

ŻŻŻŻ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدراسية في المملكة العربية السعودية

PHYS 101

Ch. 9

Rotation of Rigid Bodies

Physics Department

Chapter 9

Physics Department

Chapter Nine

Rotation of Rigid Bodies

- Angular Velocity and Acceleration
- Relating Linear and Angular Kinematics

ANGULAR VELOCITY AND ACCELERATION

Angular coordinate

A car's speedometer needle rotates about a *fixed axis*.

Units of angles

One complete revolution is $360^\circ = 2\pi$ radians.

University of Jeddah

$$1 \operatorname{rad} = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$
$$\theta = \frac{s}{r}$$
$$s = r\theta$$
$$\int_{0}^{y} \theta = 60^{\circ} = \pi/3$$

 $(\theta \text{ in radians})$

θ

S

In any equation that relates linear quantities to angular quantities, the angles MUST be expressed in radians ...

 $\pi/3$ rad

- x

RIGHT! $s = (\pi/3)r$

... never in degrees or revolutions.

WRONG \triangleright s = 60r

University of Jeddah

Example 1:

A turbine blade of radius 5 cm rotates an angle of 60°. Find the angle of rotation in radians:

Solution:

(A)

(A) $\pi/3$ rad (B) $\pi/2$ rad (C) $\pi/4$ rad (D) 60 rad

Example 2:

A turbine blade of radius 5 cm rotates an angle of 60°. Find the length of scanned arc:

Solution:

(B)

(A) 2.74 cm
(B) 5.23 cm
(C) 3.21 cm
(D) 10.48 cm

Example 3:

The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. Find θ in radians at t = 2 s.

Solution:

(C)

(A) 4 rad
(B) 8 rad
(C) 16 rad
(D) 24 rad

Example 4:

The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. Find θ in degrees at t = 2 s.

Solution:

(A)

(A) 920° (B) 180° (C) 360° (D) 720°

Angular Velocity

The average angular velocity of a body is given by

$$\omega_{\text{av-}z} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

where z means that the rotation is about the z-axis. The instantaneous angular Direction of rotation

2014 IEMO a a a concept University of Jeddah

velocity is

Angular displacement

 $\Delta\theta$ of the rotating needle

 $\theta_2 - \theta_1$

P at t_1

X

over a time interval Δt :

 $\Delta \theta$

Counterclockwise rotation:

 θ increases, so angular θ decreases, so angular velocity is positive. velocity is negative. $\Delta \theta > 0$, so

Clockwise rotation:

 $\Delta \theta < 0$, so $\omega_{\mathrm{av}\text{-}z} = \Delta \theta / \Delta t > 0$ $\omega_{\mathrm{av}\text{-}z} = \Delta \theta / \Delta t < 0$

Physics Department

Angular Velocity As a Vector

Angular velocity is defined as a vector whose direction is given by the right-hand rule.

The sign of ω_z for rotation along the z-axis

Example 5:

The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. Find the distance that a particle on the flywheel rim moves from $t_1 = 2s$ to $t_2 = 5s$.

Solution:

(B)

Physics Department

(A) 48 m (B) 42 m (C) 24 m (D) 28 m

Example 6:

The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. Find the average angular velocity over that interval from $t_1 = 2s$ to $t_2 = 5s$.

(C)

Physics Department

Solution:

(A) 24 rad/s
(B) 150 rad/s
(C) 78 rad/s
(D) 12 rad/s

Angular Acceleration

The average angular acceleration is the change in angular velocity divided by the time interval and given by

$$\alpha_{\text{av-}z} = \frac{\omega_{2z} - \omega_{1z}}{t_2 - t_1} = \frac{\Delta \omega_z}{\Delta t}$$

$$\omega_{1z}$$

$$\omega_{2z}$$

$$\omega_$$

Angular Acceleration As a Vector

 $\vec{\alpha}$ and $\vec{\omega}$ in the same direction: Rotation speeding up.

 $\vec{\alpha}$ and $\vec{\omega}$ in the **opposite** directions: Rotation slowing down.

Example 7:

The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. Find the average angular acceleration over that interval from $t_1 = 2s$ to $t_2 = 5s$.

(C)

<u>Physics</u> Department

Solution:

(A) 24 rad/s²
(B) 60 rad/s²
(C) 42rad/s²
(D) 12 rad/s²

RELATING LINEAR AND ANGULAR KINEMATICS

Linear Speed in Rigid-Body Rotation

A point at a distance *r* from the axis of rotation has a linear speed of

$$s = r\theta$$

$$\left|\frac{ds}{dt}\right| = r \left|\frac{d\theta}{dt}\right|$$

 $v = r\omega$.

Physics Department

University of Jeddah

Example 8:

A turbine blade has a radius of 80 cm. At a certain instant, the blade is rotating at 10 rad/s and the angular speed is increasing at 50 rad/s². Find the linear speed.

Solution:

(A)

(A) 8 m/s
(B) 4 m/s
(C) 5 m/s
(D) 20 m/s

Linear Acceleration in Rigid-Body Rotation

For a point at a distance *r* from the axis of rotation:

- its tangential acceleration is

$$a_{tan} = r\alpha$$

- its centripetal (radial) acceleration is

$$a_{rad} = \frac{v^2}{r} = \frac{r^2 \omega^2}{r} = r \omega^2$$

Example 9:

A turbine blade has a radius of 80 cm. At a certain instant, the blade is rotating at 10.0 rad/s and the angular speed is increasing at 50.0 rad/s². Find the tangential component of the acceleration.

Solution:

(A) 80 m/s^2 (B) 40 m/s^2 (C) 50 m/s^2 (D) 20 m/s^2

(B)

Physics Department

Example 10:

A turbine blade has a radius of 80 cm. At a certain instant, the blade is rotating at 10.0 rad/s and the angular speed is increasing at 50.0 rad/s². Find the centripetal component of the acceleration.

Solution:

(A) 80 m/s^2 (B) 40 m/s^2 (C) 50 m/s^2 (D) 20 m/s^2

(A)

Physics Department