
Al Sham Private University

Faculty of Informatics Engineering

 جامعة الشام الخاصة

 كلية الهندسة المعلوماتية

 نظم معلومات موزعة
Distributed Information Systems

Lecture 2: Challenges and Properties of Distributed Systems

هسامغاندي . أ: اعداد

Heterogeneity

• The Internet enables users to access services and run applications
over a heterogeneous collection of computers and networks.

• Heterogeneity (that is, variety and difference) applies to all of the
following:

• networks;
• computer hardware;
• operating systems;
• programming languages;
• implementations by different developers.

• their differences are masked by the fact that all of the computers
attached to them use the Internet protocols to communicate with
one another.

By Eng. Ghandy Hessam 2

• Data types such as integers may be represented in different ways on
different sorts of hardware – for example, there are two alternatives
for the byte ordering of integers.

• These differences in representation must be dealt with if messages
are to be exchanged between programs running on different
hardware.

• For example, the calls for exchanging messages in UNIX are different
from the calls in Windows.

• Different programming languages use different representations for
characters and data structures such as arrays and records.

• Programs written by different developers cannot communicate with
one another unless they use common standards

By Eng. Ghandy Hessam 3

 Middleware:

• applies to a software layer that provides a programming abstraction
as well as masking the heterogeneity of the underlying networks,
hardware, operating systems and programming languages.

• The Common Object Request Broker (CORBA) is an example.

• Some middleware, such as Java Remote Method Invocation (RMI)
supports only a single programming language.

• Most middleware is implemented over the Internet protocols, which
themselves mask the differences of the underlying networks, but all
middleware deals with the differences in operating systems and
hardware

By Eng. Ghandy Hessam 4

• In addition to solving the problems of heterogeneity, middleware
provides a uniform computational model for use by the programmers
of servers and distributed applications.

• Possible models include remote object invocation, remote event
notification, remote SQL access and distributed transaction processing.

• For example, CORBA provides remote object invocation, which allows
an object in a program running on one computer to invoke a method
of an object in a program running on another computer.

• Its implementation hides the fact that messages are passed over a
network in order to send the invocation request and its reply.

By Eng. Ghandy Hessam 5

 Heterogeneity and mobile code:

• The term mobile code is used to refer to program code that can be
transferred from one computer to another and run at the destination
– Java applets are an example.

• Code suitable for running on one computer is not necessarily suitable
for running on another because executable programs are normally
specific both to the instruction set and to the host operating system.

• The virtual machine approach provides a way of making code
executable on a variety of host computers.

• Today, the most commonly used form of mobile code is the inclusion
Javascript programs in some web pages loaded into client browsers.

By Eng. Ghandy Hessam 6

Openness

• The openness of a computer system is the characteristic that determines
whether the system can be extended and reimplemented in various
ways.

• is determined primarily by the degree to which new resource-sharing
services can be added and be made available for use by a variety of client
programs.

• Openness cannot be achieved unless the specification and
documentation of the key software interfaces of the components of a
system are made available to software developers.

• the publication of interfaces is only the starting point for adding and
extending services in a distributed system.

By Eng. Ghandy Hessam 7

• Systems that are designed to support resource sharing in this way are
termed open distributed systems to emphasize the fact that they are
extensible.

• To summarize:
• Open systems are characterized by the fact that their key interfaces are

published.

• Open distributed systems are based on the provision of a uniform
communication mechanism and published interfaces for access to shared
resources.

• Open distributed systems can be constructed from heterogeneous hardware
and software, possibly from different vendors.

By Eng. Ghandy Hessam 8

Security

• Security for information resources has three components:
confidentiality (protection against disclosure to unauthorized
individuals), integrity (protection against alteration or corruption),
and availability (protection against interference with the means to
access the resources).

• the challenge is to send sensitive information in a message over a
network in a secure manner.

• it also involves knowing for sure the identity of the user or other
agent on whose behalf a message was sent.

• identify a remote user or other agent correctly.

By Eng. Ghandy Hessam 9

• The following two security challenges have not yet been fully met:

 Denial of service attacks

A user may wish to disrupt a service for some reason. This can be achieved
by bombarding the service with such a large number of pointless requests
that the serious users are unable to use it.

There have been several denial of service attacks on well-known web
services.

 Security of mobile code:

Consider someone who receives an executable program as an electronic mail
attachment: the possible effects of running the program are unpredictable;
for example, it may seem to display an interesting picture but in reality it
may access local resources, or perhaps be part of a denial of service attack.

By Eng. Ghandy Hessam 10

Scalability

• Distributed systems operate effectively and efficiently at many
different scales, ranging from a small intranet to the Internet.

• A system is described as scalable if it will remain effective when there
is a significant increase in the number of resources and the number of
users.

• The design of scalable distributed systems presents the following
challenges:

 Controlling the cost of physical resources:

As the demand for a resource grows, it should be possible to extend
the system, at reasonable cost, to meet it. Being possible to add server
computers to avoid the performance bottleneck that would arise if a
single file server (for example) had t handle all file access requests.

By Eng. Ghandy Hessam 11

 Controlling the performance loss:

Consider the management of a set of data whose size is proportional to
the number of users or resources in the system – for example, the table
with the correspondence between the domain names of computers
and their Internet addresses.

Algorithms that use hierarchic structures scale better than those that
use linear structures.

 Avoiding performance bottlenecks:

Algorithms should be decentralized to avoid having performance
bottlenecks. caching and replication may be used to improve the
performance of resources that are very heavily used.

By Eng. Ghandy Hessam 12

Failure handling

• When faults occur in hardware or software, programs may produce
incorrect results or may stop before they have completed the
intended computation.

• Failures in a distributed system are partial – that is, some components
fail while others continue to function.

• The following techniques for dealing with failures:

 Detecting failures:

Some failures can be detected. For example, checksums can be used to
detect corrupted data in a message or a file.

The challenge is to manage in the presence of failures that cannot be
detected but may be suspected.

By Eng. Ghandy Hessam 13

 Masking failures:

Some failures that have been detected can be hidden or made less
severe. Two examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.
2. File data can be written to a pair of disks so that if one is corrupted, the other
may still be correct.

 Tolerating failures:

Their clients can be designed to tolerate failures, which generally
involves the users tolerating them as well. For example, when a web
browser cannot contact a web server, it does not make the user wait
for ever while it keeps on trying – it informs the user about the
problem, leaving them free to try again later.

By Eng. Ghandy Hessam 14

 Recovery from failures:

Recovery involves the design of software so that the state of
permanent data can be recovered or ‘rolled back’ after a server has
crashed.

 Redundancy:

Services can be made to tolerate failures by the use of redundant
components. Consider the following examples:

1. There should always be at least two different routes between any two
routers in the Internet.
2. A database may be replicated in several servers to ensure that the data
remains accessible after the failure of any single server

By Eng. Ghandy Hessam 15

Concurrency

• Both services and applications provide resources that can be shared
by clients in a distributed system.

• There is therefore a possibility that several clients will attempt to
access a shared resource at the same time.

• The process that manages a shared resource could take one client
request at a time. But that approach limits throughput. Therefore
services and applications generally allow multiple client requests to
be processed concurrently.

• To make this more concrete, suppose that each resource is
encapsulated as an object and that invocations are executed in
concurrent threads.

By Eng. Ghandy Hessam 16

Transparency

• Transparency is defined as the hiding from the user and the application
programmer of the separation of components in a distributed system, so that
the system is seen as a whole rather than as a collection of independent
components.

• Access transparency enables local and remote resources to be accessed using
identical operations.

• Location transparency enables resources to be accessed without knowledge of
their physical or network location (for example, which building or IP address).

• Concurrency transparency enables several processes to operate concurrently
using shared resources without interference between them.

• Mobility transparency allows the movement of resources and clients within a
system without affecting the operation of users or programs.

By Eng. Ghandy Hessam 17

• Replication transparency enables multiple instances of resources to
be used to increase reliability and performance without knowledge of
the replicas by users or application programmers.

• Failure transparency enables the concealment of faults, allowing
users and application programs to complete their tasks despite the
failure of hardware or software components.

• Performance transparency allows the system to be reconfigured to
improve performance as loads vary.

• Scaling transparency allows the system and applications to expand in
scale without change to the system structure or the application
algorithms.

By Eng. Ghandy Hessam 18

• The two most important transparencies are access and location
transparency; their presence or absence most strongly affects the
utilization of distributed resources. They are sometimes referred to
together as network transparency.

• As an illustration of access transparency, consider a graphical user
interface with folders, which is the same whether the files inside the
folder are local or remote.

• Another example is an API for files that uses the same operations to
access both local and remote files

• As an example of a lack of access transparency, consider a distributed
system that does not allow you to access files on a remote computer
unless you make use of the ftp program to do so.

By Eng. Ghandy Hessam 19

Quality of service

• Once users are provided with the functionality that they require of a
service, such as the file service in a distributed system, we can go on
to ask about the quality of the service provided.

• The main nonfunctional properties of systems that affect the quality
of the service experienced by clients and users are reliability, security
and performance.

• Its achievement depends upon the availability of the necessary
computing and network resources at the appropriate times.

By Eng. Ghandy Hessam 20

Case study: The World Wide Web

• WWW is an evolving system for publishing and accessing resources
and services across the Internet.

• The Web is an open system: it can be extended and implemented in
new ways without disturbing its existing functionality

• First, its operation is based on communication standards and
document or content standards that are freely published and widely
implemented.

• Second, the Web is open with respect to the types of resource that
can be published and shared on it.

• The Web has moved beyond these simple data resources to
encompass services, such as electronic purchasing of goods. It has
evolved without changing its basic architecture.

By Eng. Ghandy Hessam 21

• The Web is based on three main standard technological components:
• the HyperText Markup Language (HTML), a language for specifying the contents and

layout of pages as they are displayed by web browsers;
• Uniform Resource Locators (URLs), also known as Uniform Resource Identifiers (URIs),

which identify documents and other resources stored as part of the Web;
• a client-server system architecture, with standard rules for interaction (the HyperText

Transfer Protocol – HTTP) by which browsers and other clients fetch documents and
other resources from web servers.

• A program that web servers run to generate content for their clients is
referred to as a Common Gateway Interface (CGI) program. A CGI program
may have any application-specific functionality, as long as it can parse the
arguments that the client provides to it and produce content of the required
type (usually HTML text). The program will often consult or update a database
in processing the request.

By Eng. Ghandy Hessam 22

• Downloaded code: A CGI program runs at the server. Sometimes the
designers of web services require some service-related code to run inside the
browser, at the user’s computer. In particular, code written in Javascript. It
often downloaded with a web page containing a form, in order to provide
better-quality interaction with the user

• A Javascript enhanced page can give the user immediate feedback on invalid
entries, instead of forcing the user to check the values at the server, which
would take much longer.

• Javascript can also be used to update parts of a web page’s contents without
fetching an entirely new version of the page and re-rendering it.

• An alternative to a Javascript program is an applet: an application written in
the Java language [2002], which the browser automatically downloads and
runs when it fetches a corresponding web page.

By Eng. Ghandy Hessam 23

End of Lecture 2

By Eng. Ghandy Hessam 24

