

PHYS 101

Ch. 9

Rotation of Rigid Bodies

Chapter 9

Chapter Nine

Rotation of Rigid Bodies

- Angular Velocity and Acceleration
- Relating Linear and Angular Kinematics

Angular Velocity and Acceleration

angular velocity and acceleration

Angular coordinate

A car's speedometer needle rotates about a fixed axis.

Units of angles

One complete revolution is $360^{\circ}=2 \pi$ radians .

Axis of rotation passes through origin and points out of page.

Angular Velocity and Acceleration

$1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}$
$\theta=\frac{s}{r}$
$s=r \theta$

(θ in radians)
In any equation that relates linear quantities to angular quantities, the angles MUST be expressed in radians ...

$$
\text { RIGHT! } s=(\pi / 3) r
$$

... never in degrees or revolutions.

$$
\text { WRONG }>s=60 \mathrm{r}
$$

One radian is the angle at which the arc s has the same length as the radius r.

Angular Velocity and Acceleration

Example 1:

A turbine blade of radius 5 cm rotates an angle of 60°. Find the angle of rotation in radians:

Solution:
(A)
(A) $\pi / 3 \mathrm{rad}$
(B) $\pi / 2 \mathrm{rad}$
(C) $\pi / 4 \mathrm{rad}$
(D) 60 rad

Angular Velocity and Acceleration

Example 2:

A turbine blade of radius 5 cm rotates an angle of 60°. Find the length of scanned arc:

Solution:
(B)
(A) 2.74 cm
(B) 5.23 cm
(C) 3.21 cm
(D) 10.48 cm

Angular Velocity and Acceleration

Example 3:

The angular position θ of a 0.18 m radius flywheel is given by $\theta=2 \mathrm{t}^{3} \mathrm{rad}$. Find θ in radians at $\mathrm{t}=2 \mathrm{~s}$.

Solution:
(C)
(A) 4 rad
(B) 8 rad
(C) 16 rad
(D) 24 rad

Angular Velocity and Acceleration

Example 4:

The angular position θ of a 0.18 m radius flywheel is given by $\theta=2 \mathrm{t}^{3} \mathrm{rad}$. Find θ in degrees at $\mathrm{t}=2 \mathrm{~s}$.

Solution:
(A)
(A) 920°
(B) 180°
(C) 360°
(D) 720°

Angular Velocity and Acceleration

Angular Velocity

The average angular velocity of a body is given by

$$
\omega_{\mathrm{av}-z}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

where z means that the rotation is about the z-axis.

The instantaneous angular velocity is

$$
\omega_{z}=\frac{d \theta}{d t}
$$

Angular displacement

Angular Velocity and Acceleration

Counterclockwise
rotation:
θ increases, so angular velocity is positive.

$$
\begin{aligned}
& \Delta \theta>0, \text { so } \\
& \omega_{\mathrm{av}-\mathrm{z}}=\Delta \theta / \Delta t>0
\end{aligned}
$$

Clockwise
rotation:
θ decreases, so angular velocity is negative.

$$
\begin{aligned}
& \Delta \theta<0, \text { so } \\
& \omega_{\mathrm{av}-z}=\Delta \theta / \Delta t<0
\end{aligned}
$$

Axis of rotation (z-axis) passes through origin and points out of page.

Angular Velocity and Acceleration

Angular Velocity As a Vector

Angular velocity is defined as a vector whose direction is given by the right-hand rule.

The sign of ω_{z} for rotation along the z -axis

Angular Velocity and Acceleration

Example 5:

The angular position θ of a 0.18 m radius flywheel is given by $\theta=2 \mathrm{t}^{3} \mathrm{rad}$. Find the distance that a particle on the flywheel rim moves from $t_{1}=2 \mathrm{~s}$ to $\mathrm{t}_{2}=5 \mathrm{~s}$.

Solution:
(B)
(A) 48 m
(B) 42 m
(C) 24 m
(D) 28 m

Angular Velocity and Acceleration

Example 6:

The angular position θ of a 0.18 m radius flywheel is given by $\theta=2 \mathrm{t}^{3} \mathrm{rad}$. Find the average angular velocity over that interval from $\mathrm{t}_{1}=2 \mathrm{~s}$ to $\mathrm{t}_{2}=5 \mathrm{~s}$.

Solution:
(C)
(A) $24 \mathrm{rad} / \mathrm{s}$
(B) $150 \mathrm{rad} / \mathrm{s}$
(C) $78 \mathrm{rad} / \mathrm{s}$
(D) $12 \mathrm{rad} / \mathrm{s}$

Angular Velocity and Acceleration

Angular Acceleration

The average angular acceleration is the change in angular velocity divided by the time interval and given by

$$
\alpha_{\mathrm{av}-z}=\frac{\omega_{2 z}-\omega_{1 z}}{t_{2}-t_{1}}=\frac{\Delta \omega_{z}}{\Delta t}
$$

Angular Velocity and Acceleration

Angular Acceleration As a Vector

$\overrightarrow{\boldsymbol{\alpha}}$ and $\overrightarrow{\boldsymbol{\omega}}$ in the opposite directions: Rotation
slowing down.

Angular Velocity and Acceleration

Example 7:

The angular position θ of a 0.18 m radius flywheel is given by $\theta=2 \mathrm{t}^{3} \mathrm{rad}$. Find the average angular acceleration over that interval from $\mathrm{t}_{1}=2 \mathrm{~s}$ to $\mathrm{t}_{2}=5 \mathrm{~s}$.

Solution:
(C)
(A) $24 \mathrm{rad} / \mathrm{s}^{2}$
(B) $60 \mathrm{rad} / \mathrm{s}^{2}$
(C) $42 \mathrm{rad} / \mathrm{s}^{2}$
(D) $12 \mathrm{rad} / \mathrm{s}^{2}$

Relating linear \& angular kinematics

RELATING LINEAR AND ANGULAR KINEMATICS

Distance through which point P on

Linear Speed in Rigid-Body Rotation

A point at a distance r from the axis of rotation has a linear speed of

$$
\begin{aligned}
s & =r \theta \\
\left|\frac{d s}{d t}\right| & =r\left|\frac{d \theta}{d t}\right| \\
v & =r \omega
\end{aligned}
$$

Relating linear \& angular kinematics

Example 8:

A turbine blade has a radius of 80 cm . At a certain instant, the blade is rotating at $10 \mathrm{rad} / \mathrm{s}$ and the angular speed is increasing at $50 \mathrm{rad} / \mathrm{s}^{2}$. Find the linear speed.

Solution:

(A)
(A) $8 \mathrm{~m} / \mathrm{s}$
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $5 \mathrm{~m} / \mathrm{s}$
(D) $20 \mathrm{~m} / \mathrm{s}$

Relating linear \& angular kinematics

Linear Acceleration in Rigid-Body Rotation

For a point at a distance r from the axis of rotation:

- its tangential acceleration is

$$
a_{t a n}=r \alpha
$$

- its centripetal (radial) acceleration is

$$
a_{r a d}=\frac{v^{2}}{r}=\frac{r^{2} \omega^{2}}{r}=r \omega^{2}
$$

Relating linear \& angular kinematics

Example 9:

> A turbine blade has a radius of 80 cm . At a certain instant, the blade is rotating at $10.0 \mathrm{rad} / \mathrm{s}$ and the angular speed is increasing at $50.0 \mathrm{rad} / \mathrm{s}^{2}$. Find the tangential component of the acceleration.

Solution:

(B)
(A) $80 \mathrm{~m} / \mathrm{s}^{2}$
(B) $40 \mathrm{~m} / \mathrm{s}^{2}$
(C) $50 \mathrm{~m} / \mathrm{s}^{2}$
(D) $20 \mathrm{~m} / \mathrm{s}^{2}$

Relating linear \& angular kinematics

Example 10:

> A turbine blade has a radius of 80 cm . At a certain instant, the blade is rotating at $10.0 \mathrm{rad} / \mathrm{s}$ and the angular speed is increasing at $50.0 \mathrm{rad} / \mathrm{s}^{2}$. Find the centripetal component of the acceleration.

Solution:

(A)
(A) $80 \mathrm{~m} / \mathrm{s}^{2}$
(B) $40 \mathrm{~m} / \mathrm{s}^{2}$
(C) $50 \mathrm{~m} / \mathrm{s}^{2}$
(D) $20 \mathrm{~m} / \mathrm{s}^{2}$

