King Abdul Aziz University
Faculty of science Chemistry department

## Model (C)

## Chem. 110

## Final exam of $1^{\text {st }}$ term 1432-1433H

Time: 120minutes

| Student name: |  |
| :---: | :--- |
| Student number |  |
| Section |  |


| Useful information |  |
| :--- | :---: |
| Speed of light, | $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |
| Planck's const., | $h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ |
| Avogadro's No., | $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Rydberg const. for H atom, | $R_{H}=2.18 \times 10^{-18} \mathrm{~J}$ |
| Gas constant, | $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ |
|  | With the best wishes |
|  | General Chemistry Team work |

Directions: For each of the following questions, choose the letter that best answers the question and place it on your answer sheet.
1.The diameter of a circuit is $11 \times 10^{3} \mathrm{~cm}$. What is this diameter when expressed in micrometers?
a) $11 \times 10^{5} \mu \mathrm{~m}$
b) $11 \times 10^{7} \mu \mathrm{~m}$
c) $11 \times 10^{3} \mu \mathrm{~m}$
d) $11 \times 10^{9} \mu \mathrm{~m}$
2. How many milliliters in 1.4161 L ?
a) 14161.0 mL
b) 1416.1 mL
c) 14.16 mL
d) 141.61 mL
3. Bromine is a red liquid at $25^{\circ} \mathrm{C}$. Its density is $3.12 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of 42.5 g of liquid bromine?
a) $17.62 \mathrm{~cm}^{3}$
b) $11.62 \mathrm{~cm}^{3}$
c) $16.62 \mathrm{~cm}^{3}$
d) $13.62 \mathrm{~cm}^{3}$
4. Which of the following is a SI base unit?
a) candela
b) hour
c) yard
d) all of the above
5.Which of the following element is in the halogen group?
a) N
b) Li
c) Mg
d) Br
6. Which pair of Atomics would be most likely to form a molecular compound?
a) Li and N
b) K and Cl
c) Li and K
d) C and O
7. Give the number of protons (p), electrons (e), and neutrons (n) in fluoride ion, $9^{19} \mathrm{~F}^{-}$.
a) $9 \mathrm{p}, 10 \mathrm{n}, 10 \mathrm{e}$
b) $10 \mathrm{p}, 10 \mathrm{n}, 9 \mathrm{e}$
c) $10 \mathrm{p}, 9 \mathrm{n}, 10 \mathrm{e}$
d) $9 \mathrm{p}, 10 \mathrm{n}, 8 \mathrm{e}$
8. What is the mass of 0.46 mol nickel ( Ni ) metal?
a) 26.64 g
b) 28.14 g
c) 27.00 g
d) 28.64 g
9. How many grams of $\mathrm{Cl}_{2}$ can be prepared from the reaction of 15.2 g of $\mathrm{MnO}_{2}$ and excess of HCl according to the chemical equation: $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
a) 11.4 g
b) $\mathbf{1 2 . 4} \mathrm{g}$
c) 15.4 g
d) 10.4 g
10. Calculate the molarity of a solution of 6 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 546 mL of solution.
a) 3.24 M
b) 1.3 M
c) 1.24 M
d) 0.24 M
11. How many bonds around phosphorous atom in, $\mathrm{NF}_{3}$ ?
a) 1
b) 4
c) 3
d) 5
12. The formal charge on Boron atom in, $\mathrm{CH}_{4}$ ?
a) +2
b) +4
c) +5
d) 0
13.The type of bond in $\mathrm{Cl}_{2}$ Compound can be classified as
a) Polar covalent bond
b) Ionic bond
c) Hydrogen bond
d) Nonpolar covalent bond
14. How many total valence electrons are present in, $\mathrm{H}_{2} \mathrm{CO}_{3}$ ?
a) 15
b) 20
c) 4
d) 24
15. The electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ applies to all of the following species except:
a) $\mathrm{Ca}^{2+}$
b) $\mathrm{K}^{+}$
c) $\mathrm{Na}^{+}$
d) Ar
16. The correctly drawn Lewis formula for $\mathrm{CCl}_{4}$ will have
a) 4 single bonds and 12 nonbonding electrons
b) 4 single bonds and 20 nonbonding electrons
c) 4 single bonds and 18 nonbonding electrons
d) $\mathbf{4}$ single bonds and 24 nonbonding electrons
17. Which one of the following molecules would exhibit resonance?
a) $\mathrm{O}_{3}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) $\mathrm{Cl}_{2}$
d) $\mathrm{CH}_{4}$
18. Which of these molecules has an expanded of the octet rule?
a) $\mathrm{NF}_{3}$
b) $\mathrm{PCl}_{5}$
c) $\mathrm{Br}_{2}$
d) CO
19. If the initial pressure of a 2.00 L gas sample is 2.50 atm , what will the pressure be if the volume is changed to 3.00 L at constant temperature?
a) 0.600 atm
b) 1.50 atm
c) 1.67 atm
d) 3.75 atm

20 .Propane burns in air according to the equation:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ What volume of $\mathrm{CO}_{2}$ would be formed if 8.00 L of propane burns, assuming that all of the gases are under the same conditions?
a) 12.0 L
b) 24.0 L
c) 3.00 L
d) 4.80 L
21. Select the correct equilibrium constant expression for the reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftarrows \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

a) $\mathrm{Keq}=\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4} /\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}$
b) $\mathrm{Keq}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2} /\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}$
c) $\mathrm{Keq}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]$
d) $\mathrm{Keq}=\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right] /\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
22. Select the solution below that is the most acidic.
a) $\left[\mathrm{H} 3 \mathrm{O}^{+}\right]=1.0 \times 10^{-10} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-8} \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}$
23. Consider the following system at equilibrium:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

What change will cause the equilibrium to shift to form more $\mathrm{CH}_{4}$ ?
a) add a catalyst
b) decrease $\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) increase the volume of the reaction vessel
d) decrease $\left[\mathrm{H}_{2}\right]$
24. Consider the following system at equilibrium:

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \text { Exothermic }
$$

What change will be observed if the temperature of the reaction mixture at equilibrium were increased?
a) The concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ will increase.
b) The concentration of both $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{H}_{2}$ will increase.
c) There will be no change in the equilibrium concentrations.
d) The concentration of both $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{H}_{2}$ will decrease.
25. Calculate the pH of a solution that has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$.
a) $\mathrm{pH}=1.00$
b) $\mathrm{pH}=14.00$
c) $\mathrm{pH}=7.00$
d) $\mathrm{pH}=6.00$
26. If the pH of a solution is 11 , the solution will be:
a) Acidic
b) Neutral
c) Alkaline
d) None of these
27. Fill in the blanks: 6.00 moles of oxygen gas $\left(\mathrm{O}_{2}\right)$ have a weight of ---------- g , and occupy volume of $\qquad$ L at STP.
a) $192 \mathrm{~g}, 134.3 \mathrm{~L}$
b) $64.0 \mathrm{~g}, 22.4 \mathrm{~L}$
c) $64.0 \mathrm{~g}, 3.00 \mathrm{~L}$
d) $96.0 \mathrm{~g}, 67.2 \mathrm{~L}$
28. The reaction in which increased pressure has no effect on the equilibrium reaction is
a) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{L})$
d) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
29. The equilibrium constant for the following reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 70 at $350^{\circ} \mathrm{C}$. A system at equilibrium has $\left[\mathrm{N}_{2}\right]=0.2 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.1 \mathrm{M}$. What is the $\left[\mathrm{NH}_{3}\right]$ ?
a) 0.371
b) $\mathbf{0 . 1 1 8}$
c) 0.237
d) 0.302
30. Kc will be equal to Kp if $\qquad$ .
a) $\Delta \mathrm{n}=1$
b) $\Delta \mathrm{n}=\mathbf{0}$
c) $\mathrm{RT}=0$
d) $\Delta \mathrm{n}=\infty$
31. The correct order of radius in the following is
a) $\mathrm{Cl}^{-}<\mathrm{Cl}$
b) $\mathrm{O}^{-2}<\mathrm{O}$
c) $\mathrm{Fe}^{+2}>\mathrm{Fe}$
d) $\mathrm{Fe}^{+2}>\mathrm{Fe}^{+3}$
32. which of the following compounds is aromatic?(b)
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
b)

c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}=\mathrm{CH}_{2}$
d) $\mathrm{CH} 3-\mathrm{C} \equiv \mathrm{CH}$

Which of these elements has the lowest electronegativity?
a) ${ }_{51} \mathrm{Sb}$
b) 33 As
c) ${ }_{31} \mathrm{Ga}$
d) ${ }_{55} \mathrm{Cs}$
34. The nickel (II) ion, $\mathrm{Ni}^{2+}$, has how many 3d electrons?
a) 0
b) 7
c) 8
d) 5
35. Which one of these elements (period 4) is a transition element?
a) Br
b) As
c) Ca
d) Zn
36. The correct order in the first ionization energy is:
a) N $<$ O $<$ C $<$ Si
b) Si $<\mathbf{C}<\mathbf{O}<\mathbf{N}$
c) O $>\mathrm{N}>\mathrm{C}>\mathrm{Si}$
d) $\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{Si}$
37. The general formula of an alkene is
a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
b) $\mathrm{C}_{2 \mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2} \mathrm{n}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
38. The functional group in this compound $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ is
a) Alcohol
b) Aldehyde
c) Amine
d) Ether
39. A protein is
a) a polymer of ester.
b) a polymer of amino acids.
c) an aromatic hydrocarbon.
d) none of these.
40. Which of these is the systematic name for the compound represented below?

a) 3-methylpentane
b) 2-ethylbutane
c) 2-methylpentane
d) 3-ethylbutane

| $\begin{gathered} \text { hydrogen } \\ 1.0079 \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  | $\cdots$ | $\cdots$ | -- | - |  |  |  |  | $\begin{gathered} \text { helium } \\ \mathbf{2} \\ \text { He } \\ 4.0026 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {lithium }}$ | beryllium |  |  |  |  |  |  |  |  |  |  |  | boron | carbon | nitrogen | oxygen | fluorine | neon |
| $L^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{5}{8}$ | ${ }^{6}$ | $\stackrel{7}{N}^{\mathbf{N}}$ | $\stackrel{8}{8}^{8}$ | ${ }^{9}$ | $\mathrm{Ne}^{10}$ |
| 6.941 | 9.0122 |  |  |  |  |  |  |  |  |  |  |  | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 |
| sodium <br> 11 | magnesium |  |  |  |  |  |  |  |  |  |  |  | aluminium | silicon 14 | phosphorus 15 | sulfur | chlorine $17$ | $\begin{aligned} & \text { argon } \end{aligned}$ |
| Na | Ma |  |  |  |  |  |  |  |  |  |  |  | AI | Si | P | S | CI | Ar |
| 22.990 | 24.305 |  |  |  |  |  |  |  |  |  |  |  | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 |
| $\begin{gathered} \text { potassium } \\ 19 \end{gathered}$ | $\begin{aligned} & \text { calcium } \\ & 20 \end{aligned}$ |  | $\begin{array}{c\|} \hline \text { scandium } \\ 21 \end{array}$ | $\begin{aligned} & \text { titanium } \\ & 22 \end{aligned}$ | $\begin{gathered} \hline \text { vanadium } \\ 23 \end{gathered}$ | $\begin{aligned} & \text { chromium } \\ & 24 \end{aligned}$ | $\begin{array}{c\|} \hline \text { manganese } \\ 25 \end{array}$ | $\begin{aligned} & \text { iron } \\ & 26 \end{aligned}$ | $\begin{aligned} & \text { cobalt } \\ & 27 \end{aligned}$ | $\begin{gathered} \text { nickel } \\ 28 \end{gathered}$ | $\begin{aligned} & \hline \text { copper } \\ & 29 \end{aligned}$ | $\begin{gathered} \text { zinc } \\ 30 \end{gathered}$ | $\begin{gathered} \text { gallium } \\ 31 \end{gathered}$ | $\begin{gathered} \text { germanium } \\ 32 \end{gathered}$ | arsenic $33$ | selenium 34 | bromine 35 | krypton 36 |
| K | Ca |  | Sc | 71 | V | Cr | Mn | Fe | CO | Ni | Cu | Zn | Ga | Ge | AS | Se | Br | Kr |
| 39.098 | 40.078 |  | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63.546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 |
| rubidium 37 | strontium 38 |  | y y (trium 39 | zirconium 40 | $\begin{gathered} \text { niobium } \\ \mathbf{4 1} \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { molybdenum } \\ 42 \end{array}$ | technetium 43 | ruthenium <br> 44 | $\begin{aligned} & \text { rhodium } \\ & 45 \end{aligned}$ | palladium 46 | $\begin{aligned} & \text { silver } \\ & 47 \end{aligned}$ | $\begin{aligned} & \text { cadmium } \\ & 48 \end{aligned}$ | $\begin{gathered} \text { indium } \\ 49 \end{gathered}$ | $\begin{aligned} & \operatorname{tin} \\ & 50 \end{aligned}$ | $\begin{gathered} \text { antimony } \\ 51 \end{gathered}$ | $\begin{aligned} & \text { tellurium } \\ & 52 \end{aligned}$ | iodine <br> 53 | $\begin{aligned} & \text { xenon } \\ & 54 \end{aligned}$ |
| Rb | Sr |  | Y | Zr | Nb | Mo | TC | Ru | Rh | Pd | Ag | Cd | 1 n | Sn | Sb | Te | 1 | Xe |
| 85.468 | 87.62 |  | 88.906 | 91.224 | 92.906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 |
| caesium | barium 56 | 57-70 | lutetium 71 | hatnium 72 | tantalum 73 | tungsten | rhenium 75 | osmium 76 | ${ }^{\text {iridium }}$ | platinum 78 | gold 79 | mercury 80 | thallium 81 | lead 82 | bismuth 83 | polonium 84 | astatine 85 | ${ }^{\text {radon }}$ |
| CS | Ba | * | LU | Hf | Ta | M | Re | OS | $1 r$ | Pt | Au | Hg | $T 1$ | Pb | Bi | PO | At | Rn |
| 132.91 | 137.33 |  | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] |
| $\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$ | $\begin{gathered} \text { radium } \\ 88 \end{gathered}$ | 89-102 | $\begin{gathered} \hline \text { lawrencium } \\ 103 \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { rutherfordium } \\ 104 \\ \hline \end{array}$ | $\begin{aligned} & \text { dubnium } \\ & 105 \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { seaborgium } \\ 106 \end{array}$ | $\begin{aligned} & \text { bohrium } \\ & 107 \end{aligned}$ | $\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$ | $\begin{aligned} & \text { meitnerium } \\ & 109 \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { ununnilium } \\ 110 \\ \hline \end{array}$ | $\begin{gathered} \text { unumunium } \\ 111 \end{gathered}$ | $\begin{aligned} & \text { ununbium } \\ & 112 \end{aligned}$ |  | ununquadium 114 |  |  |  |  |
| Fr | Ra | * * | Lr | $R f$ | Db | Sg | Bh | HS | Mt | Uun | UuU | Uub |  | JuC |  |  |  |  |
| [223] | [226] |  | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] |  | [289] |  |  |  |  |



