
 MINISTRY OF EDUCATION

لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـح اللسعودية
3.1-Derivatives of Polynomials and Exponential functions

1) Derivative of a constant function

$$
\begin{aligned}
& \text { Eve of a Constant function } \\
& \frac{d}{d x}[c]=0 \text { for all } c \in \mathbb{R}
\end{aligned}
$$

Example: -

$$
\begin{array}{ll}
\frac{d}{d x}\left[\pi^{2}\right]=0 & \frac{d}{d x}\left[5^{c}\right]=0 \quad \frac{d}{d y}[18,5]=0 \\
\frac{d}{d x}[\sqrt{30}]=0 & \frac{d}{d x}[\ln (9)]=0 \\
\frac{d}{d x}\left[\sin \left(\frac{\pi}{2}\right)\right]=0 & \frac{d}{d x}\left[\cos ^{2}(5)\right]=0 \\
\text { if } f(x)=\sqrt{4+c^{2}} & \text { then } f^{\prime}(x)=0 \\
\text { in then } f^{\prime}(x)=0
\end{array}
$$

2) if $f(x)=a x$ for all $a \in \mathbb{R}$ then $f^{\prime}(x)=a$

Example:

$$
\frac{d}{d x}[10 x]=10
$$

if $f(x)=\frac{-3}{4} x$ then $f^{\prime}(x)=-\frac{3}{4} \ldots$
if $f(x)=-x$ then $f^{\prime}(x)=-1$.

$$
\frac{d}{d t}[2 t]=2
$$

if $f(0)=18.50$ then $f^{\prime}(\theta)=18.5$.
3) if $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$

Example:

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{2}\right]=2 x \quad \frac{d}{d x}\left[x^{3}\right]=3 x^{2} \quad \frac{d}{d x}\left[x^{4}\right]=4 x^{3} \\
&\left.\begin{array}{rl}
\frac{d}{d x}\left[\frac{1}{x^{5}}\right] & =\frac{d}{d x}\left[x^{-5}\right] \quad \frac{d}{d x}\left[\sqrt[3]{x^{2}}\right]
\end{array}\right]=\frac{d}{d x}\left[\left(x^{2}\right)^{1 / 3}\right] \\
&=-5 x^{-5-1} \\
&=-5 x^{-6} \\
&=\frac{d}{d x}\left[x^{\frac{2}{3}}\right] \\
& x^{6} \\
&=\frac{2}{3} x^{\frac{2}{3}-1} \\
& \begin{aligned}
\frac{d}{d x}\left[x^{2} \sqrt{x}\right] & =\frac{d}{d x}\left[x^{2} \cdot x^{1 / 2}\right] \\
& =\frac{2}{3} x^{-\frac{1}{3}} \\
& =\frac{2}{3 x}\left[x^{2+\frac{1}{2}}\right] \\
& =\frac{d}{d x}\left[x^{5 / 3}\right] \\
& =\frac{5}{2} x^{5 / 2} \\
& =\frac{5}{2} x^{3 / 2} \\
& =\frac{5}{2} \sqrt{x^{3}}
\end{aligned}
\end{aligned}
$$

4]

$$
\begin{aligned}
& \frac{d}{d x}[c f(x)]=c \cdot \frac{d}{d x}[f(x)] \\
& \frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
\end{aligned}
$$

Example:
a)

$$
\begin{aligned}
& \text { mple: } \\
& \frac{d}{d x}\left[x^{8}+12 x^{5}-4 x^{4}+10 x^{3}-6 x+\frac{\sqrt{2}}{5}\right] \\
& 8 x^{7}+12(5) x^{4}-4(4) x^{3}+10(3) x^{2}-6+0 \\
& 8 x^{7}+60 x^{4}-16 x^{3}+30 x^{2}-6 \\
&
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(x)=(3 x-2) \\
& f(x)=9 x^{2}-2(3 x)(2)+4 \\
& 9 x^{2}-12 x+4
\end{aligned}
$$

$$
\begin{aligned}
& =9 x^{2}-12 x+4 \\
& =9 x^{2}-12
\end{aligned}
$$

$$
f^{\prime}(x)=18 x-12
$$

c)

$$
\begin{aligned}
& f^{\prime}(x)=18 x-12 \\
& \frac{d}{d x}\left[x^{2}(1-2 x)\right]=\frac{d}{d x}\left[x^{2}-2 x^{3}\right] \\
&=2 x-6 x^{2}
\end{aligned}
$$

$$
=2 x-6 x^{2}
$$

d) $\frac{d}{d t}[\sqrt{t}(t-1)]=\frac{d}{d t}\left[t^{1 / 2}(t-1)\right]$

$$
\begin{aligned}
& =\frac{d}{d t}\left[t^{1 / 2}(t-1)\right] \\
& =\frac{d}{d t}\left[t^{1 / 2} \cdot t^{1}-t^{1 / 2}\right]=\frac{d}{d t}\left[t^{3 / 2}-t^{1 / 2}\right] \\
& 2,-1 \quad 1 t^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d}{d t} t^{1 /-1} \\
& =\frac{3}{2} t^{3 / 2}-\frac{1}{2} t^{1 / 2}-1 \frac{1}{2} t^{1 / 2}=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2} t^{3 / 2-1}-\frac{1}{2} t \\
& =\frac{3}{2} t^{1 / 2}-\frac{1}{2} t^{1 / 2}=\frac{3}{2} \sqrt{t}-\frac{1}{2 t^{1 / 2}} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2} t^{1 / 2}-1 / 2 \\
& =\frac{3}{2} \sqrt{t}-\frac{1}{2 \sqrt{t}}=\frac{3 \sqrt{t} \cdot \sqrt{t}-1}{2 \sqrt{t}} \\
& =\frac{3 t-\sqrt{t}}{2 n}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{d}{d x}[(2 x+3)(4 x-5)] \\
& \frac{d}{d x}[2 x(4 x-5)+3(4 x-5)] \\
& \frac{d}{d x}\left[8 x^{2}-10 x+12 x-15\right] \\
& \frac{d}{d x}\left[8 x^{2}+2 x-15\right]=16 x+2
\end{aligned}
$$

f)

$$
\begin{aligned}
\frac{d}{d x}\left[(x-2)^{3}\right] & =\frac{d}{d x}\left[x^{3}-3(2) x^{2}+3(4) x-2^{3}\right] \\
& =\frac{d}{d x}\left[x^{3}-6 x^{2}+12 x-8\right] \\
& =3 x^{2}-2(6) x+12 \\
& =3 x^{2}-12 x+12
\end{aligned}
$$

9)

$$
\begin{aligned}
\frac{d}{d x}\left[x(2 x+3)^{2}\right] & =\frac{d}{d x}\left[x\left(4 x^{2}+12 x+9\right)\right] \\
& =\frac{d}{d x}\left[4 x^{3}+12 x^{2}+9 x\right] \\
& =12 x^{2}+24 x+9
\end{aligned}
$$

h)

$$
\begin{aligned}
& f(t)=\left(3 x^{2}+2\right)\left(x^{3}-5\right) \\
& f^{\prime}(t)=H \cdot W
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } G(x)=\frac{5 x^{2}+4 x+3}{x^{2}} \text { then } G^{\prime}(x)= \\
& G(x)=\frac{5 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}+\frac{3}{x^{2}} \\
& =5+\frac{4}{x}+\frac{3}{x^{2}} \\
& =5+4 x^{-1}+3 x^{-2} \\
& G^{\prime}(x)=0+4(-1) x^{-1-1}+3(-2) x^{-2-1} \\
& =-4 x^{-2}-6 x^{-3} \\
& =\frac{-4}{x^{2}}-\frac{6}{x^{3}} \\
& =\frac{-4 x}{x^{2} \cdot x}-\frac{6}{x^{3}} \\
& =\frac{-4 x}{x^{3}}-\frac{6}{x^{3}} \\
& =\frac{-4 x-6}{x^{3}} \\
& \text { if } y=\frac{\sqrt{x}+x}{x^{2}} \text { then } y^{\prime}=\cdots \\
& y=\frac{x^{1 / 2}+x^{1}}{x^{2}}=\frac{x^{1 / 2}}{x^{2}}+\frac{x^{1}}{x^{2}}=x^{1 / 2-2}+x^{1-2} \\
& =x^{-3 / 2}+x^{-1} \\
& y^{\prime}=\frac{-3}{2} x^{-\frac{3}{2}-1}-x^{-1-1}=\frac{-3}{2} x^{-\frac{5}{2}}-x^{-2}=\frac{-3}{2 x^{5 / 2}}-\frac{1}{x^{2}}=\frac{-3}{2 \sqrt{x^{5}}}-\frac{1}{x^{2}}
\end{aligned}
$$

5

$$
\begin{aligned}
& \frac{d}{d x}\left[a^{x}\right]=a^{x} \cdot \ln a \\
& \frac{d}{d x}\left[e^{x}\right]=e^{x}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \frac{d}{d x}\left[\pi^{x}\right]=\pi^{x} \cdot \ln \pi=\operatorname{Ln}(\pi) \cdot(\pi)^{x} \\
& \frac{d}{d x}\left[\sqrt{2^{x}}\right]=\frac{d}{d x}\left[(\sqrt{2})^{x}\right] \\
& =(\sqrt{2})^{x} \cdot \ln \sqrt{2} \\
& =(\sqrt{2})^{x} \cdot \ln 2^{1 / 2} \\
& =(\sqrt{2})^{x} \cdot \frac{1}{2} \ln 2 \\
& =\frac{1}{2} \ln 2 \cdot(\sqrt{2})^{x} \\
& \frac{d}{d x}\left[3^{x}+x^{3}\right]=\frac{d}{d x}\left[3^{x}\right]+\frac{d}{d x}\left[x^{3}\right] \\
& =3^{x} \cdot \ln (3)+3 x^{2} \\
& \frac{d}{d x}\left[e^{x}-x^{e}\right]=\frac{d}{d x}\left[e^{x}\right]-\frac{d}{d x}\left[x^{e}\right] \\
& =e^{x}-e x^{e-1} \\
& =e\left(e^{x-1}-x^{e-1}\right)
\end{aligned}
$$

if $y=e^{x+1}+x^{2}$ then findoy'l or $\frac{d^{3} y}{d x^{3}}$

$$
\begin{aligned}
& y^{\prime}=e^{x+1}+2 x \\
& y^{\prime \prime}=e^{x+1}+2 \\
& y^{\prime \prime \prime}=e^{x+1} \\
& y^{(4)}=e^{x+1} \\
& y^{(5)}=e^{x+1} \\
& \vdots y^{(100)}=e^{x+1}
\end{aligned}
$$

(2) $y^{(100)}$
4.1 - Maximum and Minimum Values

Definition (1)
let \subseteq be a number in the domain D of a function f.
Then 1$) f(c)$ is absolute maximum value of f on D if $f(c) \geqslant f(x)$
2) $f(c)$ is absolute minimum value of fan D if $f(c) \leqslant f(x)$ for all x in D

Definition (2)
The number $f(c)$ is a

1) local maximum value of f if $f(c) \geqslant f(x)$ when x is near!
2) local Minimum value of \underline{E} if $f(c) \leqslant f(x)$ when x is near \leqq

Note
Absolute maximum or minimum is sometimes called global maximum or minimum

Example (1)

Find the $A b s$. Max and Abs. Min

- $F(3)=5$ is Abs. Max value or $F(x)$ has Abs mat at $x=3$
- $f(6)=1$ is Abs. Min Value
or $f(x)$ has Abs. Min at $x=6$

Example (2)

$f(-3)=37$ is Abs. Max Value

- $f(x)$ has Abs. Min at $x=3$
$f(3)=-27$ is Abs. Min value.
$f(x)$ has floc. Max nat $x=0$
$F(0)=0$ is $A O C$. Min value
$f(x)$ has loo. Max at $x=1$
$f(1)=5$ is hoc. Max value
$f(x)$ has loo. Min at $x=3$
$f(3)=-27$ is lox. Min value.

Example (4): find the extream value of
(1) $f(x)=x^{2}$
(2) $f(x)=x^{3}$
(3) $f(x)=\cos x$
(4) $f(x)=\sin x$
(5) $f(x)=2 x$ on $[0,3]$
(6) $f(x)=x^{2}$ on $(-2,2]$

Solution
(1) $f(x)=x^{2}$

$f(0)=0$ is Abs. Min and local. Min value
$f(x)$ has no $A b s$. Max and local. Max value.
(2) $f(x)=x^{3}$ 个 $f(x)$ has no Max or Min

Example (3)

$f(x)$ has Abs. Max at $x=1$
$f(1)=8$ is Abs. Max value

- $f(x)$ has Abs. Min at $x=12$
$f(12)=1$ is Abs. Min Value
$f(x)$ has Loc. Min at $x=5$
$F(5)=4$ is 10 C . Min value
$f(x)$ has loo. Min alt $x=9$
$f(a)=3$ is lo. Min value
$f(x)$ has loc. Max at $x=7$
$f(7)=6$ is loc. Max value
$f(x)$ has loc. Max at $x=11$
$f(11)=8$
$f(x)$ has Abs. Max at $x=11$
$f(11)=8$ is Abs. Max Value.
(3) $f(x)=\cos x$
$f(x)$ has local Max and Abs. Max at $x=2 n \pi \quad \forall n \in L$ $f(2 n \pi)=1$ is Abs. Max and local max value
$f(x)$ has local Min and Abs. Min at $x=(2 n+1) \pi \forall n \in Z$ $f(2 n+1) \pi)=-1$ is local Min and Abs. Min value.
(4)

$$
f(x)=\sin x
$$

1 is Abs. Max and local Max Value
-1 is Abs. Min and local Min Value.
(5) $f(x)=2 x-1$ on $[0,3]$

$f(x)$ has Abs. Max at $x=3$ $F(3)=5$ is Abs. Max value

- $F(x)$ has Abs. Min at $x=0$
$f(0)=1$ is Abs Min Value
-. $f(x)$ has no local Min and Max.
(6) $f(x)=x^{2}$ on $(-2,2]$ $F(x)$ has Abs. Min
 at $x=0$ $f(x)$ has Abs. Max at $x=2$

This function has
Min Value $f(2)=0$ but no Max. value

This function has no Maximum or Minimum

Definition
A critical number of a function f is a number in the Domain of f such that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist

Example
Find the critical number of $f(x)=5 x^{2}+4 x$
(1) $D_{F}=\mathbb{R}$
(2) $f^{\prime}(x)=10 x+4$
(3) $f^{\prime}(x)=0 \Rightarrow 10 x+4=0 \Rightarrow 10 x=-4 \Rightarrow x=\frac{-4}{10}$

$$
\Rightarrow x=\frac{-2}{5} \in D_{F}
$$

\Rightarrow the critical number is $x=-\frac{2}{5}$

Example
Find the critical numbers of $f(x)=x^{\frac{3}{5}}(4-x)$
(1) $D_{F(x)}=\mathbb{R}$
(2)

$$
\begin{aligned}
F^{\prime}(x) & =x^{\frac{3}{5}}(-1)+(4-x)\left(\frac{3}{5} x^{1-3 / 5}\right) \\
& =-x^{2 / 5}+(4-x)\left(\frac{3}{5} x^{-2 / 5}\right) \\
& =\frac{-x^{3 / 5}}{1}+\frac{3(4-x)}{5 x^{2 / 5}} \\
& =\frac{-5 x^{3 / 5} \cdot x^{2 / 5}+3(4-x)}{5 x^{2 / 5}} \\
& =\frac{-5 x^{\frac{3+2}{5}}+3(4-x)}{5 x^{2 / 5}} \\
& =\frac{-5 x+12-3 x}{5 x^{2 / 5}} \\
& =\frac{12-8 x}{5 x^{2 / 5}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{12-8 x}{5 x^{2 / 5}} & =\frac{0}{1} \\
12-8 x & =0 \\
-8 x & =12 \\
x & =\frac{12}{8} \\
x & =3 / 2 \in D_{F}
\end{aligned}
$$

or $f^{\prime}(x) D, N, E$

$$
\begin{aligned}
& 5 x^{2 / 5}=0 \\
& x^{2 / 5}=0 \\
& \left(x^{2 / 5}\right)^{5 / 2}=0^{5 / 2} \\
& x=0 \in D_{f}
\end{aligned}
$$

\Rightarrow the Critical numbers are $\frac{3}{2}$ and 0
Example: Find the critical numbers of $f(x)=|3-6 x|$

$$
\begin{aligned}
3-6 x & =0 \\
-6 x & =-3 \\
x & =\frac{-3}{-6} \\
x & =\frac{1}{2}
\end{aligned}
$$

$f(x)=|3-6 x|$ is not diff at $x=\frac{1}{2}$
i.e $f^{\prime}\left(\frac{1}{2}\right)$ D.N.E
\Rightarrow the critical number is $\frac{1}{2}$

Note
If f has a local Maximum or Minimum at \subseteq then C is critical number of f

Example
Find the Absolute Maximum and Absolute Minimum values of

$$
f(x)=x^{3}-3 x^{2}+1 \text { on }[-1 / 2,4]
$$

(1) $F(x)$ is cont on \mathbb{R} $\Rightarrow F(x)$ is cont on $\left[-\frac{1}{2}, 4\right]$
(2) $f^{\prime}(x)=3 x^{2}-6 x$
(3)

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 3 x^{2}-6 x=0 \\
& 3 x(x-2)=0 \quad\left\{\begin{array}{l}
3 x=0 \Rightarrow x=0 \\
\text { or } \\
y x-2=0 \Rightarrow(-1 / 2,4) \\
x=2 \in\left(-\frac{1}{2}, 4\right) \\
\text { con }
\end{array}\right.
\end{aligned}
$$

(4)

$$
\begin{aligned}
& f(-1 / 2)=\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+1=-\frac{1}{8}-\frac{3}{4}+1=\frac{1}{8} \\
& f(0)=(0)^{3}-3(0)^{2}+1=1 \\
& f(2)=(2)^{3}-3(2)^{2}+1=8-12+1=-3 \text { is Abs. min } \\
& \text { value } \\
& f(4)=(4)^{3}-3(4)^{2}+1=64-48+1=17 \text { is Abs. Max } \\
& \text { value. }
\end{aligned}
$$

3.2 - The Product and Quotient Rules

$$
\begin{aligned}
& \text { Product Rule } \\
& \frac{d}{d x}[f(x) \cdot g(x)]=f(x) \cdot \frac{d}{d x}[g(x)]+g(x) \cdot \frac{d}{d x}[f(x)] \\
& \text { I }^{\prime} \quad(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
\end{aligned}
$$

The Product Rule

$$
\begin{aligned}
& \frac{d}{d x}[f(x) \cdot g(x)]=f(x) \cdot \frac{d x}{d x} \\
& \text { or }[f(x) \cdot g(x)]^{\prime}=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) \\
&
\end{aligned}
$$

Example a) If $f(x)=x \cdot e^{x}$ then find $f^{\prime}(x)$?

$$
\begin{aligned}
f(x) & =x \cdot e \\
f^{\prime}(x) & =\frac{d}{d x}\left[x e^{x}\right] \\
& =x \cdot \frac{d}{d x}\left[e^{x}\right]+e^{x} \frac{d}{d x}[x] \\
& =x \cdot e^{x}+e^{x}(1) \\
& =x e^{x}+e^{x} \\
& =e^{x}(x+1)
\end{aligned}
$$

b) find $f^{(n)}(x)$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[e^{x}(x+1)\right] \\
& =e^{x} \cdot \frac{d}{d x}[x+1]+(x+1) \frac{d}{d x}\left[e^{x}\right] \\
& =e^{x}(1)+(x+1) e^{x} \\
& =e^{x}(1+x+1) \\
& =e^{x}(x+2) \\
f^{\prime \prime \prime}(x) & =\frac{d}{d x}\left[e^{x}(x+2)\right] \\
& =e^{x} \frac{d}{d x}[(x+2)]+(x+2) \frac{d}{d x}\left[e^{x}\right] \\
& =e^{x}(1)^{d x}+(x+2) e^{x}=e^{x}(1+x+2)=e^{x}(x+3)
\end{aligned}
$$

$$
\begin{aligned}
& f^{(4)}(x)=e^{x}(x+4) \\
& f^{(5)}(x)=e^{x}(x+5) \\
& \vdots \\
& f^{(n)}(x)=e^{x}(x+n)
\end{aligned}
$$

Example
If $f(x)=\left(1-e^{x}\right)\left(x+e^{x}\right)$ then find $f^{\prime}(x)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(1-e^{x}\right)\left(x+e^{x}\right)\right] \\
& =\left(1-e^{x}\right) \frac{d}{d x}\left[x+e^{x}\right]+\left(x+e^{x}\right) \frac{d}{d x}\left[1-e^{x}\right] \\
& =\left(1-e^{x}\right)\left(1+e^{x}\right)+\left(x+e^{x}\right)\left(0-e^{x}\right) \\
& =1-\left(e^{x}\right)^{2}+\left(x+e^{x}\right)\left(e^{x}\right) \\
& =1-1 e^{2 x}-x e^{x}-1 e^{2 x} \\
& =1-2 e^{2 x}-x e^{x}
\end{aligned}
$$

Example
If $f(x)=\left(x^{2}+2 x\right) e^{x}$ then find $f^{\prime}(x)$

$$
\begin{aligned}
\frac{\text { ample }}{f(x)=}=\left(x^{2}+2 x\right) e^{x} \text { then find } f^{\prime}(x) \\
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x}\left[\left(x^{2}+2 x\right) e^{x}\right] & =\left(x^{2}+2 x\right) \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}\left(x^{2}+2 x .\right. \\
& =\left(x^{2}+2 x\right) e^{x}+e^{x}(2 x+2) \\
& =\left[x^{2}+2 x+\frac{2 x+2] e^{x}}{}\right. \\
& =\left[x^{2}+4 x+2\right] e^{x}
\end{aligned}
\end{aligned}
$$

The Quotient Rule

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \cdot \frac{d}{d x}[f(x)]-f(x) \cdot \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

or $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{g(x) \cdot f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$

$$
\begin{aligned}
\frac{\text { Example }}{\frac{d}{d x}\left[\frac{x^{2}+x-2}{x^{2}+6}\right]} & =\frac{\left(x^{2}+6\right) \frac{d}{d x}\left[x^{2}+x-2\right]-\left(x^{2}+x-2\right) \frac{d}{d x}\left[x^{2}+6\right]}{\left(x^{2}+6\right)^{2}} \\
& =\frac{\left(x^{2}+6\right)(2 x+1)-\left(x^{2}+x-2\right)(2 x)}{\left(x^{2}+6\right)^{2}} \\
& =\frac{2 x^{3}+12 x+x^{2}+6-\left(2 x^{3}+2 x^{2}-4 x\right)}{\left(x^{2}+6\right)^{2}} \\
& =\frac{2 \not x^{3}+12 x+x^{2}+6-\frac{2\left(x^{3}+2 x^{2}+4 x\right)}{\left(x^{2}+6\right)^{2}}}{}
\end{aligned}
$$

Example

$$
=\frac{16 x-x^{2}+6}{\left(x^{2}+6\right)^{2}}
$$

Example
If $f(x)=\sqrt{x} \cdot g(x)$ where $g(4)=2$ and $g^{\prime}(4)=3$ then Find $f^{\prime}(4)$

$$
\begin{aligned}
& f(x)=\sqrt{x} g(x)=x^{1 / 2} \cdot g(x) \\
& \begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{1 / 2} \cdot g(x)\right] \\
& =x^{1 / 2} \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}\left[x^{1 / 2}\right] \\
& =x^{1 / 2} g^{\prime}(x)+g(x)\left[\frac{1}{2} x^{1 / 2}-1\right] \\
& =x^{1 / 2} g^{\prime}(x)+g(x)\left[\frac{1}{2} x^{-1 / 2}\right] \\
f^{\prime}(x) & \left.=x^{1 / 2} g^{\prime}(x)+g(x)\left[\frac{1}{2 \sqrt{x}}\right]\right] \\
f^{\prime}(4) & =\sqrt{4} g^{\prime}(4)+g(4)\left[\frac{1}{2 \sqrt{4}}\right] \\
& =2(3)+2\left[\frac{1}{f^{(2)}}\right] \\
& =6+\frac{1}{2} \\
& =\frac{12+1}{2} \\
& =\frac{13}{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x} \frac{d}{d x} \\
& =e^{x}\left[-2 x^{-3}\right]+x^{-2} e^{x} \\
& =e^{x}\left[-2 x^{-3}+x^{-2}\right]=e^{x}\left[\frac{-2}{x^{3}}+\frac{1}{x^{2}}\right] \\
& =e^{x}\left[\frac{-2}{x^{3}}+\frac{x}{x^{3}}\right]=e^{x}\left[\frac{-2+x}{x^{3}}\right]=\frac{(x-2)^{x}}{x^{3}}
\end{aligned}
$$

Example
Find an equation of tangent line to the curve

$$
\begin{aligned}
& y=\frac{e^{x}}{1+x^{2}} \text { at the point }\left(\frac{1}{a}, \frac{1}{2}, e\right) \\
& y^{\prime}=\frac{\left(1+x^{2}\right) \frac{d}{d x}\left[e^{x}\right]-e^{x} \frac{d}{d x}\left[1+x^{2}\right]}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\left(1+x^{2}\right) e^{x}-e^{x}(2 x)}{\left(1+x^{2}\right)^{2}} \text {. } \\
& =\frac{\left(1+x^{2}-2 x\right) e^{x}}{\left(1+x^{2}\right)^{2}}=\frac{\left(x^{2}-2 x+1\right) e^{x}}{\left(1+x^{2}\right)^{2}} \text {. } \\
& =\frac{(x-1)(x-1) e^{x}}{\left(1+x^{2}\right)^{2}}=\frac{(x-1)^{2} e^{x}}{\left(1+x^{2}\right)^{2}} \\
& y^{\prime}=\left(\frac{x-1}{1+x^{2}}\right)^{2} \cdot e^{x} \\
& m=y^{\prime}(a)=y^{\prime}(1)=\left(\frac{1-1}{1+1^{2}}\right)^{2} e^{\prime}=\left(\frac{0}{2}\right)^{2} e=0 \cdot e=0 \\
& \therefore m=0 \Longrightarrow y=f(a) \\
& \therefore y=\frac{1}{2} e \text { is Horizontal Tangent }
\end{aligned}
$$

Note
If $m=0$ than $y=f(a)$
If $m=\frac{1}{0}$ then $x=a$
Example
If $y=\frac{1-x}{x+2}$ then find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$

$$
y^{\prime}=\frac{(x+2) \frac{d}{d x}[1-x]-(1-x) \frac{d}{d x}[x+2]}{(x+2)^{2}}
$$

$$
=\frac{(x+2)(-1)-(1-x)(1)}{(x+2)^{2}}
$$

$$
\begin{gathered}
=\frac{-x-2-1+x}{(x+2)^{2}} \\
=-3
\end{gathered}
$$

$$
y^{\prime}=\frac{-3}{(x+2)^{2}}=\frac{-3}{x^{2}+4 x+4}
$$

$$
\begin{aligned}
& y^{\prime}=\frac{-3}{(x+2)^{2}} \\
& y^{\prime \prime}=\frac{\left(x^{2}+4 x+4\right) \frac{d}{d x}[-3]-3 \frac{d}{d x}\left[x^{2}+4 x+4\right]}{\left(x^{2}+4 x+4\right)^{2}} \\
& \left(x^{2}+4 x+4\right)(0)-3(2 x+4)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}+4 x+4\right)^{2}}{\left(x^{2}+4 x+4\right)^{2}} \\
& =\frac{\left(x^{2}+4 x+4\right)(0)-3(2 x+4)}{4}=-6 x-
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}+4 x+4\right)}{\left(x^{2}+4 x+4\right)^{2}} \\
& =\frac{-3(2 x+4)}{\left(x^{2}+4 x+4\right)^{2}}=\frac{-6 x-12}{\left((x+2)^{2}\right)^{2}}=\frac{-6 x-12}{(x+2)^{4}}
\end{aligned}
$$

Example
If $h(2)=4$ and $h^{\prime}(2)=-3$ then
find $\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=2}$

$$
\begin{aligned}
& \text { Find } \frac{d x}{d x}\left[x / l_{x=2}^{d x}\left[\frac{h(x)}{x}\right]=\right. \\
& \begin{aligned}
& \frac{d}{d x}[h(x)]-h(x) \frac{d}{d x}[x] \\
& x^{2}=\frac{x h(x)-h(x)(1)}{x^{2}} \\
&=\left.\frac{d}{d x}\left[\frac{h(x)}{x}\right]\right|_{x=2}=\frac{2 h^{\prime}(2)-h(2)}{(2)^{2}}=\frac{2(-3)-4}{4} \\
&=\frac{-6-4}{4}=\frac{-10}{4}=-\frac{5}{2}
\end{aligned}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { ample } \\
& \text { If } f(4)=2, g(4)=5, f^{\prime}(4)=6 \text { and } g^{\prime}(4)=-3 \text { then } \\
& \text { an) } \quad f(x) \cdot g(x) \quad f^{\prime}(x)
\end{aligned}
$$

Find $h^{\prime}(4)$
a)

$$
\begin{aligned}
& \begin{aligned}
h(x) & =3 f(x)+8 g(x) \\
h^{\prime}(x) & =3 f^{\prime}(x)+8 g^{\prime}(x) \\
h^{\prime}(4) & =3 f^{\prime}(4)+8 g^{\prime}(4) \\
& =3(6)+8(-3) \\
& =18-24 \\
& =-6
\end{aligned}
\end{aligned}
$$

b) $h(x)=f(x) \cdot g(x)$
c)

$$
\begin{aligned}
h(x) & =\frac{f(x)}{g(x)} \\
h^{\prime}(x) & =\frac{g(x) f^{\prime}(x)+f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
h^{\prime}(4) & =\frac{g(4) f^{\prime}(4)+f(4) g^{\prime}(4)}{[g(4)]^{2}} \\
& =\frac{5(6)-2(-3)}{[5]^{2}} \\
& =\frac{30+6}{25} \\
& =\frac{36}{25}
\end{aligned}
$$

d)

$$
\begin{aligned}
h(x) & =\frac{g(x)}{f(x)+g(x)} \\
h^{\prime}(x) & =\frac{[f(x)+g(x)] g^{\prime}(x)-g(x)\left[f^{\prime}(x)+g^{\prime}(x)\right]}{[f(x)+g(x)]^{2}} \\
& =\frac{\left.f(x) g^{\prime}(x)+g(x) g^{\prime}(x)-g(x) f^{\prime}(x)-g(x]^{\prime}\right]^{\prime}(x)}{(f(x)+g(x))^{2}} \\
& =\frac{f(x) g^{\prime}(x)-g(x) f^{\prime}(x)}{(g(x)+g(x))^{2}} \\
h^{\prime}(4) & =\frac{f(4) g^{\prime}(4)-g(4) f(x)}{(f(4)+g(x))^{2}}=\frac{2(-3)-5(6)}{(2+5)^{2}}=\frac{-6-30}{7^{2}}
\end{aligned}
$$

Example
if $f(x)=3^{x}$ then find

$$
f^{(n)}(x) ?
$$

$$
\begin{aligned}
& f(x)=3^{x} \\
& f^{\prime}(x)=3^{x} \cdot \operatorname{Ln}(3) \\
& f^{\prime \prime}(x)=\operatorname{Ln}(3) \cdot \frac{d}{d x}\left[3^{x}\right] \\
&=\operatorname{Ln}(3) \cdot 3^{x} \cdot \ln (3) \\
&=(\operatorname{Ln}(3))^{2} \cdot 3^{x} \\
& F^{\prime \prime \prime}(x)=(\operatorname{Ln}(3))^{2} \cdot \operatorname{Ln}(3) \cdot 3^{x} \\
&=(\ln (3))^{3} \cdot 3^{x} \\
& \vdots \\
& F^{(n)}(x)=(\operatorname{Ln}(3))^{n} \cdot 3^{x}
\end{aligned}
$$

3.3 - Derivative of Trigonometric Function.

$$
\begin{array}{ll}
\text { Function. } & \\
\frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\sec x]=\sec x \cdot \tan x \\
\frac{d}{d x}[\cos x]=-\sin x & \frac{d}{d x}[\csc x]=-\csc x \cdot \cot x \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & \frac{d}{d x}[\cot x]=-\csc ^{2} x
\end{array}
$$

Example

1) Differentiate $y=x^{2}$. $\sin x$

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left[x^{2} \sin x\right] \\
& =x^{2} \frac{d}{d x}[\sin x]+\sin x \frac{d}{d x}\left[x^{2}\right] \\
& =x^{2} \cos x+2 x \sin x
\end{aligned}
$$

(2)

$$
\begin{aligned}
y & =\csc \theta+e^{\theta} \cot \theta \\
y^{\prime} & =\frac{d}{d \theta}\left[\csc \theta+e^{\theta} \cot \theta\right]=\frac{d}{d \theta}[\csc \theta]+\frac{d}{d \theta}\left[e^{\theta} \cot \theta\right] \\
& =-\csc \theta \cdot \cot \theta+e^{\theta} \frac{d}{d \theta}[\cot \theta]+\cot \theta \frac{d}{d \theta}\left[e^{\theta}\right] \\
& =-\csc \theta \cdot \cot \theta+e^{\theta}\left(-\csc ^{2} \theta\right)+\cot \theta\left(e^{\theta}\right) \\
& =-\csc \theta \cdot \cot \theta-e^{\theta} \csc ^{2} \theta+e^{\theta} \cot \theta
\end{aligned}
$$

(3)

$$
\begin{aligned}
y & =\frac{\sec \theta}{1+\sec \theta} \\
y^{\prime} & =\frac{(1+\sec \theta) \frac{d}{d \theta}[\sec \theta]-\sec \theta \frac{d}{d x}[1+\sec \theta]}{(1+\sec \theta)^{2}} \\
y^{\prime} & =\frac{(1+\sec \theta) \sec \theta \cdot \tan \theta-\sec \theta \cdot \sec \theta \cdot \tan \theta}{(1+\sec \theta)^{2}} \\
& =\frac{\sec \theta \cdot \tan \theta[1+\sec \theta-\sec \theta]}{(1+\sec \theta)^{2}} \\
& =\frac{\sec \theta \cdot \tan \theta(1)}{(1+\sec \theta)^{2}} \\
& =\frac{\sec \theta \cdot \tan \theta}{(1+\sec \theta)^{2}}
\end{aligned}
$$

(4)

$$
\begin{aligned}
y & =\frac{\cos x}{1-\sin x} \text { find }(\cos x)-\cos x \frac{d}{d x}(1-\sin x) \\
y^{\prime} & =\frac{\left.(1-\sin x) \frac{d x}{d x} \sin x\right)^{2}}{(1-\sin } \\
& =\frac{(1-\sin x)(-\sin x)-\cos x(-\cos x)}{(1-\sin x)^{2}} \\
& =\frac{-\sin x+\sin ^{2} x+\cos ^{2} x}{(1-\sin x)^{2}}=-\frac{\sin x+1}{(1-\sin x)^{2}} \\
& =\frac{\left(\frac{\sin x)}{(1-\sin x)(1-\sin x)}=\frac{1}{1-\sin x}\right.}{}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}\left(\frac{\pi}{6}\right) & =\frac{1}{1-\sin \left(\frac{\pi}{6}\right)} \\
& =\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=1 \div \frac{1}{2}=1 \times \frac{2}{1}=2
\end{aligned}
$$

(5)

$$
\begin{aligned}
y= & \frac{1-\sec x}{\tan x} \\
y & =\frac{1}{\tan x}-\frac{\sec x}{\tan x} \\
& =\cot x-\frac{\left(\frac{1}{\cos x}\right)}{\left(\frac{\sin x}{\cos x}\right)} \\
& =\cot x-\left(\frac{1}{\cos x}\right) \cdot\left(\frac{\cos x}{\sin x}\right) \\
& =\cot x-\frac{1}{\sin x} \\
y & =\cot x-\csc x \\
y & =-\csc ^{2} x-[-\csc x \cdot \cot x] \\
y & =-\csc ^{2} x+\csc x \cdot \cot ^{2} x \\
& =\csc x \cdot \cot x-\csc ^{2} x
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
y^{\prime} & =\csc x[\cot x-\csc x] \\
& =\frac{1}{\sin x}\left[\frac{\cos x}{\sin x}-\frac{1}{\sin x}\right] \\
& =\frac{1}{\sin x}\left[\frac{\cos x-1}{\sin x}\right] \\
& =\frac{\cos x-1}{\sin ^{2} x} \\
& =\frac{\cos x-1}{1-\cos ^{2} x} \\
& =\frac{-(1-\cos x)}{(1-\cos x)(1+\cos x)} \\
& =\frac{-1}{1+\cos x} \\
y= & \frac{\tan x-1}{\sec x} \\
y= & \frac{\tan x}{\sec x}-\frac{1}{\sec x} \\
= & \frac{\left(\frac{\sin x}{\cos x}\right)}{\left(\frac{1}{\cos x}\right)} \\
= & -\frac{\sin x}{\cos x} \cdot \frac{\cos x}{1}-\cos x=\sin x-\cos x \\
y^{\prime}= & \cos x-(-\sin x)=\cos x+\sin x
\end{aligned}
$$

(6)

$$
\begin{aligned}
f(x) & =x e^{x} \sec x \\
f^{\prime}(x) & =\frac{d}{d x}[x] e^{x} \sec x+x \cdot \frac{d x}{d x}\left[e^{x}\right] \sec x+x \cdot e^{x} \frac{d}{d x}[\sec] \\
& =e^{x} \cdot \sec x+x e^{x} \sec x+x \cdot e^{x} \sec x \cdot \tan x \\
& =e^{x} \sec x[1+x+x \tan x]
\end{aligned}
$$

7) Find the equation of tangent line of $y=\sec x$ at $\left(\pi / 6, \frac{\sqrt{3}}{3}\right)$

$$
y=\sec x
$$

$\theta y^{\prime}=\sec x \cdot \tan x$
(2) $m=y^{\prime}\left(\frac{\pi}{6}\right)=\sec (\pi / 6) \cdot \tan \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}=\frac{2}{3}$
(3) $m=\frac{2}{3} \quad\left(\frac{\pi}{6}, \frac{2 \sqrt{3}}{3}\right)$
the equation of tangent line :

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\frac{2 \sqrt{3}}{3}=\frac{2}{3}\left(x-\frac{\pi}{6}\right) \\
& 3 y-2 \sqrt{3}=2\left(x-\frac{\pi}{6}\right) \\
& 3 y-2 \sqrt{3}=2 x-\frac{2 \pi}{6} \\
& 3 y-2 \sqrt{3}=2 x-\frac{\pi}{3} \\
& 3 y=2 x-\frac{\pi}{3}+2 \sqrt{3} \\
& y=\frac{2}{3} x-\frac{\pi}{9}+\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

Example

$$
y=\sin x+\cos x \quad(0,1)
$$

(a) equation of tangent line

$$
\begin{aligned}
& \text { (1) } y^{\prime}=\cos x-\sin x \\
& \text { 2) } m=y^{\prime}(a)=y^{\prime}(0)=\cos (0)-\sin (0)=1-0=1
\end{aligned}
$$

(3) equation of tangent line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=1(x-0) \\
& y-1=x \\
& y=x+1 \text { or } y-x=1
\end{aligned}
$$

or $y-x-1=0$

Example
Find the 27th derivative of $f(x)=\cos x$

$$
\begin{gathered}
f(x)=\cos x \\
f^{\prime}(x)=-\sin x \\
f^{\prime \prime}(x)=-\cos x \\
f^{\prime \prime \prime}(x)=\sin x \\
f^{(4)}(x)=\cos x \\
f^{(27)}(x)=f^{(3)}(x) \\
=\sin x \\
\frac{d^{17}}{d x^{\prime 7}}[\sin x] \\
f^{\prime \prime}(x)=\sin x \\
f^{\prime}(x)=\cos x \\
f^{\prime \prime}(x)=-\sin x \\
f^{\prime \prime \prime}(x)=-\cos x \\
f^{(4)}(x)=\sin x \\
f^{4} \\
f^{(17)}(x)=f^{\prime}(x)=\cos x
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d^{24}}{d x^{24}}[\cos x] \\
& f(x)=\cos x \\
& f^{\prime}(x)=-\sin x \\
& f^{\prime \prime}(x)=-\cos x \\
& f^{\prime \prime \prime}(x)=\sin x \\
& f^{(4)}(x)=\cos x \\
& f^{(24)}(x)=f(x)=\cos x
\end{aligned}
$$

3.4. The chain Rule

The chain Rule
(1) If $F(x)=(\operatorname{hog})(x)=h(g(x))$ then

$$
F^{\prime}(x)=h^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

(2) If $y=f(u)$ and $u=g(x)$ then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Example:-

1) If $y=3 u^{2}$ and $u=\sin x$ then find $\frac{d y}{d x}$?

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =6 u \cdot \cos x \\
& =6 \sin x \cdot \cos x \\
& =3(2) \sin x \cdot \cos x \\
& =3 \sin (2 x)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{d}{d x}\left[e^{x^{2}+3}\right] & =e^{x^{2}+3} \cdot \frac{d}{d x}\left[x^{2}+3\right] \\
& =e^{x^{2}+3} \cdot 2 x \\
& =2 x e^{x^{2}+3}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{d}{d x}\left[\left(\frac{1}{2}\right)^{\sin x}\right] & =\left(\frac{1}{2}\right)^{\sin x} \cdot \ln \left(\frac{1}{2}\right) \cdot \frac{d}{d x}[\sin x] \\
& =\left(\frac{1}{2}\right)^{\sin x} \cdot \ln \left(2^{-1}\right) \cdot \cos x \\
& =-\left(\frac{1}{2}\right)^{\sin x} \cdot \ln 2 \cdot \cos x
\end{aligned}
$$

(3)

$$
\begin{aligned}
\frac{d}{d x}\left[3^{x^{3}}\right] & =3^{x^{3}} \cdot \frac{d}{d x}\left[x^{3}\right] \cdot \ln 3 \\
& =3^{x^{3}} \cdot 3^{1} x^{2} \cdot \ln 3 \\
& =3^{x^{3}+1} \cdot x^{2} \cdot \ln 3
\end{aligned}
$$

(4) Find $F^{\prime}(x)$ if $F(x)=\sqrt{x^{2}+1}$

$$
\begin{aligned}
F(x) & =\left(x^{2}+1\right)^{1 / 2} \\
F^{\prime}(x) & =\frac{1}{2}\left(x^{2}+1\right)^{1 / 2-1} \cdot \frac{d}{d x}\left[x^{2}+1\right] \\
& =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x=\frac{1}{\left(x^{2}+1\right)^{1 / 2}} \cdot \frac{x}{1}=\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

(5) Differentiate (a) $y=\sin \left(x^{2}\right)$

$$
\begin{aligned}
y & =\sin \left(x^{2}\right) \\
y^{\prime} & =\cos \left(x^{2}\right) \cdot \frac{d}{d x}\left[x^{2}\right] \\
& =\cos \left(x^{2}\right) \cdot 2 x \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\sin ^{2} x \\
y & =[\sin x]^{2} \\
y^{\prime} & =2[\sin x]^{2-1} \cdot \frac{d}{d x}[\sin x] \\
& =2 \sin x \cdot \cos x \\
& =\sin 2 x
\end{aligned}
$$

(C)

$$
\begin{aligned}
y & =\tan \left(x^{3}+5 x\right) \\
y^{\prime} & =\sec ^{2}\left(x^{3}+5 x\right) \cdot \frac{d}{d x}\left[x^{3}+5 x\right] \\
& =\sec ^{2}\left(x^{3}+5 x\right) \cdot\left(3 x^{2}+5\right) \\
& =\left(3 x^{2}+5\right) \cdot \sec ^{2}\left(x^{3}+5 x\right)
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =\tan ^{3}\left(e^{3 x}\right) \\
y & =\left[\tan \left(e^{3 x}\right)\right]^{3}= \\
y^{\prime} & =3\left[\tan \left(e^{3 x}\right)\right]^{3-1} \cdot \frac{d}{d x}\left[\tan \left(e^{3 x}\right)\right] \\
& =3\left[\tan \left(e^{3 x}\right)\right]^{2} \cdot \sec ^{2}\left(e^{3 x}\right) \cdot \frac{d}{d x}\left[e^{3 x}\right] \\
& =3 \tan ^{2}\left(e^{3 x}\right) \cdot \sec ^{2}\left(e^{3 x}\right) \cdot e^{3 x} \cdot \frac{d}{d x}[3 x] \\
& =3 \tan ^{2}\left(e^{3 x}\right) \cdot \sec ^{2}\left(e^{3 x}\right) \cdot e^{3 x} \cdot 3 \\
& =3(3) e^{3 x} \cdot \sec ^{2}\left(e^{3 x}\right) \cdot \tan ^{2}\left(e^{3 x}\right)
\end{aligned}
$$

(e)

$$
\begin{aligned}
y & =\sin \left(\cos \left(\tan \left(x^{2}\right)\right)\right) \\
y^{\prime} & =\cos \left(\cos \left(\tan \left(x^{2}\right)\right)\right) \cdot \frac{d}{d x}\left[\cos \left(\tan \left(x^{2}\right)\right)\right] \\
& =\cos \left(\cos \left(\tan \left(x^{2}\right)\right)\right) \cdot-\sin \left(\tan \left(x^{2}\right)\right) \cdot \frac{d}{d x}\left[\tan \left(x^{2}\right)\right] \\
& =-\cos \left(\cos \left(\tan \left(x^{2}\right)\right)\right) \cdot \sin \left(\tan \left(x^{2}\right)\right) \cdot \sec ^{2}\left(x^{2}\right) \frac{d}{d x}\left[x^{2}\right] \\
& =-\cos \left(\cos \left(\tan \left(x^{2}\right)\right)\right) \cdot \sin \left(\tan \left(x^{2}\right)\right) \cdot \sec ^{2}\left(x^{2}\right) \cdot \underline{2 x}= \\
& =-2 x \sec ^{2}\left(x^{2}\right) \cdot \sin \left(\tan \left(x^{2}\right)\right) \cdot \cos \left(\cos \left(\tan \left(x^{2}\right)\right)\right)
\end{aligned}
$$

(6)

$$
\begin{aligned}
y & =\left(x^{3}-1\right)^{100} \\
y^{\prime} & =100\left(x^{3}-1\right)^{100-1} \cdot \frac{d}{d x}\left[x^{3}-1\right] \\
& =100\left(x^{3}-1\right)^{99} \cdot 3 x^{2} \\
& =3(100) x^{2}\left(x^{3}-1\right)^{99} \\
& =300 x^{2}\left(x^{3}-1\right)^{99}
\end{aligned}
$$

(7)

$$
\begin{aligned}
g(t) & =\left(\frac{t-2}{2 t+1}\right)^{9} \\
g^{\prime}(t) & =9\left(\frac{t-2}{2 t+1}\right)^{9-1} \cdot \frac{d}{d t}\left[\frac{t-2}{2 t+1}\right] \\
& =9\left(\frac{t-2}{2 t+1}\right)^{8} \cdot\left[\frac{(2 t+1)(1)-(t-2)(2)}{(2 t+1)^{2}}\right] \\
& =9\left(\frac{t-2}{2 t+1}\right)^{8} \cdot\left[\frac{2 t(t)-2 t+4)}{(2 t+1)^{2}}\right] \\
& =9\left(\frac{t-2}{2 t+1}\right)^{8} \cdot\left[\frac{5}{(2 t+1)^{2}}\right] \\
& =\frac{9(t-2)^{8}}{(2 t+1)^{8}} \cdot \frac{5}{(2 t+1)^{2}}=\frac{9(5)(t-2)^{8}}{(2 t+1)^{8+2}} \\
& =\frac{45(t-2)^{8}}{(2 t+1)^{10}}
\end{aligned}
$$

(8)

$$
\begin{aligned}
y & =(2 x+1)^{5} \cdot\left(x^{3}-2\right)^{4} \\
y^{\prime} & =(2 x+1)^{5} \cdot \frac{d}{d x}\left[\left(x^{3}-2\right)^{4}\right]+\left(x^{3}-2\right)^{4} \frac{d}{d x}\left[(2 x+1)^{5}\right] \\
& =(2 x+1)^{5} \cdot 4\left(x^{3}-2\right)^{3} \cdot \frac{d}{d x}\left(x^{3}-2\right)+\left(x^{3}-2\right)^{4} \cdot 5(2 x+1)^{4} \cdot \frac{d}{d x}(2 x+1) \\
& =(2 x+1)^{5} \cdot 4\left(x^{3}-2\right)^{3}\left(3 x^{2}\right)+\left(x^{3}-2\right)^{4} \cdot 5(2 x+1)^{4} \cdot(2) \\
& =(2 x+1)^{4} \cdot\left(x^{3}-2\right)^{3}\left[(2 x+1) \cdot 4\left(3 x^{2}\right)+5\left(x^{3}-2\right)(2)\right] \\
& =(2 x+1)^{4}\left(x^{3}-2\right)^{3}\left[12 x^{2}(2 x+1)+10\left(x^{3}-2\right)\right] \\
& =2(2 x+1)^{4}\left(x^{3}-2\right)^{3}\left[6 x^{2}(2 x+1)+5\left(x^{3}-2\right)\right] \\
& =2(2 x+1)^{4}\left(x^{3}-2\right)^{3}\left[12 x^{3}+6 x^{2}+5 x^{3}-10\right] \\
& =2(2 x+1)^{4}\left(x^{3}-2\right)^{3}\left(17 x^{3}+6 x^{2}-10\right)
\end{aligned}
$$

(9) $y=\frac{r}{\sqrt{r^{2}+1}}$

$$
\begin{aligned}
y^{\prime} & =\frac{r^{2}+1-r^{2}}{\sqrt{r^{2}+1}} \div\left(\frac{r^{2}+1}{1}\right) \\
& =\frac{1}{\sqrt{r^{2}+1}} \cdot \frac{1}{r^{2}+1} \\
& =\frac{1}{\left(r^{2}+1\right) \sqrt{r^{2}+1}} \\
y^{y} & =\pi \sec (\sqrt{x}) \\
y^{\prime} & =\pi \sec (\sqrt{x}) \cdot \frac{d}{d x}[\sec (\sqrt{x})] \cdot \ln \pi \\
& =\pi \sec (\sqrt{x}) \cdot \sec (\sqrt{x}) \cdot \tan (\sqrt{x}) \cdot \frac{d}{d x}[\sqrt{x}] \cdot \ln \pi \\
& =\pi \sec (\sqrt{x}) \cdot \sec (\sqrt{x}) \cdot \tan (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \cdot \ln \pi \\
& =\frac{1}{2} \ln \pi \frac{1}{\sqrt{x}} \sec (\sqrt{x}) \cdot \tan (\sqrt{x}) \cdot \pi \sec (\sqrt{x})
\end{aligned}
$$

(II)

$$
\begin{aligned}
y & =\cot \left(e^{t}\right)+e^{\cot (t)} \\
y^{\prime} & =-\csc ^{2}\left(e^{t}\right) \cdot \frac{d}{d t}\left[e^{t}\right]+e^{\cot (t)} \cdot \frac{d}{d x}[\cot (t)] \\
& =-\csc ^{2}\left(e^{t}\right) \cdot e^{t}+e^{\operatorname{cot(t)}} \cdot\left(-\csc ^{2}(t)\right) \\
& =-e^{t} \cdot \csc ^{2}\left(e^{t}\right)-\csc ^{2} t e^{\cot (t)}
\end{aligned}
$$

(2)

$$
\left.\begin{array}{rl}
& =-e^{-2} \cdot \csc (t)
\end{array}=\sqrt[3]{1+\tan (t)}=(1+\tan (t))^{1 / 3}\right] \begin{aligned}
f^{\prime}(t) & =\frac{1}{3}(1+\tan (t))^{1 / 3} \cdot 1 \cdot \frac{d}{d t}[1+\tan (t)] \\
& =\frac{1}{3}(1+\tan (t)]^{-2 / 3} \cdot \sec ^{2}(t) \\
& =\frac{\sec ^{2}(t)}{3[1+\tan (t)]^{2 / 3}} \\
& =\frac{\sec ^{2}(t)}{3 \sqrt[3]{(1+\tan (t))^{2}}}
\end{aligned}
$$

(13)

$$
\begin{aligned}
y & =\sqrt{1+2 e^{3 x}} \\
y & =\left(1+2 e^{3 x}\right)^{1 / 2} \\
y^{\prime} & =\frac{1}{2}\left(1+2 e^{3 x}\right)^{1 / 2-1} \cdot \frac{d}{d x}\left[1+2 e^{3 x}\right] \\
& =\frac{1}{2}\left(1+2 e^{3 x}\right)^{-1 / 2} \cdot 2 e^{3 x} \cdot \frac{d}{d x}[3 x] \\
& =\frac{1}{2}\left(1+2 e^{3 x}\right)^{-1 / 2} \cdot 2 e^{3 x} \cdot(3) \\
& =\frac{3 e^{3 x}}{\left(1+2 e^{3 x}\right)^{1 / 2}}=\frac{3 e^{3 x}}{\sqrt{1+2 e^{3 x}}}
\end{aligned}
$$

(14)

$$
\begin{aligned}
f(t) & =e^{2 t} \cdot \cos (4 t) \\
f^{\prime}(t) & =e^{2 t} \frac{d}{d t}[\cos (4 t)]+\cos (4 t) \frac{d}{d t}\left[e^{2 t}\right] \\
& \left.=-e^{2 t} \sin (4 t) \cdot \frac{d}{d t}[4 t]+\cos (4 t) \cdot e^{2 t} \frac{d[2 t]}{d t}\right] \\
& =-e^{2 t} \sin (4 t) \cdot(4)+\cos (4 t) \cdot e^{2 t}(2) \\
& =2 e^{2 t}[-2 \sin (4 t)+\cos (4 t)]
\end{aligned}
$$

(15)

$$
\begin{aligned}
y & =(2)^{3^{x^{2}}} \\
y^{\prime} & =(2)^{3^{x^{2}}} \cdot \frac{d}{d x}\left[3^{x^{2}}\right] \cdot \ln (2) \\
& =(2)^{3^{x^{2}}} \cdot 3^{x^{2}} \cdot \frac{d}{d x}\left[x^{2}\right] \cdot \ln (3) \cdot \ln (2) \\
& =(2)^{3^{x^{2}}} \cdot 3^{x^{2}} \cdot 2^{\prime} x \cdot \ln (3) \cdot \ln (2) \\
& =(2)^{3^{x^{2}}}+1 \cdot 3 \cdot x^{x^{2}} \cdot \ln (3) \cdot \ln (2)
\end{aligned}
$$

(10) If $f(x)=\cos \left(x^{2}\right)$ then find $f^{\prime \prime}(x)$

$$
\begin{aligned}
f^{\prime}(x) & =-\sin \left(x^{2}\right) \cdot \frac{d}{d x}\left[x^{2}\right] \\
& =-\sin \left(x^{2}\right) \cdot(2 x) \\
& =-\frac{2 x}{1} \cdot \frac{\sin \left(x^{2}\right)}{2} \\
& =-2 x \frac{d}{d x}\left[\sin \left(x^{2}\right)\right]+\sin \left(x^{2}\right) \cdot \frac{d}{d x}[-2 x] \\
& =-2 x \cos \left(x^{2}\right)^{2} \cdot\left[x^{2}+\operatorname{sen}\right] \\
& =-2 x \cos \left(x^{2}\right)(-2) \\
& \left.=-4 x^{2} \cos \left(x^{2}\right)^{2}\right)-2 \sin \left(x^{2}\right)
\end{aligned}
$$

(17) Find the equation of tangent line and normal line of

$$
\begin{aligned}
& \quad y=\sin (\sin x) \text { at }(\pi, 0) \\
& \begin{aligned}
& y^{\prime}=\cos (\sin x) \cdot \frac{d}{d x}[\sin x] \\
&= \cos (\sin x) \cdot \cos x \\
&=\cos (x) \cdot \cos (\sin x) \\
& m=y^{\prime}(\pi)=\cos (\pi) \cdot \cos (\sin \pi) \\
&=-1 \cdot \cos (0) \\
&=-1 \cdot 1 \\
& m=-1 ; m_{1}=-\frac{1}{m}=\frac{-1}{-1} \\
& m_{1}=1
\end{aligned}
\end{aligned}
$$

the equation of tanget line at $(\pi / 0)$

$$
\begin{array}{cc}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=-1(x-\pi) \quad y+x-\pi=0 \\
y=-x+\pi \quad y
\end{array} \quad y+x=\pi
$$

the equation on normal line at $(\pi, 0), y-x+\pi=0$

$$
y-y_{1}=m_{1}\left(x-x_{1}\right) \Rightarrow y=x-\pi
$$

$$
\stackrel{\text { or }}{\Rightarrow} y-x=-\pi
$$

(18)

$$
\begin{aligned}
y & =\cos ^{2} x \\
y & =[\cos x]^{2} \\
y^{\prime} & =2[\cos x]^{2-1} \cdot \frac{d}{d x}[\cos x] \\
& =2 \cos x \cdot(-\sin x) \\
& =-2 \sin x \cdot \cos x
\end{aligned}
$$

$$
=-\sin (2 x)
$$

$$
\begin{aligned}
y^{\prime \prime} & =-\sin (2 x) \\
& =-\cos (2 x) \cdot \frac{d}{d x}[2 x] \\
& =-2 \cos (2 x) \cdot(2)
\end{aligned}
$$

$$
\text { (19) } \begin{aligned}
y & =-2 \cos (2 x) \\
y^{\prime} & =3\left[\sin { }^{3}\left(x^{2}\right)=\left[\sin \left(x^{2}\right)\right]^{2}\right) \cdot \frac{d}{d x}\left[\sin \left(x^{2}\right)\right]^{3} \\
y^{\prime} & =3\left[\sin \left(x^{2}\right)\right]^{2} \cdot \cos \left(x^{2}\right) \cdot \frac{d}{d x}\left[x^{2}\right] \\
& =3 \sin ^{2}\left(x^{2}\right) \cdot \cos \left(x^{2}\right) \cdot 2 x \\
& =6 x \sin ^{2}\left(x^{2}\right) \cdot \cos \left(x^{2}\right)
\end{aligned}
$$

(20)

$$
\begin{aligned}
y & =2^{e^{x}} \\
y^{\prime} & =2^{e^{x}} \cdot \ln (2) \cdot \frac{d}{d x}\left[e^{x}\right] \\
y^{\prime} & =2^{e^{x}} \cdot \operatorname{Ln}(2) \cdot e^{x} \\
& =e^{x} \cdot 2^{e^{x}} \cdot \ln (2) \\
y^{\prime \prime} & =\frac{d}{d x}\left[e^{x} \cdot 2^{e^{x}} \cdot \frac{\ln (2)}{د x}\right] \\
& =\operatorname{Ln}(2) \frac{d}{d x}\left[\frac{e^{x}}{1} \cdot \frac{2^{e^{x}}}{2}\right] \\
& =\operatorname{Ln}(2)\left[e^{x} \frac{d}{d x}\left[2^{e^{x}}\right]+2^{e^{x}} \frac{d}{d x}\left[e^{x}\right]\right] \\
& =\operatorname{Ln}(2)\left[e^{x} \cdot 2^{e^{x}} \cdot \frac{d}{d x}\left(e^{x}\right) \ln +2^{e^{x}} \cdot e^{x}\right] \\
& =\operatorname{Ln}(2)\left[\frac{\left.e^{x} \cdot 2^{e^{x}} \cdot e^{x} \cdot \ln 2+\frac{2^{e^{x}} \cdot e^{x}}{}\right]}{}\right. \\
& =\operatorname{Ln}(2) \cdot 2^{e^{x}} \cdot e^{x}\left(e^{x} \ln 2+1\right)
\end{aligned}
$$

(21) if $F(x)=f(g(x))$ where $f(-2)=8, f^{\prime}(-2)=4, f^{\prime}(5)=3$

$$
\begin{aligned}
& g(5)=-2, g^{\prime}(5)=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } F^{\prime}(5) \\
& F^{\prime}(x)=f^{\prime}\left(g^{\prime}(x)\right) \cdot g^{\prime}(x) \Rightarrow F^{\prime}(5)=f^{\prime}(g(5)) \cdot g^{\prime}(5) \\
&=f^{\prime}(-2) \cdot 6 \\
&=4(6)=24
\end{aligned}
$$

(22) $h(x)=\sqrt{4+3 f(x)}$ where

$$
\begin{aligned}
& f(1)=7 \\
& f^{\prime}(1)=4
\end{aligned}
$$

find $h^{\prime}(x)$

$$
\begin{aligned}
& h(x)=(4+3 f(x))^{1 / 2} \\
& \begin{aligned}
h^{\prime}(x) & =\frac{1}{2}(4+3 f(x))^{1 / 2}-1
\end{aligned}\left(3 f^{\prime}(x)\right) \\
&=\frac{1}{2}(4+3 f(x))^{1 / 2} \cdot\left(3 f^{\prime}(x)\right) \\
&=\frac{3 f^{\prime}(x)}{2 \sqrt{4+3 f(x)}} \\
& \begin{aligned}
h^{\prime}(1)= & \frac{3 f^{\prime}(1)}{2 \sqrt{4+3 f(1)}}
\end{aligned}=\frac{3(4)}{2 \sqrt{4+3(7)}} \\
&=\frac{12}{2 \sqrt{4+21}} \\
&=\frac{12}{2 \sqrt{25}} \\
&=\frac{6}{\sqrt{25}} \\
&=\frac{6}{5}
\end{aligned}
$$

3.5- Implicit Differentiation النـَ
$y=f(x) \rightarrow$ explicit function ", "رالة
$f(x)+g(y)=h(x, y) \rightarrow$ Implicit function" "الةخَهنية"
Example (1)

$$
\begin{aligned}
& y=\sin (x)+\sqrt{x}+e^{x} \rightarrow \text { Explicit function } \\
& y^{2}+\sin (x, y)-2^{y}=e^{\sqrt{x}}+5^{x+y} \rightarrow \text { Implicit function }
\end{aligned}
$$

Example (2)
If $x^{2}+y^{2}=25$ then a) find y^{\prime} or $\frac{d y}{d x}$

$$
\begin{aligned}
& 2 x+2 y \cdot y^{\prime}=0 \\
& 2 y \cdot y^{\prime}=-2 x \\
& y^{\prime}=\frac{-2 x}{2 y} \\
& y^{\prime}=-\frac{x}{y} \#
\end{aligned}
$$

b）Find $y^{\prime \prime}$ or $\frac{d^{2} y}{d x^{2}}$

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{y} \\
& y^{\prime \prime}=-\left[\frac{y(1)-x\left(1 \cdot y^{\prime}\right)}{y^{2}}\right] \\
& y^{\prime \prime}=-\left[\frac{y-x y^{\prime}}{y^{2}}\right] \\
& y^{\prime \prime}=-\left[\frac{\frac{y}{1}-\frac{x}{1}\left(\frac{x}{y}\right)}{y^{2}}\right] \\
& y^{\prime \prime}=-\left[\frac{\frac{y}{1}+\frac{x^{2}}{y}}{y^{2}}\right] \\
& y^{\prime \prime}=-\left[\frac{\left(\frac{y^{2}+x^{2}}{y}\right)}{\left(\frac{y^{2}}{1}\right)}\right] \\
& y^{\prime \prime}=-\left(\frac{y^{2}+x^{2}}{y}\right) \div \frac{y^{2}}{1} \\
& y^{\prime \prime}=-\frac{25}{y} \cdot \frac{1}{y^{2}} \\
& \left.y^{\prime \prime}=-\frac{25}{y^{3}}\right] ⿻ 二 ⿰ 丿 丨 丶 ⿴ 囗 十
\end{aligned}
$$

c) Find $y^{\prime}(3,5)$

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{y} \\
& \left.y^{\prime}\right|_{(3,5)}=-\frac{3}{5}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \left.\frac{d^{2} y}{d x^{2}}\right|_{(2,3)}=\cdots \cdot \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{(2,3)}=\left.\frac{-25}{y^{3}}\right|_{(2,3)}=-\frac{25}{3^{3}}=-\frac{25}{27}
\end{aligned}
$$

Example (3)
If $x^{4}+y^{4}=16$ then find $y^{\prime \prime}$

$$
\begin{aligned}
4 x^{3}+4 y^{3} \cdot y^{\prime} & =0 \\
4 y^{3} \cdot y^{\prime} & =-4 x^{3} \\
y^{\prime} & =-\frac{4 x^{3}}{4 y^{3}} \\
y^{\prime} & \left.=-\frac{x^{3}}{y^{3}}\right] \\
y^{\prime \prime} & =-\left[\frac{y^{3}\left(3 x^{2}\right)-x^{3}\left(3 y^{2} \cdot y^{\prime}\right)}{\left(y^{3}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=-\left[\frac{\left.3 x^{2} y^{3}-\frac{3 x^{3} y^{2}\left(\frac{-x^{3}}{y^{3}}\right)}{y^{6}}\right]}{y^{\prime \prime}}=-\left[\frac{3 x^{2} y^{3}+\frac{3 x^{6}}{y}}{y^{6}}\right]\right. \\
& y^{\prime \prime}=-\left[\frac{\left(\frac{\left.3 x^{2} y^{4}+3 x^{6}\right)}{y}\right.}{\left(\frac{y^{6}}{1}\right)}\right] \\
& y^{\prime \prime}=-\left[\frac{3 x^{2}\left(y^{4}+x^{4}\right)}{y} \div \frac{y^{6}}{1}\right] \\
& y^{\prime \prime}=-\left[\frac{3 x^{2}(16)}{y} \cdot \frac{1}{y^{6}}\right] \\
& y^{\prime \prime}=-\left[\frac{48 x^{2}}{y^{7}}\right] \\
& \left.y^{\prime \prime}=\frac{-48 x^{2}}{y^{7}}\right]
\end{aligned}
$$

Example (4)
If $x^{3}+y^{3}=6 x y$ then find
(a) y^{\prime}

$$
\begin{aligned}
& x^{3}+y^{3}=\frac{6 x}{\sigma} \cdot \frac{y}{6} \\
& 3 x^{2}+3 y^{2} \cdot y^{\prime}=6 x \frac{d}{d x}[y]+y \cdot \frac{d}{d x}[6 x] \\
& 3 x^{2}+3 y^{2} \cdot y^{\prime}=6 x\left(1 \cdot y^{\prime}\right)+y \cdot[6] \\
& 3 x^{2}+3 y^{2} y^{\prime}=6 x y^{\prime}+6 y \\
& 3 y^{2} y^{\prime}-6 x y^{\prime}=6 y-3 x^{2} \\
& 3 y^{\prime}\left(y^{2}-2 x\right)=3\left(2 y-x^{2}\right) \\
& y^{\prime}=\frac{3\left(2 y-x^{2}\right)}{3\left(y^{2}-2 x\right)} \\
& y^{\prime}=\frac{2 y-x^{2}}{y^{2}-2 x}
\end{aligned}
$$

(b) Find the slope of tangent line at $(3,2)$

$$
\begin{aligned}
& \text { (b) Find the slope of } \\
& \begin{aligned}
m=\left.y^{\prime}\right|_{\substack{(3,2) \\
x y}} & =\left.\frac{2 y-x^{2}}{y^{2}-2 x}\right|_{(3,2)}=\frac{2(2)-3^{2}}{2^{2}-2(3)}=\frac{4-9}{4-6} \\
& =\frac{-5}{-2}=\frac{5}{2}
\end{aligned}
\end{aligned}
$$

(C) Find the equation of tangent line and normal line at $(3,2)$

tangent line	Normal line
$m=\frac{5}{2} ;(3,2)$	$m_{\perp}=-\frac{1}{m} ;\left(\begin{array}{l}3,2) \\ \left.x_{1}, y_{1}\right) \\ y_{1}\end{array}\right.$
the equation of tangat	$=-\frac{2}{5}$

line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{5}{2}(x-3) \\
& 2 y-4=5(x-3) \\
& 2 y-4=5 x-15
\end{aligned}
$$

the equation of normal line:
$y-y_{1}=m_{1}\left(x-x_{1}\right)$
$y-2=-\frac{2}{5}(x-3)$
$5 y-10=-2(x-3)$
$5 y-10=-2 x+6$
$5 y+2 x-10-6=0 \quad 5 y+2 x=6+10$
$5 y+2 x=16$$\sqrt{5 y=-2 x+6+10} 5$

Example (5)
If $\sin (x+y)=y^{2} \cos x$ then find y^{\prime}

$$
\begin{aligned}
& \cos (x+y)\left[1+y^{\prime}\right]=y^{2} \frac{d}{d x}[\cos x]+(\cos x) \frac{d}{d x}\left[y^{2}\right] \\
& \cos (x+y)+y^{\prime} \cos (x+y)=-y^{2} \sin x+(\cos x)\left(2 y y^{\prime}\right) \\
& \cos (x+y)+y^{\prime} \cos (x+y)=-y^{2} \sin x+2 y y^{\prime} \cos x \\
& y^{\prime} \cos (x+y)-2 y y^{\prime} \cos x=-y^{2} \sin x-\cos (x+y) \\
& y^{\prime}[\cos (x+y)-2 y \cos x]=-y^{2} \sin x-\cos (x+y) \\
& y^{\prime}=\frac{-y^{2} \sin x-\cos (x+y)}{\cos (x+y)-2 y \cos x} \\
& y^{\prime}=-\frac{\left.y^{2} \sin x+\cos (x+y)\right]}{\cos (x+y)-2 y \cos x} \\
& y^{\prime}=\frac{y^{2} \sin x+\cos (x+y)}{-[\cos (x+y)-2 y \cos x]} \\
& y^{\prime}=\frac{y^{2} \sin x+\cos (x+y)}{-\cos (x+y)+2 y \cos x} \\
& y^{\prime}=\frac{y^{2} \sin x+\cos (x+y)}{2 y \cos x-\cos (x+y)}
\end{aligned}
$$

Example (6)
2 If $f(x)+x^{2}[f(x)]^{3}=10$ and $f(1)=2$ then find $f^{\prime}(1)$

$$
\left.\begin{array}{l}
f(x)+\frac{x^{2}}{\infty} \cdot \frac{[f(x)]^{3}}{2}=10 \\
f^{\prime}(x)+x^{2} \cdot \frac{d}{d x}(f(x))^{3}+(f(x))^{3} \cdot \frac{d}{d x}\left[x^{2}\right]=0 \\
f^{\prime}(x)+3 x^{2}(f(x))^{2} \cdot f^{\prime}(x)+(f(x))^{3} \cdot 2 x=0 \\
f^{\prime}(x)\left[1+3 x^{2}(f(x))^{2}\right]=-2 x(f(x))^{3} \\
f^{\prime}(x)
\end{array}=\frac{-2 x(f(x))^{3}}{1+3 x^{2}(f(x))^{2}}\right] \begin{aligned}
f^{\prime}(1) & =\frac{-2(1)(f(1))^{3}}{1+3(1)^{2}(f(1))^{2}} \\
& =\frac{-2(2)^{3}}{1+3(2)^{2}}=\frac{-2(8)}{1+3(4)} \\
& =\frac{-16}{1+12}=\frac{-16}{13}
\end{aligned}
$$

Example 7
If $1+x=\operatorname{Sin}\left(x y^{2}\right)$ then find y^{\prime}

$$
\begin{aligned}
& 1+x=\sin \left(x y^{2}\right) \\
& 1=\cos \left(x y^{2}\right) \cdot\left(2 x y y^{\prime}+y^{2}\right) \\
& 1=2 x y y^{\prime} \cos \left(x y^{2}\right)+y^{2} \cos \left(x y^{2}\right) \\
& 1-y^{2} \cos \left(x y^{2}\right)=2 x y y^{\prime} \cos \left(x y^{2}\right) \\
& \frac{1-y^{2} \cos \left(x y^{2}\right)}{2 x y \cos \left(x y^{2}\right)}=y^{\prime} \\
& \frac{1}{2 x y \cos \left(x y^{2}\right)}-\frac{y^{2} \cos \left(x y^{2}\right)}{2 x y \cos \left(x y^{2}\right)}=y^{\prime} \\
& \frac{\sec \left(x y^{2}\right)}{2 x y}-\frac{y^{2}}{2 x y}=y^{\prime} \\
& \frac{\sec \left(x y^{2}\right)-y^{2}}{2 x y}=y^{\prime}
\end{aligned}
$$

Example (8)
Find the equation of tangent line and normal line of $y \sin 2 x=x \cos 2 y$ at $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$

$$
\begin{aligned}
& y \sin (2 x)=x \cos (2 y) \\
& 2 y \cos (2 x)+\sin (2 x) \cdot y^{\prime}=x\left(-2 y^{\prime} \sin (2 y)\right)+\cos (2 y) \\
& 2 y \cos (2 x)+y^{\prime} \sin (2 x)=-2 x^{\prime} y^{\prime} \sin (2 y)+\cos (2 y) \\
& y^{\prime} \sin (2 x)+2 x y^{\prime} \sin (2 y)=\cos (2 y)-2 y \cos (2 x) \\
& y^{\prime}[\sin (2 x)+2 x \sin (2 y)]=\cos (2 y)-2 y \cos (2 x) \\
& y^{\prime}=\frac{\cos (2 y)-2 y \cos (2 x)}{\sin (2 x)+2 x \sin (2 y)} . \\
& \checkmark m=\left.y^{\prime}\right|_{\substack{\left(\frac{\pi}{2}, \pi_{4} \\
2 \\
y\right.}}=\frac{\cos \left(\frac{2 \pi}{4}\right)-2\left(\frac{\pi}{4}\right) \cos \left(\frac{2 \pi}{2}\right)}{\sin \left(\frac{2 \pi}{2}\right)+2\left(\frac{\pi}{2}\right) \sin \left(\frac{2 \pi}{4}\right)}=\frac{\cos \left(\frac{\pi}{2}\right)-\frac{\pi}{2} \cos (\pi)}{\sin (\pi)+\pi \sin (\pi)} \\
& =\frac{0-\frac{\pi}{2}(-1)}{0+\pi(1)}=\frac{\left(\frac{\pi}{2}\right)}{\left(\frac{\pi}{1}\right)}=\frac{\pi}{2} \cdot \frac{1}{\pi}=\frac{1}{2} \\
& \delta_{m_{1}}=-\frac{1}{m}=-2
\end{aligned}
$$

* the equation of tangent line:

$$
\begin{aligned}
& m=\frac{1}{2} ; \quad\left(\frac{\pi}{2}, \frac{\pi}{4}\right) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\frac{\pi}{4}=\frac{1}{2}\left(x-\frac{\pi}{2}\right) \\
& 2 y-\frac{2 \pi}{4}=\left(x-\frac{\pi}{2}\right) \\
& 2 y-\frac{\pi}{2}=x-\frac{\pi}{2} \\
& 2 y=x-\frac{\pi}{2}+\frac{\pi}{2} \\
& 2 y=x \\
& y=\frac{1}{2} x
\end{aligned}
$$

* the equation of normal line:

$$
\begin{aligned}
& m_{1}=-2 ;\left(\frac{\pi}{2}, \frac{\pi}{4}\right) \\
& y-y_{1}=m_{\perp}\left(x-x_{1}\right) \\
& y-\frac{\pi}{4}=-2\left(x-\frac{\pi}{2}\right) \\
& y-\frac{\pi}{4}=-2 x+2\left(\frac{\pi}{2}\right) \\
& y-\frac{\pi}{4}=-2 x+\pi \Rightarrow \begin{array}{l}
4 y-\pi=-8 x+4 \pi \\
\\
4 y+8 x-\pi-4 \pi=0 \\
4 y+8 x-5 \pi=0
\end{array}
\end{aligned}
$$

3.6- Derivatives of inverse Trigonometric Functions and Derivatives of logarithmic functions

Derivatives of Inverse Trigonometric Functions

$$
\begin{array}{ll}
\text { 1) } \frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} ; & \frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\sin ^{-1}(u)\right]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} ; & \frac{d}{d x}\left[\cos ^{-1}(u)\right]=-\frac{u^{\prime}}{\sqrt{1-u^{2}}} \\
\text { 2) } \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}} ; & \frac{d}{d x}\left[\cot ^{-1}(x)\right]=-\frac{1}{1+x^{2}} \\
& d\left[\cot ^{-1}(u)\right]=-\frac{u^{\prime}}{1}
\end{array}
$$

$$
\begin{array}{ll}
\text { 2) } \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}} ; & \frac{d}{d x}\left[\cot ^{-1}(x)\right]=-\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left[\tan ^{-1}(u)\right]=\frac{u^{\prime}}{1+u^{2}} ; & \frac{d}{d x}\left[\cot ^{-1}(u)\right]=-\frac{u^{\prime}}{1+u^{2}} \\
& \frac{d}{1 x}\left[\csc ^{-1} x\right]=-\frac{1}{x \sqrt{x^{2}-1}}
\end{array}
$$

$$
\begin{array}{ll}
\frac{\frac{d}{d x}\left[\tan ^{-}(u)\right]=1+u^{2}}{} \begin{array}{ll}
\frac{d}{d x}\left[\sec ^{-1} x\right]=\frac{1}{x \sqrt{x^{2}-1}} & ;
\end{array} \quad \frac{d}{d x}\left[\csc ^{-1} x\right]=-\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left[\sec ^{-1}(u)\right]=\frac{u^{\prime}}{u \sqrt{u^{2}-1}} & ; \frac{d}{d x}\left[\csc ^{-1}(u)\right]=-\frac{u^{\prime}}{u \sqrt{u^{2}-1}}
\end{array}
$$

Example (1)
Find the Derivative of the following function and Simplify where possible.
(1)

$$
\begin{aligned}
y & =x \cdot \tan ^{-1}(\sqrt{x}) \\
y^{\prime} & =x \cdot \frac{d}{d x}\left[\tan ^{-1}(\sqrt{x})\right]+\tan ^{-1}(\sqrt{x}) \frac{d}{d x}[x] \\
& =x \cdot \frac{\frac{1}{2} \sqrt{x}}{1+(\sqrt{x})^{2}}+\tan ^{-1}(\sqrt{x}) \cdot(1) \\
& =x \cdot \frac{\frac{1}{2 \sqrt{x}}}{1+x}+\tan ^{-1}(\sqrt{x}) \\
& =\frac{x}{1} \cdot \frac{1}{2 \sqrt{x}(1+x)}+\tan ^{-1}(\sqrt{x}) \\
& =\frac{x^{\prime}}{1} \cdot \frac{1}{2 x^{1 / 2}(1+x)}+\tan ^{-1}(\sqrt{x}) \\
& =\frac{x^{1-1 / 2}}{2(1+x)}+\tan ^{-1}(\sqrt{x}) \\
& =\frac{x^{1 / 2}}{2(1+x)}+\tan ^{-1}(\sqrt{x}) \\
& =\frac{\sqrt{x}}{2+2 x}+\tan ^{-1}(\sqrt{x})
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=\frac{1}{\sin ^{-1}(x)} \\
& y=\frac{1}{\left[\sin ^{-1}(x)\right]^{\prime}} \\
& y=\left[\sin ^{-1}(x)\right]^{-1} \\
& y^{\prime}=-1 \cdot\left[\sin ^{-1}(x)\right]^{-1-1} \cdot \frac{d}{d x}\left[\sin ^{-1}(x)\right] \\
& y^{\prime}=-1\left[\sin ^{-1}(x)\right]^{-2} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& y^{\prime}=\frac{-1}{\left[\sin ^{-1}(x)\right]^{2}} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& y^{\prime}=\frac{-1}{\left[\sin ^{-1}(x)\right]^{2} \cdot \sqrt{1-x^{2}}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
y & =\sqrt{\tan ^{-1} x} \\
y & =\left(\tan ^{-1}(x)\right)^{1 / 2} \\
y^{\prime} & =\frac{1}{2}\left[\tan ^{-1}(x)\right]^{1 / 2} \cdot \frac{d}{d x}\left[\tan ^{-1}(x)\right] \\
y^{\prime} & =\frac{1}{2}\left[\tan ^{-1}(x)\right]^{-1 / 2} \cdot \frac{1}{1+x^{2}} \\
& =\frac{1}{2\left[\tan ^{-1}(x)\right]^{1 / 2}} \cdot \frac{1}{1+x^{2}} \\
& =\frac{1}{2\left(1+x^{2}\right) \sqrt{\tan ^{-1}(x)}}
\end{aligned}
$$

(4)

$$
\begin{aligned}
y & =\sin ^{-1}(2 x+1) \\
y^{\prime} & =\frac{\frac{d}{d x}(2 x+1)}{\sqrt{1-(2 x+1)^{2}}}=\frac{2}{\sqrt{1-\left(4 x^{2}+4 x+1\right)}} \\
& =\frac{2}{\sqrt{\nmid-4 x^{2}-4 x-1}}=\frac{2}{\sqrt{-4 x^{2}-4 x}} \\
& =\frac{2}{\sqrt{4\left(-x^{2}-x\right)}}=\frac{2}{\sqrt{4} \cdot \sqrt{-x^{2}-x}}=\frac{2}{2 \sqrt{-x^{2}-x}} \\
& =\frac{1}{\sqrt{-x^{2}-x}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& y=\tan ^{-1}\left(\frac{x}{5}\right) \\
& y=\tan ^{-1}\left[\frac{1}{5} x\right] \\
& y^{\prime}=\frac{\frac{d}{d x}\left[\frac{1}{5} x\right]}{1+\left(\frac{x}{5}\right)^{2}} \\
& y^{\prime}=\frac{\frac{1}{5}}{\frac{1}{1}+\frac{x^{2}}{25}}=\frac{\left(\frac{1}{5}\right)}{\left(\frac{25+x^{2}}{25}\right)} \\
& y^{\prime}=\frac{1}{5} \div \frac{25+x^{2}}{25} \\
& y^{\prime}=\frac{1}{5} \cdot \frac{25}{25+x^{2}} \\
& y^{\prime}=\frac{5}{25+x^{2}}
\end{aligned}
$$

(6)

$$
\begin{aligned}
y & =\sin ^{-1}\left(\frac{x}{3}\right) \\
y & =\sin ^{-1}\left(\frac{1}{3} x\right) \\
y^{\prime} & =\frac{\frac{d}{d x}[1 / 3 x]}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \\
& =\frac{\frac{1}{3}}{\sqrt{\frac{1}{1}-\frac{x^{2}}{9}}}=\frac{\frac{1}{3}}{\sqrt{\frac{9-x^{2}}{9}}} \\
& =\frac{1 / 3}{\sqrt{9-x^{2}}} \\
& =\frac{\left(\frac{1}{3}\right)}{\left(\frac{\sqrt{9-x^{2}}}{3}\right)} \\
& =\frac{1}{3} \div \frac{1}{3} \cdot \frac{3-x^{2}}{3} \\
& =\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

(7)

$$
\begin{aligned}
& f(x)=\sec ^{-1}\left(x^{3}\right) \\
& \begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left[x^{3}\right]}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \\
& =\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}} \\
& =\frac{3}{x \sqrt{x^{6}-1}}
\end{aligned}
\end{aligned}
$$

8

$$
\begin{aligned}
y & =\frac{x}{\sqrt{0}} \cdot \frac{\sin ^{-1}(x)}{\sqrt{2}}+\sqrt{1-x^{2}} \\
y^{\prime} & =x \cdot \frac{d}{d x}\left[\sin ^{-1} x\right]+\left(\sin ^{-1}(x)\right) \cdot \frac{d}{d x}[x]+\frac{1}{2}\left(1-x^{2}\right)^{1 / 2} \cdot-2 x \\
& =\frac{x}{1} \cdot \frac{1}{\sqrt{1-x^{2}}}+\left(\sin ^{-1}(x)\right) \cdot(1)+\frac{\left(1-x^{2}\right)^{-1 / 2}}{1} \cdot \frac{-x}{1} \\
& =\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1}(x)-\frac{x}{1-x^{2}} \\
& =\sin ^{-1}(x)
\end{aligned}
$$

(9)

$$
\begin{aligned}
f(x) & =\sqrt{1-x^{2}} \cdot \cos ^{-1}(x) \\
& =\frac{\left(1-x^{2}\right)^{1 / 2} \cdot \frac{\cos ^{-1}(x)}{1}}{2} \\
& =\left(1-x^{2}\right)^{1 / 2} \cdot \frac{d}{d x}\left[\cos ^{-1}(x)\right]+\left[\cos ^{-1}(x)\right] \frac{d}{d x}\left(1-x^{2}\right)^{2} \\
& \left.=\sqrt{1-x^{2}} \cdot \frac{-1}{\sqrt{1-x^{2}}}+\left[\cos ^{-1} x\right] \cdot \frac{1}{2}\left(1-x^{2}\right)^{-1} \cdot\right)^{-2 x} \\
& =-1+\left[\cos ^{-1} x\right] \cdot \frac{-x}{\sqrt{1-x^{2}}} \\
& =\frac{-1}{1}-\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} \\
& =-\frac{\sqrt{12 x^{2}}-x \cos ^{-1} x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Note: $\frac{d}{d t}\left(\frac{1}{t}\right)=\frac{d}{d t}\left(t^{-1}\right)$
Example

$$
\begin{aligned}
& =-1 t^{-2} \\
& =\frac{-1}{t^{2}}
\end{aligned}
$$

$y=\cot ^{-1}(t)+\cot ^{-1}\left(\frac{1}{t}\right)$ find y^{\prime}

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{1+t^{2}}-\frac{-\frac{1}{t^{2}}}{1+\left(\frac{1}{t}\right)^{2}} \\
& =-\frac{1}{1+t^{2}}+\frac{\left(\frac{1}{t^{2}}\right)}{\frac{1}{1}+\frac{1}{t^{2}}} \\
& =-\frac{1}{1+t^{2}}+\frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{t^{2}+1}{t^{2}}\right)} \\
& =-\frac{1}{1+t^{2}}+\frac{1}{t^{2}} \cdot \frac{t^{2}}{t^{2}+1} \\
& =-\frac{1}{1+t^{2}}+\frac{1}{t^{2}+1} \\
y^{\prime} & =0
\end{aligned}
$$

Derivative of logarithmic functions
102
(1)

$$
\begin{aligned}
& \frac{d}{d x}[\operatorname{Ln}(x)]=\frac{1}{x} \\
& \frac{d}{d x}[\operatorname{Ln}(f(x))]=\frac{f^{\prime}(x)}{f(x)}
\end{aligned}
$$

(2)

$$
\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{x^{\ln (a)}}
$$

Example
(1)

$$
\begin{aligned}
& y=\operatorname{Ln}\left(x^{3}+1\right) \\
& y^{\prime}=\frac{3 x^{2} \rightarrow \log _{3}\left(e^{2 x}+5\right)}{x^{3}+1 \rightarrow \text { 人anple }} \begin{array}{l}
y=\log _{3}^{\prime 2}
\end{array} \quad y^{\prime}=\frac{2 e^{2 x}}{\left(e^{2 x}+5\right) \operatorname{Ln} 3}
\end{aligned}
$$

(3)

$$
\text { 3) } \begin{aligned}
\frac{d}{d x} \ln (\sin 10 x) & \text { (3) } \begin{aligned}
f(x) & =\sqrt{\ln x} \\
& =(\ln x)^{1 / 2} \\
y^{\prime}=\frac{10 \cos (10 x)}{\sin (10 x)}=10 \cot (10 x) & f^{\prime}(x)
\end{aligned}=\frac{1}{2}(\ln x)^{1 / 2} \cdot \frac{1}{x} \\
& =\frac{1}{2}(\ln x)^{-1 / 2} \cdot \frac{1}{x} \\
& =\frac{1}{2 \sqrt{\ln x} \cdot x}
\end{aligned}
$$

(5)

$$
\begin{aligned}
f(x) & =\log _{10}(2+\sin x) \\
f^{\prime}(x) & =\frac{\cos x}{(2+\sin x) \ln (10)}
\end{aligned}
$$

(6) $f(x)=\operatorname{Ln}\left[\frac{x+1}{\sqrt{x-2}}\right]$

$$
\begin{aligned}
F^{2 \pi}(x) & =\operatorname{Ln}(x+1)-\ln \sqrt{x-2} \\
& =\operatorname{Ln}(x+1)-\operatorname{Ln}(x-2)^{1 / 2} \\
f(x) & =\operatorname{Ln}(x+1)-\frac{1}{2} \operatorname{Ln}(x-2)
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{1}{x+1}-\frac{1}{2}\left(\frac{1}{x-2}\right)
$$

$$
=\frac{1}{x+1}-\frac{1}{2(x-2)}
$$

$=\frac{2(x-2)}{2(x+1)(x-2)}-\frac{(x+1)}{2(x-2)(x+1)}$

$$
=\frac{2(x-2)-(x+1)}{2(x+1)(x-2)}
$$

$$
=\frac{2 x-y-x)-1}{2(x+1)(x-2)}
$$

$$
=\frac{x-5}{2(x+1)(x-2)}
$$

Note
if $f(x)=L_{n}|x|$ then $f^{\prime}(x)=\frac{1}{x}$

Find y^{\prime} of the following function

$$
\begin{aligned}
y & =\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}} \\
\operatorname{Ln} y & =\operatorname{Ln}\left[\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\right] \\
\operatorname{Ln} y & =\operatorname{Ln} x^{3 / 4}+\operatorname{Ln}\left(x^{2}+1\right)^{1 / 2}-\ln (3 x+2)^{5} \\
\operatorname{Ln} y & =\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \operatorname{Ln}(3 x+2) \\
\frac{y^{\prime}}{y} & =\frac{3}{4 x}+\frac{2 x}{2\left(x^{2}+1\right)}-\frac{5(3)}{3 x+2} \\
\frac{y^{\prime}}{y} & =\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2} \\
y^{\prime} & =y\left[\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right] \\
y^{\prime} & =\frac{x^{34} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left[\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=x^{\sqrt{x}} \\
& L_{n} y=\operatorname{Ln}_{n} x^{\sqrt{x}} \\
& L_{n y}=\sqrt{x} \operatorname{Ln} x \\
& L_{n y}=x^{1 / 2} \operatorname{Ln} x \\
& \frac{y^{\prime}}{y}=x^{\frac{1}{2}} \cdot \frac{1}{x}+\frac{1}{2} x^{\frac{1}{2}-1} \operatorname{Ln} x \\
& \frac{y^{\prime}}{y}=\frac{x^{1 / 2}}{x}+\frac{1}{2} x^{-\frac{1}{2}} \ln x \\
& \frac{y^{\prime}}{y}=x^{\frac{1}{2}-1}+\frac{\ln x}{2 x^{1 / 2}} \\
& \frac{y^{\prime}}{y}=x^{-\frac{1}{2}}+\frac{\ln x}{2 \sqrt{x}} \\
& \frac{y^{\prime}}{y}=\frac{1}{\sqrt{x}}+\frac{\ln x}{2 \sqrt{x}} \\
& y^{\prime}=y\left[\frac{2}{2 \sqrt{x} x}\right. \\
& 2 \sqrt{x}
\end{aligned}=x^{\sqrt{x}}\left[\frac{2+\ln x}{2 \sqrt{x}}\right] .
$$

(3) $f(x)=(\sin x)^{x}$

$$
\begin{aligned}
\operatorname{Ln}(f(x)) & =\operatorname{Ln}(\sin x)^{x}=\frac{x}{1} \frac{\operatorname{Ln}(\sin x)}{2} \\
\frac{f^{\prime}(x)}{f(x)} & =1 \cdot \operatorname{Ln}(\sin x)+x \cdot \frac{\cos x}{\sin x} \\
\frac{f^{\prime}(x)}{f(x)} & =\operatorname{Ln}(\sin x)+x \cot x \\
f^{\prime}(x) & =f(x)[\operatorname{Ln}(\sin x)+x \cot x] \\
f^{\prime}(x) & =(\sin x)^{x}[\operatorname{Ln}(\sin x)+x \cot x]
\end{aligned}
$$

(4) $x^{y}=y^{x}$

$$
\begin{gathered}
\operatorname{Ln} x^{y}=\operatorname{Ln} y^{x} \\
y \operatorname{Ln} x=x \operatorname{Ln} y \\
y^{\prime} \operatorname{Ln} x+y\left(\frac{1}{x}\right)=\operatorname{Ln} y+x\left(\frac{y^{\prime}}{y}\right) \\
y^{\prime} \operatorname{Ln} x+\frac{y}{x}=\operatorname{Ln} y+\frac{x y^{\prime}}{y} \\
y^{\prime} \operatorname{Ln} x-\frac{x y^{\prime}}{y}=\operatorname{Ln} y-\frac{y}{x} \\
y^{\prime}\left(\operatorname{Ln} x-\frac{x}{y}\right)=\operatorname{Ln} y-\frac{y}{x} \\
y^{\prime}=\frac{\operatorname{Ln} y-\frac{y}{x}}{\operatorname{Ln} x-\frac{x}{y}} \\
y^{\prime}=\frac{\left(\frac{x \ln y-y}{x}\right)}{\left(\frac{y \operatorname{Ln} x-x}{y}\right)} \\
y^{\prime}=\frac{x \ln y-y}{x} \cdot \frac{y}{y \ln x-x} \\
y^{\prime}=\frac{x y \operatorname{Ln} y-y^{2}}{x y \operatorname{Ln} x-x^{2}}
\end{gathered}
$$

(5) If $y=\ln \left(e^{-x}+x e^{-x}\right)$ then find y^{\prime}

$$
\begin{aligned}
y & =\operatorname{Ln}\left(\frac{1}{e^{x}}+\frac{x}{e^{x}}\right) \\
& =\operatorname{Ln}\left[\frac{1+x}{e^{x}}\right] \\
& =\operatorname{Ln}(1+x)-\ln \left(e^{x}\right) \\
y & =\ln (1+x)-x \\
y^{\prime} & =\frac{1}{1+x}-1 \\
& =\frac{1-(1+x)}{1+x} \\
& =\frac{1-1-x}{1+x} \\
y^{\prime} & \left.=\frac{-x}{1+x}\right]
\end{aligned}
$$

(6)

$$
\begin{aligned}
y & =2^{t} \cdot \log _{2} t \\
y^{\prime} & =2^{t} \cdot \frac{1}{[\ln (2)] \cdot t}+\log _{2} t \cdot 2^{t} \cdot \ln (2) \\
& =2^{t}\left[\frac{1}{[\ln (2)] \cdot t}+[\ln (2)] \cdot \log _{2} t\right]
\end{aligned}
$$

$$
\text { 7) } \begin{aligned}
y=\operatorname{Ln} & (\operatorname{Ln} x) \Rightarrow y^{\prime}=\frac{\frac{d}{d x}[\operatorname{Ln} x]}{\operatorname{Ln} x} \\
y^{\prime} & =\frac{\frac{1}{x}}{\operatorname{Ln} x} \\
y^{\prime} & =\frac{1}{x} \div \frac{\operatorname{Ln} x}{1} \\
& =\frac{1}{x} \cdot \frac{1}{\operatorname{Ln} x}
\end{aligned}
$$

(8)

$$
\begin{aligned}
f(x) & =\operatorname{Ln}\left(x e^{-2 x}\right) \\
& =\operatorname{Ln}(x)+\operatorname{Ln}\left(e^{-2 x}\right) \\
f(x) & =\operatorname{Ln}(x)-2 x \\
f^{\prime}(x) & =\frac{1}{x}-\frac{2}{1} \\
f^{\prime}(x) & =\frac{1-2 x}{x}
\end{aligned}
$$

(a)

$$
\begin{aligned}
f(x) & =\log _{10}(1+\cos x) \\
f^{\prime}(x) & =\frac{\frac{d}{d x}[1+\cos x]}{1+\cos x} \\
& =\frac{-\sin x}{1+\cos x}
\end{aligned}
$$

(10) y

$$
\begin{aligned}
y & =(\ln x)^{\frac{1}{5}} \\
y^{\prime} & =\frac{1}{5}(\ln x)^{\frac{1}{5}-1} \cdot \frac{d}{d x}[\ln x] \\
& =\frac{1}{5}(\ln x)^{\frac{-4}{5}} \cdot \frac{1}{x}=\frac{1}{5 x(\ln x)^{\frac{4}{5}}}
\end{aligned}
$$

(II)

$$
\begin{aligned}
y & =\operatorname{Ln} \sqrt[5]{x} \\
& =\operatorname{Ln} x^{\frac{1}{5}} \\
& =\frac{1}{5} \ln x \\
y^{\prime} & =\frac{1}{5} \cdot \frac{1}{x} \\
& =\frac{1}{5 x}
\end{aligned}
$$

(12)

$$
\begin{aligned}
y & =\sin (\ln x) \\
y^{\prime} & =\cos (\ln x) \cdot \frac{d}{d x}[\ln x] \\
& =\frac{\cos (\ln x)}{1} \cdot \frac{1}{x} \\
& =\frac{\cos (\ln x)}{x}
\end{aligned}
$$

(13) $y=\ln (\sin x)$

$$
=\frac{\frac{d}{d x}(\sin x)}{\sin x}
$$

$$
=\frac{\cos x}{\sin x}
$$

$$
=\cot x
$$

14

$$
\begin{aligned}
g(x) & =\operatorname{Ln}\left(x \cdot \sqrt{x^{2}-1}\right) \\
& =\operatorname{Ln} x+\ln \sqrt{x^{2}-1} \\
& =\operatorname{Ln} x+\ln \left(x^{2}-1\right)^{\frac{1}{2}} \\
& =\operatorname{Ln} x+\frac{1}{2} \ln \left(x^{2}-1\right) \\
g^{\prime}(x) & =\frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}-1} \\
& =\frac{1}{x}+\frac{x}{x^{2}-1} \\
& =\frac{x^{2}-1+x^{2}}{x\left(x^{2}-1\right)}=\frac{2 x^{2}-1}{x^{3}-x}
\end{aligned}
$$

(15)

$$
\begin{aligned}
& y=(2 x+1)^{5} \cdot\left(x^{4}-3\right)^{6} \\
& \operatorname{Ln} y=\operatorname{Ln}\left[(2 x+1)^{5} \cdot\left(x^{4}-3\right)^{6}\right] \\
& \operatorname{Ln} y=\operatorname{Ln}(2 x+1)^{5}+\ln \left(x^{4}-3\right)^{6} \\
& \operatorname{Ln} y=5 \ln (2 x+1)+6 \ln \left(x^{4}-3\right) \\
& \frac{1}{y} \cdot \frac{y^{\prime}}{1}=\frac{5}{1} \cdot \frac{2}{2 x+1}+\frac{6}{1} \cdot \frac{4 x^{3}}{x^{4}-3} \\
& \begin{aligned}
\frac{y^{\prime}}{y} & =\frac{10}{2 x+1}+\frac{24 x^{3}}{x^{4}-3} \\
y^{\prime} & =y\left[\frac{10}{2 x+1}+\frac{24 x^{3}}{x^{4}-3}\right] \\
y^{\prime} & =(2 x+1)^{5}\left(x^{4}-3\right)^{6}\left[\frac{10}{2 x+1}+\frac{24 x^{3}}{x^{4}-3}\right] \\
& =10(2 x+1)^{4}\left(x^{4}-3\right)^{6}+24 x^{3}(2 x+1)^{5}\left(x^{4}-3\right)^{5}
\end{aligned} \\
& =2(2 x+1)^{4}\left(x^{4}-3\right)^{5}\left[5\left(x^{4}-3\right)+12 x^{3}(2 x+1)\right] \\
& \\
& =2(2 x+1)^{4}\left(x^{4}-3\right)^{5}\left[\frac{\left.5 x^{4}-15+124 x^{4}+12 x^{3}\right]}{}=2(2 x+1)^{4}\left(x^{4}-3\right)^{5}\left[29 x^{4}+12 x^{3}-15\right]\right.
\end{aligned}
$$

(16)

$$
\begin{aligned}
& y=x^{x} \\
& \operatorname{Ln} y=\operatorname{Ln}\left(x^{x}\right) \\
& \operatorname{Ln} y=x \operatorname{Ln} x \\
& \frac{y^{\prime}}{y}=x \cdot \frac{1}{x}+(\operatorname{Ln} x)(1) \\
& \frac{y^{\prime}}{y}=1+\operatorname{Ln} x \\
& y^{\prime}=y(1+\operatorname{Ln} x) \\
& y^{\prime}=x^{x}(1+\operatorname{Ln} x)
\end{aligned}
$$

$$
\begin{aligned}
& 17 y^{y}=x^{\sin x} \\
& \operatorname{Ln} y=\operatorname{Ln} x^{\sin x} \\
& \operatorname{Ln} y=\sin x \cdot \operatorname{Ln} x \\
& y^{\prime} \\
& y=\frac{\sin x}{1} \cdot \frac{1}{x}+(\ln x) \cos x \\
& y^{\prime}=y\left[\frac{\sin x}{x}+(\ln x) \cos x\right] \\
& y^{\prime}=x^{\sin x\left[\frac{\sin x}{x}+(\ln x) \cos x\right]} \\
&=\frac{x^{\sin x} \cdot \sin x}{x^{\prime}}+x^{\sin x} \ln x \cdot \cos x \\
&=x^{\sin x-1} \sin x+x^{\sin x} \operatorname{Ln} x \cdot \cos x
\end{aligned}
$$

(18)

$$
\begin{aligned}
& y=\sqrt{x} e^{x^{2}-x}(x+1)^{2 / 3} \\
& \operatorname{Ln} y=\operatorname{Ln}\left[\sqrt{x} \cdot e^{x^{2}-x} \cdot(x+1)^{2 / 3}\right] \\
&=\ln \sqrt{x}+\ln \left(e^{x^{2}-x}\right)+\ln (x+1)^{2 / 3} \\
& \ln y=\frac{1}{2} \ln x+x^{2}-x+\frac{2}{3} \ln (x+1) \\
& \frac{y^{\prime}}{y}=\frac{1}{2} \cdot \frac{1}{x}+2 x-1+\frac{2}{3} \cdot \frac{1}{x+1} \\
& y^{\prime}=\frac{1}{2 x}+2 x-1+\frac{2}{3(x+1)} \\
& y^{\prime}=y\left[\frac{1}{2 x}+2 x-1+\frac{2}{3(x+1)}\right] \\
& y^{\prime}=\sqrt{x} e^{x^{2}-x} \cdot(x+1)^{2 / 3}\left[\frac{1}{2 x}+2 x-1+\frac{2}{3(x+1)}\right]
\end{aligned}
$$

(14) Find the equation of tangent line to $y=\ln \left(x^{2}-3 x+1\right),(3,0)$

$$
\begin{aligned}
& y^{\prime}=\frac{2 x-3}{x^{2}-3 x+1} \\
& m=\left.y^{\prime}\right|_{x=3}=\frac{2(3)-3}{3^{2}-3(3)+1}=\frac{6-3}{9-9+1}=\frac{3}{1}=3 \\
& m=3 ;\binom{3,0}{x_{1}}
\end{aligned}
$$

the equation af tangat line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=3(x-3) \\
& y=3 x-9
\end{aligned}
$$

(20) If $f(x)=\cos \left(\ln x^{2}\right)$ find $f^{\prime}(1)$

$$
\begin{aligned}
f(x) & =\cos (2 \ln x) \\
f^{\prime}(x) & =-\sin (2 \ln x) \cdot 2 \cdot \frac{1}{x} \\
f^{\prime}(1) & =-\sin (2 \ln (1)) \cdot 2\left(\frac{1}{1}\right) \\
& =-\sin (0) \cdot 2 \\
& =(0)(2)=0
\end{aligned}
$$

(21) if $f(x)=\ln x$ find $f\left(\begin{array}{l}(x) \\ (x)\end{array}\right.$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x}=x^{-1} \\
& f^{\prime \prime}(x)=-1 x^{-2}=-x^{-2} \\
& f^{\prime \prime \prime}=(-1)(-2) x^{-3}=(1)(2) x^{-3}=2 x^{-3} \\
& f^{(4)}(x)=(-1)(-2)(-3) x^{-4}=-(1)(2)(3) x^{-4}=-6 x^{4} \\
& f^{(5)}=(-1)(-2)(-3)(-4) x^{-5}=(1)(2)(3)(4) x^{-5}=29 x^{-5} \\
& \prime \\
& \prime \\
& f^{(n)}(x)=(-1)^{n-1}(n-1)!x^{-n}
\end{aligned}
$$

Section 4.3
increasing / Decreasing Test
a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
b) If $f^{\prime}(x)<0$ on interval, then f is decreasing on that interval.

The First Derivative Test
Suppose that c is a critical number of a continuous function f.
a) If f^{\prime} change from $+v e$ to -ie at c, then If has a local maximum at c
b) If f^{\prime} change from - be to the at c, then f has a local Minimum at c
c) If f^{\prime} is tee to the left and right or -ve to the left and right at c then f has no local maximum or minimum at $\stackrel{C}{=}$

Example
Find where the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
is increasing and where it is decreasing and find a local Maximum and local minimum

$$
f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5
$$

(1) $f(x)$ is cont on \mathbb{R}
(2) $f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x$
(3)

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 12 x^{3}-12 x^{2}-24 x=0 \\
& 12 x\left(x^{2}-x-2\right)=0 \\
& 12 x=0 \\
& \frac{12 x}{12}=\frac{0}{12} \\
& x=0 \in \mathbb{R} \\
& \text { or } \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x_{x-2=0} \text { or } x+1=0 \\
& x=2 \in \mathbb{R} \quad x=-1 \in \mathbb{R}
\end{aligned}
$$

(4) The critical numbers are 0,2 and -1 the critical points are $(0, f(0)),(2, f(2))$ and $(-1, f(-1))$
the critical points are $(0, f(0))=(0,5)$

$$
\begin{aligned}
& (2, f(2))=(2,-27) \\
& (-1, f(-1))=(-1,0)
\end{aligned}
$$

$f(x)$ is decreasing on the $(0,2) \cup(-\infty,-1)$ or $[0,2] \cup(-\infty,-1]$
$f(x)$ is increasing on the $(-1,0) \cup(2, \infty)$ or $[-1,0] \cup[2, \infty)$
$f(x)$ has local Maximum at $x=0$
or $f(0)=5$ is local Maximum value
$f(x)$ haste local Minimum at $x=-1$ and $x=2$
$f(-1)=0$ is local minimum value $f(2)=-27$ is local Minimum value.

Definition
a) If the graph of $f(x)$ lies above all of its tangents on an interval I, then it is called Concave upward.

b) If the graph of $f(x)$ lies below alt of its tangents on an interval I, then it is called concave downward.

Concavity test
a) If $f^{\prime \prime}(x)>0$ for all x in I then the graph of f is concave upward on I
b) If $f^{\prime \prime}(x)<0$ for all x in I then the graph of f is Concave downward on I

Definition
Apoint P on a curve $y=f(x)$ is called an Inflection Point if f is continuous there and the curve change from $C U$ to $C D$ or from $C D$ to $C U$ at P

The Second Derivative Test Suppose f is continuous near C
a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then $f(x)$ has local minimum at c
b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then $f(x)$ has local Maximum at c
let $f(x)=x^{4}-4 x^{3}$
9) find the intervals on which f is increasing or decreasing
b) Find the local Maximum and Minimum value of f use the second derivative Test
c) find the intervals of concavity and Inflection Points.
(1) $f(x)=x^{4}-4 x^{3}$ is cont on IR
(2) $f^{\prime}(x)=4 x^{3}-12 x^{2}$
(3) $f^{\prime}(x)=0 \Rightarrow 4 x^{3}-12 x^{2}=0 \Rightarrow 4 x^{2} \cdot(x-3)=0$
(4) the Critical numbers are 0 and 3
5) the critical points: $\downarrow=0$
$4 x^{2}=0 \quad$ or $\quad x-3=0$
$\frac{x^{2}}{4}=\frac{0}{4}$

$$
x^{2}=0
$$

$$
\sqrt{x^{2}}=\sqrt{0}
$$ $(0, f(0))$ and $(3, f(3))$

$$
x=0 \in \mathbb{R}
$$

$(0,0)$ and $(3,-27)$
(6)

$f(x)$ is increasing on $(3, \infty)$ or $[3, \infty)$
$f(x)$ is decreasing on $(-\infty, 3]$ or $(-\infty, 3)$
(7) $f^{\prime \prime}(x)=12 x^{2}-24 x$

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{c}-{ }^{\text {con }} \\
& f^{\prime \prime}\left(x^{x^{\prime} \cdot n}=0 \quad \text { and } \quad f^{\prime \prime}(3)=36>0\right.
\end{aligned}
$$

$f(x)$ has local Minimum
$f(x)$. has no local at $x=3$
Max or Min at

$$
x=0
$$

(8)

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}-24 x \\
& f^{\prime \prime}(x)=0 \Rightarrow 12 x^{2}-24 x=0 \\
& 12 x(x-2)=0 \\
& x=0 \in \mathbb{R} \text { or } x=2 \in \mathbb{R}
\end{aligned}
$$

$f(x)$ is Concave down on $[0,2]$ or $(0,2)$
$f(x)$ is concave up on $(-\infty, 0] u[2, \infty)$

$$
\text { or }(-\infty, 0) u(2, \infty)
$$

$f(x)$ has inflection point at $x=0$

$$
(0, f(0))=(0,0)
$$

$f(x)$ has inflection point at $x=2$

$$
(2, f(2))=(2,-16)
$$

$F(x)$ has inflection point of P and D, C, B
H.W (1), (5), © (11) (6P. 300 + P301

1) If $f(x)$ is a differentiable function, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3) If $f(x)=x^{2}-3$, then $f^{\prime}(x)=$

Solution:

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3\right]-\left[x^{2}-3\right]}{h}
$$

5) If f is a differentiable function at a, then f is a continuous function at a.
6) If $y=x^{4}+5 x^{2}+3$, then $y^{\prime}=$ Solution:

$$
y^{\prime}=4 x^{3}+10 x
$$

9) If $y=x^{-5 / 2}$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=-\frac{5}{2} x^{-\frac{5}{2}-1}=-\frac{5}{2} x^{-7 / 2}
$$

11) If $y=(x-3)(x-2)$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
y=(x-3)(x-2)=x^{2}-5 x+6 \\
y^{\prime}=2 x-5
\end{gathered}
$$

13) If $y=\sqrt{x}(2 x+1)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\sqrt{x}(2 x+1)=2 x \sqrt{x}+\sqrt{x}=2 x^{\frac{3}{2}}+x^{\frac{1}{2}} \\
y^{\prime} & =\left(\frac{3}{2}\right)(2) x^{\frac{3}{2}-1}+\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=3 x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{1}{2}} \\
& =3 \sqrt{x}+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

OR

Use the rule $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$

$$
y^{\prime}=(2)(\sqrt{x})+\left(\frac{1}{2 \sqrt{x}}\right)(2 x+1)=2 \sqrt{x}+\frac{2 x+1}{2 \sqrt{x}}
$$

15) If $y=\frac{x+3}{x-2}$, then $\left.y^{\prime}\right|_{x=4}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}} \\
=\frac{-5}{(x-2)^{2}}=-\frac{5}{(x-2)^{2}} \\
\left.y^{\prime}\right|_{x=4}=-\frac{5}{(4-2)^{2}}=-\frac{5}{4}
\end{gathered}
$$

2) If $f(x)=4 x^{2}$, then $f^{\prime}(x)=$

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-4 x^{2}}{h}
$$

4) If $f(x)=\sqrt{x}, x \geq 0$, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

6) If f is a continuous function at a, then f is a differentiable function at a.
Solution:

False

8) If $y=x^{4}-5 x^{2}+3$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=4 x^{3}-10 x
$$

10) If $y=\frac{1}{3 x^{3}}+2 \sqrt{x}=\frac{1}{3} x^{-3}+2 x^{1 / 2}$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y^{\prime} & =(-3)\left(\frac{1}{3}\right) x^{-3-1}+\left(\frac{1}{2}\right)(2) x^{\frac{1}{2}-1} \\
& =-x^{-4}+x^{-1 / 2}=-\frac{1}{x^{4}}+\frac{1}{x^{1 / 2}}=-\frac{1}{x^{4}}+\frac{1}{\sqrt{x}}
\end{aligned}
$$

12) If $y=\left(x^{3}+3\right)\left(x^{2}-1\right)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\left(x^{3}+3\right)\left(x^{2}-1\right)=x^{5}-x^{3}+3 x^{2}-3 \\
y^{\prime} & =5 x^{4}-3 x^{2}+6 x
\end{aligned}
$$

14) If $y=\frac{x+3}{x-2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}}=\frac{-5}{(x-2)^{2}} \\
& =-\frac{5}{(x-2)^{2}}
\end{aligned}
$$

16) If $y=\frac{x-1}{x+2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
y^{\prime}=\frac{(1)(x+2)-(x-1)(1)}{(x+2)^{2}}=\frac{x+2-x+1}{(x+2)^{2}}=\frac{3}{(x+2)^{2}}
$$

17) If $y=\sqrt{3 x^{2}+6 x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}}
$$

19) The tangent line equation to the curve $y=x^{2}+2$ at the point $(1,3)$ is
Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=2 x
$$

Thus, the slope at $x=1$ is

$$
\left.y^{\prime}\right|_{x=1}=2(1)=2
$$

Hence, the tangent line equation passing through the point $(1,3)$ with slope $m=2$ is

$$
\begin{aligned}
y-3 & =2(x-1) \\
y-3 & =2 x-2 \\
y & =2 x-2+3 \\
y & =2 x+1
\end{aligned}
$$

21) The tangent line equation to the curve $y=3 x^{2}-13$ at the point $(2,-1)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=2}=6(2)=12
$$

Hence, the tangent line equation passing through the point $(2,-1)$ with slope $m=12$ is

$$
\begin{aligned}
y-(-1) & =12(x-2) \\
y+1 & =12 x-24 \\
y & =12 x-24-1 \\
y & =12 x-25
\end{aligned}
$$

23) If $y=x e^{x}$, then $y^{\prime}=$

Solution:

Use the rules $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=(1)\left(e^{x}\right)+(x)\left(e^{x}\right)=e^{x}+x e^{x}=e^{x}(1+x)
$$

25) If $x^{2}-y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x-2 y y^{\prime} & =0 \\
-2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{-2 y} \\
y^{\prime} & =\frac{x}{y}
\end{aligned}
$$

27) If $y=\frac{x+1}{x+2}$, then $y^{\prime}=$

Solution:

Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x+2)-(x+1)(1)}{(x+2)^{2}}=\frac{x+2-x-1}{(x+2)^{2}} \\
& =\frac{1}{(x+2)^{2}}
\end{aligned}
$$

18) If $y=\sqrt{3 x^{2}+6 x}$, then $\left.y^{\prime}\right|_{x=1}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}} \\
\left.y^{\prime}\right|_{x=1}=\frac{3((1)+1)}{\sqrt{3(1)^{2}+6(1)}}=\frac{6}{\sqrt{9}}=\frac{6}{3}=2
\end{gathered}
$$

20) The tangent line equation to the curve $y=\frac{2 x}{x+1}$ at the point $(0,0)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=\frac{(2)(x+1)-(2 x)(1)}{(x+1)^{2}}=\frac{2 x+2-2 x}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}
$$

Thus, the slope at $x=0$ is

$$
\left.y^{\prime}\right|_{x=0}=\frac{2}{(0+1)^{2}}=2
$$

Hence, the tangent line equation passing through the point $(0,0)$ with slope $m=2$ is

$$
y-0=(2)(x-0)
$$

$$
y=2 x
$$

22) The tangent line equation to the curve

$$
y=3 x^{2}+2 x+5 \text { at the point }(0,5) \text { is }
$$

Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x+2
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=0}=6(0)+2=2
$$

Hence, the tangent line equation passing through the point $(0,5)$ with slope $m=2$ is

$$
\begin{aligned}
y-5 & =2(x-0) \\
y-5 & =2 x \\
y & =2 x+5
\end{aligned}
$$

24) If $y=x-e^{x}$, then $y^{\prime \prime}=$

Solution:
Use the rules $\quad(f-g)^{\prime}=f^{\prime}-g^{\prime}$ and $\quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =1-e^{x} \\
y^{\prime \prime} & =-e^{x}
\end{aligned}
$$

26) If $x^{2}+y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{2 y} \\
y^{\prime} & =-\frac{x}{y}
\end{aligned}
$$

28) If $y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x$, then $y^{\prime}=$

Solution:

Use the rules

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x=x^{-\frac{5}{2}}+\sec x$
$y^{\prime}=\left(-\frac{5}{2}\right) x^{-\frac{5}{2}-1}+\sec x \tan x=-\frac{5}{2} x^{-7 / 2}+\sec x \tan x$
29) If $y=\tan ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$

$$
y^{\prime}=\frac{1}{1+\left(x^{3}\right)^{2}} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{1+x^{6}}
$$

31) If $y=\sec ^{2} x-1$, then $y^{\prime}=$

Solution:
Use the rules $(f-g)^{\prime}=f^{\prime}-g^{\prime}, \quad(u)^{n}=n(u)^{n-1} . u^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u . u^{\prime}$

$$
y^{\prime}=2 \sec x . \sec x \tan x=2 \sec ^{2} x \tan x
$$

33) If $y=x^{\cos x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\cos u)^{\prime}=-\sin u . u^{\prime}$

$$
\begin{gathered}
y=x^{\cos x} \\
\ln y=\ln x^{\cos x} \\
\ln y=\cos x \cdot \ln x \\
\frac{y^{\prime}}{y}=-\sin x \cdot \ln x+\cos x \cdot \frac{1}{x}=-\sin x \cdot \ln x+\frac{\cos x}{x} \\
y^{\prime}=y\left(-\sin x \cdot \ln x+\frac{\cos x}{x}\right) \\
=x^{\cos x}\left(\frac{\cos x}{x}-\sin x \cdot \ln x\right)
\end{gathered}
$$

35) If $y=\frac{5^{x}}{\cot x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime} & =\frac{f^{\prime} g-f g^{\prime}}{g^{2}}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \\
& \text { and }(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime} \\
y^{\prime} & =\frac{\left(5^{x} \ln 5\right)(\cot x)-\left(5^{x}\right)\left(-\csc ^{2} x\right)}{(\cot x)^{2}} \\
& =\frac{5^{x}\left(\ln 5 \cot x+\csc ^{2} x\right)}{\cot ^{2} x}
\end{aligned}
$$

37) If $y=x^{-2} e^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rules $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(-2 x^{-3}\right) & \left(e^{\sin x}\right)+\left(x^{-2}\right)\left(e^{\sin x} \cdot \cos x\right) \\
& =-2 x^{-3} e^{\sin x}+x^{-2} \cos x e^{\sin x} \\
& =x^{-3} e^{\sin x}(-2+x \cos x) \\
& =x^{-3} e^{\sin x}(x \cos x-2)
\end{aligned}
$$

39) If $x^{2}+y^{2}=3 x y+7$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =3 y+3 x y^{\prime} \\
2 y y^{\prime}-3 x y^{\prime} & =3 y-2 x \\
y^{\prime}(2 y-3 x) & =3 y-2 x \\
y^{\prime} & =\frac{3 y-2 x}{2 y-3 x}
\end{aligned}
$$

30) If $y=\tan x-x$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
(f-g)^{\prime}=f^{\prime}-g^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=\sec ^{2} x-1
\end{gathered}
$$

32) If $y=x^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=x^{\sin x} \\
\ln y=\ln x^{\sin x} \\
\ln y=\sin x \cdot \ln x \\
\frac{y^{\prime}}{y}=\cos x \cdot \ln x+\sin x \cdot \frac{1}{x}=\cos x \cdot \ln x+\frac{\sin x}{x} \\
y^{\prime}=y\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)=x^{\sin x}\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)
\end{gathered}
$$

34) If $y=\left(2 x^{2}+\csc x\right)^{9}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=9\left(2 x^{2}+\csc x\right)^{8} \cdot(4 x-\csc x \cot x)
$$

36) If $y=e^{2 x}$, then $y^{(6)}=$

Solution:

Use the rule $\quad\left(e^{u}\right)^{\prime}=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =2 e^{2 x} \\
y^{\prime \prime} & =4 e^{2 x} \\
y^{\prime \prime \prime} & =8 e^{2 x} \\
y^{(4)} & =16 e^{2 x} \\
y^{(5)} & =32 e^{2 x} \\
y^{(6)} & =64 e^{2 x}
\end{aligned}
$$

38) If $y=5^{\tan x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=5^{\tan x} \cdot \ln 5 \cdot \sec ^{2} x
\end{gathered}
$$

40) If $y=\sin ^{3}(4 x)$, then $y^{(6)}=_{y^{\prime}}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =3 \sin ^{2}(4 x) \cdot \cos (4 x) \cdot(4) \\
& =12 \sin ^{2}(4 x) \cdot \cos (4 x)
\end{aligned}
$$

41) If $y=3^{x} \cot x$, then $y^{\prime}=$

Solution:

Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a . u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(3^{x} \cdot \ln 3\right) & (\cot x)+\left(3^{x}\right)\left(-\csc ^{2} x\right) \\
& =3^{x} \ln 3 \cot x-3^{x} \csc ^{2} x \\
& =3^{x}\left(\ln 3 \cot x-\csc ^{2} x\right)
\end{aligned}
$$

43) If $f(x)=\cos x$, then $f^{(45)}(x)=$

Solution:

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\sin x \\
f^{\prime \prime}(x) & =-\cos x \\
f^{\prime \prime \prime}(x) & =\sin x \\
f^{(4)}(x) & =\cos x
\end{aligned}
$$

Note: $f^{(n)}(x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{gathered}
f^{(44)}(x)=\cos x \\
f^{(45)}(x)=-\sin x
\end{gathered}
$$

45) If $y=x^{x}$, then $y^{\prime}=$

Solution:
Use the rule $(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln x^{x} \\
\ln y & =x \ln x \\
\frac{y^{\prime}}{y} & =(1)(\ln x)+(x)\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y} & =\ln x+1 \\
y^{\prime}=y(1+\ln x) & =x^{x}(1+\ln x)
\end{aligned}
$$

47) If $y=\cot ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=-\frac{e^{x}}{1+e^{2 x}}
$$

49) If $y=\sin ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

51) If $y=\cos \left(2 x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(2 x^{3}\right) \cdot\left(6 x^{2}\right)=-6 x^{2} \sin \left(2 x^{3}\right)
$$

42) If $y=\left(2 x^{2}+\sec x\right)^{7}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=7\left(2 x^{2}+\sec x\right)^{6} \cdot(4 x+\sec x \tan x)
$$

44) If $D^{47}(\sin x)=$

Solution:

$$
\begin{aligned}
D(\sin x) & =\cos x \\
D^{2}(\sin x) & =-\sin x \\
D^{3}(\sin x) & =-\cos x \\
D^{4}(\sin x) & =\sin x
\end{aligned}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{44}(\sin x)=\sin x \\
& D^{45}(\sin x)=\cos x \\
& D^{46}(\sin x)=-\sin x \\
& D^{47}(\sin x)=-\cos x
\end{aligned}
$$

46) If $f(x)=\frac{\ln x}{x^{2}}$, then $f^{\prime}(1)=$

Solution:
Use the rules $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad$ and $\quad(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{\left(\frac{1}{x}\right)\left(x^{2}\right)-(\ln x)(2 x)}{\left(x^{2}\right)^{2}}=\frac{x-2 x \ln x}{x^{4}} \\
=\frac{x(1-2 \ln x)}{x^{4}}=\frac{1-2 \ln x}{x^{3}}
\end{array}
$$

$$
\therefore \quad f^{\prime}(1)=\frac{1-2 \ln (1)}{(1)^{3}}=\frac{1-2(0)}{1}=1
$$

48) If $y=\tan ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=\frac{e^{x}}{1+e^{2 x}}
$$

50) If $y=\cos ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=-\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

52) If $y=\csc x \cot x$, then $y^{\prime}=$

Solution:
Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$,
$(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$
$y^{\prime}=(-\csc x \cot x)(\cot x)+(\csc x)\left(-\csc ^{2} x\right)$ $=-\csc x \cot ^{2} x-\csc ^{3} x=-\csc x\left(\cot ^{2} x+\csc ^{2} x\right)$
53) If $y=\sqrt{x^{2}-2 \sec x}$, then $y^{\prime}=$ Solution:
Use the rules

$$
\begin{aligned}
(\sqrt{u})^{\prime} & =\frac{u^{\prime}}{2 \sqrt{u}} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \\
y^{\prime} & =\frac{2 x-2 \sec x \tan x}{2 \sqrt{x^{2}-2 \sec x}}=\frac{2(x-\sec x \tan x)}{2 \sqrt{x^{2}-2 \sec x}} \\
& =\frac{x-\sec x \tan x}{\sqrt{x^{2}-2 \sec x}}
\end{aligned}
$$

55) If $x y+\tan x=2 x^{3}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
{\left[(1)(y)+(x)\left(y^{\prime}\right)\right]+\sec ^{2} x=6 x^{2}+\cos y \cdot y^{\prime}} \\
y+x y^{\prime}+\sec ^{2} x=6 x^{2}+y^{\prime} \cos y \\
x y^{\prime}-y^{\prime} \cos y=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}(x-\cos y)=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}=\frac{6 x^{2}-y-\sec ^{2} x}{x-\cos y}
\end{gathered}
$$

57) If $y=\sin ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:

Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

59) If $y=\sec ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\sec ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$

$$
y^{\prime}=\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=\frac{3}{x \sqrt{x^{6}-1}}
$$

61) If $y=\ln \left(x^{3}-2 \sec x\right)$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x^{3}-2 \sec x} \cdot\left(3 x^{2}-2 \sec x \tan x\right) \\
& =\frac{3 x^{2}-2 \sec x \tan x}{x^{3}-2 \sec x}
\end{aligned}
$$

63) If $y=\ln (\sin x)$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
& (\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sin u)^{\prime}=\cos u \cdot u^{\prime} \\
& y^{\prime}=\frac{1}{\sin x} \cdot(\cos x)=\frac{\cos x}{\sin x}=\cot x
\end{aligned}
$$

54) If $y=\left(3 x^{2}+1\right)^{6}$, then $y^{\prime}=$

Solution:
Use the rule $\quad(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$

$$
y^{\prime}=6\left(3 x^{2}+1\right)^{5} \cdot(6 x)=36 x\left(3 x^{2}+1\right)^{5}
$$

56) If $y=x^{-1} \sec x$, then $y^{\prime}=$

Solution:

Use the rules

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}= & \left(-x^{-2}\right)(\sec x)+\left(x^{-1}\right)(\sec x \tan x) \\
& =x^{-1} \sec x \tan x-x^{-2} \sec x \\
& =x^{-2} \sec x(x \tan x-1)
\end{aligned}
$$

58) If $y=\cos ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=-\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

60) If $y=\csc ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\csc ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
$y^{\prime}=-\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=-\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=-\frac{3}{x \sqrt{x^{6}-1}}$
62) If $y=\ln (\cos x)$, then $y^{\prime}=$

Solution:

Use the rules

$(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\cos x} \cdot(-\sin x)=-\frac{\sin x}{\cos x}=-\tan x
$$

64) If $y=\ln \sqrt{3 x^{2}+5 x}$, then $y^{\prime}=$ Solution:
Use the rules $(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{1}{\sqrt{3 x^{2}+5 x}} \cdot\left(\frac{6 x+5}{2 \sqrt{3 x^{2}+5 x}}\right)=\frac{6 x+5}{2\left(3 x^{2}+5 x\right)}
$$

65) If $y=\log _{5}\left(x^{3}-2 \csc x\right)$, then $y^{\prime}=$

Solution:
Use the rules
$\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$ and $(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2 \csc x\right)(\ln 5)} \cdot\left[3 x^{2}-2(-\csc x \cot x)\right]
$$

$$
=\frac{3 x^{2}+2 \csc x \cot x}{\left(x^{3}-2 \csc x\right)(\ln 5)}
$$

67) If $y=2 x^{3}-\sin x$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
y^{\prime}=6 x^{2}-\cos x
$$

68) If $y=x^{3} \cos x$, then $y^{\prime}=$

Solution:

Use the rules
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\left(3 x^{2}\right)(\cos x)+\left(x^{3}\right)(-\sin x) \\
& =3 x^{2} \cos x-x^{3} \sin x
\end{aligned}
$$

69) If $y=x^{\sqrt{x}}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
\begin{gathered}
y=x^{\sqrt{x}} \\
\ln y=\ln x \sqrt{x} \\
\ln y=\sqrt{x} \ln x \\
\frac{y^{\prime}}{y}=\left(\frac{1}{2 \sqrt{x}}\right)(\ln x)+(\sqrt{x})\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y}=\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}=\frac{x \ln x+2 x}{2 x \sqrt{x}}=\frac{x(\ln x+2)}{2 x \sqrt{x}} \\
=\frac{\ln x+2}{2 \sqrt{x}} \\
y^{\prime}=y\left(\frac{\ln x+2}{2 \sqrt{x}}\right)=x^{\sqrt{x}}\left(\frac{\ln x+2}{2 \sqrt{x}}\right)
\end{gathered}
$$

71) If $y=\log _{7}\left(x^{3}-2\right)$, then $y^{\prime}=$

Solution:

Use the rule $\quad\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2\right)(\ln 7)} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{\left(x^{3}-2\right)(\ln 7)}
$$

66) If $y=\ln \frac{x-1}{\sqrt{x+2}}$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \text { and }(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}
$$

$$
y^{\prime}=\frac{1}{\frac{x-1}{\sqrt{x+2}}} \cdot\left(\frac{(1)(\sqrt{x+2})-(x-1)\left(\frac{1}{2 \sqrt{x+2}}\right)}{(\sqrt{x+2})^{2}}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\sqrt{x+2}-\frac{x-1}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{2(x+2)-(x-1)}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{x+5}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1}\left(\frac{x+5}{2(x+2) \sqrt{x+2}}\right)
$$

$$
=\frac{x+5}{2(x-1)(x+2)}
$$

70) If $y=(\sin x)^{x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=(\sin x)^{x} \\
\ln y=\ln (\sin x)^{x} \\
\ln y=x \ln (\sin x) \\
\frac{y^{\prime}}{y}=(1)(\ln (\sin x))+(x)\left(\frac{\cos x}{\sin x}\right) \\
\frac{y^{\prime}}{y}=\ln (\sin x)+\frac{x \cos x}{\sin x}=\ln (\sin x)+x \cot x \\
y^{\prime}=y(\ln (\sin x)+x \cot x) \\
=(\sin x)^{x}(\ln (\sin x)+x \cot x)
\end{gathered}
$$

72) If $y=\cos \left(x^{5}\right)$, then $y^{\prime}=$

Solution:
Use the rule $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(x^{5}\right) \cdot\left(5 x^{4}\right)=-5 x^{4} \sin \left(x^{5}\right)
$$

73) If $y=\sec x \tan x$, then $y^{\prime}=$

Solution:
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \quad$ and $(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime}$
$y^{\prime}=(\sec x \tan x)(\tan x)+(\sec x)\left(\sec ^{2} x\right)$
$=\sec x \tan ^{2} x+\sec ^{3} x=\sec x\left(\tan ^{2} x+\sec ^{2} x\right)$
75) If $y=(x+\sec x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\sec x)^{2} \cdot(1+\sec x \tan x)
$$

77) If $x^{2}-5 y^{2}+\sin y=0$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
2 x-10 y y^{\prime}+\cos y \cdot y^{\prime}=0 \\
y^{\prime}(-10 y+\cos y)=-2 x \\
y^{\prime}=\frac{-2 x}{-10 y+\cos y}=\frac{2 x}{10 y-\cos y}
\end{gathered}
$$

79) If $f(x)=\sin ^{2}\left(x^{3}+1\right)$, then $f^{\prime}(x)=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$
$f^{\prime}(x)=2 \sin \left(x^{3}+1\right) \cdot\left(\cos \left(x^{3}+1\right)\right) \cdot\left(3 x^{2}\right)$ $=6 x^{2} \sin \left(x^{3}+1\right) \cos \left(x^{3}+1\right)$
81) If $y=\tan ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$
$y^{\prime}=\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}=\frac{2}{4+x^{2}}$
83) If $y=\sin ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

74) If $D^{99}(\cos x)=$

Solution:

$$
\begin{aligned}
D(\cos x) & =-\sin x \\
D^{2}(\cos x) & =-\cos x \\
D^{3}(\cos x) & =\sin x \\
D^{4}(\cos x) & =\cos x
\end{aligned}
$$

Note: $D^{n}(\cos x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{aligned}
& D^{96}(\cos x)=\cos x \\
& D^{97}(\cos x)=-\sin x \\
& D^{99}(\cos x)=-\cos x \\
& D^{99}(\cos x)=\sin x
\end{aligned}
$$

76) If $x^{2}=5 y^{2}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x & =10 y y^{\prime}+\cos y \cdot y^{\prime} \\
y^{\prime}(10 y+\cos y) & =2 x \\
y^{\prime} & =\frac{2 x}{10 y+\cos y}
\end{aligned}
$$

78) If $y=\sin x \sec x$, then $y^{\prime}=$

Solution:

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sin u)^{\prime}=\cos u . u^{\prime}$ and

$$
(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y^{\prime}=(\cos x)(\sec x)+(\sin x)(\sec x \tan x)$
$=1+\sin x \cdot \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}=1+\frac{\sin ^{2} x}{\cos ^{2} x}=1+\tan ^{2} x$
$=\sec ^{2} x$
80) If $y=(x+\cot x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\cot x)^{2} \cdot\left(1-\csc ^{2} x\right)
$$

82) If $y=\cot ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}}$

$$
\begin{gathered}
y^{\prime}=-\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=-\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=-\frac{1}{2\left(\frac{4+x^{2}}{4}\right)} \\
=-\frac{2}{4+x^{2}}
\end{gathered}
$$

84) If $y=\cos ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=-\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=-\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =-\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

85) If $D^{99}(\sin x)=$

Solution:

$$
\begin{gathered}
D(\sin x)=\cos x \\
D^{2}(\sin x)=-\sin x \\
D^{3}(\sin x)=-\cos x \\
D^{4}(\sin x)=\sin x
\end{gathered}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{96}(\sin x)=\sin x \\
& D^{97}(\sin x)=\cos x \\
& D^{98}(\sin x)=-\sin x \\
& D^{99}(\sin x)=-\cos x
\end{aligned}
$$

1. The horizontal asymptote(s) of the function $f(x)=\frac{\sqrt{9 x^{2}+2 x}}{x-3}$ is (are)
(a) $x=3$
(b) $y=1$
(c) $y=3, y=-3$
(d) $y=-1$
2. $\lim _{x \rightarrow 0} \frac{\tan 5 x}{\tan 3 x}=$
(a) $\frac{3}{5}$
(b) $\frac{5}{3}$
(c) 1
(d) Does not exist
3. $\csc ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{3}$
(a) True
(b) False
4. $\lim _{x \rightarrow 0^{-}} \frac{6 x+|x|}{7 x}=$
(a) 1
(b) $\frac{7}{6}$
(c) $\frac{6}{7}$
(d) $\frac{5}{7}$
5. The degree measure of $\theta=\frac{5 \pi}{12}$ is
(a) 75°
(b) 750°
(c) 150°
(d) 120°
6. If $f(x)=(x+2)^{2}, g(x)=\sqrt{x}$, Then $(g \circ f)(x)=$
(a) $x^{2}+2$
(b) $\sqrt{x+2}$
(c) $x+2$
(d) $\sqrt{x^{2}+2}$
7. The function $f(x)=\frac{\sqrt{4-x^{2}}}{x-2}$ is continuous on
(a) $[-2,2]$
(b) $[-2,2)$
(c) $(-\infty,-2] \cup(2, \infty)$
(d) $(-\infty,-2) \cup(2, \infty)$
8. The function $f(x)=x^{\frac{2}{3}}+x^{3}+2 x+1$ is
(a) Algebraic function
(b) Power function
(c) Polynomial function
(d) Exponential function
9. The function $f(x)=x^{4}+5$ is symmetric about origin
(a) True
(b) False
10. The function $f(x)=\left(\frac{1}{4}\right)^{x}$ is increasing on \mathbb{R}
(a) True
(b) False
11. $\lim _{x \rightarrow \infty} \frac{x-4}{x^{2}-x-12}=$
(a) 0
(b) $\frac{1}{3}$
(c) 4
(d) ∞
12. The vertical asymptote(s) of the function $(f)(x)=\frac{x-4}{x^{2}-16}$
(a) $y=-4$
(b) $x=-4$
(c) $x=4, x=-4$
(d) $x=4$
13. Which of the following represents a function and its inverse
(a)

(b)

(d)

(c)

(a) a
(b) b
(c) c
(d) d
14. The following figure shows that an equation for new function from old function $f(x)=x^{2}$

is $f(x)=(x-3)^{2}+1$
(a) True
(b) False
15. The domain of the function $f(x)=\cos ^{-1}(3 x+4)$ is
(a) $\left[1, \frac{5}{3}\right]$
(b) $\left(1, \frac{5}{3}\right)$
(c) $\left[-\frac{5}{3},-1\right]$
(d) $\left(-\frac{5}{3},-1\right)$
16. If $\frac{1}{3}(\cos x+11) \leq f(x) \leq e^{x}+3$, then $\lim _{x \rightarrow 0} f(x)=$
(a) 0
(b) 3
(c) 4
(d) $\frac{1}{3}$
17. The following graph represents one-to-one function

(a) True
(b) False
18. The range of the function $f(x)=e^{x}-3$ is
(a) $(3, \infty)$
(b) $(0, \infty)$
(c) \mathbb{R}
(d) $(-3, \infty)$
19. $\lim _{x \rightarrow \infty}\left(-3 x^{3}+2 x+5\right)=$
(a) $+\infty$
(b) -3
(c) 5
(d) $-\infty$
20. The domain of the function $f(x)=\ln (x-1)+\sqrt{x^{2}+2}$ is
(a) $(0, \infty)$
(b) $(1, \infty)$
(c) \mathbb{R}
(d) $(0,1)$
21.

Then $\lim _{x \rightarrow-1} f(x)=$
(a) -1
(b) 1
(c) 3
(d) Does not exist
22. $\cot \left(\frac{5 \pi}{3}+\pi\right)=\cot \left(\frac{5 \pi}{3}\right)$
(a) True
(b) False
23. If $f(x)=\ln (x-5)$, then $f^{-1}(x)=$
(a) e^{x+5}
(b) e^{x-5}
(c) $e^{x}+5$
(d) $e^{x}-5$

FINAL EXAM-MATH 110 FROM SECTION 2.7 TO SECTION 4.3

1. If $f(x)=\left|x^{3}-25 x\right|$ then $f(x)$ is differentiable at $x=$
a) $x=2$
b) $x=5$
c) $\boldsymbol{x}=\mathbf{0}$
d) $x=-5$
2. If $y=\tan ^{2}\left(\frac{\pi}{4}\right)$ then $y^{\prime}=0$
a) True
b) False
3. The equation of the normal line line of the curve $f(x)=\mathrm{e}^{x} g(\mathrm{x})$ where $\mathrm{g}(0)=2$ and $\mathrm{g}^{\prime}(0)=3$ is
a) $y=2-\frac{1}{5} x$
b) $y=5 x+2$
c) $x=2-\frac{1}{5} y$
d) $x=5 y+2$
4. If $g(x)=4^{\mathrm{x}-1}$ then $g^{\prime}(1)=$..
a) 4
b) $2 \ln (2)$
c) $\ln (2)$
d) 1
5. If $g(x)=\left(x^{2}+4\right)\left(2 x^{2}+3\right)$ then $g^{\prime \prime}(x)=$
a) $2 x^{4}+11 x^{2}+12$
b) $48 x$
c) $24 x^{2}-22$
d) $8 x^{3}+22 x$
6. If $f(x)=e^{2 x}$ then $f^{(n)}(x)=$ \qquad
a) $e^{2 x}$
b) $2 e^{2 x}$
c) $2^{n} e^{2 x}$
d) $\frac{e^{e^{2 x}}}{2^{n}}$
7. If $f(x)=\frac{x^{2}}{x^{2}-2}$ then $f^{\prime}(3)=$.
a) $\frac{-12}{49}$
b) 104
c) $\frac{3}{2}$
d) -2
8. If $y=x^{2}\left(e^{x}+5\right)$ then $y^{\prime}=e^{x}\left(x^{2}+2 x\right)+5$
a) True
b) False
9. If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{c x}+\ln (\cos (x))$ and $\boldsymbol{f}^{\prime}\left(\frac{\pi}{4}\right)=6$ then $c=\ldots .$.
b) 6
b) 7
c) 5
d) $-\frac{13}{2}$
10. If $f(x)=\sin x$ then $f^{(99)}(x)=$.
a) $\cos (x)$
b) $\sin (x)$
c) $-\cos (x)$
d) $-\sin (x)$
11. If $y=x \sec x+\tan (\sin x)$ then $y^{\prime}=\cdots$
a) $\sec (x)+\sec ^{2}(\sin (x))$
b) $\sec (x)(1+x \tan (x))+\cos (x) \sec ^{2}(\sin (x))$
c) $\sec (x) \tan (x)+\sec ^{2}(\sin x)$
d) $\sec (x)+(\operatorname{costan}(\sin (x))$
12. If $y=\sqrt{x^{3}-27}$ then $y^{\prime}=\cdots$
a) $\frac{1}{2 \sqrt{x^{3}-27}}$
b) $\frac{3 x^{2}}{\sqrt{x^{3}-27}}$
c) $\frac{3 x^{2}}{2 \sqrt{x^{3}-27}}$
d) $\frac{1}{\sqrt{x^{3}-27}}$
13. If $y=\cos ^{2} x-\sin ^{2} x$ then $y^{\prime}=\cdots$
a) 1
b) 0
c) $2 \sin (2 x)$
d) $-2 \sin (2 x)$
14. If $h(x)=10^{2 \sqrt{x}}$ then $h^{\prime}(x)=\cdots$
a) $10^{2 \sqrt{x}} \ln (10)$
b) $\frac{10^{2 \sqrt{x}} \ln (10)}{\sqrt{x}}$
c) $\frac{10^{2 \sqrt{x}}}{\sqrt{x}}$
d) $\frac{10^{2 \sqrt{x}} \ln (10)}{2 \sqrt{x}}$
15. If $h(x)=\sin ^{-1}(x)$ then $h^{\prime \prime}(x)=\frac{x}{\sqrt{\left(1-x^{2}\right)^{3}}}$
a) True
b) False
16. If $h(x)=x \tan ^{-1}\left(\frac{x}{2}\right)$ then $h^{\prime}(2)=\ldots \ldots$
a) $\frac{\pi}{4}$
b) $\frac{\pi+2}{4}$
c) $\frac{\pi+3}{6}$
d) $\frac{\pi}{6}$
17. If $x^{2}+y^{2}=4 x y$ then $y^{\prime}=\ldots .$.
a) $\frac{y+2 x}{2 y+x}$
b) $\frac{y-2 x}{2 y-x}$
c) $\frac{2 y+x}{y+2 x}$
d) $\frac{2 y-x}{y-2 x}$
18. If $y=\ln \left(x^{2}+y^{2}\right)$ then $y^{\prime}=\ldots .$.
a) $\frac{2 x}{x^{2}+y^{2}-2}$
b) $\frac{2}{x}+\frac{2}{y}$
c) $\frac{2 x+2 y}{x^{2}+y^{2}}$
d) $\frac{2 y}{x y-2 x}$
19. If $f(x)=x^{\cos x}$ then $f^{\prime}(x)=\ldots .$.
a) $-x^{\cos x} \sin (x) \ln (x)$
b) $-\cos (x) x^{\cos x-1} \sin (x)$
c) $\frac{-\cos (x) \sin (x)}{x}$
d) $x^{\cos (x)-1}[\cos (x)-x \ln (x) \sin (x)]$
20. $\frac{d^{4}}{d x^{4}}\left(x^{3} \ln (x)\right)=\ldots .$.
a) $\frac{6}{x}$
b) $11+6 \ln (x)$
c) $x^{2}+3 x^{2} \ln (x)$
d) $5 x+6 x \ln (x)$
21. If $f(x)=\ln (\csc (x)-\cot (x))$ then $f^{\prime}(x)=\ldots$.
a) $\csc (x)$
b) $-\csc (x)$
c) $-\sin (x)$
d) $\sin (x)$
22. If $f(x)=\log \left(\sin ^{3}(x)\right)$ then $f^{\prime}(x)=\ldots$.
a) $3 \tan (x)$
b) $3 \cot (x)$
c) $\frac{3 \tan (x)}{\ln (10)}$
d) $\frac{3 \cot (x)}{\ln (10)}$
23. If $h(x)=\ln \left(x e^{x^{2}}\right)$) then $h^{\prime \prime}(2)=\frac{7}{4}$
a) True
b) False
24. If $h(x)=\log _{3}(\sec (x))$ then $h^{\prime \prime \prime}(2)=4 \ln (3)$
a) True
b) False
25. If $f(x)=\frac{2}{3} x^{3}-8 x$ then the critical numbers of $f(x)$ are
a) $x= \pm 2$
b) $x= \pm 4$
c) $x= \pm 8$
d) $x=0$ and $x= \pm 2$
26. If $f(x)=x^{2}-6 x$ then $f(x)$ has local
a) $\operatorname{minimum} x=3$
b) minimum $x=-9$
c) maximum $x=3$
d) maximum $x=3$
27. If $f(x)=27 x-x^{3}$ then is local maximum value
a) 3
b) -3
c) 54
d) -54
28. If $h(x)=2-x-x^{2}$ then $h(x)$ has concave down on R
a) True
b) False
29. If $h(x)=2-x^{2}-x^{3}$ then $\left(-\frac{1}{3}, h\left(-\frac{1}{3}\right)\right)$ is inflection point of $h(x)$
a) True
b) False
30. If $h(x)=e^{x}$ then $f(x)$ has no extreme value
a) True
b) False
31. If $f(x)=5 x^{2}-20 x$ then $f(x)$ has absolute minimum at $x=\ldots$ on $[-1,5]$
a) -1
b) 5
c) 2
d) 0
32. If $f(x)$ is a function whose graph is shown

Then $f(x)$ has absolute maximum at $x=$ \qquad
$\mathrm{f}(\mathrm{x})$ has absolute minimum at $\boldsymbol{x}=\ldots . . .$.
$\mathrm{f}(\mathrm{x})$ has local minimum at $\boldsymbol{x}=\ldots . . .$.
$\mathrm{f}(\mathrm{x})$ has local maximum at $\boldsymbol{x}=\ldots . . .$.
the critical number of $f(x)$ are \qquad
$f(x)$ have concave up on
and concave down on
the inflection point of $f(x)$ is \qquad

