Total questions in even 40 | Annuered @ Question No. 1 Find $(f \circ g)(x)$, where $f(x) = x^{\delta} - 1$, $g(x) = x^{\delta} + 3$ 0 x4+6x2+8 0 x4+4 $0 x^4 + 2x^2 + 4$ 0 x4+8 $f(x) = x^2 - 1^{n}$, $g(x) = x^2 + 3$ $f(g_{(x)}) = f(x^2 + 3)$ $= (x+3)^2 - 1$ = x + 6x + 8 Save & Next at a law

Total questions in exam: 40 | Answered: 0 Question No. 2 The solution of the equation $2^x = 3^{2x-1}$ is $\bigcirc \frac{\ln 2}{2 \ln 3 - \ln 2}$ $\bigcirc \frac{\ln 2}{\ln 2 - 2 \ln 3}$ 0 ln 3 ln 2-2 ln 3 $\frac{\ln 3}{2\ln 3 - \ln 2}$ 0 حفظ والثلي Save & Next

$$\frac{1}{3} \sqrt{\frac{2x-3}{2x-3}}$$

$$\frac{3}{2} \sqrt{\frac{2x-3}{2x-3}}$$

$$(1n3)$$

- $(21n3 - 1n2)$ - $(21n3 - 1n2)$

Math_F Total questions in exam: 40 | Answered: 0 Question No. 3 The solution set of $-2 \le 3 - 5x \le 18$ is ○ (-∞,1) ○ (-3,∞) ◎ (-3,1) ◎ [-3,1] 5× 2 3 23 14 ٦ -2-2 - 3X \sum

Total questions in exam: 40 | Answered: 0 Question No. 4 The solution set of the equation $-1 + \log_8(3x + 2) = -\frac{1}{3}$ is $\bigcirc \left\{\frac{3}{2}\right\}$ $\begin{array}{c} \circ & \{-\frac{1}{3}\} \\ \circ & \{-\frac{2}{3}\} \end{array}$ $\bigcirc \left\{\frac{2}{3}\right\}$ ीरी

$$(-1 + 1) = \frac{1}{3}$$

$$(-1 + 1$$

Total questions in exam: 40 | Answered: 0 Question No. 5 The horizontal asymptote to the graph of $f(x) = 3^{x}$ \bigcirc y = 2 ○ x = -2 ⊙ y = 3 ⊙ y = -2

Total questions in exam: 40 | Answered: 0 Question No. 6 Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$ ●x-9 x+9x-3x+3うう

Total questions in exam: 40 | Answered: 0 Question No. 7 The degree of the polynomial $5x^2+3x-52$ is 0 5 03 0 2 0 52

Total questions in exam: 40 | Answered: 0 Question No. 8 $3x^4 + x + 1$ Evaluate $\lim_{x\to -1}$ x+48-4 03 0 1 0 0 بالمغي رضى

Total questions in exam: 40 | Answered: 0 Question No. 9 If f(x) is a polynomial such that f(5) = -7 then the remainder of the $f(x) \div (x-5)$ equals: 05 0 -5 07 O -7

Total questions in exam: 40 | Answered: 0 Question No. 10 Evaluate $\lim_{x \to \infty} (x^3 + x - 3) =$ 0 0 0 00 * شق نامال رجة = $(\omega)^3 = (\omega) \cdot \chi \cdot s \quad (\omega) = (\omega)$ J= i =1 00

Question No. 11 Factor: $5x^2 - tx^2 - 5z + tz$ $(x^2 - z)(5 - t)$ $(x^2 - z)(5 + t)$ $(x^2 + z)(5 + t)$ $(x^2 + z)(5 - t)$ ~ (5-t)-2(5-t 15-t, x-2

Total questions in exam: 40 | Answered: 0 Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function. $F = \{(7, -1), (5, 1-a), (0, 5), (-2, a), (1, 3)\}$ $a \in \mathbb{R} \setminus \{-1, 5, 3, 2\}$ $a \in \mathbb{R} \setminus \{-1, 5, 3, 2, -4, -2\}$ $a \in \mathbb{R} \setminus \{5, 3, 2\}$ $a \in \{1, 5, -2\}$ حنظ والقلى Save & Next

Question No. 13 Use the square root property to solve this quadratic equation $x^2 + 20 = 4$ 0 ±4i 0 $\sqrt{16}$ 0 -4 20 x=+4 حفظ والألى Save & Next

Question No. 14 $\frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} =$ Evaluate $\lim_{x \to -\infty} \frac{x}{x^3}$ ⊖_12305 00 0 - 00 01 ×(\$\$ 10 00 12) 00 12) = 1 2 حفظ والثلي Save & Next

Question No. 15 The graph of $f(x) = -3x^2 + x + 4$ is Open left Open right Open down Open up (a))1~1(~X في ú,7 حمط والتلي Save & Next

Total questions in exam: 40 | Answered: 0 Question No. 16 Evaluate $\lim_{x \to -3} \frac{x^2 + 7x + 12}{x + 2} =$ 5 0 4 0 1 0 -3 00 * النقى في ما منفع .. فال ز ٢ (x+3) (x+ci) (X+4) XI =(-3+4)=(1)

Total questions in exam: 40 | Answered: 0 Question No. 17 The domain of the function $f(x) = e^{x^2 - 3x + 1} - 2$ is: 0 R $\begin{array}{c} \bullet & (0,\infty) \\ \bullet & (-1,\infty) \end{array}$ $(-\infty, 0)$ ب دائي محال الدالة ال - coo, + AO)

Question No. 19 Evaluate $\lim_{x \to -\infty} \frac{x+5}{2x+3} =$ 0 œ رى در 4-120 2 $\times c(A^{5'})$ = = dules zé 2

Question No. 20 The solution set of the equation 3(x+3) = 3x - 9 is • the set of real numbers ● {2,3} 0 O Ø

3x + 9 = 3x - 9

3x - 3x = -9 - 7

Math_F MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 21 Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$, and $A = \{1, 3, 5, 7\}$ the complement of A is ● {1,3,5,7} ● {0,2,4,6,9} 0 Ø • {1, 2, 3, 4, 5, 6, 7} = 20, 2, 4, 6, 3

Total questions in exam: 40 | Answered: 0 Question No. 22 $\begin{array}{l} {}^{if} x \leq 1 \\ {}^{if} x > 1 \end{array} \text{ is continuous if } \\ \end{array}$ The function f(x) =○ k=-1 ○ k=1 ○ k=0 ◎ k=2

let X de = (1) $(\lim_{x \to 1} f(x) - f(x))$ 1 join f(x) = (1)

2 فنون النرماية من الي = الم به من لوبنا $\lim_{x \to \infty} f(x) = (1)$ $\lim_{x \to \infty} f(x) = (x - 1)^n$ $\times - > \Gamma$ $x \rightarrow 1^+$

() ناريع بيه عنان نال قرب ()

|c-1 = 1 [c = 1+1 $\int t = 2$

Total questions in exam: 40 | Answered: 0 Question No. 24 If x-2 is a factor of the polynomial f(x) then f(-2) = 0f(2) = 0f(0) = -2f(0) = 2

Total questions in exam: 40 | Answered 1 Question No. 25 Given that $f(x) = \log_{\frac{1}{2}}(x+2)$, then f(2) =0 0 0.2 0 -7 × 65 (ف) 22 × $\log_{\frac{1}{2}}(u) = -2$

Total questions in exam: 40 17415115 The horizontal asymptote to the graph of $f(x) = 2^x - 3$. Question No. 7 ⊙ y = -3 ⊙ x = -2 ⊙ y = 3 ◎ x = 2 2

MKCL OES Total questions in exam: 40 | Answered: 1 Question No. 2 If $x \in \mathbb{N}$, then the value of i^{4x-1} is 0 -1 0 _i 0 i $4(1)-1 = i^{3}$ 2 ス .4(3)-1 = ill

Question No. 1 Perform the indicated operations $a b(a^{-1} - b^{-1})$, where $a \neq 0, b \neq 0$ ◎ b - a 0 1 1 b a 00 ◎ a-b $ab\left(\frac{1}{a}-\frac{1}{b}\right)$ 9 ab 20 6 a R Save & Next , and , and

Question No. 5 If $f(x) = 1 - \sqrt{x+2}$, then the domain of $f^{-1}(x)$ is \bigcirc $[1,\infty)$ \odot $[-2,\infty)$ ◎ (-∞,∞) \bigcirc $(-\infty, 1]$

Question No. 18 Which of the following is a pair of inverse functions? • f(x) = 2x - 1, where $x \in \mathbb{R}$, and $g(x) = x + \frac{1}{2}$, where $x \in \mathbb{R}$. • $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 - 3$, where $x \in [0, \infty)$. • f(x) = x, where $x \in \mathbb{R}$, and g(x) = -x, where $x \in \mathbb{R}$. • $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 + 3$, where $x \in [0, \infty)$. save & Next صنا راقلي

Total questions in exam: 40 | Answered: 0 Question No. 5 The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$. ◎ y = 2 ◎ x = -2 ◎ y = 3 ◎ y = -2

8:53 📲 4G 🌌 **Question No. 15** If $p(x) = \sqrt{x+3}$ and $q(x) = \sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$. $x \in (-\infty, -3) \cup (4, \infty)$ $\bigcirc x \in [-3, 4]$ $\bigcirc x \in [4,\infty)$ $0 x \in (-3, 4)$ Domain $p(k) = [-3, \infty)$ Domain $q(k) = [4, \infty)$ Domain (p.g.)(x) = [4, NO) ŕĥ \$

Question No. 24 Let $x \in \mathbb{Z}$. Simplify the following expression $a = 3i^{132x^2+4x-5}$ ● a = 3i ◎ a = -3i $\bigcirc a = -3$ ◎ a = 3 save & Next حنظ والثلي

MKCL OES Total questions in exam: 40 | Answered: 3 Question No. 4 The supplement of the angle 45° is: • 45° ● 60° ● 80° ⁰ 135° 45 + x = 180x = 180 - 45X =

	Math_FT_
MKCL OES	
Total questions in exam. 40 Answered: 0	
Question No. 32 The solution set of the equation $2 \log_2 x - \log_2(4x + 5) = 0$ is	
 ● (5) ● (-1.5) ● Ø ● (-1) 	
$2\log x - \log (4x+6) = 0$	$x^2 = 4/x + 6$
	-4x-t=0
X ²	
$\log \frac{1}{2}$	X = b, X = -1
-2 4x + 5	
ی مزد در	لن لوى رقيح ساير
$\frac{x}{4x+6} = 2$	A) uning

Math_FT_ MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 34 Evaluate $\lim_{x \to 1^+} \frac{x^2 - 1}{|x - 1|}$ 06 $\frac{(x+1)}{\sqrt{2}} = (x+1)$ = (1+1)

and the second se	Constant of the second	Mat
MKCL OES		
Total questions in exam. 40 Answered: 0		
Question No. 40		
The graph of $f(x) = 3^x$ is		
Increasing		
 Constant Decreasing and Increasing 		
Decreasing and increasing Decreasing		
	-	
$/ \pi$		
)	
The second s		
A CONTRACTOR OF THE OWNER		

$$(\int z \int)^{3-5x} = [(fz)^{4}]^{4+x}$$

$$(\int z \int)^{3-5x} = (fz)^{4a+4x}$$

$$(\int z \int)^{3-5x} = (fz)^{4a+4x}$$

$$3-5x = 4a + 4x$$

$$-5x - 4x = 4a + 4x$$

$$-5x - 4x = 4a - 3$$

$$-9x = 4a - 3$$

$$X = \frac{4a - 3}{-9}$$

$$x = \frac{-3}{-9} + \frac{4^{2}}{-9}$$

$$x = \frac{1}{3} - \frac{4^{2}}{5}$$

Question No. 38 Evaluate $\lim_{x \to -\infty} (2x^4 + x - 1) =$ 01 0 2 00 0 0 Save & Next , Lilly Line

Question No. 37 Let a > 1. The solution set of the equation $\log_x(2x^2 - a^2) = 2$ is ◎ S = {a, 2a} ● S = {a} ◎ S = {-a} ◎ S = {-a, a} - × 14 a 7 X a 6 X مطرقلی Save & Next Compaq LE1711

11:07		ul 🗢 💽
<	+966 50 214 3540 7 Photos	Select
		11:05 AM
	MKCL OES	
	Total questions in exam: 40 Answered: 0	
	Question No. 11	
	If x+a is a factor of the polynomial f(x) then	
- 83	f(-a)=0	
	$\circ f(a) = -a$	
	$f(-a) \neq 0$ $f(a) = 0$	
		+
	$(\land$	
	$\overline{4}$	
)/ (
	Ľ	
		11:05
		11:05 AM

MKCL OES	
Total questions in exam: 40 Answered: 0	

Total questions in exam: 40 | Answered: 10 Question No. 39 The equation $y = \log_{\alpha} x$ is equivalent to the equation $x = y^a$ $x = a^y$ $y = x^a$ $y = a^x$ a=x

MKCL OES Math_F Total questions in exam: 40 | Answered: 38 Question No. 27 The range of the function $f(x) = 1 - \frac{3}{2+x}$ is ◎ R \ {0} ◎ R \ {3} ◎ ℝ \ {1} $\mathbb{R} \setminus \{-2\}$ 2 + x = 0 x = -2 - 1Save & Next منظر القلى

$$f(x) = -a^{x}$$

$$2x + 3 = k + \alpha$$

$$2x + 3 = -x - \alpha$$

$$2x - k = \alpha - 3$$

$$2x + x = -\alpha - 3$$

$$3x = -\alpha - 3$$

$$x = -\alpha - 3$$

$$x = -\alpha - 3$$

$$x = -\alpha - 3$$

$$\alpha - 3 = -\frac{\alpha - 3}{3}$$

$$3 - 9 = - - - 3$$

$$\begin{array}{rcl}
4a &=& 6\\
a &=& \frac{6}{a}\\
\hline
n &=& \frac{3}{2}
\end{array}$$

Total questions in exam: 40 | Answered: 0 Question No. 6 Use the quadratic formula to solve this equation: $8x^2 = 6x - 1$ $x = \{4, \frac{1}{2}\}$ • $x = \{-\frac{1}{2}, \frac{1}{4}\}$ $x = \{\frac{1}{2}, \frac{1}{4}\}$ $x = \{2, \frac{1}{4}\}$ x 6x -1

If $f(x) = x^3 + 2x^2 - 1$ then $f(a^4) =$ $a^7 + 2a^6 - 1$ $a+2a^{-1}-1$ $a^{12}+2a^8-1$ 0 $a^{9}-1$ $f(a') = (a')^3 + 2(a')^2 - (a')^2 - ($ = a + 2a - 1

Question No. 1 Evaluate $\lim_{x \to 2} \frac{x^3 - 1}{x - 1} =$ 0 1 07 0 2 04 **B** (2)^3 -1/(2-1) 8 - 1 / 1 7/1 = 7

Complement = 90 90 = 60 + x90 - 60 = xx = 30

Constant to constant 40 A
Guestion No. 6
Simplify
$$(x^{\frac{1}{2}} - 3)(x^{\frac{1}{2}} + 3)$$

 $x - 9$
 $x + 3$
 $x + 9$
 $x - 3$
 $x + 3$
 $x - 3$
 $x + 3$
 $x - 3$
 $x + 3$
 $x - 3$
 x

$$x^{2} - y^{2} = (x-y)(x+y)$$

($x^{(1/2)} - 3$)($x^{(1/2)+3$)
 $x^{(1/2)^{2}} - 3^{2}$
 $x^{(1/2)^{2}} - 9$
x - 9

$$5^x = a$$

in $5^x = in a$
x in $5 = in a$
x = in a / in 5

$sin^{2} + cos^{2} = 1$

The graph of $f(x) = -\left(\frac{1}{2}\right)^x$ is O Increasing O Constant Decreasing and Increasing O Decreasing save & Next منذ راهلي HP Compaq LE1711

f(x) = -a^x if 0 < a < 1 then it's increasing

 $f(x) = -a^x$ if a > 1 Type text he then it's decreasing

Question No. 1 Evaluate $\lim_{x \to 2} \frac{x^3 - 1}{x - 1} =$ 01 07 0 2 0 4 B

Question No. 5 The solution set of the equation $(\sqrt{2})^{3-5\pi} = 4^{\alpha+\pi}$ is $\left\{\frac{3}{2} - \frac{2}{7}a\right\}$ \bigcirc {3 + $\frac{4}{9}a$ } $\left\{\frac{1}{2} - \frac{1}{6}a\right\}$ $\{ \frac{1}{3} - \frac{4}{9}a \}$ Save & Next and a Mark HP Compoq LE1711

$$(\sqrt{2})^{3}-5x = 4^{(a+x)}$$

 $(\sqrt{2})^{2}(3-5x) = 4^{2}(a+x)$
 $2^{(3-5x)} = 4^{2}(a+x)$
 $2^{(3-5x)} = 2^{2}*2(a+x)$
 $2^{(3-5x)} = 2^{4}(a+x)$
 $3-5x = 4(a+x)$
 $3-5x = 4a + 4x$
 $3-4a = 9x$
 $(3-4a)/9 = x$
 $3/9 - 4a/9 = x$
 $1/3 - 4/9 = x$

if there's x² then this is not one to one.

we use the number that gives $x^2=0$

remeber a shoul be POSITIVE a > 0

If
$$f(x) = x^3 + 2x^2 - 1$$
 then $f(a^4) =$
• $a^7 + 2a^6 - 1$
• $a^{12} + 2a^8 - 1$
• $a^9 - 1$
($a^{A4})^{A3} + 2(a^{A4})^{A2} - 1$
• $a^{A(4^*3)} + 2(a)^{A(4^*2)} - 1$
• $a^{A(2^*3)} + 2(a)^{A(4^*2)} - 1$
• $a^{A(2^*3)} + 2(a)^{A(4^*2)} - 1$
• $a^{A(2^*3)} + 2(a^{A(2^*3)})^{A(2^*3)} + 2(a^{A(2^*3)})^{A(2^*$

- 1

Lim+ = lim-

lim x-> -3- (-x-3)/(x+3) im x-> -3- -(x+3)/(x+3) im x-> -3- = -1

👸 شعبة 7 (بنات) @ Raghad Alenzi بنات ترا سهل شوفو التجميعات _

С

Total questions in exam: 40 | Answered: 0 Question No. 5 The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$. \bigcirc y = 2 $\bigcirc x = -2$ \bigcirc y = 3 ○ y = -2 y = mx + b b is horizontal asymptote

Question No. 24 Let $x \in \mathbb{Z}$. Simplify the following expression $a = 3i^{132x^2+4x-3}$ ◎ a = 3i ◎ a = -3i $\bigcirc a = -3$ ◎ a = 3 Type text here save & Next حنظ والثلي

A

OLSO TO Let $f(x) = x^2 + c$ and g(x) = x, give the value of c such that f(x + 1) = xg(x) + 2x. Q c= 1. 0 c -- 1. O cad. 0 c=0. 2 منظ راقلی Save & Next P Compaq LE1711

Math_FT_Sem1_2018 Total questions in exam: 40 | Answered: 38 Question No. 26 Let a > 0 and $f(x) = (a^2 - 9)x^2 + x - a$. Give the value of a such that f(x) is a one-to-one function. @ a=1 0 a=3 @ a=2 @ a=-3 منذر فلي Save & Next

B

11:45 ...II 4G 🗩 +966 53 416 2816 Select < 14 Photos 11:37 AM ove & Next Ltry has Math_F Total questions in exam 40 | Answered 0 Question No. 37 ,where 0°<9<90" If $\sin \theta = \frac{4}{c}$ then $\cos \theta =$ $1-\sin^2 = \cos^2$ $\begin{array}{r} 1-(4/5)^{2} = \cos^{2} \\ 9/25 = \cos^{2} \\ \sqrt{(9/25)} = \cos \\ \cos = 3/5 \end{array}$ R Save & Next "18 , La 11:37 AM Math_F Total questions in

Math_FT_ MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 33 Give the slope of the line 4y - 8x + 28 = 00 -2 0 .7 С y = mx + bm is slope -4y = -8x + 28 y = -8/-4 x + 28/-4 y = 2x - 7 Save & Next , Mark , Save & Next

С

11:57		📲 4G 🔳
<	+966 54 244 7982 20/12/2018, 11:56 AM	All Media
MKCLC	DES	Mati
Total qu	estions in exam 40 Answered 27	
Questio	n No. 25	
	e quotient $\frac{6x^2}{2x^2} \div \frac{3x}{x^4}$, where $x \neq 0$	
0 <u>1</u>	2x3 x4 , 1000 C X F 0	
0 1 0 1		
2 (* -1		
		-
Severa N	err aldalan	
And the second second	Lon	
		ញ្ញា
	24	

Question No. 37 Let a > 1. The solution set of the equation $\log_{\tau}(2x^2 - a^2) = 2$ is \bigcirc S = {a, 2a} O S = {a} @ S = {-a} • S = {-a, a} B logx y = z -> x^z=y x^2 = 2x^2 - a^2 $a^2 = x^2$ Save & Next , LD , And x = aHP Compag LE1711

• ۱۱:٤٧ ،۲۰۱۸/۱۲/۲۰ ص

Total questions in exam. 40 (Math_FT_Sem1_2018					
Question No. 4		014	QL			
Let $a \in \mathbb{R}$ and $f(x) =$	0.9 ^{(a²-3a+2)x}	-1 - a. Give	the condition	on a such t	hat $f(x)$ is in	creasing.
$a \in (2, \infty)$ $a \in (-\infty, 1)$ $a \in (1, 2)$ $a \in (-\infty, 1] \cup [2, \infty)$						

Total questions in exam: 40 | Answered: 0 Question No. 22 The function f(x) =● k=-1 ◎ k=1 ○ k=0 ◎ k=2

Question No. 11 If $f(x) = (x-1)^2$ then $f(a^3) =$ $a^6 - 2a^3 + 1$ $a^2 + 2a - 1$ ◎ a⁶+a+2 $3a^2 + 2a - 1$

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 5 The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$. ○ y = 2 ○ x = -2 ⊙ y = 3 ⊙ y = -2

	and the second se	
100	MKCL OES	
	Total questions in exam 40 Answered 40	
	Question No. 10	
	Evaluate $\lim_{x \to t^*} \frac{x^2 - 1}{ x - 1 }$	
	01	
	06	
	* 2	
100		

• ۱۱:٤٧ ،۲۰۱۸/۱۲/۲۰ ص

Total guestions in exam: 40	Answered: 35		Math_FT_Sem1_2018				
Question No. 4							
Let $a \in \mathbb{R}$ and $f(x) =$	0.9 ^{(a²-3a+2)x-}	⁻¹ - a. Give	the condition	on a such t	hat $f(x)$ is inc	reasing.	
$a \in (2, \infty)$ $a \in (-\infty, 1)$							
a ∈ (1,2)							
$a \in (-\infty, 1] \cup [2, \infty)$							

С

Question No. 24

Let a and b be nonzero real numbers. Find the inverse of the function $f(x) = \frac{a+bx}{b-ax}$.

$$f^{-1}(x) = \frac{bx-a}{ax-b}$$

$$f^{-1}(x) = \frac{bx+a}{ax+b}$$

$$f^{-1}(x) = \frac{ax+b}{bx-a}$$

$$f^{-1}(x) = \frac{bx-a}{bx-a}$$

$$f^{-1}(x) = \frac{bx-a}{ax+b}$$

x = a+by / b-ay (multiply by (b-ax)) x(b-ay) = a+by , bx - xay = a+by (let y togather) bx - a = xay + by , bx-a = y(xa+bb) (devide by xa+b) y = bx-a / ax+b

hp Math_FT_Sem1 Total questions in exam: 40 | Answered: 38 Question No. 29 Let $f(x) = ax^2 + bx + 1$, find the values of a and b such that f(x) = f(-x), for all $x \in \mathbb{R}$. С Save & Next , Jan

Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8| + a > 0 is $(-\infty, 2) \cup (2, +\infty)$ then 0-3=-1 0 == 0 @ a=2 С مدرالال Save & Next

MKCL OES Total questions in exam: 40 | Answered: 19 Question No. 30 If $f(x) = x^3 + 2x^2 - 1$ then $f(a^4) =$ © a⁹−1 $a^{12} + 2a^8 - 1$ $a+2a^{-1}-1$ $a^7 + 2a^6 - 1$ B Save & Next المنادراة لي

Total questions in exam: 40 [Answered: 35
Question No. 4
Let
$$a \in \mathbb{R}$$
 and $f(x) = 0.9^{(a^2 - 3a + 7)x - 1} - a$. Give the condition on a such that $f(x)$ is increasing:
 $a \in (2, \infty)$
 $a \in (-\infty, 1)$
 $a \in (-\infty, 1] \cup [2, \infty)$

MKCL OES	and the second se
Total questions in exam: 40 Answered: 0	
Question No. 14	
The range of the function $f(x) = -x^2$.	+16
- [-= 1]	+ 1 15
● [1,=) ● [-1,=)	
(-=,-1]	
Λ	
А	

Type text here

۲۱،٤۷ ،۲۰۱۸/۱۲/۲۰ ص

Question No. 4	Plan	QL T			
Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2-3a+2)x}$	-1 - a. Give	the conditio	n on a such th	hat $f(x)$ is in	creasing.
$a \in (2, \infty)$ $a \in (-\infty, 1)$ $a \in (1, 2)$					
$\alpha \in (-\infty, 1] \cup [2, \infty)$					
			SUL COMPANY	RAL AND	
		1			

IKCL OES	Math_FT_Sem1_2
otal questions in exam: 40 Answered: 37	
Question No. 19	
Which of the following points are on the graph of $f(x)$	$() = 4 + 2 \log_3(1 - 2x)?$
(0, 4), $(-1, 6)$ and $(\frac{1}{3}, 2)$	
(0,6), $(-1,4)$ and $(\frac{1}{3},2)$	
(0,4), (-1,6) and $(\frac{1}{3},-2)$	
(3, 1), (1, 0) and $(\frac{1}{3}, -1)$	
Λ	
Л	
Save & Next معلد واللي Save & Next	
and the second	Children and the second second

۰ ۱۱:۵۷ ۲۰۱۸/۱۲/۲۰ ص

MKCL OES	Math_FT_Sem1_2
Total questions in exam: 40 Answered: 37	
Question No. 19	
Which of the following points are on the graph	of $f(x) = 4 + 2 \log_3(1 - 2x)?$
(0,4), $(-1,6)$ and $(\frac{1}{3},2)$	
(0,6), (-1,4) and $(\frac{1}{3},2)$ (0,4), (-1,6) and $(\frac{1}{3},-2)$	
(0, 4), (-1, 6) and $(\frac{2}{3}, -2)$ (3, 1), (1, 0) and $(\frac{1}{3}, -1)$	
Λ	
A	
save & Next معل راللي Save & Next	

Question No. 24

Let a and b be nonzero real numbers. Find the inverse of the function $f(x) = \frac{a+bx}{b-ax}$.

$$f^{-1}(x) = \frac{bx-a}{ax-b}$$

$$f^{-1}(x) = \frac{bx+a}{ax+b}$$

$$f^{-1}(x) = \frac{bx+a}{bx-a}$$

$$f^{-1}(x) = \frac{bx-a}{bx-a}$$

$$f^{-1}(x) = \frac{bx-a}{ax+b}$$

Math I Total questions in exam: 40 | Answered: 25 Question No 24 Let $a \in (-\infty, 0]$. Solve the inequality $|2x - 2| \le |-2a|$. $(-\infty, 1+a] \cup [1-a, +\infty)$ \bigcirc [1 - a, 1 + a] \bigcirc [1 + a, 1 - a] $\bigcirc [-a,a]$ $2a \leq 2x-2 \leq -2a$ $2a+2 \le 2x \le -2a+2$ $(2a+2)/2 \le x \le (-2a+2)/2$ 2(a+1)/2 \le x \le 2(-a+1)/2 مىلىراقلى Save & Next $a+1 \leq x \leq 1-a$

MKCL OES Total questions in exam: 40 | Answered: 19 Question No. 30 If $f(x) = x^3 + 2x^2 - 1$ then $f(a^4) =$ ◎ a⁹ - 1 $a^{12} + 2a^8 - 1$ $a+2a^{-1}-1$ $a^7 + 2a^6 - 1$ B Save & Next الشابعة

Question No. 11 If $f(x) = (x-1)^2$ then $f(a^3) =$ $a^6 - 2a^3 + 1$ $a^2 + 2a - 1$ ◎ a⁶+a+2 $3a^2 + 2a - 1$ A

MKCL OES Math F Total questions in exam: 40 | Answered: 25 Question No. 24 Let $a \in (-\infty, 0]$. Solve the inequality $|2x - 2| \le |-2a|$. $\begin{array}{c} \bullet & (-\infty, 1+a] \cup [1-a, +\infty) \\ \bullet & [1-a, 1+a] \\ \bullet & [1+a, 1-a] \\ \bullet & [-a, a] \end{array}$ С حمدراقلی Save & Next

MKCL OES Math_FT_ Total questions in exam: 40 | Answered: 25 Question No. 18 The solution set of the equation 6(2x - 2) = 2 - 2x is ◎ {1,2} 0 Ø ● {1} · -1 С save & Next معطر هلي

6(2x-2)=2-2x 12x-12=2-2x 12x + 2x = 12 +2 14x = 14 , x=1

Question No. 37 Let a > 1. The solution set of the equation $\log_x(2x^2 - a^2) = 2$ is ◎ S = {a, 2a} ◎ S = {a} ◎ S = {-a} ◎ S = {-a, a} B منذ رقان Save & Next

• ۱۲،۱۱،۲۰۱۸ م

بي ولا سي

		Contra da	
	A ALL DE CONTRACTOR OF THE OWNER		
	- The second second		

Question No. 11 If $f(x) = (x-1)^2$ then $f(a^3) =$ $a^{6}-2a^{3}+1$ @ a2+2a-1 a a + a + 2 $0 3a^2 + 2a - 1$

Total questions in exam. 40 [Answered: 35
Question No. 4
Let
$$a \in \mathbb{R}$$
 and $f(x) = 0.9^{(a^2 - 3a + 7)x - 1} - a$. Give the condition on a such that $f(x)$ is increasing:
 $a \in (2, \infty)$
 $a \in (-\infty, 1)$
 $a \in (-\infty, 1] \cup [2, \infty)$

Question No. 36 The solution set of the equation $(\sqrt{2})^{3-5x} = 4^{a+x}$ is $\begin{array}{c} \textcircled{0} & \{\frac{1}{2} - \frac{1}{6}a\} \\ \textcircled{0} & \{\frac{3}{2} - \frac{2}{7}a\} \end{array}$ $\left\{\frac{1}{3}-\frac{4}{9}a\right\}$ (a) $\{3 + \frac{4}{9}a\}$

L right =\ L left

Question No. 35 If a function f(x) has an inverse function and f(-2) = 11, then $f^{-1}(11) = -1$ ⁽ⁱ⁾ $f^{-1}(-2) = -11$ ⁽ⁱ⁾ $f^{-1}(11) = -2$ ⁽ⁱ⁾ $f^{-1}(2) = -11$ С Save & Next , the law

• ۱۲،۱۱،۲۰۱۸ م

بي ولا سي

	Contra all	
 		1
Cart .		

	* 35 من الصور
ص 11:35	Save & Next , May has
a	
-	Math_FT.
	MKCL OES
	Total questions in exam: 40 Answered: 0
24	Question No. 38 $(2 - 1) = 2 \log_2 (2 - x)$ is
	The solution set of the equation $\log_2 x + \log_2(2x-1) = 2\log_2(2-x)$ is
	$ \begin{array}{c} \bullet & \{1, -4\} \\ \bullet & \{1\} \\ \bullet & \{4, -1\} \\ \bullet & \phi \end{array} $
	$\log^2(x^*(2x-1)) = 2\log^2(2-x)$
	$\log_2(x^*(2x-1)) = 2 \log_2(2-x) \\ \log_2(2x^2 - x) = \log_2(2-x)^2 \\ 2x^2 - 4x + 1x^2 \\ (x - x)^2 = 1 \\ (x - x)^2 \\ (x - x)^2 = 1 \\ (x - x)^2 \\ (x - x)^2 = 1 \\ (x - x)^2 \\ (x - x)^2 = 1 \\ (x - x)^2 \\ (x - x)^2 = 1 \\ (x - x)^2 \\ (x - x)^2 = 1 \\ (x - x)^2 $
	B $2x^2 - x = 4 - 4x + x^2$, $(x-y)^2$ property $x^2 - 4x + 4 = 2x^2 - x -> 2x^2 - x^2 - x + 4x - 4$
	x^2 +3x -4 = (x+4)(x-1) , x=-4 , x=1 there's NO MINUS number in log so the
ص 11:35	solution set is {1}

A

Total questions in exam: 40 | Answered: 0 Question No. 22 The function f(x) =● k=-1 ◎ k=1 ○ k=0 ◎ k=2
Question No. 37 Let a > 1. The solution set of the equation $\log_x(2x^2 - a^2) = 2$ is ◎ S = {a, 2a} ◎ S = {a} ◎ S = {-a} ◎ S = {-a, a} B منذ رقان Save & Next

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 32 The solution set of the equation $2 \log_2 x - \log_2(4x + 5) = 0$ is $\log x y = z \rightarrow x^{z} = y$ a log x y -> log x y^a $\log 2 x^{2} - \log 2 (4x+5) = 0$ $\log 2 (x^{2} / (4x+5) = 0$ $x^{2} / (4x+5) = 2^{0}$ $x^{2} / (4x+5) = 1$ (multiply by 4x+5) $x^{2} = 4x+5 \rightarrow x^{2} - 4x - 5 = (x+1)(x-5)$ x = 5, x = -1 becuse it's a logaritm so we only take the positive number (5)

Question No. 18

The function has an inverse if

• None of these answers

doesn't satisfy the horizontal line test

○ it is one-to-one

○ it is quadratic

Total questions in exam: 40 | Answered: 0 Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function. $F = \{(7, -1), (5, 1-a), (0, 5), (-2, a), (1, 3)\}$ • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2\}$ • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2, -4, -2\}$ • $a \in \mathbb{R} \setminus \{5, 3, 2\}$ • $a \in \mathbb{R} \setminus \{5, 3, 2\}$ • $a \in \{1, 5, -2\}$ حنظ والقلى Save & Next

Question No. 13 Use the square root property to solve this quadratic equation $x^2 + 20 = 4$ 0 ±4i 0 $\sqrt{16}$ 0 -4 حفظ والآلي Save & Next

Question No. 19 Evaluate $\lim_{x \to -\infty} \frac{x+5}{2x+3} =$

Question No. 20 The solution set of the equation 3(x + 3) = 3x - 9 is • the set of real numbers • {2,3} 0 0 Ø

Math_F Total questions in exam: 40 | Answered: 0 Question No. 21 Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$, and $A = \{1, 3, 5, 7\}$ the complement of A is ♀ {1,3,5,7} ◎ {0,2,4,6,9} O Ø ● {1, 2, 3, 4, 5, 6, 7} B

Question No. 14 uestion No. 14 Evaluate $\lim_{x \to -\infty} \frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} = 0$ ● -1 3305 ● 0 0 -00 012000 حفظ والذلي Save & Next

Total questions in exam: 40 | Answered: 0 Question No. 22 The function f(x) = $\begin{array}{l}
if x \leq 1 \\
if x > 1 \\
if x > 1 \\$ is continuous if ● k=-1 ◎ k=1 ○ k=0 ◎ k=2

Question No. 15 The graph of $f(x) = -3x^2 + x + 4$ is Open left Open right Open down Open up حنظ والثلي Save & Next

Total questions in exam: 40 | Answered: 0 Question No. 23 Evaluate $\lim_{x \to -3} \frac{|x+3|}{x+3}$ 00 02 1 O Does not exist

Total questions in exam: 40 | Answered: 0 Question No. 24 If x-2 is a factor of the polynomial f(x) then f(-2) = 0f(2) = 0 $\bigcirc f(0) = -2$ f(0) = 2B

Total questions in exam. 40 | Answered: 0 Question No. 25 Given that $f(x) = \log_{\frac{1}{2}}(x+2)$, then f(2) =61 $\begin{array}{c} & \frac{1}{2} \\ & 2 \\ & -2 \end{array}$

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 26 Let $x \in \mathbb{R}$ and z be a complex number. Give the value of x that mal $z = (3x - \sqrt{5}) + (x + 1)i - 2$ $x = \frac{2-\sqrt{5}}{3}$ $x = -\frac{\sqrt{5}}{3}$ $x = \frac{2+\sqrt{5}}{3}$ $x = \frac{\sqrt{5}}{3}$

Total questions in exam: 40 | Answered: 0 Question No. 16 $x^2 + 7x + 12 =$ Evaluate $\lim_{x\to -3}$ x+3 04 2 01 0 -3 00 B

Total questions in exam: 40 | Answered: 0 Question No. 17 The domain of the function $f(x) = e^{x^2 - 3x + 1} - 2$ is: \mathbb{R} $(0,\infty)$ $(-1,\infty)$ $(-\infty,0)$

Question No. 18

The function has an inverse if

• None of these answers

doesn't satisfy the horizontal line test

○ it is one-to-one

○ it is quadratic

Question No. 19 Evaluate $\lim_{x \to -\infty} \frac{x+5}{2x+3} =$

Question No. 20 The solution set of the equation 3(x + 3) = 3x - 9 is • the set of real numbers • {2,3} 0 0 Ø

Math_F Total questions in exam: 40 | Answered: 0 Question No. 21 Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$, and $A = \{1, 3, 5, 7\}$ the complement of A is ♀ {1,3,5,7} ◎ {0,2,4,6,9} O Ø • {1, 2, 3, 4, 5, 6, 7} B

Total questions in exam: 40 | Answered: 0 Question No. 22 $\frac{if \quad x \le 1}{if \quad x > 1}$ is continuous if The function f(x) =k - x● k=-1 ◎ k=1 ○ k=0 ◎ k=2

Total questions in exam: 40 | Answered: 0 Question No. 23 Evaluate $\lim_{x \to -3} \frac{|x+3|}{x+3}$ 00 02 1 O Does not exist

Total questions in exam: 40 | Answered: 0 Question No. 24 If x-2 is a factor of the polynomial f(x) then f(-2) = 0f(2) = 0 $\bigcirc f(0) = -2$ $\oint f(0) = 2$ B

Total questions in exam. 40 | Answered: 0 Question No. 25 Given that $f(x) = \log_{\frac{1}{2}}(x+2)$, then f(2) =61 $\begin{array}{c} \circ & \frac{1}{2} \\ \circ & 2 \\ \circ & -2 \end{array}$

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 26 Let $x \in \mathbb{R}$ and z be a complex number. Give the value of x that mal $z = (3x - \sqrt{5}) + (x + 1)i - 2$ $x = \frac{2-\sqrt{5}}{3}$ $x = -\frac{\sqrt{5}}{3}$ $x = \frac{2+\sqrt{5}}{3}$ $x = \frac{\sqrt{5}}{3}$

Total questions in exam: 40 | Answered: 0 Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function. $F = \{(7, -1), (5, 1-a), (0, 5), (-2, a), (1, 3)\}$ • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2\}$ • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2, -4, -2\}$ • $a \in \mathbb{R} \setminus \{5, 3, 2\}$ • $a \in \mathbb{R} \setminus \{5, 3, 2\}$ • $a \in \{1, 5, -2\}$ B حنظ والقلى Save & Next

Question No. 24 Let $x \in \mathbb{Z}$. Simplify the following expression $a = 3i^{132r^2+4r-3}$ ◎ a = 3i $\bigcirc a = -3i$ ◎ a = -3 0 a=3 pe text he

