overline{v} = 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j}}$ (b) $\frac{\overline{v} = \hat{i} + 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j} + \hat{k}}$ (c) $\overline{v} = 8t\hat{j}$ (d) $\frac{\overline{v} = 8t^2\hat{j} + t\hat{k}}{\overline{a} = 8\hat{j}}$

. \$

10.A particle m	noves in the xy p	plane. In which	n situation of th	e following '	V_x and λ	/ _y are b	ooth
constant						-	

	Situation	X(m)	Y(m)
	А	2 t ²	4 t + 3
	В	4 t ³ – 2	+3
	С	5 t	2 t + 1
	D	- 3 t	t ² – 1
(a) A	(b) B	(c) C	(d) D

11. The components of a car's velocity as a function of time are given by $v_x = 6 t^2 - 5$, $v_y = -3 t^3$. The acceleration components are:

(A) a _x = 10 t	(B) a _x = 4 t	(C) a _x = 6 t	<u>(D) a_x = 12 t</u>
$a_y = -12 t^2$	$a_y = -6 t^2$	a _y = -15 t ²	<u>a_v = -9 t²</u>

12. A particle moving with initial velocity $\vec{v}_0 = -2\hat{i} + 4\hat{j}$ m/s, and acceleration $\vec{a} = -5\hat{i} + 8\hat{j}$ m/s², the x-component v_x of the final velocity at (t=1 s) is ?

<u>(A) -7 m/s</u>	(B) - 17 m/s	(C) -27 m/s	(D) -37 m/s
-------------------	--------------	-------------	-------------

13. Acceleration is defined as:

(a) rate of change (b) speed divided (c) rate of change (d) change of of position with by time of velocity with velocity time time 14. A particle had a speed of 18 m/s in the +x direction and after 2.4 s its speed was 30 m/s in the -x direction. Its average acceleration during this time is: (a) $a = \frac{-30 - 18}{24}$ (b) $a = \frac{30 - 18}{24}$ (c) $a = \frac{18 + 30}{24}$ (d) $a = \frac{18 - 30}{24}$ **15.** A particle moving with $\vec{v}_0 = 2\hat{i} + 5\hat{j}$ and acceleration $\vec{a} = 5\hat{j}$. Its velocity after 2s is: (c) $\sqrt{29}$ m/s (d) $\sqrt{43.2}$ m/s (a) 15 m/s (b) 12 m/s **16.** A particle leaves the origin with initial velocity $\bar{v}_0 = 8\hat{i} + 12\hat{j}$ m/s and a constant acceleration $\overline{a} = 4\hat{i} - 2\hat{j}$ m/s². The particle's velocity at t = 6 s is: $\bar{v} = 32\hat{i} + 24\hat{j}$ (c) $\bar{v} = 32\hat{i}$ (d) $\bar{v} = 32\hat{i} - 12\hat{j}$ (a) $\overline{v} = 24\hat{i}$ 17. Acceleration is equal to (a) $\frac{d\vec{v}}{dt}$ (b) $\frac{d\vec{r}}{dt}$ (c) $\frac{d\vec{v}}{dr}$ (d) $\frac{\Delta \vec{r}}{\Delta t}$

أعداد: أخديجة سعيد إشراف: د.هناء فرحان

	18. The range of 50 m/s is:	of a ball is thrown a	it an angle of 30° ab	ove the horizontal with ar	n initial speed
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	<u>(D) 220.9 m</u>	
	19. The maxim	um range of a proje	ectile is at launch ang	gle	
(A)	$\theta = 25^{\circ}$	(B) $\theta = 35^{\circ}$	$(C) \theta = 45^{\circ}$	(D) $\theta = 55^{\circ}$	
	20. In the proje	ctile motion the acc	celeration in the horiz	zontal direction is:	
(A) 19.6 m/s ²	<u>(B) zero</u>	(C) 9.8 m/s ²	(D) 4.9 m/s ²	
	21. The range of 50 m/s is:	of a ball is thrown a	t an angle of 30° ab	ove the horizontal with ar	n initial speed
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	<u>(D) 220.9 m</u>	
	22.A large car 980m the p	nnon fired a ball a rojectile will travel v	t an angle of 30 ⁰ a what horizontal dista	bove the horizontal with nce before striking the gr	initial speed ound?
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km	
	23.A stone thro	own from the top of	a tall building follow	s a path that is:	
(a)	circular	(b) parabolic	(c) hyperbolic	(d) a straight line	
	24. Two projec other:	tiles are in flight a	t the same time. Th	ne acceleration of one r	elative to the
(a)	is always 9.8 m	n/s² (b) can be as	large as 19.8 m/s ²	(c) can be horizontal	(d) is zero
	25. A ball is three path of the	own at V_0 and angl ball is called:	e θ_0 above horizonta	al and returned to its initia	al height. The
(a)	Range	(b) Trajectory	(c) Horizontal path	(d) Vertical path	
	26. In question	25, the horizontal of	component of the ba	ll's velocity V_{x0} is:	
(a)	$V_{x0} = unchange$	ed (b) $V_{x0} = ze$	ero (c) $V_{x0} = V_0$	(d) V_{x0} is change	ed
(a)	27. In question $V_y = V_x$	25, at the maximum (b) $V_y = V_0$	n height, the vertical (c) V _y = zero	component of the ball's (d) $V_y = V_{0y}$	velocity V _y is:
(a)	28. A ball is three the velocity $\overline{v}_0 = 104\hat{i} + 60\hat{j}$	own with initial velocity v ₀ in unit vector not (b) $\overline{v}_0 = 60\hat{i} + 104\hat{j}$	poity $v_0=120$ m/s at an example that is: \hat{j} (c) $\bar{v}_0 = 60\hat{i}$	n angle θ_0 =60° above the (d) $\overline{v}_0 = 104 \hat{j}$	e horizontal,
	29. In question	28, the acceleratio	n in the horizontal di	rection when t=5 s is:	
(a)	24 m/s ²	(b) - 9.8 m/s ²	(c) zero	(d) 600 m/s ²	

أعداد: أخديجة سعيد إشراف: د.هناء فرحان

	30. In questio	n 28, the maximum ra	ange of the ball is:		
(a)	1469.4 m	(b) 1272.5 m	(c) 1649.4 m	(d) 1722.5 m	
	31. The horize to	ontal range is the hor	izontal distance the	projectile has traveled when it returns	
(a)	the origin	(b) its max. heigh	t (c) its final height	(d) its initial height	
	32. You are to velocity velocity velocity $\vec{v}_0 = -20\hat{i}$	b launch a rocket, from ectors: (1) $\overline{v}_0 = 20\hat{i} + 7$ $-70\hat{j}$. Rank the vect	m just above the gro $70\hat{j}$, (2) $\bar{v}_0 = -20\hat{i} + 70\hat{i}$ or according to the la	und, with one of the following initial $D\hat{j}$, (3) $\bar{v}_0 = 20\hat{i} - 70\hat{j}$, (4) aunch speed greatest first.	
(a)	4 >3 > 2 > 1	(b) 4 > 2 > 3 >1	(c) 1 > 2 > 3 > 4	(d) all the same	
	33. In the pro	jectile motion, the ver	tical velocity compor	nent v _y	
(a) cor	changes ntinuously	(b) rem constant	nains (c) equals zero	(d) v_y equals v_x	
	34. The maxin	mum range of a proje	ctile is at launch ang	le	
(a)	$\theta = 25^{\circ}$	(b) $\theta = 35^{\circ}$	(c) $\theta = 45^{\circ}$	(d) $\theta = 55^{\circ}$	
	35. In the pro the accele	jectile motion the hore pration in the horizon	rizontal velocity com tal direction is:	ponent v_x remains constant because	
(a)	a _x > 0	(b) a _x = g	(c) a _x > g	(d) $a_x = 0$	
	36. The range 50 m/s is:	e of a ball is thrown a	t an angle of 30° abo	ove the horizontal with an initial speed	
(a)	318.1 m	(b) 267.3 m	(c) 373.4 m	(d) 220.9 m	
	37. A ball is the ball's ranged	nrown at an angle of a ge is:	30° above the horizo	ontal with an intial speed 980 m/s. The	
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km	
	38. In the projectile motion the horizontal velocity component v _x remains constant becaus the acceleration in the horizontal direction is:				
(a)	$a_x = 0$	(b) a _x > 0	(c) a _x = g	(d) a _x > g	
39. A ball is thrown at V ₀ and angle θ_0 above horizontal and returned to its initial height. T path of the ball is called:					
(a)	Range	(b) Trajectory	(c) Horizontal path	n (d) Vertical path	
	40. In questio	n 39, the horizontal c	component of the bal	l's velocity V _{x0} is:	
(a) und	V _{x0} changed	= (b) V_{x0} = zero	(c) $V_{x0} = V_0$	(d) V_{x0} is changed	

أعداد: أخديجة سعيد إشراف: د.هناء فرحان

41. In question	39, at the maximum	height, the vertical c	omponent of the ball's velocity V_y is:			
(a) $V_y = V_x$	(b) $V_y = V_0$	(c) $V_y = zero$	(d) $V_y = V_{0y}$			
42. The period 2 m is:	of an objects moving	at a constant speed	l of 4 m/s on a circular path of radius			
(A) <u>π s</u>	(B) 2π s	(C) 4π s	(D) 8π s			
43. The period 2 m is:	of an objects moving	at a constant speed	l of 4 m/s on a circular path of radius			
(A) <u>π</u> s	(B) 2π s	(C) 4π s	(D) 8π s			
44. A particle m instantaneo	oves at constant spe us acceleration vecto	eed in a circular path ors are:	. The instantaneous velocity and			
(a) both tangent to the circular path	(b) both perpendicular to the circular path	(c) perpendicular to each other	(d) opposite to each other			
45. For a biolog 25g, its spe	ical sample in a 1:0- ed must be:	m radius centrifuge t	to have a centripetal acceleration of			
(a) 11 m/s	(b) 16 m/s	(c) 50 m/s	(d) 122 m/s			
46. A stone is ti circle. Its ac	ed to a 0.50-m string celeration at the top	and whirled at a cou of the circle is:	nstant speed of 4m/s in a vertical			
(a) 9.8 m/s ² , up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s², down			
47. A stone is ti circle. Its ac	ed to a 0.50-m string celeration at the bott	and whirled at a con com of the circle is:	nstant speed of 40m/s in a vertical			
(a) 9.8 m/s², up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s ² , down			
48. A car round	s a 20-m radius curv	e at 10m/s. The mag	pnitude of its acceleration is:			
(a) zero	(b) 0.2 m/s ²	(c) 5 m/s ²	(d) 40 m/s ²			
49. The speed acceleration	49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of 5 m/s ² is:					
(a) 10 m/s	(b) 100 m/s	(c) 4 m/s	(d) 2000 m/s			
50. The period 32 s later le	50. The period of a plane that enters a horizontal circular turn with $\bar{v}_i = 200\hat{i} + 600\hat{j}$ m/s and 32 s later leaves the turn with $\bar{v}_f = 200\hat{i} + 600\hat{j}$ is:					
(a) 12	(b) 16	(c) 32	(d) 64			

51. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius 2 m is:

52. Referring to question 51, the acceleration of the object is:

(a) 1 m/s^2 (b) 2 m/s^2 (c) 4 m/s^2 (d) 8 m/s^2

53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v} = 3\hat{i} + 4\hat{j}$ at which point the velocity is $\vec{v} = -3\hat{i} - 4\hat{j}$

Chapter 5: FORCE AND MOTIN I

1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the **greatest acceleration**?

2. A force of 0.2 N acts on a mass of 100 g, what is its acceleration?

(a) 2 x 10 $^{\text{-2}}$ m/s² $\,$ (b) 2 x 10 $^{\text{-6}}$ m/s² $\,$ (c) 2 x 10 $^{\text{-3}}$ m/s² $\,$ (d) 2 m/s² $\,$

3. A man **pulls** a box of **mass 3 kgvertically upward** with a force of magnitude **40 N**. What is the **acceleration of the box**?

(a) $a = \frac{T - mg}{m}$ (b) $a = \frac{mg - T}{m}$ (c) $a = \frac{T + mg}{m}$ (d) $a = \frac{m}{T + mg}$

4. Which of the following figures correctly show the vector **addition of forces** F_1 **and** F_2 ?

5. If the **1 kg** body has an **acceleration of 2 m/s²** at an angle of **20°** above the positive direction of the x-axis. What is the **net force** in unit vctor notation?

(a) $\vec{F} = 0.34\hat{i} + 0.94\hat{j}$ (b) $\vec{F} = 1.88\hat{i} + 0.68\hat{j}$ (c) $\vec{F} = 0.68\hat{i} + 1.88\hat{j}$ (d) $\vec{F} = 0.94\hat{i} + 0.34\hat{j}$

- **6.** Two forces act on a particle that moves with **constant velocity** $\vec{v} = 3\hat{i} 4\hat{j}$ **m/s**, one of the forces is $\vec{F}_1 = 2\hat{i} 6\hat{j}$ **N**, what is the other force?
- (a) $\vec{F}_2 = 2\hat{i} 6\hat{j}$ (b) $\vec{F}_2 = 6\hat{i} 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$
- 7. A particle has a weight of 22 N at a point where g = 9.8 m/s², what are its mass and weight at a point where g = 0 ?

(a) m = 2.2 kg	(b) m = 0	(c) m = 0.45 kg	(d) m = 0
W = 0	W = 2.2 N	W = 0	W = 45 N

8. In which figure of the following the y-component of the net force is zero?

9. In the figure a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at An angle θ = 30°, the tension in the cord T equals:

(a) 72.14 N (b) 83.3 N (c) 53.14 N (d) 41.65 N

In question9, the Normal forceN acting on the block is: 10.

(c) N= F_a +mgcos θ (d) $N = F_a$ (a) N= F_q – mg cos θ (b) $N = F_a \cos\theta$

11. In question9, if the cord is **cut** then the mass will slide with **acceleration equals**:

(b) $a = -9.8 \text{ m/s}^2$ (c) $a = -8.5 \text{ m/s}^2$ (a) $a = -4.9 \text{ m/s}^2$ (d) $a = -3.4 \text{ m/s}^2$

12. A block of mass **M = 20 kg** hangs from three cords by means of a knot, (the mass M does not move), what is the value of tensionT₃?

What is the net force acting on a body of a mass of 48 kg, when its 13. acceleration is 6 m/s^2 ?

(c) 288 N (a) 758 N (b) 182 N (d) 470 N

Which figure of the following shows the right direction of the tension T? (the two 14. masses are stationary).

Frictionle

15. Two forces act on a block of mass m = 0.5 kg that Moves along the x-axis on a frictionless table, $F_1 = 3 \text{ N}$ and $F_2 = 1 \text{ N}$ directed at angle $\theta = 30^\circ$ as shown, What is the acceleration of the block?

16. If $m_1 = 2$ kg and $m_2 = 4$ kg and the same force is applied to both masses, then the ratio of their accelerations is:

- (a) $\frac{a_2}{a_1} = \frac{1}{2}$ (b) $\frac{a_2}{a_1} = 2$ (c) $\frac{a_2}{a_1} = \frac{1}{4}$ (d) $\frac{a_2}{a_1} = 4$
- **17.** A force **F** applied to a body of mass m_0 giving it an acceleration a_0 , what is the mass of a body **x** if the same force is applied to it and accelerate it by a_x ?
- (a) $m_x = m_0 \frac{a_x}{a_0}$ (b) $m_x = m_0 \frac{a_0}{a_x}$ (c) $m_x = \frac{a_x}{a_0}$ (d) $m_x = \frac{a_0}{a_x}$
- **18.** In the figure, two forces acting on a box of mass **m** moving over a **frictionless** ice along the **x-axis** .

What is the **acceleration** of the box?

(a)
$$a_x = \frac{F_1 + F_2 \cos\theta}{m}$$
 (b) $a_x = \frac{F_2 \cos\theta - F_1}{m}$ (c) $a_x = \frac{F_2 \cos\theta}{m}$ (d) $a_x = \frac{F_1 - F_2}{m}$

19. The magnitude of the centripetal force is

(a)
$$F = m \frac{v^2}{R^2}$$
 (b) $F = \frac{v^2}{R}$ (c) $F = m \frac{v}{R}$ (d) $F = m \frac{v^2}{R}$

1. What is the **gravitational force** on a man of mass **m** when he is sitting in a car that accelerates at **a** ?

(a)
$$F_g = m a$$
 (b) $F_g = m (g - a)$ (c) $F_g = m g$ (d) $F_g = m (a - g)$

- **20.** Two forces act on a particle that moves with **constant velocity** $\vec{v} = 3\hat{i} 4\hat{j}$ **m/s**, one of the forces is $\vec{F}_1 = 2\hat{i} 6\hat{j}$ **N**, what is the other force?
- (a) $\vec{F}_2 = 2\hat{i} 6\hat{j}$ (b) $\vec{F}_2 = 6\hat{i} 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$
- **21.** The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what **total mass is accelerated to the right byCord 2**?

- 22. A particle has a weight of 22 N at a point where g = 9.8 m/s², what are its mass and weight at a point where g = 0 ?
- (a) m = 2.2 kg (b) m = 0 (c) m = 0.45 kg (d) m = 0W = 0 W = 2.2 N W = 0 W = 45 N
- 23. In which figure of the following the **y-component of the net force is zero**?

24. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what total mass is accelerated to the right by force \vec{F} ?

25. Three forces act on a particle that moves with **unchanging** velocity $\overline{v} = 2\hat{i} - 7\hat{j}$, two of the forces are $\vec{F}_1 = 2\hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{F}_2 = -5\hat{i} + 8\hat{j} - 2\hat{k}$. what is the **third force**?

(a) $3\hat{i} - 11\hat{j} + 4\hat{k}$ (b) $7\hat{i} - 5\hat{j}$ (c) $-3\hat{i} + 11\hat{j} - 4\hat{k}$ (d) $-7\hat{i} + 5\hat{j}$

26. An **11 kg** object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.

28. In question 27, what is the normal force acting on the block m₁?

(a) $N=F_g - m_1g$ (b) $N=F_g \cos\theta$ (c) $N=F_g + m_1g$ (d) $N=F_g \cos\theta$ (c) O(S)

29. In question **27**, if the cord is cut what is the acceleration of mass m_2 ?

(a)
$$a = -4.9 \text{ m/s}^2$$
 (b) $a = -9.8 \text{ m/s}^2$ (c) $a = -0.735$ (d) $a = \text{zero} \text{ m/s}^2$

30. If the **1 kg** body has an **acceleration of 2 m/s**² at an angle of **20**° above the positive direction of the x-axis. What is the **net force** in unit vctor notation?

(a) $\vec{F} = 0.34\hat{i} + 0.94\hat{j}$ (b) $\vec{F} = 1.88\hat{i} + 0.68\hat{j}$ (c) $\vec{F} = 0.68\hat{i} + 1.88\hat{j}$ (d) $\vec{F} = 0.94\hat{i} + 0.34\hat{j}$

Chapter 6: FORCE AND MOTIN II

1. In the figure a woman **pulls** a loaded sled of mass **m** along a horizontal surface at **constant velocity**. The coefficient of kinetic friction between the runners and the snow is μ_k .

Which figure shows the correct **free body diagram** for the sled and load?

- **2. In question 2**, The **equation of the forces acting on the load and sled** (from Newton's second law) is:
- (a) $\vec{T} + \vec{N} + \vec{F}_{g} + \vec{f}_{k} = 0$ (b) $\vec{T} + \vec{N} + \vec{F}_{g} + \vec{f}_{s} = 0$ (c) $\vec{T} + \vec{N} + \vec{F}_{g} + \vec{f}_{k} = m\vec{a}$ (d) $\vec{T} + \vec{N} + \vec{F}_{g} + \vec{f}_{s} = m\vec{a}$
- **3.** A **12 N** horizontal force pushes a block of **weight 5 N** to make it move with **constant speed**, the value of the **coefficient of friction** μ_k is:
- (a) 2.4 (b) 0.24 (c) 4.1 (d) 0.41
- **4.** A car has a **weight of 1.1 N** slides on the road with acceleration **a=1.24 m/s²**, **what is the force of friction** between the car and the road?
- (a) 1.13 N (b) 11 N (c) 1.4 N (d) 0.14 N
- **5.** A **12 N** horizontal force pushes a block of weight **5 N** to make it move with **constant speed**, the value of the **coefficient of friction** μ_k is:
- (a) 2.4 (b) 0.24 (c) 4.1 (d) 0.41

- 6. A block lies on a floor. If the maximum value f_{x,max} of the static frictional force on the block is 10 N, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is 8 N?
- (a) 10 N (b) 8 N (c) 2 N (d) 18 N
- **7.** A **470** N horizontal force pushes a block of **mass 79** kg to make it move with **constant speed**, what is the value of the **coefficient of friction** μ_k ?
- (a) 0.61 (b) 6 (c) 1.6 (d) 0.06
- **8.** A block lies on a floor. If the maximum value $f_{x,max}$ of the static frictional force on the block is **10 N**, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is **12 N**?
- (a) 10 N (b) 12 N (c) 2 N (d) 22 N

