
1

Dr. George Karraz, Ph. D.

Line Drawing Algorithms

Contents

Graphics hardware

The problem of scan conversion

Considerations

Line equations

Scan converting algorithms

– A very simple solution

– The DDA algorithm

Conclusion

Graphics Hardware

It’s worth taking a little look at how graphics

hardware works before we go any further

How do things end up on the screen?

Architecture Of A Graphics System

System Bus

CPU
Display

Processor

System

Memory

Display

Processor

Memory

Frame

Buffer

Video

Controller
MonitorMonitor

Output Devices

There are a range of output devices currently

available:

– Printers/plotters

– Cathode ray tube displays

– Plasma displays

– LCD displays

– 3 dimensional viewers

– Virtual/augmented reality headsets

We will look briefly at some of the more

common display devices

Basic Cathode Ray Tube (CRT)

Fire an electron beam at a phosphor coated

screen

Raster Scan Systems

Draw one line at a time

Colour CRT

An electron gun for each colour – red, green

and blue

Applying voltages to

crossing pairs of

conductors causes

the gas (usually a

mixture including

neon) to break

down into a glowing

plasma of electrons

and ions

Plasma-Panel Displays

Liquid Crystal Displays

Light passing
through the liquid
crystal is twisted
so it gets through
the polarizer

A voltage is
applied using the
crisscrossing
conductors to stop
the twisting and
turn pixels off

The Problem Of Scan Conversion

A line segment in a scene is defined by the

coordinate positions of the line end-points

x

y

(2, 2)

(7, 5)

The Problem (cont…)

But what happens when we try to draw this

on a pixel based display?

How do we choose which pixels to turn on?

The best we can do is a discrete

approximation of an ideal line

Important line qualities:
• Continuous appearence

• Uniform thickness and brightness

• Turn on the pixels nearest the ideal line

• How fast is the line generated

Note that since vector-graphics displays, capable of drawing nearly perfect lines,

predated raster-graphics displays. Thus, the expectations for line quality were set

very high. The nature of raster-graphics display, however, only allows us to display

a discrete approximation of a line, since we are restricted to only turn on discrete

points, or pixels. In order to discuss, line drawing we must first consider the

mathematically ideal line (or line segment).

Considerations

Considerations to keep in mind:

– The line has to look good

• Avoid jaggies

– It has to be lightening fast!

• How many lines need to be drawn in a typical

scene?

• This is going to come back to bite us again and

again

Simple Line

The first line-drawing

algorithm presented is

called the simple slope-

intercept algorithm. It is a

striaght forward

implementation of the

slope-intercept formula for

a line.

Based on the simple slope-intercept

algorithm
public void lineSimple(int x0, int y0, int x1, int y1, Color color) {

int pix = color.getRGB();

int dx = x1 - x0;

int dy = y1 - y0;

raster.setPixel(pix, x0, y0);

if (dx != 0) {

float m = (float) dy / (float) dx;

float b = y0 - m*x0;

dx = (x1 > x0) ? 1 : -1;

while (x0 != x1) {

x0 += dx;

y0 = Math.round(m*x0 + b);

raster.setPixel(pix, x0, y0);

}

}

}

LineSimple with various slopes

Optimize Inner Loops
Optimize those code fragments where the algorithm spends most of its

time

• remove unnecessary method invocations

replace Math.round(m*x0 + b)
with (int)(m*x0 + b + 0.5)

• use incremental calculations

Consider the expression
y = (int)(m*x + b + 0.5)

The value of y is known at x0 (i.e. it is y0 + 0.5)
Future values of y can be expressed in terms of previous values
with a difference equation:

yi+1 = yi + m;
or
yi+1 = yi - m;

Line Equations

Let’s quickly review the equations involved in

drawing lines

x

y

y0

yend

xendx0

Slope-intercept line

equation:

bxmy

where:

0

0

xx

yy
m

end

end

00 xmyb

Lines & Slopes

The slope of a line (m) is defined by its start

and end coordinates

The diagram below shows some examples

of lines and their slopes

m = 0

m = -1/3

m = -1/2

m = -1

m = -2

m = -4
m = ∞

m = 1/3

m = 1/2

m = 1

m = 2

m = 4

m = 0

A Very Simple Solution

We could simply work out the corresponding

y coordinate for each unit x coordinate

Let’s consider the following example:

x

y

(2, 2)

(7, 5)

2 7

2

5

A Very Simple Solution (cont…)

x

y

(2, 2)

(7, 5)

2 3 4 5 6 7

2

5

5

3

27

25

m

5

4
2

5

3
2 b

First work out m and b:

Now for each x value work out the y value:

5

3
2

5

4
3

5

3
)3(y

5

1
3

5

4
4

5

3
)4(y

5

4
3

5

4
5

5

3
)5(y

5

2
4

5

4
6

5

3
)6(y

A Very Simple Solution (cont…)

Now just round off the results and turn on

these pixels to draw our line

3
5

3
2)3(y

3
5

1
3)4(y

4
5

4
3)5(y

4
5

2
4)6(y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

A Very Simple Solution (cont…)

However, this approach is just way too slow

In particular look out for:

– The equation y = mx + b requires the

multiplication of m by x

– Rounding off the resulting y coordinates

We need a faster solution

A Quick Note About Slopes

In the previous example we chose to solve

the parametric line equation to give us the y

coordinate for each unit x coordinate

What if we had done it the other way

around?

So this gives us:

where: and

m

by
x

0

0

xx

yy
m

end

end

 00 xmyb

A Quick Note About Slopes

(cont…)

Leaving out the details this gives us:

We can see easily that

this line doesn’t look

very good!

We choose which way

to work out the line

pixels based on the

slope of the line
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

4
3

2
3)3(x 5

3

1
5)4(x

A Quick Note About Slopes

(cont…)

If the slope of a line is between -1 and 1 then

we work out the y coordinates for a line based

on it’s unit x coordinates

Otherwise we do the opposite – x coordinates

are computed based on unit y coordinates

m = 0

m = -1/3

m = -1/2

m = -1

m = -2
m = -4

m = ∞

m = 1/3

m = 1/2

m = 1

m = 2
m = 4

m = 0

The DDA Algorithm

The digital differential

analyzer (DDA) algorithm

takes an incremental

approach in order to

speed up scan conversion

Simply calculate yk+1

based on yk

The or ig ina l d i f f e rent ia l

analyzer was a phys ical

m a c h i n e d e v e l o p e d b y

Vannevar Bush at MIT in the

1930 ’s in order to solve

ordinary differential equations.

M o r e in f o rm a t i o n h e r e .

http://scoter2.union.edu/~hemmendd/Encyc/Articles/Difanal/difanal.html

The DDA Algorithm (cont…)

Consider the list of points that we

determined for the line in our previous

example:

(2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

Notice that as the x coordinates go up by

one, the y coordinates simply go up by the

slope of the line

This is the key insight in the DDA algorithm

The DDA Algorithm (cont…)

When the slope of the line is between -1 and 1

begin at the first point in the line and, by

incrementing the x coordinate by 1, calculate

the corresponding y coordinates as follows:

When the slope is outside these limits,

increment the y coordinate by 1 and calculate

the corresponding x coordinates as follows:

myy kk 1

m
xx kk

1
1

The DDA Algorithm (cont…)

Again the values calculated by the equations

used by the DDA algorithm must be rounded

to match pixel values

(xk, yk)
(xk+1, yk+m)

(xk, round(yk))

(xk+1, round(yk+m))

(xk, yk) (xk+ 1/m, yk+1)

(round(xk), yk)

(round(xk+ 1/m), yk+1)

DDA Algorithm Example

Let’s try out the following examples:

x

y

(2, 2)

(7, 5)

2 7

2

5

x

y (2, 7)

(3, 2)

2 3

2

7

public void lineDDA(int x0, int y0, int x1, int y1, Color color) {

int pix = color.getRGB();

int dy = y1 - y0;

int dx = x1 - x0;

float t = (float) 0.5; // offset for rounding

raster.setPixel(pix, x0, y0);

if (Math.abs(dx) > Math.abs(dy)) { // slope < 1

float m = (float) dy / (float) dx; // compute slope

t += y0;

dx = (dx < 0) ? -1 : 1;

m *= dx;

while (x0 != x1) {

x0 += dx; // step to next x value

t += m; // add slope to y value

raster.setPixel(pix, x0, (int) t);

}

} else { // slope >= 1

float m = (float) dx / (float) dy; // compute slope

t += x0;

dy = (dy < 0) ? -1 : 1;

m *= dy;

while (y0 != y1) {

y0 += dy; // step to next y value

t += m; // add slope to x value

raster.setPixel(pix, (int) t, y0);

}

}

}

The DDA Algorithm Summary

The DDA algorithm is much faster than our

previous attempt

– In particular, there are no longer any

multiplications involved

However, there are still two big issues:

– Accumulation of round-off errors can make

the pixelated line drift away from what was

intended

– The rounding operations and floating point

arithmetic involved are time consuming

Conclusion

In this lecture we took a very brief look at

how graphics hardware works

Drawing lines to pixel based displays is time

consuming so we need good ways to do it

The DDA algorithm is pretty good – but we

can do better

Next time we’ll like at the Bresenham line

algorithm and how to draw circles, fill

polygons and anti-aliasing

	Slide 1
	Line Drawing Algorithms
	Contents
	Graphics Hardware
	Architecture Of A Graphics System
	Output Devices
	Basic Cathode Ray Tube (CRT)
	Raster Scan Systems
	Colour CRT
	Plasma-Panel Displays
	Liquid Crystal Displays
	The Problem Of Scan Conversion
	The Problem (cont…)
	The best we can do is a discrete approximation of an ideal line
	Slide 15
	Considerations
	Simple Line
	Based on the simple slope-intercept algorithm
	LineSimple with various slopes
	Optimize Inner Loops Optimize those code fragments where the algorithm spends most of its time
	Line Equations
	Lines & Slopes
	A Very Simple Solution
	A Very Simple Solution (cont…)
	A Very Simple Solution (cont…)
	A Very Simple Solution (cont…)
	A Quick Note About Slopes
	A Quick Note About Slopes (cont…)
	A Quick Note About Slopes (cont…)
	The DDA Algorithm
	The DDA Algorithm (cont…)
	The DDA Algorithm (cont…)
	The DDA Algorithm (cont…)
	DDA Algorithm Example
	Slide 35
	The DDA Algorithm Summary
	Conclusion

