بسم الله الرحمن الرحيم

ملزمه كفايات المعلمين (رياضيات متوسط وثانوي)

- معاییر مرکز قیاس
- ملخص کل معیار
- أسئلة على كل معيار
 - اختبارات سابقه
- لا نحلل بيعها أو الاستفادة منها ماديا
- الحقوق محفوظة لجميع من ساهم في هذا العمل لاتنسوهم من دعائكم

أولا: معايير مركز قياس

معايير **معلمي الرياضيات**

للمرحلة المتوسطة والثانوية

مشروع المعايير المهنية للمعلمين وأدوات التقويم

•

•

المشرف العام

د. فيصل بن عبدالله آل مشاري آل سعود

المشرف العلمي

د. عبدالله بن على القاطعي

مدير المشروع

د. عبدالله بن صالح السعدوي

إعداد

- د. عبد الله بن محمد الجوعي
 - د. محمد بن عبد اللّه النذير
 - أ. ھادى بن يحى غروى

تحكيم

- د. فهدبن مبارك الشمري
- د. مبارك بن فهيد القحطاني
- د. هاشم بن سعید الشیحی

مراجعة فنية

- د. أحمد بن زيد المسعد
- د. سعید بن محمد الشمرانی
- د. سعود بن عبدالعزيز الخنين
 - د. مشعان بن زبن الحربي
- د. فهد بن مبارك القحطاني

مراجعة لغوية

د. عبدالله بن على الشلال

. مقدمة

يفرض التغير الاقتصادي والتقني على المؤسسات التربوية الاعتناء بإكساب الطلاب معارف ومهارات تتلاءم مع احتياجات سوق العمل ومتطلبات العصر، وتسهم في إعدادهم للأدوار الإيجابية الفاعلة في مجتمعاتهم، وتطلب ذلك التغيير في وظائف المدرسة وفي دور المعلم الذي لم يعد قاصرًا على تلقين المعلومات والمعارف لطلابه أو تغطية محتوى المنهج في مدة زمنية محددة، بل امتد ليشمل مساعدتهم على التعلم، والقيام بدور فاعل في تهيئة الطلاب للحياة والقيام بأدوارهم الذاتية والأسرية والمجتمعية بما يتطلبه ذلك من معارف واتجاهات ومهارات.

وأدى التطور في وظيفة المدرسة وأدوار المعلم إلى ارتفاع مستوى التأهيل المطلوب من المعلم؛ لذا فقد سعت وزارة التربية والتعليم -ممثلة في مشروع الملك عبدالله لتطوير التعليم العام-إلى استقطاب اكفأ المتقدمين من خريجي الجامعات للانخراط في مهنة التدريس، وطورت لهذا الغرض معايير مهنية جديدة لتحديد ما يفترض أن يتمكن منه المعلم المبتدئ ليكون قادرا على تدريس تخصصه في مراحل التعليم العام بكل كفاءة واقتدار.

· خطوات العمل:

تم العمل في هذا المشروع وفق الخطوات الآتية:

١- التخطيط والإعداد للعمل، وشمل ذلك ما يلى:

أ. إعداد الإطار العام للمعايير.

ب. إعداد الخطة التنفيذية للمشروع.

ج. إعداد النماذج، ومواصفات فرق العمل في المشروع.

٢- تشكيل فرق العمل، وتضمن فريق العمل في كل تخ ص ص ما يلي:

أ. مختص علمي في مجال المادة.

ب. مختص تربوي في مجال المادة (مناهج وطرق تدريس المادة).

ج. مشرف تربوي مختص في مجال المادة.

٣- تدريب فرق العمل مل، قتصام المركز بعقد ورشة عمل مكثفة لمدة ثلاثة أيام تضمنت ما يلى:

أ. التعريف بالمشروع، وأهدافه وخطواته.

ب. التعريف بالمعايير، واستعراض نماذج من المعايير والتجارب العالمية.

ج. التدريب العملي على صياغة المعايير والمؤشرات.

٤- إعداد النموذج الآولي، قتصام الفريق بإعداد نم وذج للعمل للتأكد من ملاءمته للمواصفات والمعايير المطلوبة.

إعداد مسودة المعايير: بعد إقتصرار النماذج قتصام الفريق بإعداد مسودة المعايير، واستفاد من التجارب العالمية والعربية المتاحة.

٦- الفحص الآولي لمسودة المعايير: قتصامت اللجنة المشرفة بالفحص الآولي للمسودة للتأكد من وفائها بالمواصفات والمعايير المطلوبة.

٧- التحكيم العلمي: بعد تسلم المسودة وفحصها من اللجنة المشرفة، أحيلت إلى فريق تحكيم علمي، يتضمن ثلاثة مختصين علميين وتربويين في مجال المادة لا تقل درجتهم العلمية عن ماجستير.

٨- التعديل وفقا لمحوظات المحكمين: بعد انتهاء العمل من التحكيم أعيد مرة أخرى إلى فريق العمل لتعديله وفقًا
 لمحوظات المحكمين.

٩- المراجعة النهائية: بعد تسلم المنتج معدلاً من فرق العمل، روجع من اللجنة المشرفة للتأكد من اتساق المنتجات في كافة التخصصات.

· خطوات العمل في المشروع:

يوضح الشكل أدناه خطوات عمل إعداد المعايير:

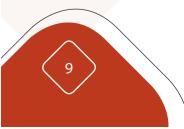
· مكونات المعايير:

تتكون معايير معلم الرياضيات للمرحلتين المتوسطة والثانوية من جزأين؛ الجزء العام الذي يشترك فيه مع جميع معلمي التخصصات الأخرى، والجزء الثاني المتعلق بالتخصص. وتشتمل المعايير المشتركة على (١١) معياراً، يتناولها بالتفصيل « المعايير المهنية الوطنية للمعلمين بالملكة العربية السعودية »، فيما تشتمل المعايير التخصصية على (٣١) معياراً تتناول بنية التخصص وطرق تدريسه.

· ف محتوى المعايير التخصصية:

وتتناول المعايير التخصصية ما ينبغي على معلم الرياضيات للمرحلتين المتوسطة والثانوية معرفته والقدرة على أدائه في التخصص التدريسي وطرق تدريسه، ويتضمن ذلك المعارف والمهارات المرتبطة بالتخصص وما يتصل بها من ممارسات تدريسية فاعلة تشمل تطبيق طرق التدريس الخاصة والتحلي بالسمات والقيم المتوقعة من المعلم المتخصص بحيث يمثل في ممارساته وسلوكياته الدور المأمول من معلم الرياضيات للمرحلتين المتوسطة والثانوية. فيتوقع منه أن يكون متمكن -بالحد الأدني- من الأداء الفني في التدريس والتعلم، ومتمكن في إطار أُوسِع من المعرفة الرياضية المتضمنة في مقررات المرحلتين المتوسطة والثانوية، فهو قادر على تقديم دروس الرياضيات مراعيا عناصر الخطة اليومية وخصائص الطلاب العقلية والنفسية وفق استراتيجيات تدريسية فاعلة ومتنوعة بحيث تراعى طبيعة الموقف التعليمي؛ محققا أهداف تعلم وتعليم الرياضيات المعرفية والمهارية والوجدانية، ومنظما لبيئة التعلم بحيث يظهر بوضوح دور المتعلم في التعلم، ومستعملا تقنيات وأدوات ووسائل معينة في تيسير التعلم، وقادرا على تغيير الأداء التدريسي وتطويره في ضوء معطيات التقويم الشامل للمتعلمين.

· ضياغة المعايير المهنية:


روعي في إعداد المعايير التخصصية أن تكون ضمن الإطار الكلي للمعايير المهنية للمعلم، لذلك رتبت في تسلسل رقمي يبدأ برقم التخصص، ثم المعيار العام في إطار المعايير العامة، ثم معيار التخصص الذي يفصل في عدد من المؤشرات، كما يتضح من الشكل التالى:

•

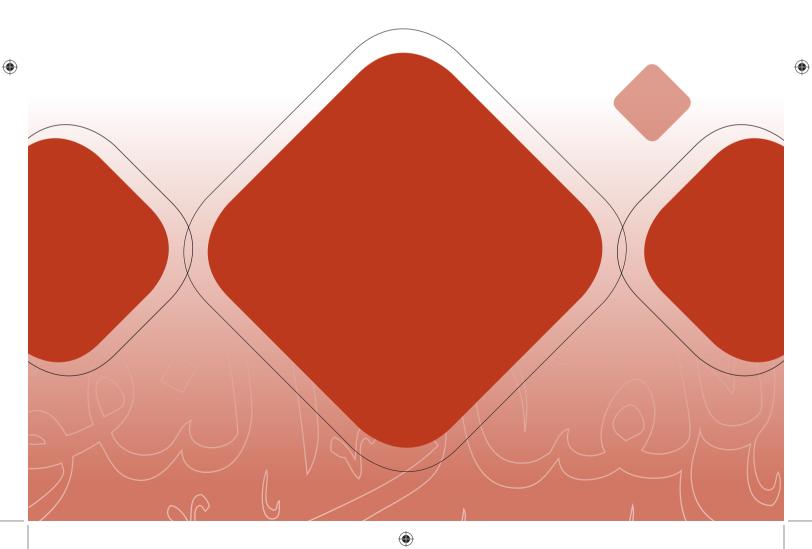
المؤشرات		المعيار
يتعرف مجموعات الأعداد (الطبيعية، والكلية، والصحيحة،	,) " '
والنسبية، والحقيقية, والمركبة) وتصنيفاتها المختلفة	٠,	
	٦.	
يتم و تحصالص الشارك الأصغر، قابلية القسمة، الأعداد الأولية والمؤلفة،	٠,	
والتطابقات)		
	.٣	المعيار ٣. ٤. ١: يتعرف الأعداد
	. ٤	والعمليات عليها
الحكم على معقولية النتائج		
يجري العمليات على مجموعات الأعداد المختلفة (العمليات الأربع،	٥.	
يبري مصي مبحوت المحادية المحاد		
ومسريه والمتعاورة والمسال المختلفة للعدد المركب ويوجد مقياسه ومرافقه	٦.	
يا يرو المسائل لفظية على الأعداد المختلفة	. ٧	
يتعرف خصائص المجموعات والعمليات عليها (التقاطع، الاتحاد،)	٠.١	
يحلل العبارات الجبرية ويبسطها	٦.	
يحل المعادلات والمتباينات الخطية والتربيعية والمحتوية على قيمة	.٣	
مطلقة		
يجري العمليات على المصفوفات	٤.	
يحل أنظمة المعادلات الخطية, ويستخدم المصفوفات والمحددات في	٥.)(s. (* ++ m / + w ())
ذلك, ويمثل الحل جبريا وهندسيا		المعيار ٣. ٤. ٢: يتعرف مبادئ الجبر
يستخدم خواص الدوال الأسية واللوغاريتمية في حل المعادلات	۲.	والدوال الحقيقية
يقارن بين العلاقات والدوال، وخصائص الدوال الحقيقية وأنواعها،	٠,٧	
ويوجد مجالها ومداها		
يجري العمليات على الدوال (العمليات الأربع، التحصيل, ومعكوس	٨.	
الدالة)		
يرسم الدوال الخطية وكثيرات الحدود من الدرجة الثانية	٠٩.	

المؤشرات		المعيار
يستخدم خصائص الخطوط المتوازية والمتعامدة والزوايا لمعرفة الأشكال يستخدم العلاقات الهندسية (نظرية فيثاغورس، تشابه المثلثات، تقاطع مستقيم مع مستقيمين متوازيين,) لحل المسائل يتعرف أنواع المثلثات وحالات تطابق مثلثين يصف خصائص الأشكال الرباعية يضرح صفات الأشكال ثلاثية الأبعاد وخصائصها يوجد ميل ومعادلة مستقيم في المستوي وعلاقته بمستقيم آخر يوجد المسافة بين نقطتين أو نقطة و مستقيم في المستوي يمثل التحويلات الهندسية (التناظر، والانسحاب والدوران ومغير البعد) يحدد العلاقة بين الزوايا الناتجة من تقاطع مستقيمين يستخدم العلاقات المترية في المثلث يتعرف القطوع المخروطية ويميز معادلاتها وخصائصها ويمثلها بيانيا يتعرف الدوال المثلثية والعلاقة بينها يتعرف الدوال المثلثية والعلاقة بينها يتعرف الدوال المثلثية والعلاقة بينها يتعرف المسائل تطبيقية على الهندسة المستوية والفراغية	7. 7. 7. 7. 7. 7. 7. 7. 7. 71. 71.	المعيار ٣. ٤. ٣: يتعرف مفاهيم الهندسة ونظرياتها
يتعرف وحدات القياس (وحدة قياس الزوايا، الطول، المحيط، المساحة، الحجم، درجة الحرارة، الزمن) يحول بين وحدات القياس المختلفة ضمن النظام نفسه يوجد محيط ومساحة المثلث والدائرة والأشكال الرباعية يحسب حجوم بعض المجسمات، ويوجد مساحتها الجانبية والكلية يحل مسائل تتضمن مقياس رسم باستخدام النسبة والتناسب يوظف التقريب في القياس يحل مسائل رياضية تطبيقية على القياس	.\ .\' .\' .\' .\' .\' .\' .\' .\' .\' .	المعيار ٣. ٤. ٤: يتعرف القياس ووحداته وتطبيقاته

المؤشرات		المعيار
يجمع البيانات ويمثلها بشكل مناسب (الجداول، القطاعات	٠.١	
الدائرية ، المدرج الإحصائي) ويحللها ويفسرها		
يتعرف الدراسات المسحية, وأنواع العينات ويستعملها في التنبؤ	٦.	
يحسب مقاييس النزعة المركزية والتشتت لمجموعة من	٠,٣	المعيار ٣. ٤. ٥: يتعرف مفاهيم
البيانات		الإحصاء والاحتمالات وتطبيقاتها
يتعرف مسلمات الاحتمال ومفاهيمه الأساسية (الاستقلال,	٤.	
التنافي, التوزيع المنفصل والمتصل,) ويحل مسائل عليها		
يحسب معاملات الارتباط ويفسرها	٥.	
يحل مسائل تطبيقية على الإحصاء والاحتمالات	.٦	
يتعرف الأنماط ويمثلها ويحممها	٠.١	
يتعرف مبادئ العد, والتباديل والتوافيق, ونظرية ذات	٦.	
الحدين		المعيار ٣. ٤. ٦: يتعرف الرياضيات
يتعرف أساسيات نظرية الأشكال	٠,٣	المتقطعة وتطبيقاتها
يحل مسائل تطبيقية على التلوين والأشكال وطرق العد	٤.	
يتعرف التقرير الرياضي وقيم الصواب وأدوات الربط وينشئ	٠.١	
حداولها	•	المعيار ٣. ٤. ٧: يتعرف المنطق
	٦.	والاستدلال الرياضي
يتعرف طرائق البرهان المختلفة واستخداماتها		<u> </u>
J 10 5. 10 5. 10 5.		

المؤشرات	المعيار
 ا. يحسب مجموع المتتابعات والمتسلسلات الحسابية والهندسية ا. يحكم على تقارب المتتابعات والمتسلسلات غيرالمنتهية ٣. يتعرف النهايات ويستخدمها في تعريف مشتقة الدالة والحكم على اتصالها ٤. يحسب مشتقة الدالة ويرسم منحناها ٥. يحسب تكامل دالة ويستخدمها في حساب المساحات والحجوم ٦. يحل مسائل تطبيقية على التفاضل والتكامل 	المعيار ٣. ٤. ٨: يتعرف حساب التفاضل والتكامل وتطبيقاتهما
 ١. يتعرف عناصر المعرفة الرياضية (مفاهيم وعلاقات ومهارات) وكيفية تحليلها وتدريسها وتقويمها ١. يوظف بكفاءة طرائق واستراتيجيات تدريس الرياضيات التي تناسب المرحلتين المتوسطة والثانوية ٣. يتعرف مهارات التفكير الرياضي وأساليب تنميتها وتعليمها ٤. يتعرف نظريات التعلم المتعلقة بتعلم وتعليم الرياضيات وتطبيقاتها ٥. يوظف التقنيات الحديثة في تعلم وتعليم الرياضيات (الآلة الحاسبة بأنواعها, البرمجيات الحاسوبية, اليدويات,) 	المعيار ٣. ٤. ٩: يتعرف أساليب تعلم وتعليم الرياضيات وتقنياتها

المؤشرات	المعيار
 ر. يتعرف خطوات حل المسألة الرياضية كدد استراتيجيات متعددة لحل مسألة رياضية محددة ويختار أنسبها للحل ٣. يوظف استراتيجيات متنوعة لحل مسائل رياضية تطبيقية 	المعيار ٣. ٤ . ١٠: يتعرف طرق حل المسألة الرياضية واستراتيجياتها
 ا. يستخدم لغة الرياضيات للتعبير عن المفاهيم الرياضية بدقة ا. يتعرف مهارات التواصل الرياضي بأنواعها ويوظفها في تواصله مع طلابه والآخرين ٣. يتعرف أساليب تنمية التواصل الرياضي لدى طلابه 	المعيار ٣. ٤. ١١: يتعرف التواصل الرياضي
 د. يظهر الترابط الرياضي بين المفاهيم والموضوعات الرياضية المختلفة ٢. يظهر علاقة الرياضيات بفروع المعرفة الأخرى ٣. يقدم تطبيقات رياضية في مجالات الحياة المختلفة 	المعيار ٣. ٤. ١٢: يتعرف الترابطات الرياضية
 ١. يعرض المعرفة الرياضية بتمثيلات متنوعة ٢. يستعمل التمثيل الرياضي لنمذجة المحتوى الرياضي ٣. يستعمل التمثيل الرياضي لنمذجة وتفسير الظواهر الطبيعية 	المعيار ٣. ٤. ١٣: يتعرف التمثيل الرياضي



•

التهيئة

(1)

أساسيات الرياضيات

الفصل الأول:

الرياضيات الأساسية

التخمين الرياضي : إصدار ادعاء عام (بهدف تعليمي) يرتكز على معطيات ومعلومات معروفة.

التبرير الاستقرائي: العملية التي يتم من خلالها اختبار عدة مواقف محددة للوصول إلى التخمين.

المثال المضاد: هو نفى الادعاء أو التخمين لإثبات خطأ العبارة.

العبارة : كل جملة خبرية يمكن الحكم عليها بأنها صحيحة فقط أو خاطئة فقط وهي نوعان :

- عبارة وصل : وهي العبارة التي تحتوي على أداة وصل " و " وتُكتب $p \wedge q$ وتقرأ p و p .
 - ${f q}$ عبارة فصل : وهي التي تحتوي على أداة فصل " أو " ${f p} ee {f q}$ و ${f p}$ أو ${f p}$.

جدول الصواب: طريقة مناسبة لتنظيم قيم الصواب للعبارات المنطقة.

ملاحظات هامة :

- (F) يرمز في جدول الصواب ، للعبارة الصائبة (الصحيحة) بالرمز (T) وللعبارة الخاطئة بالرمز
 - يرمز في جدول الصواب للنفي بالرمز أو أو أي عبارة تشمل رمز نفي (-)
- عبارة الوصل تكون صحيحة إذا كانت مركبتيها صحيحتان أما عبارة الفصل فتكون خاطئة فقط عندما تكون مركبتاها خاطئتين.

$\mathbf{p} \wedge q$ كون جدول الصواب للعبارة $\mathbf{p} \wedge q$ ؟

p	q	p ∧ q
T	T	Т
T	F	F
F	T	F
F	F	F

1) نفصل كل عبارة على حدة

 $(\mathbf{F} \ \mathbf{F}) \ (\mathbf{T} \ \mathbf{T})$ نضع في الجدول الأول (على اليسار) احتمالين (2

 $\mathbf{T} \mathbf{F} \mathbf{T} \mathbf{F}$ في الجدول الآخر \mathbf{T}

4) إذا كانت الأول صحيحة والثانية صحيح فالكل صحيح ، أما إذا كانت الأولى والثانية خاطئة فالكل خاطئ

وكذلك إذا كانت الأولى صحيحة والثانية خاطئة فالكل خاطئ .

\sim $p \wedge \sim q$ كون جدول الصواب للعبارة المركبة \sim q

p	$oldsymbol{q}$	~p	~q	~p ∧ ~ <i>q</i>
T	T	F	F	F
Т	F	F	T	F
F	T	T	F	F
F	F	T	T	Т

- تحديد الفرض والنتيجة (العبارة الشرطية " إذا كان ... فإن ...") :

- الفرض : الجملة التي تتبع كلمة " إذا - النتيجة : الجملة التي تتبع كلمة " فإن "

مثل : الزاوية التي قياسها أقل من 90 درجة هي زاوية حادة ..

الفرض : زاوية قياسها أقل من90 النتيجة : زاوية حادة .

مثال توضيحي	بالرموز	مكونة من	العبارة
إذا كانت الزاوية حادة فإن	$p \rightarrow q$	فرض مُعطى ونتيجة	الشرطية
قياسها أقل من 90 درجة.			
إذا كان قياس الزاوية أقل	$q \rightarrow p$	تبديل الفرض	العكس
من 90 درجة فإنها تكون		والنتيجة	
حادة			
إذا كانت الزاوية ليست	$\sim P \rightarrow \sim q$	نفي كلا من الفرض	المعكوس
حادة فإن قياسها ليس		والنتيجة في العبارة	
أقل من 90 درجة		الشرطية	
إذا كان قياس الزاوية ليس	$\sim q \rightarrow \sim p$	نفي كل من الفرض	المعاكس الإيجابي
أقل من 90 فإنها ليست		والنّتيجة في عكس	
زاوية حادة .		العبارة الشرطية	

العبارة الشرطية الثنائية :

- العبارة الشرطية الثنائية : هي ربط عبارة شرطية وعكسها بأداة الربط " و " نعبر عنها رياضياً كما يلي :

 $(\mathbf{q}$ إذا وفقط إذا \mathbf{p} وتقرأ (\mathbf{p}) او $\mathbf{p} \leftrightarrow \mathbf{q}$ أو $p \to q \wedge p \to q$

المسلمات والبراهين الحرة :

- المسلمة : عبارة صحيحة لا تقبل النقاش ولا البرهان (أي يسلم بصحتها دوماً) .

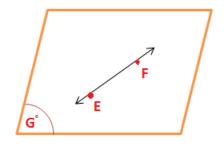
- النظرية : عبارة قابلة للنقاش ، وهي مستنتجة من المسلمات والتعاريف الرياضية .

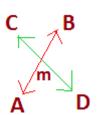
مسلمات هامة:

1) كل نقطتين مختلفين يمر بهما مستقيم واحد.

2) كل 3 نقاط مختلفة ولا تقع على مستقيم واحد يمر بها مستوى واحد.

3) كل مستقيم يحوي نقطتين على الأقل.

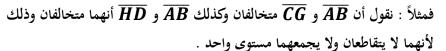

4) كل مستوى يحوي 3 نقاط مختلفة على الأقل وليست على استقامة واحدة.


5) إذا وقعت نقطتان في مستوى فإن المستقيم الوحيد المار بهاتين النقطتين يقع كلياً في ذلك المستوى.

($E \in G, F \in G$, $\therefore \overleftarrow{EF} \subset G$)

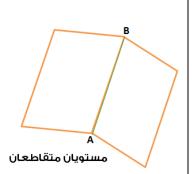
ر $\overleftarrow{AB} \cap \overleftarrow{CD} = \{m\}$) إذا تقاطع مستقيمان فإنهما يتقاطعان في نقطة واحدة. (6

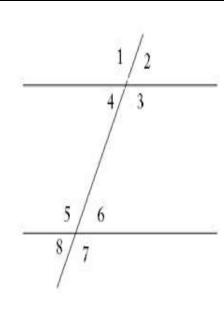
7) إذا تقاطع مستويان فإنهما يتقاطعان في مستقيم.



:	نصل بين كل زوج من النقاط التالية هو	مستقيمة التي يمكن رسمها ل	س3/ عدد القطع ال
د) 24	ع) 21	ب) 6	4 (أ
-		n(n-1)	
• •	حيث n ; يمثل عدد النقاط.	ىمال القانون : 2	الحل: (6) باستع
	نصل بين كل زوج من النقاط التالية هو	مستقيمة التي يمكن رسمها ل	س4/ عدد القطع ال
د) 28	ع) 21	ب) 15	9 ([†]
• •		n(n-1)	
• •	حيث n ; يمثل عدد النقاط.	تعمال القانون 2	الحل: (21) باس
•	لأخرى :	، يختلف عن باقي المفاهيم اا	س4/ المفهوم الذي
د) المسلمة	ج) النظرية	ب) التخمين	أ) النتيجة
	سلمة.	أنكلا النتيجة والنظرية والمس	الحل: التخمين، ا
تقامة واحدة ؟	حديدها من خمس نقاط لا تقع على اس	لدد من المستويات التي يتم ت	س5/ ما هو أكبر ع
د) 10	ج) 6	ب) 15	12 (i
	· · · · · · · · · · · · · · · · · · ·	(n-1)	
	حيث n; يمثل عدد النقاط.	بالتعويض بالقانون 2	الحل: (ب) 15
			الزوايا :–
	درجة.	هي زاوية قياسها أقل من 90	– الزاوية الحادة : د
		راوية قياسها 90 درجة.	 الزاوية القائمة : ¿
	رجة وأقل من 180 درجة.	: زاوية قياسها أكبر من 90 د	- الزاوية المنفرجة
		: زاوية قياسها 180 درجة.	- الزاوية المستقيمة
~	كان مجموعهما = 90 درجة.	تكون الزاويتان متتامتين إذاك	– الزوايا المتتامة :
	ذا كان مجموعهما = 180 درجة.	: تكون الزاويتان متكاملتين إ	– الزوايا المتكاملة
1 3/2			
ر. حا <i>ت</i> =	ۈن 2 بالد، $m \angle 1 = 4$	3 متتامتان، وکان $\angle 1, \angle$	2^{\prime} اذا کانت 6^{\prime}
د) 47	86 _{(₹}	ب) 133	137 (أ
`	•	· · · · · · · · · · · · · · · · · · ·	•
=	ت 2:3 فإن الزاوية الصغرى بالدرجات =		
د) 18	ع 36 رج	ب 54	
· ·	أن الزاويتان متتامتان إذاً = 90 ، ولذلك		
y + - y +y 10 = 70/3		ـــــــــــــــــــــــــــــــــــــ	
	حبری – 10 ^ 2 – 34	- 30 ، کئي حين آن آنواويد آر	- 2 ^ 10 - 4440

المستقيمات والمستويات :-


- المستقيمان المتوازيان : يقال للمستقيمين أنهما متوازيان إذا كانا في مستوى واحد دون تقاطع .
- المستقيمان المتخالفان : يقال للمستقيمين أنهما متخالف إذا كانا لا يقعان في مستوى واحد بلا توازى .


- المستقيم المستعرض: مستقيم يقطع مستقيمين أو أكثر في مستوى في نقاط مختلفة.
 - المستويان المتوازيان : يقال للمستويين أنهما متوازيان إذا كانا لا يتقاطعان.
 - المستويان المقاطعان : يتقاطع المستويان في خط مستقيم.

علاقات الزوايا:

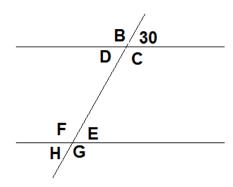
مستويات متوازية

$\angle 1, \angle 2, \angle 7, \angle 8$	الزوايا الخارجية
$\angle 3, \angle 4, \angle 5, \angle 6$	الزوايا الداخلية
∠6, ∠3	الزاويتان الداخليتان المتخالفتان
∠4, ∠5	
∠1, ∠7	الزاويتان الخارجيتان المتبادلتان
∠2, ∠8	
∠4,∠6	الزاويتان الداخليتان المتبادلتان
∠3,∠5	
∠1,∠5	الزاويتان المتناظرتان
∠3, ∠7	
∠2,∠6	
∠4, ∠8	

س8/ في الشكل التالي حدد قيم الزوايا المجهولة :

الزاوية B = (30 - 180) = 150 درجة.

الزاوية ${f D}$ = (مقابلة للزاوية ${f 30}$) إذاً = ${f 30}$ درجة.


الزاوية ${f C}$ = (مقابلة للزاوية ${f B}$) = ${f C}$ درجة.

الزاوية ${f E}$ = (${f C}$ = ${f F}$, ${f D}$ = ${f E}$) (درجة.

الزاوية F = زاوية T = 150

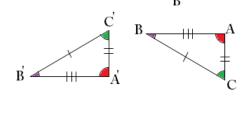
الزاوية ${f G}=({f B}={f G}\;,\,{f A}={f H}\;)$ (متبادلتين متبادلتين متبادلتين متطابقتان) الزاوية

الزاوية ${\bf H}$ = زاوية ${\bf A}$ = 30 درجة.

المثلث :ــ

- يصنف المثلث طبقاً لـ 3 أشياء وهي : 1) زواياه.
 - » تصنيف المثلث حسب الأضلاع :
- مثلث قائم الزاوية : به زاوية واحدة قائمة وقياسها = 90 درجة .
- مثلث حاد الزاوية : مثلث جميع زواياه حادة وقياس كل زاوية أقل من 90 درجة .
- مثلث منفرج الزاوية : به زاوية واحدة منفرجة ، وبه زاوية قياسها أكبر من 90 درجة .
 - * تصنيف المثلث حسب الأضلاع :
- مثلث متطابق الأضلاع : جميع أضلاع متطابقة وبالتالي زواياه متطابقة ، وكل زاوية =60 درجة فيه .
- مثلث متطابق الضلعين : يوجد به ضلعان متطابقان على الأقل . وقياس زاويتيه المتطابقان = 45 درجة ، والأخرى = 90.

2) أضلاعه.


- مثلث مختلف الأضلاع : أضلاع غير متطابقة وبالتالي زواياه غير متطابقة .

» تصنيف المثلث حسب الرؤوس :

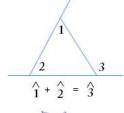
- يتطابق المثلثان حسب الرؤوس أيضاً ، فكيفية تحديد الرؤوس هي عن طريق تحديد الوتر والضلعان الأخرين كما في الشكل الأيسر.

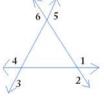
ملاحظات على المثلث:

- مجموع زوايا المثلث الداخلية = 180 درجة .
- مجموع زوايا المثلث الخارجية = 360 درجة .
- الزاوية الخارجية في مثلث: مجموع الزوايا الداخليتين عدا الزاوية المجاورة.
 - يوجد لأي مثلث 6 زوايا خارجية.
- الزاويتان الحادتان في المثلث القائم الزاوية متتامتان (مجموعهما 90 درجة).
 - أكبر زاويا المثلث في القياس تقابل أكبر أضلاع المثلث طولاً .

 \vec{B}

3) رؤوسه.

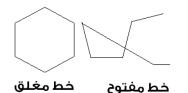



يقصد بمسلمة SSS : هي وجود 3 أضلاع متطابقة . حيث (S : يرمز لضلع .) (side).

.(Angle) : f A : هي وجود ضلعان مع زاوية محصورة بينهما . حيث f A : (Angle).

يَّفصد بمسلمة AAS : هي وجود زاويتان وضلع .

يُقصد بمسلمة ASA : هي وجود زاويتان مع ضلع محصور بينهما.



الزوايا الخارجية

س9/ أي من الخيارات التالية يمكن أن تمثل أطوال أضلاع مثلث:

أ) 5,7,12 (أ

. 14 < وهي > 7,9,14 أن = 7+9=16، وهي

مقعر

مضلع

الأشكال الرباعية:

- * المضلع : خط مغلق بسيط يتكون من اتحاد عدة قطع مستقيمة ، والمضلع نوعان :
 - المضلع المحدب: المضلع الذي لا يحتوي على زاوية منعكسة .
 - المضلع المقعر: المضلع الذي يحتوي على زاوية منعكسة.
 - * المضلع المنتظم: مضلع محدب جميع أضلاعه متطابقة وجميع زواياه متطابقة.
 - مجموع قياسات الزوايا الداخلية لمضلع:-

$$Soldsymbol{n}=180(\,n-2)$$
 يُعطى بالعلاقة : $S=180(\,n-2)$ ولحساب عدد الأضلاع يُعطى بالعلاقة $S=180(\,n-2)$

- $\frac{180(n-2)}{2}$: لحساب زاوية من زواياه المنتظمة نطبق القانون -
- (n-2) : عدد المثلثات التي ينقسم إليها المضلع يُعطى بالعلاقة -
- (n-3) : عدد الأقطار المرسومة من أحد الرؤوس يُعطى بالعلاقة :
 - $rac{n(n{-}3)}{2}$: عدد الأقطار الكلي للمضلع يُعطى بالعلاقة -
 - $\frac{360}{n}$: قياس الزاوية الخارجية في مضلع -
 - 10ر المضلع الذي ليس له أقطار هو 1

أ) المربع ب) المثلث

الحل: المثلث هو الوحيد الذي ليس له أقطار .

س11/ عدد أقطار الشكل الرباعي =

ج) 4

ب) 3

n-2 = 4-2 = 2 (2) الحل: الإجابة

 $^{\circ}$ قياس زاوية الخماسي المنتظم بالدرجات :

ج) 180 د)

ب) 108

أ) 72

2 (أ

الحل: بما أن المطلوب قياس زاوية واحدة فبالتعويض بالقانون = 108.

س 13/ مضلع منتظم قياس زاويته الداخلية 144 درجة فإن عدد أضلاعه =

ج) 8

أ) 6 ف

الحل: 10 بالتعويض بقانون إيجاد عدد الأضلاع .

د) 10

- متوازى الأضلاع:

- * خصائصه:
- 1) الأضلاع المتقابلة لمتوازي الأضلاع متطابقة.
- 3) الزوايا المتحالفة في متوازي الأضلاع متكاملة. 4) قطرا متوازي الأضلاع يُنصف كل منهما الأخر.
 - 5) كلا قطري متوازي الأضلاع يقسمه إلى مثلثين متطابقين.

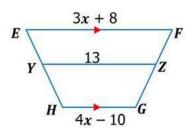
(a) الارتفاع (b) الأضلاع بالقانون : مساحة متوازي الأضلاع = القاعدة

- المستطيل:

- * خصائصه:
- 1) الأضلاع المتقابلة متطابقة ومتوازية . 2) الزوايا المتقابلة متطابقة.
 - 3) الزوايا المتحالفة متكاملة .
 - 5) جميع الزوايا الأربع قوائم.

ملاحظة / كل مستطيل يعتبر متوازي أضلاع ، ولكن بعض متوازيات الأضلاع تكون مستطيل .

تحسب مساحة المستطيل بالقانون : مساحة المستطيل = الطول × العرض .


– المربع :

- * خصائصه:
- 1) جميع أضلاعه متطابقة. 2
 - 3) جميع زواياه قوائم .
 - ملاحظة /كل مربع معين وليسكل معين مربع .
 - تُعطى مساحة المربع بالقانون : (طول الضلع) × (طول الضلع)

– شبه المنحرف :

- * خصائصه:
- 1) زاويتا كل قاعدة لشبه المنحرف متطابق الساقين متطابقتان .
 - 2) قطرا شبه المنحرف متطابق الساقين متطابقان .
- تُعطى مساحة شبه المنحرف بالقانون : 1/2 (مجموع طولي قاعدتيه) imes الارتفاع .
- لحساب القطعة المتوسطة لشبه المنحرف تُعطى بالقانون التالي : 1/2 (مجموع طولي القاعدة).

س14/ في الشكل التالي قيمة x =

د) 10

4) القطران متطابقان وينصف كل منهما الآخر.

ج) 5

- ب) 4
- أ) 3.5

الحل : بالتعويض بالقانون : القطعة المتوسطة = 1/2 مجموع طولي القاعدة)

. 4 = 28/7 = 2 - 7 = 26 = (4x-10) + (3x+8) 1/2 = 13 إِذاً

النسبة والتناسب:

- a: aانسبة: هي مقارنة بين كميتين باستخدام القسمة فنسبة a إلى b بحيث b بحيث a يمكن أن تكتب على الصورة a
 - التناسب : هي تساوي نسبتين .

 \cdot : \cdot 6 ، \cdot \cdot 8 ، \cdot 2 . نا الأعداد هي الأعداد \cdot 15 . \cdot 15 . الأعداد هي الأعداد علمت الأعداد ال

6 , x , 3 , 2

د) 14

ج) 6

ب) 4

أ) 3

x = 4 الحل: 3x = 12 ، إذاً

16 إذا كان عمر فهد 12 سنة والنسبة بين عمره وعمر والده 1/3 فما عمر والده 1/3

د) 25

ج) 28

ب) 36

أ) 48

 $36={
m x}=12{ imes}3$: نعنى ذلك أن $1/3=12/{
m x}$ إذاً $1/3=12/{
m x}$ الحل عمر فهد $1/3=12/{
m x}$

س17/ قطعة من الجبن تحتوي على 9gm، منها 6gm دهون مشبعة فإن نسبة الدهون المشبعة إلى كامل الدهون هي

د) 2/6

ح) 2/4

2/3 (ب

2/5 (1

. 2/5 = 6/15 يعنى ذلك 6 = 6+9 = 15 ، والدهون المشبعة 6 = 6 يعنى ذلك 2/5 = 6/15 .

س18/ مثلث محيطه 52cm والنسبة بين أطوال أضلاعه هي 6: 4: 3 فإن طول أقصر أضلاع المثلث =

د) 5

ج) 12

ب) 16

أ) 24

الحل: بجمع الأجزاء (5+4+3) = 13 = 13 ، إذاً 4=52/13=4 ، وطول أقصر ضلع = 13 (ج) .

س19/ أوجد قياسات زاوية المثلث الكبرى ، النسبة بين قياسات زواياه 2:3:5 ؟

د) 18

ج) 36

ب) 54

أ) **90**

90=5 imes18 ، وأكبر زاوية 18=180/10 ، إذاً 10=(x) ، إذاً 10=(x) ، وأكبر زاوية الحل الحل بجمع الأجزاء والم

س20/ اشترك ثلاثة أشخاص في تجارة وكانت النسبة بين ما دفعه الأول والثاني هي 1: 2 والنسبة بين ما دفعه الثاني والثالث

4 : 3 ، وفي نهاية الشهر كان الربح مساوياً 3400 ريال فكم يكون نصيب الشخص الثاني من الأرباح بالريال ؟

د) 3500

ج) 1200

ب) 800

337.778

الحل :

17x = 8 + 6 + 3 النسب ستكون

ولذلك $200 = 6 \times 200$ ونصيب الثاني = 3400/17 = 200 ريال

الثالث : الثاني : الأول

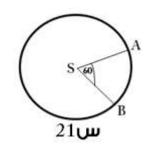

2:

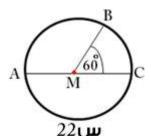
3:6:8

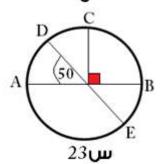
الدائرة:-

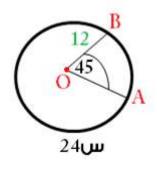
- الدائرة : هي المحل الهندسي لجميع النقاط في المستوى ، والتي تبعد البعد نفسه من نقطة معطاة (ثابتة).
 - مساحة الدائرة تُعطى بالعلاقة : π حيث : r نصف القطو .
- محيط الدائرة تُعطى بالعلاقة : $oldsymbol{c} = 2\pi r$ أو $oldsymbol{C} = 2\pi c$: محيط الدائرة r : يمثل نصف القطر .
 - هي النسبة التقريبية وتساوي : 3.14 أو $rac{22}{7}$.
 - محور تناظر الدائرة يكون أي قطر مار فيها .

السداسي المحصور داخل دائرة	المربع المحصور بداخل دائرة	المثلث المتطابق الأضلاع المحصور بداخل دائرة
نق	r	
طول الضلع = r	$\sqrt{2} imes ext{r}$ طول الضلع	$\sqrt{3} imes r$ = طول الضلع


- الزاوية المركزية : هي زاوية يقع رأسها على مركز الدائرة.
- الزاوية المحيطية : هي زاوية ضلعاها وتران في الدائرة ورأسها يقع على المحيط ABC .
- * والزاوية المحيطية = 1/2 الزاوية المركزية.


* الزاوية المركزية = 2 imes 1 الزاوية المحيطية.


أقواس الدائرة:


_		الواس المالون .
نصف الدائرة	القوس الأكبر	القوس الأصغر
القوس الذي قياسه = 180 درجة	القوس الذي قياسه > 180 درجة.	القوس الذي قياسه ‹من 180 درجة.
L N K	P 89 Q F	A 100° C
يسمى بحرفي في نهايتيه ونقطة أخرى على القوس	يُسمى بحرفي في نهايتيه ونقطة أخرى على القوس	يسمى بحرفي نهايتيه م
LJK , LMK	PFR	AC

D

يُعطى قانون حساب طول القوس بالعلاقة:

. محیط الدائرة ، $rac{A}{360}=rac{\ell}{2\pi r}$

 $\ell = rac{A}{250} imes C$: ويمكن كتابتها بالصيغة التالية

التالي مقياس زاوية $\stackrel{f AB}{B}$ في الشكل التالي :

د) 300 ح) 270

أ) 60 پ) 120

الحل: 60 (لأنه نفس الاستواء).

 \sim ACB,AC هو الشكل المقابل مقياس زاوية قوس

د) 300,180

أ) 120,180 ب) 180,120 ج) 180,120

180 = ACB والزاوية للقوس 120 = AC (180-60 = 120) والزاوية المحل : مقياس الزاوية

= DC في الشكل التالي مقياس زاوية قوس /23

د) 30

أ) 230 ب) 270

. 90-50=40 و في الحل BC=90 و مجهول ، وBC=90 و الحل AD=50 و الحل BC=90

س24/ أوجد طول القوس ${f AB}$ في الشكل التالي :

د) 3.94

أ) 9.42 (ج 55.82 ب) 9.42

الحل: (أ) 9.42 بتطبيق قانون طول القوس.

كثيرات الحدود :

- وحيدة الحد: هي عدداً ، أو متغيراً (حرفياً) ، أو حاصل ضرب عدد في متغير واحد أو أكثر بأسس صحيحة غير سالبة.

- تسمى كثيرة الحدود التي لا يمكن تحليلها بكثيرة حدود أولية.

$$\pm 3x^2 + 2y - 3y$$
 : هي الحدود للمعادلة وحيدة الحدود للمعادلة الحدود المعادلة ا

$$0$$
 (د) 2 (ج) 5

الحل: الإجابة (ج) حسب قيمة أكبر أس لـ x ، وهي تعتبر من الدرجة الثانية.

تدريب1/2 المعامل الحرفي والعددي لها = ؟

الحل: المعامل الحرفي x^2 والمعامل العددي x^2

 $x^5y+9x^4y^3-2xy$ على تمثل العبارة التالية كثيرة حدود يدود

الحل : تمثل كثيرة حدود لأنها من الدرجة السابعة (أكبر أس في ${f x}$ + أكبر أُس في ${f y}$) .

 $rac{x}{y} + 3x^2$ عدود العبارة التالية كثيرة حدود العبارة العبارة التالية كثيرة

الحل: لا تمثل كثيرة حدود لأن $\frac{x}{y}$ لا يمثل وحيدة حد.

 $\sqrt{x} + x + 4$ هل تمثل العبارة التالية كثيرة حدود 3 مثل على تمثل العبارة التالية كثيرة عدود

الحل: لا تمثل كثيرة حدود.

العمليات على كثيرات الحدود :

مثال :	التعريف:	الخاصية :
$3^2 \cdot 3^3 = 3^{3+2} = 3^5$	$x^a \cdot b^a = x^{a+b}$	ضرب القوى
9^5 0^{5-2} 0^3	x^a	قسمة
$\frac{9^5}{9^2} = 9^{5-2} = 9^3$	$\frac{x^a}{x^b} = x^{a-b}, x \neq 0$	القوى
$3^{-5} = \frac{1}{3^5}, \frac{1}{b^{-7}} = b^7$	$x^{-a} = \frac{1}{x}, \frac{1}{x^{-1}} = x^a, x \neq 0$	الأس السالب
$(3^3)^2 = 3^3 \cdot {}^2 = 3^6$	$(x^a)^b = x^{ab}$	قوة القوى
$(2k)^4 = 2^4 k^4 = 16k^4$	$(xy)^a = x^a y^a$	قوة ناتج
(2n) = 2n = 10n	(09)	الضرب
2_{25} 3_{5} 3^{5}	$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}, y \neq 0$	قوة ناتج
$(-)^{-3} - (-)^{3}$		القسمة
$\binom{3}{3} - \binom{2}{2} - \binom{25}{25}$	$\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^a = \frac{y^a}{x^a}$	
$100000^0 = 1$	$x^0 = 1, x \neq 0$	القوة
100000 - 1		الصفرية

$$rac{15c^5d^3}{-3c^2d^7}$$
 تدریب 5 بسط العبارة $-5rac{c^3}{d^4}$: الحل 6 6 بسط العبارة 6 الحل 15 10 الحل 15

$$(4x^2-5x+6)-(2x^2+3x-1):$$
 ن $(4x^2-5x+6)$ اي مما يلي يُكافئ العبارة $(4x^2-5x+6)$

$$2x^2 - 8x - 7$$
 (ب

$$2x^2 + 8x + 7$$
 (1)

$$2x^2 + 8x - 7$$

$$2x^2 - 8x + 7$$
 (5)

الحل: الإجابة (ج) بترتيب الحدود المتشابهة رأسياً ونوجد ناتج الطرح.

$$(6x^2-7x+8)+(-4x^2+9x-5)$$
 : العبارة العبارة العبارة يُكافئ العبارة العبارة

$$2x^2 - 2x - 3$$
 (ب

$$2x^2 + 2x + 3$$
 (1

$$2x^2 + 2x - 3$$

$$2x^2 - 2x + 3$$
 (5

الحل: الإجابة (أ) بترتيب الحدود المتشابهة رأسياً ونوجد ناتج الجمع.

دوال كثيرات الحدود :

$$8x^5 - 4x^3 + 2x^2 - x - 3$$
 تدريب 7 المعامل الرئيس لكثيرة الحدود التالية

الحل: المعامل الرئيس هو المعامل التابع للمتغير الحرفي ، والذي له قيمة أكبر أس، وهو 8.

القانون العام والمميز :

.
$$\chi=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 : يُعطى القانون العالم بالعلاقة $x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$

. $ax^2+bx+c=0$, a
eq 0 القانون العام يُستعمل لحل المعادلة التربيعية التي على الصورة $ax^2+bx+c=0$

- المميز: العبارة $oldsymbol{b^2-4ac}$ تسمى بالمميز، وهو ما يمكن تمييز جذوره وأنواعه من خلاله.

السير . العبارة عليه السلمي بالسيرة ولمواقع المايين العبارة والواقع الله عارفة .			
مثال على التمثيل البياني لها	عدد الجذور وأنواعها	قيمة المميز	
100	جذران حقيقان نسبيان	$b^2-4ac>0$ و العبارة b^2-4ac مربع كامل	
	جذران حقيقان غير نسبيين	$b^2-4ac>0$ و العبارة b^2-4ac لا تمثل مربع كامل	
	جذران مركبان	$b^2-4ac<0$	
10 .6 10 · · · · · · · · · · · · · · · · · ·	جذر حقيقي واحد	$b^2 - 4ac = 0$	

- إرشاد1 : معنى مربع كامل ، أي مثلاً $\sqrt{4}=2$ يكون مربع كامل ، بينما $\sqrt{2}=1$ ولا يعتبر مربع كامل.

- إرشاد2 : إذا وجد للمعادلة التربيعية جذران مركبان فهما مترافقان.

 $x=-5x^2+8x=1$ تدريبx=-8 أوجد قيمة المميز وعدد الجذور وأنواعها للمعادلة

الحل:

$$-5x^2 + 8x - 1 = 0$$
 : الخطوة الأولى / ترتيب المعادلة على الصورة الصفرية

- الخطوة الثانية / استعمال قانون المميز والتعويض به به قيم
$$a,b,c$$
 فيكون $-$

: يكون الحل يكون
$$b^2-4ac$$
 يكون الحل $a=-5$, $b=8$, $c=-1$

ويتضح أن 0>0 وأن جذر 0>0 وأن جذر 0>0 ويتضح أن 0>0 ويتضح أن أي لا يُعطينا أي لا يُعطينا أولذلك الحل يكون أن للمعادلة : جذران حقيقان غير نسبيان.

، إذا علم الحد الأوسط وأحد الحدين الآخرينc

$$\left(rac{egin{array}{c} egin{array}{c} egi$$

 $x^2+\mathbf{1}3x+c$: قيمة c التي تجعل كل ثلاثية حدود في المعادلة التالية مربعاً كأملاً هي تحمل كل ثلاثية حدود في المعادلة التالية مربعاً كأملاً هي

الحل: بتطبيق قانون: إيجاد قيمة C

$$\left(rac{13x}{2\sqrt{x^2}}
ight)^2 = \left(rac{13x}{2x}
ight)^2 = \left(rac{13}{2}
ight)^2 = rac{169}{4}$$
 ، $\left(rac{169}{1900 ext{Mod N}}, \left(rac{169}{1900 ext{Mod N}}
ight)^2 = rac{169}{1900 ext{Mod N}}
ight)^2$

تكوين معادلة إذا علم جذريها :

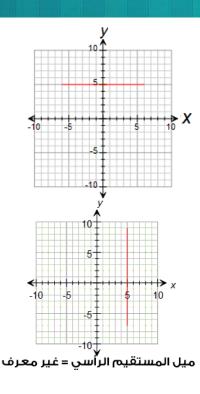
 $x^2-(r_1+r_2)\,x+(r_1\, imes r_2)$ لتکوین معادلة بمعلومیة جذریها یتم تطبیق القانون –

 $^\circ$ تدریب $^\circ$ کون المعادلة التی جذریها $^\circ$ $^\circ$ $^\circ$

$$x^2-(3+4)~x+(3 imes4)$$
 يكون الحل : $x^2-(r_1+r_2)~x+(r_1 imes r_2)$ يكون الحل : بتطبيق القانون : $x^2-7x+12=0$ ويكون الحل أخيراً و

الأعداد المركبة :

- العدد التخيلي : هو العدد السالب الذي يوجد بداخل الجذر.
- $i=\sqrt{-1}$: هي الجذر التربيعي للعدد 1 أي بصيغة أخرى : -1
- 6i , -2i , $i\sqrt{3}$: العدد التخيلي البحت : هي الجذر التربيعي الأعداد حقيقة سالبة مثل البحت : هي الجذر
- الأعداد المركبة : هي الأعداد التي يمكن كتابتها على الصورة a+ib حيث a,b عددان حقيقيان ، i الوحدة التخيلية.


 $\sqrt{-27}$ تدريب11/ أي من الخيارات التالية تُكافئ العبارة

$$3+\sqrt{3i}$$
 (ع $3i+\sqrt{3}$ ري $3i\sqrt{3}$ (ب $3i\sqrt{3}$ (ب

الحل: الإجابة (ب) وذلك بالتحليل لعوامل:

الفصل الثاني:

الهندسة الإحداثية

الميل:

 الميل : هو النسبة بين ارتفاع المستقيم العمودي والمسافة الأفقية ، ويُعطى قانون الميل بالعلاقة : . أي فرق الصادات / فرق السينات $m = rac{y_2 - y_1}{x_2 - x_1}$

- $(\mathbf{m} = \mathbf{0})$ و المستقيم أفقياً (موازياً لمحور السينات) فإن ميله $\mathbf{0}$
 - إذا كان المستقيم عمودياً (موازياً لمحور الصادات) فإن ميله غير معرف.
 - يكون للمستقيمين غير الرأسيين الميل نفسه إذا وفقط إذا كانا متوازيين.
- يكون المستقيمان غير الرأسيين متعامدين إذا وفقط إذا كان حاصل ضرب ميليهما =(-1).
 - . إذا كان $x_1=x_2$ و $y_1
 eq y_2$ أفإن المستقيم يكون رأسياً وميله غير معرف
 - 0 = إذا كان $x_1
 eq x_2$ و $y_1 = y_2$ و إن المستقيم يكون أفقياً وميله $y_1 = y_2$

د)
$$9/7$$
 د) \mathbf{x} \mathbf{y} \mathbf{x} \mathbf{y} $A=(3,-5)$ ' $B=(6,-2)$ د) غير ذلك

A=(3,-5) ، B=(6,-2) : سر28 ميل المستقيم التالي أ) –1 ب) 1 ب) 1– أ 1 = 3/3 = (3 - 6 / (5 -) - 2 -) = 1الحل : فرق الصادات / فرق السينات يكونان : كان ميل $-5/2 = {f CD}$ ، وكان ميل $-5/2 = {f CD}$ ، وكان ميل على المستقيمان يكونان

الحل: متعامدان ، لأن مثل قلب للكسر ، وإبدال لإشارة.

مُعادلة المستقيم: - يمكن كتابة معادلة المستقيم إذا عُلم:

ب) متوازیان

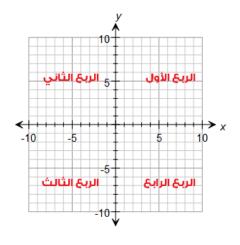
(3) نقطتان على المستقيم

(1) الميل والمقطع الصادي (2) الميل ونقطة على المستقيم

- معادلة المستقيم بدلالة الميل والمقطع الصادي تُعطى بالعلاقة :

، حيث: b : محور الصادات m : الميلy=m ، حيث

- معادلة المستقيم بصيغة النقطة والميل:


$$y-y_1=m\left(x-x_1\right)$$

ج) متعامدان ومتوازیان

- معادلة المستقيم بمعلومية نقطتين عليه:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y-y_2=\frac{y_2-y_1}{x_2-x_1}(x-x_2)$$

- حالات خاصة لمعادلة المستقيم:

$$y=b$$
 أو $y=y_1$: معادلته هي $y=y_1$ أو $y=y_1$

$$x=x_1$$
: هادا كان يوازي محور الصادات : معادلته هي *

$$y=mx$$
 : معادلته هي : $(0,0)$ الأصل $(0,0)$

30ر اكتب معادلة المستقيم الذي ميله 3 والمقطع الصادي 2 بصيغة الميل والمقطع 3

$$b = 2$$
, $m = -3$:

$$y = -3x + 2$$
 وبالتعويض $y = m x + b$: والقانون

$$^{\circ}$$
 ($^{\circ}$ ($^{\circ}$) ويمر بالنقطة ($^{\circ}$) $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$) $^{\circ}$

$$y - y_1 = m (x - x_1)$$
 : الحل

$$y+2=rac{-1}{3}x+rac{4}{3}$$
: وبالتعويض بالقانون

نقطة المنتصف (معادلة العمود المنصف) :-

$$extbf{ extit{M}} = (rac{x_1 + x_2}{2}, rac{y_1 + y_2}{2})$$
 يُعطى قانون نقطة المنتصف بالعلاقة :

المسافة بين نقطتين (طول قطعة مستقيمة):

$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
 : يُعطى قانون المسافة بين نُقطتين بالعلاقة

يكونان المستقيمان متوازيان إذا كان البعد بينهما ثابتاً دائماً.

| أنات |
$$\mathbf{AB}$$
 | إذا كان $|\mathbf{AB}|$ | محور السينات فإن

إذا كان [
$${f AB}$$
 | فرق الصادات فإن | ${f AB}$ | أمحور الصادات إ

- دائماً طول القطعة المستقيمة يكون موجباً (+) .

19

(4.-2)

– التحويلات الهندسية :

للتحويلات الهندسية أنواع وهي :

1) الانعكاس. 2) الإزاحة (الانسحاب). 3) الدوران. 4) التمدد. 5) التبليط.

أولاً / الانعكاس:

- الانعكاس: تحويل يمثل قلب الشكل في نقطة أو في خط مستقيم أو في مستوى.

كيفية إيجاد إحداثيات الصورة	من الأصل للصورة	الانعكاس
بضرب الإحداثي الصادي (y) في (– 1)	$(a,b) \rightarrow (a,-b)$	حول محور (x)
بضرب الإحداثي السيني (x) في (-1)	$(a,b) \rightarrow (-a,b)$	حول محور (y)
بضرب كلا الإحداثيين (x ,y) في (1−1	$(a,b) \rightarrow (-a,-b)$	حول نقطة الأصل $(0,0)$
yمكان الإحداثي x مكان الإحداثي	$(a,b) \rightarrow (b,a)$	y = x حول المستقيم

ثانياً / الإزاحة:

* الإزاحة نوعان رأسية وأفقية :-

- الإزاحة الرأسية (التغير في الإحداثي الصادي) : ⊕ أعلى ⊖ للأسفل

الإزاحة الأفقية (التغير في الإحداثي السيني) : ⊕ يصين ⊖ يسار

 $\mathbf{P'} \ (\ \mathbf{x} + \mathbf{a} \ ,\ \mathbf{y} + \mathbf{b} \) \leftarrow (\ \mathbf{a}, \mathbf{b} \)$ بإزاحة $\mathbf{P}(\mathbf{x}, \mathbf{y})$ بإزاحة

ثالثاً / الدوران:

* الدوران : تحويل تدور به كل نقطة من نقاط الشكل بزاوية معينة واتجاه معين حول نقطة ثابتة تسمى (مركز الدوران).

- الدوران نوعان :

1) دوران موجب (+) : وهو الدوران عكس اتجاه عقارب الساعة . مثل : الطواف حول الكعبة وحركة إطار السيارة .

2) دوران سالب (-) : وهو الدوران مع اتجاه عقارب الساعة.

 * صورة النقطة (x,y) بالدوران حول نقطة الأصل بزاوية 90 درجة :

- إن كان في عكس اتجاه حركة عقارب الساعة (y,x)) أما إن كان مع اتجاه حركة عقارب الساعة (y,-x)).

. ($-\mathbf{x},-\mathbf{y}$) : 180 مورة النقطة (\mathbf{x},\mathbf{y}) بالدوران حول نقطة الأصل بزاوية

– الدوران بزاوية 360 يسمى الدوران المحايد لأنه يعيد الشكل لوضعه الأصلى .

مقدار رتبة التماثل الدوراني للمضلع المنتظم $rac{360^o}{n}$ حيث n : عدد الأضلاع .

س33/ تدور شفرات المروحة والتي لها 5 أضلاع في الهواء لتوفير التكييف ، التماثل الدوراني لها هي :

أ) 60 (ج) 70 ج) 70 د) 72

الحل : (72) لأن رتبة التماثل الدوراني = 360/5 = 72، بينما رتبة التماثل الدوراني لها هي : 5 (نفس الأضلاع).

رابعاً / التمدد :

- التمدد: نوع من التحويلات الهندسية حيث يحدث تغيير في قياسات الشكل.
 - للتمدد عنصرين أساسين وهما : مركز التمدد ومعامل التمدد .
 - طول الصورة ويعطى بالعلاقة : طول الصورة ويرمز له بالرمز r . طول الأما

ومن خلاله نستنتج أن طول الصورة = طول الأصل × معامل التمدد ..

- * هُناك 3 حالات لمعامل التمدد وهي:
- ر1) إذا كان |r| < 1 فالتمدد يكون تكبير.
- ر2) إذا كان | r | 2 فالتمدد يكون تصغير.
- ر3) إذا كان | r | = 1 فالتمدد يكون تحويل تطابق.
- إذا كان r>0 فالأصل والصورة في نفس الجهة من مركز التمدد أما r<0 فالأصل والصورة مختلفتين من مركز التمدد.

: يكون التمدد
$$\frac{2}{3}$$
 فإن التمدد يكون يكون يكون إذا علمت أن معامل التمدد

د) ليس تمدداً ب) تمدد تصغیر ج) تحويل تطابق

أ) تمدد تكبير

الحل: تمدد تصغير لأن r | <1 |.

 ${f A'B'}$ فإن ${f AB}=12$ فإن ${f AB}=1$ بمعامل التمدد ${f C}=1$ ، وكان ${f AB}=1$

د) 36

س) 12 6 (1

الحل: (24) حسب قانون معامل التمدد.

 $=(\mathbf{r})$ في الشكل التالي ، معامل التمدد

د) 1/2

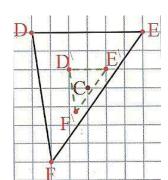
5/6 (7

ج) 24

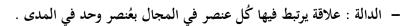
2/7 (ب

1/3 (1

الحل : 1/3 لأن طول الصورة =6 ، وطول الأصل =2 (حسب المربعات بالنسبة للطول)

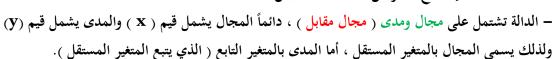

 $. \ 2/6 = 1/3$ لذا

التبليط:

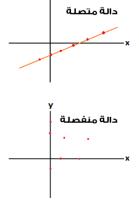

- التبليط 3 أنواع حسب الانتظام: (1) منتظم.
 (2) شبه منتظم.
- * التبليط المنتظم يتألف من ضلع واحد فقط منتظم أما الشبه منتظم يتألف من مضلعين منتظمين أو أكثر.
 - والتبليط حسب الشكل يكون : متسق أو غير متسق .

المتسق يحتوي على الترتيبات نفسها للأشكال والزوايا عندكل رأس أما الغير متسق فيحتوي على ترتيبات مختلفة للأشكال والزوايا عند رؤوس مختلفة.

 $\frac{180(n-2)}{n}$: التبليط للمضلع المنتظم يُعطى بالعلاقة


العلاقات والدوال:

- الدالة المتباينة : دالة لا يرتبط أكثر من عنصر في المجال بالعنصر نفسه في المدى .
 - * الدوال من حيث الاتصال ، تنقسم لقسمين :
 - دالة متصلة: وهي الدالة التي تكون عناصرها على نفس الاستواء (الخط) .
 - دالة منفصلة: الدالة التي تكون عناصرها متفرقة وليست على نفس الخط.


وهي أن نضع خط رأسي على الرسم الديكارتي (البياني) فإن قطع الخط الرأسي نقطة واحدة

فالعلاقة دالة ، أما إن قطع بأكثر من نقطة فالعلاقة ليس دالة .

س37/ في الشكل التالي هل العلاقة دالة ؟ وهل الدالة متصلة أو منفصلة ؟

- العلاقة ليست دالة لأن ارتبط عنصرين من المجال بالمدى . والدالة منفصلة.

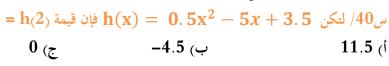
-4-3 O 1 3 X

س38/ حدد كلا من المجال والمدى في العلاقة التالية ، مع بيان هل هي دالة ؟ وإذا كانت دالة فهل ستكون متباينة؟

الحل:

المجال (
$$8$$
, 1 , 0) لأنه خارج منه السهم للمدى . والمدى (0 , 0 , 0) . ولذا تعتبر دالة لأن كل عنصر من المجال ارتبط بعنصر آخر في المدى ولذلك فهي دالة متباينة.

س39/ هل يمثل الشكل التالي دالة ؟


الحل: بالتعويض المباشر الإجابة (ب) 4.5-

نعم يمثل دالة لأن هذا النوع من الدوال يسمى دالة شاملة (شمولية).

(المجال = المدى المقابل).

$$X$$
 Y
 2
 B
 3
 C

د) لايمكن التعريف بالدالة

الحوال الأم:

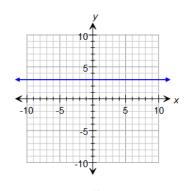
* الدالة الثابتة :

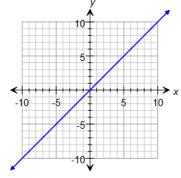
- f(x)=c : تُعطى الدالة الثابتة بالعلاقة -
- $\{c\}$: ومداها و $\{c\}$ الدالة الثابتة مجالها ال
 - منحناها متصل.
- المنحنى متماثل حول محور y ; لذا فهى دالة زوجية.

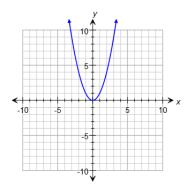
* الدالة المحايدة (الدالة الخطية) :

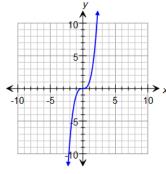
- I(x) أعطى الدالة المحايدة بالعلاقة f(x)=x ويرمز لها بالرمز f(x)=x
- $\{y|y\in R\}$: ومداها $\{x|x\in R\}$: مجال الدالة المحايدة
 - منحناها متصل.
 - المنحنى متماثل حول نقطة الأصل ; لذا فالدالة فردية.

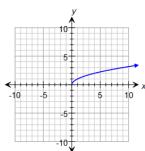
* الدالة التربيعية :

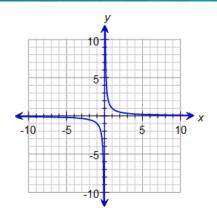

- $f(x)=x^2$: تُعطى الدالة التربيعية بالعلاقة
- $\{\,y|y\geq 0,\,\,y\in R\}$: مجال الدالة $\{\,x|x\,\in R\}$ ومداها
 - المنحنى متصل.
 - المنحنى متماثل حول المحور y ; لذا فالدالة زوجية.

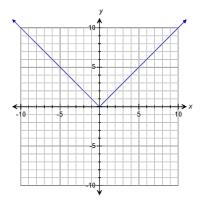

* الدالة التكعيبية :

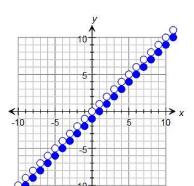

- $f(x)=x^3$: تُعطى الدالة التكعيبية بالعلاقة
- $\{\,y|y\,\in R\}$: ومداها الدالة التكعيبية و $\{x|x\,\in R\}$ ومداها -
 - المُنحنى متصل.
 - المنحنى متماثل حول نقطة الأصل (0,0) ; لذا الدالة فردية.


* دالة الجذر التربيعي:


- $f(x)=\sqrt{x}$: تُعطى دالة الجذر التربيعي بالعلاقة
- $\{y|y\geq 0\}$: ومداها $\{x|x\geq 0\}$: مجال دالة الجذر التربيعي
 - المُنحنى متصل.
 - المُنحنى غير متماثل لذا الدالة ليست فردية ولا زوجية.






* دالة المقلوب:

- $f(x)=rac{1}{x}$: تُعطى دالة المقلوب بالعلاقة
- . $\{\,y|y
 eq 0,y\in R\}$: ومداها $\{\,x|x
 eq 0,x\in R\}$: مجال دالة المقلوب
 - المُنحنى لا يقطع أياً من المحورين.
 - منحنى الدالة متماثل حول نقطة الأصل; لذا الدالة ليست فردية ولا زوجية .

* دالة القيمة المطلقة :

- f(x) = |x| : تُعطى دالة القيمة المطلقة بالعلاقة -
- (R^+) $\{y|y\geq 0,\;y\in R\}$: ومداها $\{x|x\in R\}$: مجال دالة القيمة المطلقة $\{x|x\in R\}$
 - المُنحنى متصل.
 - منحنى الدالة متماثل حول محور y ; لذا فالدالة زوجية.

* الدالة الدرجية (دالة أكبر عدد صحيح) :

- f(x) = [x] : تُعطى الدالة الدرجية بالعلاقة -
- $\{y|y\in Z\}$: مجال الدالة الدرجية $\{x|x\in R\}$: مجال
- منحنى الدالة ليس له تماثل ; أي أنه الدالة ليست فردية ولا زوجية.

= [[3.32]] فإن f(x)= [[x]] فإن f(x)=

د) 4

ج) 3

ب) 32.32

3.32 (

الحل : 3 لأن في الدالة الدرجية إذا كان العدد > النصف فالعدد يجبر ، أما في حالة كان < فالعدد يبقى دون الكسر.

= [[-4.66]] فإن f(x)= [[x]] فإن f(x)

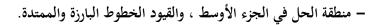
د) 5

ج) 5-

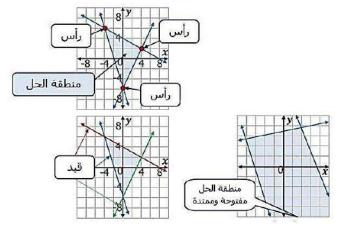
4.66 (ب

-4.66 (أ

الحل: 5- ، تذكر دائماً الدالة الدرجية ليست دالة قيمة مطلقة! .


 $h(x) = \left[[3x] \right] - 8$ طول الدرجية التالية 43+

ب) 3-


3 (1

 $|\frac{1}{x_{\text{old}}}|$: والمطلوب طول الدرجة وليس قيمة العدد ، وقانون إيجاد طول الدرجة في الدالة الدرجية هو : $|\frac{1}{x_{\text{old}}}|$

- البرمجة الخطية والحل الأمثل:

- ومنطقة الحل نوعان مفتوحة ومغلقة .

: لها التمثيل البياني f(x) = 4x - 3y > 12 لها التمثيل البياني البياني

- $(oldsymbol{A})$ (أ
- (\boldsymbol{B}) ب
- (C)
- $(oldsymbol{D})$ د

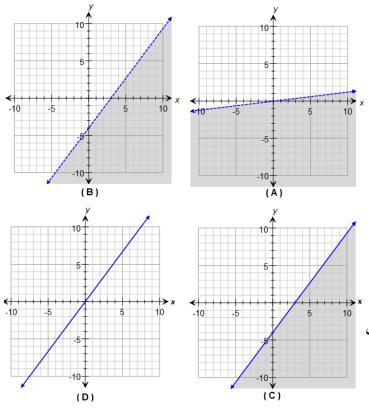
الحل: في التمثيل البياني يكون الخط المتصل إذا كان يحتوي

على علاقة مساواة (\geq , \leq) أما المنفصل إذا كان

لا يحتوي على علاقة مساواة (>, <) ولذلك

نستبعد كلا من (ج) و (د) ويتبقى لدينا (أ) ، (ب).

بعد ذلك نختبر هل $oldsymbol{0}$ تشمل المنطقة المظللة أم لا ?

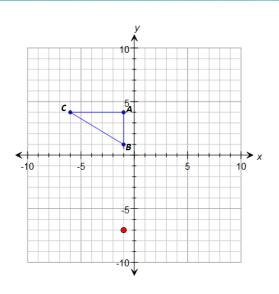

. نعوض بالقيم جميعها (X, Y) بالصفر للاختبار الجزء المظلل

4(0) - 3(0) > 12?

هل 0>12 الإجابة خاطئة لأن 12 $ag{0}$ وهذا يعني أن الجزء المظلل

لا يشمل منطقة ($f{0}$) ونظلل ما تحت الصفر

. $oldsymbol{B}$ وبالتالي الحل يكون: الإجابة (ب



ملاحظة هامة جداً / متى يكون من الممكن تظليل منطقتين مختلفتين في الرسم البياني ؟

. $|y| \leq |x|$ عندما تكون ${f x},{f y}$ بداخل القيمة المطلقة -

س 45/ عدد الأعداد الصحيحة التي تحقق المتباينة π < x / حيث π هي النسبة التقريبية هو:

الحل : 7 ، القيم التي تأخذها النسبة التقريبية هي $\{ \ 2 \ , \ 1 \ , \ 0 \ , \ 1 \ , \ 2 \ , \ 3 \}$ وهي 7.

ب) مستقيمان متعامدان

ج) مستقيمان متوازيان

س46/ ماهي مساحة المثلث ABC ؟

$$8$$
 (ب \sim \sim 6 (ب \sim 5 \sim 6) \sim 5 (أ

$$\mathbf{C}(-6,4)$$
 و \mathbf{B} ($-1,1$) و \mathbf{A} ($-1,4$) و الحل : يُلاحظ أن النقاط هي

$$||\mathbf{A}\mathbf{B}||$$
 | $|\mathbf{1} - (-4)|$ = $|\mathbf{3}|$ = $|\mathbf{3}|$ = $|\mathbf{A}\mathbf{B}|$ لذا طول

$$|AC| = |-6-(-1)| = |-5| = 5 = AC$$

ومن دلك تستطيع أن تقول مساحة المثلث = طول الفاعدة
$$\times$$
 18 رفقاع $\frac{3\times5}{2}=7.5=$

س47/ أي مما يأتي يُعد وصفاً مناسباً للتمثيل البياني للمعادلتين:

$$y = 3x - 5$$
, $4y = 12x + 16$

أ) مستقيمان لهما المقطع y نفسه

ج) مستقيمان لهما المقطع X نفسه

الحل : بتبسيط المعادلة x معامل x فسيكونان y=3x+4 فإنها y=4y=12x+16 الحل المعادلة كونان المعادلة المعا

المستقيمان متوازيان.

س48/ ميل المستقيم الممثل بيانياً على المستوى الإحداثي الآتي هو:

$$\frac{1}{3}$$
 ($\frac{1}{3}$ ($\frac{1}{3}$

الحل: بما أن التمثيل البياني ينحدر من اليسار إلى اليمين فإن الميل سالب ، لذا نستبعد البديلين (أ، ب)، وبما أن التمثيل البياني نلاحظ أن يقطع المحور $m{x}$ في نقطة ($m{5}$) لذلك يكون الحل هو (أ).

س 49/ على الشكل يُساره ، منطقة حل النظام :

$$y \leq \frac{1}{2}x - 2$$

 $I_{(i)}$

$$y \leq -\frac{2}{3}x - 1$$

$$I\!I$$
ب)

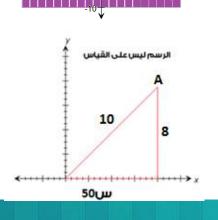
$$III_{(7)}$$
 ب

الحل : المنطقة
$$m{H}$$
 (بالتعويض بـ $m{0}$ في كل القيم $)$.

التالي : س50 ما إحداثيات النقطة (A) في الشكل التالي

$$A_{(6,8)}$$
 (ج $A_{(10,8)}$ ب $A_{(8,10)}$ ج

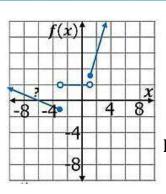
$$A$$
($10,8$) (ب


$$A_{(}$$
 10,8 $_{)}$ (ب

$$A_{(8,1)}$$

د) (6,10)

IVد)


$$10^2-8^2=100-64=\sqrt{36}=6$$
وبما أن $A(x,y)$ فإن نقطة A تكون : $A(6,8)$ والإجابة هي $A(x,y)$


```
f(x)=rac{2}{x-3}س/51 في الدالة التالية وf(x)=rac{2}{x-3} تكون الدالة غير معرفة عند
                                     ج) 2
 د) 0
                                                                                                           3 (1
                               الحل : تكون الدالة غير معرفة عند 3 وذلك لأن rac{2}{3-3} تكون غير معرفة .
                                                        _{*} : _{*} هو_{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*} _{*}
                                                                      h(x) = x | x \neq -1, x \in R \quad \text{(i)}
    h(x) = x | x \neq 2, x \in R (ب
h(x)=x|x
eq -2 , x\in R (ع
                                                                                     h(x) = x \in R (7)
الحل : الإجابة ( د ) ، وذلك لأن الدالة تكون عند 2 غير معرفة ولذلك نستبعد ( 2 ) ، أما المدى فهو الإجابة ( أ ).
                                                                                            وهو الجزء المقطوع.
                                                        f(x) = rac{2}{x-6} + 4 هو: f(x) = rac{2}{x-6} + 4 هو:
                                                                                                          -6 (1
                                   ج) 4-
 د) 4
                                     الحل : (-1) وذلك لأن x-6=0 فلذلك x=6 وهو يمثل خط التقارب .
                                           g(x)=rac{x^2}{x+1} يكون خط التقارب الأفقي: g(x)=rac{x^2}{x+1}
                                                                                                         1- (
                                     ج) 2
 د) 0
                                    الحل : خط التقارب الأفقى 0 ، ونستطيع إيجاد خط التقارب الأفقى بالعلاقة :
                                                                                                         \frac{a(x)}{b(x)}
                                                    فإذا كانت درجة معامل a> معامل b فلا يوجد خط تقارب أفقى
                            y=0 معامل a خط التقارب الأفقى هو المستقيم a أما إن كانت درجة معامل a
                                             \frac{a}{b} معامل a فخط التقارب هو معامل a فخط التقارب هو أما إن كانت درجة معامل a
                                                         d(x) = rac{x^2 - 16}{x - 4}: نقطة الانفصال للدالة الانفصال للدالة الانفصال للدالة الم

    أ) تكون 4 على محور x
    ب) تكون 4 على محور x

y=0 لا يوجد نقطة انفصال د) نقطة الانفصال
                                                                    الحل: نقطة الانفصال تكون 4 على محور x.
                    f(x)=rac{x^3+2x^2-9x-18}{x^2-9} : على محور f(x)=rac{x^3+2x^2-9x-18}{x^2-9} : على محور
                                     ج) 3 و 3-
                                                                                                          3 (1
  د) لا يوجد نقطة انفصال
                                                                           الحل: (ج) 3- و 3 على محور x .
                                            الدالة t(x)=rac{1}{6x(x-1)} يكون خط التقارب الرأسي لها هو :
                                                                                                           أ) 1
     -1,0 د
                                           0,1 (7
                                                الحل : الإجابة (+) و 1 (عوض بفرع الدالة في المقام بالقيم)
```


س57 في الشكل التالي دالة متعددة التعريف ، الدالة المحدد عليها (بعلامة الاستفهام) تكون معادلتها :

$$f(x) = 3x, x \ge 1$$
 ($f(x) = -\frac{1}{3}x - 2, x \le -3$ ($f(x) = 2, -3 < x < 1$ ($f(x) = -4x - 8, x \ge 0$)

الحل: لإيجاد دالة من خلال شكلها بياني نستعمل قانون الميل ونحدد الإحداثيات،

$${
m P}({
m x}_1,{
m y}_1)=(-3,-1)$$
 ولذلك النقاط هي تقريباً عند ${
m x}_1(-1)$, ${
m y}_1(-1)$, وبتطبيق قانون الميل ، الحل ${
m z}_2(-6)$, ${
m y}_2(0)$: معادلة المستقيم بصيغة الميل والمقطع.

الدالة العكسية ؛

 $f^{-1}(x)$ الدالة العكسية : هي الدالة الناتجة عن تبديل مجال الدالة ومداها ويرمز لها بالرمز وفي الرسم البياني لتحديد الدالة عكسية أما لا نستعمل اختبار الخط الأفقي.

ملاحظات هامة على الدالة العكسية:

$$rac{1}{f(x)}$$
 وليست مزها والدالة العكسية رمزها والدالة العكسية العكسية رمزها

– ليس لكل دالة ، دالة عكسية.

ي
$$f(x)=rac{x-3}{5}$$
 ، الدالة العكسية لها هي : $f(x)=rac{x-3}{5}$ ، الدالة العكسية لها هي : $f^{-1}(x)=rac{5}{5}$ ب ك $f^{-1}(x)=rac{5}{x-3}$ رأ $f^{-1}(x)=rac{5}{x-3}$ ع $f^{-1}(x)=rac{5}{x-3}$ ب الدالة العكسية لها هي :

الحل : نُعيد صياغة الدالة كمعادلة بمتغيرين X, y وتكون :

$$5x + 3$$
 وضع مكان $x = \frac{y-3}{5}$ تبديل مكان $y = \frac{x-3}{5}$ وضع مكان $y = \frac{x-3}{5}$ وضع مكان $y = \frac{x-3}{5}$

الدالة الزوجية والدالة الفردية:

– الدالة الزوجية : هي الدالة التي تحتوي على أسس زوجية – الدالة الفردية : هي الدالة التي تحتوي على أسس فردية. $f(x)=x^3-2x$ الدالة : $f(x)=x^3-2x$

الحل : الدالة فردية حسب قيمة الأس .

$$h(x) = x^3 - 0.5 x^2 - 3 x$$
 الدالة

الحل: الدالة لا زوجية ولا فردية لاحتوائها على أس فردي وزوجي وبناءًا على ذلك الإجابة (ج).

$$g(x)=4\sqrt{x}$$
 الدالة $g(x)=61$ هي دالة

الحل: لا زوجية ولا فردية.

<u>الفترات ورموزها :</u> مجموعة الأعداد :

تعریفها	المجموعة العددية
هي جميع المجموعات والأعداد الرياضية.	الأعداد الحقيقة <i>R</i>
هي الأعداد التي تحتوي على الأعداد الموجبة والسالبة والصفر.	Zالأعداد الصحيحة
heta,1,2, الأعداد الشاملة من الصفر إلى المالانهاية	الأعداد الكلية W
الأعداد الشاملة من الواحد إلى المالانهاية 1,2,3,	N الأعداد الطبيعية
$\sqrt{-3}$: هي الأعداد السالبة بداخل الجذر مثل	الأعداد التخيلية 1
2i+5 الأعداد المركبة من أعداد تخيلية وأي عدد حقيقي آخر مثل	الأعداد المركبة C
الأعداد الصحيحة الأكبر من 1 ولا تقبل القسمة إلى على نفسها	Pالأعداد الأولية
أو على الواحد مثل : <i>3,5,7,11</i>	

```
* الفترات 3 أنواع وهي :

    فترة مفتوحة، ويرمز لها بالرمز ( ) أو ]

    فترة مغلقة، ويرمز لها بالرمز [ ] أو ) (

    فترة نصف مفتوحة أو نصف مغلقة ، ويرمز لها بالرمز ( ] أو [ )

                                                                الفترة المغلقة تشتمل على رمز المتباينتين >, <
   \geq, \leq والفترة المفتوحة تشتمل على رمز المتباينتين
         - في الرسم البياني النقطة المظللة ( المغلقة ) ترمز للفترة المغلقة ، والنقطة ( الغير مظللة ) ترمز للفترة المفتوحة
                                                          -8 < x \leq 16 هي الفترة للمجموعة -8 < x \leq 16 هي
                                                                                            [8,16](
                     ج) ( 16 ، 8 ]
   د) ( 16 ، 8 )
                                                    ب) [ 8 ، 8 )
                                                                                                   الحل:
[-8,16] يُلاحظ أن رمز المتباينة [-8,16] ولذلك تكون مغلقة أي [-8,16] ، و[-8,16]
                                                                 x < 11 رمز الفترة للمجموعة x < 11 هي
                                                                                         [-\infty, 11]
(\infty, 11) (\infty, 11)
                                                   ب) [ 11 ، ∞ ]
                                                                                  الحل: (د) (11، ∞)
                                                     x>5 رمز الفترة للمجموعة x=16 أوx>5 هي ا
                                                                              (-\infty, 16) \cup [5, \infty] (1
     [-\infty, 16] \cup (5, \infty) (ب
                                                                             [-\infty, 16) \cup (5, \infty)
    (-\infty, 16] \cup (5, \infty)
                                                                                      الحل: الإجابة (د).
                                      \{8,9,10,11,\dots\} الصفة المميزة لمجموعة الأعداد التالية : \{8,9,10,11,\dots\} هي :
                                                                                \{ x | x > 8, x \in R \}  (1)
 \{ x | x \ge 8, x ∈ R \} (ب
 \{ x | x \ge 8, x \in W \}
                                                                              \{ x | x > 8, x \in W \} (7)
                                                              \{x | x \ge 8, x \in W\} (د) الاجابة (د)
```

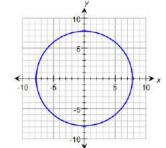
$$\{x|x\geq 7,x\in R\}$$
 (ب $\{x|x\geq 7,x\in R\}$ (ب $\{x|x\geq 7,x\in R\}$ (ب $\{x|x\geq 7,x\in R\}$ (ب $\{x|x\geq 7,x\in R\}$) (ب $\{x|x\geq 5,x\in R\}$ (ب $\{x|x\geq 5,x\in R\}$) (ب $\{x|x\geq 5,x\in R\}$)

 $\{x|x>-3,x\in R\}$ ج $\{x|x>-3,x\in R\}$ د $\{x|x\neq -3,x\in R\}$ و $\{x|x\neq -3,x\in R\}$ إذاً $\{x|x\neq -3,x\in R\}$ الحل : الإجابة (د) بالتعويض بفرع الدالة في المقام $\{x|x>-3\}$ إذاً $\{x|x\neq -3,x\in R\}$

(استبعدنا علاقة التساوي \geq لأن لو أصبح المقام = الصفر ، لأصبحت المعادلة غير معرفة \geq).

س68/ رمز المجموعة المميزة للمجموعة " المضاعفات الموجبة للعدد 5 " :

$$\{x|x = 5n, x \in W\}$$


$$\{x|x \geq 5n, x \in W\}$$

 $\{x|x=5n,x\in N\}\ ($

 $\{x|x\geq 5$, $x\in R\}$ (ج

الحل : الإجابة (أ) وذلك لأنها تحقق المعادلة أعلاه ، استبعدنا مجموعة الأعداد ${f W}$ لأن الـ ${f 0}$ ليس من مضاعفات الـ ${f 5}$! .

س69/ يُعتبر الشكل التالي :

دالة فوقية ج) دالة هندسية د) ليس دالة

أ) دالة شاملة بالله فوقية

الحل: (د) ليس دالة ، وذلك باستعمال خط الاختبار الرأسي.

 $b(x)=\sqrt{x+6}+2$ هو : مجال الدالة

$$\{x|x\geq -6\}$$
 (ب

 $\{x|x\geq 8\}$ (

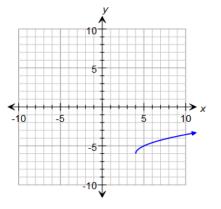
$$\{ x | x > -6 \}$$

 $\{x|x>8\}$ (7

الحل: بما أن مجال دالة الجذر التربيعي يشمل فقط القيم التي تجعل ما تحت الجذر غير سالب فإن ..

لذا الإجابة (ب)
$$b(x)=\sqrt{x+6}+2 \implies x \geq -6$$

س71/ دالة الجذر التربيعي التي لها التمثيل البياني التالي هي :


$$f(x) = \sqrt{x-4} - 6$$
 (ب

 $f(x) = \sqrt{x-4-6} \, (1)$

$$f(x) = \sqrt{x+4} - 6$$

 $f(x) = \sqrt{x - 6 - 4}$

. y الجزء المقطوع يكون لا (x,y) تكون عند (4,6) الجزء المقطوع يكون لا الحل : الإجابة ((4,6)

$$f(x)=rac{1}{4}\sqrt{x-5}+3$$
 هو : مجال الدالة

$$\{x|x\geq 5\}$$

$$\{x|x\neq 5, x\in R\}$$

$$\{x \mid x \geq 5\}$$
 (أ)

$$f(x)=rac{1}{4}\sqrt{x-5}+3$$
 هو $f(x)=rac{1}{4}$ هو

$$f(x) = \frac{1}{4}\sqrt{x} - 5 + 3$$
 هو:

$$\{x|x \ge 3\} (\downarrow) \qquad \qquad \{x|x \ge 5\} (\uparrow)$$

$$\{x|x\neq 3\}$$
 $\{x|x\neq \frac{1}{4}, x\in R\}$ $\{x|x\neq \frac{1}{4}, x\in R\}$

الحل : (ب) $x \geq 3$ ، دائماً في دوال الجذر التربيعي ، المدى يكون نفسه دون تغيير .

$$f(x) < -\sqrt{x+2} - 4$$
 مجال الدالة /74 مجال

$$\{ x | x \ge -2 \}$$
 (i)

$$\{ x | x < -4 \}$$
 $\{ x | x \neq 2 , x \in R \}$ (5)

$$x|x \ge -2$$
 .. $\{x|x \ge -2\}$ الحل

$$f(x)=rac{-2x^3+4}{3}$$
 القيمة التقريبية للمقطع y للدالة المقطع

$$0.75 (7)$$
 3 (3.2) (3.2)

1.33 الحل : (ب) بالتعويض بقيمة x بالتعويض بقيمة

$$[-2,6)$$
 (عن $[6,-2)$ (ج. $[6,4)$ (ف) (6,4)

[-2,6)(c)

س77/ مجال الدالة التالي هو:

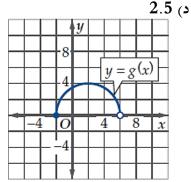
$$\{x \mid x \ge -8, x \in R\} \quad (x \mid x \ge -8, x \ne -4, x \in R\}$$

$$\{x \mid x \geq -4, x \in R\} (x \mid x \neq -4, x \in R) (x \mid$$

الحل: الإجابة (أ).

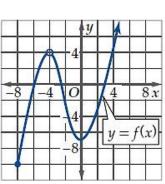
$$f(x)=-x^3+3$$
 عند الفترة [$f(x)=-x^3+3$ عند الفترة [$f(x)=-x^3+3$

$$-1$$
 (ع -4 (ب -4 (ع -4

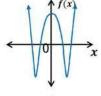

الحل: بتطبيق قانون متوسط التغير (الميل) والذي ينص على:

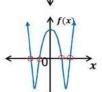
$$\frac{f(x_2)-f(x_1)}{x_2-x_1}$$

$$= \frac{f(-1)-f(-2)}{-1-(-2)}: \text{ the line is the proof of the proof of$$


$$\frac{[-(-1)^3 + 3(-1)] - [-(-2)^3 + 3(-2)]}{-1 - (-2)}$$

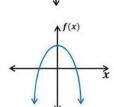
ولذا يكون الحل = 4-




 $\{ x | x > 5 \}$

 $\{ x | x = 5 \}$

الأعداد النسبية والأصفار:


س79/ عدد الأصفار التي تنتمي لمجموعة الأعداد الحقيقة للدالة التالية:

 \mathbf{x} الإجابة (+) ، وذلك بتحديد عدد مرات قطع المحور

س80/ الدالة التالية تُعتبر دالة :

أ) دالة زوجية (الله فردية عبر ذلك) دالة زوجية ولا فردية (الله غير ذلك

الحل: الدالة زوجية ، لأن عدد أصفارها = 2 .

قانُون ديكارت :

- يُستخدم قانون ديكارت لتحديد العدد الممكن من الأصفار الحقيقة الموجبة والسالبة لأي دالة كثيرة حدود.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 ويُعطى قانون ديكارت بالعلاقة :

$$h(x)=2x^5+x^4+3x^3-4x^2-x+9$$
 العدد الممكن للأصفار الحقيقة الموجبة للدالة

د) لا يوجد أصفار للدالة

5 (أ

الحل: عدد الأصفار الكاملة (الحقيقة الموجبة والحقيقة السالبة) هي 5 .

ولكن الأعداد الحقيقة الموجبة ، نطبق عليها قانون ديكارت ويكون الحل هو :

نحسب عدد مرات التغير للإشارات:

$$h(-x) = 2x^5 \oplus x^4 \ominus 3x^3 \bigcirc 4x^2 \oplus x \oplus 9$$

يُلاحظ أن مقدار التغير 1+1+1=3، ولذلك =3 ،ونجد أن الحل (7) يتوافق مع ما هو مطلوب.

 $P(x) = 5x^3 - 2x^2 + 7x + 1$ عدد الأصفار الحقيقة السالبة هي :

د) 5

ج) 3

ب) 1

أ) 2 ، 0

الحل: لحل الأعداد الحقيقة السالبة ، نعوض بقيمة سالبة في المجاهيل! ونحدد مقدار التغير:

ا فيكون الحل $P(-x) = 5(-x)^3 - 2(-x^2) + 7(-x) + 1$

.(ب). إذاً عدد الأصفار السالبة = 1 وبناءًا على ذلك فإن الإجابة (ب). $P(-x) = -5(x)^3 - 2(\frac{x^2}{x^2}) - 7(x) + 1$

[-4,4] في الفترة $f(x)=x^3-4x+2$ الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقة للدالة

(-3,2], [0,1], [1,2] ب


[-4,4], [-3,2], [1,2] (

د) [-4,0], [-3,1], [4,2] (

[-4,2], [0,-3], [1,4] (5

الحل: الإجابة (ب) [1,2], [0,1], [0,1], [0,1], التعويض بقيم في الدالة من [0,1] المحظة هل هي تقطع محور

X أم لا،

العمليات على الدوال:

- يُقصد بالعمليات على الدوال : هو إجراء العمليات الحسابية المختلفة على الدوال.

افِان قيمة
$$f(x)=x^2+5x-2$$
 , $g(x)=3x-2$ فإن قيمة $f(x)=(f+g)(x)$

$$(f+g)(x) = x^2 - 8x + 4$$
 (1)

$$(f+g)(x) = x^2 + 8x + 4$$
 (ب

$$(f+g)(x) = x^2 - 8x - 4$$

$$(f+g)(x) = x^2 + 8x - 4$$
 (2)

الحل :الإجابة (د) حسب قانون جمع الدوال : (f+g)(x)=f(x)+g(x) ولذلك فإنها =

$$(x^2 + 5x - 2) + (3x - 2) = x^2 + 8x - 4$$

= فإن حاصل ضربهما f(x)=x-4 , $g(x)=\sqrt{9-x^2}$ = f(x) , g(x) فإن حاصل ضربهما أذا كانت الدالتين

$$x\sqrt{9+x^2}-4\sqrt{9+x^2}$$
 (ب $x\sqrt{9-x^2}+4\sqrt{9-x^2}$ (أ

$$x\sqrt{9+x^2}+4\sqrt{9+x^2}$$
 (2) $x\sqrt{9-x^2}-4\sqrt{9-x^2}$ (2)

الحل : الإجابة (ج) حسب قانون ضرب الدوال .

f(x),h(x) مجال الدالة f(x),h(x) إذا علمت أن قيمة كلا من f(x)

$$: f(x) = x^2 + 4x, h(x) = 3x - 5$$

$$[\infty, -\infty)$$
 $(-\infty)$

$$(\infty, -\infty)$$
 (s)

الحل: بطرح الدالتين ثم استخراج المجال ، الإجابة (أ) هي الأنسب لأن] [هي نفسها ().

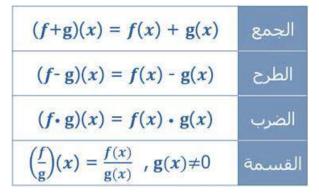
تركيب دالتين :

تركيب دالتين : هي أحد الطرائق التي تستعمل لدمج دالتين . وعند تركيب دالتين فإن قيمة منها تستعمل لحساب قيم أخرى.

f[g(x)] و $[f\circ g](x)$ يرمز لتركيب دالتين بالرمز $[f\circ g]$

وتقرأ $(\,g\,$ بعد $\,g\,$) أو $(\,g\,$ تحصيل

ليمكن أن يكون تركيب دالتين غير مُعّرف .


- يمكن أن يكون تركيب دالتين عير معرف .

$$x^2 - 8x + 17$$
 (2) $x^2 + 8x + 17$ (7)

f وبالتعويض بقيمة $f(x-4)=[f\circ g](x)=f[g(x)]$ وبالتعويض بقيمة وبالتعويض بقيمة وبالتعويض بقيمة المحل

يكون الحل : $(x-4)^2+1$ وبفك مربعين يكون الحل $(x-4)^2+1$.

f d

g(x) -

 $[f \circ g](x)$

f[g(x)]

gمجال

$$\langle x,y
angle$$
 یرمز للمتجه بالرمز _-

 $\overrightarrow{\mathbf{0}}$ المتجه الصفري : عند جمع متجهين متعاكسين لهما الطول نفسه ويرمز له بالرمز

$$\langle x_2-x_1,y_2-y_1
angle$$
 الصورة الإحداثية لمتجه تُعطى بالعلاقة : $\langle x_2-x_1,y_2-y_1
angle$

 $\langle |v| \cos heta, |v| \sin heta$ الصورة الإحداثية لمتجه بدلالة زاوية معينة ، تُعطى بالعلاقة - الصورة الإحداثية لمتجه بدلالة زاوية معينة

،
$$u=rac{1}{|v|}v$$
 : متجه الوحدة يُعطى بالعلاقة -

. ويسمى xi+yj هي عبارة عن تبسيط لصيغة المتجهات ، ويسمى i,j-1 بالتوافق الخطى .

 $\langle |v| (cos\theta)i, |v| (sin\theta)j \rangle$ وتُعطى الصورة الإحداثي لمتجه توافق خطى بدلالة زاوية معينة بالعلاقة

 $u=w_1+w_2$ و $w_1=rac{u imes v}{|v|^2} imes v$ و مسقط المتجه (القطعة المتوسطة للمتجهات) يُعطى بالعلاقة و $w_1=v_1+v_2$

$$w_2 = rac{v imes u}{|u|^2} imes u$$
وأيضاً

 ${f B}$ الصورة الإحداثية لـ ${f AB}$ ، الذي نقطة بدايته ${f A}(-4,2)$ ونقطة نهايته (${f B}(3,-5)$ هي :

$$\langle 7, -1 \rangle$$
 (2) $\langle -1, 7 \rangle$

$$\langle -1,7 \rangle$$
 (ج $\langle 7,-7 \rangle$

⟨−7.7⟩ (أ

 $\langle x_2-x_1,y_2-y_1 \rangle$ بالتعويض بقانون الصورة الإحداثية للمتجه $\langle 7,-7 \rangle$. الحل

 $\mathbf{v}\langle -2,3 \rangle$ متجه الوحدة ، الذي له نفس اتجاه $\mathbf{v}\langle -2,3 \rangle$ هو

$$\left\langle \frac{3\sqrt{13}}{13}, \frac{-2\sqrt{13}}{13} \right\rangle$$
 (ع

$$\left\langle \frac{3\sqrt{13}}{13}, \frac{2\sqrt{13}}{13} \right\rangle$$
 (3

$$\left\langle \frac{3\sqrt{13}}{13}, \frac{2\sqrt{13}}{13} \right\rangle$$
 (ج $\left\langle \frac{2\sqrt{13}}{13}, \frac{3\sqrt{13}}{13} \right\rangle$ (ب $\left\langle \frac{-2\sqrt{13}}{13}, \frac{3\sqrt{13}}{13} \right\rangle$ (أ

$$\left\langle \frac{-2\sqrt{13}}{13}, \frac{3\sqrt{13}}{13} \right\rangle$$
 (أ

الحل: الإجابة (أ) بالتعويض في قانون متجه الوحدة.

 \overline{D} بدلالة متجهى الوحدة \overline{D} هي \overline{D} هي \overline{D} ، ونقطة نهايته \overline{D} ، فإن \overline{D} بدلالة متجهى الوحدة المتحد ونقطة نهايته \overline{D}

$$6i-2i$$
 د

$$2i-6j$$
 (ج $6i+2j$ ب

$$6i + 2i$$

xi + yj غلي صيغة xi + yj على صيغة الإحداثية للمتجه ، ثم كتابتها على صيغة الحل الحل . الإجابة (ب

 $v=\langle 5,-5
angle$, $u=\langle 3,2
angle$ هو $v=\langle 5,-5
angle$, $u=\langle 3,2
angle$ هو

$$\langle 7, -1 \rangle$$
 (2)

$$\left\langle \frac{1}{2}, -\frac{1}{2} \right\rangle$$
 (e) $\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle$ (e)

$$\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle$$
 (ب

$$\left\langle -\frac{1}{2},\frac{1}{2}\right\rangle$$
 (

الحل : الإجابة (7) (7) وذلك بالتعويض في قانون مسقط المتجه .

الفصل الثالث: المصفوفات

المصفوفات:

$$B = \begin{bmatrix} 10 & -8 \\ -2 & 19 \\ 6 & -1 \end{bmatrix} \mathbf{m} = \mathbf{0}$$

 $B = \begin{bmatrix} 10 & -8 \\ -2 & 19 \\ 6 & -1 \end{bmatrix}$ $\mathbf{m} = 0$ صفوف $\mathbf{m} = 0$ صفوف $\mathbf{m} = 0$ معدة رأسية محصورة بين قوسين. $\mathbf{m} = 0$ عادةً $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$ عادةً $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$ عادةً $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$ عادةً $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$ عادةً $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$ من للمصفوفة من للمصفوفة $\mathbf{m} = 0$ من للمصفوفة $\mathbf{m} = 0$

 ${f A},{f B},{f C},\ldots$: يرمز للمصفوفة — عادةً — باستعمال الأحرف الكبيرة مثل

 a,b,c,\dots : يرمز لعناصر المصفوفة (في الداخل) بالأحرف الصغيرة مثل

– تكون عناصر المصفوفة عبارة عن أعداد أو رموز أو أعداد ورموز معاً.

 للمصفوفات أنواع وهي: - مصفوفة الصف - مصفوفة العمود – المصفوفة الصفرية - المصفوفة المربعة

$$B = \begin{bmatrix} 10 & -8 \\ -2 & 19 \\ 6 & -1 \end{bmatrix} \qquad \mathbf{2} \times \mathbf{2} \text{ (s)}$$

 $=\mathbf{B}$ في المصفوفة المجاورة رتبة

3×2 رب 2×3 رأ

6 = 1الحل : 3×2 ($m \times n$) وعدد العناصر

 $m{b}_{32}$ في المصفوفة السابقة قيمة $m{b}_{32}$

$$E = \begin{bmatrix} 2 \\ x \end{bmatrix}^{6}$$

 $E = \begin{bmatrix} 2 \\ x \\ -3 \end{bmatrix}$ (ع) $\begin{bmatrix} -1 \\ -8 \\ 10 \\ -1 \end{bmatrix}$ (ع) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (3) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (4) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (5) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (5) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (7) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (8) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (8) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (9) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (12) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (13) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (14) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (15) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (15) $\begin{bmatrix} -1 \\ 12 \\ -1 \end{bmatrix}$ (

3×3 (z

3=1 ، وعدد الصفوف الحلى الإجابة (ج) 1×3 ، أي عدد الأعمدة

 \mathbf{y} قيمة \mathbf{y} في المصفوفة المجاورة :

$$\begin{bmatrix} 6 & 4 \\ -1 & 2x - y \end{bmatrix} = \begin{bmatrix} x & 4 \\ -1 & 2 \end{bmatrix}$$

ب) 10

أ) 6

x = 6 الحل : بالتناظر نلاحظ أن x = 6 ولذلك بما فإن

$\begin{bmatrix} \mathbf{A} & \pm & \mathbf{B} & = & \mathbf{A} \pm \mathbf{B} \\ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \pm \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \pm e & b \pm f \\ c \pm g & d \pm g \end{bmatrix}$

جمع المصفوفات وطرحها:

- يجب عند جمع وطرح المصفوفات أن تكون من نفس الرتبة.

س96/ ناتج جمع المصفوفة المجاورة =

$$\begin{bmatrix} -9 & 8 & 3 \\ -12 & 4 & -7 \end{bmatrix} + \begin{bmatrix} -4 & -3 & 6 \\ -9 & -5 & 18 \end{bmatrix}$$

الحل:

$$\begin{bmatrix} -13 & 5 & 9 \\ -21 & -1 & 11 \end{bmatrix} \longleftarrow \begin{bmatrix} (-9) + (-4) & 8 + (-3) & 3 + 6 \\ (-12) + (-9) & 4 + (-5) & (-7) + (18) \end{bmatrix}$$

$$-5 \begin{pmatrix} \begin{bmatrix} 4 & -8 \\ 8 & -9 \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ -3 & -6 \end{bmatrix} \end{pmatrix}$$

$$-5 \begin{bmatrix} 8 & -10 \\ 5 & -15 \end{bmatrix} = \begin{bmatrix} (-5) \cdot 8 & (-5) \cdot (-10) \\ (-5) \cdot 5 & (-5) \cdot (-15) \end{bmatrix} = \begin{bmatrix} -40 & 50 \\ -25 & 75 \end{bmatrix}$$
: Head:

ضرب المصفوفات:

- تضرب المصفوفات إذا وفقط إذا كان عدد أعمدة الأولى مساوياً لعدد صفوف الثانية .
- في الضرب لا يشترط تساوي العناصر في المصفوفتين ، عكس الجمع والطرح الذي يتطلب تساوي العناصر في المصفوفتين.

$$A_{4\cdot 6}\cdot B_{6\cdot 2}$$
 ي الضرب التالية معرفة ؟ $A_{m\cdot n}\cdot B_{m\cdot n}$ الحل : عملية الضرب معرفة لأن أعمدة $A_{m\cdot n}\cdot B_{m\cdot n}$ الحل : عملية الضرب معرفة لأن أعمدة $A_{3\cdot 2}\cdot B_{3\cdot 2}$ ي $A_{3\cdot 2}\cdot B_{3\cdot 2}$

 $A_{m\cdot n}\cdot B_{m\cdot n}$ الحل : عملية الضرب غير معرفّة لأن عدد أعمدة ${f A}$ لا تساوي عدد صفوف

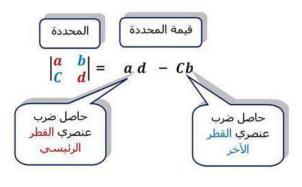
$$U = \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix} \cdot V = \begin{bmatrix} 2 & -1 \\ 6 & -5 \end{bmatrix}$$

100س أوجد ناتج ضرب المصفوفة المجاورة :

الحل:

$$U \cdot V = \begin{bmatrix} 5(2) + 9(6) & 5(-1) + 9(-5) \\ (-3)(2) + (-2)(6) & (-3)(-1) + (-2)(-5) \end{bmatrix}$$

$$UV = \begin{bmatrix} 64 & -50 \\ -18 & 13 \end{bmatrix}$$


س101/ أوجد ناتج ضرب المصفوفة المجاورة:

$$\begin{bmatrix} -6 & 4 & -9 \\ 2 & 8 & 7 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 2 \\ 4 \end{bmatrix}$$

الحل :

$$\begin{bmatrix} (-6)(7) + & 4(2) + & (-9)(4) \\ 2(7) + & 8(2) & 7(4) \end{bmatrix} = \begin{bmatrix} -70 \\ 85 \end{bmatrix}$$

المحددات وقاعدة كرامر :

 $\|\mathbf{A}\|$ المحددة : إذا كانت المصفوفة \mathbf{A} مربعة فإن لها محددة ويرمز لها بالرمز $\|\mathbf{A}\|$

- * مُحددة من الدرجة الثانية (ثنائية) وتكون رتبة مصفوفتها : 2×2.
- $\times 3$: هُحددة من الدرجة الثالث (ثلاثية) وتكون رتبة مصفوفتها : $\times 3$

$$\begin{vmatrix} -6 & -7 \\ 10 & 8 \end{vmatrix}$$

$$= \begin{vmatrix} 10 & 8 \end{vmatrix}$$

$$= \frac{102}{1000}$$

ج) 11

ب) 22-

أ) 22

الحل:

$$\begin{bmatrix} -6 & -7 \\ 10 & 8 \end{bmatrix} = (-6) \cdot (8) - (-7) \cdot (10) = 22$$

قاعدة كرامر:

- تنقسم قاعدة كرامر لقسمين:
- (1) قاعدة كرامر لحل نظام من معادلتين (ثنائية).
- (2) قاعدة كرامر لحل نظام من ثلاثة معادلات (ثلاثية).

ملاحظات /

- يكون للنظام حل وحيد إذا كانت قيمة $C \mid C$ لا تساوي صفراً .
 - یکون للنظام حل وحید إذا کانت قیمة |C| = صفر
 - للتحقق من الحل نعوض بالقيم في المعادلات الأصلية .

$$3y + 7x = 37$$

$$-5x - 7y = -41 \quad (2 \cdot 3) \quad (3) \quad (2 \cdot 3) \quad (3) \quad$$

ج) (4 ، 0)

س103/ حل النظام التالي :

(3,4) (ب (4,3) (أ

الحل:

أو الحل الأفضل / بالتعويض بالخيارات..

$$= 7(-7) - 3(-5) = -49 + 15 = -34$$

$$y = \frac{\begin{vmatrix} 7 & 37 \\ -5 & -41 \end{vmatrix}}{-34} = \frac{7(-41) - 37(-5)}{34} = \frac{102}{34} = 3 \quad x = \frac{\begin{vmatrix} 37 & 3 \\ -41 & -7 \end{vmatrix}}{-34} = \frac{37(-7) - 37(-5)}{-34} = \frac{136}{34} = 4$$

النظير الضربى للمصفوفة:

$$A = egin{bmatrix} 2 & 1 \ -4 & 3 \end{bmatrix}$$
 : الحل :

أولاً / نوجد قيمة مُحددة المصفوفة A

$$A = \begin{bmatrix} 2 & 1 \\ -4 & 3 \end{bmatrix} = [(2) \cdot (3) - (-4) \cdot (1)] = 10$$

ثانياً / نبدل بين موقعي عنصري القطر الرئيسي ونُغير إشارتي العُنصرين الآخرين

$$\begin{bmatrix} \mathbf{2} & 1 \\ -4 & \mathbf{3} \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 4 & 2 \end{bmatrix}$$

$$\dfrac{1}{|A|}$$
ثالثاً / نضرب المصفوفة الناتجة في

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{10} & \frac{-1}{10} \\ \frac{4}{10} & \frac{2}{10} \end{bmatrix}$$

الفصل الرابع: اللوغاريتمات

اللوغاريتمات:

– التعبير اللفظي : لوغاريتم
$${f x}$$
 للأساس ${f b}$ يُساوي ${f y}$.

$$log_b x = y$$
 $\qquad \qquad \Rightarrow x = b^y$ التعبير الرياضي -

الخصائص اللوغاريتمية :

التبرير	الخاصية
$b^0 = 1$	$log_b 1 = 0$
$b^1 = b$	$log_b b = 1$
$b^x = b^x$	$log_b b^x = x$
$\log_b x = \log_b x$	$b^{\log_b x} = x, x > 0$

تدريب
$$1$$
 / أكتب $2=16$ على الصورة الأسية :

$$\mathbf{4}^2=\mathbf{16}$$
 الحل : حسب القانون يكون الحل

$$y=3$$
 , $b=15$, $x=3375$ $15^3=3375$: الحل

$$log_{15}$$
 3375 = 3 ولذلك يكون الحل

 $: oldsymbol{log_{16}}$: قيمة 105

16 (2)
$$4 \left(\frac{1}{2} \right)$$

 $y=rac{1}{2}$ الحل: أولاً نضعها على الصورة الأُسية $4y=16^y$ نبسطها $2^2=(2^2)^{2y}$: وبعد التبسيط 4y=2 إذاً $y=\frac{1}{2}$ المراكبة المر

$$47$$
 (2) 9 (4) 9 (5) 9 (7) 9 (7) 9 (7) 9 (8) 9 (7) 9 (8) 9 (8) 9 (9) 9 (1) 9

الحل :
$$3^{y}=3^{y}$$
 ، بالتبسيط : $3^{y}=3^{y}$ ، بعد التبسيط : $3^{y}=3^{y}$ تساوت الأساسات إذاً الأسس متساوية

$$= log_7 rac{1}{49}$$
 قيمة 107

$$-2$$
 (2) -7 (1) 7 (1)

.
$$y=-2$$
 ولذلك قيمة $7^{-2}=7^y$ ، $\frac{1}{49}=7^y$: الحل $(x)=7^y$ ولذلك قيمة

$$: log (1000)/108$$
س

الحل : إذا كان العدد 1000 فإننا نعد الأصفار فقط = 3 ، مثلاً (
$$100 = log$$
 (100) ، مثلاً ($100 = log$ ($1000 = log$) .

خصائص اللوغاريتمات :

$log_b xy = log_b x + log_b y$	خاصية الضرب في اللوغاريتمات
$log_b \frac{x}{y} = log_b x - log_b y$	خاصية القسمة في اللوغاريتمات
$\log_b x^m = m \log_b x$	خاصية لوغاريتم القوة
$\log_b \sqrt[m]{x} = \frac{\log_b x}{m}$	خاصية الجذر في اللوغاريتمات

 log_2 $12x^5$ y^{-2} : تدريب1/ اكتب العبارة اللوغاريتمية التالية بالصورة المطولة : log_2 $12+log_2$ x^5+log_2 y^{-2} اللحل : حسب خاصية الضرب في اللوغاريتمات y^{-2} بعد ذلك نقدم مكان الأس في بداية اللوغاريتم (حسب خصائص اللوغاريتمات) log_2 $12+5log_2$ $x-2log_2$

 log_{13} $6a^3bc^4$: تدريب 2 / اكتب العبارة اللوغاريتمية التالية بالصورة المطولة log_{13} $6+log_{13}a^3+log_{13}b+log_{13}c^4$ الحل : نستخدم خاصية الضرب في اللوغاريتمات log_{13} $6+3log_{13}a+log_{13}b+4log_{13}c$ نُقدم الأسس

 log_6 $5x^3y^7z^{0.5}$: تدريب $z^{0.5}$ اكتب العبارة اللوغاريتمية التالية بالصورة المطولة $z^{0.5}$ المحل : نستخدم خاصية الضرب في اللوغاريتمات $z^{0.5}$ $z^{0.5}$ الحل : نستخدم خاصية الضرب في اللوغاريتمات $z^{0.5}$. $z^{0.5}$.

 $4log_3x-rac{1}{3}log_3(x+6):$ تدريب4/ اكتب العبارة اللوغاريتمية التالية بالصورة المختصرة $log_3x^4-log_3\sqrt[3]{(x+6)}:$ العلاقة بالقسمة كما في خصائص اللوغاريتم $log_3x^4-log_3\sqrt[3]{(x+6)}:$ $log_3\frac{x^4}{\sqrt[3]{x+6}}:$

 log_4 2 = 0.5 من log_4 32 هي : log_4 من log_4 32 من log_4 32 هي : 3.95 هي log_4 عن log_4 عن

$$\log_2(x^2-4)=\log_2 3x$$
 قول 100 من كلا الطرفين ، إذاً $x^2-4=1$ عبد التعويض بالخيارات ... عبد الحل : بحذف الد \log_2 من كلا الطرفين ، إذاً $x^2-4=3x$ ومن ثم بالتعويض بالخيارات ... $\log_2 x$ من كلا الطرفين ، إذاً تعمل الخيارات ... عبد المعادل فك مربعين ... عبد المعادلة $\log_2 \frac{x}{y}=3$ ، $\log_2 xy=5$ فإن قيمة $\log_2 xy=5$ أن أن العادلة يقل 110 عبد المعادلة $\log_2 x=3$ المعادلة $\log_2 x=3$ عبد المعادلة عبد المعادلة عبد المعادلة المعادلة عبد المعادلة المعاد

المتتابعات والمتسلسلات:

- المتتابعة : مجموعة من الأعداد مرتبة في نمط محدد أو ترتيب معين ويسمى كل عدد في المتتابعة حداً وقد تكون المتتابعة منتهية مثل : $1,2,3,4,\dots$.
 - المتتابعات نوعان إما متتابعة حسابية أو متتابعة هندسية .
 - قد يُطلق على المتتابعات لفظ: متسلسلات ، متتاليات ، متواليات ..
 - $(\,{f R}\,)$ المتتابعات دالة مجالها مجموعة الأعداد الطبيعية $(\,{f N}\,)$ ، ومداها مجموعة الأعداد الحقيقة

المتتابعة الهندسية	المتتابعة الحسابية	نوع المتتابعة
متتابعة يمكن الحصول عليها	متتابعة يمكن الحصول عليها عن	المقصود بها
عن طريق ضرب الحد السابق	طريق إضافة قيمة ثابتة للحد السابق	
في عدد ثابت.		
16,24,36,54,	5,-6,-17,-28,	مثال
VVV	VVV	
يُلاحظ أن قسمة كل عدد على	الحد ثابت ويساوي 11-	
سابقه يُعطي نفس العدد 54/36 = 36/24 = 16/24	ولذا المتتابعة حسابية.	
على شكل دالة أسية	على شكل دالة خطية	تمثيلها البياني
$a_n = a_1 r^{n-1}$	$a_n = a_1 + (n-1)d$	قانون الحد النوني
$S_n = \left(\frac{a_1 - a_1 r^n}{a - 1}\right), r \neq 1$	$S_n = n(\frac{a_1 + a_n}{2})$	قانون المجموع الجزئي
نوع الحد (الحد الأول ، الحد الثاني ، الحد الثالث ، $a_1, a_2, a_3,$		معاني الرموز
، أساس المتتابعة ${f n}$ ، عدد طبيعي a_n الحد النوني ${f d}$ ،		

 $^{\circ}$ مجال المتتابعة التالية $^{\circ}$ 3,6,9,12,15 هو

 \mathbf{R} (2) $\{3,6,9,12,15\}$ (5) $\{1,2,3,4,5\}$ (1) $\{0,1,2,3,4,5\}$

 $\{3,6,9,12,15\}$ المحال في المتتابعات هو مجموعة الأعداد الطبيعية (N) أما المدى فهو

 $^{\circ}$ 5,-6,-17,-28 و متتابعة ، متتابعة متتابعة متتابعة متتابعة ، متتابعة ، متتابعة متتابعة ، متتابعة ،

- تمثل دالة حسابية لان الفرق ثابت وهو 11- .

 $-4,12,28,42,\dots$ هل تمثل المتتابعة ، متتابعة حسابية أم لا

- لا تمثل دالة حسابية لأن الفرق ليس ثابتاً في الحدود.

 $\sim 9,16,23,30,\dots$ الحد المئة في المتتابعة: ج) 1028 د) 6002 ب) 702 **756** (1) $a_n = a_1 + (n-1)d$ الأساس (d) ثابت وهو 7 أي أن المتتابعة حسابية ، ولذلك عوض بالقانون d702 : وهذا يساوي $a_n = 9 + (100-1)(7)$ وهذا يساوي ~ 120 صيغة الحد النوني للمتتابعة الحسابية التالية $\sim 13,-31,-5$ هي $a_n = 18n + 23$ ($a_n = -18n + 23$ (ب $a_n = -18n - 23$ (2) $a_n = 18n - 23$ (7) d والأساس $a_1=5$ والأساس $a_n=a_1+(n-1)d$ والأساس $a_1=5$ والأساس الحل : الإجابة $a_1=5$ $a_{
m n} = -18n + 23$ = $a_{
m n} = 5 + (n-1)(-18)$ لذلك بالتعويض بالقانون (-13 - 5 = -18س 121/ الوسطين الحسابيين ...,10,... هما: -2,6 (=-2.4 (ب د) 2,6 -2.8 (1) $n=10=(a_4)$ الرابع (ج) بما أن هُناك a=4 حدود فإن a=4 ، والحد الرابع وبالتعويض بالقانون d=6 إذاً $a_n=a_1+(n-1)d$ وبذلك $a_n=a_1+(n-1)d$ -8+6=-2 , -2+4=6س 122/ مجموع حدود المتسلسلة الحسابية التالية : 12+19+26+...+180 د) 9600 ج) 3600 س 2600 **2400** (1 $a_1 = 12$, $a_n = 180$, d = (19 - 12) = 7 , n = 5 : الحل وبالتعويض بقانون المتتابعة الحسابية لايجاد قيمة 11 $S_n = n \ (rac{a_1 + a_n}{2})$ عكون قيمة n = 25 ، وبالتعويض بقانون المجموع الجزئي في متسلسلة حسابية . (أ) لذا تكون الإجابة $S_n=25$ $\left(rac{12+180}{2}
ight)=25$ لذا تكون الإجابة $S_n=25$ لذا تكون الإجابة $S_n=25$ س123/ إذا كان الحد الأول في متسلسلة هندسية 5 ، وأساسها 2 ، ومجموعها 1275 ، فإن عدد حدودها : د) 8 7 (ج أ) 5 $S_n = rac{a_1 - a_1 r^n}{1 - r}$ الحل : بالتعويض بقانون مجموع المتسلسلة الحسابية الحسابية الحريث n=8 = $1275=rac{5-5 imes(2^n)}{1-2}$: وبالتعويض $a_1=5$, r=2 , $S_n=1275$

رمز المجموع :

ر قيمة لا
$$0
ightarrow \sum_{k=1}^n f(k) \longleftarrow$$
 أخر قيمة لا $0
ightarrow \sum_{k=1}^n f(k)$ أول قيمة ل

$$\sum_{k=4}^{18} f(6k-1)$$
 قيمة مجموع المتسلسلة الحسابية $\int_{k=4}^{18} f(6k-1)$ ج) $\int_{k=4}^{1203} f(6k-1)$ د) 23 (أ $\int_{k=4}^{100} f(x) \int_{k=4}^{100} f(x) \int_{k=4}^{10$

$$(\ 6\ (\ 18\)-1\)=107$$
 أقل قيمة $(\ 6\ (4)-1\)=23$ أقل قيمة

f 1 الخطوة الثانية / إيجاد عدد الحدود (f n) ، وذلك عن طريق طرح القيمة الكبرى من الصغرى وإضافة

$$15 = 1 + (4 - 18)$$

همسة / لماذا أضفنا 1 هُنا ; حسب مبدأ العد (من 4 إلى 18) يكون 15 حد.

- الخطوة الثالثة / نستعمل قانون صيغة المجموع:

$$15~(65)$$
 = 975 = S_{15} = $15~(rac{23+107}{2})$: وبالتعويض $S_n=n~(rac{a_1+a_n}{2})$ $\sum_{i=0}^{31} (4x+1)$: 64

د) لايمكن الحل

ج) 1203

ك 6112

6494 (1

الحل : الإجابة (x) لايمكن الحل ، لأن لا يمكن أن تكون القيمة الصغرى لـ x > القيمة العليا لـ x .

د) 5010–

ج) 4080

ب) 2048

131072 (f

الحل: الإجابة (ج) يُلاحظ أن المتسلسلة هندسية لاشتمالها على الدالة الأسية ..

2048 لذا أقل قيمة لـ ${f k}$ هي : ${f 4}(2)^{3-1}$ وهذا ${f 6}={f 16}={f 6}$ وهذا وهذا وهذا

 $S_n = rac{a_1 - a_1 r^n}{1 - a_1}$ وبتطبيق قانون صيغة المجموع للمتتابعة الهندسية 6 = (n) ، وبتطبيق قانون صيغة

$$S_n=rac{16-16(2)^8}{1-2}=4080$$
 : يكون الحل

المتسلسلات الهندسية غير المنتهية :

- المتسلسلات الهندسية الغير المنتهية: متسلسلات لها عدد لانهائي من الحدود، وهي نوعان:

. |r| < 1متسلسلات متقاربة : يقترب المجموع من عدد حقيقي *

. $|r| \geq 1$ متسلسلات متباعدة : يتباعد المجموع من العدد الحقيقي *

54+36+24+... : مناعدة متقاربة أو متباعدة المتسلسلة متقاربة أو متباعدة

الحل : المتتابعة هندسية لذلك نقسم الحد التالي على سابقه $\frac{2}{54} = \frac{2}{54}$ ويلاحظ أن $\frac{2}{3} < 1$ لذا المتسلسلة متقاربة .

مجموع المتسلسلة الهندسية اللانهائية :

 $S=rac{a_1}{1-r}$ مجموع المتسلسلة الهندسية اللانهائية يرمز له بالرمز S حيث اr|<1 ويُعطى بالصيغة -

$$\sum_{k=1}^{\infty} 18(rac{4}{5})$$
 ي $18(rac{4}{5})$ ي $18(rac{4}{5})$ ي $18(rac{4}{5})$ عن $18(rac{4}{5})$

قانون مجموع الأعداد:

يُعطى قانون مجموع الأعداد بالعلاقة
$$\frac{x+1}{2}$$
 $\frac{x+1}{2}$ عدد الأعداد الصحيحة من 1 إلى 100 $=$ 100 في N (ع) 5050 جي $=$ 4950 بي رويان مجموع الأعداد الصحيحة من 1 إلى المحتمد المحتمد المحتمد المحتمد المحتمد الأعداد الصحيحة من 1 إلى المحتمد الأعداد الصحيحة من 1 إلى المحتمد المحت

الفصل الخامس: الاحتمالات

الاحتمالات:

- فضاء العينة لتجربة : مجموع جميع النواتج الممكنة ،ويمكن تمثيلة باستعمال القائمة المنظمة أو الجدول أو الرسم الشجري.

$$n_1.\,n_2.\,n_3\ldots n_k$$
: مبدأ العد الأساسي –

- المضروب : يكتب مضروب العدد الصحيح الموجب \mathbf{n} على الصورة \mathbf{n} ، ويساوي حاصل ضرب جميع الأعداد الصحيحة الموجبة التي هي أصغر من أو تساوي \mathbf{n} . \mathbf{n}

$$nPr = rac{n!}{(n-1)!}$$
 : تنظيم لمجموعة من الأعداد ، يكون الترتيب فيه مهماً جداً . وقانونه يُعطى بالعلاقة : $rac{n!}{(n-1)!}$: عدد المرات .

.
$$rac{n!}{r_1.r_2.~.....r_k!}$$
 : التباديل مع التكرار $-$

$$rac{n!}{n} = (n-1)!$$
 : التباديل الدائرية $[n]$

$$nCr = rac{n!}{(n-1)! \, r!}$$
: تنظيم لمجموعة من الأعداد ، يكون الترتيب فيها غير مهم وقانونه يُعطى بالعلاقة : r

. E(x) القيمة المتوقعة –

 $\frac{1}{6}$ (

161280 (1

 ~ 130 س في تجربة القاء حجر نرد مرة واحدة ، احتمال ظهور عدد زوجي :

$$\frac{3}{6}(z) \qquad \frac{3}{6}(z) \qquad \frac{2}{6}(z)$$

ج) 510

وبالتعويض بقانون الاحتمالات يتضح أن الحل هو (ج) .

الحل: الإجابة (د) باستعمال مبدأ العد الأساسي. 132 الحل: الإجابة (د) باستعمال مبدأ العد الأساسي. 132 اختارت سارة زوج من الأحذية من بين المقاسات: 134, 44,45 من أو رمادي أو أبيض ، ويمكن أن يكون من الجلد الطبيعي أو الصناعي ، وهناك 132

بنون أسود أو بني أو رمادي أو أبيض ، ويمكن أن يكون من الجلد الطبيعي أو أشكال مختلفة للحذاء ، فما عدد النواتج الممكنة في هذه الحالة ؟

168=3 imes2 imes4 imes7 ، 168 (ب) الإجابة (ب

 $^{\circ}$ سكم طريقة يمكن لأربعة أشخاص الجلوس في صف به $^{\circ}$ مقاعد $^{\circ}$

الحل : باستعمال نظرية المضروب لـ أربعة أشخاص : 8 imes7 imes6 imes7 imes6 طريقة .

ب) 1680

عدد الخيارات	البدائل
5	القماش
6	اللون
3	الأكمام
3	القبة
2	الفتحة الأمامية
2	الأزرار

د) 32

د) 514

قصص السبع	3 أشخاص ، فكم عدد طرق توزيع ال	تلفة وأردنا أن نوزع ثلاث منها على	س134/ إذا كانت لدينا 7 قصص مخ
			a mantitu i i kiti i
د) 210	ج) 120	ب) 63	على الأشخاص الثلاثه ؟
. عد .	أي $7 imes6 imes6$ أي $7 imes6$ $ imes6$ أو مبدأ ال	نظرية المضروب : 7 لـ 3 أشخاص	الحل: (د) 2010 ، وذلك باستعمال
	, خمسة أشخاص على هذه المقاعد =	عدد الطرق التي يمكن بها إجلاس	س135/ إذا كان لدينا 5 مقاعد ، فإن
د) 240	ج) 210	ب) 120	125 (^f
			الحل: الإجابة (ب) 120 ، باستعمال
			س136/ بكم طريقة يمكن أن يجلس
د) 60480	ج) 15120	ب) 12096	126 (i
	5 أشخاص بالنسبة لعدد الكراسي .		الحل: (ج) 15120 ، وذلك باستعم
		طريقة .	$15120 = 5 \times 6 \times 7 \times 8 \times 9$
			س137/ ما احتمال أن يكون 2113
$\frac{1}{302010}$ (ک	ج) 302010 رج	$\frac{1}{3360}$ (ب	3360 (f
التكوار	لذلك نستعمل قانون إيجاد التباديل مع	. تكرار في 5,1,6, 5 ,2,1, 5 ,3	الحل: الإجابة (ب) ، نُلاحظ أن هُناك
3 ولكن	وبالاختصار = 8 . 7 .6 . 5 .4	$\frac{8.7.6.5.3.2.1}{} = \frac{8!}{} : 0$. وبالتعويض بالقانود <u>n!</u>
6 3	2	3.2.1.2.1 3!.2!	ا $n!$ ، وبالتعويض بالقانود $rac{n!}{r_1.r_2. \ \ .r_k!}$ المطلوب الاحتمال ولسر عدد الطرق المطلوب الاحتمال ولسر عدد الطرق $n!$
		3360	ما الما الما الما الما الما الما الما ا
1			س138/ إذا رُتبت 6 نماذج لعب صغي
د) 360	ج) 360 اس	$\overline{120}^{(p)}$	أ) 120
(6-	$1)! = 5! = 120$ يكون الحل $\frac{n!}{n}$	4	الحل : الإجابة (ب) وبالتعويض بقانون
		$\frac{1}{120}$:	والمطلوب الاحتمال ، لذا يكون الحل
	إقامة مباريات كرة القدم فيما بينها	لونة ، ريال مدريد ، فالنسيا ، مالقا)	س139/ أرادت النوادي الأربعة (برشا
		,	بحيث تلعب هذه النوادي مثنى مثنى .
د) 81	ج) 9		6 (f
			الحل: (أ) 6 ، بالتعويض بقانون التوافي
شوائياً فما	و 5 صفراوات فإذا سحبنا 4 كرات ع	ف يحتوي على 6 كرات حمراوات	س140/ اذا كان لدينا كيس غير شفاه
	22		احتمال ان تكون 3 حمراوات وكره صف
د) 33	$\frac{33}{10}$ (5	$\frac{10}{33}$ (ب	330 (f
11 =	سر فراغ العينة = عدد الكرات الكلية =	ميعها = 6+5 = 11 ، عدد عناص	الحل: الإجابة (ج) ، عدد الكرات جد
واحدة صفراء	•		عدد الكرات المسحوبة باستعمال قانود
	$\frac{100}{330} = \frac{10}{33} <$	50 = 100 إذاً الاحتمال المطلوب	$ ext{C1} imes 3 ext{C6}$ باستعمال التوافيق أيضاً

احتمالات الحوادث:

- الحادثة المستقلة : هي الحادثة التي تستقل بذاتها أي لا يؤثر احتمال ${f A}$ في احتمال حدوث ${f B}$
- الحادثة الغير مستقلة : هي الحادثة التي لا تستقل بذاتها أي يؤثر احتمال ${f A}$ في احتمال حدوث ${f B}$ بطريقة ما .
 - الحادثة المتنافية: الحادثة التي تنفي إحداهما الأخرى أي لا يوجد نواتج مشتركة بينهما.
 - الحادثة الغير متنافية : الحادثة التي لا تنفي إحداهما الأخرى أي يوجد نواتج مشتركة بينهما.
 - الحادثة المتتمة : الحادثة التي تتم إحداهما الأخرى .
 - $P\left(A_{ ilde{b}}|B
 ight)=P(A)$. P(B): احتمال الحادثتين المستلقتين تُعطى بالعلاقة *
 - $P\left(A_{\ ilde{\it o}}\ B_{\ ilde{\it o}}
 ight)=P(A)$. P(B|A) : احتمال الحادثتين الغير مستقلتين تُعطى بالعلاقة P(B|A) . يُسمى P(B|A) بالاحتمال المشروط .
 - . $P(B|A) = rac{P(A,B)}{P(A)}$: الاحتمال المشروط يُعطى بالعلاقة *
 - . $P\left(A ext{ } eta ext{ }
 ight) = P(A) + P(B)$: أو $B ext{ }
 ight) = P(A) + P(B)$. *
 - . $P\left(A ext{ } b
 ight) = P(A) P(B)$: ألحوادث الغير متنافية تُعطى بالعلاقة *
 - . P(A') = 1 P(A) : الحوادث المتتمة تُعطى بالعلاقة *

تدریب1/ حدد إذا كانت الحادثتان مستقلتین أم غیر مستقلتین :

- إلقاء قطعة نقد مرة واحدة ، ثم إلقاء قطعة نقد أخرى مرة واحدة أيضاً .

الحل: نلاحظ أن لم تؤثر الحادثة الأولى في الحادثة الثانية لذلك الحادثتان مستقلتين.

- سُحبت بطاقة من مجموعة بطاقات ، ثم أُعيدت للمجموعة ، ثم سحبت بطاقة أخرى.

الحل: نُلاحظ أن البطاقة أثرت في ترتيب البطاقات ، لذلك الحادثتان غير مستقلتان.

- المسؤول طالب من الصف الثاني ثانوي أو من الصف الثالث ثانوي .

الحل: نُلاحظ أن الحادثتان مفصولة بـ أو ، ولا يوجد بينهما نواتج مشتركة ، لذا الحادثتان متنافيتان.

الدراسات الاحتمالية :

- الدراسة التجريبية : دراسة تتطلب تجربة ما لعينة من المجتمع ، لحل مشكلة ما .
- الدراسات بالملاحظة : دراسة لا تتطلب تجربة ، ولكن تتطلب ملاحظة لاستقصاء النتيجة.
 - الدراسة المسحية : دراسة تتطلب جمع البيانات والحقائق لحل مشكلة ما .
- الدراسة المسحية المنحازة : دراسة جزء معين من المجتمع الكلي ، لهم رأي أو إجابة منحازة عن المجتمع .
- الدراسة المسحية الغير منحازة : دراسة جزء معين من المجتمع الكلى ، لهم رأي أو إجابة تمثل رأي المجتمع.

تدریب2/ حدد ما إذا كانت كل دراسة مسحیة منحازة أو غیر منحازة فیما یأتی :

- استطلاع آراء أفراد في سوق الماشية ; لمعرفة ما إذا كان سكان المدينة يحبون تربية الماشية أو لا ؟

الحل: دراسة مسحية منحازة ، لأنها تمثل جزء من المجتمع الكلي ، ورأيهم منحاز عن المجتمع.

- سؤال كل عاشر شخص يخرج من قاعة الندوات عن عدد مرات حضوره ندوات ثقافية ; لتحديد مدى دعم سكان المدينة للندوات الثقافية ؟

الحل: دراسة مسحية منحازة ; لأنها تمثل جزء من المجتمع الكلي ، ورأيهم منحاز لأنهم من الطبقة المثقفة في المجتمع.

مقاييس النزعة المركزية :

- أبرز مقياس النزعة المركزية هي : المتوسط ، الوسيط ، المنوال ، المدى .

* المتوسط الحسابي يُعطى بالعلاقة : $\frac{بعموع القيم}{2}$ = المتوسط الحسابي.

* الوسيط: ترتيب للقيم إما تصاعدياً أو تنازلياً ، وهو قيمة تتوسط مجموعة من القيم.

* المنوال: القيمة الأكثر شيوعاً أو تكراراً.

* المدى : أكبر قيمة – أصغر قيمة.

5,6,7,8,9 : تدريب3/1 المتوسط الحسابي للأعداد

 $\frac{5+6+7+8+9}{5} = \frac{35}{5} = 7:$ الحل

تدريب4/ الوسط الحسابي للأعداد 7,9,3,5,2 ؟

بترتيب الأعداد تنازلياً أو تصاعدياً : 9,7,5,3,2 ويُلاحظ أن عدد القيم = عدد فردي لذلك

القيمة التي تقطع في الوسط أو المنتصف = 5.

9,8,6,4,3,2 تدريب $^{-}$ الوسط الحسابي للأعداد

6+4/2 يُلاحظ أن الأعداد مرتبة ، ويُلاحظ أيضاً أن عدد القيم = عدد زوجي ، وبالتالي نقوم بجمع القيمتين -

أي = 5.

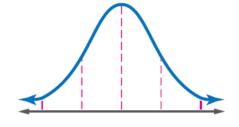
هامش الخطأ :

- عند سحب عينة $\bf n$ ، من مجتمع كلي ، فإن هناك خطورة وجود خطأ في المعاينة وكلما زاد حجم العينة قل هامش الخطأ ويُعطى قانون هامش الخطأ بالعلاقة : $\frac{1}{\sqrt{n}}$.

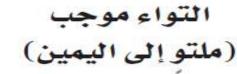
مقاييس التشتت:

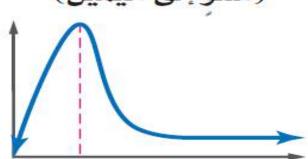
- مقاييس التشتت : هي مقدار تباعد البيانات أو تقاربها ، ويوجد مقياسان للتشتت هما :

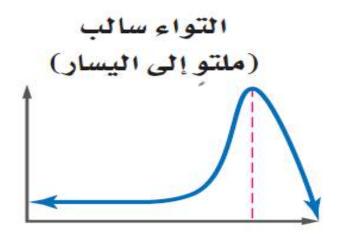
* التباين


قانون الانحراف المعياري لعينة :

$$s = \frac{\sqrt{\sum_{k=1}^{n} (x_k - \overline{x})^2}}{n-1}$$


$$\sigma = \frac{\sqrt{\sum_{k=1}^{n} (x_k - \mu)^2}}{n}$$


التوزيعات الطبيعية والملتوية:


- × خصائص التوزيع الطبيعي:
- التمثيل البياني له منحني يشبه الجرس ، ومتماثل بالنسبة للمتوسط.
 - يتساوى فيه المتوسط والوسيط والمنوال وتقع في المركز.
 - المنحنى متصل.
- يقترب المنحنى من المحور x في جزأيه الموجب والسالب ، ولكنه لا يمسه.

× التوزيعات الملتوية:

الفصل السادس: الدوال المثلثية والزوايا

الدوال المثلثية في المثلثات القائمة الزاوية :

- حساب المثلثات: دراسة العلاقات بين زوايا وأضلاع المثلث القائم الزاوية.

- الدوال المثلثية هي : Sinheta, Cosheta, Tanheta, Cscheta, Secheta, Cotheta

يُعرف الـ Sin : بـ الجيب أو (جا الزاوية) ، ويُعرّف الـ Cos : بـ جيب تمام الزاوية (أو جتا الزاوية)

ويُعرف Tan : به ظل الزاوية أو (ظا الزاوية) ، وأما Csc فيُعرّف على أنه قاطع تمام الزاوية (أو قتا)

 $. \ ($ طتا) ، وأخيراً $Cot \ ($ نظا التمام) . ب ظل التمام) . ب ظل التمام)

- قوانين الدوال المثلثية (المتطابقات المثلثية) :

$$sin heta=rac{\sin heta}{\sin heta} \qquad cos heta=rac{-\sin heta}{\cos heta} \qquad tan heta=rac{-\sin heta}{\cos heta} \ csc heta=rac{-\sin heta}{\cos heta} \qquad sec heta=rac{-\sin heta}{\cos heta} \qquad cot heta=rac{-\sin heta}{\sin heta}$$

وكذلك :

$$sin\theta = \frac{1}{csc\theta}$$
 $cos\theta = \frac{1}{sec\theta}$ $tan\theta = \frac{1}{cot\theta}$ $tan\theta = \frac{cos\theta}{sin\theta}$

- ملاحظة / Csc هو معكوس Sin ، و Sec معكوس Cot و Cot معكوس .. Tan

- متطابقات فيثاغورس:

$$sin(- heta)=-sin$$
 $cos(- heta)=-cos$ $tan(- heta)=-tan$

- متطابقات الزاويتين المتتامتين : - متطابقات الزاويتين المتتامتين :

$$sin\left(\frac{\pi}{2}-\theta\right)=cos\theta$$
 $cos\left(\frac{\pi}{2}-\theta\right)=sin\theta$ $tan\left(\frac{\pi}{2}-\theta\right)=cot\theta$

ي $\frac{\sin\theta \csc\theta}{\tan\theta}$ تُكافئ : $\frac{\sin\theta \csc\theta}{\tan\theta}$ تُكافئ : $\frac{1}{\sec\theta}$ ب $\frac{1}{\sec\theta}$ ب $\frac{1}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ الحل : الإجابة (أ) $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ الحل : الإجابة (أ) $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ الحل : الإجابة (أ) $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ الحل $\frac{1}{\cot\theta}$ أي $\frac{\sin\theta \times \frac{1}{\sin\theta}}{\cot\theta}$ أي $\frac{1}{\sin\theta}$ أي $\frac{1}{\theta}$ أي $\frac{$

$$-sec$$
 (2 $-sin$ (5 $-\theta$ (4)

الحل: الإجابة (ج) ، بتطبيق متطابقة الدوال الزوجية والفردية.

- الزوايا الشهيرة لبعض قيم الدوال المثلثية :

	$\theta = 0$	$\theta = 30$	$\theta = 45$	$\theta = 60$	$\theta = 90$	$\theta = 180$	$\theta = 360$
sinθ	0	1_	$\sqrt{2}$	$\sqrt{3}$	1	0	0
		2	2	2			
cosθ	1	$\sqrt{3}$	$\sqrt{2}$	1	0	1-	1
		2	2	2			
tanθ	0	$\sqrt{3}$	1	$\sqrt{3}$	غير معرف	0	0
		3					

- المتطابقات المثلثية لمجموع زاويتين والفرق بينهما :

* متطابقات المجموع :

$$sin(A + B) = sinAcosB + cosA sinB$$

 $cos(A + B) = cosA \cdot cosB - sinA \cdot sinB$
 $tan(A + B) = \frac{tanA + tanB}{1 - tanA \cdot tanB}$

* متطابقات الفرق :

$$sin(A - B) = sinAcosB - cosAsinB$$

 $cos(A - B) = cosA \cdot cosB + sinA \cdot sinB$
 $tan(A + B) = \frac{tanA + tanB}{1 + tanA \cdot tanB}$

– المتطابقات المثلثية لضعف الزاوية:

$$tan2\theta = rac{2tan\theta}{1 - tan^2\theta}$$
 $cos2\theta = 1 - sin^2\theta$
 $sin2\theta = 2sin\theta \cdot cos\theta$

– المتطابقات المثلثية لنصف الزاوية :

$$tanrac{ heta}{2}=\pm\sqrt{rac{1-cos heta}{1+cos heta}}$$
 , $cos heta\neq 1$ $cosrac{ heta}{2}=\pm\sqrt{rac{1+cos heta}{2}}$ $sinrac{ heta}{2}=\pm\sqrt{rac{1-cos heta}{2}}$

= sin45 cos45 + sin15 cos45 /143

$$\frac{\sqrt{2}}{2}$$
د)

$$\frac{\sqrt{3}}{3}$$
 (ج

$$\frac{\sqrt{3}}{2}$$
ب)

$$\frac{\sqrt{2}}{3}$$

الحل: بتطبيق قانون متطابقات المجموع

sin(A + B) = sinAcosB + cosA sinB

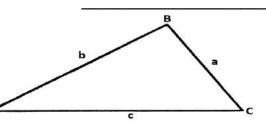
$$sin45+15=sin60=rac{\sqrt{3}}{2}$$
: يتضح أن الحل $\frac{\cos heta}{1-\sin^2 heta}$ تُكافئ

د) tanθ

secθ (7

د) secθ

cose(


الحل : الإجابة (ب) $sec\theta$.. قم بالتفكير بحل هذه المسألة..

 $= sin 15 cos 15 / 145 \omega$

$$\frac{1}{4}$$
 (ب

sin(A + B) = sinAcosB + cosA sinB

$$\frac{1}{2}(sin(15+15)+sin(15-15))=\frac{1}{2}(sin30+sin0)=\frac{1}{2}(\frac{1}{2}+0)=\frac{1}{4}$$

قوانين المثلثات :

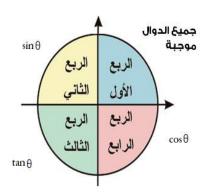
- قانون الجيوب:

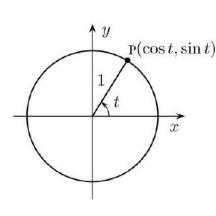
* مساحة المثلث :

$$\frac{1}{2}ab \sin C = 1$$
المساحة

$$\frac{1}{2}ac \sin B = \frac{1}{2}ac \sin B$$
لساحة

$$rac{1}{2}ac\,sin\,B= rac{1}{2}bc\,sin\,A= 1$$
المساحة


* مساحة المثلث بمعلومية قياس زاويتين فيه وطول أحد أضلاعه :


$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

- قانون جيوب التمام :

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

قيم الدوال المثلثية :

- دائرة الوحدة : هي دائرة نصف قطرها يساوي 1 .

0 اذا كان ضلع الانتهاء للزاوية 0 في الوضع القياسي يقطع دائرة الوحدة في

= sin heta النقطة $P(\frac{1}{2}, -\frac{\sqrt{3}}{2})$ فإن قيمة

$$= sin heta$$
 فإن قيمة $P(rac{1}{2}, -rac{\sqrt{3}}{2})$ قطة

 $-\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ (ب $sin heta=-rac{\sqrt{3}}{2}$ ولذلك قيمة P(cos heta,sin heta) ولذلك فيمة الإجابة (د)

 130^o راوية 130^o تُكافئ

 $-\frac{\sqrt{3}}{2}$ (2)

$$(130-360=-230)$$
 وذلك لأن $(130+360=490)$ أما الزاوية بالسالب فتكون وذلك الأن ($130-360=490$)

س 147/ القيمة الدقيقة ل 240/ القيمة

$$-rac{\sqrt{2}}{2}$$
د)

$$\frac{\sqrt{2}}{2}$$
 (ج

$$-\frac{1}{2}$$
 (ب

$$\frac{1}{2}$$
 (†

490 d

الحل : الإجابة (ب) وذلك لأن (60 = 240 - 180) ، ولأن 240 تقع في الربع الثالث فإن cos تكون قيمتها سالبة

$$cos~60=rac{1}{2}$$
 ولأن قيمتها سالبة فإن القيمة الدقيقة تكون

التحويل من القياس بالدرجات إلى القياس بالراديان والعكس:

من القياس بالراديان إلى القياس بالدرجات	من القياس بالدرجات إلى القياس بالراديان
180	رادیان $oldsymbol{\pi}$
رادیان $oldsymbol{\pi}$	180

 $\frac{5\pi}{2}$ ، فإن قياس الزاوية بالراديان $\frac{5\pi}{2}$ ، فإن قياسها بالدرجات

الحل: الإجابة (ب) 450 بالتعويض بقانون التحويل من راديان للدرجات.

س149/ قيمة الزاوية 120 بالراديان:

$$-\frac{\pi}{216}$$
 (2)

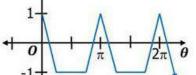
$$-\frac{\pi}{6}$$
 (ج

$$\frac{\pi}{216}$$
 (ب

الحل: الإجابة (أ) بالتعويض بقانون الراديان.

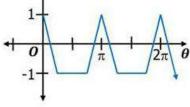
عدد الدورات:

 ~ 150 طول نصف قطر إطارات شاحنة 33i. المسافة التي تقطعها الشاحنة بعد أن تدور إطاراتها ثلاثة أرباع دورة هي

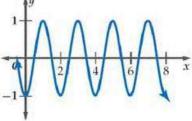

$$24.\,75\pi\,(^{\text{f}}$$

$$2r\pi: 3$$
 الحل : $\frac{x}{66\pi} = \frac{x}{66\pi} = \frac{3}{4}$). $\frac{3}{4}$).

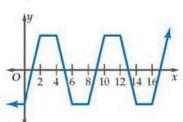
الحوال الحورية :


- يكون شكل الدالة وقيمها (y) عبارة عن تكرار لنمط على فترات منتظمة متتالية ، ويسمى النمط الواحد الكامل منها دورة

والمسافة الأفقية في الدورة بطول الدورة.


$$m = 151$$
 طول الدورة في الشكل التالي : $m = \pi + 151$ طول الدورة في الشكل التالي : $m = \pi + 151$ أ $m = \pi + 151$

$$oxed{1} = \pi - \pi = \pi$$
 وذلك لأن $oldsymbol{\pi} = oldsymbol{0} = oldsymbol{0}$ وكذلك $oxed{\pi}$ ، وذلك لأن


س152/ طول الدورة في الشكل التالي :

$$4-2=2$$
 , $6-4=2$, ... المحل : طول الدورة $2=2$ ، وذلك لأن

س153/ طول الدورة في الشكل التالي:

$$14-6=8$$
) ($14=8+6$) ($14=8+6$) ($14=8+6$) ($14=8+6$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=6=8$) ($14=8+6$) (14

تمثيل الدوال المثلثية بيانياً :

دالة الجيب وجيب التمام				
$y = \cos \theta$	$y = \sin \theta$	الدالة المولدة (الأم)		
$y = \cos x$	$g = \sin x$	التمثيل البياني		
R	R	المجال		
$\{y -1\leq y\leq 1\}$	$\{y -1\leq y\leq 1\}$	المدى		
1	1	السعة(a)		
360°	360°	طول الدورة		

 $rac{360^o}{|b|}$ السعة تكون |a| وطول الدورة $y=a\,sin\,b heta$, $y=a\,cos\,b\, heta$

، y=4~cos~3 heta أحسب سعة الدورة وطول الدورة للدالة

 $\frac{360^o}{|b|} = \frac{360^o}{|3|} = 120^o$ ، طول الدورة |a| = |4| = 4 ، طول الدورة الحول الحول الدورة الحول الحول الدورة الحول ال

دالة الظل:

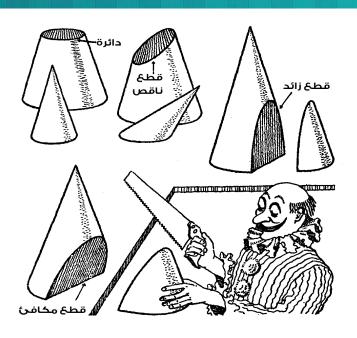
دالة الظل		
$y = tan \theta$	الدالة المولدة (الأم)	
y 2	التمثيل البياني	
$\{oldsymbol{ heta} oldsymbol{ heta} eq 90+180n$, $n\in Z$ $\}$	المجال	
R	المدى	
$\left(U ight)$ غیر معرفة	السعة(a)	
180°	طول الدورة	

دالة قاطع التمام والقاطع وظل التمام:

دوال قاطع التمام والقاطع وظل التمام					
$y = \cot \theta$	$y = sec \theta$	$y = csc \theta$	الدالة المولدة (الأم)		
$y = \cot x$	$y = \sec x$	y = csc.r	التمثيل البياني		
$\{ \theta heta eq 180n, n \in Z \}$	$\{\theta \theta\neq90+180n$	$\{oldsymbol{ heta} oldsymbol{ heta} oldsymbol{ heta} \neq 180n \ , n \in Z \}$	المجال		
	$n \in Z$ }				
R	$\{y 1\leq y\ \lor y\leq -1\}$	$\{y 1\leq y\ \lor y\leq -1\}$	المدى		
$\left(U ight)$ غیر معرفة	$\left(U ight)$ غیر معرفة	$\left(U ight)$ غیر معرفة	السعة (a)		
180°	360°	360°	طول الدورة		

الفصل السابع: القطوع المخروطية والنهايات وحساب التكامل والتفاضل

* القطوع المخروطية :


- القطوع المخروطية : هي الأشكال الناتجة عن تقاطع مستوى ما مع مخروطين دائريين قائمين متقابلين بالرأس كليهما أو إحداهما.

القطع المكافئ: هو المحل الهندسي لجميع نقاط المستوى
 والتي تبعد عن نقطة ثابتة تسمى البؤرة وبعد ثابت ويسمى الدليل.

القطع الناقص: المحل الهندسي لجميع نقاط المستوى
 يكون مجموع بعديها عن نقطتين ثابتين يساوي مقداراً ثابتاً.

- القطع الزائد: المحل الهندسي لجميع نقاط المستوى

التي يكون الفرق المطلق بين بعديها عن بؤرتين مقداراً ثابتاً .

خصائص القطع المكافئ :

$(y-k)^2 = 4p(x-h)$	الصورة القياسية :	$(x-h)^2 = 4p(y-k)$	الصورة القياسية :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	الشكل البياني :	p < 0 $p > 0$	الشكل البياني :
المنحنى مفتوح أفقيًّا	الاتجاه :	المنحني مفتوح رأسيًّا	الاتجاه :
(h, k)	الرأس :	(h, k)	الرأس:
(h+p,k)	البؤرة :	(h, k+p)	البؤرة :
y = k	معادلة محور التماثل:	x = h	معادلة محور
			التماثل :
x = h - p	معادلة الدليل :	y = k - p	معادلة الدليل:
4 <i>p</i>	طول الوتر البؤري:	4 <i>p</i>	طول الوتر البؤري:

خصائص القطع الناقص :

$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	الصورة القياسية :	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	الصورة القياسية :
V_1 F_1 C F_2 V_2	الشكل البياني :	V_1 F_1 C F_2 V_2	الشكل البياني :
المحور الأكبر رأسي	الاتجاه:	المحور الأكبر أفقي	الاتجاه:
(h, k)	المركز:	(h, k)	المركز:
$(h, k \pm c)$	البؤرتان :	$(h \pm c, k)$	البؤرتان :
$(h, k \pm a)$	الرأسان :	$(h \pm a, k)$	الرأسان
$(h \pm b, k)$	الرأسان المرافقان	$(h, k \pm b)$	الرأسان المرافقان:
x = h	المحور الأكبر:	y = k	المحور الأكبر:
y = k	المحور الأصغر:	x = h	المحور الأصغر:
أو $c^2 = a^2 - b^2$	a,b,c العلاقة بين	أو $c^2 = a^2 - b^2$	a,b,c العلاقة بين
$c = \sqrt{a^2 - b^2}$		$c = \sqrt{a^2 - b^2}$	

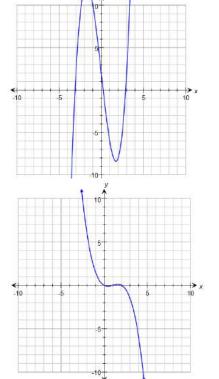
خصائص القطع الزائد :

$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	الصورة القياسية:	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	الصورة القياسية :
F V X	الشكل البياني :	F V C V F x	الشكل البياني :
المحور القاطع رأسي	الاتجاه:	المحور القاطع أفقي	الاتجاه:
(h, k)	المركز:	(h, k)	المركز:
$(h, k \pm a)$	الرأسان :	$(h \pm a, k)$	الرأسان :
$(h, k \pm c)$	البؤرتان :	$(h \pm c, k)$	البؤرتان :
x = h	المحور القاطع:	y = k	المحور القاطع:
y = k	المحور المرافق:	x = h	المحور المرافق:
$y - k = \pm \frac{a}{b}(x - h)$	خط التقارب :	$y - k = \pm \frac{b}{a}(x - h)$	خط التقارب :
أو $c^2 = a^2 - b^2$	a,b,c العلاقة بين	أو $c^2 = a^2 - b^2$	a,b,c العلاقة بين
$c = \sqrt{a^2 - b^2}$		$c = \sqrt{a^2 - b^2}$	

الدائرة وخصائصها :

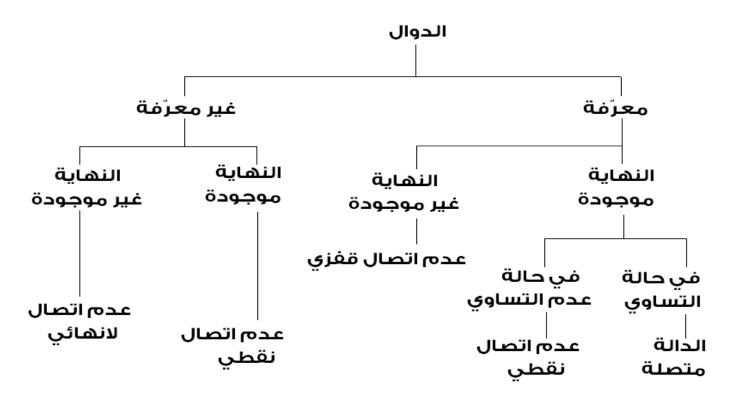
- الصورة القياسية لمعادلة الدائرة تُعطى بالعلاقة :

الصورة القياسية لمعادلة الدائرة التي مركزها (h,k) ونصف قطرها r هي: $(x-h)^2+(y-k)^2=r^2$

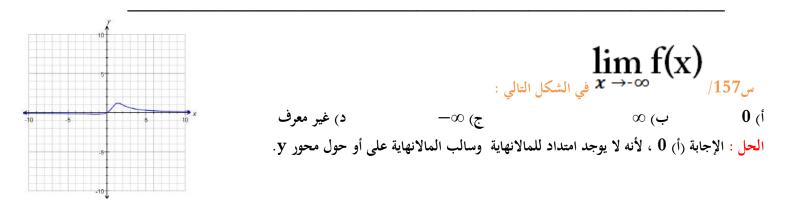

- النهايات (Limits)

$$\lim_{x o \infty} f(x)$$
 الشكل التالي: $\sum_{x o \infty} \int_{\infty} t(x)$ ب $\sum_{x o \infty} \int_{\infty} t(x)$ عن الشكل التالي: $\sum_{x o \infty} \int_{\infty} t(x)$

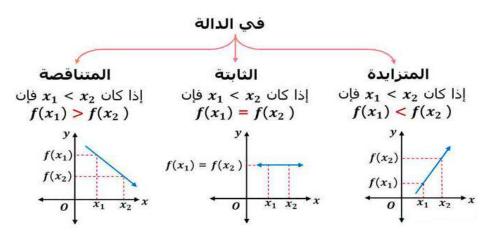
الحل : الإجابة (y) ، يكون المحور ممتد إلى موجب المالانهاية في محور x ، ولذلك يكون محور الحل : الإجابة f(x) ممتد إلى موجب المالانهاية أيضاً .

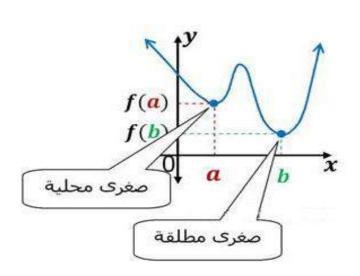

$$\lim_{x o -\infty} f(x)$$
 المتكل التالي: $x o -\infty$ في الشكل التالي : ∞ ب 0 أ 0 أ

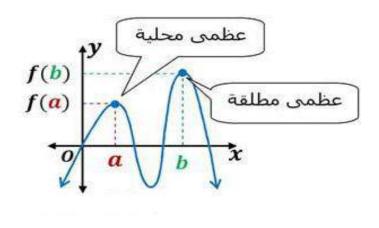
الحل : الإجابة (ب) ∞ ، وذلك عندما تؤول أو تقترب x من ∞ ، تكون الدالة f(x) تقترب من موجب المالانهاية ∞ +



أنواع عدم الاتصال:

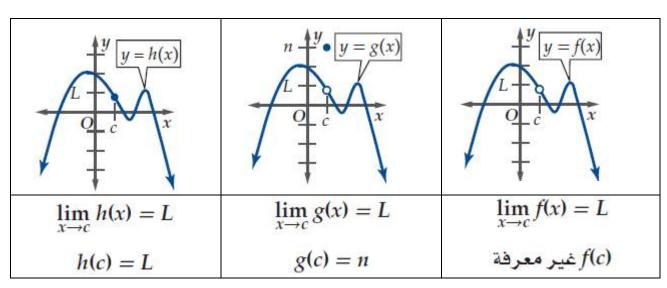

عدم اتصال نقطي	عدم اتصال قفزي	عدم اتصال لانهائي	
y = f(x) 0 c x	y = f(x) $y = f(x)$	y = f(x) $0 c x$	
سميت بعدم الاتصال النقطي ، لأن هُناك نقطة غير متصلة بالدالة.	سميت بعدم الاتصال القفزي لأن الدالة تكون على شكل قفزة .	سميت بعدم الاتصال اللانهائية ، لأن الدالتين غير متصلتين وتمتد للمالانهاية من الطرفين.	


- يُسمى عدم الاتصال النقطى : عدم اتصال قابل للإزالة.
- يُسمى عدم الاتصال اللانهائي وعدم الاتصال القفزي : عدم اتصال غير قابل للإزالة.



دوال التزايد والتناقص والثابتة :

- القيم القصوى المحلية والمطلقة :



- القيمة الصغرى المطلقة : أقل قيمة ممكنة للدالة في مجالها .
- القيمة الصغرى المحلية : أقل قيمة ممكنة للدالة من جميع القيم أو الفترات الأخرى.
 - القيمة العظمى المطلقة : أكبر قيمة ممكنة للدالة في مجالها.
- القيمة العظمى المحلية : أكبر قيمة ممكنة للدالة من جميع القيم أو الفترات الأخرى.

عدم اعتماد النهاية على قيمة الدالة عند نقطة :

c عند على قيمة الدالة عند c عندما تقترب c عندما تعتمد نهاية عندما عندما عندما عندما عندما العالم عندما عند

أمثلة :

النهاية من جهة واحدة:

النهاية من اليسار	النهاية من اليمين
$_{i}L_{1}$ إذا اقتربت قيم $f(x)$ من قيمة وحيدة	إذا اقتربت قيم $f(x)$ من قيمة وحيدة ، L_1 ، عند
عند اقتراب قيم x من العدد c من اليسار	: اقتراب قيم x من العدد c من اليمين
$\displaystyle \lim_{x o c} f(x) = L_2$ غإن $f(x) = c$ غندما تقترب $f(x)$ من من c من c اليسار ، هي c	$\displaystyle \lim_{x o c^+} f(x) = L_1$ وتقرأ: $x o c$ عندما تقترب x من c من اليمين $f(x)$ هي: L_1 :

النهاية عند نقطة :

تكون نهاية f(x) عندما تقترب x من x ، إذا وفقط إذا كانت النهايتان من اليمين واليسار موجودتين ومتساويتين ، أي أنه إذا كانت :

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

فإن $\lim_{x \to c} f(x) = L$

نهايات الدوال :

نهاية الدوال المحايدة	نهايات الدوال الثابتة
$ \begin{array}{c} f(x) = x \\ 0 c x \end{array} $	$f(x) = k$ $C \qquad c \qquad x$
c نهاية الدالة المحايدة عند النقطة $\lim_{x \to c} x = c$ ويرمز لها بالرمز	نهاية الدالة الثابتة عند أي نقطة c هي القيمة الثابتة للدالة ، ويرمز لها بالرمز :
ويرمر سه بحرمر .	$\lim_{x \to c} k = k$

حساب النهايات جبرياً:

$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$	خاصية المجموع
$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$	خاصية الفرق
$\lim_{x \to c} [k f(x)] = k \lim_{x \to c} f(x)$	خاصية الضرب في ثابت
$\lim_{x \to c} g(x) \neq 0$ حيث ، $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$	خاصية القسمة
$\lim_{x \to c} [f(x)^n] = \left[\lim_{x \to c} f(x)\right]^n$	خاصية القوة
$\lim_{x \to c} f(x) > 0 \lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$	خاصية الجذر النوني

الصيغة الغير المحددة :

- يُسمى ناتج التعويض في النهايات على الصورة $\frac{0}{0}$ بالصيغة الغير محددة ; لأنه لا يمكن تحديد نهاية الدالة مع وجود صفر ، ومثل هذه النهايات قد تكون موجودة ولها قيمة حقيقة ، أو غير موجودة أو متباعدة نحو ∞ , ∞ .

$$\lim_{x \to -4} \frac{x^2 - x - 20}{x + 4}$$

 ∞ (ع $\mathbf{0}$ ب $\mathbf{0}$

الحل: الإجابة (ج) وذلك بأخذ العامل المشترك الأكبر ثم التعويض بتأول X

$$\lim_{x \to -4} \frac{(x-5)(x+4)}{x+4} = \lim_{x \to -4} \frac{(x-5)(x+4)}{x+4} = \lim_{x \to -4} (x-5) = (-4) - 5 = -9$$

 $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \Big|_{159_{\omega}}$

أ) غير معرفة

 $-\frac{1}{6}$ (عير معرفة $\frac{1}{6}$ (ج) 0 (ب)

الحل : الإجابة (-7) ، كما نُلاحظ أن بالتعويض بقيمة 9 الحل = 0/0 ، وبعد ذلك يتم إنطاق المقام ومن ثم اختصار العوامل المشتركة

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \cdot \frac{\sqrt{x} + 3}{\sqrt{x} + 3} = \lim_{x \to 9} \frac{x - 9}{(x - 9)(\sqrt{x} + 3)} = \frac{1}{\sqrt{9} + 3} = \frac{1}{6}$$

$$\lim_{x \to 2} (\sqrt{x} - 3)$$

$$\lim_{x \to 2} (\sqrt{x} - 3)$$

ا) $\sqrt{6}$ ب $\sqrt{6}$ ب $\sqrt{6}$ ب $\sqrt{6}$ ب $\sqrt{6}$ ب $\sqrt{6}$ بازی کیر موجودة

الحل: الإجابة (د) غير موجودة. وذلك لأن بالتعويض بقيمة 2 يتضح أنها تُعطى عدد بجذر سالب أي غير موجود.

نهايات دوال القوى عند المالانهاية :

- لأي عدد صحيح موجب n

$$\lim_{x \to \infty} x^n = \infty \bullet$$

اذا كان
$$n$$
 عددًا زوجيًا. $\lim_{x\to -\infty} x^n = \infty$

اذا كان
$$n$$
 عددًا فرديًا. $\lim_{x\to -\infty} x^n = -\infty$

نهاية دوال كثيرات الحدود عند المالانهاية :

إذا كانت
$$p(x)=a_nx^n+\ldots+a_1x+a_0$$
 دالة كثيرة حدود، فإن $\lim_{x\to\infty}p(x)=\lim_{x\to\infty}a_n\,x^n$, $\lim_{x\to\infty}p(x)=\lim_{x\to\infty}a_n\,x^n$

$$\lim_{x\to -\infty} (x^3-2x^2+5x-1)$$
 اب $\int_{0}^{\infty} (x^3-2x^2+5x-1)$ ج $\int_{0}^{\infty} (x^3-2x^2+5x-1)$ اب $\int_{0}^{\infty} (x^3-2x^2+5x-1)$

الحل:

$$\lim_{x \to -\infty} (x^3 - 2x^2 + 5x - 1) = \lim_{x \to -\infty} x^3 = -\infty$$

نهاية دالة المقلوب عند المالانهاية :

- إن نهاية دالة المقلوب عند موجب أو سالب المالانهاية هي : صفر.

$$\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$$

مُعدل التغير اللحظي:

- مُعدل التغير اللحظي للدالة
$$f$$
 عند النقطة : $(x,f(x))$ هو ميل المماس عند النقطة $(x,f(x))$. ويُعطى بالصيغة $m=\lim_{h o h}rac{f(x-h)-f(x)}{h}$ ، بشرط أن تكون النهاية موجودة.

المشتقات وطريقة الاشتقاق :

- تُسمى عملية إيجاد المشتقات بالتفاضل.

* مشتقة دالة عند نقطة:

- لإيجاد مشتقة دالة عند نقطة يتم تطبيق القانون:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- لإيجاد مشتقة القوة ، يتم تطبيق قاعدة مشتقة القوة :

$$f'(x) = nx^{n-1}$$
 إذا كان $f(x) = x^n$ محيث $f(x) = x^n$ عدد حقيقي، فإن

- قواعد أخرى للاشتقاق:

قانونها الرياضي	نوع المشتقة
مشتقة الدالة الثابتة تساوي صفرًا. أي أنه إذا كانت $f(x)=c$ ميث عدد ثابت ،	مشتقة الثابت
f'(x) = 0 فإن	
$f'(x) = cnx^{n-1}$ إذا كانت $f(x) = cx^n$ ، حيث $f(x) = cx^n$ ثابت، و	مشتقة مضاعفات
	القوى
$f'(x) = g'(x) \pm h'(x)$ فإن $f(x) = g(x) \pm h(x)$ فإن .	مشتقة المجموع أو
	الفرق

– قاعدة مشتقة الضرب والقسمة :

* قاعدة مشتقة الضرب:

.
$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$
 فإن x موجودة عند x موجودة عند x موجودة عند y من الدالين y

* قاعدة مشتقة القسمة:

إذا كانت مشتقة كل من الدالتين
$$g(x) \neq 0$$
 موجودة عند x ، وكان $g(x) \neq 0$ ، فإن $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}$

مُلاحظة هامة : يرمز لمشتقة y=f(x) أيضاً بالرموز y=f(x) ، وإذا سبق الدالة $\frac{d}{dx}$ ، وإذا سبق الدالة y=f(x) أيضاً بالرموز يعنى إيجاد مشتقة الدالة.

التكامل:

- التكامل : هو عبارة عن عملية عكسية عن التفاضل ، وهو عملية إيجاد دول أصلية ، والتكامل نوعان وهما :

* تكامل غير محدد (التكامل بالتعويض) .

- * تكامل محدد
- التكامل المحدد : يُستخدم لحساب المساحة تحت المُنحنيات وكذلك الحجوم والسطوح، أي كلما اقترب عرض المستطيل من الصفر ، فإن عدد المستطيلات يقترب من المالانهاية ، $\int_{b}^{a}f(x)dx$ لاحظ وجود (a,b)
- التكامل غير المحدد : يُستخدم لحساب الدوال الجبرية والمثلثية ، ولقد سمي التكامل الغير محدد بهذا الاسم نظرا لاحتوائه على ثابت للتكامل غير محدد القيمة مما يدل على عدد لانهائي من الدوال

يُعبر عن مساحة المنطقة المحصورة بين مُنحنى دالة والمحور x في الفترة [a,b] بالصيغة

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x, \Delta x = \frac{b-a}{n}, x_{i} = a + i \Delta x$$

ميثُ a: الحد الأدنى ، b: الحد الأعلى ، وتسمى هذه الطريقة مجموع ريمان الأيمن .

التكامل غير المحدد:

- يُعطى التكامل غير المحدد للدالة f بالصيغة :

$$\int f(x) \ dx = F(x) + C$$

حيث F(x) : دالة أصلية لا جيث f(x) عابت.

الدوال الأصلية :

- قواعد الدالة الأصلية:

$F(x) = \frac{x^{n+1}}{n+1} + C$ إذا كان $f(x) = x^n$ ، حيث $f(x) = x^n$ عدد نسبي لا يساوي.	قاعدة القوة
وذا كان $f(x)=k$ ، حيث n عدد نسبي لا يساوي k ، عددًا ثابتًا، فإن: $F(x)=\frac{kx^{n+1}}{n+1}+C$	قاعدة ضرب دالة القوة في عدد ثابت
إذا كان لـ $g(x)$ ، $f(x)$ على الترتيب ، $g(x)$ ، $f(x)$ على الترتيب ، $f(x) \pm g(x)$. $f(x) \pm g(x)$ دالة أصلية لـ $f(x) \pm g(x)$.	قاعدة المجموع والفرق

النظرية الأساسية في التفاضل والتكامل:

- هي نظرية تربط التكامل بالتفاضل ، أي تربط التكاملات والمشتقات ببعضهما البعض ، وهي تنص على أن :
 - : فإن ، f(x) دالة أصلية للدالة المتصلة اF(x)

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

F(x) . F(x) . B

س/167/ احسب التكامل:

$$\int (9x - x^3) \, dx$$

الحل: يُعتبر تكامل غير محدد لأنه لم يحدد أرقام بجانب رمز التكامل إذ أن الحل يكون

$$\int (9x - x^3) dx = \frac{9x^{1+1}}{1+1} - \frac{x^{3+1}}{3+1} + C$$
$$= \frac{9}{2}x^2 - \frac{x^4}{4} + C$$

س168/ احسب التكامل

$$\int_{2}^{3} (9x - x^{3}) dx$$

الحل: يُعتبر تكامل مُحدد لأنه حدد أرقام ما بجانب رمز التكامل ..

$$\int_{2}^{3} (9x - x^{3}) dx = \left(\frac{9}{2}x^{2} - \frac{x^{4}}{4}\right) \Big|_{2}^{3}$$

$$= \left(\frac{9}{2}3^{2} - \frac{3^{4}}{4}\right) - \left[\frac{9}{2}(2)^{2} - \frac{2^{4}}{4}\right]$$

$$= 20.25 - 14 = 6.25$$

إيجاد المساحة تحت المُنحنى:

$$f(x)=x^2$$
 في الفترة $f(x)=x^2$ مساحة تحت المنحنى للدالة $f(x)=x^2$ في الفترة $f(x)=x^2$ (غير المنحنى للدالة $f(x)=x=0$ (غير المنحدد ، النقاط هي $f(x)=x=0$ (غير تكامل مُحدد ، النقاط هي $\int_a^b f(x)\,dx=\int_0^3 x^2\,dx$ بالاشتقاق : $\frac{x^3}{3}$, $0 \to 3=\frac{3^3}{3}-\frac{0^3}{3}=3^2=3^2$

(2) مبادئ الرياضيات

كلية الدراسات التطبيقية وخدمة المجتمع

ملخص مبادئ الرياضيات

المستوى الأول – إدارة أعمال

إعداد: Lotus

مراجعة: سارة الغنام

بإشراف: د. ثابت القحطاني

المحاضرة الأولى (الفصل الاول)

• نظم الاعداد:

الموجبه $N = \{1, 2, 3, ...\}$ الموجبه $N = \{1, 2, 3, ...\}$

 $A=N\cup\{0\}\{0,1,2,3,\dots\}$ الأعداد الكلية $X=N\cup\{0\}\{0,1,2,3,\dots\}$ الموجبه والصفر 2/ مجموعة الأعداد الصحيحة $X=\{0,1,2,\dots\}$

 $R_n = \{rac{a}{b}, \mathbf{a}, \mathbf{b} \in \mathbf{Z}, \mathbf{b}
eq \mathbf{0}\}$ مجموعة الأعداد النسبية

$$Q^*=\{x:x\in R_n$$
 مجموعة الأعداد الغير نسبية $\pi\in Q^*$ $\pi\in R_n$ $\sqrt{A}\in Q^*$ $\pi\in z$

 $R = Rn \cup Q$: مجموعة الأعداد الحقيقية

ينتمي ∋

اتحاد ∪

تقاطع ∩

Øفاي

 $\pi~\approx 3.\,14$

قواعد الإشارات:-في الضرب والقسمة إذا تساوت الإشارات = (+) وإذا اختلفت = (-) وفي الجمع والطرح: + = (+)+(+)

الأسس :- $\mathbf{x}^3 imes \mathbf{x}^2 = \mathbf{x}^5$ $\mathbf{x}^3 \div \mathbf{x}^2 = \mathbf{x}^1$ $\mathbf{x}^3 \div \mathbf{x}^2 = \mathbf{x}^1$

واذا اختلفت نأخذ اشاره الاكبر ونطرح • أولويات العمليات الحسابية: (الضرب والقسمة أولى من الجمع والطرح)

$$9 \div 3 + 4 \times 2 = 3 + 4 \times 2 = 3 + 8 = 11$$

*مثال:

$$8-7\times 2+3=8-14+3=-6+3=-3$$

$$\frac{-8 - 4 \times -6 \div 12}{4 - 3 \times 2} = \frac{-8 + 24 \div 12}{4 - 6} = \frac{-8 + 2}{-2} = \frac{-6}{-2} = 3$$

$$\frac{15 \div 5 \times 4 \div 6 - 8}{-6 + 5 - 8 \div 8} = 3$$

• خصائص بعض العمليات الحسابية: (توحيد المقامات عند جمع وطرح عددين نسبيين)

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd}$$

*مثال:

$$\frac{2}{3} + \frac{5}{2} = \frac{4}{6} + \frac{15}{6} = \frac{19}{6}$$

$$5 + \frac{2}{5} = \frac{25}{5} + \frac{2}{5} = \frac{27}{5}$$

$$\frac{5}{3} - \frac{3}{4} = \frac{20}{12} - \frac{9}{12} = \frac{11}{12}$$

$$\frac{3}{2} - 7 = \frac{3}{2} - \frac{14}{2} = \frac{-11}{2}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

*عملية الضرب:

$$\frac{3}{4} \times \frac{-2}{5} = \frac{-6}{20} = \frac{-3}{10}$$

$$\frac{3}{5} \times \frac{2}{3} = \frac{6}{15} = \frac{2}{5}$$

مثال:

$$\frac{4}{7} \times \frac{5}{2} = \frac{20}{14}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

*عملية القسمة:

*مثال:

$$\frac{4}{3} \div \frac{1}{2} = \frac{4}{3} \times \frac{2}{1} = \frac{8}{3}$$

$$\frac{4}{3} \div \frac{1}{2} = \frac{4}{3} \times \frac{2}{1} = \frac{8}{3}$$

$$\frac{3}{5} \div \frac{2}{7} = \frac{3}{5} \times \frac{7}{2} = \frac{21}{10}$$

$$\frac{-2}{3} \div \frac{6}{4} = \frac{-2}{3} \times \frac{4}{6} = \frac{-8}{18} = \frac{-4}{9}$$

 $A \rightarrow -A$ المعكوس الجمعي : هو عكس الاشارة لنفس العدد (العنصر المحايد للجمع = 0)

 $A \to A^{-1} = \frac{1}{A}$ المعكوس الضربي : هو قلب الكسر (العنصر المحايد للضرب = 1)

$$=\frac{-10\frac{2}{3}+4}{3\frac{3}{5}-2}=\frac{70}{-21}$$

$$\frac{\frac{-3}{5} + \frac{2}{3}}{\frac{1}{4} + \frac{3}{4}} = \frac{1}{15}$$
 $3 \times [4 + 2(3 - 5) - 2] = -6$

$$3 \times [4 + 2(3 - 5) - 2] = -6$$

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

• القيمة المطلقة:

$$|-4| = -(-4) = 4$$

$$|\mathbf{5}| = \mathbf{5}$$

• مثال:

$$\left| 5 - \sqrt{3} \right| = 5 - \sqrt{3}$$

$$|3| = 3$$

$$\left|\sqrt{5}-2\right|=\sqrt{5}-2$$

$$|-6| = 6$$

$$\left|\frac{3}{5} - \frac{4}{3}\right| = \frac{9 - 20}{15} = \left|\frac{-11}{15}\right| = \frac{11}{15}$$

المحاضرة الثانية

- العمليات الجبرية:
- عملية الجمع و الطرح:

$$3x + 5x - 4 = 8x - 4$$

$$+5a2a + 3a + 5a^2 = 5a^2$$

$$(3x^2 + 5x - 2) + (6x^2 + 2x + 8) = 9x^2 + 7x + 6$$

$$5x + 2y - 2x + 4y = 3x + 6y$$

$$(2a+5b)-(4a-3b)=-2a+8b$$

$$(5x^2 + 3x - 2) - (x^2 + 2x + 6) = 4x^2 + x - 8$$

$$(5a^2 - 3a + 4) - (a^2 - 8) = 4a^2 - 3a + 12$$

$$3x + 5x = 8x$$

$$4a+2a-3=6a-3$$

$$2x + 5a + 3x + 5 = 5x + 5a + 5$$

$$5x + 2y - 2x + 6y - 3y = 3x + 5y$$

$$(3x^4 - 2x^3 - 4x^2) + (x^3 - 2x^2 - 5x) - (x^2 + 7x - 2)$$

= $3x^4 - x^3 - 7x^2 - 12x - 2$

$$(5a^2 - 3a + 4) - (a^2 - 8) = 4a^2 - 3a + 12$$

- إيجاد قيمة المقادير الجبرية:
 - اوجد قيمة المقدار التالي:

$$\frac{3x^3 - 2x^2 + 5y^2 - 2y}{3x^2 + y}$$

$$x = 2, y = -2$$

$$\frac{3(2)^3 - 2(2)^2 + 5(-2)^2 - 2(-2)}{3(2)^2 + (-2)} = \frac{40}{10} = 4$$

$$3x^2 + 2y - 4z$$

$$x = 2, y = 3, z = 1$$

$$3(2)^2 + 2(3) - 4(1)$$

$$= 3 \times 4 + 6 - 4 = 14$$

$$2a + 3b - c$$
 $a = 3$, $b = 1$, $c = 2$ عندما $2(3) + 3(1) - 2$
 $= 6 + 3 - 2 = 7$

$$\frac{2a^2 + 5b - 3c}{a + 3b + 4c^3}$$

$$a=2 \quad b=1 \quad c=2$$

$$= \frac{2(2)^2 + 5(1) - 3(2)}{(2) + 3(1) + 4(2)^3} = \frac{7}{37}$$

$$\left(\frac{a}{b} + \frac{c}{a}\right)(b^2 - c^2)$$

$$a = 3, b = 1, c = 2$$

$$\left(\frac{3}{1} + \frac{2}{3}\right)(1^2 - 2^2)$$

$$\left(\frac{9+2}{3}\right)(1-4)$$

$$= \frac{11}{3} \times \left(\frac{-3}{1}\right) = \frac{-33}{3} = -11$$

• ضرب المقادير الجبرية:

$$5(3x^2 + 2y) = 15x^2 + 10y$$

$$5(3x^2 + 2y) = 15x^2 + 10y \qquad (3a + 2)(2a + 4) = 6a^2 + 16a + 8$$

$$(3x-1)(x+2) = 3x^2 + 5x - 2$$

$$3(5x + 2y) = 15x + 6y$$

$$3x - [5 - 3(x - 2)] = 3x - \{5 - 3x + 6\} = 3x - (11 - 3x)$$

$$= 6x - 11$$

$$2[3-(x-4)] = 2[3-x+4] = 2[7-x] = 14-2x$$

- ضرب بعض المقادير الخاصة:
- $(a+b)(a-b)=(a^2-b^2)$: قاعده الفرق بين مربعين

$$(3x-4y^2)(3x+4y^2)=(9x^2-16y^4)$$

• مثال:

$$(25y^4 - 16x^8) = (5y^2 - 4x^4)(5y^2 + 4x^4)$$

$$(3-x)(3+x) = 9-x^2$$

$$(2a-5)(2a+5)=4a^2-25$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

*قاعدة:

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3$$

$$(2x+3b)^2 = 4x^2 + 12xb + 9b^2$$
 : مثال:

$$(a^2 + 5b^3)^2 = a^4 + 10a^2b^3 + 25b^6$$

$$(x^4 - 5)^2 = x^8 - 10x^4 + 25$$

$$(4+3b)^2 = 16 + 24b + 9b^2$$

$$(6-2x)^2 = 36-24x+4x^2$$

• قسمة المقادير الجبرية:

$$\frac{8x^4y^3}{2xy^2} = 4x^3y$$

$$\frac{x^5}{x^2} + \frac{y^4}{y^3} = x^3 + y$$

$$\frac{12x^{5}y^{6}}{3x^{3}y^{2}} \div \frac{25x^{4}yz^{3}}{2y^{4}z^{2}} = 4x^{2}y^{4} \div \frac{25x^{4}z}{2y^{3}} = \frac{4x^{2}y^{4}}{1} \times \frac{2y^{3}}{25x^{4}z}$$
$$= \frac{8x^{2}y^{7}}{25x^{4}z} = \frac{8y^{7}}{25x^{2}z}$$

$$\frac{25m^4n^3}{15m^2n^5} = \frac{5}{3}m^2n^{-2} = \frac{5m^2}{3n^2}$$

المحاضرة الثالثة

- تحليل بعض المقادير الجبرية: 1- التحليل بإيجاد العامل المشترك:
 - مثال

$$25x^2 + 5x = 5x[5x + 1]$$

$$2x^3 + yx = x[2x^2 + y]$$

$$4x^2y + 2xy^2 = 2xy[2x + y]$$

$$4x^3y^2 + 12x^2y^3 + 6x^5y^2 = 2x^2y^2[2x + 6y + 3x^3]$$

$$2x(3x-2)-7(3x-2)=(3x-2)(2x-7)$$

$$3a(2a+5) + 5(2a+5) = (2a+5)(3a+5)$$

$$3x^3y - 6x^2y^2 - 3xy^3 = 3xy(x^2 - 2xy - y^2)$$

2- التحليل بالتجميع المناسب:

• مثال:

$$3x^{2} - 6x + 4x - 8 = (3x^{2} - 6x) + (4x - 8)$$
$$= 3x(x - 2) + 4(x - 2)$$
$$= (x - 2) \times (3x + 4)$$

$$wy + wz - 2xy - 2xz = w(y + z) - 2x(y + z)$$

= $(y + z)(w - 2x)$

$$2x^{2} + 6x + 5x + 15 = 2x(x+3) + 5(x+3)$$
$$= (x+3)(2x+5)$$

$$2pr + ps - 6qr - 3qs = p(2r + s) - 3q(2r + s)$$
$$= (2r + s)(p - 3q)$$

$$6wy - xz - 2xy + 3wz = 2y(3w - x) + z(3w - x)$$
$$= (3w - x)(2y + z)$$

• تحليل المقدار الثلاثي

مثال:

$$x^2 + 3x + 2 = (x+2)(x+1)$$

$$x^2 + 5x + 6 = (x+3)(x+2)$$

$$x^2 - 2x - 3 = (x - 3)(x + 1)$$

$$y^2 + 3y - 10 = (y - 2)(y + 5)$$

• تحليل بعض المقادير الجبرية الخاصة:

$$(u+v)^2 = \mathbf{u}^2 + 2uv + v^2$$

الحالة الاولى:

مثال:

مثال:

$$(2x+3y)^2 = 4x^2 + 2(2x)(3y) + 9y^2 = 4x^2 + 12xy + 9y^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$ الحالة الثانية:

$$(3x-5)^2 = 9x^2 - 2(3x)(5) + 25 = 9x^2 - 30x + 25$$

• الفرق بين مربعين:

$$\mathbf{u}^2 - v^2 = (u - v)(\mathbf{u} + \mathbf{v})$$

مثال :

عددان مرافقان

$$(25 - a^2) = (5 - a)(5 + a)$$

$$(3+2a)(3-2a)=9-4a^2$$

$$9x^2 - 4y^2 = (3x - 2y)(3x + 2y)$$

• الفرق بين مكعبين (مهمه جداً):

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

مثال:

$$(27 - 8y^3) = (3 - 2y)(9 + 6y + 4y^2)$$

• جمع مكعبين:

$$u^3 + v^3 = (u + v)(u^2 - uv + v^2)$$

$$(27 + 8a^3) = (3 + 2a)(9 - 6a + 4a^2)$$
: مثال :

$$m^3 + n^3 = (m+n)(m^2 - mn + n^2)$$

المحاضرة الرابعة (الفصل الثاني)

*المضاعف المشترك البسيط:

*أمثلة: اوجد العامل المشترك ؟

$$2x^2y, 6xy^2 = 2xy$$

$$(x+1)$$
, $2x = x$

$$a^2b$$
, $3a=a$

*اوجد جمع ناتج ما يلي:

$$\frac{5}{x} + \frac{2}{3} = \frac{15}{3x} + \frac{2x}{3x} = \frac{15 + 2x}{3x}$$

$$\frac{2}{xy} + \frac{y}{x^2} = \frac{2x}{x^2y} + \frac{y^2}{x^2y} = \frac{2x + y^2}{x^2y}$$

*اوجد ناتج طرح ما يلي:

$$\frac{3x}{2y} - \frac{5}{y} = \frac{3x}{2y} - \frac{10}{2y} = \frac{3x - 10}{2y}$$

$$\frac{2+x}{x} - \frac{y}{x+1} = \frac{(2+x)(x+1)}{x(x+1)} - \frac{xy}{x(x+1)} = \frac{(2+x)(x+1) - xy}{x(x+1)}$$

*ضع المقادير التالية في ابسط صورة ؟

$$\frac{\frac{2}{x}-1}{\frac{4}{x^2}-1} = \frac{\frac{(2-x)}{x}}{\frac{(4-x)}{x^2}} = \frac{(2-x)}{x} \div \frac{(4-x^2)}{x^2}$$

$$= \frac{(2-x)}{x} \times \frac{x^2}{(4-x^2)} = \frac{(2-x)x^2}{x(4-x^2)}$$

$$= \frac{(2-x)x}{1} = \frac{x}{1}$$

$$\frac{\frac{m}{n}+\frac{n}{m}=\frac{m^2}{nm}+\frac{n^2}{nm}=\frac{m^2+n^2}{nm}$$

$$\frac{x^2 - 9}{x^2 - 1} \div \frac{x - 3}{x - 1} = \frac{(x^2 - 9)}{(x^2 - 1)} \times \frac{x - 1}{x - 3} = \frac{(x - 3)(x + 3)}{(x - 1)(x + 1)} \times \frac{(x - 1)}{(x - 3)}$$
$$= \frac{(x + 3)}{(x + 1)}$$

$$\frac{1+\frac{1}{x}}{x-\frac{1}{x}} = \frac{\frac{(x+1)}{x}}{\frac{(x-1)}{x}} = \frac{x+1}{x} \div \frac{x^2-1}{x} = \frac{x+1}{x} \times \frac{x}{x^2-1}$$
$$= \frac{(x+1)}{(x+1)(x-1)} = \frac{1}{(x-1)}$$

$$\frac{\frac{x^2}{y^2} - 1}{\frac{x}{y} + 1} = \frac{\frac{(x^2 - y^2)}{y^2}}{\frac{(x+y)}{y}} = \frac{(x^2 - y^2)}{y^2} \div \frac{(x+y)}{y} = \frac{(x-y)(x+y)}{y^2} \times \frac{y}{(x+y)} = \frac{(x-y)(x+y)}{y}$$

المحاضرة الخامسة (الفصل الثالث)

<u>الاسس :</u>

$$b^{-rac{m}{n}}=rac{1}{b^{rac{m}{n}}}$$
: قاعدة

$$b^{\frac{m}{n}}=(b^{\frac{1}{n}})^m$$

قاعدة :

أمثلة:

 $8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{\frac{3}{3}} = 2$

$$8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{\frac{3}{3}} = 2$$

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$\left(5y_{4}^{\frac{3}{4}}\right)\left(2y_{3}^{\frac{1}{3}}\right)=10y_{12}^{\frac{13}{12}}$$

$$8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{\frac{6}{3}} = 2^2 = 4$$

$$\frac{1}{x^{-5}} = x^5$$

$$\mathbf{10^{-3}} = \frac{1}{10^3} = \frac{1}{1000}$$

$$\frac{x^{-3}}{y^{-5}} = \frac{y^5}{x^3}$$

$$\frac{u^{-7}}{v^{-2}} = \frac{v^2}{u^7}$$

$$(x^3y^2)^0 = 1$$

$$\frac{4^{\frac{1}{2}}}{4^{\frac{1}{2}}} = (2^2)^{\frac{1}{2}} = 2^{\frac{2}{2}} = 2$$

$$\left(3x^{\frac{1}{3}}\right)\cdot\left(2x^{\frac{1}{2}}\right)=6x^{\frac{1}{3}}x^{\frac{1}{2}}=6x^{\frac{5}{6}}$$

$$\left(\frac{4x^{\frac{1}{3}}}{x^{\frac{1}{2}}}\right)^{\frac{1}{2}} = \left(4x^{\frac{-1}{6}}\right)^{\frac{1}{2}} = \left(2^{2}\right)^{\frac{1}{2}} \cdot x^{\frac{-1}{12}} = 2x^{\frac{-1}{12}} = \frac{2}{x^{\frac{1}{12}}}$$

$$\frac{3^{-2} \cdot x^5 \cdot y^{-3}}{3^{-4} \cdot x^{-2} \cdot y^{-4}} = \frac{3^4 \cdot x^5 \cdot x^2 \cdot y^4}{3^2 y^3} = \frac{3^2 x^7 y^1}{1} = 9x^7 y$$

$$3^4 \cdot 3^{-5} = 3^{-1} = \frac{1}{3}$$

$$5^{-2}$$
. $5^{-3} = 5^{-5} = \frac{1}{5^5}$

$$(a^n)^m = a^{n imes m}$$
 : قاعدة

$$(2^{-5})^{-1} = 2^5$$

$$(3^2)^3 = 3^6$$

*مثال:

$$(ab)^m = a^m.b^m$$

• قاعدة:

$$(2x)^3 = 2^3 \cdot x^3$$

• مثال:

$$(3.5)^{-2} = 3^{-2}.5^{-2} = \frac{1}{3^2}.\frac{1}{5^2} = \frac{1}{9}.\frac{1}{25} = \frac{1}{225}$$

*مثال

$$(\frac{2}{3})^2 = \frac{2^2}{3^2} = \frac{4}{9}$$

قاعدة:

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

مثال:

$$\frac{2^5}{2^3} = 2^2 = 4$$

$$\frac{a^m}{a^n}=a^{m-n}$$

$$\frac{2^4 x^{-2}}{2^{-3} x^{-5}} = \frac{2^4 \cdot 2^3 \cdot x^5}{x^2} = 2^7 \cdot x^3$$

*تمارین:

$$\frac{6x^{-3}}{8x^{-4}} = \frac{6x^4}{8x^3} = \frac{3}{4}x$$

$$3x^5(2x^2)=6x^7$$

$$(2a^{-3}b^2)^{-2} = 2^{-2}a^6b^{-4} = \frac{a^6}{2^2b^4} = \frac{a^6}{4b^4}$$

$$\left(\frac{a^3}{b^5}\right)^{-2} = \frac{a^{-6}}{b^{-10}} = \frac{b^{10}}{a^6}$$

$$\frac{4x^{-3}y^{-5}}{6x^{-4}y^3} = \frac{4x^4}{6x^3y^5 \cdot y^3} = \frac{2x^4}{6x^3y^8} = \frac{2x}{3y^8}$$

$$\left(\frac{x^{-3}}{y^4z^{-2}}\right)^{-3} = \frac{x^9}{y^{-12}z^6} = \frac{x^9y^{12}}{z^6}$$

$$\left(\frac{m^{-3}n^3}{n^{-2}}\right)^{-2} = \frac{m^6n^{-6}}{n^4} = \frac{m^6}{n^4 \cdot n^6} = \frac{m^6}{n^{10}}$$

*كيف نتخلص من الجذر؟! حسلت الجذر الجذر المعلم الجذر المعلم المعلم المجذر المعلم المعلم

*أمثلة:

$$\sqrt{x^3}=x^{\frac{3}{2}}$$

$$\sqrt[3]{x^5} = x^{\frac{5}{3}}$$

$$\sqrt[5]{x^2y^3} = x^{\frac{2}{5}}y^{\frac{3}{5}}$$

$$\sqrt[3]{x^2y^3z^5} = x^{\frac{2}{3}}yz^{\frac{5}{3}}$$

$$\sqrt{12x^3y^5z^2} = 12^{\frac{1}{2}}x^{\frac{3}{2}}y^{\frac{5}{2}}z$$

*استخدام الجذور لتبسيط الاسس:

$$oldsymbol{b}^{rac{m}{n}}=\sqrt[n]{oldsymbol{b}^{m}}$$

*قاعدة:

*مثال:

$$x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} = x^{\frac{1}{2} + \frac{2}{3}} = x^{\frac{7}{6}} = \sqrt[6]{x^7}$$

$$x^{\frac{3}{5}} = \sqrt[5]{x^3}$$

$$x^{\frac{1}{2}} = \sqrt{x}$$

$$y^{\frac{-2}{3}} = \frac{1}{y^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{y^2}}$$

$$\sqrt{a}.\sqrt{a}=a$$

*قاعدة:

$$(\sqrt{x}-3)(\sqrt{x}+3)=x-9$$

*مثال:

$$\big(5+\sqrt{2}\big)\big(5-\sqrt{2}\big)=25-2$$

$$4\sqrt{5} - 2\sqrt{5} + 6\sqrt{5} = 8\sqrt{5}$$

$$5\sqrt{3} + 4\sqrt{3} = 9\sqrt{3}$$

المحاضرة السادسة

*انطاق المقام: (التخلص من الجذور في المقام)

*مثال:

$$\frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$

$$\frac{3}{2-\sqrt{3}} = \frac{3}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{6+3\sqrt{3}}{4-3} = 6+3\sqrt{3}$$

$$\frac{2}{5+\sqrt{3}} = \frac{10-2\sqrt{3}}{22}$$

$$\frac{\sqrt{2}+\sqrt{3}}{1-\sqrt{5}} = \frac{\sqrt{2}+\sqrt{10}+\sqrt{3}+\sqrt{15}}{-4}$$

اللوغاريتمات

$$\log_a b = c \leftrightarrow b = a^c$$

*قاعدة:

دائماً
$$\log_a 1 = 0$$

دائماً
$$\log_a a = 1$$

*قاعدة:

*مثال: اكتب الصيغة اللوغاريتمية المقابلة للصيغة الاسية:

$$4^2 = 16 \leftrightarrow \log_4 16 = 2$$

$$3^2 = 9 \leftrightarrow \log_3 9 = 2$$

$$2^{-3} = \frac{1}{8} \leftrightarrow \log_2 \frac{1}{8} = -3$$

$$3^4 = 81 \leftrightarrow \log_3 81 = 4$$

$$2^{-5} = \frac{1}{32} \leftrightarrow \log_2 \frac{1}{32} = -5$$

$$0.001 = 10^{-3} \leftrightarrow \log_{10} 0.001 = -3$$

$$\log_2 64 = 6 \leftrightarrow 2^6 = 64$$

$$\log_2 8 = 3 \leftrightarrow 2^3 = 8$$

$$\log_{\frac{1}{2}} 8 = -3 \leftrightarrow (\frac{1}{2})^{-3} = 8$$

$$\log_{\frac{1}{2}} 8 = -3 \leftrightarrow \left(\frac{1}{2}\right)^{-3} = 8$$

$$\log_{10} 1000 = 3 \leftrightarrow 10^3 = 1000$$

*أوجد قيمة المجهول ؟!

$$\log_3 x = 2 \leftrightarrow 3^2 = x \rightarrow x = 9$$

$$\log_4 x = 3 \leftrightarrow 4^3 = x \rightarrow x = 64$$

$$\log_x 81 = 4 \leftrightarrow x^4 = 81 \rightarrow x = 3$$

$$\log_5 125 = x \leftrightarrow 5^x = 125 \rightarrow x = 3$$

$$\log_x 27 = 3 \leftrightarrow x^3 = 27 \rightarrow x = 3$$

$$\log_{10}(x^2 + 1) = 1 \leftrightarrow 10^1 = (x^2 + 1) = x^2 = 10 - 1 = x^2 = 9 = x$$

$$= \pm 3$$

$$\log_a(x \times y) = \log_a x + \log_a y$$
 : قاعدة

$$\log_2(5 \times 3) = \log_2 5 + \log_2 3$$
 : مثال :

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
: *قاعدة

$$\log_3 \frac{5}{2} = \log_3 5 - \log_3 2$$
 : مثال

$$\log_a x^n = n \log_a x$$
: *قاعدة

$$\log_2 4^3 = 3 \log_2 4$$
 : مثال

$$\log_3 5 = 1,46$$
 , $\log_3 2 = 0,63$ - مثال: أوجد ما يلي $*$

$$log_3 10 = log_3 (5 \times 2) = log_3 5 + log_3 2 = 1,46 + 0,63 = 2,09$$

$$\log_3 15 = \log_3 (5 \times 3) = \log_3 5 + \log_3 3 = 1,46 + 1 = 2,46$$

$$\textcolor{red}{\log_3 16} = \log_3 2^4 = 4\log_3 2 = 4\times 0,63 \approx 2,52$$

$$\textcolor{red}{\log_3 2.\, 5} = \log_3 \frac{5}{2} = \log_3 5 - \log_3 2 = 1,46 - 0,63 \approx 0,83$$

$$\log_3 0.4 = \log_3 \frac{4}{10} = \log_3 \frac{2}{5} = \log_3 2 - \log_3 5 = -0.83$$

$$\log_3 \sqrt[3]{4} = \log_3 4^{\frac{1}{3}} = \log_3 (2^2)^{\frac{1}{3}} = \log_3 2^{\frac{2}{3}} = \frac{2}{3} \log_3 2 = \left(\frac{2}{3}\right) \times 0,63$$

$$\approx 0,42$$

المحاضرة السابعة (الفصل الرابع)

*التباديل:

 $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 = 4$ مضروب العدد

 $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 = 5$ مضروب العدد

 $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720 = 6$ مضروب العدد

*بالحاسبة : (Shift + (x!

 $\mathbf{n}\mathbf{Pr} = \frac{n!}{(n-r)!}$: قاعدة *

*مثال : عدد تباديل 6 مأخوذة 4 في كل مرة ؟؟

الطريقة الأولى : $\frac{6!}{(6-4)!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 1} = 360$

 $6P4 = 6 \cdot 5 \cdot 4 \cdot 3 = 360$ الطريقة الثانية :

*بالحاسبة : + + (npr) + 4

*مثال: احسب عدد تباديل 5 مأخوذة 3 في كل مرة ؟؟

*الطريقة الأولى: $\frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5.4.3.2.1}{2.1} = 60$

*الطريقة الثانية: $P3 = 5 \cdot 4 \cdot 3 = 60$

*بالحاسبة : 5 + shift +(npr) + 3

 $\mathbf{n}p_n=n!$: *قاعدة

24

$$5p_5 = 5! = 5.4.3.2.1 = 120$$
 : مثال :

*مثال: بكم طريقه يمكن اختيار 3 كتب من مجموعة مكونه من 10 كتب؟

$$10P3 = \frac{10!}{(10-3)!} = \frac{10!}{7!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{7!} = 720$$
 : "الطريقة الأولى:

*الطريقة الثانية: | 10P3 = 10 · 9 · 8 = 720

*بالحاسبة : | 3+ (npr) +3

*مثال: احسب؟

$$_{7}p_{6} = 7.6.5.4.3.2 = 5040$$

$$_{4}p_{2}=4.3=12$$

$$p_3 = 12.11.10 = 1320$$

$$8p_8 = 8! = 8.7.6.5.4.3.2.1 = 40320$$

*التوافيق:

$$nc_r = rac{\mathrm{n} p_r}{r!}$$
 : قاعدة

$$\mathbf{n}c_r = \frac{n!}{(n-r)!\,r!}$$

*قاعدة :

: حسب $5c_2$ بثلاث طرق *

$$5c_2 = \frac{5!}{(5-2)! \cdot 2!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3! \cdot 2!} = \frac{5 \cdot 4^2 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} = 10$$

*الطريقة الاولى:

$$_{5}c_{2}=rac{5p_{2}}{2!}=rac{5.4}{2!}=rac{5.4^{2}}{2.1}=10$$
 : الطريقة الثانية :

$$5 + shift + (nCr) + 2$$
 : **

$$7c_1=7$$
 : مثال * \mathbf{n}

$$\mathbf{n}c_1 = n$$

$$3c_3=1$$
 : مثال * \mathbf{n}

$$nc_n = 1$$

$$\mathbf{5c_0} = \mathbf{1}$$
 : مثال $\mathbf{nc_0} = \mathbf{1}$: *قاعدة

$$nc_0 = 1$$

*مثال:

*احسب بطريقتين مختلفتين ثم استخدم الحاسبة للتأكد:

$$5c_4 = \frac{5!}{(5-4)!4!} = \frac{5!}{1!.4!} = \frac{5.4.3.2.1}{4.3.2.1} = 5$$

*الطريقة الاولى:

$$5c_4 = \frac{5p_4}{4!} = \frac{5.4.3.2.1}{4.3.2.1} = 5$$

*الطريقة الثانية:

$$12c_8 = \frac{12!}{(12-8)!\,8!} = \frac{12!}{4!.8!} = \frac{12.11.10.9.8.7.6.5.4.3.2.1}{4.3.2.1.8.7.6.5.4.3.2.1} = 495$$
 الطريقة الاولى :

$$12c_8 = \frac{12p_8}{8!} = \frac{12.11.10.9.8.7.6.5}{-8.7.6.5.4.3.2.1} = 495$$
 : الطريقة الثانية :

$$7c_5 = \frac{7!}{(7-5)!5!} = \frac{7!}{2!.5!} = \frac{7.6^3.5.4.3.2.1}{2.1.5.4.3.2.1} = 21$$
 : الطريقة الاولى :

$$7c_5 = \frac{7c_5}{5!} = \frac{7.6^3 - 5.4.3}{5.4.3 - 2.1} = 21$$
 : الطريقة الثانية :

$$9c_1 = 9$$

$$8c_0 = 1$$

$$8c_0=1 4c_4=1$$

المحاضرة الثامنة (الفصل الخامس)

*المعادلة الخطية:

$$ax+b=0$$
 : قاعدة

*مثال : حل المعادلات الخطية التالية :

$$2x + 1 = 6x - 7$$

$$2x - 6x = -7 - 1$$

$$-4x = -8$$

$$x = 2$$

$$2x-6 = 4x + 1$$

$$2x-4x = 6 + 1$$

$$-2x = 7$$

$$x = -\frac{7}{2}$$

$$-5x + 3 = 8x - 7$$

$$-5x - 8x = -3 - 7$$

$$-13x = -10$$

$$x = \frac{10}{13}$$

$$\frac{x}{2} - \frac{4x}{3} = \frac{5}{2}$$

$$(\times 2) \frac{2(x)}{2} - \frac{8x}{3} = \frac{10}{2}$$

$$(\times 3) \quad 3x - \frac{3(8x)}{3} = 15$$

$$3x - 8x = 15$$

$$-5x = 15$$

$$x = -3$$

$$2 + \frac{3x}{2} - 5 = \frac{x}{4} + \frac{2}{3}$$

$$4 + \frac{2(3x)}{2} - 10 = \frac{2x}{4} + \frac{4}{3}$$

$$16 + 12x - 40 = \frac{4(2x)}{4} + \frac{16}{3}$$

$$16 + 12x - 40 = 2x + \frac{16}{3}$$

$$16 - \frac{16}{3} - 40 = 2x - 12x$$

$$-\frac{88}{3} = -10x$$

$$x = \frac{44}{15}$$

$$7x - 10 = 4x + 5$$

$$7x - 4x = 10 + 5$$

$$3x = 15$$

$$x = 5$$

$$\frac{x}{5} + \frac{3}{2} = x + \frac{1}{2}$$

$$(\times 5) \frac{5(x)}{5} + \frac{15}{2} = 5x + \frac{5}{2}$$

$$(\times 2) \quad 2x + 15 = 10x + 5$$

$$2x - 10x = 5 - 15$$

$$-8x = -10$$

$$x = \frac{5}{4}$$

$$\frac{x+1}{3} - \frac{x}{4} = \frac{1}{2}$$

$$\frac{3(x+1)}{3} - \frac{3x}{4} = \frac{3}{2}$$

$$4(x+1) - \frac{4(3x)}{4} = \frac{12}{2}$$

$$4x + 4 - 3x = 6$$

$$4x - 3x = 6 - 4$$

$$x = 2$$

$$5x - 4 = 2x + 8$$

$$5x - 2x = 4 + 8$$

$$3x = 12$$

$$x = 4$$

$$4(x+3) = 6(x-2)$$

$$4x + 12 = 6x - 12$$

$$4x - 6x = -12 - 12$$

$$-2x = -24$$

$$x = 12$$

$$5 - \frac{3a - 4}{5} = \frac{7 - 2a}{2}$$

$$25 - \frac{5(3a - 4)}{5} = \frac{35 - 10a}{2}$$

$$50 - 6a + 8 = \frac{2(35 - 10a)}{2}$$

$$50 - 6a + 8 = 35 - 10a$$

$$50 + 8 - 35 = 6a - 10a$$

$$23 = -4a$$

$$a = -\frac{23}{4}$$

$$-4 - 3(x + 2) + x = 5(x - 1) - 7x$$

$$4 - 3x - 6 + x = 5x - 5 - 7x$$

$$-3x + x - 5x + 7x = -4 + 6 - 5$$

$$0 \neq -3$$

ليس لها حل لأن المستقيمان اللذان يمثلان المعادلتين المتساويتين هما مستقيمان متوازيان لهما نفس الميل

المحاضرة التاسعة

*حل المعادلات الخطية ذات المجهولين:

أولا: طريقه الحل بالتعويض:

*مثال:

$$\begin{cases} x + y = 2 \\ 2x - y = 1 \end{cases}$$

x = -y + 2: من المعادلة الاولى

نعوض بقيمة x في المعادلة الثانية:

$$2(-y+2)-y=1$$

$$-3y = -3$$

$$y = 1$$

نعوض بقيمة y في المعادلة الاولى:

$$x = -y + 2$$

$$x = -1 + 2$$

$$x = 1$$

$$\begin{cases} x - y = 3 \\ -2x + y = 1 \end{cases}$$

x = y + 3: من المعادلة الأولى

نعوض بقيمة x في المعادلة الثانية:

$$-2(y+3)+y=1$$

$$-y = 5$$

$$y = -5$$

نعوض قيمة y في المعادلة الاولى:

$$x = y + 3$$

$$x = -5 + 3$$

$$x = -2$$

$$\{(-2,-5)\}$$
 = (Label 14.0)

$$\begin{cases} x + 3y = 2 \\ 2x + y = 4 \end{cases}$$

y=-2x+4: من المعادلة الثانية

نعوض قيمة y في المعادلة الاولى:

$$x + 3(-2x + 4) = 2$$

$$x - 6x + 12 = 2$$

$$-5x = -10$$

$$x = 2$$

بتعويض قيمة x في المعادلة الثانية:

$$y = -2(2) + 4$$

$$y = 0$$

$$\{(2,0)\}$$
 = $\{(2,0)\}$

$$\begin{cases} 3x + y = 10 \\ x - 2y = 1 \end{cases}$$

x = 2y + 1: من المعادلة الثانية

نعوض قيمة x في المعادلة الاولى:

$$3(2y+1) + y = 10$$

$$6y + 3 + y = 10$$

$$7y = 7$$

$$y = 1$$

بتعويض قيمة y في المعادلة الثانية:

$$x = 2(1) + 1$$

$$x = 3$$

*ثانيا: طريقه الحذف:

$$\begin{cases} 2x + 3y = 6 \\ 3x - 3y = 4 \end{cases}$$

نجمع المعادلتين:

$$5x = 10$$

$$x = 2$$

بالتعويض بقيمة x في إحدى المعادلتين

$$3(2) - 3y = 4$$

$$6 - 3y = 4$$

$$y=\frac{2}{3}$$

$$\left\{\left(2,\frac{2}{3}\right)\right\} = 1$$
مجموعة الحل

$$\begin{cases} 2x + y = 2 \\ 3x - y = 3 \end{cases}$$

نجمع المعادلتين:

$$5x = 5$$

$$x = 1$$

بالتعويض بقيمة x في إحدى المعادلتين

$$2(1) + y = 2$$

$$2 + y = 2$$

$$y = 0$$

$$\{(1,0)\}$$

$$\begin{cases} 3x - 2y = 1 \\ 2x + y = 4 \end{cases}$$

نضرب المعادلة الثانية في 2:

$$\begin{cases}
3x - 2y = 1 \\
4x + 2y = 8
\end{cases}$$

نجمع المعادلتين:

$$7x = 9$$

$$x=\frac{9}{7}$$

بالتعويض بقيمة xفي إحدى المعادلتين

$$3\left(\frac{9}{7}\right) + 2y = 1$$

$$y=\frac{10}{7}$$

$$\left\{ \left(\frac{9}{7}, \frac{10}{7}\right) \right\} = 1$$
مجموعة الحل

$$\begin{cases} x + 5y = -1 \\ -x + 2y = 8 \end{cases}$$

نجمع المعادلتين:

$$7y = 7$$

$$y = 1$$

بالتعويض بقيمة y في إحدى المعادلتين

$$x + 5(1) = -1$$

$$x = -6$$

$$\{(-6,1)\}=\{(-6,1)\}$$

$$\begin{cases} x - y = 5 \\ 2x + 4y = -3 \end{cases}$$

بضرب المعادلة الاولى في 2-:

$$\begin{cases}
-2x + 2y = -10 \\
2x + 4y = -3
\end{cases}$$

نجمع المعادلتين:

$$6y = -13$$

$$y = -\frac{13}{6}$$

بالتعويض بقيمة y في المعادلة الأولى:

$$x - \left(-\frac{13}{6}\right) = 5$$

$$x=\frac{17}{6}$$

$$\left\{ \left(\frac{17}{6}, -\frac{13}{6} \right) \right\} = 1$$

*حل معادلات الدرجة الثانية بمجهول واحد:

$$ax^2 + bx + c = 0$$
 : *الصورة القياسية

*أولا: بطريقة التحليل:

*مثال:

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2)=0$$

$$x + 3 = 0$$

$$x = -3$$

$$x + 2 = 0$$

$$x = -2$$

$$\{-2, -3\} = \{-2, -3\}$$

$$x^2 + x - 2 = 0$$

$$(x-1)(x+2)=0$$

$$x - 1 = 0$$

$$x = 1$$

$$x + 2 = 0$$

$$x = -2$$

$$\{-2,1\}$$
 = $\{-2,1\}$

$$4x^2 + 12x + 9 = 0$$

$$(2x+3)(2x+3) = 0$$

$$2x + 3 = 0$$

$$x=-\frac{3}{2}$$

$$\left\{-\frac{3}{2}, -\frac{3}{2}\right\} = \text{identity}$$

$$2x^2 = 5x$$

$$2x^2 - 5x = 0$$

$$x(2x-5)=0$$

$$x = 0$$

$$2x-5=0$$

$$x=\frac{5}{2}$$

$$\left\{0,\frac{5}{2}\right\} = 1$$
مجموعة الحل

$$x^2 - 6x + 5 = -4$$

$$x^2 - 6x + 9 = 0$$

$$(x-3)(x-3)=0$$

$$x - 3 = 0$$
$$x = 3$$

$$4x^2 = 3x$$

$$4x^2 - 3x = 0$$

$$x(4x-3)=0$$

$$x = 0$$

$$4x-3=0$$

$$x=\frac{3}{4}$$

$$\left\{0,\frac{3}{4}\right\} = 1$$

المحاضرة العاشرة

*بطريقة إكمال المربع:

$$x^2+bx+\left(rac{b}{2}
ight)^2=\left(x+rac{b}{2}
ight)^2$$
: قاعدة

*مثال:

$$x^{2} + 4x = 2$$

$$x^{2} + 4x + 4 = 2 + 4$$

$$(x+2)^{2} = 6$$

$$(x+2) = \pm \sqrt{6}$$

$$x = \pm \sqrt{6} - 2$$

*أكمل العبارة التالية لتصبح مربعا كاملا:

$$x^2 + 5x$$
$$x^2 + 5x + \left(\frac{5}{2}\right)^2 = \left(\frac{5}{2}\right)^2$$

$$x^2 - 3x$$
$$x^2 - 3x + \left(\frac{3}{2}\right)^2 = \left(\frac{3}{2}\right)^2$$

*حل المعادلات بطريقة إكمال المربع:

$$2x^2 - 4x + 3 = 0$$

$$x^2-2x+\frac{3}{2}=0$$

$$x^2-2x=-\frac{3}{2}$$

$$x^2 - 2x + (1)^2 = -\frac{3}{2} + (-1)^2$$

$$x^2 - 2x + 1 = -\frac{1}{2}$$

$$(x-1)=\pm\sqrt{-\frac{1}{2}}$$

لايوجد حل لانها ليست من الاعداد الحقيقية R

$$3x^2 - 12x + 3 = 0$$

$$x^2 - 4x + 1 = 0$$

$$x^2 - 4x = -1$$

$$x^2 - 4x + 4 = -1 + 4$$

$$(x-2)^2=3$$

$$x-2=\pm\sqrt{3}$$

$$x = \pm \sqrt{3} + 2$$

$$x^2 + 6x - 2 = 0$$

$$x^2 + 6x = 2$$

$$x^2 + 6x + 9 = 10$$

$$(x+3)^2=11$$

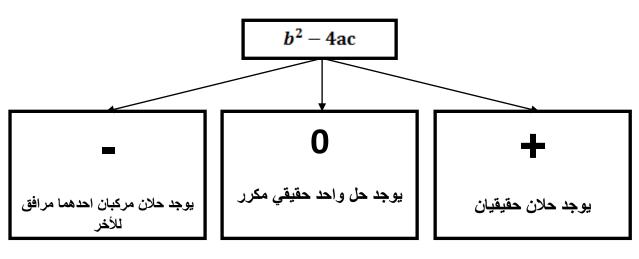
$$x + 3 = \pm \sqrt{11}$$

$$x = \pm \sqrt{11} - 3$$

$$x^2 + 3x - 2 = 0$$

$$x^2 + 3x = 2$$

$$x^2 + 3x + \frac{9}{4} = 2 + \frac{9}{4}$$


$$\left(x+\frac{3}{2}\right)^2=\frac{17}{4}$$

$$\left(x+\frac{3}{2}\right)=\pm\sqrt{\frac{17}{4}}-\frac{3}{2}$$

*ثالثا: باستخدام القانون العام:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

*قاعدة:

*مثال:

$$x^2 + 5x + 6 = 0$$

$$(x+2)(x+3)=0$$

$$x + 2 = 0$$

$$x = -2$$

$$x + 3 = 0$$

$$x = -3$$

$$\{-2, -3\} = 1$$

طريقه القانون العام:

نحسب المميز:

$$(5)^2 - 4(1)(6) = 1$$

$$x = \frac{-5 \pm \sqrt{1}}{2}$$

$$x=\frac{-5\pm1}{2}$$

$$x = \frac{-5+1}{2} = \frac{-4}{2} = -2$$

$$x = \frac{-5-1}{2} = \frac{-6}{2} = -3$$

$$\{-2, -3\} = 1$$

$$4x^2 + 12x + 9 = 0$$

نحسب المميز:

$$(12)^2 - 4(4)(9) = 0$$

$$x = \frac{-12 \pm \sqrt{0}}{8}$$

$$x=-\frac{12}{8}$$

$$x=-\frac{3}{2}$$

$$\left\{-\frac{3}{2}, -\frac{3}{2}\right\} = 1$$

$$x^2 - 3x - 4 = 0$$

نحسب المميز:

$$(-3)^2 - 4(1)(-4) = 25$$

$$x=\frac{3\pm\sqrt{25}}{2}$$

$$x=\frac{3\pm 5}{2}$$

$$x = \frac{3-5}{2} = \frac{-2}{2} = -1$$

$$x = \frac{3+5}{2} = \frac{8}{2} = 4$$

$$\{-1,4\} = \{-1,4\}$$

$$2x^2 = 5x$$

طريقة التحليل:

$$2x^2 - 5x = 0$$

$$x(2x-5)=0$$

$$x = 0$$

$$2x - 5 = 0$$

$$2x = 5$$

$$x=\frac{5}{2}$$

$$\left\{0,\frac{5}{2}\right\}$$
 مجموعة الحل

طريقة إكمال المربع:

$$2x - 5x = 0$$

$$x^2 - \frac{5}{2}x = 0$$

$$x^2 - \frac{5}{2}x + \frac{25}{16} = \frac{25}{16}$$

$$\left(x-\frac{5}{2}\right)^2=\frac{25}{16}$$

$$x-\frac{5}{2}=\pm\frac{5}{4}$$

$$x = \frac{5}{2} \mid | \qquad X=0$$

طريقة القانون العام:

$$x = \frac{5 \pm \sqrt{25}}{4}$$

$$x=\frac{5\pm 5}{4}$$

$$x=\frac{5+5}{4}=\frac{5}{2}$$

$$x=\frac{5-5}{4}=0$$

$$\left\{0,\frac{5}{2}\right\} = \left(1 - \frac{5}{2}\right)$$
مجموعة الحل

$$4x^2=3x$$

$$4x^2 - 3x = 0$$

$$x(4x-3)=0$$

$$x = 0$$

$$4x - 3 = 0$$

$$4x = 3$$

$$x=\frac{3}{4}$$

$$\left\{0,\frac{3}{4}\right\} = \left\{0,\frac{3}{4}\right\}$$
 مجموعة الحل

طريقة إكمال المربع:

$$4x^2 - 3x = 0$$

$$x^2-\frac{3}{2}x=0$$

$$x^2 - \frac{3}{2}x = 0$$

$$x^2 - \frac{3}{4}x + \frac{9}{64} = \frac{9}{64}$$

$$\left(x-\frac{3}{8}\right)^2=\frac{9}{64}$$

$$x-\frac{3}{8}=\pm\frac{3}{8}$$

$$x = \pm \frac{3}{8} + \frac{3}{8}$$

$$x = \frac{3}{4}$$

$$x = 0$$

$$4x^2 - 3x = 0$$

$$x = \frac{3 \pm \sqrt{9}}{8}$$

$$x=\frac{3\pm3}{8}$$

$$x = \frac{3+3}{8} = \frac{6}{8} = \frac{3}{4}$$

$$x=\frac{3-3}{8}=0$$

$$\left\{0,\frac{3}{4}\right\} = 1$$

$x^2 - 6x + 5 = -4$

طريقة التحليل:

$$x^2 - 6x + 9 = 0$$

$$(x-3)(x-3)=0$$

$$x = 3$$

$$x^2 - 6x + 9 = 0$$

$$(x-3)^2=0$$

$$x-3=0$$

$$x = 3$$

طريقة القانون العام:

$$x^2 - 6x + 9 = 0$$

$$x = \frac{6 \pm \sqrt{0}}{2}$$

$$x=\frac{6}{2}=3$$

المحاضرة الحادية عشر (الفصل السادس)

- * أساس المتتابعة الحسابية هو الفرق بين حدين متتاليين
- * لكي تكون المتتابعة حسابية يجب أن يكون الفرق بين الحدين المتتاليين دائما عدد ثابت *مثال:

بین اذا کانت المتتابعة التالیة حسابیة ام لا ؟
$$-2$$
 , -6 , -10 , -15 , -20 , -25 غیر حسابیة

اوجد أساس المتتابعة التالية:

$$0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}$$

 $rac{1}{4}=$ أساس المتتابعة

$$-8$$
 , -6 , -4 , $--$, $--$, $--$, $--$

أساس المتتابعة = 2

-2,0,2,4,6

* الحد النوني في المتتابعة الحسابية:

* قاعدة :

$$a_n = a_1 + (n-1)d$$

$$a_n = الحد النوني$$

$$a_1 = 1$$
الحد الاول

$$oldsymbol{n}=\mathbf{n}$$
عدد الحدود

$$d=$$
اساس المتتابعة

• مثال:

اوجد الحد العاشر في المتتابعة الحسابية التالية:

$$(-5, -2, 1, \dots \dots)$$

$$a_{10} = -5 + (9)(3) = 22$$

 a_1 = 5 d=3 اوجد الحد السابع في المتتابعة التي فيها

$$a_7 = 5 + (6)(3) = 23$$

 $a_1 = -4$ d = 6 n = 9: اوجد a_n علما أن

$$a_9 = -4 + (9 - 1)6 = 44$$

 a_1 = 5 d= -3 : اوجد a_{15}

$$a_{15} = 5 + (14)(-3) = -37$$

* إيجاد الأوساط الحسابية:

* مثال :

اوجد خمسة اوساط حسابية بين الحدين 22, 8-

$$a_n = a_1 + (n-1)d$$

$$22 = -8 + (6)d$$

$$22 = -8 + 6d$$

$$6d = 30$$

$$d = 5$$

-8, **-3**, **2**, **7**, **12**, **17**, **22**

اوجد الاوساط الحسابية الخمسة 10, 2-

$$10 = -2 + 6d$$

$$6d = 12$$

$$d = 2$$

-2,0,2,4,6,8,**10**

* المجموع الجزئى للمتسلسلات الحسابية:

$$S_{
m n}=n\left(rac{a_1+a_n}{2}
ight)$$
 : الصيغة العامة

$$S_{
m n}=rac{{
m n}}{2}\left(2a_1+(n-1)d
ight)$$
 : الصيغة البديلة

*مثال:

اوجد مجموع حدود المتسلسلة التالية:

$$a_1 = 3$$
 $a_n = 43$ $d = 2$

أولا نوجد قيمة n:

$$a_n = a_1 + (n-1)d$$

$$43 = 3 + 2n - 2$$

$$2n = 42$$

$$n = 21$$

ثانيا نعوض بالصيغة العامة للمتسلسلات:

$$S_n = n \left(\frac{a_1 + a_n}{2} \right)$$

$$S_{21} = 21 \left(\frac{3+43}{2} \right)$$

$$S_{21} = 483$$

اوجد مجموع حدود المتسلسلة الحسابية التالية:

$$d = 5$$
 $a_n = 67$ $a_1 = 2$

أولا نوجد قيمة n:

$$a_n = a_1 + (n-1)d$$

$$67 = 2 + (n-1)5$$

$$67 = 2 + 5n - 5$$

$$5n = 70$$

$$n = 14$$

ثانيا نعوض بالصيغة العامة للمتسلسلات:

$$S_{n} = n \left(\frac{a_{1} + a_{n}}{2} \right)$$

$$S_{14} = 14 \left(\frac{2+67}{2} \right)$$

$$S_{14} = 483$$

المحاضرة الثانية عشر

اوجد الحدود الثلاثة للمتتابعة التي فيها:

$$n = 8$$
 $a_n = 36$ $S_n = 120$

$$S_{n} = n \left(\frac{a_{1} + a_{n}}{2} \right)$$

$$120=8\left(\frac{a_1+36}{2}\right)$$

$$a_1 = -6$$

$$a_n = a_1 + (n-1)d$$

$$36 = -6 + 7d$$

$$7d = 42$$

$$d = 6$$

-6, **0**, **6**, **12**, **18**,, **36**

اوجد الحدود الثلاثة الأولى لمتتابعة حسابية فيها:

$$a_n = 79$$
 $a_1 = 7$ $S_n = 430$

$$S_{n} = n \left(\frac{a_{1} + a_{n}}{2} \right)$$

$$430 = n\left(\frac{7+79}{2}\right)$$

$$n = \frac{430}{43} = 10$$

$$a_n = a_1 + (n-1)d$$

$$79 = 7 + 9d$$

$$9d = 72$$

$$d = 8$$

7, 15, 23, 31,, 79

$\sum_{1}^{4}(k-1)$ وجد مجموع

$$=6\sum_{1}^{4}(k-1)=\ (1-1)+(2-1)+(3-1)+(4-1)=0+1+2+3$$

$$\sum_{1}^{5}(k^2-2)$$
 اوجد مجموع

$$\begin{split} & \textstyle \sum_{1}^{5} (k^2-2) = \, (1^2-2) + (2^2-2) + (3^2-2) + (4^2-2) + \\ = & 45 (5^2-2) = \, -1 + 2 + 7 + 14 + 23 \end{split}$$

* المتتابعة الهندسية:

$$\mathbf{a_n} = \mathbf{a_1} r^{n-1}$$
 الحد النوني *

• مثال:

$$r = 6$$
 $a_3 = 5$ افا کان a_1 اوجد $a_1 = a_1 r^{n-1}$ $a_3 = a_1 r^{3-1}$ $a_4 = a_1 (6)^2$ $a_4 = \frac{5}{36}$

اكتب معادلة الحد النوني للمتتابعة الهندسية التالية :
$$\frac{1}{2}\,,1\,,2\,,4\,,8\,,......$$
 $a_n=a_1r^{n-1}$
$$a_n=\frac{1}{2}\,(2)^{n-1}$$

*إيجاد الأوساط الهندسية:

اوجد ثلاثة أوساط هندسية بين العددين
$$3,.....,768$$
 $a_n=a_1r^{n-1}$
 $a_5=a_1r^{5-1}$
 $768=3r^4$
 $r^4=\frac{768}{3}=256$
 $r=\pm 4$
 $a_2=a_1\times 4=3\times 4=12$
 $a_3=12\times 4=48$
 $a_4=48\times 4=192$

اوجد ثلاثة أوساط هندسية بين العدين
$$,.....,1024\frac{1}{4}$$
 $a_n=a_1r^{n-1}$
 $a_5=a_1r^{5-1}$
 $1024=\frac{1}{4}r^4$
 $r^4=4096r=\pm 8$
 $a_1=8$
 $a_2=a_1\times 4=\frac{1}{4}\times 8=2$
 $a_3=2\times 8=16$
 $a_4=16\times 8=128$
 $a_4=16,128,1024$

اوجد أربعة أوساط هندسية بين العددين
$$,.....,512\frac{1}{2}$$
 $a_n = a_1r^{n-1}$
 $a_6 = a_1r^{6-1}$
 $512 = \frac{1}{2}r^5$
 $r^5 = \frac{512}{\frac{1}{2}} = 1024$
 $r = 4$
 $a_2 = a_1 \times 4 = \frac{1}{2} \times 4 = 2$
 $a_3 = 2 \times 4 = 8$
 $a_4 = 8 \times 4 = 32$
 $a_5 = 32 \times 4 = 128$
 $\frac{1}{2}, 2, 8, 32, 128, 512$

*المجموع الجزئى لمتسلسلة هندسية:

*قاعدة:

 $R \neq 1$

$$S_{n} = \frac{a_{1} - a_{1} r^{n}}{1 - r}$$
 : itela itela

$$\mathbf{S_n} = rac{a_1 - a_n \mathbf{r}}{1 - \mathbf{r}}$$
الصيغة البديلة

هنا المعادلة اكث

أوجد مجموع المتسلسلة التى فيها
$$r=3$$
 $n=10$ $a_1=2$

باستخدام الصيغة العامة

$$S_{10} = \frac{a_1 - a_1 r^{10}}{1 - 3}$$

$$S_{10} = \frac{2 - 2(3)^{10}}{-2}$$

$$S_{10} = \frac{2 - 2(59049)}{-2}$$

$$= 59048$$

أوجد مجموع المتسلسلة التي فيها

$$r = \frac{1}{2}a_n = 125 \quad a_1 = 2000$$

باستخدام الصيغة البديلة

$$S_n = \frac{a_1 - a_n r}{1 - r}$$

$$S_{n} = \frac{2000-125\left(\frac{1}{2}\right)}{1-\frac{1}{2}}$$

$$S_n=3875$$

يمكن كتابة مجموع المتسلسلة كالتالي:

$$\sum_{k=1}^{n} ar^{k-1}$$

*مجموع المتسلسلات الهندسية:

اوجد مجموع حدود المتسلسلة التالية

$$\sum_{k=1}^{6} 3(4)^{k-1} = 3(4)^{1-1} + 3(4)^{2-1} + 3(4)^{3-1} + 3(4)^{4-1} + 3(4)^{5-1} + 3(4)^{6-1}$$

$$= 3 + 12 + 48 + 192 + 768 + 3072 = 4095$$

اوجد مجموع حدود المتسلسلة التالية

$$\sum_{k=1}^{67} 4(-3)^{k-1} = 4(-3)^{1-1} + 4(-3)^{2-1} + 4(-3)^{3-1} + 4(-3)^{4-1}$$

$$+ 4(-3)^{5-1} + 4(-3)^{6-1} + 4(-3)^{7-1}$$

$$= 4 + (-12) + 36 + (-108) + 324 + (-972) + 2916 = 2188$$

* مجموع المتسلسلة الهندسية اللانهائية:

$$s=rac{a_1}{1-r}$$
 : *قاعدة

*مثال:

اوجد مجموع المتسلسلة التالية

$$\frac{2}{3}, \frac{6}{15}, \frac{18}{75}, \dots$$

أولا نوجد r

$$r = \frac{6}{15} \div \frac{2}{3} = \frac{3}{5}$$
$$s = \frac{a_1}{1 - r}$$

$$s = \frac{\frac{2}{3}}{1 - \frac{3}{5}} = \frac{5}{3}$$

اوجد مجموع المتسلسلة التالية

 $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$,

أولا نوجد r

$$r=\frac{1}{4}\div\frac{1}{2}=\frac{1}{2}$$

$$s = \frac{a_1}{1-r}$$

$$s = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

المحاضرة الثالثة عشر (الفصل السابع)

*المصفوفات:

(تتساوى مصفوفتان إذا كان لهما نفس العناصر بالترتيب نفسه)

*مثال:

*جمع وطرح المصفوفات:

(في الجمع والطرح يجب أن تكون المصفوفتان من نفس النوع)

*مثال :

$$\underline{B}=egin{bmatrix} 1 & 5 \ 3 & -4 \end{bmatrix}$$
 و $\underline{A}=egin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix}$ فأوجد

$$\underline{\mathbf{A}} + \underline{\mathbf{B}} = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 2 & 0 \end{bmatrix}$$

$$\underline{\mathbf{B}} + \underline{\mathbf{A}} = \begin{bmatrix} \mathbf{1} & \mathbf{5} \\ \mathbf{3} & -\mathbf{4} \end{bmatrix} + \begin{bmatrix} \mathbf{3} & \mathbf{2} \\ -\mathbf{1} & \mathbf{4} \end{bmatrix} = \begin{bmatrix} \mathbf{4} & \mathbf{7} \\ \mathbf{2} & \mathbf{0} \end{bmatrix}$$

(لان الجمع عملية ابدالية $\underline{A} + \underline{B} = \underline{B} + \underline{A}$)

$$\underline{\mathbf{A}} - \underline{\mathbf{B}} = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 5 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -4 & 8 \end{bmatrix}$$

$$\underline{\underline{B}} - \underline{\underline{A}} = \begin{bmatrix} 1 & 5 \\ 3 & -4 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 4 & -8 \end{bmatrix}$$

(الطرح عملية غير ابدالية $A - B \neq B - A$

$$3\underline{\underline{A}} + 2\underline{\underline{B}} = \begin{bmatrix} 9 & 6 \\ -3 & 12 \end{bmatrix} + \begin{bmatrix} 2 & 10 \\ 6 & -8 \end{bmatrix} = \begin{bmatrix} 11 & 16 \\ 3 & 4 \end{bmatrix}$$

$$\mathbf{5\underline{A}} - \mathbf{3\underline{B}} = \begin{bmatrix} 15 & 10 \\ -5 & 20 \end{bmatrix} - \begin{bmatrix} 3 & 15 \\ 9 & -12 \end{bmatrix} = \begin{bmatrix} 12 & -5 \\ -14 & 32 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 3 & 4 \\ 2 & 5 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} =$$
 لا يمكن جمعها لأنها ليست من نفس النوع

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 5 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 8 \\ 10 & 7 \end{bmatrix}$$

: فاوجد
$$\underline{B} = \begin{bmatrix} -5 & 1 \\ 2 & -3 \end{bmatrix}$$
 و $\underline{A} = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ فاوجد $\underline{A} + \underline{B} = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} -5 & 1 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 1 & 1 \end{bmatrix}$

$$\underline{B} - \underline{A} = \begin{bmatrix} -5 & 1 \\ 2 & -3 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} -8 & -1 \\ 3 & -7 \end{bmatrix}$$

$$3\underline{A} - 2\underline{B} = \begin{bmatrix} 9 & 6 \\ -3 & 12 \end{bmatrix} - \begin{bmatrix} -10 & 2 \\ 4 & -6 \end{bmatrix} = \begin{bmatrix} 19 & 4 \\ -7 & 18 \end{bmatrix}$$

• ضرب المصفوفات:

لكي تتم عملية ضرب المصفوفتين التاليتين b_{nxc} لابد وأن يتحقق الشرط التالى :

عدد الأعمدة في المصفوفة الأولى nيساوي عدد الصفوف في المصفوفة الثانية n

*مثال :

$$\underline{\mathbf{A}}_{2\times2} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \underline{\mathbf{B}}_{2\times2} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \text{ in this part of the proof of the pr$$

(ابدالية غير ابدالية <u>A</u> × <u>B</u> \neq <u>B</u> × <u>A</u>)

$$\underline{A}_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \underline{B}_{2\times 3} = \begin{bmatrix} 2 & 3 & -2 \\ 2 & -1 & 0 \end{bmatrix}$$

$$\underline{\mathbf{A}_{2\times2}} \times \underline{\mathbf{B}_{2\times3}} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & -2 \\ 2 & -1 & 0 \end{bmatrix}$$

$$=\begin{bmatrix}\mathbf{1}\times\mathbf{2}+\mathbf{0}\times\mathbf{2} & \mathbf{1}\times\mathbf{3}+\mathbf{0}\times-\mathbf{1} & \mathbf{1}\times-\mathbf{2}+\mathbf{0}\times\mathbf{0}\\ \mathbf{2}\times\mathbf{2}+\mathbf{3}\times\mathbf{2} & \mathbf{2}\times\mathbf{3}+\mathbf{3}\times-\mathbf{1} & \mathbf{2}\times-\mathbf{2}+\mathbf{3}\times\mathbf{0}\end{bmatrix}$$

$$=\begin{bmatrix}2&3&-2\\10&3&-4\end{bmatrix}$$

${f B}_{2 imes 3} imes {f A}_{2 imes 2}$ ولماذا

 ${f A}$ لا يمكن لان عدد الأعمدة في ${f B}$ عدد الصفوف في

$$\underline{\mathbf{A}} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 5 \end{bmatrix} \underline{\mathbf{B}} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \\ 2 & 3 \end{bmatrix}$$
اوجد حاصل ضرب المصفوفتين التاليتين

$$\underline{\mathbf{A}} \times \underline{\mathbf{B}} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 3 & 4 \\ 2 & 3 \end{bmatrix}$$

$$=\begin{bmatrix}2\times2+3\times3+1\times2&2\times1+3\times4+1\times3\\1\times2+2\times3+5\times2&1\times1+2\times4+5\times3\end{bmatrix}$$

$$=\begin{bmatrix}15 & 17\\18 & 24\end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ -2 & 1 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} =$$

$$= \begin{bmatrix} 2 \times 1 + 3 \times 2 & 2 \times 3 + 3 \times 4 \\ -2 \times 1 + 1 \times 2 & -2 \times 3 + 1 \times 4 \\ 0 \times 1 + 2 \times 2 & 0 \times 3 + 2 \times 4 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 18 \\ 0 & -2 \\ 4 & 8 \end{bmatrix}$$

$$2X - 3A = 3B - X$$
 : قال المعادلة المصفوفية التالية :
$$\underline{B} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 و $\underline{A} = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix}$: $\underline{A} = \begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix}$: $\underline{A} = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix}$: $\underline{A} = 3A + 3B$: $\underline{A} = 3A + 3B$: $\underline{A} = A + B$: $\underline{A} = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 0 & 5 \end{bmatrix}$

المحاظرة الرابعة عشر

*المحددات: 2 × 2

$$\Delta = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = (a_1b_2) - (a_2b_1)$$
 : *قاعدة

*مثال:

$$\begin{bmatrix} 2 & -5 \\ 3 & 4 \end{bmatrix}$$
 : اوجد محدده المصفوفة التالية

$$\Delta = \begin{vmatrix} 2 & -5 \\ 3 & 4 \end{vmatrix} = (2 \times 4) - (-5 \times 3) = 8 - (-15) = 23$$

$$\begin{bmatrix} -1 & 3 \\ 2 & -2 \end{bmatrix}$$
: اوجد محدده المصفوفة التالية

$$\Delta = \begin{vmatrix} -1 & 3 \\ 2 & -2 \end{vmatrix} = (-1 \times -2) - (3 \times 2) = 2 - 6 = -4$$

$$\begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix}$$
: اوجد محدده المصفوفة التالية

$$\Delta = \begin{vmatrix} 3 & -2 \\ 4 & -5 \end{vmatrix} = (3 \times -5) - (-2 \times 4) = (-15) - (-8) = -7$$

 3×3 : *المحددات

*مثال:

$$\begin{bmatrix} 2 & 3 & 1 \\ -1 & 4 & -2 \\ 3 & 0 & 2 \end{bmatrix} = 2 \begin{vmatrix} 4 & -2 \\ -1 & 4 & -2 \\ 3 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 4 & -2 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} -1 & -2 \\ 3 & 2 \end{vmatrix} + 1 \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix}$$

$$= 2[(4 \times 2) - 2 \times 0) - 3[(-1 \times 2) - 2 \times 3) + 1[(-1 \times 0) - (4 \times 3)]$$

$$= 16 - 12 + (-12)$$

$$= -8$$

طريقة كرامر:

$$\Delta = \begin{vmatrix} 2 & 3 & 1 & 2 & 3 \\ -1 & 4 & -2 - 1 & 4 \\ 3 & 0 & 2 & 3 & 2 \end{vmatrix}$$

$$= [(2 \times 4 \times 2) + (3 \times -2 \times 3) + (1 \times -1 \times 0)]$$

$$-[(3 \times -1 \times 2) + (2 \times -2 \times 0) + (1 \times 4 \times 3)]$$

$$= -8$$

$$\begin{bmatrix} 0 & 2 & 1 \\ 3 & 4 & 0 \\ 2 & -1 & 2 \end{bmatrix} = 0 \begin{vmatrix} 4 & 0 \\ -1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 3 & 0 \\ 2 & 2 \end{vmatrix} + 1 \begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix}$$

$$0 - 2[(3 \times 2) - (0 \times 2)] + 1[(3 \times -1) - (4 \times 2)]$$

$$0 - 12 - 11 = -23$$

$$\vdots$$

$$0 - 12 - 11 = -23$$

$$0 - 12 - 11 = -23$$

$$0 - 12 - 11 = -23$$

$$0 - 12 - 11 = -23$$

$$\begin{bmatrix} 0 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix} = 0 \begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix} - 2 \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix} + 3 \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$
$$= 0 - 2[(-1 \times 3) - (2 \times 1)] + 3[(-1 \times 0) - (0 \times 1)]$$
$$= 10 + 0 = 10$$

*معكوس المصفوفة:

*خطوات إيجاد معكوس المصفوفة:

أولا: نوجد المحددة ∆

$$A^{-1} = rac{1}{\Delta} egin{bmatrix} b_2 & -a_2 \ -b_1 & a_1 \end{bmatrix}$$
: نوجد معكوس المصفوفة بالطريقة التالية :

*مثال:

$$\underline{A^{-1}}$$
 إذا كانت المصفوفة $\underline{A} = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$ فأوجد

$$\Delta = \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = (2 \times 0) - (1 \times 3) = -3$$

$$\underline{A^{-1}} = -\frac{1}{3} \begin{bmatrix} 0 & -1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{bmatrix}$$

$$\underline{A^{-1}}$$
 فأوجد $\underline{A} = \begin{bmatrix} -2 & 3 \\ 4 & 1 \end{bmatrix}$ فأوجد

$$\Delta = \begin{vmatrix} -2 & 3 \\ 4 & 1 \end{vmatrix} = (-2 \times 1) - (3 \times 4) = -14$$

$$\underline{A^{-1}} = -\frac{1}{14} \begin{bmatrix} 1 & -3 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{14} & \frac{3}{14} \\ \frac{4}{14} & \frac{2}{14} \end{bmatrix}$$

$$\underline{A^{-1}}$$
 إذا كانت المصفوفة $\underline{A} = \begin{bmatrix} -2 & 1 \\ -3 & 4 \end{bmatrix}$ فأوجد

$$\Delta = \begin{vmatrix} -2 & 1 \\ -3 & 4 \end{vmatrix} = (-2 \times 4) - (1 \times -3) = -5$$

$$\underline{A^{-1}} = -\frac{1}{5} \begin{bmatrix} 4 & -1 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{4}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{2}{5} \end{bmatrix}$$

اوجد قيمة x التي تجعل المصفوفة التالية
$$\frac{\mathbf{A}}{3} = \begin{bmatrix} x-2 & \mathbf{x} \\ 3 & 2 \end{bmatrix}$$
 اليس لها معكوس ؟

 $\Delta \neq 0$ تكون للمصفوفة معكوس يجب ان تكون $\Delta \neq 0$

$$\Delta = \begin{vmatrix} x+2 & x \\ 3 & 2 \end{vmatrix} = (x+2) \times 2 - x \cdot 3$$
$$2x + 4 - 3x \neq 0$$
$$2x - 3x \neq 4$$

$$-x \neq 4$$

$$x = -4$$

*حل نظام المعادلات الخطية باستخدام المحددات:

*الطريقة:

$$\underline{\mathbf{c}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 يوجد المحددة Δ ونوجد الثوابت : $\underline{\mathbf{c}}$

$$\Delta_{\mathbf{x}} = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} \Delta_{\mathbf{y}} = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$
 ثم نوجد

$$x = \frac{\Delta_x}{\Delta} y = \frac{\Delta_y}{\Delta}$$
 : كالتالي : منوجد قيمة المجهولين x , y كالتالي : نوجد قيمة المجهولين

$$\begin{cases} 2x + y = 2 \\ x - y = 1 \end{cases}$$
حل النظام التالي

$$\underline{A} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \underline{c} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = (2 \times -1) - (1 \times 1) = -3$$

$$\Delta_{\mathbf{x}} = \begin{vmatrix} \mathbf{2} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} \end{vmatrix} = -3$$
 $\therefore \mathbf{x} = \frac{\Delta_{\mathbf{x}}}{\Delta} = \frac{-3}{-3} = \mathbf{1}$

$$\therefore x = \frac{\Delta_x}{\Lambda} = \frac{-3}{-3} = 1$$

$$\Delta_y = \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} = 0$$

$$\therefore y = \frac{\Delta_y}{\Delta} = \frac{0}{-3} = 0$$

$$\begin{cases} x+3y=3 \\ 2x-y=-1 \end{cases}$$
 کل النظام التالي $\underline{A} = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \underline{c} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ $\Delta = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} = (1 \times -1) - (3 \times 2) = -7$ $\Delta_x = \begin{bmatrix} 3 & 3 \\ -1 & -1 \end{bmatrix} = 0$ $\therefore x = \frac{\Delta_x}{\Delta} = \frac{0}{-7} = 0$ $\Delta_y = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} = -7$ $\therefore y = \frac{\Delta_y}{\Delta} = \frac{-7}{-7} = 1$

$$\begin{cases} 3x - 2y = 1 \\ x + y = 2 \end{cases}$$

$$\underline{A} = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \underline{c} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\Delta = \begin{vmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix} = (3 \times 1) - (-2 \times 1) = 5$$

$$\Delta_{x} = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 5 \qquad \therefore x = \frac{\Delta_{x}}{\Delta} = \frac{5}{5} = 1$$

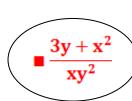
$$\Delta_{y} = \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5 \qquad \therefore y = \frac{\Delta_{y}}{\Delta} = \frac{5}{5} = 1$$

الواجب الأول

*السؤال الأول:

$$27^{\frac{1}{3}} =$$

 $\blacksquare \frac{1}{3}$


 $\blacksquare 9 \quad \blacksquare \frac{1}{9}$

3

الحل:

$$27^{\frac{1}{3}} \, = \, (3^3)^{\frac{1}{3}} = \, 3^{\frac{3}{3}} \, = 3$$

*السؤال الثاني:

ناتج جمع المقدارين التاليين $\frac{x}{y^2}$ هو

$$\blacksquare \frac{3+x}{y} \blacksquare \frac{3+x}{y^2} \blacksquare \frac{3y+x^2}{xy}$$

الحل:

$$\frac{3}{xy} + \frac{x}{y^2} = \frac{3y}{xy^2} + \frac{x^2}{xy^2} = \frac{3y + x^2}{xy^2}$$

*السوال الثالث:

$$-(3x^3+5x^2-3x+4)(4x^3-2x^2+5x-2)$$
 حاصل طرح كثيرتي الحدود التاليتين

$$\blacksquare x^3 - 3x^2 - 8x + 6$$

$$\mathbf{x}^3 + 3\mathbf{x}^2 + 2\mathbf{c} + 2$$

$$\blacksquare x^3 - 7x^2 - 8x + 2$$

$$x^3 - 7x^2 + 8x - 6$$

*السؤال الرابع:

تحلیل المقدار
$$27 - 27$$
 هو
$$(2z + 3)(4z^2 + 6z - 9)$$

$$(2z + 3)(4z^2 - 6z + 9)$$

$$(2z - 3)(4z^2 - 6z - 9)$$

$$(2z - 3)(4z^2 + 6z + 9)$$

الحل:

: باستخدام القاعدة التالية
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

*السؤال الخامس:

*السوال السادس:

*السؤال السابع:

*السؤال الثامن:

$$\left(\frac{m^{-2}n^3}{m^3n^{-1}}\right)^{-2}$$
 بسط العبارة التالية $\frac{n^2}{m^{10}}$ $=\frac{m^2}{n^4}$ $=\frac{1}{m^{10}n^4}$ $=\frac{m^{10}}{n^8}$

الحل:

$$\left(\frac{m^{-2}n^3}{m^3n^{-1}}\right)^{-2} = \frac{m^4n^{-6}}{m^{-6}n^2} = \frac{m^4 \cdot m^6}{n^6 \cdot n^2} = \frac{m^{10}}{n^8}$$

*السؤال التاسع:

$$\frac{3}{2-\sqrt{5}} = \frac{3}{2-\sqrt{5}} \times \frac{2+\sqrt{5}}{2+\sqrt{5}} = \frac{6+3\sqrt{5}}{4-5} = \frac{6+3\sqrt{5}}{-1} = -6-3\sqrt{5}$$

*السؤال العاشر:

حاصل ضرب كثيرة الحدود التاليين
$$(x^2 + 2x - 3)(x - 1)$$

$$x^3 + x^2 - 5x - 3$$

$$x^3 + x^2 + 5x + 3$$

$$x^3 + x^2 - 5x - 3$$

$$x^3 + x^2 - 5x + 3$$

*السؤال الحادي عشر:

*السؤال الثاني عشر:

$$\frac{10 \div 4 - 2 \times 3 - 4}{6 \div 3 + 8 \times 2 + 6}$$
 حاصل تبسيط المقدار التالي $\frac{1}{6}$ $\frac{1}{3}$ $\frac{16}{13}$ $\frac{17}{18}$

*السؤال الثالث عشر:

$$\frac{8m^4n^3}{4m^3n^5} \div \frac{25mn^4}{15m^4n^2}$$
 ابسط صورة المقدار التالي

$$\blacksquare \frac{6m^5}{5n^3} \qquad \boxed{ \boxed{\frac{6m^4}{5n^4}}} \qquad \boxed{\frac{6m^3}{5n^5}} \qquad \boxed{\frac{6m^3}{5n^4}}$$

الحل:

$$\frac{8m^4n^3}{4m^3n^5} \div \frac{25mn^4}{15m^4n^2} = \frac{2m}{n^2} \div \frac{5n^2}{3m^3} = \frac{2m}{n^2} \times \frac{3m^3}{5n^2} = \frac{6m^4}{5n^4}$$

*السؤال الرابع عشر:

ه
$$\sqrt{4x^4y^6z^8}$$
 الحل $\sqrt{4x^4y^6z^8}$ الحل $\sqrt{4x^4y^6z^8}$ $= 2x^2y^4z^6$
 $\sqrt{4x^4y^6z^8} = 2x^2y^2z^2 = 2x^2y^3z^4$

*السؤال الخامس عشر:

قيمة المقدار
$$\frac{2a^3 - 3b^2 + 2ab}{3a^2 - b^2}$$
 عندما $\frac{9}{11} = \frac{17}{13} = \frac{15}{13} = \frac{23}{11}$

$$\frac{2a^3 - 3b^2 + 2ab}{3a^2 - b^2} = \frac{2(2)^3 - 3(-1)^2 + 2(2)(-1)}{3(2)^2 - (-1)^2} = \frac{9}{11}$$

*السؤال السادس عشر:

$$6x^4y^3 - 3x^2y^2 + 12x^3y^5$$
 تحليل المقدار

$$\blacksquare (3x^2y^2)(3x^2y-1+9xy^3)$$

$$\blacksquare (3x^2y^2)(3x^2y + 9xy^3)$$

$$\blacksquare (3x^2y^2)(2x^2y + 4xy^3)$$

الواجب الثاني

*السوال الأول:

الحل:

$$x+y=1$$
 $x-y=1$ حل النظام التالي المكون من المعادلتين الخطيتين الخطيتين $\left(\frac{1}{2},\frac{1}{2}\right)$ $\blacksquare (0,1)$

 $x-y=1 \qquad \leftrightarrow \quad x=1+y$: من المعادلة الأولى

نعوض بالمعادلة الثانية:

$$x+y=1 \quad \leftrightarrow \quad (1+y)+y=1 \quad \leftrightarrow \quad 2y=1-1 \quad \leftrightarrow \quad y=0$$
نعوض قيمة y في المعادلة الأولى $x=1+0 \quad \leftrightarrow \quad x=1$: نعوض قيمة

*السوال الثاني:

$$\frac{6C3}{3} = \frac{6!}{(6-3)!-3} = \frac{6!}{3!} = \frac{6P3}{3!}$$

$$nCr = rac{nPr}{r!}$$
 واستخدام القاعدة $6C3 = rac{6P3}{3!}$

*السوال الثالث:

$$3x^2 = 5x$$
 على المعادلة التالية $\left\{0, \frac{3}{5}\right\}$ \blacksquare $\left\{0, -\frac{5}{3}\right\}$ \blacksquare $\left\{0, -\frac{5}{5}\right\}$: $\left\{0, -\frac{3}{5}\right\}$ $\exists x^2 - 5x = 0$ $\Rightarrow x(3x - 5) = 0$ $\Rightarrow x_1 = 0$ $\Rightarrow x_2 = \frac{5}{3}$

السوال الرابع:

*السؤال الخامس:

$$3x + 2 = 5x + 6$$
 كل المعادلة الخطية التالية $x = 2$ $x = -4$ $x = -2$ $x = 1$ الحل $3x + 2 = 5x + 6$ $3x - 5x = 6 - 2$ $-2x = 4$ $x = -2$

*السوال السادس:

$$x-y=0$$
 $2x+3y=5$ والنظام الخطي التالي $=(2,1)$ $=(2,2)$ $=(1,2)$ $=(1,1)$ الحل : $x-y=0$ \longleftrightarrow $x=y$: من المعادلة الأولى : $x-y=0$ نعوض بالمعادلة الثانية : $2x+3y=5$ \longleftrightarrow $2y+3y=5$ \longleftrightarrow $5y=5$ \longleftrightarrow $y=1$

*السوال السابع:

*السؤال الثامن:

$$x^2 - 3x + 2 = 0$$
 حل المعادلة التربيعية

$$\blacksquare \{-1, -2\} \qquad \blacksquare \{2, -1\} \qquad \blacksquare \{1, -2\} \qquad \boxed{ \blacksquare \{1, 2\} }$$

الحل:

$$x^2 - 3x + 2 = 0$$

$$(x-1)(x-2) = 0$$

$$x_1 = 1$$
 $x_1 = 2$

*السوال التاسع:

القانون العام لحل المعادلة من الدرجة الثانية في مجهول واحد صيغتة كالتالي:

$$\blacksquare b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\blacksquare - b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\blacksquare \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

*السوال العاشر:

*السؤال الحادي عشر:

$$2P2 =$$

- **1**
- **4**

الحل:

باستخدام القاعدة nPn=n! أو باستخدام الحاسبة

*السؤال الثاني عشر:

$$x = \frac{(x+2)}{2} + \frac{x}{3}$$
 حل المعادلة الكسرية التالية

$$x=\frac{(x+2)}{2}+\frac{x}{3}$$

$$2x = (x+2) + \frac{2x}{3}$$

$$6x = 3x + 6 = 2x$$

$$6x - 3x - 2x = 6$$

$$x = 6$$

الواجب الثالث

*السؤال الاول:

$$a_{1=-3}$$
 $n=4$ $r=3$ المتسلسلة الهندسية $n=4$ $n=4$

*السوال الثاني:

$$\frac{1}{2}, \dots, \dots, \frac{128}{81}$$
 الثلاثة أوساط هندسية في المتتابعة الهندسية التالية $-\frac{2}{3}, \frac{8}{9}, \frac{-32}{27}$

$$\frac{2}{3}, \frac{-8}{9}, \frac{32}{27}$$

$$\frac{2}{3}, \frac{-8}{9}, \frac{32}{27}$$

$$\frac{2}{3}, \frac{-8}{9}, \frac{32}{27}$$

$$\frac{-2}{3}, \frac{-8}{9}, \frac{-32}{27}$$

*السؤال الثالث:

$$\frac{-5}{2}$$
, $\frac{-1}{2}$, $\frac{-1}{10}$, $\frac{-1}{50}$, التالية التالية الغير منتهية التالية

$$\blacksquare \frac{-25}{4} \qquad \blacksquare \frac{-8}{25} \qquad \blacksquare \frac{-4}{25} \qquad \boxed{\blacksquare \frac{-25}{8}}$$

الحل:

$$r = \frac{-1}{2} \div \frac{-5}{2} = \frac{1}{5}$$

$$S = \frac{a_1}{1-r} = \frac{\frac{-5}{2}}{1-\frac{1}{5}} = \frac{-25}{8}$$

السوال الرابع:

$$a_1=2$$
 $a_n=32$ $d=2$ التي فيها الحسابية التي فيها مجموع حدود المتسلسلة الحسابية التي فيها

■272 ■274 268

270

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1}(n-1)d$$

$$32 = 2 + 2n - 2$$

$$n = 16$$

$$S_n = n\left(\frac{a_1 + a_n}{2}\right)$$

$$=16\frac{2+32}{2}=272$$

*السوال الخامس:

$$S_{
m n}=1134$$
 $a_{
m 1}=3$ $a_{
m n}=81$ الحدود الثلاثة الأولى للمتتابعة الحسابية التي فيها

$$\blacksquare 3,6,9$$
 $\blacksquare 3,9,15$ $\blacksquare 3,8,13$ $\blacksquare 3,7,11$

$$\blacksquare 3, 9, 15$$

الحل:

$$S_n = n \left(\frac{a_1 + a_n}{2} \right)$$

$$1134 = n\left(\frac{3+81}{2}\right)$$

$$n = 27$$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{\mathbf{1}} + (n-1)d$$

$$81 = 3 + 26d$$

$$d = 3$$

*السؤال السادس:

$$-5, ..., 16$$
 الوسطان الحسابيان في المتتابعة التالية

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{\mathbf{1}} + (n-1)d$$

$$16 = -5 + (3)d$$

$$3d = 21$$

$$d = 7$$

*السؤال السابع:

$$\underline{A} - \underline{B} = 0$$

$$\underline{A} = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} \underline{B} = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 7 & -2 \\ -4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -4 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -7 & -4 \\ -2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 \\ 4 & -6 \end{bmatrix}$$

*السؤال الثامن:

$$\sum_{n=1}^{3} (3n-1) =$$

$$10 \quad \blacksquare 6 \quad \blacksquare 12 \quad \blacksquare 15$$

$$\sum_{n=1}^{3} (3n-1) = (3 \times 1 - 1) + (3 \times 2 - 1) + (3 \times 3 - 1)$$

$$2 + 5 + 8 = 15$$

*السوال التاسع:

$$\underline{A}^{-1} = \dot{0}\dot{0} \quad \underline{A} = \begin{bmatrix} -2 & 2 \\ 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} \quad \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} \end{bmatrix} \quad \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} \\ -\frac{3}{4} & -\frac{1}{2} \end{bmatrix} \quad \begin{bmatrix} -\frac{1}{8} & \frac{1}{4} \\ \frac{3}{8} & \frac{1}{4} \end{bmatrix}$$

$$\Delta = \begin{vmatrix} -2 & 2 \\ 3 & 1 \end{vmatrix} = -2 \times 1 - 2 \times 3 = -8$$

$$\underline{A}^{-1} = \frac{1}{-8} \begin{bmatrix} 1 & -2 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{8} & \frac{1}{4} \\ \frac{3}{8} & \frac{1}{4} \end{bmatrix}$$

*السؤال العاشر:

$$\underline{A} \times \underline{B} = \frac{1}{2} \underbrace{\underline{A}} = \begin{bmatrix} -2 & 1 \\ 0 & 2 \end{bmatrix} \underline{A} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 0 \\ 2 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 5 \\ 2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 5 \\ -2 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ -2 & 5 \end{bmatrix}$$

$$\underline{A} \times \underline{B} = \begin{bmatrix} 1 \times -2 + 2 \times 0 & 1 \times 1 + 2 \times 2 \\ -1 \times -2 + 3 \times 0 & -1 \times 1 + 3 \times 2 \end{bmatrix} = \begin{bmatrix} -2 & 5 \\ 2 & 5 \end{bmatrix}$$

*السؤال الحادي عشر:

$$a_5 = rac{-1}{8}$$
 $r = rac{1}{2}$ الحد الاول في متسلسلة هندسية فيها $rac{1}{2}$ $\blacksquare -1$ $rac{-1}{2}$

الحل:

$$a_{5} = \frac{-1}{8}$$

$$a_{4} = \frac{-1}{8} \div \frac{1}{2} = -\frac{1}{4}$$

$$a_{3} = -\frac{1}{4} \div \frac{1}{2} = -\frac{1}{2}$$

$$a_{2} = -\frac{1}{2} \div \frac{1}{2} = -1$$

$$a_{2} = -1 \div \frac{1}{2} = -2$$

*السؤال الثاني عشر:

$$\mathbf{a_1} = -4$$
 $d=5$ $n=9$ الحد التاسع في المتتابعة الحسابية التي فيها 38

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (n-1)d$$

$$a_9 = -4 + (8)(5) = 36$$

الاختبار الفصلى

السوال الأول

$$10^x = 100 \leftrightarrow 10^2 = 100$$

$$\therefore x = 2$$

السؤال الثاني:

$$8^{\frac{1}{3}} =$$

$$(2^3)\frac{1}{3} = (2)3 \times \frac{1}{3} = 2^3 = 2^1$$

السؤال الثالث:

موابسط صورة لكسر التالي
$$\frac{2}{\sqrt{5}}$$

$$\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

السؤال الرابع:

ناتج جمع المقدارين التاليين
$$\frac{5}{x} + \frac{2}{y} =$$

$$y \times \left(\frac{5}{x}\right) + \left(\frac{2}{y}\right) \times x = \frac{5y + 2x}{xy}$$

السؤال الخامس:

تحليل المقدار التالي
$$5x^2y+15xy^3$$
نصل المشترك نسحب العامل المشترك

$$5 \times 3 = 15$$

$$(5xy)[x+3y^2]$$

السؤال السادس:

ا في المعادلة
$$\log_2 x = 4$$

$$2^4 = 16$$

$$\therefore x = 16$$

السؤال السابع:

المضاعف المشترك البسيط للحدين XY, X^2

X2هو X مضاعف المشترك البسط لي

٢هو ٢مضاعف المشترك البسط لي

$$\therefore x^2y$$

السؤال الثامن:

ابسط المقدار
$$rac{8m^5n^2}{2m^3n}=$$

$$\frac{8}{2} = 4$$
 \leftrightarrow $\frac{m^5}{m^3} = m^2$ \leftrightarrow $\frac{n^2}{n} = n$

$$\therefore 4m^2n$$

السؤال التاسع:

9)
$$\log_3 1 + \log_3 3^2 =$$

$$\log_3 1 = 0 \qquad \leftrightarrow \qquad \log_3 3^2 = 1 \times 2 = 2$$

∴ 2

السؤال العاشر:

$$10)(x+2)(x-2)$$

$$\therefore (a-b)(a+b) = a^2 - b^2$$

$$(x^2) - (2^2) = x^2 - 4$$

السؤال الحادي عشر:

التالى بسيط المقدار التالى
$$4+5 imes4\div2=$$

$$4+20 \div 2 = 4+10 = 14$$

السؤال الثاني عشر:

التالية العباره التالية
$$\frac{x^2-9}{(x+3)}$$

$$\frac{(x-3)(x+3)}{(x+3)} = x-3$$

السؤال الثالث عشر:

$$13(x^3-y^3)=$$
تحلیل مقدار الفرق بین مکعبین

$$\therefore (x^3 - y^3) = (x - y)(x^2 - xy + y^2)$$

السؤال الرابع عشر:

$$\log_c(ab) =$$

$$\log_c a + \log_c b$$

السؤال الخامس عشر:

يتحليل المقدار التالي
$$(x^2 - 6x + 9) =$$

2
: $(u^{2}-2uv+v^{2})=(u-v)$

نعوض في القانون

$$^{2}x^{2}-2\times 3x+3^{2}=(x-3)$$

السوال السادس عشر:

عندما
$$=\frac{3x^2-5x+7}{2x+3}$$
قيمة المقدار $x=1$

$$\frac{3(1^2) - 5 \times 1 + 7}{2 \times 1 + 3} = \frac{3 - 5 + 7}{2 + 3} = \frac{5}{5} = 1$$

السؤال السابع عشر:

ومرافق العدد
$$\left(3-\sqrt{2}
ight)=$$

نفس القيمة ولكن عكس إشارة (-)*

$$(3+\sqrt{2})$$

السؤال الثامن عشر:

جمع كثيرتي الحدود
$$(3x^2+5x+1)+(x^2-2x-4)=$$

$$4x^2 + 3x - 3$$

السؤال التاسع عشر:

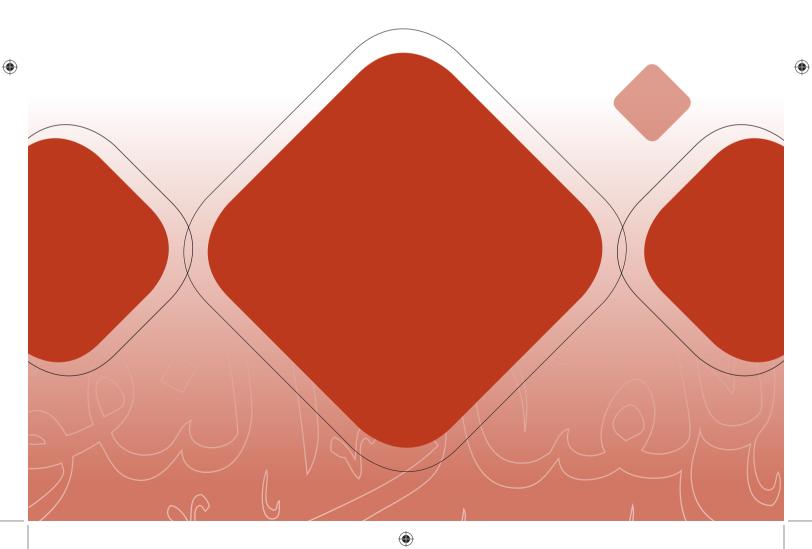
هوتبسيط المقدار
$$\sqrt{16x^2y^8} =$$

 $16^{\frac{1}{2}} \times x^{\frac{2}{2}} \times y^{\frac{8}{2}} = 4xy^4$

السؤال العشرين:

$$= \left(\frac{x^{-2}y^{-1}}{x^{3}y^{-4}}\right)$$

$$= \frac{x^{2}y^{1}}{x^{-3}y^{4}} = \frac{x^{2}y^{1}x^{3}}{y^{4}} = \frac{x^{5}}{y^{3}}$$


اللهم لا تدعني أصاب بالغرور إذا نجحت .. ولا أصاب باليأس إذا فشلت .. بل ذكرني دائما بأن الفشل هو التجارب التي تسبق النجاح النهد انه أسته دعك ما قرأت و ما حفظت و ما تعلمت فرده عند

اللهم إني أستودعك ما قرأت و ما حفظت و ما تعلمت فرده عند حاجتي إليه، إنك على كل شيء قدير

زمیلتکم / .lotus

الملخص بمجهود أختنا lotus وبمراجعة زميلتكم ساره الغنام . وتصحيح : د. ثابت القحطاني "حفظه الله" لا نطلب منكم إلا الدعاء .

ملخص المعيار الأول

المعيار (1): الاعداد والعمليات عليها في الإختبار: 6 أسئله

- يتعرف مجموعات الأعداد (الطبيعية، والكلية، والصحيحة، والنسبية، والحقيقية، والمركبة) وتصنيفاتها المختلفة
- يلم بالخصائص الأساسية لنظرية الأعداد (القاسم المشترك الأكبر، المضاعف المشترك الأصغر، قابلية القسمة، الأعداد الأولية والمؤلفة، والتطابقات)
 - 3. يتعرف مفهوم النسبة والتناسب وتطبيقاتها، ويحل مسائل عليها
- 4. يستخدم استراتيجيات التقدير والحساب الذهني، ويستطيع الحكم
 على معقولية النتائج
- يجري العمليات على مجموعات الأعداد المختلفة (العمليات الأربع، والمقارنة، والجذور والأسس)
 - 6. يميز التمثيلات المختلفة للعدد المركب ويوجد مقياسه ومرافقه
 - 7. يحل مسائل لفظية على الأعداد المختلفة

المعيار ١:

الأعداد والعمليات عليها

١ – يتعرف مجموعة الأعداد (الطبيعية، والكلية والصحيحة والنسبية والحقيقية والمركبة) وتصنيفاتها المختلفة.

$$0,1,2,\sqrt{4}$$
 ... \leftarrow "W" الأعداد الكلية •

$$0, \overline{33}, 0, 125, -\frac{7}{8} \dots \rightarrow Q$$
 و الأعداد النسبي اما عدد عشري منتمى أو دوري...

 $\sqrt{3} = 1.73205 \dots$ الأعداد غير النسبية $-1.73205 \dots$... $-1.73205 \dots$ الأعداد غير النسبية يكون الصورة العشرية فيها ليست منتهية ولليست دورية.

 $3+4i\leftarrow C$ الأعداد المركبة

ويكون فيها جزء حقيقي وجزء تخيلي.

٢ - يلم بالخصائص الأساسية لنظرية الأعداد (القاسم المشترك الأكبر، المضاعف المشترك الأصغر، قابلية القسمة، الأعداد الأولية، المؤلفة والمتطابقات)

- القاسم المشترك الأكبر: تحلل الأعداد المضاعف المشترك الأصغر: نحلل إلى عواملها الأولية ثم نأخذ الأعداد المشتركة فقط بأصغر أس.
 - في مسائل القاسم المشترك الأكبر يكون في السؤال أكبر منم أكبر ضلع...
 - مثال ذلك:

یرتب ماجد ۸ صور کبیرة و ۱۲ صورة متوسطة و ١٦ صورة صغيرة .. ما أكبر عدد من الصور سيضعها ماجد في

- الصفحة الواحدة؟
 - الحل:

- الأعداد إلى عواملها الأولية ثم نأخذ الأعداد المشتركة بأكبر أس والغير مشتركة.
- في مسائل المضاعف المشترك الأصغر يكون في السؤال أصغر من. مثال ذلك:
- ما أصغر عدد يقبل القسمة على ٤، ٦، ٩ معاً؟

				الحل:						
3	9 2	2 6	2	4	2	8	2	12	2	16
3	3	3 3	2	2	2	4	2	6	2	8
	1	1		1	2	2	3	3	2	4
						1		1	2	2
										1
	$9 = 3^2$, 6	6=2	$^{1} \times 3^{1}, 4$	$l=2^2$	8	$=2^3$, 12 =	$2^2 X$	$3^1, 16$	$5 = 2^4$
	ىىغر=	بي الأم	عف المشترا	المضاء			= ,	ك الأكبر	المشترا	القاسم
	$3^2.2^2 = 9$	9 X	4 = 36				2^2	=4		

ملاحظة:

إذا كان هناك عدد يقبل القسمة على X ويقبل القسمة على y فإنه يقبل القسمة على مضاعفاتهما.

			على:	عدد القسمة	يقبل ال		ىمة:	قابلية القه
√	¥	\	 		¥	+	\	•
١.	٩	٨	٧	٦	٥	٤	٣	۲
إذا كان	إذا كان	إذا كان		إذا كان	إذا كان	إذا كان	إذا جان	إذا كان
آحاده	مجموع	العدد		يقبل	آحاده	العدد	مجموع	العدد
صفراً	أرقامه	المكون		القسمة	صفراً	المكون	أرقامه	أحاده
	يقبل	من		على	أو ٥	من آحاده	يقبل	775
	القسمة	آحاده		۳ ، ۲		وعشراته	القسمة	زوجي
	علی ۹	وعشراته				يقبل	علی ۳	
		ومئاته				القسمة		
		يقبل				علی ٤		
		القسمة						
		علی ۸						

الأعداد الأولية والمؤلفة:

 1×6 , $2 \times 3 = 6 \leftarrow 1$ العدد المؤلف: هو عدد مكون من أعداد أولية له أكثر من عاملين

- جميع الأعداد الزوجية ما عدا ٢ هي أعداد مؤلفة.
 - الواحد عدد غير أولي وغير مؤلف.

٣-يتعرف مفهوم النسبة والتناسب وتطبيقاتها ويحل مسائل عليها:

النسبة: هي مقارنة بين كميتين لهما الوحدة نفسها.

$$\frac{x}{y}$$
 \cdot x : y

النسبة المئوية:
$$\frac{\text{الجزء}}{\text{الكل}} \times 100$$

مثال: ١

النسبة المئوية للعدد
$$\frac{1}{4}$$
 ?

$$\frac{1}{4}$$
 X 100 = 25% : الحل

ما النسبة المئوية للعدد ١٥ من ٦٠ ؟

$$\frac{15}{60} \times 100 = \frac{5}{2} \times 10 = 25\%$$

التناسب:

عكسي يزداد $\begin{pmatrix} B - A \\ D - C \end{pmatrix}$ ينقص A.B = C.D إذا زادت A أو نقصت نقصت الكمية B أو زادت

مثال: ٢٠ عامل في مطبعة يطبعون 1000كتاب في اليوم، زاد عد العمال فأصبح ٣٠ عامل فكم كتاب يطبعون؟

عدد العمال عدد الكتب

1...

x .

٤ - يستخدم استراتيجيات التقدير والحساب الذهني، ويستطيع الحكم على معقولية النتائج..

مثال ۲:

وفر محمد مبلغ ۱۵۵۰ أو يريد أن يتبرع بـ ٤٠% منه، هل من المعقول أن يتبرع محمد بيال؟

الحل:

٩٥% قريبة من ٥٠%. نصف الـ ١٥٥٠ = ٧٧٥

أقل ... ٨٠٠ ريال ليست من المعقول

٥-يجري العمليات على الأعداد المختلفة (العمليات الأربع ، المقارنة ، الجذور ، الأسس) خطوات العملية الحسابية:

- ١. احسب القيمة داخل الأقواس.
 - ٢. احسب جميع القوى.
- ٣. اضرب أو اقسم من اليسار إلى اليمين.
- ٤. اجمع أو اطرح من اليسار إلى اليمين.

$$3^2 + 9 \div 3 + 3$$
 عثال:

$$9 + 3 + 3 = 15$$

الجذور:

انطاق المقام

 $\sqrt[n]{bx}$ إذا كان المقام

نطرح الأس الخارجي من الداخلي:
$$= \frac{5}{\sqrt[3]{2}} = \frac{5}{\sqrt[3]{2}} = \frac{\sqrt[3]{2^{3-1}}}{\sqrt[3]{2^{3-1}}}$$

$$= \frac{5}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$$

$$\frac{5\sqrt[3]{4}}{2}$$
=

إذا كان المقام

$$=\frac{1}{\sqrt{3}-1}=\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{\sqrt{3}+1}$$

$$=\frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$$

إذا كان المقام \sqrt{b}

$$=\frac{3}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{8\sqrt{3}}{8} = \sqrt{3}$$

$$2^{8+4} = 2^2 = 4$$
 يقسم الأس الداخلي على الأس الخارجي $\sqrt[4]{2^8}$

مثال	فاشرب البسط والمقام في	إذا كان المقام
$\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$	\sqrt{b}	\sqrt{b}
$\frac{5}{\sqrt[3]{2}} = \frac{5}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}} = \frac{5\sqrt[3]{4}}{2}$	² √b ⁿ − x	$\sqrt[n]{b^x}$

• الأسس:

- في حالة جمع أو طرح القوى التي لها الأساس نفسه لابد أولاً نأخذ عامل مشترك ثم نكمل الحل.
 - في حالة ضرب القوى التي لها الأساس نفسه نجمع الأسس.

أشفا	خصائص الأسس	ملخص المفهو
	لأي عددين حقيقيين X, Y وعددين صحيح	38
مثال	التعريف	الخاصية
$3^{2} \cdot 3^{4} = 3^{2} + {}^{4} = 3^{6}$ $p^{2} \cdot p^{9} = p^{2} + {}^{9} = p^{11}$	$x^a \cdot x^b = x^{a+b}$	ضرب القوى
$\frac{9^5}{9^2} = 9^{5-2} = 9^3$ $\frac{b^6}{b^4} = b^{6-4} = b^2$	$x \neq 0$ حيث $\frac{x^a}{x^b} = x^{a-b}$	لسمة القوى
$3^{-5} = \frac{1}{3^{5}}$ $\frac{1}{b^{-7}} = b^{7}$	$x \neq 0$ حيث $x^{-a} = \frac{1}{x^a}$, $\frac{1}{x^{-a}} = x^a$	لأسّ السالب
$(3^{3})^{2} = 3^{3 \cdot 2} = 3^{6}$ $(d^{2})^{4} = d^{2 \cdot 4} = d^{8}$	$(x^{a})^{b} = x^{ab}$	نوة القوة
$(2k)^4 = 2^4k^4 = 16k^4$ $(ab)^3 = a^3b^3$	$(xy)^{a} = x^{a}y^{a}$	فوة ناتج لضرب
$\left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2}$ $\left(\frac{a}{b}\right)^{-5} = \frac{b^5}{a^5}$	$\left(\frac{x}{y}\right)^{a} = \frac{x}{y}^{a}, y \neq 0,$ $\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a} = \frac{y}{x}^{a}, x \neq 0, y \neq 0$	فوة ناتج لقسمة
7 ⁰ = 1	$x^0 = 1, x \neq 0$	لقوة الصفرية

٦ - يميز التمثيلات المختلفة للعدد المركب ويوجد مقياسه ومرافقه...

العدد المركب
$$a+(a+b)$$
 هو أي عدد يمكن كتابته على الصورة $a+(a+b)$ جزء تخيلي $a+(a+b)$ هو أي عدد يمكن كتابته على الصورة $a+(a+b)$ هو أي عدد يمكن كتابته على الصورة $a+(a+b)$

مثال:

عدد تخیلیی بحت.
$$(0 + 4i) = 4i$$

مقياسه:

$$|C| = |a+bi| = \sqrt{a^2 + b^2}$$

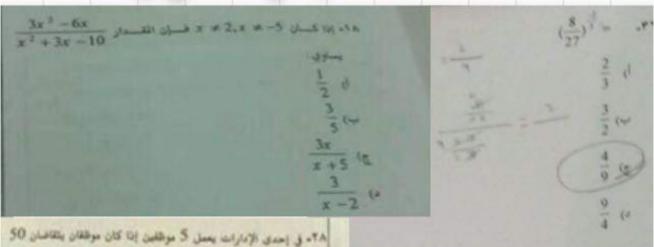
$$C = 4 + 3i$$
 ... أوجد مقياس العدد المركب

$$|C| = \sqrt{(4^2) + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

مرافق العدد المركب:

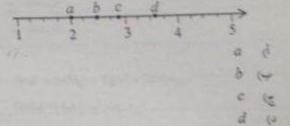
$$(a-bi)=(a+bi)$$

مثال:


$$(4-3i) = (4+3i)$$

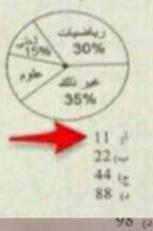
أسئلة المعيار الأول

أسئلة المعيار الاول



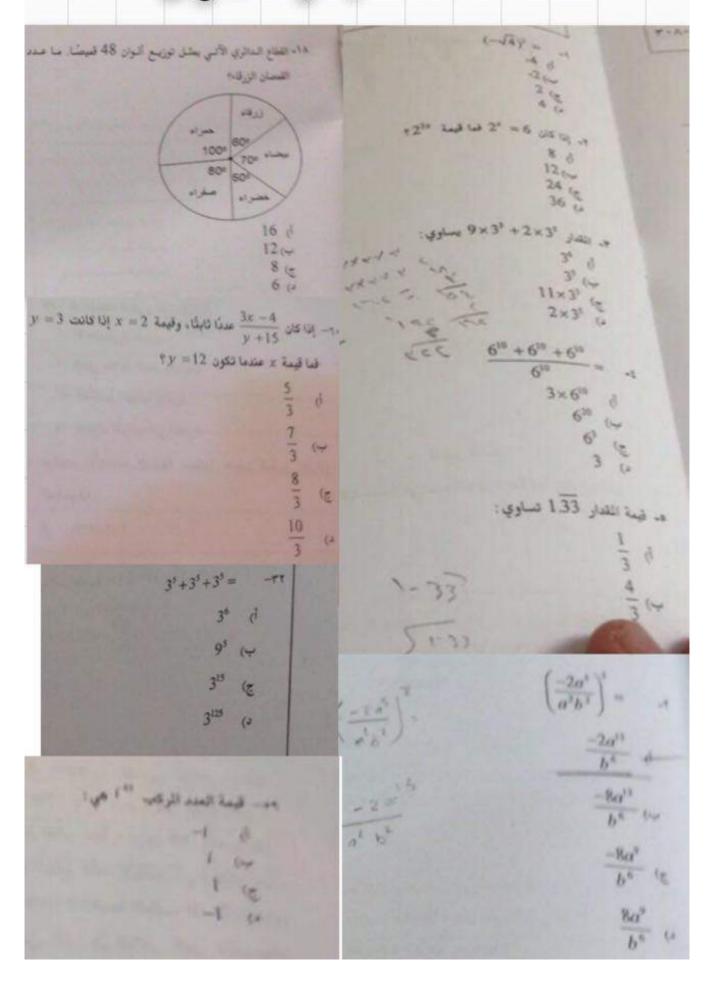
ريالاً في الساعة، وموضف 80 ريالاً في الساعة، وموضف 100 ريال في الساعة، وموظف 120 ريمالاً في الساعة، فكم ريمالاً في أجريت على 220 طاق في مدرسة التدائية. كم طالبًا يقصلون

> 80 d 85,00 90 (


الساهة وسيط ما يتقاضاه موظفو الإدارة! 95 1

١٠- أي تلطة على خط الأعداد أدناه هي الأفضل تعشيلاً للعدد ١٤٠ ٢

: مناوى: $e^{-5x}e^x = e^2$ التي تحقق المادلة $e^{-5x}e^x = e^2$ تساوى: - 5×1-5 -2 d 0 0 1


 أنسكل أدنياه يعشل تشائع استهانة عن البابة الدراسية الفضلة Taglal Sale

 $4x^{2} + y^{2}$ (a) xy = 2 (b) xy = 4 (c) xy = 4

مة توتوب العدد ١٤ شعن التوتوب التساعدي تلأحداد الأربعة · 16 . 3.13131 . 2√5 . J=51 (1 ب) الثاني ج) الثالث د) الرابع

أسئلة المعيار الاول

أسئله المعيار الاول

```
١٥٠ واي ليم 11 كان يكون الدود 5 + 21 + أم مؤلسف ( ١٥ - إن كستان ٥ - ١٠ فسيان المساود
-a(\sqrt{x^2+1},\sqrt{x^2+1},\sqrt{(x-1)^2},\sqrt{(x+1)^2})
                      Vx 2+1 , Vx 2+1 (1
                     V(x-D2 ; Vx +1 10
                    V(x+1)2 , Vx2+1 6
                    \sqrt{(x-1)^2} \sqrt{(x+1)^2} 14
```

$$y = 2$$
 , $x = -4$ إذا كان $y = 2$, $x = -4$ إذا كان $y = 2$, $y = -4$ الأعداد المحيحة السائية $y = -4$

$$3y + x^{2}$$
 (i
 $3x - y^{2}$ ($+$
 $2y^{2} - x$ (\pm
 $2x^{2} - y$ ($+$

٣٧- إذا كنان القاسم الشتوك الأكبر للعددين x و 14 يساوي 7 ، والضاعف المشترك الأصغر لهما 42 ، فإن x تساوي:

> 7 0 14(4 21 (42 (

$$-2(-\frac{-2x+2}{x+1}) < \frac{-2x+2}{(x+1)^2}$$

44- جهاز كهرباش سعره 250 ريالاً إن در تخليش سعره 2496 . فكم ريالا قيمك بعد التخفيدرة

225 8 190~ 84 (5 60 0

$$(7+i)(7-i) = -14$$

48 8 49-1 (-49-14/ 1= 50 0

وه الترتيب التصاعدي للمجموعة $\{2,\sqrt{2},\pi,e,3\}$ مو

(V2,2,0,3,7) d ⟨€, √2,2,3, π} ~ (e, \2,2, x,3) (c (J2,e,2, 11,3) (4

قرة خالد 2014 من صفحات كتاب "اسيرة النبوية"، قول البة له 42 ميلمة ، فكم حدد ميلمات الكتاب كالراب

60 41 701-

100 (=

140 (

«- إذا كان (7k +1) مدن زوجها حيست × + المان

: (7k +1) ag acc:

أن زوجي مؤلف

ب) فردى مؤلف

ج) فردي أولي

د) زوجی اولی

و الآتي عدد صحيح؟
$$ab=9$$
 و $a=3$ الآتي عدد صحيح؟ $a=3$

$$a+2b$$
 (i
 $3a+b$ ($+$
 $a+3b$ ($+$
 $2a+b$ ($+$

$$\sqrt{84} + \sqrt{4} \times \sqrt{21} = -0.5$$

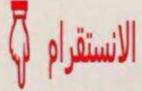
$$8\sqrt{21} \text{ (i)}$$

$$4\sqrt{21} \text{ (i)}$$

$$2\sqrt{21} \text{ (i)}$$

$$\sqrt{21} \text{ (i)}$$

٩٥ عند الساعة الثامنة انطلقت سيارة من الدينة A بسرعة 80 km/h. بعدها بساعة تبعتها على نفس الطريق سيارة سرعتها 120 km/h. متى تلحق السيارة الثانية بالسيارة الأولى؟


ال 3، وكانت نسبة a إلى a تساوي نسبة a إلى a وكانت نسبة a إلى a الى a يساوي نسبة a إلى a فما قيمة a a

13- مصنع للطاولات لديه 6 خطوط إنتاج، كل منها ينتج 30 طاولة في الساعة. خلال كم ساعة يتم إنتاج y طاولة؟

$$\frac{180}{y}$$
 d

$$\frac{6y}{30}$$
 (2

$$\frac{30}{6y}$$
 (3

@Z22Z_ alrajhi

$$\frac{\frac{1}{2} + \frac{3}{4}}{\frac{2}{3}} = -\epsilon v$$

44- إذا تم تخفيض أسعار الكتب في مكتبة بنفس النسبة، فخفضت قيمة الكتاب الذي سعره 20 ريالاً إلى 15 ريالاً، فكم ريالاً السعر الأصلي لكتاب قيمته بعد التخفيض 60 ريالاً؟

$$\frac{2^{60} \times 64^{2} - 4^{8} \times 8^{2}}{2^{60} \times 2^{6} - 4^{8}} = -44$$

$$\begin{array}{c} 8 & \text{if} \\ 8^{2} & \text{if} \\ 8^{3} & \text{if} \\ 8^{4} & \text{if} \end{array}$$

هامش	اغل	السوال
46	$(7+i)(7-i) = 49-7i+7i-i^{2}$ $= 49+1=50$ $i^{2}=-1$	(7+i)(7-i) =
<u>-</u>	ترتيب اسبقية العمليات الحسابية بالطريقة التاليه: من اليسار الى اليمين ١. العمليات داخل الاقواس ٢. الضرب والقسمه ٣. الجمع والطرح ٢. الجمع والطرح	(XX
<u>1</u>	$= 4 + 4 \times 4$ $= 4 + 16 = 20$: It is a series of the interval of the interva	المتساويين في المجموعة : $(x+1)^2$ ($\sqrt{(x+1)^2}$) المتساويين في المجموعة : $(\sqrt{x^2+1}, \sqrt{(x-1)^2}, \sqrt{(x-1)^2})$
	$\sqrt{x^2} + 1 = x + 1$	$\sqrt{x^{2}+1}, \sqrt{x^{2}}+1 \bullet$ $\sqrt{(x-1)^{2}}, \sqrt{x^{2}}+1 \bullet$ $\sqrt{(x-1)^{2}}, \sqrt{x^{2}}+1 \bullet$ $\sqrt{(x-1)^{2}}, \sqrt{x^{2}}+1 \bullet$ $\sqrt{(x-1)^{2}}, \sqrt{(x+1)^{2}} \bullet$
- R	$= \frac{\frac{2}{4} + \frac{1}{4}}{\frac{1}{8}} = \frac{\frac{3}{4}}{\frac{1}{8}} = \frac{3}{4} \div \frac{1}{8}$ $= \frac{3}{4} \times \frac{8}{1} = 6$	$= \frac{\frac{1}{2} + \frac{1}{4}}{\frac{1}{8}}$
	$\frac{i \times -1 \times 1 \times \sqrt{-1 \times 3 \times 2} \times \sqrt{2}}{\sqrt{3}}$ $= \frac{-i \times \sqrt{-1} \times \sqrt{3} \times \sqrt{2} \times \sqrt{2}}{\sqrt{3}}$ $= -i \times i \times 2$ $= -i^2 \times 2 = -(-1) \times 2 = 2$	$ \frac{(\sqrt{-1})(\sqrt{-1})^2(\sqrt{(-1)^2})(\sqrt{-6})(\sqrt{2})}{\sqrt{3}} $ 2 -2 -2 2i
	$(-\sqrt{4})^2 = (-1)^2 (\sqrt{4})^2 = 2^2 = 4$	-2i • : پساوي (-√4)² (۱٤٢ -4 • -2 • 2 • 4 •
	$\frac{n}{7} = c + \frac{3}{7}$ $\frac{8n}{7} = 8(\frac{n}{7})$ $3n + 8(\frac{n}{7}) = 8(c + \frac{3}{7})$ $4n + 8(\frac{n}{7}) = 8(c + \frac{3}{7})$	 ٣ إذاكان باقي قسمة العدد n على 7 يساوي 3 ، فإن باقي قسمة العدد 8n على 7 يساوي : على 7 يساوي : على 6 يساوي : 4 • 5 •

7 , <mark>3 , 2</mark> 5 2 11 عدد کسر <i>ي</i> دائما	۱ د) عددین اولیین مختلفین بحیث ناتج قسمة عدد اولي علی عدد اولی یساوي عدد فردي عدد اولي عدد اولي عدد روبي عدد روجي
م عدد الطلاب باليوم الاول = a	 ٢) في كلية التحق عدد من الطلاب في اليوم الأول وفي اليوم الثاني انضاليهم 8 طلاب ويمثلون %10 مه التحق في اليوم الأول ، فكم عدد الطلاب في اليومين 88 98 77 66
$2^{x} \times 2^{y} = 32$ $\Rightarrow 2^{x+y} = 2^{5}$	ابذا کانت 32 = 32 فان (۸۹ : $x+y$ 4 • 5 • 6 • 7 •
$\frac{120}{360} = \frac{x}{100}$ $\implies 120 \times 100 = 360x$ $\implies \frac{12000}{360} = x$ $\implies 33\% = x$	 ١٩ دائرة مقسمة لثلاث اقسام وفيها قسم الحاسب قياس زاويته 120 فما نسبته المئوية 33% 44% 55% 66%
25 25 25 25 25 25 25 25	 ٢٤) اذا كان لدينا مستطيل وقسم إلى ثلاث مربعات والمربع الواحد قسم إلى ٢٥ جزء وظلل جزء واحد فقط من المربعات الصغيرة أوجد نسبة المظلل 1: 25 1: 75 1: 75 1: 75 1: 75 1: 75
$ 100^{x+3} = 10^{y+6} 10^{2(x+3)} = 10^{y+6} y+6=2x+6 y=2x $	100 ^{x+3} = 10 ^{y+6} (۳۱ x اوجد y بدلالة X = y • X = 2y • Y = x+2 • Y = 2x •

الاطفال 4:5 4:5 9 = 4+5 = 9 عدد الأجزاء = 5+4 = 20 الاطفال = 5 × 36	 ٤٠) حافلة اذا كان المسافرين عيارة عن اطفال وبالغين ونسبة الأطفال إلى البالغين ٤ : 4 وكان مجموع الركاب 36 فإن عدد الأطفال 14 16 18 20
$2^{x+1} = 256$ $2^{x} \cdot 2^{1} = 256$ $2^{x} = \frac{256}{2}$ $2^{x} = 128$ $2^{x} = 2^{7}$ $x=7 : \frac{12}{2}$ $128 $	x فارجد قيمة 2 ^{x+1} = 256 (٤٧ 5 • 3 • 7 • 9 •
من الخيارات نوجد اقل عدد يقبل القسمه على كلا من 6,8,10 أقل عدد من السلالم 120	9 (قط يستطيع ان يصعد درج ستة ستة بدون باق. وثمانية ثمانية بدون باق . و عشرة عشرة بدون باق . فما اقل عدد من السلالم يحتوي الدرج • 00 • 120 • 240
اذا زاد عدد العمال قلت الآيام $3 + 3 + 3 + 3$ يوم $3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 $	17) يستطيع 3 عمال إنجاز عمل ما في 12 يوم ، كم يستغرق 9 عمال لإنجاز هذا العمل . 3 أيام . 4 أيام . 5 أيام . 5 أيام . 6 أيا
فكرة الحل السريعة: (الزاوية نصف القطر) الزاوية عنجمع الزاويتين للمركبتين المركبتين المركبتين للمركبتين نصف القطر = نضرب نصفي القطر في بعضهما $Z_1Z_2 = r_1r_2[\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)]$ = $6[\cos 50^\circ + i\sin 50^\circ]$ ($r = 6, \varphi = 50^\circ$) \Rightarrow ($6,50^\circ$)	((
إذا الأعداد كبيرة نستخدم طريقة التحليل . هذا الأعداد صغيرة نتعامل معها بأسلوب بسيط. 18 لا تقبل القسمة على 4 . 36 يقبل القسمة على 4 و 6 و 9 معاً . 24 لا تقبل القسمة على 9 . 72 يقبل القسمة على 4 و 6 و 9 معاً .	۸٦) ما أصغر عدد يقبل القسمة على 4 و 6 و 9 معاً : • 18 • 36 • 24 • 72
2^{2x} فكرة الحل: نزييع المعادلة الأولى النطائة ج قيمة 2^{2x} $= 6 \Rightarrow (2^{x})^{2} = 36$ $\Rightarrow 2^{2x} = (2^{x})^{2} = 36$	22 فإن (۵۷ كان (۵۷ كان (۵۷ كان (۵۷ كان (۵۷ كان (۵۹ كا

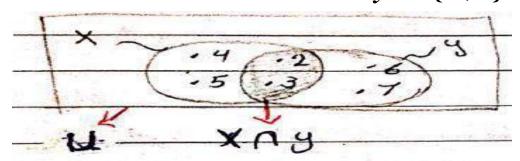
مثل النسبة 95% من 60 a = 6	
مثل للنمية 90% من 100 (المجموع الكلي)=(x+a) لمعادلة لتوجد قيمة x و نكون قد حسينا القيمة المطلوبة	
$a = 60 \times \frac{95}{100} = 57$	60 درجة للأعمال الفصلية و 40 درجة
00	للإختبار النهائي . اذا حصل احمد على
$57 + x = 100 \times \frac{90}{100}$	95% في الاعمال الفصاية ، فما الدرجة
$\iff x = 90 - 57 = 33$	التي يجب أن يحصل عليها في الاختبار
	النهائي لكي يحصل على معدل %90 في
	المقرر ؟
	31 •
	32
	33 •
<u> </u>	34 •
9/77 -100 - ⁴²⁰ -100 - ¹²⁰ - 1	٧) زرع مزارع 540 نخلة والمر منها
منوية= العرب × 100 × 100 × 100 × 77 منوية= العرب × 100 × 540	(23/9)
ب قيمة لـ 77% و نعتبرها الاجابة	• 25%
	50% •
	75% •
	100% •
$x = 1.\overline{33}$	١٤٠) قيمة المقار 33 مي :
$10 x = 13.\overline{33}$	1/3 •
$10 x - x = 13.\overline{33} - 1.\overline{33}$	4/3 •
9 x = 12	5/3 • 7/3 •
$x = \frac{12}{9} = \frac{4}{3}$	9710FD 0010
$i^{43} = i^{40}i^3 = 1x i^3 = -i$	۱۳۸) قيمة العدد المركب اله ز :
	Shada 1//
$t^1 = t$	<u>-1 •</u>
$i^2 = -1$	1 •
$i^3 = i^2 x \ i = -i$	
03/0 - 0)	9×3 ¹ +2×3 ¹ المقدار (٣٥ ع + 3 × 9
= (9+2) عَمَلُ مِشْتِرِكَ	34 •
	10×33 •
	11×3° •
	2×3³ •
$\frac{\frac{1}{x} - y}{\frac{1}{y} - x} = \frac{\frac{1 - yx}{x}}{\frac{1 - xy}{y}}$ $\implies \frac{1 - yx}{x} \times \frac{y}{1 - xy} = \frac{y}{x}$	<u>1</u> - y
$\frac{\hat{1}}{1-x} = \frac{\hat{1}-xy}{1-xy}$	١١٧) المقدادان بساوى:
y y y y	$\frac{1}{y} - x$
$\implies {x} \times {1-xy} = {x}$	x/v •
	y/x •
	-x/y •
	-1 •
- ة بالتجريب ، أي نفرض أعداد:	n ² + 2n + 5(۱۰۹ أي من مجموعة نطم الإجابة
$n = \frac{1}{2} \Rightarrow \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right) + 3$	الأعداد الْحقيقية الأعداد الْحقيقية
$n = 1 \Rightarrow 4^2 + 2(4) + 5 = 2$	 الأعداد الغردية الأعداد الزوجية 9
$n = 2 \Rightarrow 2^2 + 2(2) + 5 = 1$	
$n = 7 \Rightarrow 7^2 + 2(7) + 5 = 6$	
لي.	13 عدد او
33 = 27	: y فما قيمة 3 ^{3y} = 27 ³ (١١٠
$(27)^{y} = (27)^{3}$	$\Rightarrow y = 3$ $2 \cdot 1/3 \cdot $
	1/3 •
	1/2 •

$510 \times \frac{70}{100} = 357 km$ \leftarrow salah salah	١٧) اذا كانت مساحة الأرض
$510 imes rac{70}{100} = 357 \ km$ مساحة الماء	510km مربع ويغطي
مساحة اليابسة ← مساحة اليابسة – 510 – 357 = 153 km	حوالي %70 ملها الماء ، فكم
A MARK WHICH CHECK THE CHE	تبلغ مساحة اليابسة
	110 •
	118 •
	120 •
	153 •
360° ← 120	٢١) اذا كانت زاوية الصف
90° ←— x	الرابع°90 ، ما عدد طلاب
ALLAND TOTAL TARGET	هذا الصف اذا كان عدد
$\implies 90^{\circ} \times 120 = 360^{\circ} x$	الطلاب جميعا 120 طالب
$\implies \frac{90 \times 120}{360} = x$	20 •
	25 •
<u> بيرط ← بيرط ← بيرط</u>	30 •
	35 •
$\Longrightarrow 30 = x$	
سعر الجهاز = m	۲۰)ادا اشتری محمد أجهزة بـ
$\frac{160x}{100} = 2m \times \frac{80}{100} = \%20$ سعر جهازین بعد تخفیض	2220 ريال وكانت الشركة
	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\frac{210x}{100} = 3m \times \frac{70}{100} = 30$ سعر 3 اجیزۂ بعد تخفیض 30% = 3m معر	اشتری جهازین بحصل علی خصم %20 و اذا اشتری 3
1/2000 (1200)	حصم 20% وادا استری و اجهزهٔ بحصل علی خصم
\implies 2220 = $\frac{160m + 210m}{100}$	%30 ، فاذا اشترى جهازين
400	ئم ثلاثة اجهزة ، فكم سعر
⇒ 222000 = 370m	الجهاز الواحد
222000	500 •
$\longrightarrow {370} = m$	600 •
100 mm	700 •
$\frac{370 \times 600}{370} = m \longrightarrow 600 = m$	800 •
	۳۰) اذا زرع مزارع 300 نسیلة
عدد الغسائل الذي يزر عها المزارع الواحد في اليوم الواحد= 300 = 5	في 60 يوم، فكم يوم يحتاج
عدد الفسائل الذي يزرعها 10 عمال في اليوم الواحد≃ 10×5= 50	10 عمال لزراعة نفس
20 - المراجع	الفسيلة
10 SUNCE SYS	• 6 ايام
x ابام → 300	• 8 أبيام
\implies 300 = 50x	• 10 أيام
$\Longrightarrow \frac{300}{50} = x \Longrightarrow 646 = x$	• 13 يوم
50	
<u> </u>	
عدد المشمين= 220 طالب	٣٤) اذا كان في المعهد 15%
عدد المتخصصين في المانتين= (15%+5%) × 220	تخصص کیمیاء و %5
22 - (100 + 1010) - U23	تخصص رياضيات و عدد المنتسين بالمعهد 220 طالب
220 × %20 =	فكم عدد غير المتخصصين في
1200 STATE	الرياضيات ولا في الكيمياء
= 44 =220 × 20 =	11 •
100	
100	33 •
100 عد غير المتخصصين في المانتين= 220- 44 = 176 طالب	122 •
STEENSALE IN A STANKE OF THE S	27.53
عد غير المتخصصين في المادتين= 220- 44 = 176 طالب -	122 • 176 •
عد غر المنفصصين في المنتزة 220- 44 = 176 طالب 	122 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5
عد غير المتخصصين في المادتين= 220- 44 = 176 طالب -	• 122 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 ساعات فانه ينجز عمله في 3
عد غير المنخصصين في المائين= 220- 44 = 176 طالب	122 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5
عد غير المتخصصين في المائيّن= 44 - 220 طالب	• 122 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 ساعات فانه ينجز عمله في اليوم لكي ينجز عمله في يومين • 1.5 • 1.5 •
عد غير المنخصصين في المائين= 220- 44 = 176 طالب	• 122 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 ساعات فانه ينجز عمله في 3 أيوم لكي ينجز عمله في يومين
عد غير المتخصصين في المنتون= 220 - 44 = 176 طالب 5 ساعات عمل	122 • 176 • 176 • 176 • 176 • 176 • 176 • 176 • 177 • 176 •
عد غير المتخصصين في المنتون= 220- 44 = 176 طالب 5 ساعات عمل	122 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يُعمل في اليوم 5 اليام ، كم يحتاج ساعة في اليوم لكي ينجز عمله في يومين • 1.5 • 3.5 • 176
عد غير المتخصصين في الملكن= $44-220$ هذائب $3 \longrightarrow 3$ ايلم 5 ساعات عمل $3 \longrightarrow 2$ ايلم $3 \longrightarrow x = \frac{3 \times 5}{2}$ تناسب عكسي $3 \times 5 \longrightarrow x = 7.5$	122 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 اليام ، كم يحتاج ساعة في اليوم لكي ينجز عمله في يومين • 1.5 • 3.5 • 7.5 • 7.5
عد غير المتخصصين في الملتئن= 220 - 44 مثالب $= 176$ مثالب $= 176$ مثالب $= 176$ مثالب $= 176$ مناعات عمل $= 176$ مناعات عمل $= 176$ مناعات عمل $= 176$ من قاعدة جمع الاسم الذا كان الاساس واحد)	170 • 176 • 176 • 176 • 176 • 176 • 176 • 176 • 177 اذا كان خالد يعمل في اليوم 5 اليام ، كم يحتاج ساعة في اليوم كي ينجز عمله في يومين • 1.5 • 3.5 • 5.5 • 7.5 • 180 كان ضعف العدد 8(2) هو
عد غير المتخصصين في الملكون= 220 - 44 مثالب x مثالب x المثمن في الملكون= 220 - 44 مثالب x المباعث عمل x المباعث x المباعث x	170 • 176 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 اليم ، كم يحتاج ساعة في اليوم 1.5 • 1.5 • 3.5 • 5.5 • 7.5 • 180 ضعف العدد 8(2) هو • 210 • 180 •
عد غير المتخصصين في الملتون= 240 = 176 طالب $3 \longleftrightarrow 3 \longleftrightarrow 5$ ساعات عمل $3 \longleftrightarrow 2 \longleftrightarrow x$ $= \frac{3 \times 5}{2}$ تناسب عكسي $x = \frac{3 \times 5}{2}$ تناسب عكسي $x = 7.5$ $\implies x = 7.5$	170 • 122 • 176 • 176 • 176 • 176 • 176 • 177 كا اذا كان خالد يعمل في اليوم اليوم اليوم اليوم كا ينجز عمله في يومين اليوم 1.5 • 3.5 • 5.5 • 7.5 • 180 كا ضعف العدد 8(2) هو 210 • 212 • 121
عد غير المتخصصين في المائين= 220 - 44 مثالب $= 176$ مثالب $= 176$ مثالب $= 176$ مثالب $= 176$ مناعات عمل $= 176$ مناعات عمل $= 176$ مناعات عمل $= 176$ من قاعدة جمع الاسم الذا كان الاساس واحد)	170 • 176 • 176 • 176 • 176 • 176 • 176 • 176 • 177) اذا كان خالد يعمل في اليوم 5 اليم ، كم يحتاج ساعة في اليوم 1.5 • 1.5 • 3.5 • 5.5 • 7.5 • 180 ضعف العدد 8(2) هو • 210 • 180 •

ملخص المعيار الثاني

المعيار (2): الجبر والدوال الحقيقية في الإختبار: 9 أسئله

- 1. يتعرف خصائص المجموعات والعمليات عليها (التقاطع، الاتحاد،...)
 - 2. يحلل العبارات الجبرية ويبسطها
- 3. يحل المعادلات والمتباينات الخطية والتربيعية والمحتوية على قيمة مطلقة
 - 4. يجري العمليات على المصفوفات
- 5. يحل أنظمة المعادلات الخطية، ويستخدم المصفوفات والمحددات في ذلك، ويمثل الحل جبريا وهندسيا
 - 6. يستخدم خواص الدوال الأسية واللوغاريتمية في حل المعادلات
- 7. يقارن بين العلاقات والدوال، وخصائص الدوال الحقيقية وأنواعها، ويوجد مجالها ومداها
- 8. يجري العمليات على الدوال (العمليات الأربع، التحصيل، ومعكوس الدالة)
 - 9. يرسم الدوال الخطية وكثيرات الحدود من الدرجة الثانية


المعيار الثاني (الجبر والدوال الحقيقية)

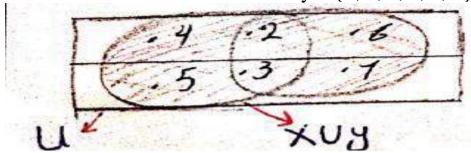
۱- يتعرف خصائص المجموعات والعمليات عليها "التقاطع، الاتحاد، ...)

التقاطع: تقاطع مجموعتين هي مجموعة كل العناصر التي تتتمي للمجموعة الأولى والمجموعة الثانية في نفس الوقت ويُرمز له بالرمز "n" مثال:

 $x = \{2, 3, 4, 5\}$, $y = \{2, 3, 6, 9\}$

 $n \cap y = \{2,3\}$

الاتحاد:


اتحاد المجموعتين هي مجموعة كل العناصر التي تتتمي للمجموعة الأولى أو المجموعة الثانية أو إلى كليهما ونرمز لها بالرمز "U"

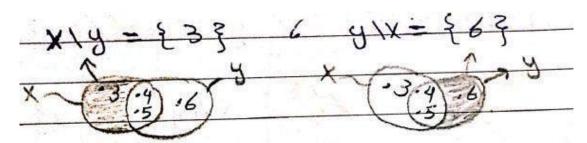
مثال ذلك:

 $x = \{2, 3, 4, 5\}$

 $y = \{2, 3, 6, 7\}$

 $x U y = \{2, 3, 4, 5, 6, 7\}$

المجموعة الشاملة:


هي المجموعة التي تضم كل المجموعات ونرمز لها بـ U:

الفرق بين مجموعتين:

هي مجموعة عناصر تتمي للمجموعة الأولى ولا تتمي للمجموعة الثانية ونرمز $x \setminus y = \{x : x \in x, x \notin y\} \longleftrightarrow x \setminus y$

مثال:

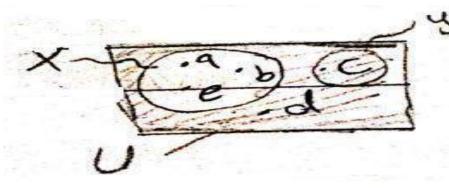
$$X = [\{3, 4, 5\} , y=\{6, 5, 4\}$$

 $x \setminus y=\{3\} , y \setminus x=\{6\}$

المجموعة المتممة:

هي المجموعة التي عناصرها تتتمي إلى المجموعة الشاملة ولا تتتمي عناصرها إلى المجموعة \bar{x} ويرمز لها بالرمز \bar{x}

$$\overline{x} = \{x : x \in u, x \notin x\}$$


مثال:

$$u = \{a,b,c,d,e\}$$
 , $x = \{a,b,e\}$

 $y=\{c\}$

 $\overline{x} = \{c, d\}$

۲

: تحليل العبارات الجبرية وتبسيطها: العبارة العبارة العبارة العبارة العبارة العبارة العبارة العبارة العبارة العبرية: هي جملة تحتوي على أعداد ومتغيرات ويكون تبسيطها بتجميع الحدود المتشابهة والأخلص من الأقواس بالخواص ووضعها في أبسط صورة. مثال: $\frac{1}{3}(x+9) = \frac{1}{3}x+3$ $= \frac{7x^2y^2(x+9)}{21x^2y^2}$ $\frac{1}{3}(x+9) = \frac{1}{3}x+3$ $= \frac{7x^2y^2(x+9)}{21x^2y^2}$ $\frac{1}{3}(x+9) = \frac{1}{3}x+3$ $= \frac{7x^2y^2(x+9)}{21x^2y^2}$ $= \frac{7x^2$

تـمريـن: إذا كان $x + \frac{1}{x} = \sqrt{5}$ فما قيمة $\frac{1}{x^6} + \frac{1}{x^6}$?

أ- ١٨ ب - ٢٥ ج - ١٦٠ د- ١٢٥ - ٢٥ عـل الـمعادلات والـمتبايـنـات الـخطيـة والـمحتويـة على قيمة مطلقـة ؟

يحل معادلات الدرجة الثانية تحل بثلاث طرق إما بالتحليل أو بالقانون العام أو بإكمال المربع.

$$2x^2 - 22x + 60 = 0$$
 مثال: مجموعة حل المعادلة $\{3, \frac{1}{2}\}$ - $2x^2 - 22x + 60 = 0$ بالمحاد $\{3, \frac{1}{2}\}$ - $2x^2 - 22x + 60 = 0$ (التبسيط ۲) $x^2 - 22x + 60 = 0$ (التبسيط $x^2 - 11x + 30 = 0$ باعداد أن حاصل ضريبهما $x - 5 = 0 \Rightarrow x = 5$ معهما يساوي $x - 5 = 0 \Rightarrow x = 6$ $x - 6 = 0 \Rightarrow x = 6$ المحل : (ب) : المحل : (ب)

Sarhan alsarhan

: مجموع قيم x التيي تحقق المعادلتين هو x+y=xy=1

$$2 + \sqrt{3}i$$
 د $2 - \sqrt{3}i$ ج $2\sqrt{3}i$ د $-$

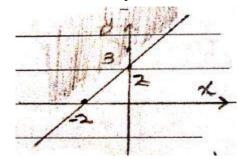
$$x + y = 1 \Rightarrow y = 1 - x$$
 : الحل

$$yx = (1-x)x=1 \leftarrow yx=1$$
 نعوض بقیمة y في

$$X - x^2 = 1 \rightarrow x^2 + x - 1 = 0$$

$$a=-1\;,\,b=+1\;,\,c=-1$$
 تحل بالقانون العام

مجموع قيم X التي تحقق المعادلتين


الحل (أ)

 $-b \pm \sqrt{}$

مثال (۳)

أي من المتباينات المعطاه يمثلها الجزء المظلل من المستوى الموضح بالشكل أدناه؟

$$y \ge x+2$$
 د $y \ge x-2$ ج $y \le x+2$ د $y \le x-2$

الحل من الرسم نلاحظ أن الجزء المظلل (الجزء الموجب من y والجزء المقطوع من محور الصادات يساوي ٢

b (y الجزء المقطوع من محور
$$y = ax + b \rightarrow y \ge x + 2$$
 ... الحل (د)

Sarhan alsarhan

nony

تـمـريـن: إذا قطع مستقيم $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{1}$ في نقطة $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{1}$ في نقطة \mathbf{m}^2 واحدة فقط فما قيمة

$$\frac{3}{4} - 3$$

$$\frac{\sqrt{3}}{2}$$
 –ج

$$\frac{3}{4}$$
 - $\frac{\sqrt{3}}{2}$ - $\frac{\sqrt{3}}{4}$ - $\frac{1}{4}$ - $\frac{1}{4}$

$$\frac{1}{4}$$
 $-$

مثال: 3- < |2x - 5|

الحالة الأولى	الحالة الثانية
2x - 5 < -3	-(2x-5)<+3
+5 +5	-2x + 5 > +3
2x < +2	-5 -5
X<1	-2x > -2
	x>1

٤- يجري العمليات على المصفوفات؟

هي ترتيب على هيئة مستطيل لمتغيرات أو أعداد في صفوف أفقية وأعمدة رأسية

محصورة بين قوسين وهي أنواع...

العمليات على مصفوفات:
$$B = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} \quad , \qquad A = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{3} & \mathbf{4} \end{bmatrix}$$

3A + 5B أوجد ناتج الآتي

$$3. \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} + 5. \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$$
 نضرب العدد في المصفوفة $\begin{bmatrix} 3 & 0 \\ 9 & 12 \end{bmatrix} + \begin{bmatrix} 5 & 10 \\ -5 & -10 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 4 & 2 \end{bmatrix}$ ثم نجمع

المصفوفة الأولى تساوي 2X2 = 3X2 عدد صفوف المصفوفة الثانية

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} + \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ -\mathbf{1} & -\mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \times \mathbf{1} + \mathbf{0} \times -\mathbf{1} & \mathbf{1} \times \mathbf{2} + \mathbf{0} \times \mathbf{2} \\ \mathbf{3} \times \mathbf{1} + \mathbf{4} \times -\mathbf{1} & \mathbf{3} \times \mathbf{2} + \mathbf{4} \times -\mathbf{2} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ -\mathbf{1} & -\mathbf{2} \end{bmatrix} \quad \mathbf{2} \times \mathbf{2} \quad \text{identity in the proof of th$$

ملاحظة:

١-لاحظ أن شرط جمع المصفوفات أن تكون من نفس النوع.

٢- لاحظ شرط ضرب المصفوفات أن تكون أعمدة

 \mathbf{A} . \mathbf{B} = $\mathbf{A}\mathbf{B}$ $\mathbf{m} \times \mathbf{r} = \mathbf{r} \times \mathbf{t}$ = $\mathbf{m} \times \mathbf{t}$

رتبة المصفوفة متساويان

منوال المصفوفة أو (حدود المصفوفة) \mathbf{A}^t في أن تصبح المصفوفة أعمدة والأعمدة صفوف ومثال على ذلك:

(2×3) A

رتبة المصفوفة
$${f A}^t$$
 رتبة المصفوفة ${f A}^t$

خواص حدود أو منقول المصفوفة:

$$1-(A^t)^t=A$$

$$(A+B)^t = A^t + B^t$$

$$3-(CA)^t = C(A^t)$$
 عدد ثابت C

$$4-(AB)^t = B^t \cdot B^t$$

المحدد للمصفوفات: محدد المصفوفة من الدرجة الثانية

المصفوفة من الرتبة 3×3 نستخدم قاعدة الأقطار كطريقة ثانية: أوجد قيمة المحددة: 1 - 1

Y-نوجد حاصل ضرب الأقطار ونجمعها =/(0)(5)+(-2)(4)(2)+3(-1)(-1) =[(-2)(-1)(5)+(1)(4)(-1)+3(0)(2)] =(0-16-3)-(10-4+0) -13-6=-19

ونرمز لمحدد المصفوفة A بالرمز |A| النظير الضريبي للمصفوفة: |A| لإيجاد النظير الضريبي للمصفوفة:

١-نوجد أولاً معكوس المتحدد.

الثاني القطر الأول و نغير إشارة القطر الثاني -7 مثال: أوجد A للمصفوفة A

$$= (-1)(3) - (1)(2) = -5$$

٥- تحل أنظمة المعادلات الخطية ويستخدم المصفوفات والمحددات في ذلك ويمثل الحل جبرياً.

لقد شوفا إلى المحددات في المعيار الرابع.

فأخذ مثال لحل أنظمة المعادلات الخطية باستخدام المصفوفات والمحددات (نشرحه في المثال قاعدة كرامر لحل نظام المعادلتين وثلاث من الدرجة الأولى).

مثال: حل النظام التالي: باستخدام قاعدة كرامر:

$$3x - 4y = 1$$
$$X + 2y = 7$$

y وهي محدد يضم معاملات x و λ اولاً Δ $\Delta = \begin{vmatrix} 3 & -4 \\ 1 & 2 \end{vmatrix} = 6 - (-4) = 10$

y وتضم عمود النواتج وعمود عوامل Δx -نوجد Δx

$$\Delta y = \begin{vmatrix} 3 & 1 \\ 1 & 7 \end{vmatrix} = (3)(7) - (1)(1) - 7$$

$$21 - 1 = 20$$

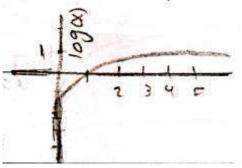
٨

تمرين: ما مجموعة قيم الثابت x التي تجعل للنظام

عدداً غير منته من الحلول؟
$$egin{bmatrix} 5-x & -12 \ 2 & -5-x \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} egin{bmatrix} 0 \ y \end{bmatrix}$$

R-{-1, 1} (
$$\bot$$
) {-1, 1} (τ) {-1} (ψ) { \dagger } (\dagger)

(A) نما (A) نما فما الدرجة A مصفوفة نم الدرجة A وكان A وكان A الدرجة A فما قيمة A أيد الدرجة A أيد الدرجة


ر ما جمع قیم
$$k$$
 التي تجعل النظام $(k+1)x + k+3)y = 0$

حلولاً غير تافهة?
$$2x + ky = 0$$

٦) يستخدم خواص الدوال الأسية واللوغاريتمية في حل المعادلات:

تعريف اللوغاريتم: هي العملية العكسية للدوال الأسية وهو عدد ما بالنسبة للأساس ما بأنه الأس المرفوع على الأساس والذي سينتج عن ذلك العدد مثال:

نقرأ لوغاريتم ١٦ للأساس ٢ يساوي ٤. خواص اللوغاريتمات:

$$1-\log_b^x y = \log_b x + \log_b y$$

$$2-\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$3 - \log_b x^m = m \log_b x$$

$$4- \log_b b^z = x$$

5-
$$log_b b = 1$$
 , $10 log_b 1 = 0 \neq 6$

 $x \geq \mathbf{y}$ فإن $\log_b \mathbf{y}$ فإن كان كان الخاط

اللوغارية العشري هو لوغاريتم للأساس ١٠ وتكتب دون كتابة الأساس.

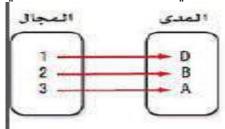
$$oldsymbol{log_7^{(3x-2)} = log_7^3}$$
مـــــــا ل: إذا كان

$$3x - 2 = 3 \rightarrow 3x = 5 \ x = \frac{5}{3}$$

مثال: ٢: اكتب العبارة اللوغاريتمية بالصورة المختصرة:

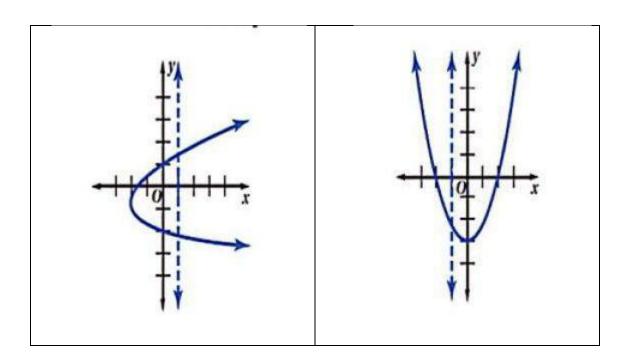
مثال ٣: حل المعادلة:

الحل:

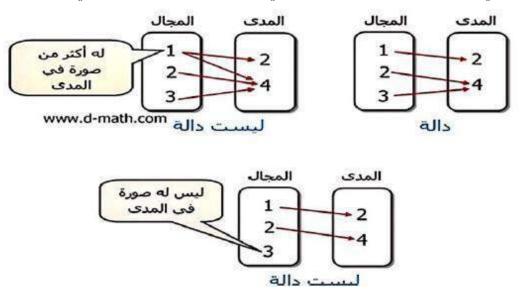

 $3^{x-1} = 8$ تـمـريـن : حل المعادلة:

۷) يقارن بين العلاقات والدوال وخصائص الدوال
 الحقيقية وأنواعها ويوجد مجالها ومداها؟

124	Magnet	20	
$0.125, -\frac{7}{8}, \frac{2}{3} = 0.66 \dots$	الأعادالنبية	Q	0 1
$\pi = 3.14159$ $\sqrt{3} = 1.73205$	الأعداد غير النسية	1	The state of the s
-5, 17, -23, 8	الأعدد الصنينة	Z	
2.96, D, √36	פיאר כביד	W	
3, 17, 6, 86	الأعداد الطبيعية	N	


	الخاصبة	الجمع	الضرب
0	التبديلية	a+b=b+a	$a \cdot b = b \cdot a$
0	التجميعية	(a+b)+c=a+(b+c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
•	العنصر المحايد	a+0=a=0+a	$\alpha . 1 = \alpha = 1 . \alpha$
0	النظير	a + (-a) = 0 = (-a) + a	$a \cdot \frac{1}{a} = 1 = \frac{1}{a} \cdot \alpha$
0	الانفلاق	a + b عدد حقیقی	a . b عدد حقيقي
0	التوزيع	(b+c)a=ba+ca	a(b+c)=ab+ac

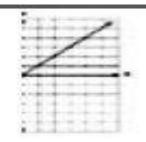
الدالة المتباينة: كل عنصر في المجال يرتبط بعنصر واحد فقط في المدى، أي أنه لا يرتبط من عنصر في المجال بالعنصر نفسه في المدى.



a>b أو a=b أو a <b< th=""><th>خاصية</th></b<>	خاصية
	المقارنة
a < c فإن $a < b$ و $a < b$	خاصية
$a>\!\!c$ فإن $a>\!\!b$ اذا كان $a>\!\!b$ و	التعدي
$a ext{-}c > b ext{-}c$ و $a ext{-}b$ کان $a ext{-}b$ فإن $a ext{-}c > b$ و	خصائص
$a ext{-}c < b ext{-}c$ و $a ext{-}c < b ext{+}c$ و $a ext{-}c$	الجمع
	و الطرح
$rac{a}{c} < rac{b}{c}$ و $a < bc$ فإن $a < bc$ و $c > 0$	خصائص
$rac{c}{a} > rac{c}{c}$ و $a > b c$ فإن $a > b$ و $c > 0$ و $c > 0$	الضرب والقسمة
$rac{a}{c}>rac{b}{c}$ و $a< bc$ فإن $a< bc$ و $c< 0$	
$rac{a}{c} < rac{b}{c}$ و $ac < bc$ فإن $a>b$ و $c<0$	

إذا قطع خط رأسي التمثيل البياني للعلاقة في نقطتين أو اكر فالعلاقة ليست دالة.	
النموذج:	النموذج:

الدالة هي علاقة يرتبط فيها كل عنصر في المجال بعنصر واحد فقط في المدى.

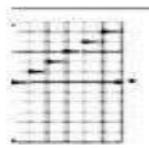

$$f(3d) = -4(3d)^2 - 2(3d) + 1$$
 $= 12d^2 - 6d + 1$
 $= -4(9d^2) - 6d + 1$
 $= -36d^2 - 6d + 1$

دالة القيمة المطلقة:

$$F(x) = |x|$$

R المجال

$$[0,\infty)=(\infty,0]$$
المدى



الدالة الدرجية:

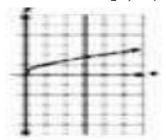
$$f(x) = [x]$$

R المجال

$$\mathbf{Z} = \mathbf{Z}$$

دالة المقلوب:

$$R-\{0\} = 0$$


$$\mathbf{R}$$
-{0} = المدى

دالة الجذر التربيعي:

$$[0,\infty) = 0$$

 $[0,\infty)$ المدى

٨- تجري العمليات على الدوال (العمليات الأربع
 - التحليل - ومعكوس الدالة)
 العمليات على الدوال:

إذا كانت f, g دالتين يتقاطع مجالهما فإننا نعرف العمليات كالآتي

$$f + g(x) = f(x) + g(x)$$
 الجمع :

$$F(x) = x^{2} -4, g(x) = 2x + 1$$

$$F(+g)(x) = (x^{2}-4) + (2x+1)$$

$$= x^{2} + 2x - 3$$

$$(f-g)(x) = f(x) - g(x)$$
 الطرح:

$$(x^{2}-4) - (2x+1)$$

 $x^{2}-4-2x-1$
 $x^{2}-2x-5 = (f-g)(x)$

$$\mathbf{f.g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}).\mathbf{g}(\mathbf{x})$$
 الضرب:

مثال:

F (x) =
$$x^2+4x + 12$$
, g(x) = $3x - 4$
f.g (x) = f(x). g(x)
($x^2 + 4x + 12$). ($3x - 4$)
3x. ($x^2 + 4x + 12$) - 4 ($x^2 + 4x + 12$)
3 $x^3 + 12x^2 + 36x - 4x^2 - 28x - 48$

nony

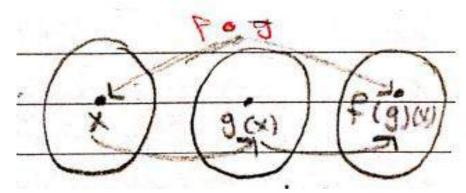
Sarhan alsarhan

$$3x^3 + 8x^2 + 8x - 48$$

القسمة:

f/g(x) = f(x) / g(x)

مثال السابق:


$$\frac{x^2 + 4x + 12}{3x - 4}f/g(x)$$

مجال كل من ${f f}$ هو ${f (\infty/\infty)}$ ولكن ${f x=0}$ وتجعلان مقام الدالة صفراً لذا فإن الدالة الكسرية ${f R}-{1\over 3}$

ملاحظات:

إذا كانت f(x) كثيرة حدود فيكون مجالها هو مجموعة الأعداد الحقيقية

- إذا كان f(x) دالة جذرية فيكون المجال هو جميع الأعداد الحقيقية التي تجعل ما بداخل الجذر أكبر من أو يساوى الصفر.
- يتكون مجال جميع الدوال الناتجة عن عمليات الجمع أو الطرح أو الضرب للدالتين f(x), g(x) من تقاطع مجاليهما.
- مجال الدالة $\frac{f(x)}{g(x)}$ هو تقاطع مجالي الدالتين f(x), g(x) باستثناء القيم التي تجعل المقام يساوي صفراً
 - تركيب دالتين (أو تحصيل دالتين) يتكون مجال الدالة fog

f(x) من جميع قيم g(x) في مجال الدالة g مع أن تكون g(x) في مجال $Fog(x) o f\left(g(x)\right)$

مـثال:

$$F(x) = 3x\text{-}1 \qquad , \qquad G(x) = 2x + 5$$

$$fog \ (x) = f(g(x)) = F \ (2x\text{+}5)$$

$$= 3(2x + 5) \ \text{-}1 = 6x + 14$$

(GoF) (3) أوجد

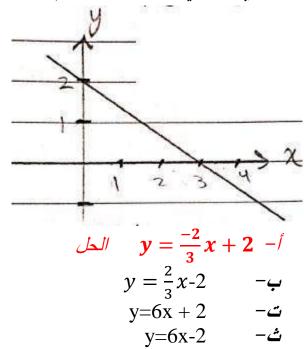
Gof
$$(x) = g(f(x)) = g(3x-1)$$

2 $(3x-1)+5 = 6x + 3$
 $6(3) + 3 = 21$

معكوس الدالة:

$$ightarrow f^{-1}(x)$$
 معكوس الدالة $f(x)$ يرمز له بالرمز

 $\mathbf{fog}\;(\mathbf{x})=\mathbf{gof}\;(\mathbf{x})=\mathbf{x}$ فإن كانت الدالة $\mathbf{g}(\mathbf{x})$ دالة عكسية لدالة وأن عكسية لدالة


مـثـا ل: أوجدي الدالة العكسية

$$F(x) = 3x - 1$$
 $f(x)-y$ $y=3x-1$ $x-3y-1$

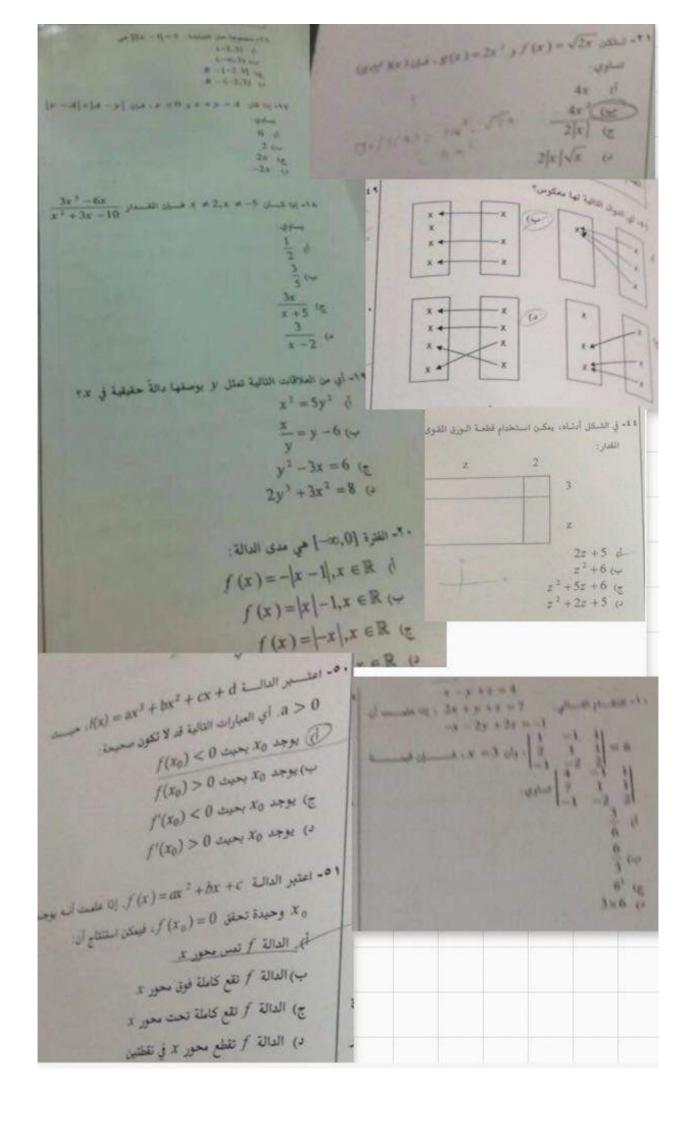
$$x$$
 , y نقوم بالتبدیل بین $\frac{x+1}{3}=y$ نجعل y في طرف y نجعل $x+1$ دالة عكسية $x+1$

9- يرسم الدوال الخطية وكثيرات الحدود من الدرجة الثانية:

مثال: أي مما يلي يمثل معادلة التقييم المبين في الشكل أدناه؟

الحل: نلاحظ أن 2 على محور y هو الجزء المقطوع من محور الصادات حتى أعين الميل أنزل خطوتين وثلاث خطوات على اليمين لأصل النقطة الثانية للمستقيم الحل إذن (أ)

نــلاحظ أن المعادلات الخطية لابد أن يكون فيه ميل وجزء مقطوع من محور الصادات


y = mx + b

b الجزء الموجود على محور الصادات.

ره مجموعة حل المادلة 0 = 1 + 7x - 7x + 1 هي المادلة $0 = 12x^2 - 7x + 1$ ٢٠٠ بجيونة على اللهامة 0 = 6 + | عر هن: (4,3) \$ 0 200 (1 1) (-6,6) := (-1, 1) (E R\[-6.6] (2 $(\frac{4}{3}, \frac{-3}{4})$ (2) ا ٥٠ مجمودة على الشبابية 30 - 2 مي B = {5,6,7} . A = (1,2,3,4) cos of -44 [-1.1] d ول التعليمات أو من ألم إلى ال المعرف كما يلي: (-0,-1]U[La) ($f = \{(1,5), (2,5), (3,6), (4,7)\}$ ل ليس متياياً وليس شاملاً [1,∞) (ب) عتبايثًا وليس شاملاً (-00,-1) U(1,00) (2 ج) شاملاً وليس متبايثًا المالية والمالية والمالية وه - اللقطة (1-1, -1) لا تقع على يعلن المالة (1-1, -1)Total - 2x 1 + 1 repeats \$ post paul to . on f(x) = |x| d27 , 27 15 21 5 10 11 $f(x) = |3x| \leftarrow$ الهدة الذي حل عنا النظام X + 2y = 13 2849011 $f(x) = 3x \in$ x = 3 (m f(x) = |-3x|x =- 8 (# f(k) = 0; $k \neq 0$; $f(x) = x^2 + 3x + k$ and (x - x)يايد يدان توزيع الطلاب إلى مجموعات و إعطاء كبل مجموعات كناء (3) F (5) 54 ورو ماوى كما في الشكل أدناه، وذلك لاكتشاف النطابقة النالية. 2-4 0 k. (% ь $a(a+b) = a^3 + ab$ $a^2 - b^2 = (a - b)(a + b)$ - بنا كان لا عددًا حليقيًا: فما العبارة الكافئة للعبارة $(a+b)^2 = a^2 + b^4 + 2ab$ (*) $(a-b)^2 = a^2 + b^2 - 2ab$ 115x-257 35x 59 1-55x 51 8 $(x) = \begin{cases} x + 3, x \le 2 \end{cases}$ متعبلة التي تجمع الدائة (x) + 6, x > 2x 23 y x SI or 15x 53 (-55x 59 W

حل اس عله المعيار الثابي - 51 1222-72+1=0 121+6<0 - b + 162 4ac 1215-6 وهزاستحيل b-40c= (-7)2-4.12.1 · 0 "1" US = 49-48=1 - (-7)+ VT = 7+1 Xx 1-252 < 0 -02 7+1 or 7-1 1-225 x2>1 - x7+1 1 or 1 ×7,1 or 25-1 (2, 4) : 00bl [1,0) U (-0,-1) الحوال ب ٥٥ - لا تقع على بيان الداله بيني 8(-1) = -1 اكل : ص ير تشامل وليس ト(-六)=|-8(-六)|=111=1 = 1 متساين الجواس د . عامَ منفا , كنترة فردود ١٥ = ١٠ ٢١ - ١٠ http://telegram.me/ques_math (x2-1)(x2-1) x2-1=07 x2=1 الجواب (٩) (الح= ١ delicialed by Callictatilies

(a+b)(a+b) Er	x +24 = 13 - 14
a2+ab+ba+b2	2x + y = 11 4 - 2 - 2
a2+ 2ab + b2 = (a+b)2	
الحل ح	x + 25 = 13
	-4x-2y=-22
اذا كاد X عدراً حفيفياً) نما العدارة	-3x = -9
الكامنه	x = 3
1 < x-2 < 7	
الحل:	- 10
1x-2171 (1x-2157	E(K) K2+3K+K=0
x-2)7/1 x-27/1 -7 xx-2 x 7	K2+4K=0
x+27! ×73 -5 « × « 9	X +4 = 0
- X7-1	K=-4
1 × × 1	Pa)=1+3-4=0
	الحل في المحا
← [] ;	
-5 (3 9	م- اذاكان X عددا معيَّفيًا غا
-56261 or 36x69	العبارة الكامنة
الجواب ٩ -	1 < x-2 < z
nttp://telegram.me/ques_math	

مجودة عل المعادلة

12x-11=3

-(2x-1)=3 6 2x-1=3 :USI

-2x+1=3 2x=4

x = 1 x = 2

9-1,27 QUE

x + y = A 20131

14-A1+1A-Y1= 21

-- y = A -x

1(A+x)-A1+1A-(X-X)

1-21+1-21 = 220

الحل ج ..

322-626

x2+3x-10

3x(x-2)

(x/2)(x+5)

32

2+5

2. 031

http://telegram.me/ques_math

-71

90 P (x) = 9 (P(x))

= 9 (VZx)

 $= 2 (\sqrt{2x})^2$

= 2 (2X)

15elv 9- XA=

44 - أي الدوال الآتية

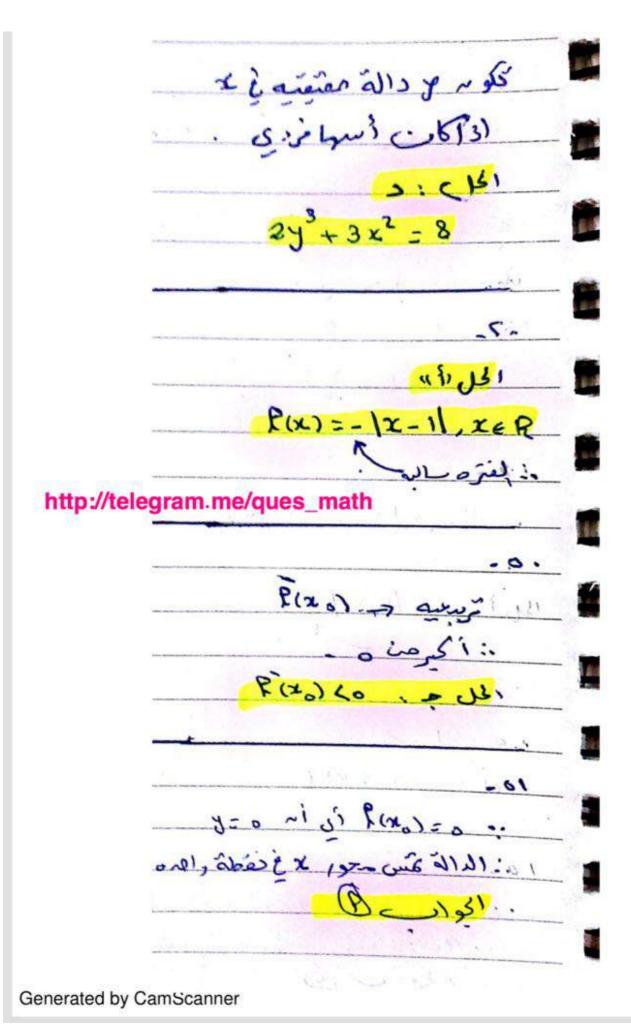
لموامعكوس ؟

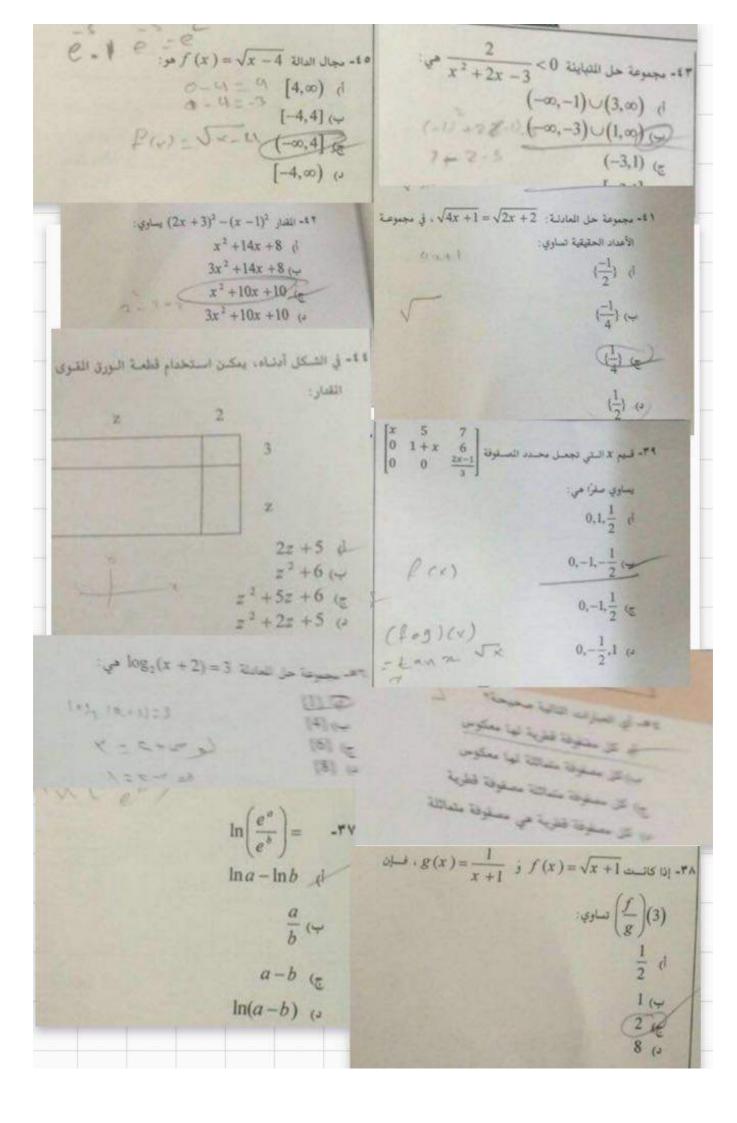
الحل د:

لأنهادالة منيابة وساعلة

(Z+2)(Z+3)

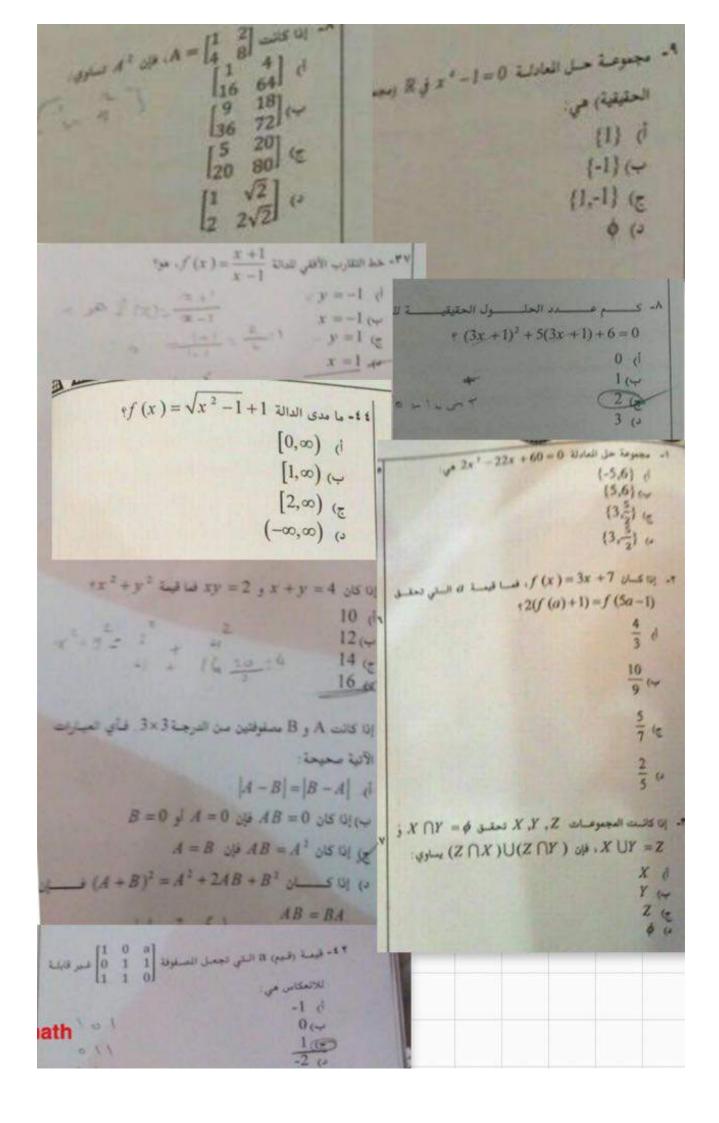
Z+ 37+27+6


2 + 5 7 + 6


اکل ج

X = AX

3 = DX = 3.6


= 18

x_420 _20	
[4, 00] [: UB)	2 x2+2x-3 < 6 -18
$(2x+3)^{2}-(x-1)^{2}$	2(x2+2x-3) x 2 (0x(x2+2x-3) 2(x2+2x-3)<0
3x2+16x+9-x2+2x-1 3x2+16x+8	$2(x-1)(x+3)(a)$ $x = 1 \text{ or } x = -3$ $4x + -3 \text{ sin} - 1 + 4$ $2x = 7x = 1 + 2x^2 + 2x^2$
(7+2)(2+3) - $57^{2}+37+27+67^{2}+57+6$	نصنار الفترة السائلة كانه امّل صره الحل: (-3,1)
الموع (x+2) = 3 - 07 عن خصا تص اللوغا, تمان :	(0-(240 = 020 = 0
Log ₂ (x+2)=3 \rightarrow (x+2)=2 ³	٣٩. هي الفنم التي نعلي الفلم صفر
x + 2 = 8 $x = 6$.x=0 .1+x=0⇒x=-1
http://telegram.me/ques_math	2x-1=0 = 2x-1=0 2x=1=x= と (0,-1=1)ないは:

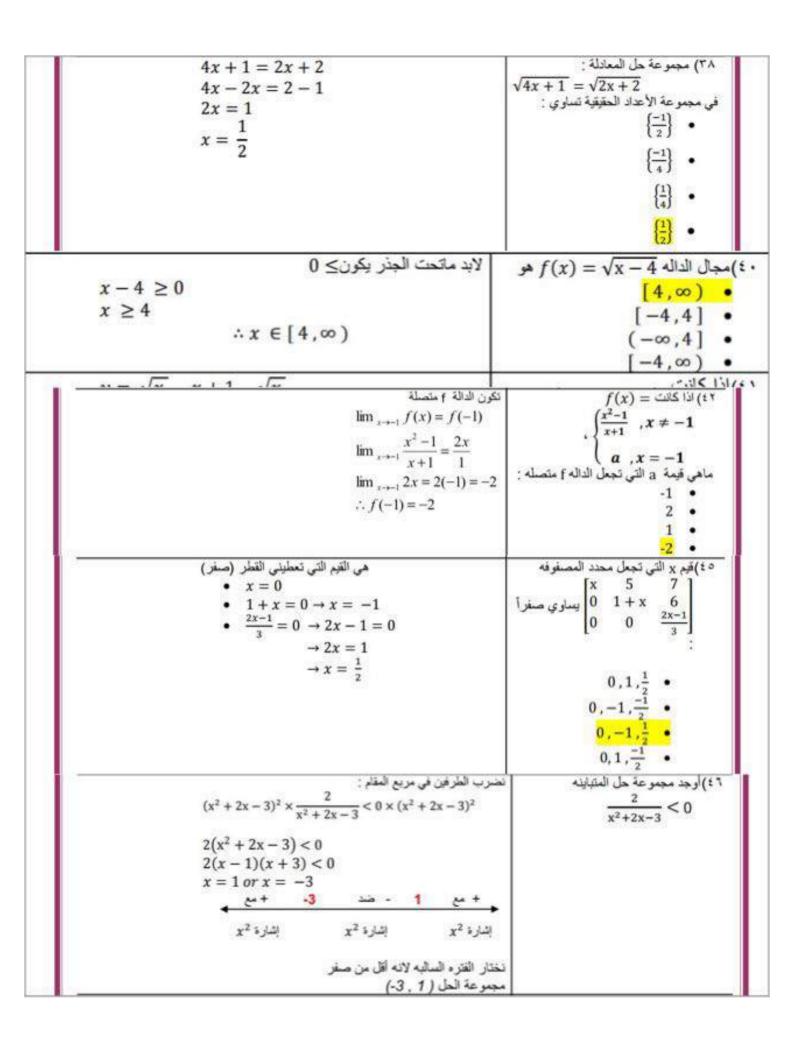
a a-b	1 2 4
In e - Ine - wv	ع مرأي العبارات النالية صحيحه:
e b	ر کل: د
In ex =x	كل مصعوف عربه هي مصعوده ممايله
=> Inea = Ina-b	. —
eb = a-b	-WA
الحل ح	12/x = Jx+1
	x+1
	=(x+1) \x+1
	(E)(3)=(3+1) \(\sum_{3+1}
http://telegram.me/ques_math	444 = 8
· ·	الحل: د .
	1
Generated by CamScanner	

4	
A2. [4 8]. [4 8].	٩. صحوعة على المعادلة
[1.1+2.9 1.2+2.8]	x4 - 1=0
4.1+8.9 4.2+8.8	$(x^2)^2 - 1^2 = 0$
<u> </u>	$(x^2 1)(x^2 + 1) = 0$
36 72	x2=1 or x2=-1
اكل ب ٠٠.	×=+۱ عد الخاص بع علياً المال ج - إ ١ - ١١ علياً
الأمغنى	الحل ج - ١١١)
١١١٠ خطالنفار بمرالدالة	
$\frac{R(x) = X + 1}{X - 1}$	$(3x+1)^{2}+5(3x+1)+6-1$
. الحل:	9x2+6x+1+15x+5+6=0
ب درجة السط تساري ورجة بلغام	9x2+21x+12=0
ن خط لنفا ب لامفتي = المعامل برئيس لا	3x2+7x+4=0
	المين: ع٨٨ - 2
الحل د : ١	(73)-4.3.4
	49 - 48 = 1 >0
عه عدى الدالم الم	مربح کامل
R(x)= \[\si_1 + \]	ن جذران حقيقاس.
971	الحل ج -2-
[1, \omega]	http://telegram.me/ques_math

xy=2 x+y=4 UKil	2x2_22x+60=0 .7
g x2,y2 ax kie	$x^2 - 11x + 30 = 0$
اخل ۔	(x-5)(x-6)=0
$(x+y)^2 = 4^2$	x=5 or x=6
22+2xy+y2=16	الحل ب (5, 6)
22+ 42 2 (2) = 16	
x2 + y2 = 16-4	P(5a-1) = 3(5a-1)+7-5
الجواب ب 12 - 12	. = 15a-3+7
	= 15a+4
2.	$2(\ell(a)+1)=2(3a+7+1)$
A= 8 % AB = A2 - 8 USI	=2(3a+8) = 6a+16
-25	=> 15a+4=6a+16
تكون المصفوفة ما يله للانتكاب	15a-6a=16-4
عند ما ذكون فيمة المحدر = ٥	9a = 12 > a=12
1[1x0-1x1]-0[0-1]+a[-1]	$a = \frac{4}{3}$
-a=1 -a	(ZUX) -6
→ a = -1	<u> </u>
1-12 p 10 181	اقل ج
THE STREET OF THE PARTY OF THE STREET,	

وا علم ((1.1) ع) - إد. فان السارات الآلية خاطئة ا 2 to A patients (1.7) EA 14 244 344 A- (Adam) B- (beat many ٢ ١ (١) - إلا إ - إلا إلى يمثل بيدواً ويردة + 2 | 1 | - (الا من يادي وسلل بيدواً ويردة + 2 | 1 | SECRETARION C = (E.C.) (4.0.1) 0 10.0. f. 1200 (a,d, v,f) to (a,b,c,d,e,f.1) w 44- أي العيارات الذالية صعيحة ا فه كل مشقوقة قطرية لها معكوس بها كل مسلوفة مثماثلة لها معكوس واكل مسلوفة متماثلة مسقوفة قطرية دع كل مسقوقة قطرية هي مسقوقة متماثلة مسا فيعسة بم السلى لمنضق للويسة القيمسة اللاب $a = \log 2$ $a = \log 2$ $a = \log 2$ +[0,1]== in f(x)=x"+1 6-00 5 (b-a) u ٢١-إذا كانت f(X) كثيرة حدود من الدرجة الخاصة ومعاملاتها أعداداً حقيقية ، فأي العبارات التالية صائبة دائماً ! West of (x) = 5x - 6 , 8(x) = -3x - 4 was of -1 أ) لها ثلاثة جذور مركبة وجذران حقيقيان ب)لها على الأقبل جذر واحد حقيقي (og)(-2) 4 0 ج) جميع جذور (f(x) حقيقية -2(4 د) جميع جذور (f(x) مركبة 2 (2 4 (2 $ef(x) = \frac{3}{\sqrt{x^2 + 9}}$ with the size of the fit of the damps f (x) = Vx - 16 hard f " handed hard " (0,00) 6 ARRIG. (3,00) 8-16 6 (9,00) (4 x +16 per (-15,00) (3 x 7 = 16 6 w1-16

5	
1 = N -5	A=(1,(1,2)) USISI
N+1 N3-W	فأى العبارات خاطنة ؟
N2 - N = N (N +1)	الحل:
N2 -N = N2 4N	2 E A - P
وهذا عنى مفتول	
يالى في ـ	اً ي مما يلي مِمْثِل بِبائِدًا للدالة
الحل: د .	R(x) = 121+2
	االحل دأ ،،
A= {a,d,e,23	
B= 9b, c, e 3	
c= fa. R. J3	حاقيمة C التي تحقق نظرية
(BUC) NA=	العُمَّةُ المستوسطة ؛
Sa, b, c, e, R, J3A	المعيار التمامن -
ga, die, ez	
Ja, e, e ? 1910/08	
	http://telegram.me/ques_math
1 log 9 - Log (9)32 . <7	
Log I - Log 3	7/
Log 3 - Log 2	
-b-a	
1 - 131	
nerated by CamScanner	


٠<٤	· ·
الدر بركب على صورة	5 f
a+bi	
فإذاكات ٥ = ط	(Pog) = 5(-3x-4)-6.1
فارد العديكون حفيقي	=-15x-20-6
الحل (جيع جذررها	=-15x-26
مركبة .	(Pog)(-2)=-15(-2)-26
	= 30 - 26
R(x) = 5 21211 Ulsa	ر الحراد د
x2+970	
27-9	الدالة العكسية الع ل
x 7 ± 3i	$R(x) = \sqrt{x-16}$
(-00/00) + R J bull	y = Vx-16
، الحلات د	نېرل بېن ١٤ر ي :
	Z = \y-16
-	x² = y − 16
0	y = x2 + 16
	الحال ج
	http://telegram.me/ques_math

هامش	الحل		السؤال
÷ ₽ (ℓ	A⊌B) = P(A)+P(B) - P(A = 8 + 6 - 3 = 11 = 11 40 - 11 = 29	هملاب اللغه العربيه هملاب الرياضيات (ΔΒ)	ا ذ) اذا كان 40 طالب يدرسون اللغة العربية والرياضيات وكان هناك 8 متفوقين في اللغة العربية و 6 متفوقين في الرياضيات و 3 متفوقين فيهم جميعا فيهم جميعا و 24
$-(5\times1\times2)-(3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$: المحددة بطريقة كرامر $(1- imes0)$	3 4 5 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$f \circ g(x)) = f(2x^{2})$ $= \sqrt{2(2x^{2})}$ $= \sqrt{4x^{2}}$ $= 2x$	f(g(x))	$g \cdot f(x) = \sqrt{2x}$ الحالات ا
	2 ¹ 8 =	$= \log_{\alpha} x \Rightarrow a^{T} = x$ $= x + 2$ $= x + 2$ $\Rightarrow x = 6$	التي تحقق x التي تحقق (AT) $\log_2(x+2) = 3$ $2 \cdot 4 \cdot 6 \cdot 6$
(4	ر معین(قیمة ما و هذا هی 3 و حداد ویة: 5 x - 3	أقل من 5 وحداث يعني: 5 > تبعد عن العدد ير بمقدار يعني: 3 - ير إذاً تصبح المثباينة المطل	(A5) $ a $ (Mathylich Tilling Tome) $ a $ (A5) $ a $ (A5) $ a $ (A6) $ a $ (A7) $ a $ (
$\frac{(x^2y^2-1)}{(xy-1)^2} \Rightarrow \frac{1}{2}$	$(a^{2}-b^{2}) = (a^{2}-b^{2})$ مفکو له فرق مربع قبشين ، و المنا $\frac{(xy+1)(xy+1)}{(xy-1)}$ $\frac{(xy+1)(xy-1)}{x^{2}y^{2}-2xy+1} \Rightarrow \frac{(xy+1)(xy-1)}{(xy-1)(xy-1)}$	$-2ab+b^2$ استنبات: (x+b)(a-b) الاحظ البسط عبارة عن (xy-1) غرق قرمتين $(xy-1)$ $\Rightarrow \frac{(xy+1)}{(xy-1)}$ حل الخر: $(xy-1)$ $\Rightarrow \frac{(xy+1)}{(xy-1)}$ $\Rightarrow \frac{(xy+1)}{(xy-1)}$	$\frac{x^2y^2-1}{(xy-1)^2}$ بسط العبارة السبية $\frac{xy-1}{(xy-1)^2}$ • $\frac{xy-1}{(xy-1)^2}$ • $\frac{x^2y-1}{(xy+1)^2}$ • $\frac{xy+1}{(xy-1)}$ • $\frac{xy-1}{(xy+1)}$ •
$Ax^{2} + Bx +$ $x^{2} + (a + b)$ $\Rightarrow x^{2} + ((a + b))$	بحبولة عددها ۲ ، فإذا هي معادلة $C=0$: ه من الدرجة الثانية هي : $C=0$: ه من الدرجة الثانية هي : $C=0$: C	و الصورة العامة لمعادلة وليكن الجذر الأول نسميا ويما أن فكرة السؤال هي إذا تستخدم الصيغة $\{(2 - \sqrt{3}), b = (\sqrt{3} + 2)$	($\sqrt{3}+2$) المعادلة التي جذر اها (9

٩٩) عل المعادلة	$(\sqrt{2x+1})^2 = (\sqrt{2x+2})^2$ بالتربيع نحصل على: $(\sqrt{2x+1})^2 = (\sqrt{2x+2})^2$
: $\sqrt{2x+1} = \sqrt{2x+2}$ 1/2 •	$\Rightarrow (\sqrt{2x})^2 + 2\sqrt{2x} + 1 = 2x + 2$
1/4	$\Rightarrow (2x) + (2\sqrt{2x}) - (2x) = 2 - 1$
1/8 •	$\Rightarrow 2\sqrt{2x} = -1$
1/16 •	4×2x=1
	evicing that its likely about $3x = \frac{1}{x}$
۱۰۰) یا کلت	y = {2,4,6}
*x={1,2,3,4,5,6,7}	y = {z,4,6}
رکثت y = { 1 , 3 , 5 , 7 }	
فإن متممة وبالنسبة إلى x هي : • (1,3,5)	
(2.4.6)	
{6,7} •	
(1,2,3,4,5,6,7) •	
۱۰۲) اِنَّا كَانْتُ 10 = 5٪ ، فَانِ x تَسَاوِي :	5' = 10
log 10	$\log 5' = \log 10$
log 5	$\Rightarrow x \log 5 = \log 10$
- log 10	$\Rightarrow x = \frac{\log 10}{\log 5}$
log 5	Dg.7
log 5	
E-2 10	
$\log \frac{1}{2}$ •	
(1 0 a)	تكون غير فابلة للإنعكاس عندما تكون فيمة المحدد تساوي
۱۰۸) ۱ ۱ ۵ تکرن غیر قابلة	$\Delta \approx 0 \Rightarrow [1 \times 0 - 1 \times 0] - 0[0 - 1] + \alpha[-1] \approx 0$
(1 0 0)	$\Rightarrow -a = 0$
للانعكاس علنما تكون قيمة a :	$\Rightarrow a = 0$
0 •	
2	
3 •	
١١٥) أي من المثيابات المعطاة بمثلها	20
الجزء العظال من المعتوى العوضح	نختار نقطة تتنمي لمنطقة الحل ← (2-2-)
باشكل	نختار بغطة لا تتنمي لمنطقة الحل - (0.0)
240	نموض في المتباينات الاربع
	$y \ge x+2$ $y \ge x-2$ $y \le x+2$ $y \le x-2$
4 3	2 ≥ 0 / 2 ≥ -4 / 2 ≤ 0 × 2 ≤ -4 × (-2-2)
2	0 ≥ 2 × 0 ≥ -2 √ 0 ≤ 2 √ 0 ≤ -2 × (0-0)
1 1	/ x x x
E	
y ≤ x − 2 •	المتباينة المخترة هي التي تعلل الرسم بحيث (2-2-) تنتمي لمجموعة حلها و
$y \le x+2$ • $y \ge x-2$ •	(0·0) لا تنتمي أمجموعة حلها
y≥x+2 •	
۱۱۸) لغرض أن x+y=xy=1 (۱۱۸	$x_1 + y = 1$
مجموع قيم x التي تحقق المعادلتين:	$x_2y = 1 \implies x_2 = \frac{1}{y} \implies y = \frac{1}{x_2}$
1 •	$x^{1+x} = x^{1+x} = 1$ $x^{2-x-x^{2}} = 1$ $x^{2} = x^{2} = x^{2} = 1$
2√3 •	$1 \pm \sqrt{1-4}$ $1 \pm i\sqrt{3}$
2-√3/ •	$x_{14,2} = \frac{2}{2} = \frac{2}{2}$
2+√3 <i>i</i> •	$\frac{x_0 x_0 - x_1}{x_0 x_0 x_0} \frac{1}{2} - \frac{t\sqrt{3}}{2} + \frac{1}{2} + \frac{t\sqrt{3}}{2} = 1$
1y	$\frac{1}{2} - y$ $\frac{1 - yx}{2}$
۱۱۷) المقدار <u>؟</u> يساري :	-1 = 1 - vv
25 /rdb/2/52/9 57	y - x y
	$\implies \frac{1-yx}{x} \times \frac{y}{1-xy} = \frac{y}{x}$
x/y •	et et ditte te
y/x • -x/y •	
-1 •	
L. 1 & L. 1703	
۱۱۹) لوجد جميع قيم k التي تجعل النظام الاتي حلول غير تافية :	تكون الحاول غير تاهية إذا كان المحدد = - k+1 - k-3 = 0
(k+1)x + (k+3)y = 0	1 2 k 1
2x + ky = 0	$\Rightarrow k(k+1) - 2(k-3) = 0$ $\Rightarrow k^2 - k - 6 = 0$
-2 • 3 •	$\Rightarrow (k-3)(k+2) = 0$
1	$\Rightarrow k = 3 \text{ or } k = -2$
2 •	$k_1 + k_2 = 3 - 2 = 1 \implies k = 1$
۱۲۰)اشتری أحمد x من الدفائر قیمة كل منها 5 ريالات، و y من الاقلام	5x+2y=36 36
کل منها کا ریالات ، و y من ادهدم قیمهٔ کل منها ریالان ، فکان مجموع ما	5*4+2*8=36 20+16=36
دفعه للباتع 36 ريال ، فاته :	5*2+2*13=36 10+26=36
 هناك عدد غير منته من الحلول 	5*5+2*1=36 25+1=36
C)AC (A 100 A) 100 A	
	٨ بوجد حلان عبر الذي ورد في الاعلى
• y = 8 ، x = 4 مو الحل الوحيد .	٠. يوجد حلان غير الذي ورد في الاعلى
• y=8،x≈4 مر الحل	٢. يوجد حلان غير الذي ورد في الاعلى

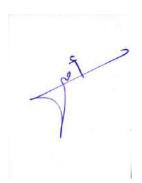
		The second secon
	$x^2 + 4x = 12$ نعود صداغة السوال إلى معادلة: $12 + 4x = 12$ ثم نجر ب عليها الاختيارات أيها صحيح $12 : 12^2 + 4 \times 12 = 12$ $8 : 8^2 + 4 \times 8 \neq 12$ $6 : 6^2 + 4 \times 6 \neq 12$ $2 : 2^2 + 4 \times 2 = 12$	(1) عدد موجب إذا أضيف مربعه إلى أربعة أمثاله كان الناتج 12 ، فما هو العدد : (2) 8 - 6 - 6 - 2
0	مجال الدالة الكسرية هو $\forall b=0$: $\forall b=0$ اي يعني جميع الأعداد الصحيحة ما عدا التي تحقق أصفار المقام (المقام يساري المسفر). (المقام يساري المسفر). $x^2-x-2=0 \Rightarrow (x+1)(x-2)=0$ الأ $x=1$ $x=2$ الأ $x=1$ $x=1$ $x=1$ $x=1$ $x=1$	ال مجال (۱۲ مجال (۱۲ مجال (۱۳ مجال (۱
	المعادلة من الدرجة الثاثلة يعني يوجد لها ثلاثة حلول . $x=1\Rightarrow 1-6+a-6=0\Rightarrow a=11$ $x=2\Rightarrow 8-24+2a-6=0\Rightarrow a=11$ $x=3\Rightarrow a=11$	(٩٥) إذا كان 3 = x هو حل المعادلة (٩٥) : • الحلول الأخرى غير معروفة (و ه مجهولة , الحلول الأخرى غير الحلول الإن 3 مجهولة , الحلول المدادلة في R , المحادلة في R , الوحيد , المجهولة من الحلول المحدد .
	$x^{2} - 49 = 0 \Rightarrow 0$ $\Rightarrow x^{2} = 49$ $\Rightarrow x = \pm 7$ $\{-7,7\}$	(91) مجموعة حل المعادلة $x^2 - 49 = 0$ $\{-49, 49\}$ $\{-7, 7, 7\}$ $\{-7, 7, 7\}$ $\{-7, 7, 7\}$
	$\tan^2 x = 3 \Rightarrow \tan x = \pm \sqrt{3}$ $\frac{\sin x}{\cos x} = \frac{\sqrt{3}}{1}$ $\Rightarrow \frac{\sin 60^\circ}{\cos 60^\circ} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{\sqrt{3}}{1}$ $\therefore \theta = 60 \times \frac{\pi}{180^\circ} = \frac{\pi}{3}$ $(\sqrt{2x+1})^2 = (\sqrt{2x+2})^2$ $\Rightarrow \tan x = \pm \sqrt{3}$	المعادلة $(3V)$ مجموعة حل المعادلة $(3V)$
	$(\sqrt{2x+1})^{2} = (\sqrt{2x+2})^{2} + 2x + 2$ $\Rightarrow (\sqrt{2x})^{2} + 2\sqrt{2x} + 1 = 2x + 2$ $\Rightarrow (2x) + (2\sqrt{2x}) - (2x) = 2 - 1$ $\Rightarrow 2\sqrt{2x} = -1$ $4 \times 2x = 1$ $\Rightarrow x = \frac{1}{8}$ $\Rightarrow x = \frac{1}{8}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$v = \{2,4,6\}$	(۱۰۰) إذا كانت x = {1,2,3,4,5,6,7} y = {1,3,5,7} فإن متمة و بالنسبة إلى x هي : {1,3,5} • {2,4,6} • {6,7} • {1,2,3,4,5,6,7}
	$5^{\circ} = 10$ $\log 5^{\circ} = \log 10$ $\Rightarrow x \log 5 = \log 10$ $\Rightarrow x = \frac{\log 10}{\log 5}$	x بنا کانٹ 10 = 5 م فان x مساری: log 10

$\frac{1}{2}\log\frac{9}{4} = \log(\frac{9}{4})^{\frac{1}{2}}$	۱۲۱) اِذَا كَانَ 2 (۱۲٤) إِذَا كَانَ 1 (۱۲٤)
$\implies \log \sqrt{\frac{9}{4}} = \log \frac{3}{2} = \log 3 - \log 2$	$\frac{1}{2}\log\left(\frac{9}{4}\right) \ \ \text{if } b = \log 3$
= b-a	: مَسْوُي <u>b-a •</u> b/a •
_ 0-a	b/a •
	5 b •
	$\frac{5}{6}(b-a)$ •
	١٢٩) للنظام التالي :
	x - y + z = 4 $2x + y + z = 7$
	-x-2x+z=-1
$\therefore x = \frac{\Delta x}{x} \Rightarrow \Delta x = 3 \times 6$	ابًا طبت أن 1 -1 1
*	2 1 1 = 6
	-1 -2 2
	4 -1 1 7 1 1 نام x=3 و آن x=3
	-1 -2 2
	شىئوي • 3/6
(26)	6/3
(20)	6×3 •
(x ² -1)(x ² +1)=0	١٣٦) مجموعة حل المعادلة
X ² -1=0 or x ² +1=0	x⁴ −1 = 0 في R في : • {1}
$X^2=1$ or $x^2=-1$ $X=\pm 1$	(1) • (-1) • (-1, 1) •
	0 •
$A^{2} = A \times A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$	بنا کائٹ $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ بنا کائٹ (۱۳۷
	A ²
$= \begin{bmatrix} (1 \times 1) + (2 \times 4) & (1 \times 2) + (2 \times 8) \\ (4 \times 1) + (8 \times 4) & (4 \times 2) + (8 \times 8) \end{bmatrix}$	[1 4]
	1 4 19 64
$= \begin{bmatrix} 9 & 18 \\ 36 & 64 \end{bmatrix}$	9 18 6 72
	[5 20]
1	[20 80]
1	1 5 4 9 •
ر لا : نوجد قيمة الحد الثابتر بالتعويض بقيم x=2 ,y=3	3x-4
$\frac{3(2)-4}{(3)+15} = \frac{6-4}{18} = \frac{2}{18} = \frac{1}{9}$	y+15 05 07 (111
انيا: لايجاد قيمة x عدما y=12 نحوض في المعادلة التالية:	ر به فقا کانت 3 = 2 نما قیمه بر عدما نکون 12 = 2
$\frac{3x-4}{12+15} = \frac{1}{9} \Rightarrow \frac{3x-4}{27} = \frac{1}{9} \Rightarrow 3x = \frac{27}{9} + 4$	5/3 •
	7/3 • 8/3 •
$\Rightarrow 3x = 3 + 4 \Rightarrow x = \frac{7}{3}$	10/3 •
شرب 2- في المعادلة الثانية 42 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	۱۶۱) قرمة بر في حل النظام الثاني هي ي :
X +2y = 13 - 4x -2y = -22	x + 2y = 13
-3x = -9	2x + y = 11 $x = 1$
$x = \frac{-9}{-3} = 3$	x=3 • x=-1 •
-3	x = -1 • $x = -3$ •
$F(k) = 0 \Rightarrow k^2 + 3k + k = 0$	۱٤٥) إذا كانت
$k^2 + 4k = 0$	$k \neq 0 3 \cdot f(x) = x^2 + 3x + k$
k(k+4) = 0	و f(k) = 0 ، فان f(l) تَسْلُوي : k − 4 •
K=0 or k+4=0	4 •
مرفوض $f(1) = x^2 + 3x - 4 = 1 + 3 - 4 = 0 = k$	0 •

$1 \le x-2 \le 7 = \begin{cases} x-2 \le 7 \\ x-2 \ge 1 \end{cases}$ عندما $ x-2 \ge 1$ فإن مجموعة الحل هي:	ا 1 () إذا كان x عدداً حقيقياً ، فما العبارة المكافئة للعبارة $ x-2 \le x-2 $.
$\Rightarrow -7 \le x - 2 \le 7 \Rightarrow -5 \le x \le 9$ عندما $ x - 2 \ge 1$ فإن مجموعة الحل هي: $\Rightarrow x - 2 \ge 1$ or $x - 2 \le -1$ $\Rightarrow x \ge 3$ or $x \le 1$ $\Rightarrow x \ge 3$ or $x \le 1$ $\Rightarrow x \ge 3$ $\Rightarrow x \ge 3$ or $x \le 1$	1≤x≤3 • -5≤x≤9 •
$\frac{-5 \le x \le 1}{\left[\frac{f}{g}\right](x) = \frac{\sqrt{x+1}}{\frac{1}{1+x}} = (1+x)\sqrt{x+1}}$	$f(x) = \sqrt{x+1}$ الذا كان ۱۹ (x) [$\frac{f}{g}$](3) الذا $g(x) = \frac{1}{x+1}$
$\left[\frac{f}{g}\right](3) = (1+3)\sqrt{3+1} = 4\sqrt{4} = 4 \times 2 = 8$	ئساري : 1 • 2 • 8 •
$A^{2} = A \cdot A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ $= \begin{bmatrix} (1 \times 1) + (2 \times 2) & (1 \times 2) + (2 \times 4) \\ (2 \times 1) + (4 \times 2) & (2 \times 2) + (4 \times 4) \end{bmatrix}$ $= \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$	A^2 ابنا کان A^2 ابنا کان A^2 افان ۱۳) بنا کان
	ا تساري : ln <u>e^a و ا</u> (۱۵ اساري : In (a-b) • a-b •
مساحة الشكل المعطى : (x+10) (x+5) (x+10) (x+5) = x ² + 15x + 50 وهي معادلة من الدرجة الثانية	x 10 (۱۸ x الشكل السابق يمثل : • العلاقه بين المربع والمستطيل • معادلة من الدرجة الثانية
$= f(g(x))fog(x)$ $= f(\sqrt{x}) = \tan \sqrt{x}$	معادلة من الدرجة الأولى معادلة من الدرجة الأولى مساحة المربع $g(x) = \cdot f(x) = \tan x$ كان $f(x)$ عان $f(x)$ يساوي :
	$ \sqrt{\tan x} \bullet \\ x \tan x \bullet \\ \tan \sqrt{x} \bullet $

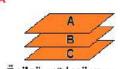
ملخص المعيار 3 و 4

المعيار (3 & 4): الهندسة والقياس

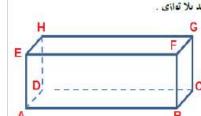

في الإختبار: 9 أسئله

- الخصائص الخطوط المتوازية والمتعامدة والزوايا لمعرفة الأشكال
- يستخدم العلاقات الهندسية (نظرية فيثاغورس، تشابه المثلثات،
 تقاطع مستقيم مع مستقيمين متوازيين،....) لحل المسائل
 - يتعرف أنواع المثلثات وحالات تطابق مثلثين
 - 4. يصف خصائص الأشكال الرباعية
 - 5. يشرح صفات الأشكال ثلاثية الأبعاد وخصائصها
 - 6. يوجد ميل ومعادلة مستقيم في المستوي وعلاقته بمستقيم آخر
 - 7. يوجد المسافة بين نقطتين أو نقطة و مستقيم في المستوي
- 8. يمثل التحويلات الهندسية (التناظر، والانسحاب والدوران ومغير البعد)
 - 9. يحدد العلاقة بين الزوايا الناتجة من تقاطع مستقيمين
 - 10. يستخدم العلاقات المترية في المثلث
- 11. يتعرف القطوع المخروطية ويميز معادلاتها وخصائصها ويمثلها بيانيا
 - 12. يتعرف الدوال المثلثية والعلاقة بينها
 - 13. يتعرف المتجهات ويجري العمليات عليها
 - 14. يحل مسائل تطبيقية على الهندسة المستوية والفراغية
- يتعرف وحدات القياس (وحدة قياس الزوايا، الطول، المحيط، المساحة، الحجم، درجة الحرارة، الزمن)
 - 2. يحول بين وحدات القياس المختلفة ضمن النظام نفسه
 - 3. يوجد محيط ومساحة المثلث والدائرة والأشكال الرباعية
- 4. يحسب حجوم بعض المجسمات، ويوجد مساحتها الجانبية والكلية
 - 5. يحل مسائل تتضمن مقياس رسم باستخدام النسبة والتناسب
 - 6. يوظف التقريب في القياس
 - 7. يحل مسائل رياضية تطبيقية على القياس

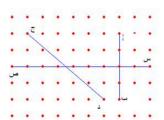
تلفيص المعيار (3 & 4) القندسة والقياس


يستخدم خصائص الخطوط المتوازية والمتعامدة والزوايا لمعرفة الأشكال	.1	
يستخدم العلاقات الهندسية (نظرية فيثاغورس، تشابه المثلثات،	.2	
تقاطع مستقيم مع مستقيمين متوازيين) لحل المسائل		
يتعرف أنواع المثلثات وحالات تطابق مثلثين	.3	
يصف خصائص الأشكال الرباعية	.4	المعيار 3. 4. 3؛ يتعرف مضاهيم الهندسة ونظرياتها
يشرح صفات الأشكال ثلاثية الأبعاد وخصائصها	.5	
يوجد ميل ومعادلة مستقيم في المستوي وعلاقته بمستقيم آخر	.6	
يوجد المسافة بين نقطتين أو نقطة و مستقيم في المستوي	.7	
يمثل التحويلات الهندسية (التناظر، والانسحاب والدوران ومغير	.8	
البعد)		
يحدد العلاقة بين الزوايا الناتجة من تقاطع مستقيمين	.9	
يستخدم العلاقات المترية في المثلث	.10	
يتعرف القطوع المخروطية ويميز معادلاتها وخصائصها ويمثلها بيانيا	.11	
يتعرف الدوال المثلثية والعلاقة بينها	.12	
يتعرف المتجهات ويجري العمليات عليها	.13	
يحل مسائل تطبيقية على الهندسة المستوية والفراغية	.14	
يتعرف وحدات القياس (وحدة قياس الزوايا، الطول. المحيط،	.1	
المساحة، الحجم، درجة الحرارة، الزمن)		
يحول بين وحدات القياس المختلفة ضمن النظام نفسه	.2	
يوجد محيط ومساحة المثلث والدائرة والأشكال الرباعية	.3	المعيار 3. 4. 4، يتعرف القياس
يحسب حجوم بعض المجسمات، ويوجد مساحتها الجانبية والكلية	.4	ووحداته وتطبيقاته
يحل مسائل تتضمن مقياس رسم باستخدام النسبة والتناسب	.5	
يوظف التقريب في القياس	.6	
يحل مسائل رياضية تطبيقية على القياس	.7	

الحقوق محفوظة لقناة http://telegram.me/ques_math


((معيار 3))

١) يستخدم خصائص الخطوط المتو ازية و المتعامدة و الزوايا لمعرفة الأشكال



المستقيمات والمستويات :--

- المستقيمان المتوازيان: يقال للمستقيمين أنهما متوازيان إذا كانا في مستوى واحد دون تقاطع.
- المستقيمان المتخالفان : يقال للمستقيمين أنهما متخالف إذا كانا لا يقعان في مستوى واحد بلا تهازي .

فَمثلاً : نَقُولُ أَنْ AB و CG متخالفان وكذلك AB و HD أنهما متخالفان وذلك لأنهما لا يتقاطعان ولا يجمعهما مستوى واحد

- المستقيم المستعرض: مستقيم يقطع مستقيمين أو أكثر في مستوى في نقاط مختلفة.
 - المستويان المتوازيان : يقال للمستويين أنهما متوازيان إذا كانا لا يتقاطعان.
 - المستويان المقاطعان : يتقاطع المستويان في خط مستقيم.

المستقيم أب عمودي على المستقيم س ص. المستقيم جد ليس عمودي على المستقيم س ص.

اذا تعامد مستقيم على آخر فإن زاوية التعامد = 90

مستقيمة

الزاويتان ۲،۱

2/4 الزاويتان ٣ . ٤ متكاملتان الأن: ٢ + ٤ = ١٨٠ (١) أنواع الزوايا :-

- الزاوية الحادة : هي زاوية قياسها أقل من ٩٠ درجة .
 - الزاوية القائمة : هي زاوية قياسها ٩٠ درجة .
- الزاوية المنفرجة : هي زاوية قياسها أكبر من ٩٠ درجة وأقل من ١٨٠ درجتي.
 - الزاوية المستقيمة : هي زاوية قياسها ١٨٠ درجة

(٢) الزوايا المتتامن: -

تكون الزاويتان متتامتين إذا كان مجموعهما ٩٠ درجت .

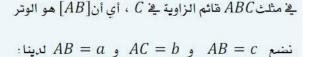
(٣) الزوايا المتكاملين:-

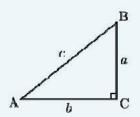
تكون الزاويتان متكاملتين إذا كان مجموعهما ١٨٠ درجة.

- (٤) المستقيمات المتقاطعين:-
- الزوايا المتجاورة متكاملة أي (أ + ل = ١٨٠ درجة)
- الزوايا الرأسية متساوية (تقابل بالرأس) أي (ك = ل)

٢) يستخدم العلاقات الهندسية (نظرية فيثاغورث ، تشابه المثلثات ، تقاطع مستقيم مع مستقيمين متوازيين) ٣) يحدد العلاقه بين الزوايا الناتجه من تقاطع مستقيمين

نظرية فيثاغورث:


نظرية ؛ يا أي مثلث قائم الزاوية يكون مجموع مربعي طولي الضلعين
 المحاذيين للزاوية القائمة يساوي مربع طول الوتر.


عكس نظرية فيثاغورث "

إذا كان مربع طول ضلع مثلث يساوي مجموع مربعي طولي الضلعين الآخرين فان المثلث يكون قائم الزاوية"

|BA|=3cm , |BC|=4cm اذا كان B قائم الزاوية في B اذا كان B

AC le f

$$|AB|^2 = |AC|^2 + |BC|^2$$

$$c^2 = b^2 + a^2$$

تشابه المثلثات:

- المثلثات المتشابهة هي حالة خاصة من المضلعات المتشابهة، لذا في المثلثات المتشابهة، جميع الزوايا متساوية بالتناظر وتوجد نفس النسبة بين أطوال الأضلاع المتناظرة.
 - مثال: في المهمة 1، المثلثان VDF, ABC متشابهان لأن: $C= \ll F$, $\ll B= \ll D$, $\ll A= \ll V$ خوايا المثلثان متساوية: $\frac{AB}{VD}=\frac{BC}{DF}=\frac{AC}{VF}$, نسبة التشابه هي $\frac{3}{2}$. فرمز للتشابه كالتالى: $\Delta VDF \sim \Delta ABC$
- من الأسهل أن نسجِّل أسماء المثلثات، بحيث تظهر الرؤوس المتناظرة في المثلثين بنفس الترتيب. فيما بعد نسجِّل كل تشابه حسب تناظر الرؤوس. .

تقاطع مستقيم مع مستقيمين متوازيين:

	∠1, ∠2, ∠7, ∠8	الزوايا الخارجية
1/2	∠3,∠4,∠5,∠6	الزوايا الداخلية
1/2	∠6, ∠3	الزاويتان الداخليتان المتخالفتان
4/3	∠4,∠5	
7/ 3	∠1, ∠7	الزاويتان الخارجيتان المتبادلتان
/	∠2, ∠8	2. 345
/	∠4, ∠6	الزاويتان الداخليتان المتبادلتان
1	∠3, ∠5	
5 / 6	∠1, ∠5	الزاويتان المتناظرتان
3/0	∠3,∠7	
8/7	∠2, ∠6	
/ .	∠4, ∠8	

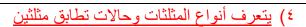
المتخالفتان: مجموع قياسهما 180

المتبادلتان / المتناظرتان / المتقابلتان بالراس: متساويتان بالقياس

س8/ في الشكل التالي حدد فيم الزوايا المجهولة :

الزاوية B = (180 – 30) = 150 درجة.

الزاوية D = (مقابلة للزاوية 30) إذاً = 30 درجة.


الزاوية C = (مقابلة للزاوية B) = 150 درجة.

الزاوية E=(C=F,D=E) (متطابقتان) E=0 درجة.

الزاوية F = زاوية T = 150 = C

الزاوية G = (كل زاويتين خارجيتين متبادلتين متطابقتان) (B = G , A = H) = 150 درجة.

الزاوية H = زاوية A = 30 درجة.

B/30

C

أنواع المثلثات :

المثلث:--

- يصنف المثلث طبقاً لـ 3 أشياء وهي : 1) زواياه.
 2) أضلاعه.
 3) رؤوسه.

تصنيف المثلث حسب الأضلاع :

خلت قالم الزاوية : به زاوية واحدة قائمة وقياسها = 90 درجة .

- طلت حاد الزاوية : مثلث جميع زواياه حادة وقياس كل زاوية أقل من 90 درجة .

- طلت منفرج الزاوية : به زاوية واحدة منفرجة ، وبه زاوية قياسها أكبر من 90 درجة .

* تصنيف المثلث حسب الأضلاع :

- مثلث منطابق الأضلاع : جميع أضلاع منطابقة وبالتالي زواياه منطابقة ، وكل زاوية = 60 درجة فيه .

- مثلث منطابق الضلعين : يوجد به ضلعان منطابقان على الأقل . وقياس زاويتيه المنطابقان = 45 درجة ، والأخرى = 90.

خلت مختلف الأضلاع: أضلاع غير متطابقة وبالتالي زواياه غير متطابقة.

حالات تطابق المثلثات:

- ASA ، AAS ، SAS , SSS مسلمة

يقصد بمسلمة SSS : هي وجود 3 أضلاع متطابقة . حيث (S : يرمز لضلع .) (side).

يَّقصد بمسلمة SAS : هي وجود ضلعان مع زاوية محصورة بينهما . حيث Angle) : (Angle).

يُقصد بمسلمة AAS : هي وجود زاويتان وضلع .

يُقصد بمسلمة ASA : هي وجود زاويتان مع ضلع محصور بينهما.

٥) يصف خصائص الأشكال الرباعية

- متوازى الأضلاع :

1) الأضلاع المتقابلة لمتوازي الأضلاع متطابقة.

الزوايا المتحالفة في متوازي الأضلاع متكاملة.

5) كلا قطري متوازي الأصلاع يقسمه إلى مثلثين متطابقين.

تحسب مساحة متوازي الأضلاع بالقانون: مساحة متوازي الأضلاع = القاعدة (b) × الارتفاع (a).

- المستطيل:

* خصائصه :

الأضلاع المتقابلة متطابقة ومتوازية ...

3) الزوايا المتحالفة متكاملة .

5) جميع الزوايا الأربع قوالم.

ملاحظة /كل مستطيل يعتبر متوازي أضلاع ، ولكن بعض متوازيات الأضلاع تكون مستطيل .

تحسب مساحة المستطيل بالقانون : مساحة المستطيل = الطول × العرض .

-المربع:

* خصائصه :

1) جميع أضلاعه متطابقة.

3) جميع زواياه قوائم .

ملاحظة / كل مربع معين وليس كل معين مربع.

- تُعطى مساحة المربع بالقانون : (طول الضلع) * (طول الضلع)

شبه المنحرف:

* خصائصه :

1) زاويتا كل قاعدة لشبه المنحوف متطابق الساقين متطابقتان .

قطرا شبه المنحرف متطابق الساقين متطابقان.

- تُعطى مساحة شبه المنحرف بالقانون : 1/2 (مجموع طولي قاعدتيه) × الارتفاع .

- لحساب القطعة المتوسطة لشبه المنحرف تعطى بالقانون التالي : 1/2 (مجموع طولي القاعدة).

C

D

القطعة الوسطى (קטע אמצעי)

تعريف: القطعة الوسطى هي القطعة الذي توصل بين منتصفي

45) قطعة المتوسط (קטע אמצעי) توازي الضلع التالت

وتساوي نصفه

46المستقيم الواصل بين منتصف ضلع المثلث والموازي للضلع التاني ينصف الضلع التالت.

47) المستقيم الواصل بين ضلعي المثلث والموازي للضلع التالث ومساو لنصفه هو قطعة المتوسط (١٥٥٧

48) القاعدة الوسطى في تلبه المنحرف توازي

القاعدتين وتساوي نصف حاصل جمعهما.

49) في شبه المنحرف مستقيم ينصف إحدى السافين F

ويوازي القاعدتين إذا هو ينصف الساق التاني.

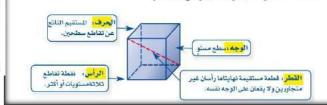
2) الزوايا المتقابلة لمتوازي الأضلاع متطابقة.

4) قطرا متوازي الأضلاع ينصف كل منهما الأخر.

2) الزوايا المتقابلة متطابقة.

4) القطران متطابقان وينصف كل منهما الآخر.

2) القطران متعامدان ومتطابقان


E

الحقوق محفوظة لقناة http://telegram.me/ques math

٦) يشرح صفات الأشكال ثلاثية الابعاد وخصائصها

ومتعدد الأسطح مجسّم له أسطح مستوية عبارة عن مضلعات. ومن المفردات المتعلقة بالمجسمات: الحرف، والوجه، والرأس، والقطر.

أمثالة العلاقات

- 🐧 سمِّ مستوَّى يوازي المستوى أب ج. . المستوى هـ و زيوازي المستوى أب جـ .
- حدّد قطعة مستقيمة مخالفة للقطعة جرز .
 - جـز و هـي متخالفتان.
- 🔞 حدّد نقطتين يمكن رسم قطر بينهما. القطعة المستقيمة التي تصل بين النقطتين ب، ي تشكّل قطرًا .
 - و تحقق من فهمك:
 - أ) حدّد تقاطع المستويين أب جـ، جـدي .

🕥 أوجد حجم المنشور الثلاثي المجاور. 5 = 7 × 3 $z = (\frac{1}{Y} \times 7 \times 7) \times 3$

 $\nabla = (\frac{1}{2} \times 7 \times 7) \times 7$ ارتفاع المنشور=١٠.

الحجم هو ٢١٠ سم".

التعبير اللفظي: حجم الأسطوانة (ح) هو ناتج ضرب مساحة القاعدة (م) بالارتفاع (ع).

> ح=مع. بالرموزء

🥻 أوجد حجم الأسطوانة المجاورة، مقربًا الجواب إلى أقرب جزء من عشرة.

منال إيجاد حجم الأسطوانة

بما أن القطر يساوي ١٣ سم، فإن نصف القطر

يساوي ٥,٦ سم.

حجم الأسطوانة. ح = ط نقاع ح = ط (٥, ٦)*×٠٢ عوض عن نق بـ ٦,٥ وعن ع بـ ٢٠.

ح ≈ ۲, ۱۵۶۲

حجم الهرم

التعبير اللفظي: حجم الهرم (ح) يساوي ثلث ناتج ضرب مساحة القاعدة (م) بالارتفاع (ع).

ارتفاع الهرم أو المخروط هو البعد العمودي بين الرأس والقاعدة.

-= + ga. بالرموزء

نموذج ،

امتالة مساحة سطح الأسطوانة

المساحة الكلية المساحة الجانبية

TY, A ≈ 5 جـ ≈ ۳۷,۷۳

المساحة الجانبية للأسطوانة ٧, ٣٧م؟ تقريبًا، والمساحة الكلية ٨, ٦٢م؟ تقريبًا.

المساحة الجانبية لسطح المنشور

يقعان في المستوى نفسه مستقيمين متخالفين.

لاحظ أن القطعتين المستقيمتين س ص وَ ل ع في الشكل المجاور غير متقاطعتين، وغير متوازيتين؛ لأنهما لا تقعان في

المستوى نفسه. ويُسمى المستقيمان اللذان لا يتقاطعان ولا

التعبير اللفظي؛ المساحة الجانبية (جـ) لسطح منشور نموذج : تساوي حاصل ضرب محيط القاعدة

(مح) في الارتفاع (ع).

بالرموزء ج= معع

المساحة الكلية لسطح المنشور

التعبير اللفظي: المساحة الكلية (ك) لسطح منشور هي مجموع المساحة الجانبية

ومساحة القاعدتين.

ك = جـ + ٢م = مح ع + ٢م بالرموزء

أمثالة مساحة سطح المنشور

جد المساحة الجانبية والكلية لسطح المنشور الرباعي المجاور. قاعدتاه مستطيلان بعدا كل منهما ٣م، ٧م.

نبدأ بإيجاد المحيط والمساحة للقاعدتين.

مساحة القاعدة محيط القاعدة

مح = ٢ الطول + ٢ العرض ق = الطول × العرض

مع = ۲۰ = (۳)۲ + (۷)۲ = مع ق = ٧×٧ = ٢١

استعمل هذه المعلومات لإيجاد المساحة الجانبية والكلية للمنشور.

المساحة الكلية المساحة الجانبية

ك = جـ + ٢م ج=معع

TAY = Y 1 x Y + Y 2 = 1 78 . = 17×7 . = - 37 فتكون المساحة الجانبية ٢٤٠م، والمساحة الكلية ٢٨٢م.

المساحة الجانبية لسطح الأسطوانة

التعبير اللفظي؛ المساحة الجانبية (جـ) لسطح أسطوانة نموذج : معيد الدائرة - ٢ مديد ارتفاعها (ع) ونصف قطر قاعدتها (نق) هي حاصل ضرب محيط القاعدة (مح)

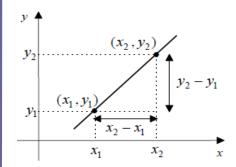
في الارتفاع (ع).

جـ = محع = ٢ ط نقع بالرموزء

المساحة الكلية لسطح الأسطوانة

التعبير اللفظي؛ المساحة الكلية (ك) لسطح أسطوانة نموذج، ارتفاعهاع ونصف قطر قاعدتها نق هي مجموع المساحة الجانبية ومساحة

ك = جـ + ٢ ط نق ٢ = ٢ ط نق ع + ٢ ط نق ٢ بالرموزء


🥤 جد المساحة الجانبية والكلية لسطح الأسطوانة المجاورة.

جـ = ٢ ط نقع ك = جـ + ٢ ط نق٢

جـ = ۲ط×۲×۳ ك = ٧,٧٣ + ٢ط (٢)٢

٧) يوجد ميل ومعادلة مستقيم في المستوى وعلاقته بمستقيم اخر

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-(y_2 - y_1)}{-(x_2 - x_1)} = \frac{y_1 - y_2}{x_1 - x_2}$$
 عند استخدام القانون نلاحظ أن:

معادلة المستقيم:

١) طريقة الميل والنقطة:

يمكن كتابة معادلة الخط المستقيم إذا كان الميل وإحداثيات نقطة معينة على الخط معروفين. لنفرض أن m هو ميل الخط والنقطة هي (x_1,y_1) . إذا كانت (x,y) نقطة أخرى على الخط إذن من قانون الميل: $m=\frac{y-y_1}{x-x_1}$

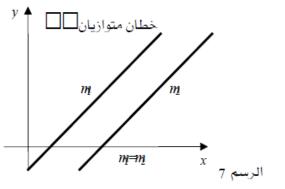
$$y = m(x - x_1) + y_1$$

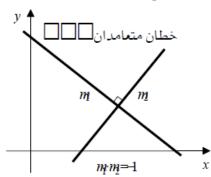
(1,-2) فيمر بالنقطة (2-1) ويمر بالنقطة (1-2) الحل:

مثال 3: أوجد معادلة الخط المستقيم الذي يمر بالنقطتين (4,3) و (2,5) الحل:

٢) طريقة الميل والجزء المقطوع:

عادة ما نحتاج إلى كتابة معادلة الخط المستقيم بطريقة أخرى تسمى طريقة الميل والجزء المقطوع. وفي هذه الحالة يكون شكل المعادلة كالتالي:


$$y = mx + b$$


حيث m هو ميل الخط و b يمثل الجزء (أو المسافة) المقطوع (a) على المحور y عند النقطة (a). وكذلك يمكن استخدام هذا الشكل من المعادلة لإيجاد معادلة الخط المستقيم كما هو موضح في المثال التالي

مثال ٥: أو جد معادلة الخط المستقيم الذي ميله يساوي 2 ويمر بالنقطة (1,3) الحل:

علاقة مستقيم بمستقيم اخر:

يمكن استخدام ميل الخط المستقيم لمعرفة هل خطان هما متوازيين أو متعامدين كما هو موضح في الرسم 8. وبالتحديد فيكون الخطان غير عموديين ومتوازيين إذا وفقط إذا كان ميلاهما متساويين الرسم 8. وبالتحديد فيكون الخطان غير عموديين ومتوازيين إذا وفقط إذا كان ميلاهما متساويين مع تغيير $(m_1 = m_2)$ ويكونان متعامدين إذا وفقط إذا كان ميل أحد الخطوط يساوي معكوس الثاني مع تغيير الإشارة $(m_1 = -\frac{1}{m_2})$.

مثال ٢: أوجد معادلة الخط المستقيم الذي يمر من خلال النقطة (1 −, 2) في كل من الحالات التالية:

- 2x-3y=5 الخط موازي للخط المستقيم (a
- 2x 3y = 5 الخط متعامد على الخط المستقيم (b

الحل:

نقاط تقاطع الخط المستقيم مع المحور X والمحور V:

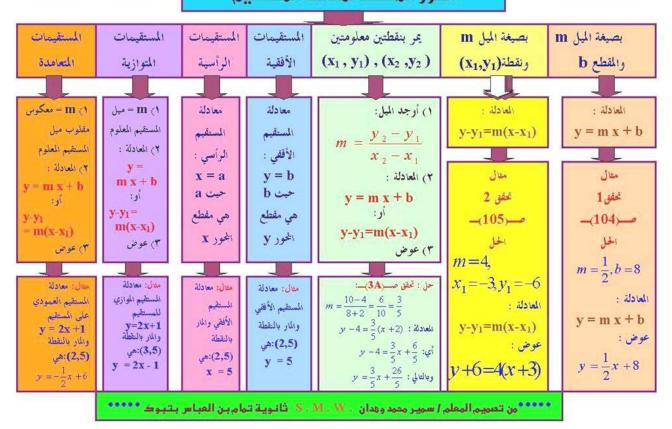
عادة ما نحتاج إلى معرفة نقاط تقاطع الخط المستقيم مع المحاور. تكون إحداثية y تساوي الصفر لنقطة تقاطع الخط مع المحور x وتكون إحداثية x تساوي الصفر لنقطة تقاطع الخط مع المحور y. أي نعوض في المعادلة بـ x = 0 لإيجاد إحداثيات نقطة التقاطع مع المحور x ثم بـ x = 0 لإيجاد إحداثيات نقطة التقاطع مع المحور x.

مثال y: أوجد إحداثيات نقاط تقاطع الخط المستقيم التالي: y = 2x + 3 مع المحاور. الحل:

الحقوق محفوظة لقناة http://telegram.me/ques math

خلاصة معادلات الخطوط المستقيمة

 $y = m(x - x_1) + y_1$ شكل المعادلة (الميل ونقطة): • شكل المعادلة (الميل ونقطة)

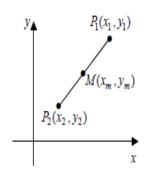

y = mx + b النيل والجزء المقطوع): • شكل المعادلة (الميل والجزء المقطوع):

ψ = mx
 شكل المعادلة (الخط يمر بنقطة الأصل):

y = b الخط الأفقى(الميل يساوى صفر):

x = a الخط العمودي (الميل غير معرف):

العور المختلفة لمعادلة المستقيم


الحقوق محفوظة لقناة http://telegram.me/ques math

Test of the second

٨) يوجد المسافه بين نقطتين او نقطه ومستقيم في المستوي

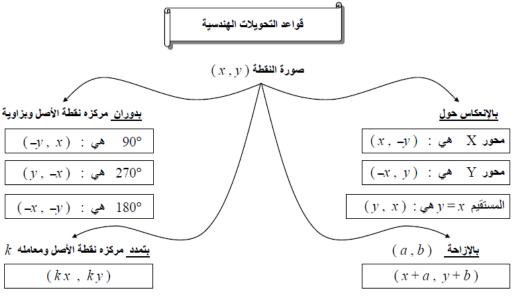
و (
$$x_2$$
, y_2) و (x_1 , y_1) المسافة بين نقطتين : $P_1(x_1,y_1)$ و $P_1(x_1,y_1)$ المسافة بين نقطتين :
$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

 $P_2(7,2)$ و $P_1(-3,4)$ و $P_2(7,2)$ و المسافة بين النقطتين $P_1(-3,4)$ و الحل:

 $P_1(x_1, y_1)$ $(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

نقطة منتصف القطعة المستقيمة:

 $P_2(7,2)$ و $P_1(-3,4)$ و و $P_1(-3,4)$ و $P_1(-3,4)$ و $P_1(-3,4)$ و $P_1(-3,4)$ و $P_1(-3,4)$ و $P_1(-3,4)$ الحل:


المسافة بين نقطة ومستقيم:

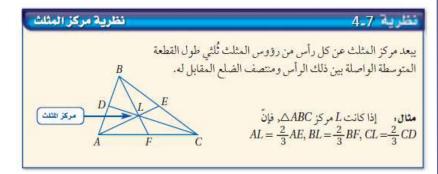
a x + b y + c = 0 عن المستقيم عن (x_1, y_1) عن

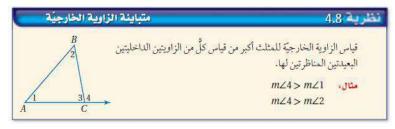
3x - 4y + 4 = 0 عن المستقيم (-5, 1) عن النقطه الخل:

الحقوق محفوظة لقناة http://telegram.me/ques_math

٩) يمثل التحويلات الهندسية (التناظر ، الانسحاب ، الدوران ، مغير البعد)

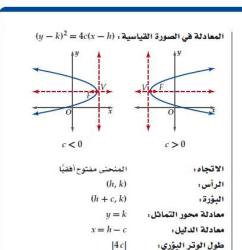
ملاحظات

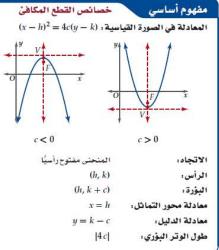

- 1) الدوران المذكور أعلاه عكس اتجاه عقارب الساعة
- (Y) الدوران بزاوية قياسها X ثم انعكاس في محور X ثم انعكاس في محور X ثم انعكاس في محور X
- آ) الإزاحة تركيب انعكاسين حول مستقيمين متوازيين . (مقدارها يساوي مثلي المسافة بين المستقيمين المتوازيين) .
 4) الدوران تركيب انعكاسين حول مستقيمين متقاطعين . (بزاوية قياسها مثلي قياس الزاوية الحادة أو القائمة بين المستقيمين)


١٠) يستخدم العلاقات المترية في المثلث

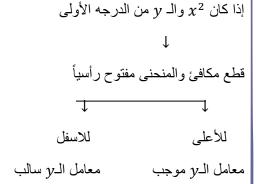
القطع المتوسطة وارتفاعات المثلث: القطعة المتوسطة في مثلث هي قطعة مستقيمة

طرفاها أحد رؤوس المثلث ونقطة منتصف الضلع المقابل لذلك الرأس.


ولكل مثلث ثلاث قطع متوسطة تتقاطع في نقطة واحدة. تسمّى نقطة تلاقي القطع المتوسطة للمثلث مركز المثلث. ومركز المثلث هو نقطة توازن ذلك المثلث.



١١) يتعرف القطوع المخروطية ويميز معادلاتها وخصائصها ويمثلها بيانيا

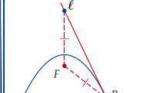

١) القطع المكافئ المعادلة في

كيف نحدد خصائص القطع:

إذا كان y^2 والـ x من الدرجه الأولى \downarrow قطع مكافئ والمنحنى مفتوح أفقياً \downarrow

ليمين ليسار اليمار x معامل الـ x موجب معامل الـ x سالب

مثال 7.4: أثبت أن المعادلة 0 = 9 + 9 + 8x - y تمثل قطعًا مكافعًا وأوجد البؤرة والدليل والرأس والمحور وارسم المنحنى.


الحل: بإكمال المربع لـ ٧ نحصل على:

$$y^2 + 2y = 8x - 9$$

وبالتالى فإن p=2، h=1, p=2 وبذلك يكون القطع المكافئ فى الاتجاه القياسى ورأسه (1,-1) ومفتوح لليمين ومن ثم فالبؤرة عند (1,-1)=(2+1,-1)=(3,-1). ويكون دليل القطع المكافئ هو الخط x=h-p=1-2=-1

معادلة مماس منحنى القطع المكافئ

مفهوم أساسي مماس منحنى القطع المكافئ

مماس القطع المكافئ عند النقطة P المغايرة لرأسه هو مستقيم يحوى أحد أضلاع مثلث متطابق الضلعين بحيث تكون:

- القطعة المستقيمة الواصلة بين P والبؤرة هي أحد الضلعين
 المتطابقين.
- القطعة المستقيمة الواصلة بين البؤرة ونقطة تقاطع المماس مع محور التماثل عن الضلع الثاني.

مثال : أكتب معادلة مماس منحنى القطع المكافئ عند النقطة المعطاة

$$-4x = (y+5)^2$$
; $(0,-5)$

أولا: نضع معادلة المنحنى في الصورة القياسية ونحدد الرأس والبؤرة:

$$c = -1$$
 : $4c = -4$ الله بما أن

$$(y - k)^2 = 4c (x - h)$$
 المنحنى مفتوح افقيا

$$(0,-5)=(h,k)$$
 #

$$(y-(-5))^2 = -4(x-0)$$

$$(-1, -5) = (h + c, k)$$
 البؤرة

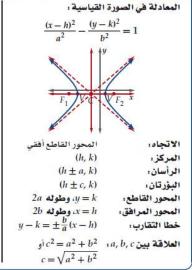
ثانيا: نوجد المسافة بين البؤرة F ونقطة التماس P :

$$d = \sqrt{(-1-0)^2 + (-5-(-5))^2} = \sqrt{1} = 1$$

$$(-2, -5) = (-1 - 1, -5) = (h + c - d, k)$$
 النقطة الآخرى للمماس الخرى المماس الفطة الأخرى المماس الفطة الفلة ا

$$m=\frac{-5-(-5)}{-2-0}=0$$
 ميل المماس ميل المماس

خصائص القطع الناقص :


y = -5

٢) القطع الناقص:

$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	الصورة القياسية :	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	الصورة القياسية :
V ₁ F ₁ C C F ₂ V ₂ x	الشكل اليائي :	V F ₁ C F ₂ V ₂	الشكل البياني :
المحور الأكبر رأسي	الاتجاه:	المحور الأكبر أفقي	الاتجاه:
(h, k)	المركز :	(h, k)	المركز :
$(h, k \pm c)$	البؤرتان :	$(h \pm c, k)$	البؤرتان :
$(h, k \pm a)$	الرأسان :	$(h \pm a, k)$	الوأسان
$(h \pm b, k)$	الرأسان المرافقان	$(h, k \pm b)$	الرأسان المرافقان :
x = h	المحور الأكبر:	y = k	المحور الأكبر:
y = k	المحور الأصغر:	x = h	المحور الأصغر:
$c^2 = a^2 - b^2$ $c = \sqrt{a^2 - b^2}$	a,b,c العلاقة بين	$ \oint c^2 = a^2 - b^2 $ $ c = \sqrt{a^2 - b^2} $	a,b,c العلاقة بين

٣)القطع الزائد:

خصائص القطع الزائد $-\frac{(x-h)^2}{2} = 1$ المحور القاطع رأس الاتجاه: (h, k) المركزء $(h, k \pm a)$ الرأسانء $(h, k \pm c)$ البؤرتان: 2a وطوله x = hالمحور القاطع: 2b وطوله y = kالمحور المرافق: $y - k = \pm \frac{a}{b}(x - h)$ خطا التقارب: العلاقة بين $c^2 = \frac{a^2 + b^2}{a^2 + b^2}$ ، a, b, c أو $c = \sqrt{a^2 + b^2}$

كيف نحدد نوع القطع من المعادله المعطاه:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

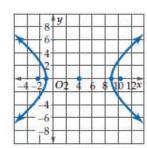
يكون قطع مخروطي وتكون الأشكال الممكنة كما يلي:

$$(B=0)$$
 if $(xy=0)$ look 21 (A)

• إذا كانت
$$A = C$$
 سيكون المنحنى دائرة. فإذا كان $A = C$ فإن

(B) ويصفة عامة:

• إذا كانت
$$B^2 - 4AC = 0$$
 فهو منحنى قطع مكافئ.


• إذا كانت
$$0 < 4AC$$
 فهو منحنى قطع ناقص.

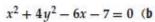
• إذا كانت
$$0 < 4AC$$
 فهو منحنى قطع زائد.

كتابة المعادلة العامة لقطع مخروطي على الصورة القياسية

اكتب كلًّا من المعادلتين الآتيتين على الصورة القياسية، ثم حدَّد نوع القطع المخروطي الذي تمثُّله، ومثَّل منحناه بيانيًّا:

$$16x^2 - 25y^2 - 128x - 144 = 0$$
 (a

المحادلة الأصلية
$$16x^2 - 25y^2 - 128x - 144 = 0$$


ومُع الحدود المتشابهة،
$$16(x^2 - 8x + \blacksquare) - 25y^2 = 144 + 16(\blacksquare)$$

حنّل ويستحد
$$16(x^2 - 8x + 16) - 25y^2 = 144 + 16(16)$$

مربع کامل
$$16(x-4)^2 - 25y^2 = 400$$

$$\frac{(x-4)^2}{25} + \frac{y^2}{16} = 1$$

.(4, 0) فإنها معادلة قطع زائد مركزه
$$\frac{(x-h)^2}{b^2} - \frac{(y-k)^2}{b^2} = 1$$
 بما أن المعادلة قطع زائد مركزه

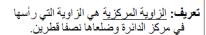
المعادلة الأصلية
$$x^2 + 4y^2 - 6x - 7 = 0$$

جمْع الحدود المتشابهة
$$(x^2 - 6x) + 4y^2 = 7$$

أكمل المربع
$$(x^2 - 6x + 9) + 4y^2 = 7 + 9$$

حلّ ويسّعل
$$(x-3)^2 + 4y^2 = 16$$

$$\frac{(x-3)^2}{16} + \frac{y^2}{4} = 1$$

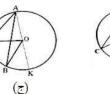

.
$$(3,0)$$
 من المعادلة على الصورة $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{b^2} = 1$ فإنها معادلة قطع ناقص مركزه

الدائرة

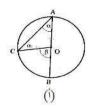
تعريف : الدائرة هي المحل الهندسي لمجموعة النقاط التي تبعد بعد ثابت عن نقطة معينة .

تسمى هذه النقطة مركز الدائرة

52) طريق ثلاث نقاط ليست على مستقيم واحد يمر محيط دائرة واحد



تعريف: الزاوية المحيطية هي الزاوية التي رأسها على محيط الدائرة وضلعاها وتران في الدائرة



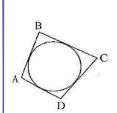
64) الزاوية المحيطية تساوي نصف الزاوية المركزية المرتكزة على نفس القوس

$$\prec BAC = \frac{1}{2} \prec BOC$$

65) الزوايا المحيطية المرتكزة على أقواس متساوية في نفس الدائرة هي أيضا زوايا متساوية فيما بينها والعكس صحيح

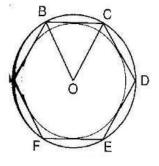
37.4

66) الزاوية المحيطية المرتكزة على القطر تساوي °90 (أي قائمة)و العكس صحيح BC قطر←──→ BC=90°


81) مجموع أي ضلعين متقابلين في الشكل الرباعي الذي يحصر دائرة يساوي مجموع الضلعين المتقابلين الأخرين 82)إذا اكان مجموع ضلعين متقابلين في شكل رباعي يساوي مجموع الضلعين المتقابلين الآخرين قيمكن حصر دائرة داخله

79) مجموع كل زاويتين متقابلتين في شكل رباعي محصور داخل

80) كل شكل رباعي فيه مجموع كل زاويتين مقابلتين °180


يساوي °180

يمكن حصره داخل دائرة

تعريف: المضلع المنتظم هو المضلع الذي فيه الأضلاع مساوية والزوايا متساوية أيضا

83) كل مضلع منتظم يمكن حصره في دائرة, ويمكن حصر دائرة داخله. وللدائر تين مركز مشترك.

مجموع قياسات الزوايا الداخلية لمضلع:-

 $S_n=180(\,n-2)$ تُعطى بالعلاقة : $S=180(\,n-2)$ ولحساب عدد الأضلاع يُعطى بالعلاقة

180(n-2) - لحساب زاوية من زواياه المنتظمة نطبق القانون :

الصورة القياسية لمعادلة الدائرة

مضهوم أساسي

الصورة القياسية لمعادلة الدائرة التي مركزها (h,k) ونصف قطرها r هي: $(x-h)^2+(y-k)^2=r^2$

يمكنك استعمال الصورة القياسية لمعادلة الدائرة لكتابة معادلة دائرة إذا علمت المركز ونصف القطر.

كتابة معادلة دائرة مركزها وقطرها معلومان

مشال 5

اكتب معادلة الدائرة التي مركزها (1,2) وقطرها 8.

الصورة القياسية لمعادلة الدائرة
$$(x-h)^2+(y-k)^2=r^2$$

$$(h, k) = (-1, 2), r = \frac{8}{2} = 4$$
 $(x - (-1))^2 + (y - 2)^2 = 4^2$

$$(x+1)^2 + (y-2)^2 = 16$$

🔽 تحقق من فهمك

مثال 6

كتابة معادلة دائرة طرفا قطر فيها معلومان

(7,6), (-1,-8) اكتب معادلة الدائرة إذا كان طرفا قطر فيها

الخطوة 1: أوجد المركز.

$$(h, k) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$(x_1, y_1) = (7, 6), (x_2, y_2) = (-1, -8)$$

$$= \left(\frac{7 + (-1)}{2}, \frac{6 + (-8)}{2}\right)$$

$$= \left(\frac{6}{2}, \frac{-2}{2}\right)$$

$$=(3,-1)$$

الخطوة 2: أوجد طول نصف القطر.

ميغة المسافة بين نقطتين
$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(x_1, y_1) = (7, 6), (x_2, y_2) = (3, -1)$$
 = $\sqrt{(3 - 7)^2 + (-1 - 6)^2}$

اطرح =
$$\sqrt{(-4)^2 + (-7)^2}$$

$$=\sqrt{65}$$

١٢) يتعرف الدوال المثلثية والعلاقة بينها

الضلع المقابل الضلع المجاور C

يُستعمل الرمز الإغريقي θ (ويقرأ ثيتا) عادة للدلالة على قياس زاوية حادة في المثلث القائم الزاوية. حيث يُستعمل الوتر والضلع المقابل للزاوية التي قياسها θ والضلع المجاور لها في تعريف الدوال المثلثية الست.

مضهوم أساسي جميع الدوال المثلثية في مثلث قائم الزاوية

التعبير اللفظي: إذا كانت heta تمثل قياس زاوية حادة في مثلث قائم الزاوية، فإن الدوال المثلثية الست تعرف بدلالة الوتر والضلع المقابل والضلع المجاور.

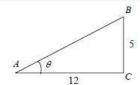
$$\cos \theta (\theta) = \frac{|\theta|_{\text{totally}}}{|\theta|_{\text{totally}}} = (\frac{\theta}{\theta} | \theta)$$

$$\cos \theta (\theta | \theta_{\text{جیب}}) = \frac{|\theta_{\text{spec}}|}{|\theta_{\text{spec}}|}$$

$$\sec \theta \left(\theta \right) = \frac{\text{الوتر}}{\text{المجاور}}$$

$$\tan \theta (\theta \frac{|\theta|}{|\theta|}) = \frac{1}{100}$$

$$\cot \theta (\theta \frac{\partial \cot \theta}{\partial \cot \theta}) = \frac{\partial \cot \theta}{\partial \cot \theta}$$
المقابل


$$\sin \theta = \frac{4}{5} \qquad \cos \theta = \frac{3}{5} \qquad \tan \theta = \frac{4}{3}$$

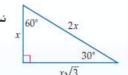
$$\tan \theta = \frac{4}{3}$$

$$\csc \theta = \frac{5}{4}$$

$$\csc \theta = \frac{5}{4} \qquad \sec \theta = \frac{5}{3} \qquad \cot \theta = \frac{3}{4}$$

$$\cot \theta = \frac{3}{4}$$

مثال ٥: احسب قيم مثاثيات الزاوية θ


أولا نحتاج إلى إيجاد طول الوتر وهذا ممكن باستخدام قانون

فيثاغورث للمثلث القائم الزاوية ABC:

تتكرر الزوايا التي قياساتها °60°, 45°, 30° كثيرًا في حساب المثلثات.

مضهوم أساسى

بعض قيم الدوال المثلثية للزوايا الخاصة

$$\sin 30^\circ = \frac{1}{2}$$

نستنتج من المثلث الذي قياسات زواياه
$$^{\circ}-60^{\circ}-60^{\circ}$$
 أن:
$$\sin 30^{\circ} = \frac{1}{2} \qquad \cos 30^{\circ} = \frac{\sqrt{3}}{2} \qquad \qquad \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

$$\tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

$$\tan 60^\circ = \sqrt{3}$$

$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$
 $\cos 45^\circ = \frac{\sqrt{2}}{2}$ $\tan 45^\circ = 1$

طريقة سهلة لحفظ الدوال المثلثية لبعض الزوايا الخاصه

مثال 3 ایجاد طول ضلع مجهول

استعمل دالة مثلثية لإيجاد قيمة x. قرب إلى أقرب جزء من عشرة إذا لزم. طول الوتر يساوي 8. والطول المجهول هو الضلع المجاور للزاوية °30. استعمل دالة جيب التمام لإيجاد قيمة x.

والهجاور يد
$$\cos\theta=\frac{16}{100}$$
 دالة جيب النهام $\cos\theta=\frac{100}{100}$ دالة جيب النهام $\cos 30^\circ=\frac{x}{8}$ $\cos 30^\circ=\frac{x}{2}$ $\cos 30^\circ=\frac{x}{8}$ $\frac{\sqrt{3}}{2}=\frac{x}{8}$ $\frac{8\sqrt{3}}{2}=x$

6.9 ≈ x

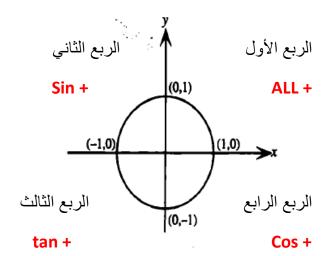
ملخص المفهوم

يُظهر الشكل المجاور قياسات الزوايا الخاصة بالدرجات وبالراديان.

من المفيد أن تحفظ قياسات الزوايا الخاصة الآتية بالدرجات وبالراديان؛ فقياسات الزوايا الخاصة الأخرى ما هي إلا مضاعفات لقياسات هذه الزاويا،

$$30^{\circ} = \frac{\pi}{6}$$
 $45^{\circ} = \frac{\pi}{4}$

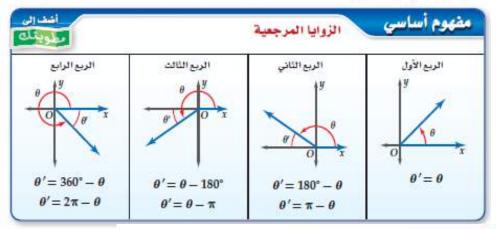
$$60^{\circ} = \frac{\pi}{3}$$
 $90^{\circ} = \frac{\pi}{2}$

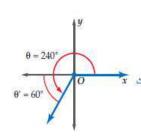

وهناك العديد من العلاقات المثلثية الهامة:

متطابقات فيثاغورث. لجميع قيم ؛ المعرفة لكل من الطرفين فإن:

 $\cos^2 t + \sin^2 t = 1 + \tan^2 t = \sec^2 t + \cot^2 t + 1 = \csc^2 t$

- 2. متطابقات المقلوب. لجميع قيم ؛ المعرفة لكل من الطرفين فإن: $\csc t = \frac{1}{\sin t}$ $\sec t = \frac{1}{\cos t}$ $\cot t = \frac{1}{\tan t}$
- متطابقات خارج القسمة. لجميع قيم 1 المعرفة لكل من الطرفين


$$\tan t = \frac{\sin t}{\cos t} \qquad \cot t = \frac{\cos t}{\sin t}$$


الدوال المثلثية باستعمال الزوايا المرجعية ، إذا كانت θ زاوية غير ربعية مرسومة في الوضع القياسي، فإن راويتها المرجعية ، θ هي الزاوية الحادة المحصورة بين ضلع انتهاء الزاوية θ والمحور x. والجدول الآتي يُبين قواعد إيجاد قياس الزاوية المرجعية للزاوية θ حسب الربع الذي يقع فيه ضلع الانتهاء لها، حيث "360 > θ > "0 أو θ > θ > 0.

استعمال الزاوية المرجعية لإيجاد قيمة دالة مثلثية

أوجد قيمة الدالة المثلثية في كلِّ ممًّا يأتي:

cos 240° (a

يقع ضلع الانتهاء للزاوية °240 في الربع الثالث.

بإيجاد قياس الزاوية المرجعية
$$heta'= heta-180^\circ$$
 $heta=240^\circ$ $=240^\circ-180^\circ=60^\circ$ $=240^\circ=-\cos 60^\circ=-rac{1}{2}$ $=240^\circ=-\cos 60^\circ=-rac{1}{2}$

 $\csc \frac{5\pi}{6}$ (b)

يقع ضلع الانتهاء للزاوية 57 في الربع الثاني.

$$\theta' = \frac{\pi}{6} \qquad O \qquad \theta = \frac{5\pi}{6}$$

بإيجاد قياس الزاوية المرجعية
$$heta'=\pi- heta$$
 بإيجاد قياس الزاوية المرجعية $heta=\frac{5\pi}{6}=\pi-\frac{5\pi}{6}=\frac{\pi}{6}$ $=\pi-\frac{5\pi}{6}=\frac{\pi}{6}$ csc $=\pi$ rad = 30° $=\pi$ csc 30°

$$\frac{\pi}{6} \operatorname{rad} = 30^{\circ} = \csc 30^{\circ}$$

$$\csc 30^\circ = \frac{1}{\sin 30^\circ} = 2$$

الحقق من فهمك أو حد قدمة الدالة المثلثية المثلثين المثلثية المثلثين المثلثية المثلثية المثلثية المثلثية المثلثية المثلثية المثلثية المثلثية المثلث

cos 135° (4A

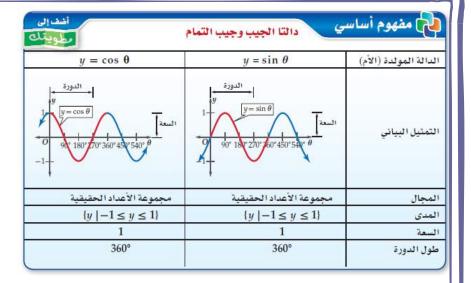
بما أن طول الدورة لكلِّ من الدالتين هو °360، فإن قيم كلِّ من الدالتين تتكرر كل °360.
لذلك فإن
$$\sin{(x+360^\circ)}=\sin{x}$$
, $\cos{(x+360^\circ)}=\cos{x}$

 $\tan \frac{5\pi}{6}$ (4B)

مثال 4 حساب قيم الدوال المثلثية

أوجد قيم كل دالة ممّا يأتي:

$$\sin \frac{11\pi}{4} \text{ (b} \qquad \cos 480^{\circ} \text{ (a}$$


$$\sin \frac{11\pi}{4} = \sin \left(\frac{3\pi}{4} + \frac{8\pi}{4}\right) \qquad \cos 480^{\circ} = \cos (120^{\circ} + 360^{\circ})$$

$$= \sin \frac{3\pi}{4} \qquad \qquad = \cos 120^{\circ}$$

$$= \frac{\sqrt{2}}{2} \qquad \qquad = -\frac{1}{2}$$

🕎 اتحقق من فهمك

 $\cos\left(-\frac{3\pi}{4}\right)$ (4B $\sin 420^{\circ}$ (4A

أضف إلى	دالة الظل	مفهوم أساسي
التمثيل البياني للدالة التورة ا	$y = \tan \theta$	الدالة المولدة (الأم)
$1 - \frac{y}{2} = \frac{y}{1 - \frac{1}{2}}$	$\{\theta\big \theta\neq90^\circ+180^\circ n,n\epsilon\mathrm{Z}\}$	المجال
	مجموعة الأعداد الحقيقية	المدى
-90° - 90° 270° 450° •	غير معرّفة	السعة
	180°	طول الدورة

	المتطابقات ا	a _c ata.	
لمتطابقات النسبية		$\tan \theta = \frac{\sin \theta}{\cos \theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
تطابقات المقلوب	$\tan \theta = \frac{1}{\cot \theta}$	$\cos \theta = \frac{1}{\sec \theta}$	$\sin \theta = \frac{1}{\csc \theta}$
معابعات المعلوب	$\cot \theta = \frac{1}{\tan \theta}$	$\sec \theta = \frac{1}{\cos \theta}$	$\csc \theta = \frac{1}{\sin \theta}$
تطابقات فيثاغورس	$\cot^2\theta+1=\csc^2\theta$	$\tan^2\theta + 1 = \sec^2\theta$	$\sin^2\theta + \cos^2\theta = 1$
تطابقات الزاويتين	$\sec \theta = \csc \left(\frac{\pi}{2} - \theta\right)$	$\tan \theta = \cot \left(\frac{\pi}{2} - \theta \right)$	$\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$
لمتتامتين	$\csc\theta = \sec\left(\frac{\pi}{2} - \theta\right)$	$\cot \theta = \tan \left(\frac{\pi}{2} - \theta\right)$	$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$
تطابقات الدوال الزوجية أو	$\tan (-\theta) = -\tan \theta$	$\cos(-\theta) = \cos\theta$	$\sin\left(-\theta\right) = -\sin\theta$
<u> فردي</u> ة	$\cot\left(-\theta\right) = -\cot\theta$	$\sec(-\theta) = \sec\theta$	$\csc\left(-\theta\right) = -\csc\theta$
	$= \cos A \cos B + \sin A \sin B$	$\sin A \sin B$ $\cos (A - B)$	$\cos(A+B) = \cos A \cos B - \sin A$
متطابقات المجموع والفرق	$= \sin A \cos B - \cos A \sin B$	os $A \sin B$ $\sin (A - B)$	$\sin\left(A+B\right) = \sin A \cos B + \cos B$
	$= \frac{\tan A - \tan B}{1 + \tan A \tan B}$	tan(A - B)	$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
متطابقات ضعف الزاوية	$\cos 2\theta = 1 - 2\sin^2\theta$	$\cos 2\theta = 2\cos^2\theta - 1$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
		$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$	$\sin 2\theta = 2\sin \theta \cos \theta$
تطابقات نصف الزاوية	$\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$	$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$	$\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}$

١٣) يتعرف المتجهات ويجري العمليات عليها

مفهوم أساسي طول المتجه في المستوى الإحداثي

اذا كان ${f v}$ متجهًا، نقطة بدايته (x_1,y_1) ، ونقطة نهايته (x_2,y_2) ، فإن طول ${f v}$ يُعطى بالصيغة:

$$|\mathbf{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

وإذا كانت (a, b) هي الصورة الإحداثية للمتجه ٧ فإن:

$$|\mathbf{v}| = \sqrt{a^2 + b^2}$$

مثال 2 إيجاد طول متجه

. B(3,-5) ونقطة نهايته \overline{AB} الذي نقطة بدايته A(-4,2) ، ونقطة نهايته

مفهوم أساسي العمليات على المتجهات

يدًا كان (b_1,b_2) عددًا حقيقيًّا، فإن: $\mathbf{a}=\langle\,a_1,a_2\rangle\,,\,\mathbf{b}=\langle\,b_1,b_2\rangle$ إذا كان

$$\mathbf{a}-\mathbf{b}=\langle\,a_1-b_1,\,a_2-b_2\,
angle$$
طرح متجهین

$$k\mathbf{a} = \langle ka_1, ka_2 \rangle$$
 ضرب متجهِ في عددِ حقيقيً

مثال 3 العمليات على المتجهات

: $\mathbf{a} = \langle 2, 5 \rangle$, $\mathbf{b} = \langle -3, 0 \rangle$, $\mathbf{c} = \langle -4, 1 \rangle$ أو جد كلًّا مما يأتي للمتجهات $\mathbf{c} + \mathbf{a}$ (a

مفهوم أساسي الضرب الداخلي لمتجهين في المستوى الإحداثي

: كالآتي ${f a}=\langle a_1,a_2\rangle$, ${f b}=\langle b_1,b_2\rangle$ كالآتي ${f a}$ • ${f b}=a_1b_1+a_2b_2$

 $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

الصورة الإحداثية لـ \overline{AB} الذي نقطة بدايته $A(x_1,\,y_1)$ ، ونقطة نهايته $B(x_2,\,y_2)$ ،

$$\langle x_2 - x_1, y_2 - y_1 \rangle$$

العلاقة بين الضرب الداخلي وطول المتجه

البرهان

 $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$ اثبات آن:

 $\mathbf{u} = \langle u_1, u_2 \rangle$ افترض أن:

الضرب الداخلي
$$\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2$$

$$(u_1^2 + u_2^2)$$
 اکتب علی صورة مربع جذر $= \left(\sqrt{u_1^2 + u_2^2}\right)^2$

$$\sqrt{u_1^2 + u_2^2} = |\mathbf{u}| \qquad \qquad = |\mathbf{u}|$$

ستبرهن الخصائص الثلاث الأولى في الأسئلة 37-35

مثال 2 استعمال الضرب الداخلي لإيجاد طول متجه

. $a = \langle -5, 12 \rangle$ استعمل الضرب الداخلي؛ لإيجاد طول

.
$$|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$
 : فإن $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$ نما أن

$$\mathbf{a} = \langle -5, 12 \rangle$$
 $|\langle -5, 12 \rangle| = \sqrt{\langle -5, 12 \rangle \cdot \langle -5, 12 \rangle}$

$$=\sqrt{(-5)^2+12^2}=13$$

مثال 3 إيجاد قياس الزاوية بين متجهين

أوجد قياس الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي:

$$\mathbf{u} = \langle -5, -2 \rangle$$
, $\mathbf{v} = \langle 4, 4 \rangle$

الزاوية بين متجهين
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

١٤) يحل مسائل تطبيقية على الهندسة المستوية والفراغية

$B(x_2, y_2, z_2)$ O M $A(x_1, y_1, z_1)$

مفهوم أساسي صيغتا المسافة ونقطة المنتصف في الفضاء

 $A(x_1,\,y_1,\,z_1)$, $B(x_2,\,y_2,\,z_2)$ بالصيغة: بالصيغة

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

وتعطى نقطة المنتصف M لا \overline{AB} بالصيغة:

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

العمليات على المتجهات في الفضاء

مضهوم أساسي

اذا كان $\langle a = \langle a_1, a_2, a_3 \rangle$ ه متجهين في الفضاء، وكان k عددًا حقيقيًّا ، فإن : $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$ عددًا حقيقيًّا ، فإن : $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$ طرح متجهين $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$ ضرب متجه في عدد حقيقيً

المضرب الاتجاهي هو نوع آخر من الضرب بين المتجهات في الفضاء، وبخلاف الضرب الداخلي، فإن <mark>الضرب الاتجاهي</mark> لمتجهين a , b هو متجه وليس عددًا، ويُرمز له بالرمز a × b، ويُقرأ a cross b ، ويكون المتجه b عموديًّا على المستوى الذي يحوي المتجهين a , b .

الضرب الاتجاهي للمتجهات في الفضاء

مضهوم أساسي

a, b فإن الضرب الاتجاهي المتجهين a = a_1 i + a_2 j + a_3 k, b = b_1 i + b_2 j + b_3 k إذا كان: a × b = $(a_2b_3-a_3b_2)$ i - $(a_1b_3-a_3b_1)$ j + $(a_1b_2-a_2b_1)$ k هو المتجه:

الحقوق محفوظة لقناة http://telegram.me/ques_math

Test >

((معيار 4))

١) يتعرف وحدات القياس (وحدة قياس الزوايا ، الطول ، المحيط ، المساحة ، الحجم ، درجة الحرارة ، الزمن) ٢) يحول بين وحدات القياس المختلفة ضمن النظام نفسه

(٤) وحداث قياس الحجم :-

۱ کیلو متر مکعب = ۱۰۰۰ × ۱۰۰۰ × ۱۰۰۰ متر مکعب ۱ متر مكعب = ۱۰۰۰ دسم مكعب

۱ متر مكعب = ۱۰۰۰ × ۱۰۰۰ سم مكعب

۱ دسم مكعب = ۱۰۰۰ سم مكعب

۱ سم مكعب = ۱۰۰۰ ملم مكعب

(٥) وحدات قياس الوزن :-

١ طن = ١٠٠٠ كيلو غرام

١ كيلو غرام = ١٠٠٠ غرام

۱ ملغم = ۱۰۰۱ غرام

(٦) وحدة قياس حجم السائل:-

۱ متر مكعب = ۱۰۰۰ لتر

١ لتر = ١ دسم مكعب

(٧) السنة الكبيسة:

هي السنة التي تقبل القسمة على ٤ وعدد أيامها ٣٦٦ يوم ويكون فيها فبراير ٢٩ يوم .

(٨) السنة البسيطة :-

هي السنة التي لا تقبل القسمة على ؛ وعدد أيامها ٣٦٥ يوم ويكون فيها فبراير ٢٨ يوم .

(١) وحدات قياس الزمن :-

السنة = ١٢ شهر

الشهر = ٤ أسابيع

الشهر = ٢٠ يوم

الأسبوع = ٧ أيام

اليوم = ٢٤ ساعة

الساعة = ١٠ دقيقة

الدقيقة = ٦٠ ثانية

(٢) وحدات قياس الطول:-

١ كيلو متر = ١٠٠٠ متر

۱ متر = ۱۰ دسم

۱ متر = ۱۰۰ سم

۱ دسم = ۱۰ سم

۱ سم = ۱۰ ملم

(٣) وحدات قياس المساحة:-

۱ كيلو متر مربع = ١٠٠٠٠٠ متر مربع

۱ متر مربع = ۱۰۰ دسم مربع

۱ مشر مربع = ۱۰۰۰۰ سم مربع

۱ دسم مربع = ۱۰۰ سم مربع

١ سم مربع = ١٠٠ ملم مربع

ملاحظة: التحويل من وحدة الى أخري:

عند التحويل الكيلومترات الى سنتيمترات

- اذا کان کل ۱ کیلو متر = (۱۰۰۰) متر
- اذا کان کل ۱ متر = (۱۰۰) سم
- اذن اذا أردنا ان نعرف عدد السنتيميترات في ١ كيلو متر يمكننا معرفة ذلك كالتالي: نقوم بضرب ۱۰۰۰ متر × ۱۰۰ سم
 - اذن:
 - (۱) کیلومتر = ۱۰۰۰ × ۱۰۰۰ = ۱۰۰۰۰ سم

عند التحويل من سنتيميترات الى متر

- کل ۱ متر = (۱۰۰۰) سم
- اذن اذا كان لدينا ١٠٠٠٠٠ سم واردنا ان نحولهم الى أمتار فلابد من القسمة على ١٠٠ سم كالتالي:
 - ۱۰۰۰۰۰ سم ÷ ۱۰۰ متر = ۱۰۰۰ متر
 - اذن ۱۰۰۰۰ سم = ۱۰۰۰ متر

التحويل من سنتيميتر الى كيلو متر

- فاذا کان کل ۱ کیلومتر = ۱۰۰۰۰۰ سنتیمتر
- اذن فاذا كان لدينا ١٠٠٠٠٠ سم و اردنا تحوليهم الى كيلومتر فلابد من القسمة على ١٠٠٠٠٠ سم
 - ۱۰۰۰۰۰ سم ÷ ۱۰۰۰۰۱ سم = ۱ کلومتر

٣) يوجد محيط ومساحة المثلث والدائرة والأشكال الرباعية

٤) يحسب حجوم بعض المجسمات ويوجد مساحتها الجانبية والكلية

نصف قطر rی ضلع

b القاعده ارتفاع hا طول lwعرض

الصيغ

الهندسة الإحداثية

نقطتين

الميل

على خط الأعداد:

d = |a - b|

المسافة بين في المستوى الإحداثي: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

 $m = \frac{y_2 - y_1}{x_2 - x_1}, x_2 \neq x_1$

على خط الأعداد:

 $M = \frac{a+b}{2}$

 $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ نقطة المنتصف

 $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$

 $C = \pi d$ $\int C = 2\pi r$ الدائرة P=4s

المريع

 $P = 2\ell + 2w$ المستطيل

المساحة

A = bh if $A = \frac{1}{2}d_1 d_2$

المُعيَّن

 $A = \frac{1}{2}bh$ المثلث

 $A=\pi r^2$ الدائرة

 $A = \frac{N}{360} \cdot \pi r^2$ القطاع الدائري

 $A = s^2$

المربع A = bh $A = \ell w$

A = bh متوازي الأضلاع

 $A = \frac{1}{2} h(b_1 + b_2)$ شبه المنحرف

المساحة الجانبية

 $L = \frac{1}{2}P\ell$ الهرم

 $L = \pi r \ell$

المخروط

L = Ph

المنشور

 $L = 2 \pi r h$

الأسطوانة

المساحة السطحية

 $T = \pi r \ell + \pi r^2$ المخروط

T = Ph + 2B

المنشور

 $T = 4\pi r^2$ الكرة $T = 2\pi r h + 2\pi r^2$

الأسطوانة

الهرم

 $T = \frac{1}{2}P\ell + B$

الحجم

 $V = \frac{1}{3} Bh$

الهرم

 $V = s^{3}$

 $V\!=\!rac{1}{3}\,\pi r^2 h$ المخروط

 $V = \ell w h$ متوازي المستطيلات

المكعب

 $V = \frac{4}{3} \pi r^3$

الكرة

V = Bh

المنشور

 $V = \pi r^2 h$

الأسطوانة

٥) يحل مسائل تتضمن مقياس رسم بإستخدام النسبه والتناسب ٦) يوظف التقريب في القياس

مقياس الرسم = الطول في الرسم الطول الحقيقي

مع مراعاة تحويل الطولين إلى وحدة واحدة

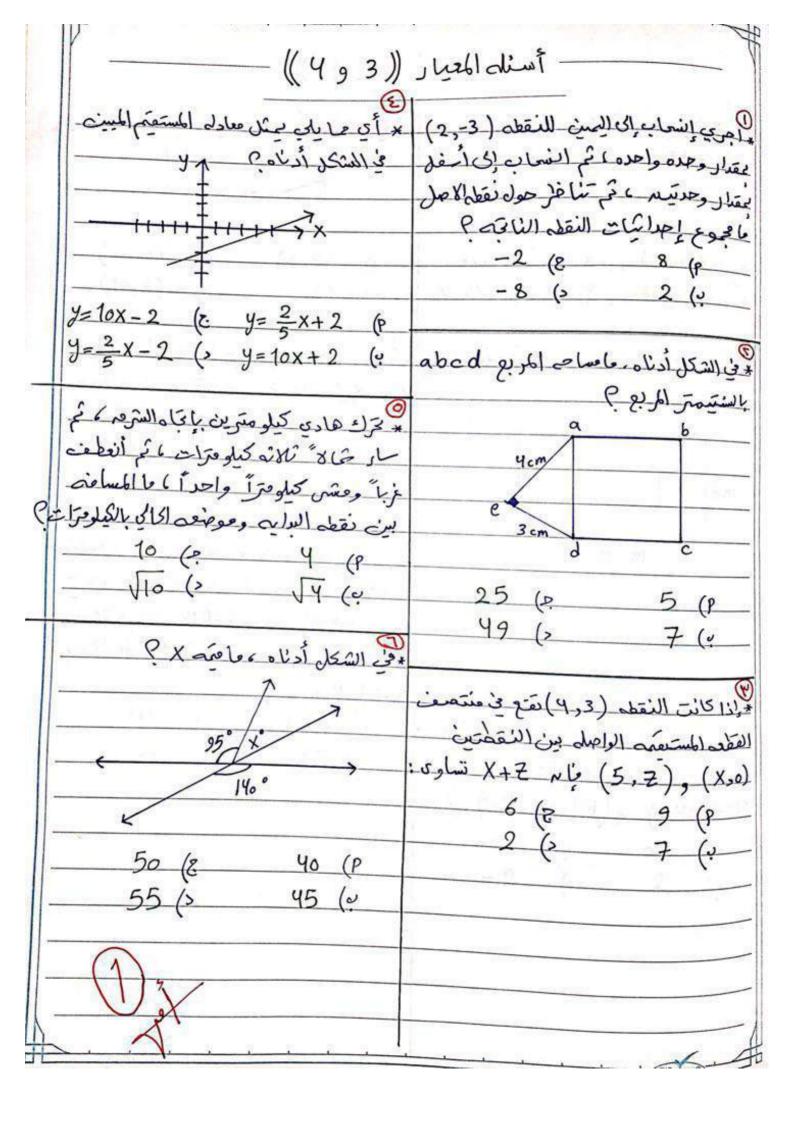

مثال (١): المسافة بين بلدين ٣٥ كيلو متراً ، فإذا كانت المسافة بين البلدين على الخريطة ٥ سنتيمترات . أوجد مقياس الرسم الذي رُسمت به هذه الخريطة ؟

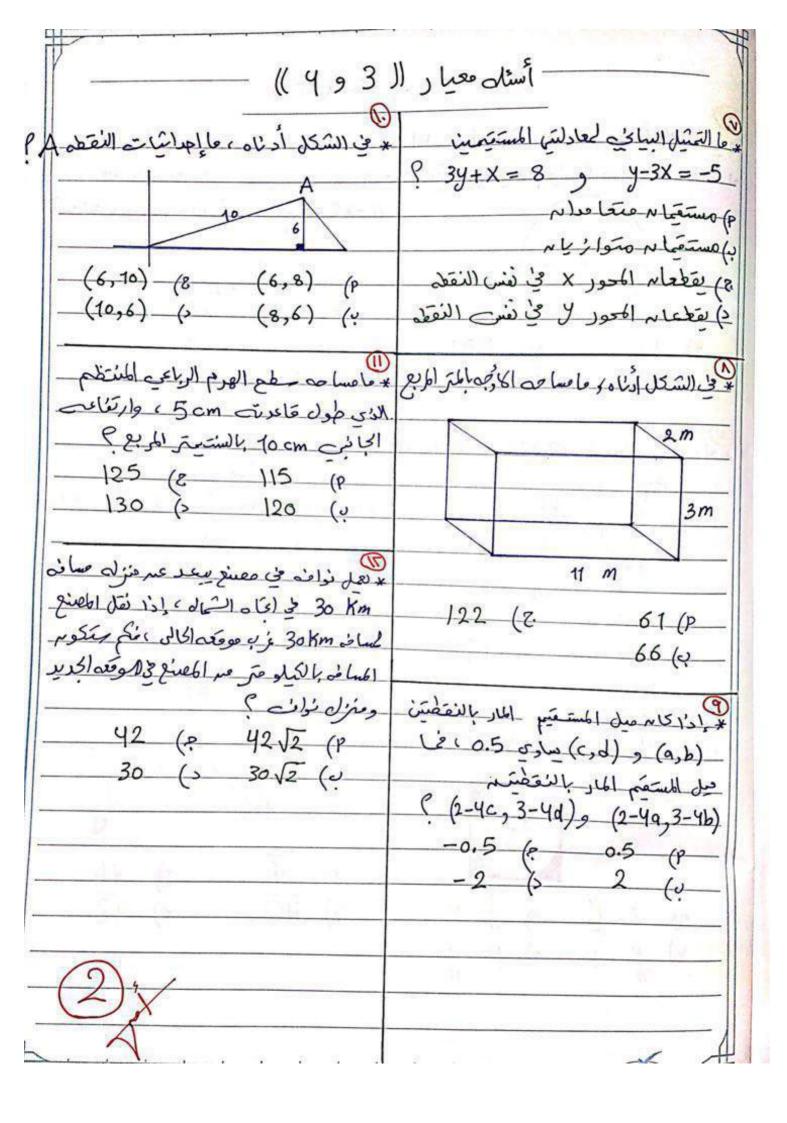
الحل:-مقياس الرسم = الطول في الرسم الطول الحقيقي

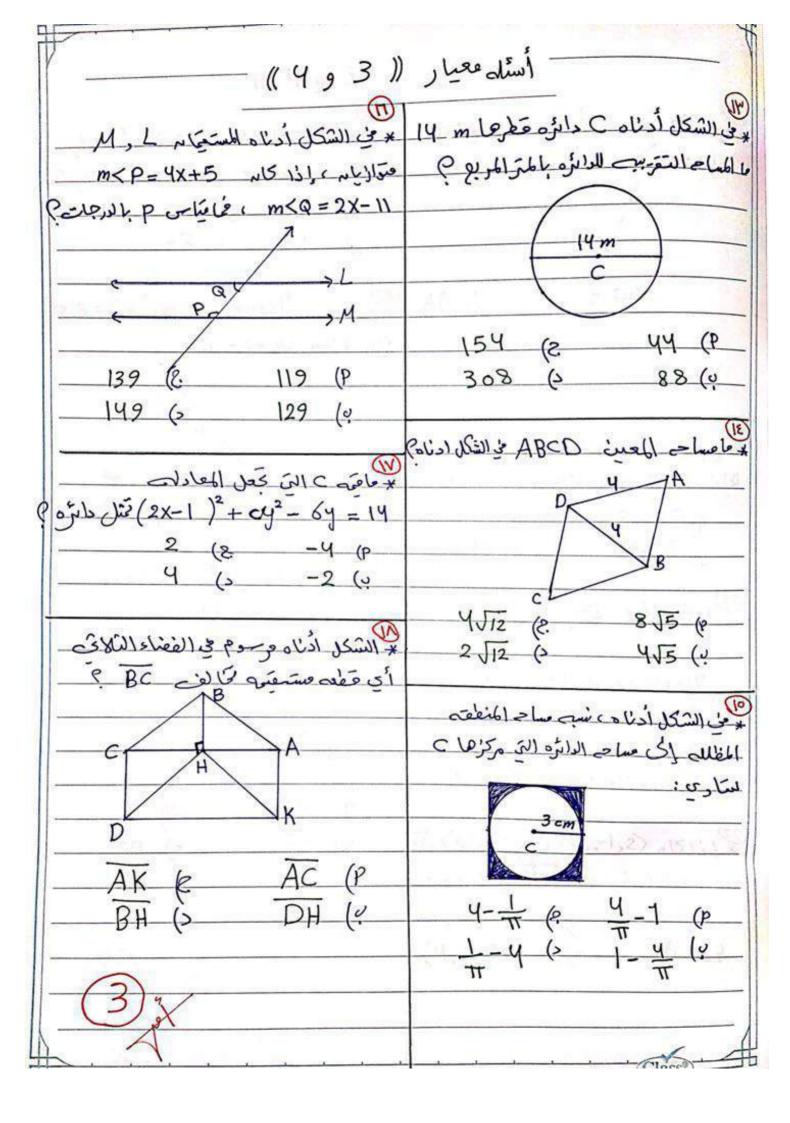
مقياس الرسم = 0 = 1... مقياس الرسم = 7.... = 1...

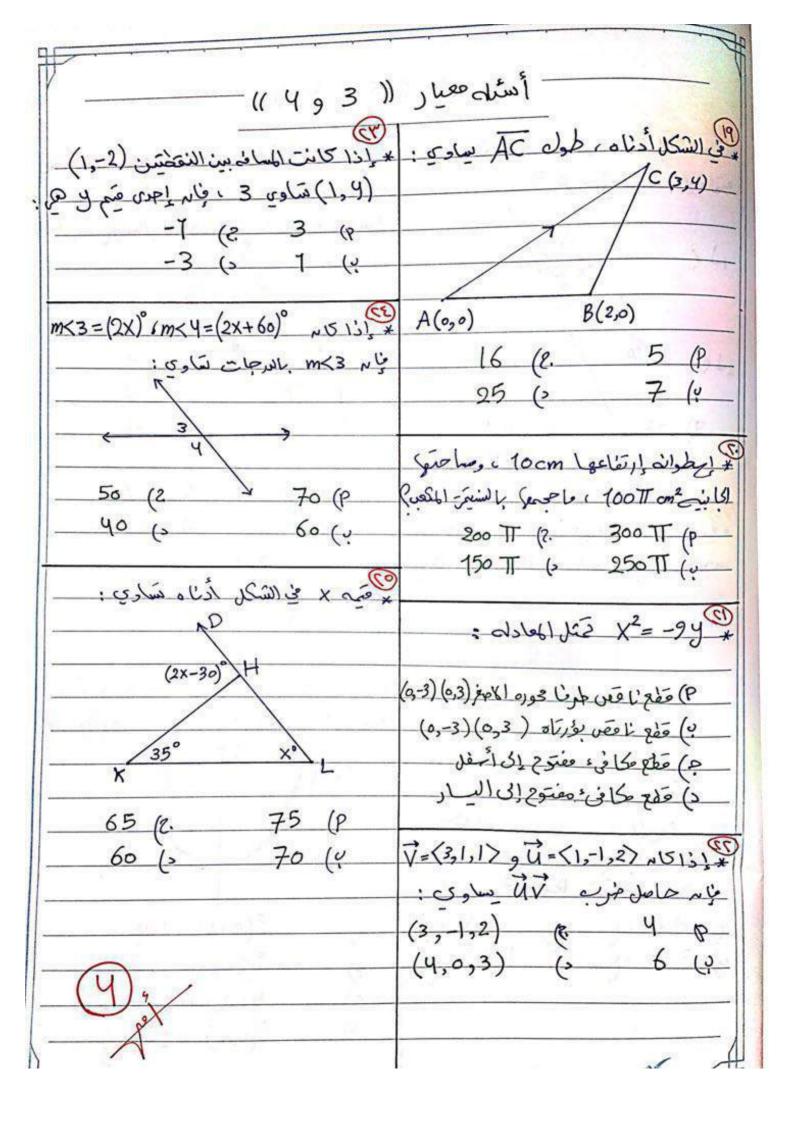
مقياس الرسم = ١ : ٧٠٠٠٠٠

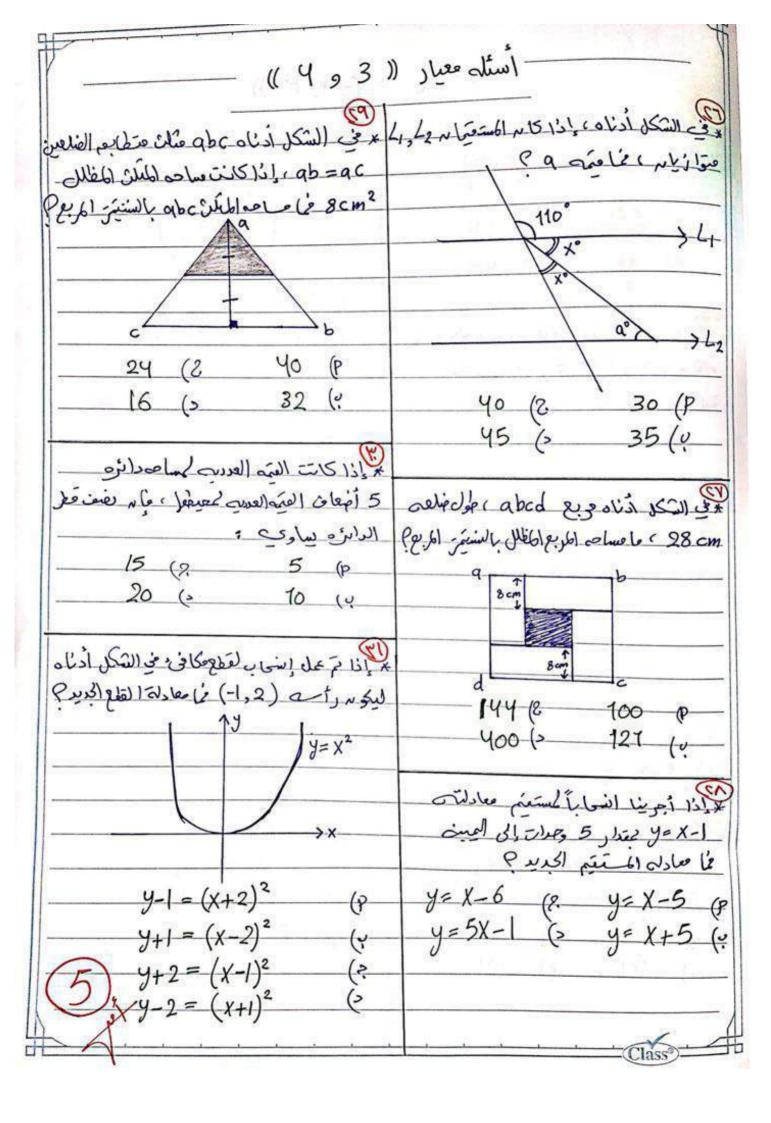
الحقوق محفوظة لقناة http://telegram.me/ques_math

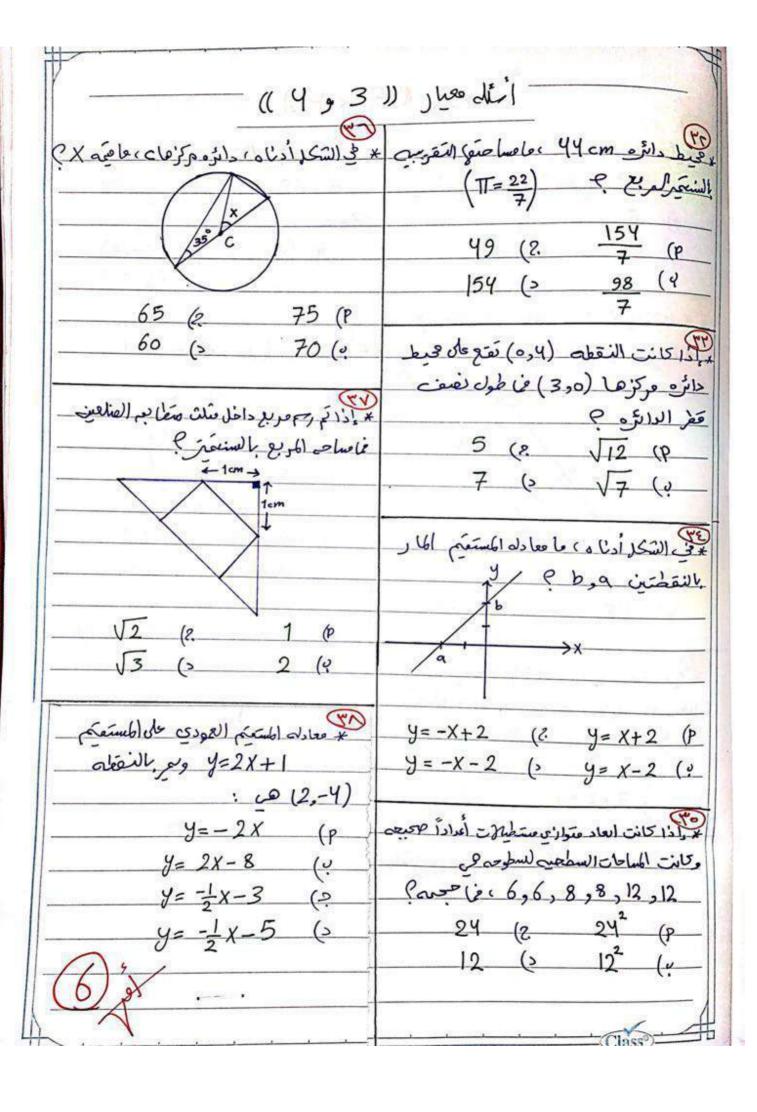


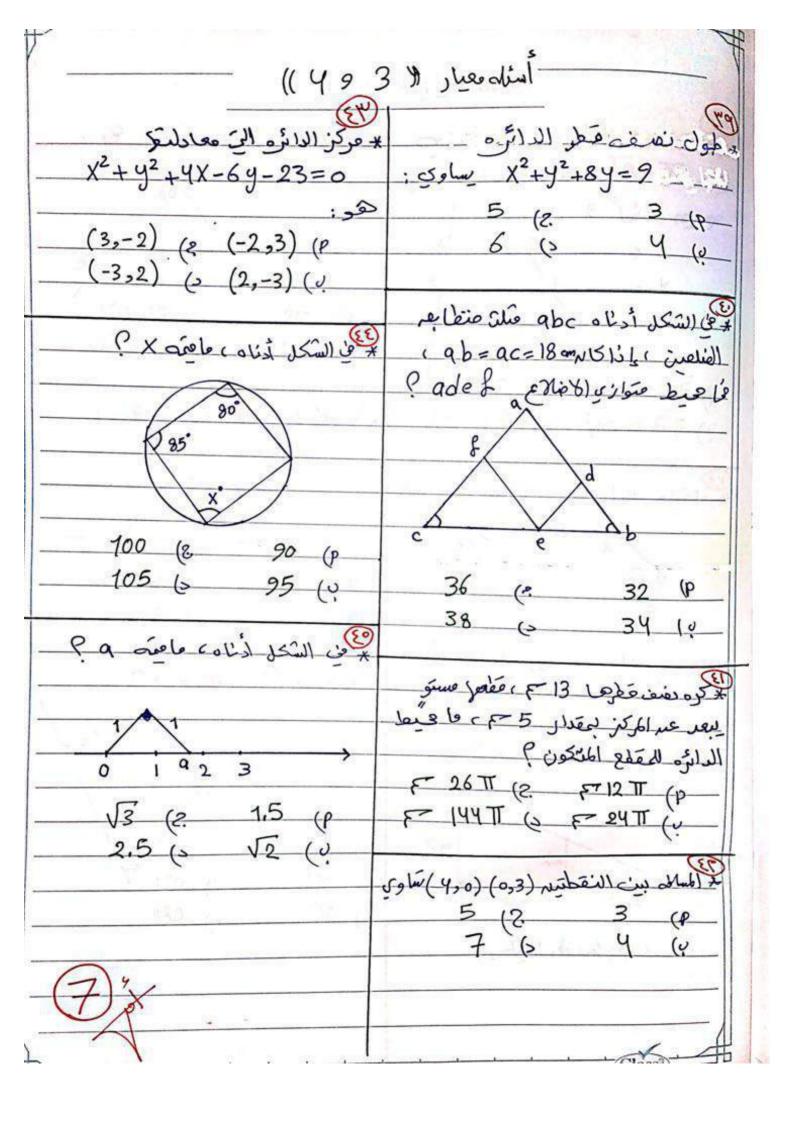

اسئلة المعيار الثالث و الرابع

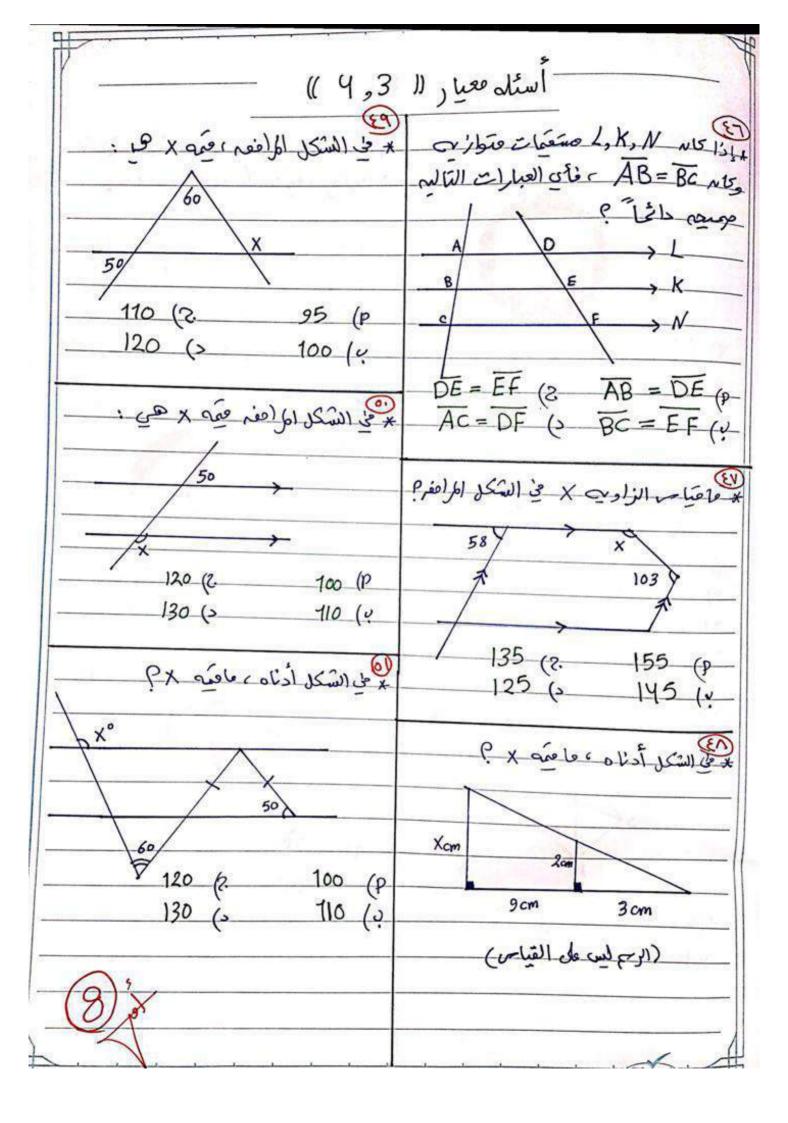

((الهندسة والقياس))

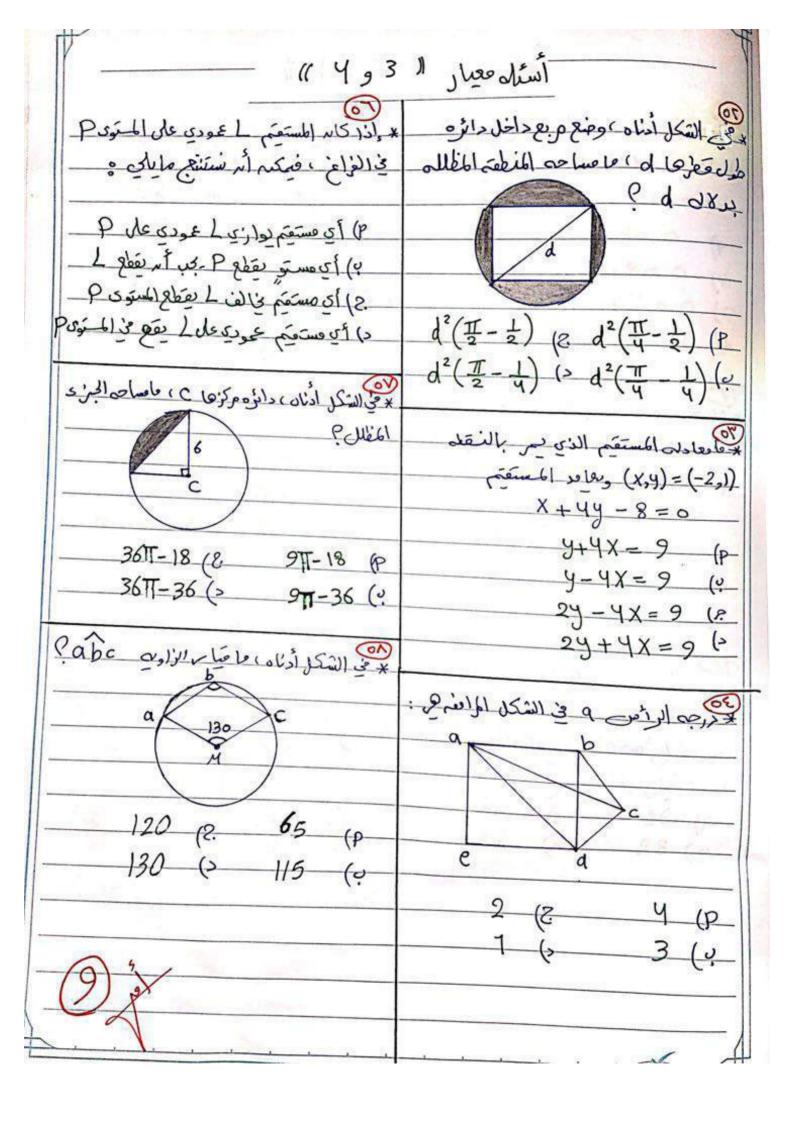

الحقوق محفوظة لقناة http://telegram.me/ques_math

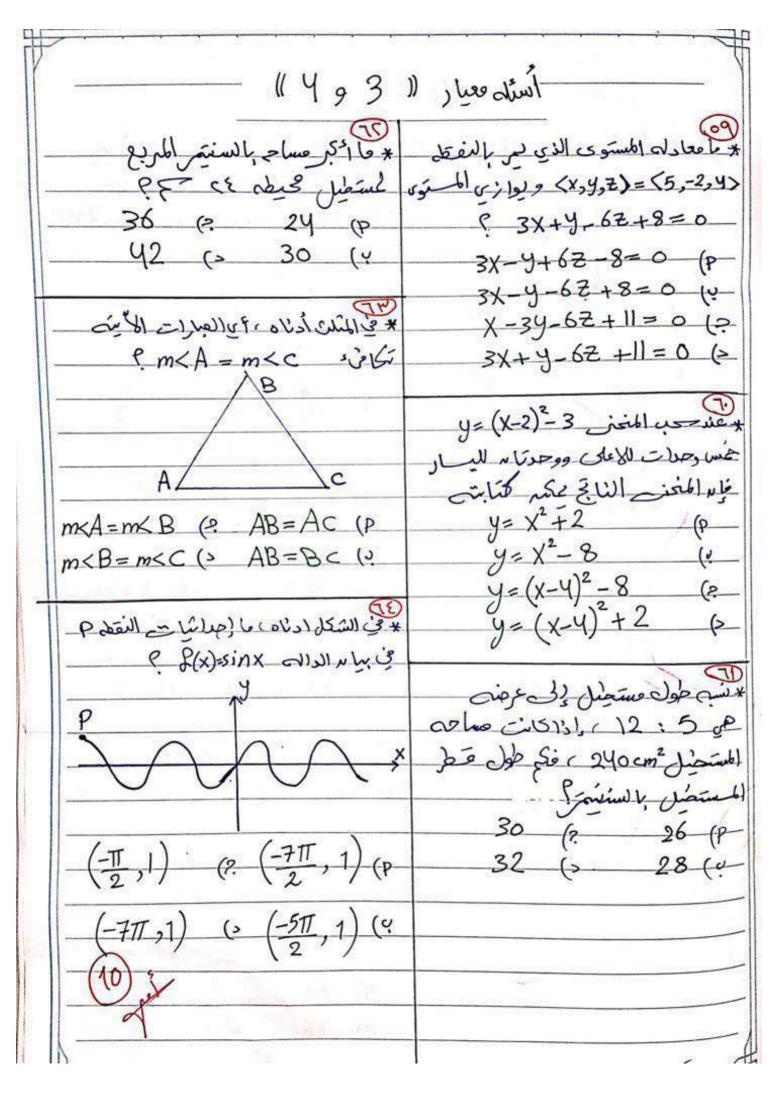


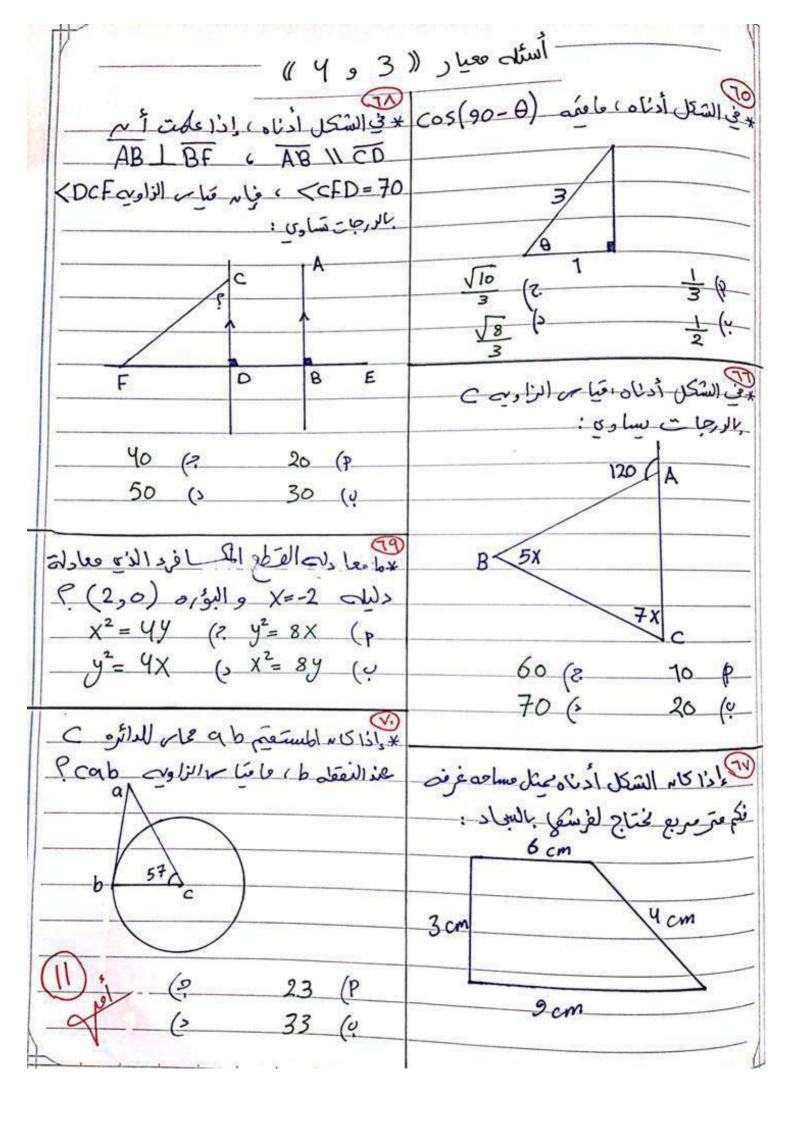








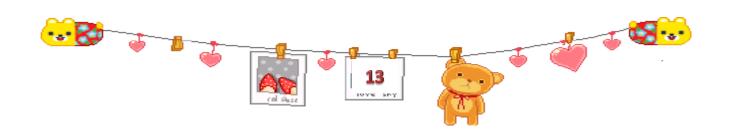




ملخص المعيار 5 و 6

المؤشرات		المعيار
يجمع البيانات ويمثلها بشكل مناسب (الجداول، القطاعات	٠.	
الدائرية، المدرج الإحصائي) ويحللها ويفسرها يتعرف الدراسات المسحية, وأنواع العينات ويستعملها في	7.	
التنبؤ	12.27	
يحسب مقاييس النزعة المركزية والتشتت لمجموعة من	۳.	المعيار ٣. ٤. ٥: يتعرف مفاهيم
البيانات		الإحصاء والاحتمالات وتطبيقاتها
يتعرف مسلمات الاحتمال ومفاهيمه الأساسية (الاستقلال,	٤.	A. Carrier and Car
التنافي, التوزيع المنفصل والمتصل) ويحل مسائل عليها		A Comment of the Comm
يحسب معاملات الارتباط ويفسرها	٥.	J.
يحل مسائل تطبيقية على الإحصاء والاحتمالات	.1	
يتعرف الأنماط ويمثلها ويحللها ويعممها	٠,	
يتعرف مبادئ العد, والتباديل والتوافيق, ونظرية ذات	٦.	المعيار ٣. ٤. ٦: يتعرف الرياضيات المتقطعة وتطبيقاتها
الحدين		
يتعرف أساسيات نظرية الأشكال	.٣	
يحل مسائل تطبيقية على التلوين والأشكال وطرق العد	٤.	

- (n-1)! عدد التباديل الدائرية لn من العناصر مرتبة على دائرة بدون نقطة مرجع ثابته تساوي +
- 🚣 عدد التباديل الدائرية لـ n من العناصر مرتبة على دائرة بنقطة مرجع ثابتة تساوي n! "تباديل خطية ".


هامش خطأ المعاينة

- $\pm rac{1}{\sqrt{n}}$ عند سحب عينة حجمها n من مجتمع كلي فإنه يمكن تقريب هامش الخطأ في المعاينة بالقيمة $\pm rac{1}{\sqrt{n}}$
 - يتعرف على معامل الارتباط:

معامل الارتباط يبين وجود علاقة خطية بين متغيرين وهو رقم يترواح بين 1,1-

تفسير قيم معامل الارتباط:

المعنى	قيمة معامل الارتباط
ارتباط طردي تام	+1
ارتباط طردي قوي جدا	(من 0.90 إلى 0.99)
ارتباط طردي قوي	(من 0.70 إلى 0.89)
ارتباط طردي متوسط	(من 0.50إلى 0.69)
ارتباط طردي ضعيف	(من 0.30 إلى 0.49)
ارتباط طردي ضعيف جداً	(من 0.01 إلى 0.29)
لا يوجد ارتابط	0
ارتباط عكسي ضعيف جداً	(من0.01- إلى 0.29-)
ارتباط عكسي ضعيف	(من0.30- إلى 0.49-)
ارتباط عكسي متوسط	(من-0.50 إلى 0.69-)
ارتباط عكسي قوي	(من 0.70- إلى 0.89-)
ارتباط عكسي قوي جدأ	(من0.90-إلى 0.99-)
ارتباط عكسي تام	-1

• يتعرف على مبدأ العد الاساسى:

 $n \times m$: هي n ، وللحادثة a هي a ، وللحادثة a هي a ، فإن عدد النواتج الممكنة للحادثة a متبوعة بالحادثة a

• يتعرف على المضروب و التباديل والتوافيق:

الاحتمال والتباديل: عدد طرق اختيار r عنصر من n عنصر مع مراعاة الترتيب يساوي nPr.

الاحتمال والتوافيق :عدد طرق اختيار r عنصر من n عنصر مع إهمال الترتيب يساوي nCr.

$$n! = n(n-1)(n-2) \dots \times 3 \times 2 \times 1$$

$$nPr = \frac{n!}{(n-r)!}$$
 التباديل

$$nCr = \frac{n!}{r!(n-r)!}$$
 التوافيق

مثال: أوجد قيمة ما يلي:

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$
 (1

مثال: كم عدد يمكن تكوينه من الأرقام 2,4.1.3 بحيث يكون أقل من 400

العدد مكون من 3 خانات وهي الآحاد والعشرات والمئات يمكن وضع الأرقام 2.4.1.3 في خانة المئات

عدد الأعداد المكونة هي $48 = 4 \times 4 \times 3$

مثال : بكم طريقة يمكن اختيار طالبين من 15طالب

نلاحظ أن الترتيب غير مهم في هذا السؤال ولذلك نستخدم التوافيق

$${}^{15}_{2}C = \frac{15 \times 14}{2} = 105$$

مثال : بكم طريقة يمكن أختيار عريف ونائب عريف لفصل يتكون من 15طالب

نلاحظ أن ترتيب مهم في هذا السؤال ولذلك نستخدم التباديل

$$^{12}_{2}P = 15 \times 14 = 210$$

مثال : رمي مكعبان متمايزان ومرقمان مرة واحدة فقط فما احتمال أن يظهر العدد نفسة على كل من وجهي المكعبين أو أن يكون مجموع العددين الظاهرين يساوي 9

$$p(A) = \frac{6}{36}$$
, $p(B) = \frac{4}{36}$

$$p(A \cup B) = \frac{6}{36} + \frac{4}{36} = \frac{10}{36} = \frac{5}{18}$$

مثال : في تجربة رمي مكعب الأرقام مرة واحدة فقط , إذا كان A حدث ظهور عدد أقل من 5 ، B حدث ظهور عدد زوجي أوجد كل من الاحتمالات التالية :

- 1) احتمال ظهور عدد أقل من 5
 - 2) احتمال ظهور عدد زوجي
- 3) احتمال ظهور عدد زوجي أقل من 5

الحل:

1) احتمال ظهور عدد أقل من 5 عدد العناصر الأقل من 5 يساوي 4

$$p(A) = \frac{4}{6} = \frac{2}{3}$$

2) احتمال ظهور عدد زوجي عدد الأعداد الزوجية في مكعب الارقام 3

$$p(B) = \frac{3}{6} = \frac{1}{2}$$

3) احتمال ظهور عدد زوجي أقل من 5 عدد الاعداد الزوجية الأقل من 5 في مكعب الارقام يساوي 2

$$p(A \cap B) = \frac{2}{6} = \frac{1}{3}$$

• يتعرف على احتمال المشروط

الاحتمال المشروط: إذا كانت A,B حادثتين غير مستقلتين فإن احتمال المشروط لوقوع الحادثة B إذا عُلم أن الحادثة A قد وقعت يعرف بالقانون:

$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

مثال : عقد معلم حصة مراجعة اختيارية لطلابه لتحسين درجتهم في الاختبار وكانت النتيجة كما بالجدول المقابل ، فإذا اختير طالب عشوائي ، فما احتمال أن يكون قد تحسن علماً بأنه حضر المراجعة؟

يتون ته تعس هم باد معمر المراجعة.	ت	تحسن	لم يتحسن
نفرض أن A هي حادثة من حضروا المراجعة عدد عناصر يساوي15 ونفرض أن B حادثة من تحسنت درجتهمــــــ			<u> </u>
(v.)	حضر المراجعة	12	3
ايسااوي 12 مادثة من حضر المراجعة وتحسنت درجتهم ، عدد عناصر $(B \cap A)$ يسااوي 12 $B \cap A$			
$p(B A) = rac{p(A \cap B)}{p(A)} = rac{(B \cap A)}{(A)}$ عدد عناصر $p(B A) = rac{p(A \cap B)}{p(A)} = rac{12}{15} = rac{4}{5}$	لم يحضر المراجعة	4	6

	التمثيل الإحصائي
يفضل استعماله	نوع التمثيل
عند توضيح عدد القيم لكل صنف من أصناف البيانات.	الأعمدة
عند توضيح مقاييس التشتت لمجموعة من البيانات.	الصندوق وطرفاه
عند مقارنة جزء من البيانات بالنسبة إلى المجموع.	القطاعات الدائرية
عند توضيح تكرار البيانات الموزعة في فئات متساوية.	المدرج التكراري
عند توضيح تغير البيانات في فترة زمنية معينة.	لوحة الخطوط
عند توضيح تكرار كل قيم <mark>ة</mark> من قيم البيانات .	التمثيل بالنقاط
عند عرض قيم البيانات بصورة فردية مكثفة.	الساق والورقة
عند توضيح ارتباط المفردات بعضها ببعض من خلال	أشكال ڤن
مجموعات مترابطة في البيانات.	

- و يتعرف على مبدأ العد والحوادث المستقلة و المتنافية وغير المتنافية
 - و يتعرف على مفهوم الاحتمال
- $0 \le p(A) \le 1$ فإن $p(A) \le 1$ ترمز لاحتمال وقوع الحدث p
- $f{\cdot}$ احتمال وقوع الحادثة المستحيلة يساوي $f{0}$ اما احتمال وقوع الحادثة المؤكدة يساوي $f{1}$.
 - الحادثة البسيطة هي الحادثة التي تحتوي على عنصر واحد فقط.
- $p(A) = \frac{n}{N} = \frac{n}{N}$ فيان عدد عناصر الحدث n تساوي n وعدد عناصر فضاء التجربة يساوي n فإن عدد عناصر الحدث n
 - احتمال الحوداث المستقلة:

التعبير اللفظي: نجد احتمال حادثتين مستقلتين يضرب احتمال الحادثة الأولى في احتمال الحادثة الثانية.

 $p(A \cap B) = p(A) \times p(B)$: الرموز

• احتمال الحوادث الغير مستقلة:

التعبير اللفظي: إذا كانت الحادثتان AوB غير مستقاتين فإن احتمال حدوثهما معاً هو حاصل ضرب احتمال الحادثة A في احتمال الحادثة B بعد حصول الحادثة A

$$p(A \cap B) = p(A) \times p(\frac{B}{A})$$
 الرموز:

• الحوادث المتنافية:

$$p(A \cup B) = p(A) + p(B)$$

• الحوادث الغير متنافية:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

• الحوادث المكملة:

احتمال الحدث المكمل : إذا كان p(A) احتمال وقوع الحدث A فإن .

$$\bar{A}$$
المكمل الحدث المكمل $p(\bar{A}) = 1 - p(A)$.

مثال: إذا كان احتمال سقوط %70 فأوجد احتمال عدم سقوطه ؟

A هو حدث سقوط المطر

هو حدث عدم سقوط المطر $ar{A}$

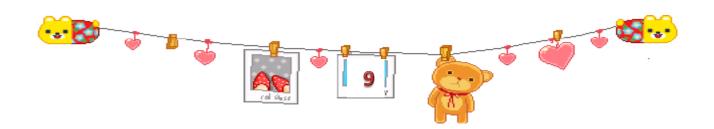
 $P(\bar{A})=1-p(A)=1-70\%=30\%$

• يتعرف على القطاعات الدائرية

تستعمل القطاعات الدائرية لمقارنة أجزاء من البيانات بمجموعة البيانات كلها؛ حيث تمثل الدائرة جميع البيانات، وبذلك فإن مجموع النسب في القطاعات الدائرية يساوي ١٠٠٪.

متال الدائرية والقطاعات الدائرية

🍏 سكان: مثّل المعلومات السابقة بالقطاعات الدائرية.


الخطوة ١: تتكون الدائرة من ٣٦٠، وعند ضرب النسب المكتوبة بعد تحويلها إلى كسور عشرية في ٣٦٠ تحصل على قياس زاوية كلَّ قطاع من قطاعات الدائرة، على النحو التالى:

قطاع سكان منطقة مكة المكرمة: YY' من YY'' من YY'' YY''

توزيع السكان في المناطق الإدارية في الملكة

الرياض ۱۳۷ (۱۳۷ مكة ۱۳۷ (۱۳۷ مار) ۱۳۷ (۱۳۷ مار) ۱۳۷ (۱۳۷ مار) ۱۳۷ (۱۳۷ مار)

الخطوة ٢: استعمل الفرجار لرسم الدائرة؛ ثم استعمل المنقلة لرسم زاوية قياسها ٧٩ حيث لرسم زاوية قياسها ٧٩ حيث يمثل هذا القطاع سكان منطقة مكة المكرمة، استعمل نصف القطر الجديد لرسم زاوية القطاع الذي يمثل الرياض، وكرر هذه العملية لرسم وطرر هذه العملية لرسم جميع الزوايا، ثم سمّ كل قطاع، وأعطِ الرسم عنوانًا مناسبًا.

مثال:

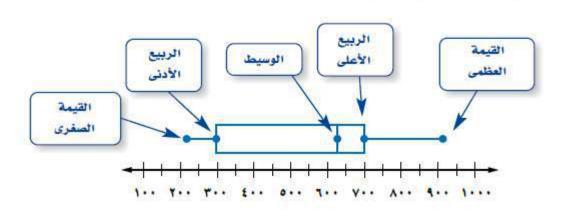
البيانات التالية توضح درجات عينة مكونة من 5 طلاب في مادة الأحصاء احسب الانحراف المعياري لدرجات هذه العينة 75,100,65,90,70

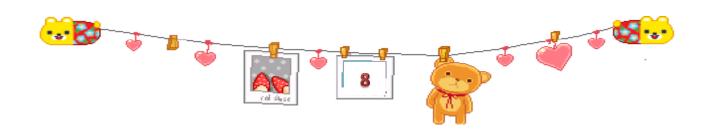
$$\bar{x} = \frac{75+100+65+90+70}{5} = 80$$
:

الانحراف المعياري:

$$s = \sqrt{\frac{(75 - 80) + (100 - 80) + (65 - 80) + (90 - 80) + (70 - 80)}{4}} = 0$$

• يتعرف على التمثيل بالصندوق وطرفيه:


مثال (سم الصندوق وطرفيه


ارتضاعات: مثّل البيانات في الجدول أعلاه بالصندوق وطرفيه.

الخطوة 1: ارسم خط الأعداد بحيث يتضمن القيمتين العظمى والصغرى للبيانات.

الخطوة ٢: حدد القيم القصوى، والوسيط، والربيع الأدنى، والربيع الأعلى، على خط الأعداد.

الخطوة ٣: ارسم الصندوق وطرفيه.

تصف مقدار تقارب أو تباعد البيانات عن وسطها الحسابي

• يحسب مقاييس التشتت (المدى ، المدى الربيعي ، الانحراف المعياري ، التباين ،معامل الاختلاف)

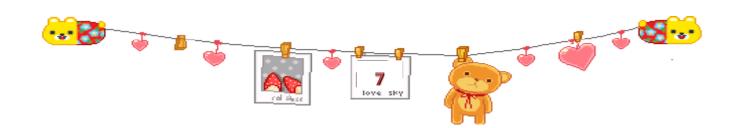
المدى الربيعي

المدى الربيعي هو مدى النصف الوسطي من البيانات؛ وهو الفرق بين الربيعين الأعلى والأدني.

برامج قناة رياضية في عام المياراة العدد 7. سباق سيارات سباق الخيل 4.5 كرة القدم كرة السلة 174 كرة اليد 10 كرة الطائرة 149 تنس الطاولة 10 السباحة 72

مثال التشتت إيجاد مقاييس التشتت

م برامج رياضية ؛ أوجد مقاييس التشتت للبيانات في الجدول المجاور.


المدى = ٢٠٠٢ - ١٨٤ مباراة.

لإيجاد الوسيط والربيع الأدني والربيع الأعلى،

رتب البيانات ترتيبًا تصاعديًّا.

الوسيط = ٨٥، الربيع الأدنى = ٥, ٣٢، الربيع الأعلى = ١٣١.

المدى الربيعي = الربيع الأعلى - الربيع الأدنى = ١٣١ - ٥, ٣٢ = ٥ . ٩٨.

مثال : أوجد متوسط مجموعة البيانات 3,2,5,4,6,7,8

 $\frac{3+2+5+4+6+7+8}{7} = \frac{3+2+5+4+6+7+8}{7}$

مثال : أوجد الوسيط لكل من القيم التالية

2,6,3,7,4 (1

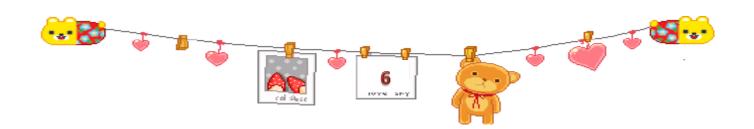
ترتيب القيم: 2,3,4,6,7

الوسيط: 4 الوسيط يقسم إلى نصفين

مثال: أوجد المنوال لكل من القيم التالية

2,4,3,3,4,4 (1

<u>المنوال</u> : 4


مثال : أحسب المدى للبيانات التالية 3,5,9,6,14,1

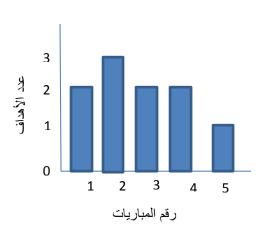
الحل:

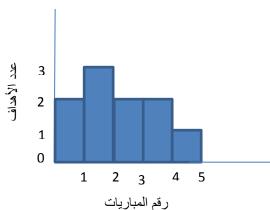
المدى = أكبر قيمة - أصغر قيمة

ا<mark>لمدى</mark> : 13=1-14

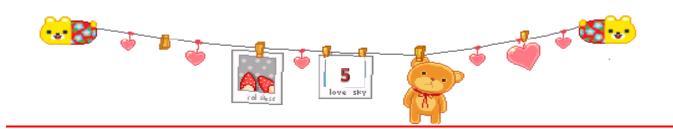
	استعمال المتوسط والوسيط والمنوال		
المقيساس	أكثر فائدة عندما		
المتوسط الحسابي	لا تحتوي مجموعة البيانات قيمًا متطرفة.		
الوسيط	تحتوي مجموعة البيانات قيمًا متطرفة.		
	لا توجد فجوات كبيرة في منتصف البيانات.		
المنوال	تحتوي مجموعة البيانات قيمًا متساوية.		

المعيار الاول:


يرسم المدرج التكراري والإعمدة البيانية مثال: الجدول التالي يبين عدد الأهداف التي أحرزها أحد الفرق في مسابقة لكرة القدم


1) المدرج التكراري 2) الأعمدة البيانية

عدد الأهداف	المباريات
2	1
3	2
2	3
2	4
1	5


الأعمدة البيانية:

مقاييس النزعة ا	قاييس النزعة المركزية والمدي	
المقياس	التعريف	
المتوسط الحسابي	مجموع القيم مقسومًا على عددها.	
الوسيط	القيمة التي تتوسط مجموعة بيانات مرتبة ترتيبًا تصاعديًّا، أو هو متوسط العددين المتوسطين في مجموعة البيانات.	
المنوال	القيمة الأكثر تكرارًا أو شيوعًا بين القيم.	
المدى	الفرق بين القيمتين العظمي والصغرى للبيانات.	

DC (AB وأختيرت نقطة عشوائياً تقع على القطعة

 \overline{DC} فإن احتمال أن تقع E على القطعة المستقيمة

(بمعنى الجزء على الكل) $P(E \in \overline{DC}) = rac{DC}{AB}$

إذا كان:

 \overline{AB} المستقيمة

إذا كان :

A و أختيرت نقطة Eعشوائياً تقع في المنطقة B

₩

احتمال المساحات

B فإن : احتمال أن تقع النقطة E $P(E \in B) = \frac{B}{A}$ مساحة المنطقة

توزيع ذات الحدين

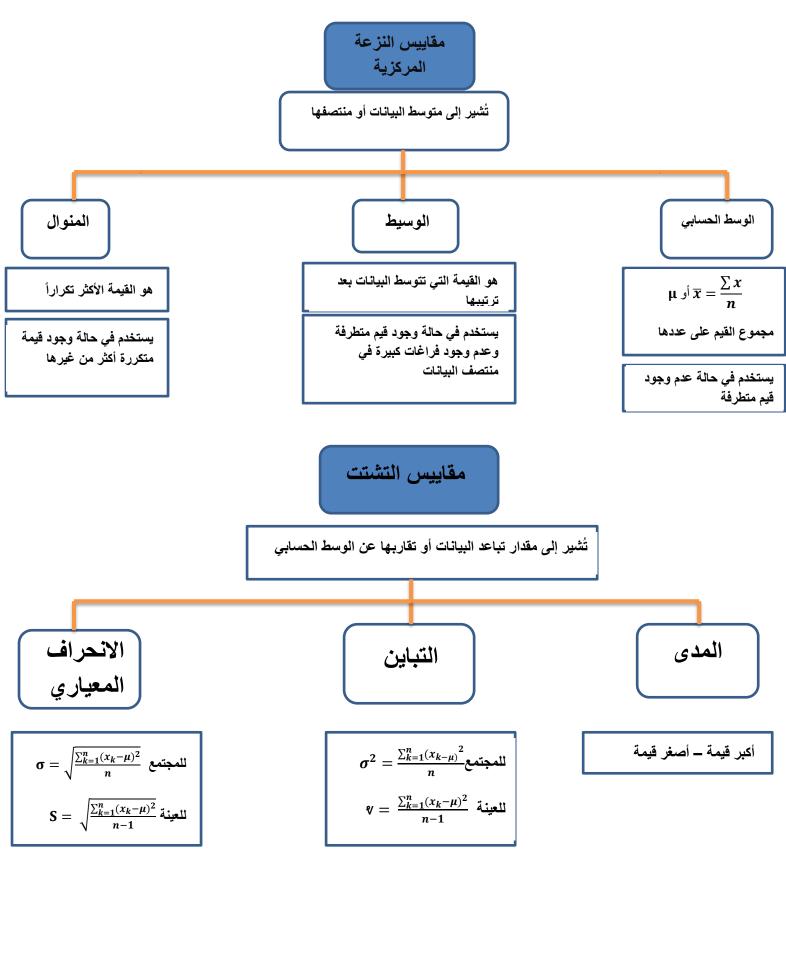
تجربة ذات الحدين تحقق الشروط التالية:

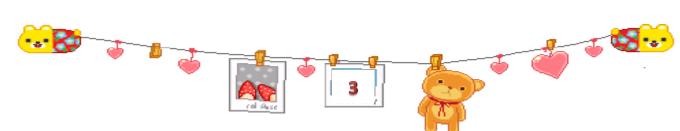
يُعاد إجراء التجربة لعدد من المحاولات المستقلة n من المرات لكل محاولة نتيجتان متوقعتان نجاح S وفشل F

P(S) = p: احتمال النجاح

P(F) = q = 1 - p: واحتمال الفشل

يمثل المتغير العشوائي X عدد مرات النجاح في n من المحاولات


 $P(x) = n(x p^x q^{n-x})$


 $\mu=np$:متوسط توزيع ذات الحدين

 $\sigma^2 = \mathrm{npq}$ التباين لتوزيع ذات الحدين:

W ...

 $\sigma = \sqrt{npq}$ الأنحراف المعياري لتوزيع ذات الحدين:

إذا كان A,B حدثان متنافيان فإن:

$$P(A \cap B) = P(A) + P(B)$$

ا إذا كان A,B حدثان غير متنافيان فإن:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ا إذا كان A,B حدثان مستقلان فإن:

$$P(A \cap B) = P(A) \times P(B)$$

إذا كان A,B حدثان غير مستقلان فإن:

$$P(A \cap B) = P(A) \times P(B/A)$$

احتمال الحدث المتمم:

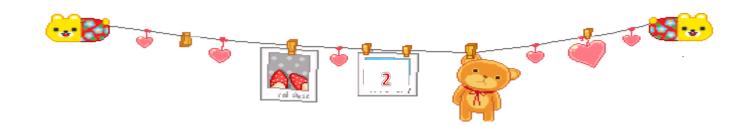
$$P(A) = 1 - P(A)$$

احتمال وقوع الحدث B بشرط وقوع الحدث A:

$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} \qquad , P(A) \neq 0$$

مبدأ المد

اذا تم إجراء تجربة ما على مراحل وكان عدد النواتج الممكنة للمرحلة الأولى n_1 و للمرحلة الثانية n_2 و ...


 $n_1 imes n_2 imes \dots imes n_k$ يساوي K فإن عدد النواتج الممكنة للتجربة التي عدد مراحلها

nPr = n عدد التباديل الممكنة ل n من العناصر المتمايزة مأخوذة

nCr = n من العناصر المتمايزة مأخوذة r في كل مرة

(n-1)!= عدد التباديل الممكنة لـ n من العناصر المتمايزة المرتبة على دائرة دون نقطة مرجع ثابتة

 $\frac{n!}{r_1! \times r_2! \times ... \times r_k!} = \dots$ من المرات و آخر من المرات و آخر من المرات و من العناصر يتكرر عنصر منها r_1 من المرات و r_2 من المرات و r_1

الاحصاء والأحتمالات

إذا كان ٨ حدث لتجربة عشوائية ما ، فضاء العينة لها هو ٥ فإن :

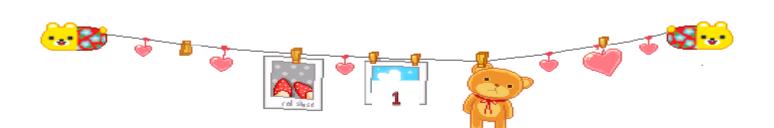
عدد عناصر A عدد عناصر S عدد عناصر S

عدد الطرق الممكنة لـ A عدد الطرق الممكنة لـ P(A) =

التجربة العشوائية (الاختبار): هي التجربة المعروف جميع نتائجها دون إجرائها دون التأكد أي منها سوف يقع .

فضاء العينة: هو مجموعة النواتج الممكنة لتجربة عشوائية.

الحادثة: هي أي مجموعة جزئية من فضاء العينة.


الحادثة البسيطة (الأولية): هي حادثة تحتوي على عنصر واحد فقط.

الحادثة المؤكدة: هي حادثة تحتوي علي جميع عناصر فضاء العينة.

الحادثة المستحيلة (φ): هي حادثة لا تحتوي على أي عناصر ويستحيل وقوعها .

 $A \cap I$ الحدثان المتنافيان : يقال أن الحدثان A, النهما متنافيان أو متمانعان إذا كان وقوع أحدهما يمنع وقوع الأخر أي ان $B = \emptyset$

الحدثان المستقلان: يقال أن الحدثان A,B بأنهما إذا كان وقوع أحدهما لا يؤثر على وقوع الأخر.

<u>_ رُسئل_ة المعيارالخاص والسادس،</u>

اً إِذا منان المتوسط المساب العدين (×2-3) + (++/2) ق المرسط المساب المسادل الدار الما إذا حدمنا شدنة ومدد وسطط طب ابي ١٥. فا العسط طبسابي العسن لبامنين ؟

15 6 14 P. 13 (4 12 P

سارى الم سان الم تساوك ؟

15 (> 20 (E. 25 (4 30 (P

(アイヤにといていていていてい) 上には

م/ الوسط طساب الله مع الوسط السلم المسلم ب) الوسل لجسابي ولمس مالوسط وأخل مد لمنوال ١٤ لوسه لحساب إلله ١٠٠٠ لوسط المنوال. د) إلوسه طسيس المل مع المرسية النوال.

2 العظام (لدائري الدي مينل توزيع ولوان 48 صفياً كا وذاكان درمان عموسة لحدي في اختبار هب صاحد القيمهائ لسنرقاء!

12 /4 16 (P

66 8(2.

م ممل نواف عاصتوسط درجان . 46٪ من شهرت اختبارت على إذاكان المتوسط طساب الأسداد لهطبيب ما في درجة يجب أن بعمل عليان باختبار لراج المرابي المد ١٥ ما في المرابي المد ١٥ ما في المرابي المد ١٥ ليكون نغهب 8 ؟ [علماً الم المقدير في لين لمعول ع 30٪ مدادني الما الله عداد الما المقدير في لين المعول ع 36٪ و الما 84% (> 92% (8. 94% 10 98% (p

وعرام الاسماد لذاله عريد: 2x+3 (3x (n , 2x+2

🛛 متوسط درجانے دیزید فن کا اختبار نے ملقدر وراسمیے ج درجائ ، اداكان درجانت من به زختارك عده ١٥١٤، وره فكسم وجاند والمعتارظاس 110 218 46 (5/8

من المريان: 35=35 كنوسط x الدو $\frac{12x+7)+(3-2x)}{2}=y$ محرد وانت ع ١٩ و ميما رائ عيد ١٩.٥ ، ١٥، 8 ، 5 ، نطع الدختبار طاس. ⇒2Y=10 الفيلي المالية على المالية ال >Y=5 = 35-34=1 ∴ 5y = 25. 36 [الوسطلسابيم لهده بلمن - لوسه طهسابي 360 × 48 [La sux are it should إلى والمسابع المسادة المادة = 1 x 48 5X12 = 60 الوسططسابي المائمة كمدارة ١٥٠ 8 3x10=30 : 60- 30= 30 ⇒ 30=15 > 15 -فطله عمم ملتوسل عوع درجائة احتاراك 228 = 76x3 = 228 الل دجد بيب المنصل عليه أن ب عتب لهدابع الهيط السي لعلى مراوسط النوال. B= 80% € B - 1. 15 ... € بويداء نصل لـ إن8 80x4 = 320 = () احتا () = 320 => 320-228 = 92% ~

[في أحدى الأدارات عيل 5 موظهن إذ اكان موظفان الكلم طريقه اليك مدرسد وخيار سِنْفَاعِنَانَ وَ رَبِالًا فَنِي لِسَامَة وَمَعْظُفَى وَ رَبِيلًا مَنِ لِسَامَةً لَجَنْهَ مَكُونَتْ مِنْ 4 رَعضاد صد بين 14 صلين ؟ ومعظف ١٥٥ ربياً من لسساعة ومدظف ١٥٥ رباية م لياعه 210 (4 4019 فكسم رالم في لهسائت وسبط ماسطا حب الموظن 50406 1260€ 4 (0 5 P 1 (2 6 المستخبر لعسية لاصف لبيانان عدما ا لدنياجودت إلبيانان متوسطط سيادي 1 واخرامها طمياري سياري أ أن إعبال الكت الترب وصف استشار البيانان . P) توجد على الأخل قيعة واحدة منكررة عرض فن هذه لبيانان ، ف) فالخوى عدد البيانان قيماً متطرفة . ب) حمظم لميانات في الفنوه [1.3] . مينادي عيون البيان في أعساديد . [- 20 كا فينااء : أن السان مده ٥) لا يُحتَّى عمو وتد السيامان متعياً وتطرف ى الوسية طذه البيانان هر ع . [[لذاكان عدد السامان الشريبية لخالد صلال 15] ايام السرى عبد لمرسم 10 كنب ختلند وسيرسد ١١ ا ياك ١٠ ١٠ ٢ و ١٠ ١٤ و ١٠ الله عندا و سالة بخنار منواكم مفراه في البيم الدول عضم كستابة تدرب من اليوم الدل ساعتيم بدأنا صمساعة ليقدُه في البعظ لبتاني مثم كسَّابً بيرُه فراليم فأى العنب لهستالين ستفل ا (Licus بكم طريقه يكم (ختيار هذه الكنه! به المنواك Jul (P 6 مانوسة طباسي 6 (P 30 (0 devel (c. 720 0 100 (8

نظام عليه طبورط. distributy = 40 (Ex) معضلم لبيانان من لخفوه الجرب ظياران ع [4 13] مفومن و مدكل مد 1, 3,9,27 = 40 :.71:3 * (التوضيع إلرسم في لفناه) . 6--L على نغزين مدد اكبرمه ع وليسم 3 4,3,2,2,1 9,9,3,8 متهتب بقيامدي . اً الواصد بيم لك مع لانت سربساعتين 3,8,9,8 = N=4 4,3,2,2,2 $8,5 = \frac{17}{2} = \frac{8+9}{2} = \frac{8+9}{2}$ المدل م اكرمت - أ صفي الم ليام المرك ع = ١٠ ا ع = الوسف فيرلنم لديه ع 2-2-4 PH جا مثله الوسط ا ما مليد نفنا رضم 4 [بالتوامق] لأم ترتب الاعصاء مو علم ﴿ رُنُ المنيم مِنْاحَةِ اللهِ بالوسط 10C4 = 10 x 9x 8x7 = 210 50 50 8 100 100

الناسل كلاب أحد العنصول عن عدد الآخوج لديم، شم عست الأخور لديم، شم عست الإعابان مرحنان من جدل النكدار ادناه إذا أختر طالب عدو الناسل المعدد النوت و على المامن ،

التكار	عدد الأمؤه
2	O
3	- 1
5	2
lo	3
. 6	Ч
4	5

11/5 (v. 2/3 8 5/4 9/10 (R. الشكل ادناميش نشائع اسبيان عدم بادر لراسيد المغضلت أجدنب على <mark>220</mark> طالبً ني صرسدة ابتانيد كم طالبً منينون مسارة العلسوم؟


1	فالهفائد ع
158	30%
Fair	عندنلو بر35
1	

گا ان با <u>(</u>8

88 (> 44 (E

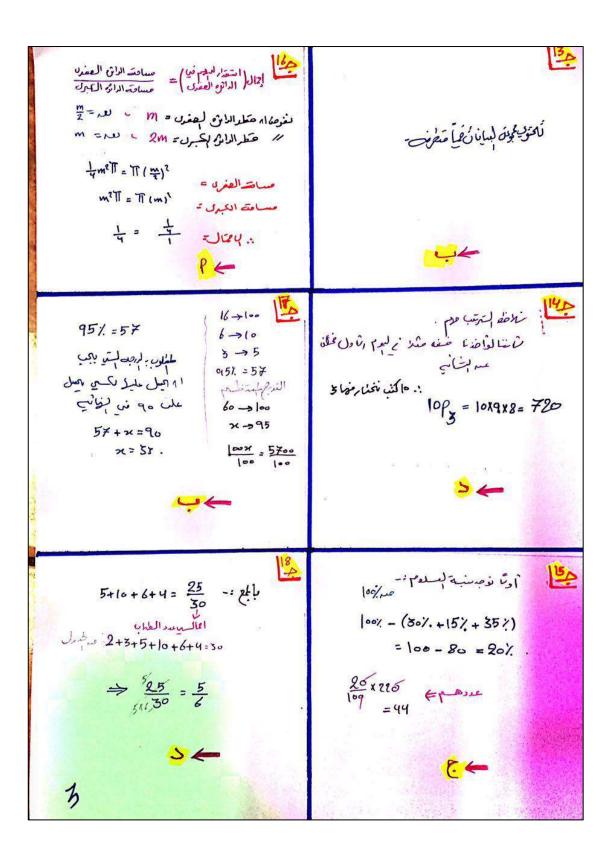
المحمل خاطمه على الدرمائ الشابيد 40،86.87 في أول ثانية أختبا بأث على المدرمية لمستر بيماء المنتحسل عليل في بم ختبا بر لمبرام حتى يعظم متوسط وروائل هه ؟

النحل أدناء حقد الدانو الكبول سيادي حسن حصل العدن حصل الدانو العنوى إذا حدد مجل سجم الدان العدن خياد العدم من الدان العذب حياد العدد الدان العذب الدان العدد المدان العدد العدد المدان العدد المدان العدد المدان العدد العدد العدد المدان العدد العدد

13 (4)

16 1 (8

اد آلات A,B حالِتَبِن صَناهَبَین عَلام لَج = (Pla) اد آلات A,B حالِتَبِن صَناهَبَین عَلام لَج = (Pla) ایسادی ا اله اله اله PlauB) سیادی ا


0 6 1/8 (2.

النفسم الدبعة الكلية ضاحسادة الرياضيان إلى عقيد المدافقة المدافقة الرياضيات المدافقة المدافق

33 la 34 (1

31 6 32 6

3/

رياتًا. عم	ك واحد مكر 15	هد و کښ صيت ن ا معاد <mark>۱۰</mark>	و آشنده ا
Te, 80 - ,	رماِلانُ و الْآخ	ن أصطاد ١٥	استرك كناي
?-	ني استشاها ١٥	سعسارالكنبال	ما مئوسط آل

21 حسندی بینود علی کرنبن خطرار نبن و لا کران بندید بدیناء از اسحب عسوانی کرتا، علم النوالی مع الإرجاع ، فما اعمّال المنكون كل الكرنين بعيضا وين

14 (P 1510

176 16 (0.

25 منيآك النفران الس) ليه يفع ال المراف المساري الدرما د عرا ، ١٥، ١٥ ، ١٩ ؟

22 رميت قطعت نعود معنيص 8 مراك ، ما اعمال ظهور حبورة مسرة واصقع الاثل ا

[1(2) (4 [011) P 1 (9 14 (P

[314] (> [213) (c.

الموار حفها وبالحاء

W مين 5 طمان عن داشره وطيبون لمب تعرب الكره آ مد الأحبراد الشماسيد، ما الكال الدستيقر لخوشو في العدر كل طالب الكده لك زميل من زمادت صره وامن عاعجم القوسيرال ا

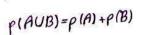
23 في النكل أدناه مؤسد بفول ليتقد عشوائي على علس جرد يهل رقع أنل مدى

5x4 (4 5 1P

23 12 5! (2.

فضاء العينه : 8

الأحدد الستى تعل رضم أنل مرة = 5 اجزاء.


المنوسل المساب = عمن الرجان

15+15+10+20 = 15+10+21+10+21 5 = 25 = 15

لان المسادنتين متناعينين

1n= 8+9+10+11+12=50

122= 64 +81 +100+121 +144 = 510.

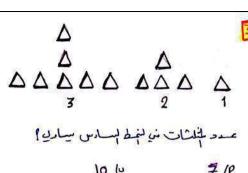
$$\sigma' = \sqrt{\frac{\xi_{x}^2 - \frac{(\xi_{x})^2}{n}}{n-1}}$$

$$=\sqrt{\frac{510-500}{u}}=\sqrt{\frac{10}{4}}$$

$$=\frac{1}{2}\sqrt{10} \approx \frac{1}{2}(3) = 1,5$$

 $=\frac{3}{5}x\frac{3}{5}=\frac{9}{25}$

فواغ لمينه = 5


معبأأن السحب مع الأرجاع

P(AOB) = P(A)xp(B)

y.

10 le 7 (P

إذا العتبي حجراً منرو فما الثنال أن يكوم مجموم
 العدد بن الظاهدين 9!

1/6 (4) 1/4 (P

 $\frac{1}{18}$ 6 $\frac{1}{9}$ (2.

اقی مکسم طریق میسد کور برعنی جوائن منالمت ملی الله مان مراصق ا

120 (4 5 (P 725 (* 625 (e. 28 بكسم طريقة بيكى أنكوبن عدد مدثلاث خانان عشوبه ننشسي الى الجريسة (۶، ۴، ۶ ، ۶ ، ۴ ، ۱۵ ، ه) مناف عشوبه بحث بعث بينبل لهتمس با ک

6010 7219

306 36 6

کم سرد الاماد لملعیت لکونت مر 4 خانان فنلند ؟

9x9x8x7 4 10x9x8x7 (P

عقرر له شعبتان بیننار ضها دالمد - امی ا شعبه شوانی ، ما انال الم بیکنا نے ننس السعبه ۱

1/8 (P) ₹3/4 (P)

5/

نكون متطيل صب لأمار لمكم التفامط

0123456789

عدمناصرها= ١٥

في خاستة الآلين ستجد لصفر = ٩

آحاد عشون منان آلف عشون منان آلف عشون عشون منان آلف

9X9X8X4

and the (22 S= 2x2x2x2x2x2= 26=64 عدم فهورها: ١ خلودهام اللك مرة ليمه 64-1=63 63 = JCZV.

١١٢) متوسط در جات سلطان في أول خمسة اختبارات قصيرة هو 92 ، فإذا أراد تحسين متوسط درجاته ليصبح 93 ، فما الدرجة التي يجب أن يحصل عليها في الاختبار القصير التالي:

- 95 •
- 98 •
- 97 •
- 100 •

مجموع الاختبارات الخمسة= 460 = 5 × 92 الأن نوجد مجموع درجات الاختبارات الستة ثم نطرح منها مجموع درجات الاختبارات الخمسة التي أوجدناها . $93 = \frac{m_1 + m_2 + m_3 + m_4 + m_5 + m_6}{1 + m_6}$

مجموع الاختبارات الستة 558 = 6×93

نرمز للاختبار بالرمز m.

 $a_1 = \frac{m_1 + m_2 + m_3 + m_4 + m_5}{}$

درجة الاختبار الأخير هي: 98 = 460 – 558

۸۵) إذا كان احتمال أن يرمى محمد الكرة و يصيب الهدف هو 1/3، و احتَمَالَ أَن يرمي أحمد الكرة و يصيب الهدف هو 1/4 ، فما احتمال أن يصيبا الهدف كليهما معاً:

- 1/12 •
- 7/12 •
- 5/12 •
- 9/12 •

. $\frac{1}{3}$ = (صابته المعدث الأول P(A)) و رمي محمد الكرة و اصابته المهدف احتمال الحدث الثاني P(B) (رمي أحمد الكرة و اصابته الهدف) = احتمال أن يصوبها الهدف كليهما معا (تقاطع الحدث الأول مع الحدث الثاني) $P(A) \cap P(B) = P(A) \times P(B)$ $=\frac{1}{3}\times\frac{1}{4}=\frac{1}{12}$

 ٨) رميت قطعة نقدية 4 مرات، ما احتمال ان تظهر الصوره في 4 مرات معا ؟

احتمال الحدث = عدد عناصر فضاء العينة (ظهور صورة عند رُمي النقود مرة واحدة)

 $\frac{1}{16} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$ احتمال الحدث (ظهور صورة في كل مرة عُند رمي النقود ؟ مرات)

عدد عناصر الحدث

١٠)صندوق فيه 9 كرات ، إذا كان 4زرقاء و 5 حمراء ، سحبنا منها 2 معاً ، ما احتمال ان تكون كلها زرقاء

- .
- 9 1 6 4 9
- 6

مرات معاً ؟

الحدث الاول (P(A في احتمال الحدث الثاني (P(B ٠٠ السحب سيكون بدون احلال . فراغ العينة للحدث B سيقل بواحد عن فراغ العينة الحدث A و كذلك عدد الكرات الزرقاء في الحدث B سيقل بواحد عدد الكرات الزرقاء في الحدث A

احتمال حدثين A و B معا يساوي حاصل ضرب احتمال

$$\Longrightarrow P(A \cap B) = P(A).P(B)$$
$$= \frac{4}{9} \times \frac{3}{8} = \frac{1}{6}$$

$$rac{1}{16} = rac{1}{2} imes rac{1}{2} imes rac{1}{2} imes rac{1}{2} imes rac{1}{2}$$
 الحدث و المحدث و المحدث عدر مى النفود ٤ مرات)

ره و مسورة عند رمي النقود مرة واحدة)
$$\frac{1}{2} imes \frac{1}{2} imes \frac{1}{2} imes \frac{1}{2} imes \frac{1}{2} = \frac{1}{6}$$
 احتمال الحدث $\frac{1}{2} imes \frac{1}{2} imes \frac{1}{2} imes \frac{1}{2} imes \frac{1}{2}$ طند رمي النقود $\frac{1}{2}$ مرات)

ANALYS STATE STATE STATE OF THE	١٤) تضم قائمة مطعم 3 أنواع من
عدد الطرق = $6x5x3$ = 90	الشوربة و5 أنواع سلطة و6 أنواع لحم ، بكم طريقة يمكن
	اختيار وجبة مكونة من
	3أصناف
	30 •
	60 •
	90 •
	120 •

P=
$$\frac{2}{12} = \frac{1}{6}$$
 احتمال التعادل هو: $\frac{1}{6} = \frac{2}{12} = \frac{1}{6}$ احتمال التعادل هو: $\frac{1}{6} = \frac{2}{12} = \frac{1}{6}$ احتمال التعادل هو: $\frac{1}{6} = \frac{2}{12} = \frac{1}{12}$ احتمال أن يتعادل فيها استثناداً إلى نتائجه المسابقة : $\frac{1}{12} = \frac{1}{12}$ المسابقة : $\frac{1}{12} = \frac{1}{12}$

$$35 = 32$$
 سلة فيها 10 كرات صفراء و بغرض ان x عدد الكرات الصفراء الجديدة على 25 كرة زرقاء ، وأردنا بغرض ان x عدد الكرات الصفراء الجديدة الخرات صفراء بحيث $\frac{2}{3} = \frac{10+x}{35+x}$ $\Rightarrow 70+2x=30+3x$ الكرات الموجودة في السلة ، فكم عدد الكرات الصفراء التي فكم عدد الكرات الصفراء التي سوف نضيفها $\Rightarrow 40 = x$ $\Rightarrow 30 = 35$

$P_r'' = \frac{n!}{(n-r)!}$ $P_s'' = \frac{9!}{4!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4!}{4!}$ $= 72 \times 7 \times 30$ $= 72 \times 210$ $= 15120$	(۲۷ بكم طريقة يمكن ان يجلس 5 اشخاص في صف به 9 كراسي 15100 • 15000 • 15120 •
تبادیل مجموعة من العناصر n ، مأخوذ منها r من العناصر $P_r^n = \frac{n!}{(n-r)!}$	(۲۸) إذا كان هناك 7 اشخاص يريدون الجلوس ولم يجدوا سوى 3 كراسي، بكم طريقة يمكن ملء هذه الكراسي الثلاثة معا 200 • 205 • 210 • 215 •
تبادیل مجموعة من العناصر n ، مأخوذ منها r من العناصر $P_r^n=\frac{n!}{(n-r)!}$ $P_2^7=\frac{7!}{5!}=\frac{7\times 6\times 5!}{5!}$ $=7\times 6$ $=42$	 ٢٩ مسجد له 7 أبواب ، بكم طريقة يستطيع شخص دخول المسجد من باب والخروج من الأخر 40 • 42 • 44 • 46 •

$\frac{\sum_{n=1}^{6} x}{6} = 20 \Longrightarrow \sum_{n=1}^{6} x = 20 \times 6 = 120$ $\frac{\sum_{n=1}^{2} x}{2} = 50 \Longrightarrow \sum_{n=1}^{2} x = 50 \times 2 = 100$ $\sum_{n=1}^{4} x = 120 - 100 = 20$ $\frac{\sum_{n=1}^{4} x}{4} = \frac{20}{4} = 5$	اذا كان المتوسط الحسابي لست اعداد هو 20 ، وكان متوسط مجموع عددين منهما 50 ، فما المتوسط الحسابي لبقية الأعداد الأربعة 50 .
الكرات البيضاء $\rightarrow 75\% = \frac{3}{4} = \%75$ المتبقى $\rightarrow 25\%$ المتبقى $\rightarrow 25\%$ الكرات الحمراء = $\frac{10}{100} = \frac{2}{5} \times \frac{25}{100} = \frac{10}{100}$ الكرات الحمراء = $\frac{10}{100} = \frac{10}{100} = \frac{10}{100}$ نسبة الموداء = 100% الكرات الحمراء = 100% الكرات الكرات الكرات المرات الكرات	 ٨) اذا كان في كيس فيه عدد من الكرات (حمراء - بيضاء - سوداء) ثلاث ارباع الكرات بيضاء وخمسا الباقي حمراء فما نسبة الكرات السوداء ١٥% - ١٠٥ ١٥% - ١٠٥ ١٠٥ ١٠٥
m = سعر وجبة الاطفال = 2m سعر وجبة البالغ = 2m مجموع الوجبات = 9m =5m+2(2m) $m = \frac{405}{9} = 45$.: $2 m = 2 \times 45 = 90$.:	جهبت عائلة مكونة من زوجين و 5 أطفال لمطعم اذا كان سعر الوجبة للطفل نصف البالغ ، كم قيمة وجبة البالغ إذا دفع الزوج ثمن الوجبات 405 ريال

	(n-1)! = (7-1)!=6!	٤٠)بكم طريقة يستطيع 7 اشخاص
		الجلوس على طاولة دافرية :
		7! •
		6! •
		7x6 •
4		1 10 0 20 1 1 221

ملخص المعيار 7

 د. يتعرف التقرير الرياضي وقيم الصواب وأدوات الربط وينشئ جداولها

يتعرف الاقتضاء والتكافؤ والقياس المنطقي

٣. يتعرف طرائق البرهان المختلفة واستخداماتها

المعيار ٣. ٤. ٧: يتعرف المنطق والاستدلال الرياضي

Mathematical Logic : المنطق الرياضي

هو إقامة الدليل لصحة أو عدم صحة لمقولة رياضية (عبارة رياضية) وذلك باستخدام الرموز كمتغيرات يمكن استبدالها بأسهاء أشياء أو صفات كها نستخدم ثوابت تدعى الروابط المنطقية.

Statements :التقارير

الجمل الخبرية يجب أن تكون إما صواباً أو خطأ ولا يمكن ألا تكون أي منهما ولا أن تكون الاثنين معا .

أما الجمل غير الخبرية فهي الجمل التي لا يمكن الحكم عليها بالصواب أو الخطأ ، سنسمى الجملة الخبرية تقريرا (statement) .

 $_{ imes}$ يرمز للتقرير الصحيح $\,p\,$ ، يرمز للتقرير النفي

عبارة الوصل :هي عبارة مركبة مكونة من ربط عبارتين أو أكثر بأداة الربط $rac{f e}{p}$ يرمز لعبارة الوصل بالرمز $p \wedge q$

*وتكون عبارة الوصل صحيحة فقط عندما تكون جميع مركباتها عبارات صحيحة

جدول صواب لعباره الوصل

Р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

مثال:كون جدول صواب للعبارة التاليه:

Р	q	~q	p ∧ ~q
Т	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	Т	F

عبارة الفصل: هي عبارة مركبة مكونة من ربط عبارتين أو أكثر بأداة الربط (او) يرمز لعبارة الفصل بالرمز $p \lor q$

وتكون عبارة الفصل صحيحة إذا كانت إحدى مركباتها على الأقل صحيحة. وتكون خطأ عندما تكون جميع مركباتها خطأ.

جدول الصواب لعبارة الفصل: pVq

Р	q	$_{\mathrm{p}}V_{\mathrm{q}}$
T	Т	Т
Т	F	Т
F	Т	Т
F	F	F

مثال:كون جدول صواب للعبارة التالية:

ملاحظه (استعمل طریقه العدد الاساسیه لتحدید عدد الصفوف $(p \land q) \lor r$ اللازمه r,p,q وعلیه یوجد r,p,q)

р	q	p ∧ q	r	$(p \land q) Vr$
T	Т	Т	Т	Т
Т	F	F	T	Т
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т
F	Т	F	F	F
F	F	F	F	F

عبارة اإذا كان ... فاإن....

تكتب عبارة (إذا كان فإن).... على الصورة (اذا كانت p فإن p الجملة التي تتبع كلمة إذا تسمى الفرض، والجملة التي تتبع كلمة فإن تسمى النتيجة.

p o qيرمز لعبارة الشرط بالرمز

العبارة الشرطية تكون صحيحة في جميع الحالت الا أن يكون الفرض صحيحًا والنتيجة خطأ

جدول الصواب للعباره الشرطية

p	q	<mark>p→</mark> q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

العكس، والمعكوس والمعاكس الايجابي: يرتبط بالعبارة الشرطية المعطاة عبارات شرطية أخرى تسمى العبارات الشرطية المرتبطة.:

مثال	الرموز	مكونه من	العبارة
إذا تساوى قياس	$p \rightarrow q$	فرض معطى ونتيجة	الشرطية
زاويتين			
فإنهما متطابقتان			
إذا تطابقت	$q \rightarrow p$	تبديل الفرض والنتيجة	العكس
زاويتان فإن لهما			
القياس نفسه.			
إذاكان قياسا	p→~q~	نفي كل من الفروض	المعكوس
زاويتين غير		والنتيجة في العبارة	
متساويين فإنها		الشرطيه	
غير متطابقتين.			
إذاكانت الزاويتان	q→~p~	نفي كل من الفروض	المعاكس
غير متطابقتين فإن		والنتيجة في عكس	الايجابي
قیاسیها غیر		العبارة الشرطيه	
متساويين.			

ملاحظات:

- إذا كانت العبارة الشرطية صحيحة فليس بالضرورة أن يكون عكسها ومعكوسها صحيحين
- المعاكس الإيجابي صحيحًا دامًا إذا كانت العبارة الشرطية صحيحة المعاكس الإيجابي خطأ دامًا إذا كانت العبارة الشرطية خطأ
- . عكس العبارة الشرطية ومعكوسها إما أن يكونا صحيحين معا أو خطأً معا
 - والعبارات التي لها قيم الصواب نفسها يقال لها عبارات متكافئة منطقياً
 - فالمعاكس الإيجابي للعبارة الشرطية يكافئ منطقيًا العبارة الشرطية
 - وعكس العبارة الشرطية يكافئ منطقياً معكوسها

هذه العلاقات تلخص في الجدول التالي:

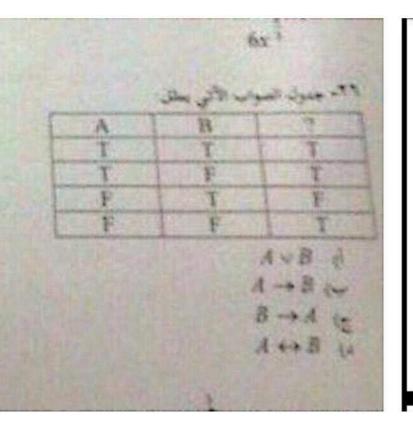
P	q	~p	q~	$p \longrightarrow q$	q→p	p→~q~	q→~p~
Т	Т	F	F	Т	T	Т	Т
T	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	T	T	Т

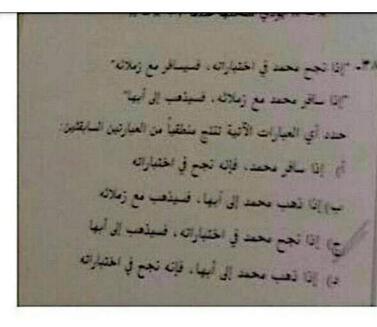
العبارة الشرطية الثنائية: هي ربط عبارة شرطية وعكسها بأداة الربط(و) يرمز لها

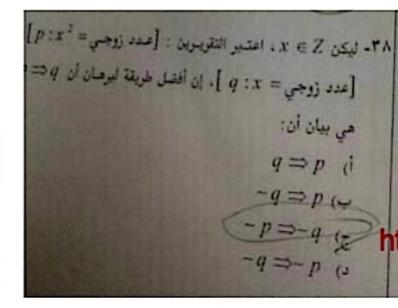
 $p \leftrightarrow q$ ويرمز لها اختصاراً (p o q) igwedge (q o p)

pقانون الفصل المنطقي: إذا كانت العبارة الشرطية p o pصحيحة والفرض

صحيحاً فإن q صحيحة


 $[(p o q)\land p] o q$ الرمز:


قانون القياس المنطقي:


إذا كانت العبارتان الشرطيتان r o q محيحتين فإن العبارة

الشرطية r o p تكون صحيحة.

 $[(p o q) \land (q o r)] o (p o r)]$ الرمز:

Scanned by CamScanner

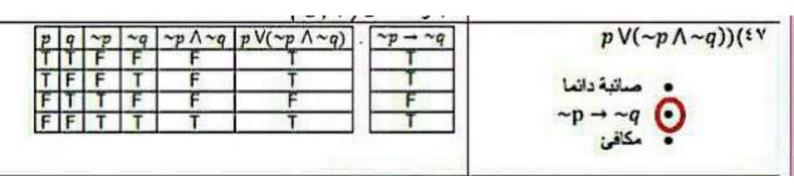
						۳۸ - اذا نح
				: 77		
_	-	-				عسراذ اذجح معد ضراخنبا والته
A	В	AVB	A→B	BAA	A en B	· di no 1 70 per
т	т	Т	т	T	Τ	١١١ مسا فر معد مع زملا له، مستومد إلى أبيء
T	F	т	F	Т	F	
F	T	T	T	F	r	الحل: :
F	F	F	F	Т	T.	اذا نجح معد مني احسارات ونسبزهب
	-				.121	5-1-3101
		B -	Δ	٠	-120-	الجوايه ح
						ist a resi
					V-1000-00-00-00-00-00-00-00-00-00-00-00-0	سان ب من مب لاری
	· ·		Call	، المكان	٢٢ - بعر و	اذبخ مد مده لا ر
0	جرو_	i i A	. 2			
c Day				-C11+	ساللانى	٢٨- ليكن ٢٥٤، اشتر التغريرين:
C "	× ¬				اذاكان	[2: x2 = 2 =]
;	^/				- All Con-	[9:x = 7
$(A \rightarrow B) \equiv (-B \rightarrow -A)$						الداممل طربيت ابد
		1-7-0				0 - 0
Side Control	~ 7	F . v	-r-	~	2×<5	مىسان ئن :
No.						11.0
in the	×		-		اذاكان	D 0 = (0 N)
	-			عرد	١٤١:	P>9=(-9-2)
-			-			الي ارے

Scanned by CamScanner

العظاما وادل بحد كلاهدم = 8 م (- A مرعلى وجه لعم 8 (- A مرعلى وجه لعم 8 (- A مرعلى وجه المرعلى وجه ال

اذا كانت العبارة الشرطية $A \longrightarrow A B$ $A \longrightarrow B *$ $A \longrightarrow B *$

اختربار كفريات ريساضيات


ابة	الإج	فال	
	هذا السدّ ال يعتمد معنا لعب ته معطاة	الية مـــانبة	(20) أى التــــقارير التـــ
ت مُماكِدِ هَسَياء	AEB DRONG	9	A → ~ B *
ميح .	ساني سيحون ص		В ЛА *
			B → ~ A *
	7	-	B ←→ B *

(22) جـــدول الصــواب الأتى يُمـــثل :

A	В	?
T	T	T
(T)	E	F
F	T	T
F	F	T

Scanned by CamScanner تعمليني صاب

12;	مله دمة	ا مدارات خرا	ूर। काश्य र
TIT	حتياس بهن	ب کا نید	ماري الهو في الهو المراجع المالية
13! 0-	ن ما که وا مه) خاطی ر	* 12/14-11
FF	مر ها منه	رېتائيس	کات الدرل
حلء	نام سام طا	1211-	× المرابط ا و
T	しかごらり	3: see 0	معملة والم
			ELL CLOVE SECTION
يستعيم	وقعد ادا	121 (د الما ينه ع الما ينه ع
	V	ت موا دسال	121616
	الله عيدا		ر دما خاطئة

المؤشرات		المعيار
يحسب مجموع المتتابعات والمتسلسلات الحسابية والهندسية	٠.	
يحكم على تقارب المتتابعات والمتسلسلات غير المنتهية	٠,5	
يتعرف النهايات ويستخدمها في تعريف مشتقة الدالة	۳.	المعيار ٣. ٤. ٨: يتعرف حساب
والحكم على اتصالها		التفاضل والتكامل وتطبيقاتهما
يحسب مشتقة الدالة ويرسم منحناها	٤.	التفاضل والتخامل وتطبيفاتهما
يحسب تكامل دالة ويستخدمها في حساب المساحات	٥.	
والحجوم		
يحل مسائل تطبيقية على التفاضل والتكامل	٦.	

معيار (8) التفاضل والتحامل والمسسلسلات والمسّانجات (9 أسئلة) ١- يجسب مجموع المتتابعات والمسلمان الحسابية والمهنسية ٥- يمكم على تقارب المتتابعات والمستملات غرمنته ٧- يتعرف السهايات وسي تخدمهاي تعربف مشتقه الدالة والحمة على الصالها ع- حسب مستقه لالقويرسم منحناها ٥- حيسب تحال واله ويستندمها في حساب الحوم والمساحات ٦- يحلمسائل تحبيقية على التفاضل والتحامل المتتابع حسابية 1 = a+ (n-1)d 1,6,11,16,... - الله عثاله ١٤, 32, ١٥ مثالثم حسابية S= 1/2 [a,+a] عرمنتصية 5 = a1 - a1 m Sn = 1/2 [2a+(n-1) d] متعاربة طامعين ادا<1 مساعدة مثال،۔ مثال:۔ ليس ها مجيئ 5 (n-4) - 2 4(立) |r| >1 S= a 1-r -4-3-2-1+0+1+2+ = 4(1)+4(=)+4(=4) 型(量) • 2+4+8+16+..-3 (3") Y= 1 < 1 r= 3 > 1 من الحد للمورني المستابعة 30 و-...و 12 و 6 و 6 و 3 9- 9-6=3 $a_7 = a + (7 - 1)d \rightarrow a = 3 + 6 \times 3 = 3 + 18 = 21$ Scanned by CamScanner

قوائين النهايات

النهاية تؤول إلى (مه) أو (مه): -<u>أولاً ما ية بعاله القوى عند (ه): -</u>

·
$$\lim_{x \to -\infty} x^n = \begin{cases} (-\infty)^n = \infty \end{cases}$$
 in $(x \to -\infty)^n = (-\infty)^n = -\infty$

I lim
$$z^{7} = \infty$$
 2] lim $z^{4} = \infty$ cosin

3]
$$\lim_{x \to -\infty} x^5 = -\infty$$
 . (52) $= -\infty$

·
$$\lim_{x\to\infty} \rho(x) = \lim_{x\to\infty} a_n x^n = \infty$$

$$\begin{array}{cccc}
x \to \infty & x \to \infty \\
& \text{olim} & \rho(x) = \lim_{x \to -\infty} \alpha x^{n} = \begin{cases}
\infty & \text{is given} \\
-\infty & \text{is given}
\end{cases}$$

$$\lim_{x \to -\infty} 4x + 3x + 8 = \infty$$

$$\lim_{x \to -\infty} 4x + 3x + 8 = \infty$$

$$\lim_{x \to -\infty} 4x + 3x + 8 = \infty$$

فالكار - تفاية الدوال الدنسبية (x) عند ه :-

$$-2 \frac{1}{2} \frac{1}{2} = 0$$

$$-2 \frac{1}{2} \frac{1}{2} \frac{5}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} = 0$$

$$3 = P(x) = \frac{7}{2}$$

· lin
$$\rho(x) = (1) \infty$$

$$-\lim_{x\to -\infty} \frac{7x^3 + 1}{x^2 + 1}$$

$$= (-1)^{3-2}$$

$$= -\infty$$

النهاية تؤول إلى النقطة:-

اذا اقتربت قيم (fx من قيمة وحيدة ما كلما افتريت قيم يد من عن علا جهين فإن نهاية (عن عندماء تقترب من عي ١ lim f(x)=L

I lim
$$x = -3$$

2]
$$\lim_{x \to -1} \sqrt{x+3} = \sqrt{-1+3} = \sqrt{2}$$

$$3] \lim_{x \to -1} |x-1| = \begin{cases} x-1 & j & x \neq 1 \\ 1-x & j & x < 1 \end{cases}$$

$$x = 1 \quad \text{inexullules air } 1 = x$$

حالاتعدم بقيين،-

عندتعودين المباشري الدوال السنبية تنتج مرسينة (ع) أو (هه مره) وهي عمة ينرسونة طرق معالمتهاد_

التخليل عضرب مرافع المقام المتقاعة وبيتال (اشتقام السبط وللقام)

$$\lim_{x \to 5} \frac{x+1}{x^2+3} = \frac{5+1}{25+3} = \frac{6}{28}$$

2]
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$$

كابع المعارد

خالتاً عالة المتنابعات،

a]
$$q = \frac{3n+1}{n+5} = \frac{3}{1}$$
 $q = \lim_{n \to \infty} \frac{3n+1}{n+5} = \frac{3}{3}$
 $q = \lim_{n \to \infty} \frac{3n+1}{n+5} = \frac{3}{3}$

b)
$$b_n = \frac{5}{n^4} \left[\frac{n^2(n+1)^2}{4} \right] = \frac{5n^4(n^2+2n+1)}{4n^4} = \frac{5n^4+10n^3+1}{4n^4}$$

$$\lim_{N \to \infty} \rho(n) = \frac{5n^4}{4n^4} = \frac{5}{4}$$

c]
$$C_n = \frac{4}{n^2 + 1} = \lim_{n \to \infty} \frac{4}{n^2 + 1} = 0$$
 platāpy>

رابعًا و بعض المنهايات المناصد .

2)
$$\lim_{x \to \infty} e^{x} = e^{x} = 0$$

3) $\lim_{x \to +\infty} e^{x} = e^{x} = \frac{1}{e^{x}} = 0$

5)
$$\lim_{\chi \to \infty} (1+\frac{1}{\chi})^{\chi} = e$$

6) $\lim_{\chi \to 0} \frac{1-\cos\chi}{\chi} = \frac{1-\cos0}{0} = \frac{0}{0}$
 $\lim_{\chi \to 0} \frac{\sin\chi}{\chi} = 0$

7)
$$\lim_{x\to 0} \frac{\sin x}{x} = \frac{\sin 0}{0} = \frac{0}{0}$$
 $\lim_{x\to 0} \cos x = \cos 0 = 1$

8)
$$\lim_{x \to 1} \frac{x-1}{\ln x} = \frac{1-1}{\ln 1} = \frac{0}{0}$$
 $\lim_{x \to 1} \frac{1}{\frac{1}{x}} = \lim_{x \to 1} \frac{1}{\frac{1}{x}} = \frac{1}{2}$

مثاليه

$$x=2$$
 in $F(x)=\int_{-2}^{52+5} \frac{3}{x}^{2}$

المنهائي غيرموجودة

المالة عنرمتصلة عن 2=2

الانصال

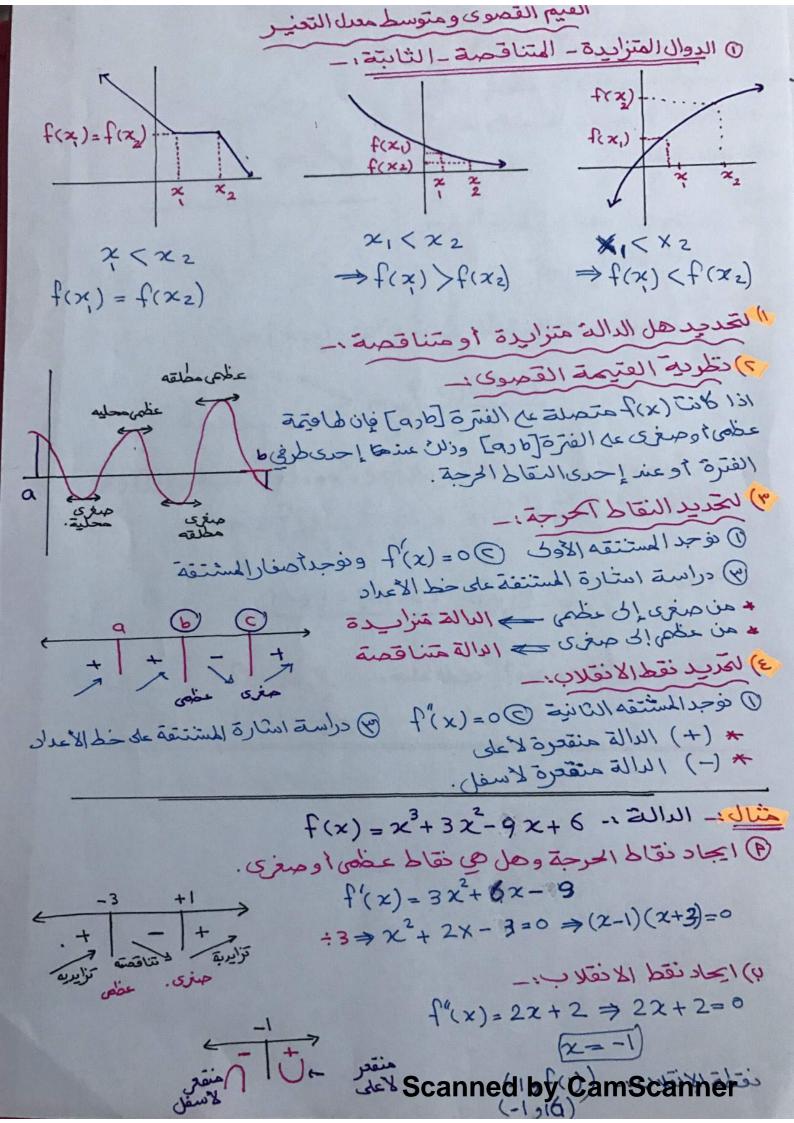
تكون الدالة متصلة عند النقطة ي اذا

کانت ،-(c) f موجودة

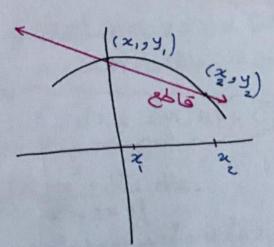
النفاحة اليمن النفاية إلى النفاحة إلى النفاحة النبيرى

object (x) it of w

انواعدم الانصالي


المسال قفزي ع ماية اليمن + تفاية السار. ﴿ الصَّالُ قَابِلُ لِلزِالَةِ ﴾ إضالة موجودة ولكن لانتاوي

```
توانين التفاصل
                                                                         الميل m = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} الميل الميل
                                                                               f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} \quad \text{(b) is } f'(x) \leq x \to 9^{\frac{1}{2}} - 10 \lim_{h \to 0} \frac{h}{h} \quad \text{(if is) } f'(x) = \sin x
f'(x) = \lim_{h \to 0} \frac{3^{(x+h)} - 3^{(x)}}{h} \quad \text{(if is) } f'(x) \quad \text{(if is) } f'(x) = 3^{(x+h)} = 0
f'(x) = 3^{(x+h)} - 3^{(x+h)} = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                          يا قوانين الاستقام، ــ
                                                                                                                                                                                                                                                                                                   Y = \frac{dy}{dx} = nx^{n-1} \leftarrow Y = f(x) = 2^n \square
                                                                                                                                                                                                                                                                                                                                                                                                                   y'=3x^2 \leftarrow y=x^3 ①
   y' = 5x' + 3 = y' = 5x' + 3 = y' = 5x' + 3x + 5 = y' = 5x' + 3x' + 5 = y' = 5x' + 5x' + 5
                                                                                                                                                                                                                      ا مستنقة حاصل عزر بوالتين F ، F و المستنقة حاصل عزر بوالتين
                                                                                                                                                                  F(x) = F(x) = F(x) + F(x) F(x)
F(x) = F(x) F'(x) + F(x) F(x)
F(x) = F(x) F'(x) + F(x) F'(x)
F(x) = F(x) F(x) + F(x) F(x)
F(x) = F(x) F(x) + F(x)
F(x) = F(x) + F(x)
                                                                                                                         f(x) = (3x-2)(4x+1)
                                                                                                                  f(x) = (3x-1)(4) + (4x+1)(3) = 24x-1
F'(x) = \frac{\text{Pacies beth ariman }}{\text{Pacies }} F(x) = \frac{\text{Fig. 1}}{\text{Fig. 1}} + \frac{\text{Pacies }}{\text{Fig. 1}} F(x) = \frac{\text{Pacies }}{\text{Fig. 1}} = \frac{\text{Pacies }}{\text{Pacies }} F(x) = \frac{\text{Pacies }}{\text{Pacies }}
                                                                             F(x) = n[f(x)]f(x) = F(x) = [f(x)]^{n-1}
= F(x) = f(x)
                                                                                                                                                                                                                                 F(x) = (x^5 + 2x^3 + 1)^7 _ \tag{-10 in
                                                                                                                                                                                          F'(x) = 7(x^5 + 2x^3 + 1)^6 \cdot (5x^4 + 6x^2 + 0)
                                                                                                                                                                                                                                                                                                       Scanned by CamScanner
```


1)
$$f(x) = \sin(3x+1)$$
 $f'(x) = \cos(3x+1) - (3)$
 $f'(x) = \cos(3x+1) - (3)$
 $f'(x) = \cos(3x+1) - (3)$
 $f'(x) = \sin(3x+1)$

2) $f(x) = \tan x^{2}$
 $f'(x) = (\sec x^{2}), (-2x^{3}) = \frac{-2\sec^{2}x}{x^{2}}$
 $f'(x) = (\sec x^{2}), (-2x^{3}) = \frac{-2\sec^{2}x}{x^{2}}$
 $f'(x) = \sec(3x^{2}+1)$
 $f'(x) = \cot(3x^{2}+1)$
 $f'(x) =$

f(-2) = 8-16 = [8] orig

متوسط معيل التغير

متوسط معدل التغير بين أي نفتطيتن على منحن الدالة ٢ موميل المستقيم المار بين هذى النقطين

سيمى للسنقيم المار بنقطتين قاطعاً ويرمز لميل القلطع جالرمز sec

القانون بـ متوسط محل تغيراللات (x) عن الفترة [ع, م] هو

$$m = \frac{f(x_2) - f(x_1)}{x - x}$$

$$m = \frac{f(x_2) - f(x_1)}{x - x}$$

[2-1] $\frac{1}{2}$ $\frac{1}{2}$

$$= [+4] - [-8-6] = 4+14 = \frac{18}{3}$$

$$f(x) = \frac{y}{x}$$
 = $\frac{y}{x^2}$ = $\frac{y}{x^2$

(4) 515 (4)1-

اذا كانت الاطلة قالم للشقاف في ح منيكون لدينا بالقانون التاكي :-

$$\int \frac{u'}{u} dx = lm |u| + c$$

$$u = x^{4} + 2x + 1 \Rightarrow u' = 4x + 2 = 2(2x + 1)$$

$$-\frac{1}{2}\int \frac{ux^{3}+1}{x^{4}+2x+1}dx$$

$$=\frac{1}{2} \ln |x'+2x+1| + C$$

$$2 + \int_{4}^{4} \frac{x e^{2x^{2}}}{e^{2x^{2}} + 5} dx$$

$$U = e^{2x^2} + 5 \Rightarrow U = 4x(e^{-1})$$

$$\therefore \frac{1}{4} \int \frac{4xe^{2x^2}}{e^{2x^2}} dx = \frac{1}{4} \ln(e^{2x^2}) + C$$

(2) قولعد تكامل الدوال المثلتيد.

$$\int \cos \alpha x \, dx = \frac{1}{\alpha} \sin \alpha + C$$

$$\int f(x) dx = F(x)$$

$$\int 5 \times dx = 5 \times \frac{5}{5} + C$$

2
$$\int x^{\frac{2}{5}} dx = \frac{x^{\frac{2}{5}+1}}{\frac{2}{5}+1} + c$$

$$= \frac{\frac{7}{25}}{\frac{7}{5}} + c = \frac{5}{7} \propto^{\frac{7}{5}}$$

3
$$\int \frac{1}{26} dx = \int x dx = \frac{-6+1}{-6+1} + C$$

$$=\frac{7}{2} + C = -\frac{5}{525} + C$$

<u> قاعدة (٢)؛ -</u> لتكن ٤٥ قابلة للإشتقاق في م

$$\int u' u'' dz = \frac{u^{n+1}}{n+1} + c$$

$$= \frac{(2x^{3}-6)^{5}}{5} + C$$

$$(2) \int (x^2+1) \sqrt{x^2+3x+1} \, dx$$

$$(1=x^2+3x+1) \Rightarrow (1=3x^2+3)$$

$$U = \chi^{3} + 3\chi + 1 \Rightarrow U = 3\chi^{2} + 3$$

$$3(\chi^{2} + 1)$$

$$\frac{1}{3} \int_{3}^{3} (x^{2} + 1) \sqrt{x^{3} + 3x + 1} \, dx$$

$$= \frac{1}{3} \left(x^{3} + 3x + 1 \right)^{\frac{1}{2} + 1} + C$$

$$=\frac{2}{3}\cdot\frac{1}{3}\sqrt{(x^3+3x+1)^3}+C$$

 $\int_{a}^{b} f(x)dx = \int_{a}^{c} fdx + \int_{c}^{b} fdx$ $\int_{a}^{c} fdx = -\int_{c}^{a} fdx$ $\int_{a}^{c} fdx = -\int_{c}^{a} fdx$ $\int_{a}^{c} fdx = -\int_{c}^{a} fdx$ مثال، احسبي التكامل التابي Slxldx $|\chi| = \begin{cases} -x & x \neq 0 \\ -x & x \neq 0 \end{cases} = \int |x| dx = \int -x dx + \int x dx$ = + \frac{1}{2} + \frac{2^2}{2} = \frac{1}{2} + 2 = \frac{5}{2} $\int_{a}^{a} \int_{a}^{b} f(x) dx = 2 \int_{a}^{b} f(x) dx$ $\int_{a}^{b} \int_{a}^{b} f(x) dx = 0$ - المساحة تحت المنعني: -مثال، ۱۵ وجدي مساحة عن المنحى ۲۷ عروالحور X بن $\int_{1}^{3} 4x^{3} dx = 4 \frac{x^{4}}{4} \Big|_{1}^{3} = (3)^{4} - (1)^{4} = 81 - 1 = 80$ $\int_{-1}^{2} (-x^{2}+10) dx$ $= -\frac{x^{3}}{3} + 10x \Big|_{-1}^{2} = \frac{(-2)^{3}}{3} + 10(2)$ 123 + (-1)3 - 10(-1) = -8 + 20 - 1 + 10 = -3 + 30 $= \frac{1}{2} \frac{$ O Jexdx=ex+c 2 Jxexdx=1ex+c المتعتقية عالمالسيا عالم في المستفدم للمستفدم للمسالدالة في عالم المستفدة عليه المالية المستفدة المسالدالة في المستفدة ا du=2x V=ex I= xex- Jexdx = xex-ex I_=uv-Jvdu=xe-25xerdx $I = \chi e^2 - 2\chi e^2 + 2e^2$ Scanned by CamScanner

$$f(x) = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x < 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 & j & x > 0 \end{cases}$$

$$|x| = |x| = \begin{cases} x & j & x > 0 \\ -2 &$$

أسئلة المعيار 8

تمارين على المتتابعات والمسلات

1,-2,4,-8,16, ...

ا- اكدالسابع في المتتابعة

 $= a = ar^{n-1} \longrightarrow a = 1 \cdot (-2)^{\frac{7}{2}} = 2^{\frac{6}{2}} = \frac{64}{1}$

7- اذا كان أكد الثاني من متتابعة صنسية سياوي 6- وحدها الخامس 162 فإن أكدالعا

نظرح الاتان مستة) منظرح الاتان مستة) منظرح الثاني المستقة) منظر المستقة المستقدة المستقدة

لهذه المتتابعة سياوي:_

$$r^3 = -27 \Rightarrow r = -3$$

المعجب لأن اكدالثاني سالب +29-69189 ---

د (ع) موجب

(2), 16, 128,

٣- آكدالنوني للمتنابعة الهنسية ١-

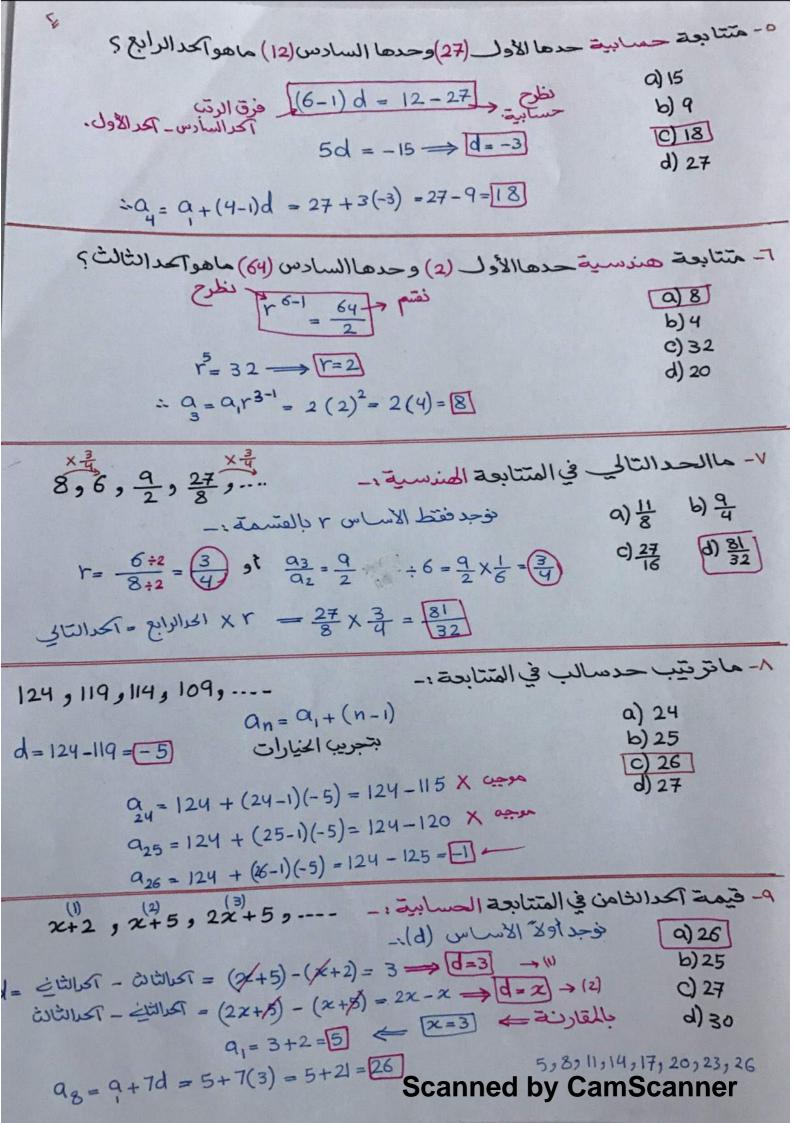
a)
$$a = 2(6)^{n-1}$$

$$V = \frac{Q_2}{Q_1} = \frac{16}{2} = 8$$

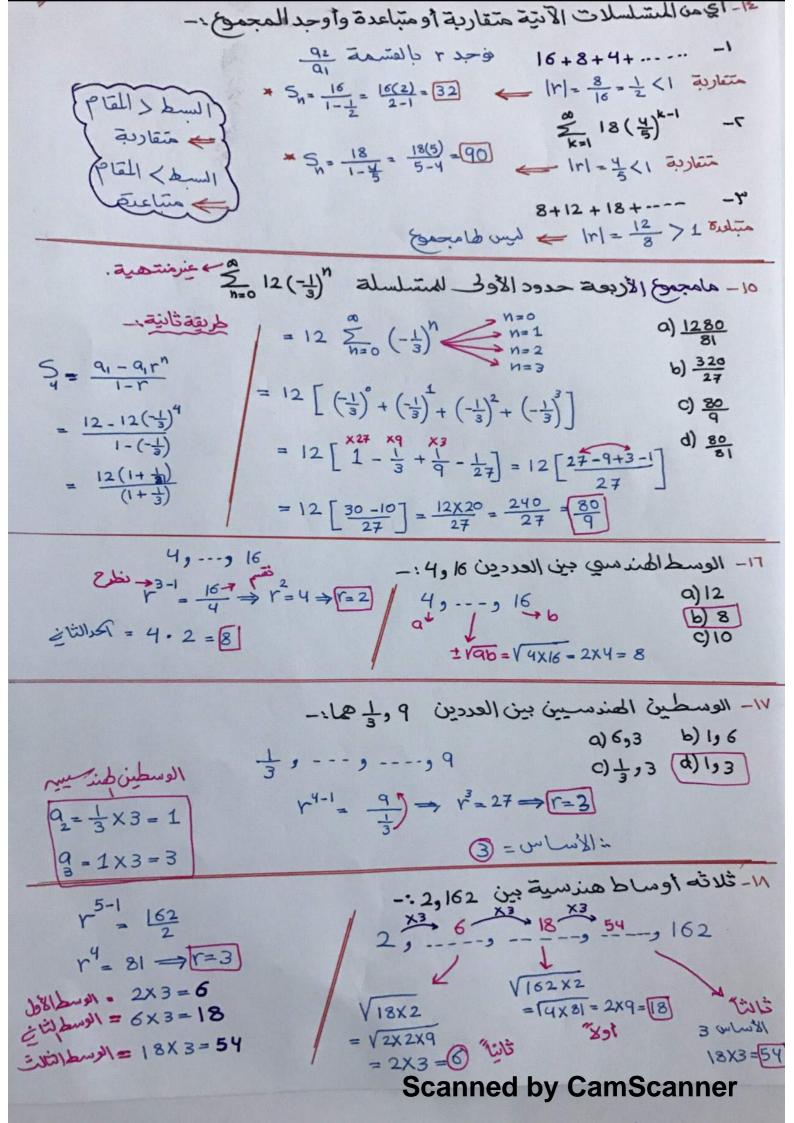
12,1,2,4,8,---

٤- كد العاسشر في المتنابعة :-

خدد نوع المتتابعة هل حسابية أم هندسية.


a) 128

$$a_2-a_1=1-\frac{1}{2}=\frac{1}{2}$$


$$\frac{a_3}{a_2} = \frac{2}{1} = 2$$

$$\frac{Q_4}{Q_3} = \frac{4}{2} = 2$$

$$Q_1 = \frac{1}{2}$$
 $gr=2$ $\Rightarrow Q_{10} = \frac{1}{2}(2)^{10-1} = \frac{29}{2!} = 2^{10} = \frac{8}{2} = \frac{256}{2}$

١- تشكل قياسات زوايا المثلث أدفاه متتابعة حسابية اذا كان قياس الزاوية 4 الصغرى (36) ، فعاقياس الزاوية الكبرى ؟ a)75 مجموع قياسات زوايا المثلث = 180 مطرقة أحوى: 186 يكر 3 = ي . b) 90° c) 97° 91 + 92 + 93 - 180 S= 1 [a,+ an] d) 84 36 + (36+d)+(36+2d)= 180° 180 = 3 [36 + 9] 3(36)+3d=180=3(60) +3 -> 36+d=60 -> d=60-36°= 24) 180 x 2 = 36+ay الأورة الجرى ا عاد 36+48 = الأورة الجرى ا 9=120-36= a=84 اا- اذا كان آكدالأول في مسلسلة هندسية هاوي (5) وأساسها (2) ومجموعها (1275) فإن عدد حدودها:- $S_n = \frac{\alpha_1 - \alpha_1 r^n}{1 - r}$ $1275 = \frac{5-5(2)^{1}}{1-12} = \frac{5(2)^{2}(5)^{2}}{1}$ a)7 (b)8 d) 10 $1275 + 5 = 5(2)^n \Rightarrow 1280 = 5(2)^n$ $2^n = 1280 = 256 \implies 2^n = 2^8 \implies n = 8$ a) 501 6)-501 c) 1000 (-1) X500 + 1001 = -500 + 1001 = 501 ١١- قيمة $S = \frac{a_1}{1-\Gamma}$ \leftarrow ā air zie ā mulma \nearrow a) 5 $\sum_{n=0}^{\infty} 5 \left(\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} a_i(r)^n$ 6)5 معاربية - 1> اوا اوا المارة 0) 10 $5 = \frac{5}{1 - \frac{1}{2}} = \frac{5}{\frac{1}{2}} = 5 \times 2 = 0$

1 lim
$$\frac{7x^3+1}{x^2+4x} = \frac{7(0)+1}{0^2+4(0)} = \frac{1}{0} = \infty$$

2 lim
$$\frac{2x^3 - x^2 + 5x}{x \to 0} = \lim_{x \to 0} \frac{x(x^2 - x + 5)}{x} = 5$$

4 lim
$$\frac{\chi^2 - 32 - 10}{\chi^2 + 52 + 6} = \frac{0}{0}$$
 lim $\frac{2\chi - 3}{\chi_{-7} - 2} = \frac{-4 - 3}{-4 + 5} = \frac{-7}{-4 + 5}$

$$\boxed{5} \lim_{\chi \to 2} \frac{|\chi - 2|}{2 - \chi} = \begin{cases} \frac{\chi - 2}{2 - \chi} = -1 & ; \ \chi / 2 \\ \frac{2 - \chi}{2 - \chi} = 1 & ; \ \chi \leqslant 2 \end{cases}$$

$$\begin{array}{c|c}
2-2 & 2-2 \\
\hline
2-2 & 2-2
\end{array}$$

النهاية السوى
$$+$$
 النهاية اليمنى $\frac{x-2}{x\rightarrow 2^{+}}$ سنا $\frac{x-2}{2-2}$ سنا $\frac{2-x}{x\rightarrow 2^{-}}$

$$\frac{2-2}{2^{2}-2-2} \qquad \lim_{x \to 2} \frac{|3x-6|}{6-32}$$

$$\frac{3x-6}{6-32}$$

12d x

lin 12-11

F lim
$$\frac{|x-2|}{2-x} = \lim_{x \to 2^{-}} \frac{2^{-2x}}{2-x} = \lim_{x \to$$

B
$$\frac{|\chi-2|}{|\chi-2|} = \lim_{\chi \to 2} \frac{\chi-2}{|\chi-2|} = -1$$

$$\frac{29812009}{8} \lim_{\chi \to 1} \frac{\chi^2 + \chi - 2}{\chi - 1} = \frac{1 + 1 - 2}{1 - 1} = \frac{0}{0}$$

20 lim
$$e^{x} + x$$
 = $e^{x} + a$ = e^{x}

مارين على الامت تقام عدد عملوب عدم معلوب عدم معلوب عدم معلوب عدم معلوب عدم معلوب عدم معلوب عدم المعتقدة المعت f(耳) いらf(x)= tanga でいとらい 「 f(x)=(tanx)2 => f(z)= 2tanx sec2x f(=)= 2 tan(=) sec(=)=2(1)(=)=41 y=2+7 issis what Is (3)=3(3)=27)
h→0
h

(3)=3(3)=27) $f(x) = \cos x \implies f(x) = -\sin x$ 9(-3)=3 , +(-3)=2 3/5/3/11 9(-3)=5 , f(-3)=1 فات (3-) (49) ستاوي، _ (49) = fg' + gf'= 2.5 + 3.1 = 10+3 = 13 الم أوجد مشتقة المالة؟ $\square y = \ln(x^2 - e) \Rightarrow y' = \frac{1}{x^2 - e} \cdot (2x)$ $= \ln (\ln x) = \frac{1}{x} = \frac{1}{x \ln x}$ $3 y = e^{\sqrt{2}} \rightarrow y' = e^{\sqrt{2}} \cdot \frac{1}{2\sqrt{2}} = \frac{e^{\sqrt{2}}}{2\sqrt{2}}$ # y = e y = e 2. (2x) = 2xe 2 $5 \quad y = \sqrt{2-x} \Rightarrow y' = \frac{-1}{2\sqrt{2-x}}$ 6 $y = \frac{5}{(x+1)} \Rightarrow y = \frac{5}{x^2(x+1)} = \frac{5}{x^3+x^2}$ $y = \frac{-5(3x^2+2x)}{(x^3+x^2)} \times \frac{1}{(x^3+x^2)}$

 $= \sqrt{\frac{-15 \times -10}{\chi^2 + \chi}}$

المعادلة ميل منحنى 2x2 = y عند y'= 4x عليه علية أ عندالنقطة (١٤ر٦) ا مشتقة الدالة، $f(x) = (-7x^2 + 4)(x-2)$ $y' = (-7x^2 + 4)(1) + (x-2)(-14x)$ = -7x+4-14x+28x $=-21x^{2}+28x+4$ (x)= 5 1/28 Elles = (x) $y = 5(x)^{\frac{8}{3}}$ $y' = 5 \cdot \frac{8}{3} x^{\frac{8}{3} - 1} = \frac{40}{3} x^{\frac{5}{3}}$ اذاكان ع = و فإن و ساوى _ الطرفين $\log y = \log x$ $\log y = x \log x$ وَالْمُسَمِّةِ عَلَى الْمُعَلِّقِ الْمُوسِدِ الْمُعَلِّقِ الْمُعَلِّقِ الْمُعَلِّقِ الْمُعَلِّقِ الْمُعَلِّقِ ا y'= x2[Logx+1] (Y' U = ([2+1) (1-12) [15 | 5] $y = -(\sqrt{x+1})(\sqrt{x-1})$ $y = -(x-1) \Rightarrow y = -1$ مَوْتَمُلُمُ نَانَ عَمَد + 4y = 2 تَنه لا أَمَا اللهِ 2+2号=1 => 29=1-2

⇒ y=1-x = y'=-1

$$2\int_{-1}^{1} x^{2} dx = \frac{x^{3}}{3} \int_{-1}^{1} = \left(\frac{1}{3}\right) - \left(\frac{-1}{3}\right) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

3
$$\int (9x-x^3)dx = 9x^2 - x^4 + c$$

$$4 \int (6x^{3} - 6x^{2}) dx = 16x^{4} - 6x^{3} + C = 4x^{4} - 2x^{3} + C$$

$$\frac{1}{2} \int_{2}^{2} (2x+5)^{4} dx = \frac{1}{2} (2x+5)^{5} = \frac{1}{10} (2x+5)^{2} + C$$

6
$$\int (x-2)^2 dx = (x-2)^3 + C$$

$$\frac{\sin x}{\cos x} dx = -\int \frac{(-\sin x)}{\cos x} dx = -\ln |\cos x| \qquad u = \cos x$$

$$\frac{\cos x}{\cos x} dx = -\ln |\cos x| \qquad u' = -\sin x$$

$$\frac{\sin x}{\cos^2 x} dx = \int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} dx$$

$$= \int \frac{\tan x}{\cos x} \sec x dx = \int \frac{\sec x}{\cos x} dx$$

$$= \int \frac{\sin x}{\cos x} dx = \int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} dx$$

$$\int \frac{\sin x}{(\cos x)^2} dx = -\int \frac{(-\sin x)}{1} \cdot (\cos x)^2 dx = -(\cos x)^{-1} + C$$

$$= \frac{1}{\cos x} + C = \sec x + C$$

$$\begin{array}{lll}
\boxed{10} & \int_{-\infty}^{\infty} x \, e^{\frac{x^2}{2}} dx & U = -x^2 \longrightarrow \text{undynation} \\
& = -\frac{1}{2} \int (-2x) \, e^{\frac{x^2}{2}} dx & = -\frac{1}{2} e^{\frac{x^2}{2}} \int_{-\infty}^{\infty} \frac{1}{2} \left[\frac{1}{2} e^{\frac{x^2}{2}} \right]_{-\infty}^{\infty} = -\frac{1}{2} \left[\frac{1}{2$$

$$\begin{array}{lll}
\boxed{11} & \frac{1}{4} \sqrt{4 x^3} \cos (x^4 + x^2) dx & u = x^4 + 2 \longrightarrow \text{and in the property of } x^3 & \text{discrete for the property of } x^4 + 2 \longrightarrow \text{and in the pr$$

$$\frac{1}{2} \int (2x) \sin x^2 dx = \frac{1}{2} \left[-\cos x^2 \right] + C \int x \sin x^2 dx$$

$$\frac{13}{3} \int_{-\infty}^{1} xy \, dx \, dy = \int_{-\infty}^{1} \left[\int_{-\infty}^{1} xy \, dx \right] \, dy$$

$$= \int_{-\infty}^{1} \left[\frac{x^2y}{2} \right]_{-\infty}^{1} dy = \int_{-\infty}^{1} \left[\frac{y}{2} \right] dy = \frac{1}{2} \int_{-\infty}^{1} y \, dy = \frac{1}{2} \left[\frac{y^2}{2} \right] = \left[\frac{y}{4} \right]$$

$$\begin{array}{ll}
\boxed{4} & \int e^{2x-5} dx \\
&= \frac{1}{2} \int 2e^{2x-5} dx = \frac{1}{2} \left[e^{2x-5} \right] + C = \frac{e^{2x-5}}{2} + C
\end{array}$$

$$\int_{1}^{2} |x-1| dx$$

$$1 - 2$$

$$1 - 2$$

$$f(x) = \begin{cases} x-1 & ; & x > 1 \\ -(x-1) & ; & x < 1 \end{cases}$$

$$(1-x)$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} |x-1| dx = \int_{0}^{1} (1-x) dx$$

$$= x - \frac{x^{2}}{2} \Big|_{0}^{1} = \Big[(1-\frac{1}{2})^{-(0)} \Big] = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \Big[\frac{1}{2} - 1 \Big] = \frac{1}{2} = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \Big[\frac{1}{2} - 1 \Big] = \frac{1}{2} = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\int_{0}^{1} |x-1| dx = \int_{0}^{1} (x-1) dx = \frac{x^{2}}{2} - x \Big|_{0}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{17}{\chi_{2}} \int_{0}^{3} |x-1| dx \longrightarrow \lim_{\chi = 1}^{3} \lim_{\chi =$$

$$k\int_{0}^{2}x\,dx=6 \Rightarrow k\left[\frac{x^{2}}{2}\right]_{0}^{2}=6 \Rightarrow k\left[\frac{4}{2}-0\right]=6 \Rightarrow 2k=\frac{6}{2}\Rightarrow k=3$$

$$5 \text{ m and } \text{ or in }$$

1. يحسب مجموع المتتابعات والمتسلسلات الحسابية والهندسية

2. يحكم على تقارب المتتابعات والمتسلسلات غير المنتهية

 يتعرف النهايات ويستخدمها في تعريف مشتقة الدالة والحكم على اتصالها

4. يحسب مشتقة الدالة ويرسم منحناها

5. يحسب تكامل دالة ويستخدمها في حساب المساحات والحجوم

6. يحل مسائل تطبيقية على التفاضل والتكامل

المعيار 3. 4. 8؛ يتعرف حساب التفاضل والتكامل وتطبيقاتهما

النموذج العاشر :

المجال الجبر والدوال الحقيقية و التحليل الرياضي

المعيار: يتعرف حساب التغاضل والتخامل وتطبيقاتهما

المؤشر: يحسب مجموع المتتابعات والمتسلسلات الحسابية والهندسية

السؤال: مجموع المتسلسلة $\frac{\sum_{n=0}^{\infty} \left(\frac{2^n \cdot 5^n}{7^n}\right)}{7^n}$ يساوي:

12 10

<u>5</u> 2

الحل: الإجابة (ج)

$$\sum_{n=1}^{\infty} \left(\frac{2^n \cdot 5^n}{7^n} \right) \cdot \sum_{n=1}^{\infty} \left[\left(\frac{2}{7} \right)^n \cdot \left(\frac{5}{7} \right)^n \right]$$

$$= \frac{1}{1 - \frac{2}{7}} + \frac{1}{1 - \frac{5}{7}}$$

$$= \frac{7}{5} + \frac{7}{2}$$

$$=\frac{49}{10}$$

المجال المعرفي ، تطبيق الصعوبة ، % 40 (من الإجابة (ثانية) ، 60

$$\sum_{n=0}^{\infty} \left(\frac{2^n+5^n}{7^n}\right)$$
 مجموع المتسلسلة

14/10 o

7/6 。

49/10

49/11 0

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

$$\frac{2}{2} \left(\frac{2}{7}\right)^{n} + \frac{2}{5} \left(\frac{5}{7}\right)^{n}$$

$$= \frac{1}{1 - \frac{2}{7}} + \frac{1}{1 - \frac{5}{7}}$$

$$= \frac{1}{5} + \frac{1}{27} = \frac{7}{5} + \frac{7}{2} = \frac{94}{10}$$

$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy = \int_{1}^{2} \left[\int_{0}^{3} x^{2} y \, dx \right] dy = \int_{1}^{2} \left[\frac{x^{3}}{3} y \right]_{x=0}^{x=3} dy$$
$$= \int_{1}^{2} 9y \, dy = 9 \frac{y^{2}}{2} \Big]_{1}^{2} = \frac{27}{2}$$

نظرية القيمة المتوسطة

إذا كانت الدالة د : ﴿ وَ مُنْصَلَةً فِي الْفُسْرَةُ الْعَلَقَةُ [٩ ، ب]

آ) قابلة للاشتقاق في الفترة الفتوحة] ١ . ب [

$$\tilde{c}(z) = \frac{c(\psi) - c(\gamma)}{\psi - \gamma}$$

فإنه يوجد على الأقل عدد حقيقي واحد ع 3] ، ب [بيث أن (ع) = ((ب) - د(ع)

$$(x) = x^{2} + 1$$
 $(x) = x^{2} + 1$
 $(x) = x^{2$

$$\beta'(\mathbf{x}) = \beta(1) - \beta(0)$$

$$1 - 0$$

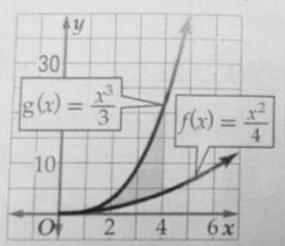
$$= 2 - 1$$

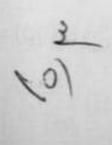
$$= 1$$

$$\beta'(\mathbf{x}) = 2\mathbf{X} = 1$$

$$\mathbf{X} = \frac{1}{2}$$

$$\sum_{k=2}^{9} \frac{2}{5} \times 3^{k-1}$$
: $\sum_{k=2}^{9} \frac{2}{5} \times 3^{k-1}$:


وا كانت
$$f(x) = 2x^3 - 9x^2 + 12x + 1$$
 فإن الدالة متناقصة في الفترة $f(x) = 2x^3 - 9x^2 + 12x + 1$ (-2, -1) (1,2) (2) (1,2) (2) (1,2) (3)


مجموع المتسلسلة الهندسية اللانهائية يُرمز له بالرمز S حيث $S=rac{a_1}{1-r}$

وإذا كان 1 ≤ | 1 | فلا يوجد للمتسلسلة مجموع.

$$\sum_{n=0}^{8} 5\left(\frac{1}{2}\right)^{n}$$

g(x), f(x) مساحات؛ ما مساحة المنطقة المحصورة بين منحني (33 في الفترة $0 \le x \le 1$ في الفترة $0 \le x \le 1$ في الشكل أدناه؟

ا $\frac{1}{3}$ وحدة مساحة $\frac{1}{3}$

16 D وحدة مساحة

ا $\frac{5}{12}$ وحدة مساحة $7\frac{5}{12}$ A

ا $\frac{1}{3}$ وحدة مساحة $\frac{1}{3}$ В

$$\int_{2}^{4} \frac{x^{3}}{3} dx = \frac{1}{12} \frac{x^{4}}{2} = \frac{1}{12} \left(4^{4} - 2^{4} \right) = \frac{240}{12} = 20$$

$$\int_{2}^{4} \frac{x^{2}}{4} dx = \frac{1}{12} \frac{x^{3}}{2} = \frac{1}{12} \left(4^{3} - 2^{3} \right) = \frac{56}{12} = \frac{4}{12}$$

$$\int_{2}^{4} \frac{x^{2}}{4} dx = \frac{1}{12} \frac{x^{3}}{2} = \frac{1}{12} \left(4^{3} - 2^{3} \right) = \frac{56}{12} = \frac{4}{12}$$

$$\int_{2}^{4} \frac{x^{2}}{4} dx = \frac{1}{12} \frac{x^{3}}{2} = \frac{1}{12} \left(4^{3} - 2^{3} \right) = \frac{56}{12} = \frac{4}{12}$$

$$\int_{2}^{4} \frac{x^{3}}{4} dx = \frac{1}{12} \frac{x^{3}}{2} = \frac{1}{12} \left(4^{3} - 2^{3} \right) = \frac{56}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\int_{2}^{4} \frac{x^{3}}{4} dx = \frac{1}{12} \frac{x^{3}}{2} = \frac{1}{12} \left(4^{3} - 2^{3} \right) = \frac{56}{12} = \frac{1}{12} = \frac{1}{12}$$

$$= \overline{\left[5 \frac{1}{3}\right]}$$

, 8, 5, 3,	السؤال (11) : الكمل المتتابعة : 1 , 1 , 2			
(ب) 15	13(1)			
×××× (ح)	(جـ) 40			
\\" = \lambda + 0\" 100% سلسلة				

 $f(x) = 20x^2 - 160x + السؤال (٦٣) : أوجد القيمة الصغرى للدالة <math>(0,3)$ أوجد القيمة الضغرى للدالة

xxxx (ب)

30 (أ)

(c)xxxx

(ج) xxxx

طريقة الحل: (أ) 30.

#قاعدة:

قاعدة مشتقة القوة

التعبير اللفظي؛ قوة x في المشتقة أقل بواحد من قوة x في الدالة الأصلية، ومعامل x في المشتقة بساوى قوة x الأصلية.

 $f'(x) = nx^{n-1}$ ادا کان $f(x) = x^n$ عدد حقیقی، فإن $f(x) = x^n$

الرموز:

مفهوم أساسي

نوجد مشتقة الدالة:

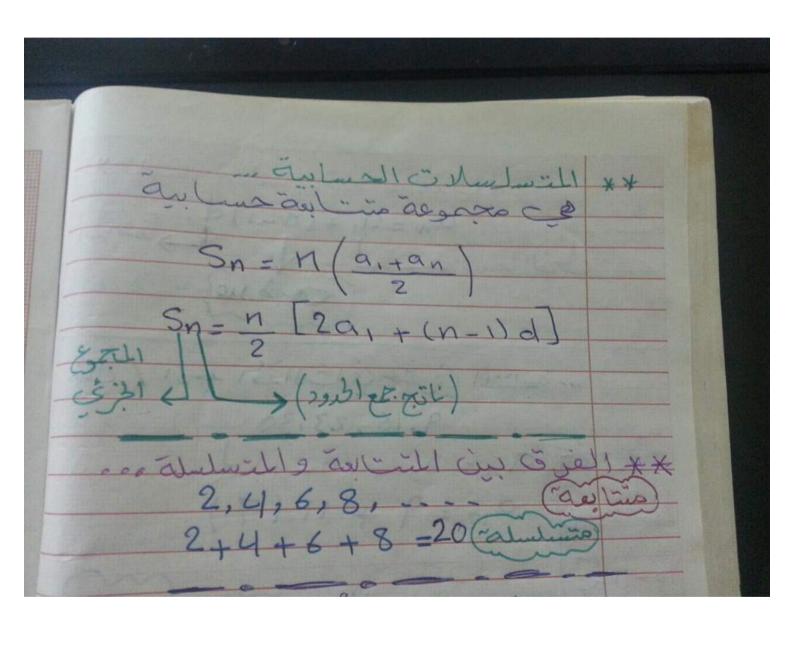
 $f'(x) = 2(20)x^{2-1} - 160x^{1-1}$ f'(x) = 40x - 160

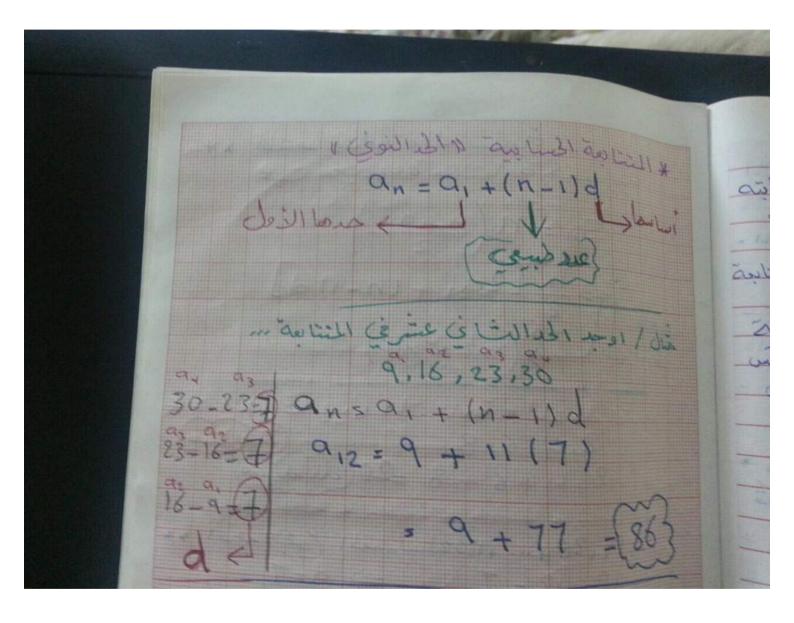
نوجد النقاط الحرجة بمساواة الدالة بالصفر:

40x - 160 = 0

40(x-4)=0

x - 2 = 0 => x = 2


نعوض بالدالة الأصلية:


 $f(0) = 20(0)^2 - 160(0) + 330 = 330$

 $f(2) = 20(2)^2 - 160(2) + 330 = 90$

 $f(3) = 20(3)^2 - 160(3) + 330 = 30$

اذاً القيمة الصغرى هي : 30.

CALCULUS

DERIVATIVES AND LIMITS

CHAIN RULE AND OTHER EXAMPLES

 $\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$

 $\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)]$

 $\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)]$

 $\frac{d}{dx}(\tan[f(x)]) = f'(x)\sec^2[f(x)]$

 $\frac{d}{dx}(\tan^{-1}[f(x)]) = \frac{f'(x)}{1 + [f(x)]^2}$

 $\frac{d}{dx}(\sec[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)]$

 $\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$

 $\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)}$

DERIVATIVE DEFINITION

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

BASIC PROPERTIES

$$(cf(x))' = c(f'(x))$$
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$
$$\frac{d}{dx}(c) = 0$$

MEAN VALUE THEOREM

If f is differentiable on the interval (a, b) and continuous at the end points there exists a c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

PRODUCT RULE

$$(f(x)g(x))' = f(x)'g(x) + f(x)g(x)'$$

QUOTIENT RULE

$$\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

CHAIN RULE

$$\frac{d}{dx}\Big(f\big(g(x)\big)\Big)=f'\big(g(x)\big)g'(x)$$

COMMON DERIVATIVES

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\cot^{-1} x) = \frac{1}{1 + x^2}$$

$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

 $\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)}$

PROPERTIES OF LIMITS These properties require that

These properties require that the limit of f(x) and g(x) exist

 $\frac{d}{dx}\left(f(x)^{g(x)}\right) = f(x)^{g(x)}\left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right)$

$$\lim[cf(x)] = c\lim f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

LIMIT EVALUATION METHOD - FACTOR AND CANCEL

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'S RUI F

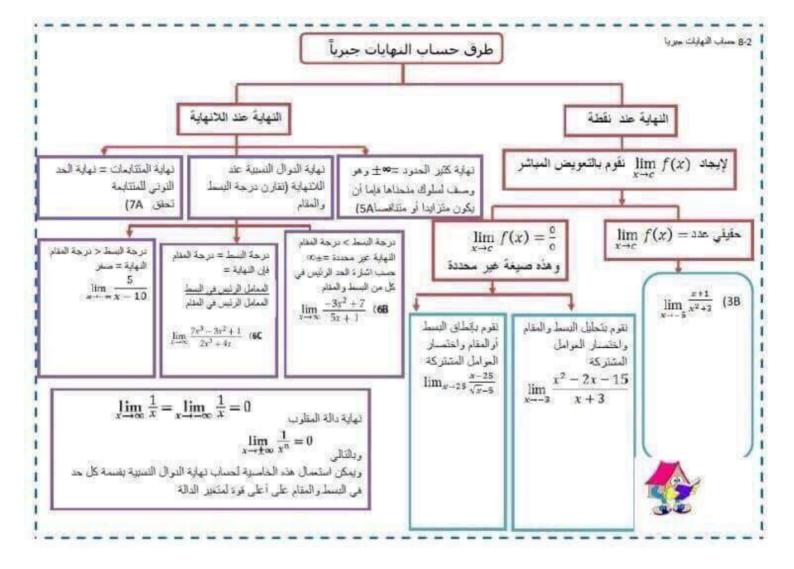
If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

EEWeb.com Electrical Engineering Community

- Latest News
- Engineering Community
- Online Toolbox
- Technical Discussions
- Professional Networking
- · Personal Profiles and Resumes
- Community Blogs and Projects
- Find Jobs and Events

LIMIT EVALUATIONS AT +-00

$$\lim e^x = \infty$$
 and $\lim e^x = 0$


$$\lim_{x \to \infty} \ln(x) = \infty \text{ and } \lim_{x \to 0^+} \ln(x) = -\infty$$

If
$$r > 0$$
 then $\lim_{x \to \infty} \frac{c}{x^r} = 0$

If
$$r > 0 \& x^r$$
 is real for $x < 0$ then $\lim_{x \to -\infty} \frac{c}{x^r} = 0$

$$\lim_{x \to +\infty} x^r = \infty \text{ for even } r$$

$$\lim_{x \to \infty} x^r = \infty & \lim_{x \to -\infty} x^r = -\infty \text{ for odd } r$$

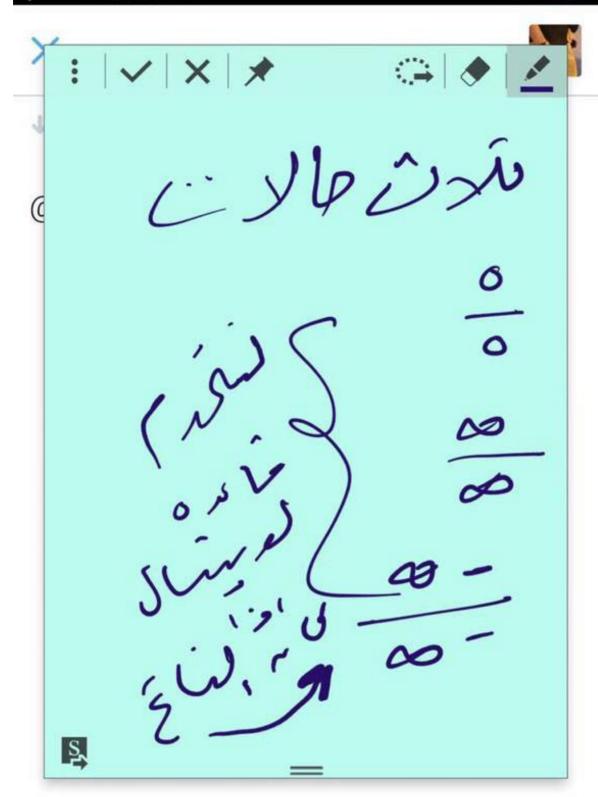
L'Hôpital's Rule for $\frac{0}{0}$

Suppose $\lim f(x) = \lim g(x) = 0$. Then

1. If $\lim_{g'(x) = L} f'(x) = L$, then $\lim_{g(x) = L} f'(x) = \lim_{g'(x) = L} f'(x) = L$. 2. If $\lim_{g'(x) = L} f'(x) = L$ then $\lim_{g'(x) = L} f'(x) = L$. 2. If $\lim_{g'(x) = L} f'(x) = L$ then $\lim_{g'(x) = L} f'(x) = L$.

L'Hopital's rule:

c is either a finite number or ∞ .


If $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

If $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) = \infty$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

دورات حُقَايَات المعلمين – إشراف الأستاذة أمل القحطاني

من اسئلة أعوام سابقة

 $\lim_{n \to \infty} \{ \ln(n+1) - \ln(n) \}$ قيمة النهاية (232

2 (d) 1

C

b ln2

a

 $\lim_{n \to \infty} \{\ln(n+1) - \ln(n)\} = \lim_{n \to \infty} \ln \frac{n+1}{n}$ $= \ln \lim_{n \to \infty} \frac{n+1}{n} = \ln 1$

= 0

<mark>كَفَايَاتَ الْمَعَلَمِينَ الشَّامِلَ</mark> تَعَوِيْنِ عَلَى التَوِيْرُ AmaiQatan (

ديانة الدالة lim n2-9 X-33 n-3 $\sqrt{-(3)^2-9}=9-9$ نت) ے کال لاقلص صہ Ilelel Ivas $= \lim_{n \to 3} n + 3 =$

Example 2: Find $\frac{dy}{dx}$ if $y = (x^4 + 2)^5 + 5^{x^4+2}$: a sum of the content of the conte

مشتقهٔ داله داخل فوس مرفوع لاس مشتقهٔ ما بداخل القوس مشتقهٔ الاس مشتقهٔ ما بداخل القوس (3)
$$D_x a^x = a^x In \ a \ .D_x X$$

$$\dot{y} = [5(x^4 + 2)^4 .4x^3] + [5^{X^4+2} .In 5 .4x^3]$$

$$= 4x^3 [5(x^4 + 2)^4 + 5^{X^4+2} In 5]$$

$$= 20x^3 [(x^4 + 2)^4 + 5^{X^4+1} In 5]$$

معدل التغير اللحظى للداله عند نقطة ما

(43) ما معادلة ميل منحنى
$$y = 2x^2$$
 عند أي نقطة عليه $y = 2x^2$

$$m = x C$$

$$m=4x$$
 A

$$m = -4x$$
 D

$$m = 2x$$
 B

$$y = 2x^2$$
 ما ميل مماس منحنى $y = 2x^2$ عند النقطة (61) ما ميل

4 C

8 D

m=4X July doles

= 4(1) (1,2) sievibly

Example 1: Find $D_x(3^{\sqrt{x}})$

By chain rule:

$$U = \sqrt{x}$$
 , $du = \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2\sqrt{x}} dx$

(3)
$$D_x a^x = a^x \ln a \cdot D_x x$$

$$D_x(3^{\sqrt{x}}) = 3^{\sqrt{x}} \cdot In \cdot 3 \cdot D_x \sqrt{x}$$

$$=3^{\sqrt{\chi}}.In \ 3.\frac{1}{2\sqrt{\chi}}=\frac{3^{\sqrt{\chi}}ln \ 3}{2\sqrt{\chi}}$$

$(x^2 + \frac{1}{x})^9$ ما الحد الثابت في مفكوك

ي 36

20 1

168

84

9

alam water reco

$$(a+b)^{n} = \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} a^{n-k} = b^{k}$$

$$(a+b)^{n} = \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} a^{n-k} = b^{k}$$

$$(x^{2} + \frac{1}{k})^{q} = \sum_{k=0}^{q} {\binom{q}{k}}^{k} \frac{2(q-k)}{k!} {\binom{1}{k}}^{k}$$

$$= \sum_{k=0}^{q} {\binom{q}{k}}^{k} \frac{2(q-k)}{k!} {\binom{1}{k}}^{k}$$

$$= \sum_{k=0}^{q} {\binom{q}{k}}^{k} \frac{18-3k}{k!}$$

$$= \sum_{k=0}^{q} {\binom{q}{k}}^{k} \frac{18-3k}{k!}$$

$$18-3k=0 \implies k=6$$

$${\binom{q}{6}} = \frac{q!}{6!3!} = 8^{l}$$

$${\binom{q}{6}} = \frac{q!}{6!3!} = 8^{l}$$

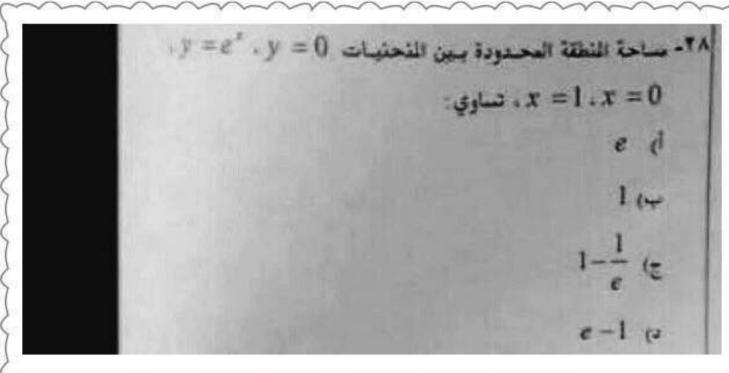
$$\lim_{n\to\infty} \left\{ \ln(n+1) - \ln(n) \right\}$$

$$= \lim_{n\to\infty} \ln \frac{n+1}{n}$$

$$= \lim_{n\to\infty} \ln(1+\frac{1}{n})$$

$$= \lim_{n\to\infty} (1+\frac{1}{n})$$

$$= \ln(1+o)$$


$$= \ln 1 = 0$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 and $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

EXAMPLE 3 Evaluate $\int_0^{\pi} \sin^2 x \, dx$.

SOLUTION If we write $\sin^2 x = 1 - \cos^2 x$, the integral is no simpler to evaluate half-angle formula for $\sin^2 x$, however, we have

$$\int_0^{\pi} \sin^2 x \, dx = \frac{1}{2} \int_0^{\pi} (1 - \cos 2x) \, dx = \left[\frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) \right]_0^{\pi}$$
$$= \frac{1}{2} \left(\pi - \frac{1}{2} \sin 2\pi \right) - \frac{1}{2} \left(0 - \frac{1}{2} \sin 0 \right) = \frac{1}{2} \pi$$

$$\int u\,dv = uv - \int v\,du$$

EXAMPLE 2 Evaluate $\int \ln x \, dx$.

SOLUTION Here we don't have much choice for u and dv. Let

$$u = \ln x$$
 $dv = dx$

Then

$$du = \frac{1}{x} dx \qquad v = x$$

Integrating by parts, we get

$$\int \ln x \, dx = x \ln x - \int x \, \frac{dx}{x}$$

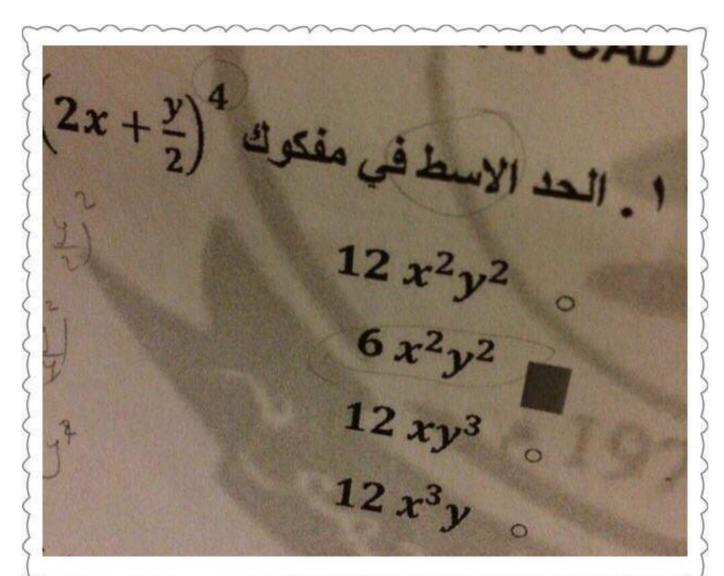
$$= x \ln x - \int dx$$

$$= x \ln x - x + C$$

2

$$\int u\,dv = uv - \int v\,du$$

EXAMPLE 1 Find $\int x \sin x \, dx$.


$$u = x dv = \sin x \, dx$$

$$du = dx v = -\cos x$$

$$\int x \sin x \, dx = \int x \sin x \, dx = x (-\cos x) - \int (-\cos x) \, dx$$

$$= -x \cos x + \int \cos x \, dx$$

$$= -x \cos x + \sin x + C$$

$$A_{m} = P_{c_{+}} B_{c_{+}} A_{n-r}$$

$$b = \frac{1}{2} \quad a = 2x \quad n = 4 \quad \text{i.o.}$$

$$n+1 = 5 \quad \text{i.o.} \quad \text{i.o.} \quad \text{i.o.}$$

$$\Rightarrow (r = 2)$$

$$\Rightarrow (r = 3)$$

$$\Rightarrow (r = 3)$$

$$\Rightarrow (r = 4)$$

$$\Rightarrow (r$$

62

4 مجتمع من البكتيريا فيه 200 عنصر ، إذا علمت ان عدد البكتيريا يتضاعف كل ساعتين مرة فما عدد البكتيريا في المجتمع بعد 12 ساعه ؟ (توضيح الحل)

- بعد12ساعه 12 8 6 8 10 12
- 1 2 3 4 5 6 7
- عدد 200 400 800 1600 3200 6400 البكتيريا

(حل المثال بإستخدام المتتابعات الهندسية)

استاذ/ مسفر الصقري ثانوية الزهراوي

$$a_n = a_1 r^{n-1}$$

$$a_7 = 200(2)^{7-1}$$

 $a_7 = (200) \cdot (64) = 12800$

الاحتمالية هي الاحتمالية عن الاحتمالية الاحتمالية عن الا

يمكن ايجاد المجموع الجزئي لمتسلسلة حسابية بإستخدام احد القوانين التالية 41

مجموع أول n حداً (S_n) هو د	المعطيات	القانون (المعادلة)
$S_n = n \left(\frac{a_1 + a_n}{2} \right)$	a_1 , a_n	بالصيغة العامة
$S_n = \frac{n}{2} [2a_1 + (n-1)d]$	a ₁ , d	بالصيغة البديلة

تمرين / اوجد مجموع المتسلسلة الحسابية التالية

نستخدم القانون الأول ... نقوم بإيجاد قيم n , a , n a,= 2

$$a_n = 100$$

بما ان قيمة n مجهوله ... نوجدها من القانون

$$a_n = a_1 + d (n - 1)$$

مسفر الصقري ثانوية الزهراوي

$$6 = 100 = 2 + 2(n - 1)$$

$$rightharpoonup 100 = 2 + 2n - 2$$

n = 50 👉 بما اننا اوجدنا قيمة n نعوض في قانون 👔

ماذا تعنى n ؟ تعنى عدد الحدود وفي المثال عدد الحدود ىكىن 50

$$S_n = 50 \left(\frac{2 + 100}{2} \right) \implies S_n = 50 \left(\frac{102}{2} \right) \implies S_n = 2550$$

🖐 الفرق بين المتتابعة الحسابية والمتسلسلة الحسابية ، يكون بين حدود المتتابعة فاصلة بينما في المتسلسلة يكون بين الحدود علامة جمع.

مقاهيم	المتتابعة الحسابية	المتتابعة الهندسية
الأساس	d ونوجده بطرح أي حد من حدود المتتابعة من الحد الذي يليه	المنتابعة على الحد الذي سبقه وتوجده بقسمة أي حد من حدود المنتابعة على الحد الذي سبقه
a_n	$a_n = a_1 + (n-1)d$	$a_n = a_1 . r^{n-1}$
معادلة الحد النوني أو صيغة الحد النوني	لإيجه ها نعوض عن a_1 و فقط في قانون الحد النوني ونكمل العمليات الحسابية ونحصل على معه لة بالمجهول $a_n=7+6n$	لإيجادها نعوض عن a_1 و a_1 فقط في فقون الحد النوني $a_n = \frac{4}{3} \ .3^{n-1}$
الأوساط الحسابية	d لإيجادها لابد من إيجاد d ونوجد d من قلمون الحد النوني	$\mathcal V$ لإيجادها لابد من إيجاد $\mathcal V$ من قانون الحد النوني
المتسلسلة المتسلسلة و هي حاصل جمع حدود المتتابعة سواء حسابية أو هنسية	$S_n = \frac{n}{2} \left(a_1 + a_n \right)$	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$
رمز المجموع ويستخدم لإيجه المتسلسلة الحسابية أو الهنسية	$k=4$ يجاد a_1 نعوض عن a_1 يجاد a_1 نعوض عن a_2 a_3 يجاد a_n نعوض عن a_n ايجاد a_n ايجاد a_n ايجاد المجاهيل الثلاثة نعوض في قلون جاوس a_n a_n a_n	$k=3$ يجاد a_1 عن a_2 يجاد a_1 عن a_2 يجاد a_3 a_4 a_5 a_6 يجاد a_6 a_7 a_8 a

..
$$\lim_{x \to 25} \frac{x-25}{\sqrt{x}-5} < \frac{16}{5}$$
. -5 A
. 10 C

$$\lim_{\chi \to 25} \frac{\chi = 25}{J\chi = 5} \frac{J\chi + 5}{J\chi + 5}$$

$$\lim_{\chi \to 25} \frac{\chi = 25(J\chi + 5)}{\chi = 25}$$

$$\lim_{\chi \to 25} \frac{J\chi + 5}{\chi = 25} = 10$$

$$\lim_{\chi \to 25} \frac{J\chi + 5}{\chi = 25} = 10$$

٠_٠) بالتوفيق

$$g(-3) = 1$$
 و $g(-3) = 3$ و $f'(-3) = 2$ و $f'(-3) = 5$ و $g'(-3) = 5$ و $g'(-3$

قاعدة الضرب

$$(fg)' = f'g + fg'$$

اشتقاق دالة هي عبارة عن حاصل ضرب دالتين يساوي الأولى ضرب مشتقة الثانية + الثانية ضرب مشتقة الأولى.

$$(f9)' = f'9 + f9'$$

 $(f9)'(-3) = 1 \times 3 + 2 \times 5$
 $= 3 + 10 = 13$

• إيجاد مفكوك ذات الحدين.

نظرية ذات الحدين

إذا كان n عدداً طبيعياً، فإن :

$$(a + b)^n = {}_{n}C_0 a^n b^0 + {}_{n}C_1 a^{n-1} b^1 + {}_{n}C_2 a^{n-2} + + {}_{n}C_n a^0 a^n$$

$$\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \lim_{x \to 0} \frac{21}{x}$$

$$3 (C \qquad \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

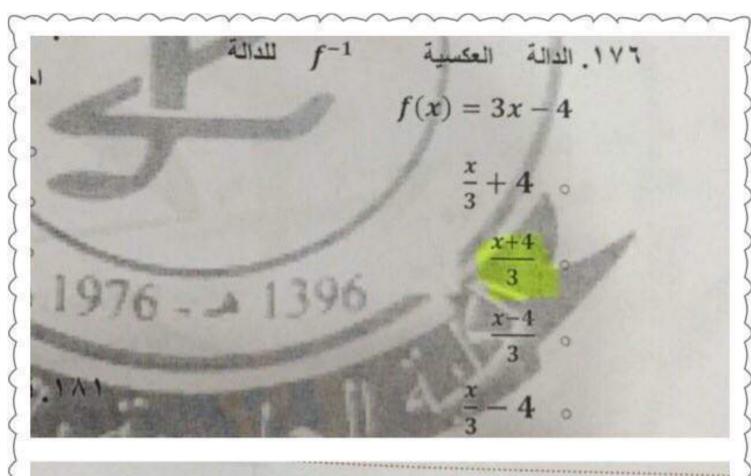
$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \frac{2 (A)}{1 (B)}$$


$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\lim_{h \to 0} \frac{f(-2+h)-f(-2)}{h} = \frac{f(x)}{f(x)} = \frac{x^2+3}{x^2+3} = \frac{1}{4}$$

$$-4(C) \qquad \qquad 7(A)$$

$$3(D) \qquad \qquad 4(B)$$

$$f(x) = 2x$$

 $f(-2) = 2(-2) = -4$

$$y = 3x - 4$$

$$y + 4 = 3x$$

$$y + 4 = x$$

$$3$$

$$3$$

$$\beta^{-1}(x) = \frac{x + 4}{3}$$

ادا کانت
$$y = x^2 + 3x + 1$$
 آدا کانت $y = x^2 + 3x + 1$

$$\frac{(z^2 = x)}{y} \neq z = \sqrt{x} \sqrt{y} \sqrt{y} \sqrt{y}$$

$$y = z^4 + 3z^2 + 1$$

$$\frac{dy}{dz} = 4z^3 + 6z$$

$$\sqrt{x} = 2\sqrt{y} \sqrt{x} \sqrt{y} \sqrt{y}$$

$$\frac{dy}{dx} = 4\sqrt{x} + 6\sqrt{x}$$

$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$
outer function
evaluated at inner function
of outer function
of outer function
of outer function
of outer function

1) $y = \sin^5 3x^2$

$$f' = 5 (\sin 3x^{2})^{4}$$

$$g' = \cos (3x^{2}) \cdot 8x$$

$$g' = 30 \times \sin^{4}(3x^{2}) \cdot \cos (3x^{2})$$

$$6, \frac{9}{2}, \frac{27}{8}, \dots$$
 ما الحد التالي في المتتابعة (14

A) $\frac{11}{8}$

B) $\frac{27}{16}$

27 × 3 = (81)

C) $\frac{9}{4}$

D) $\frac{81}{32}$

an an in $a_1 = -4$, d = 6, n = 9 an arrival (15) and $a_1 = -4$ and $a_2 = -4$ and $a_3 = -4$ and $a_4 = -4$ and $a_4 = -4$ and $a_5 = -4$ and $a_6 =$

 $a_{1} = a_{1} = a_{1$

أسئلة **1436**هـ

مجموعة حل العادلة 2x 2 - 22x + 60 = 0 عبوعة حل العادلة 0

- (-5,6) 8
- 15,610-
- {3,5} (E
- {3,-3} (

به الساق تعلى f(x) = 3x + 7 الساق تعلى عامل +2(f(a)+1)=f(5a-1)

 $X \cap Y = \emptyset$ تحقیق X, Y, Z تحقیق $\emptyset = X \cap Y$ $(Z \cap X) \cup (Z \cap Y)$ يساوي: $(Z \cap X) \cup (Z \cap Y)$ يساوي:

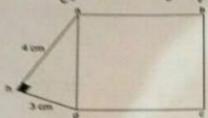
X & Y (4 2 6

ΔΔΔΔΔ

4 عدد المثلثات في النعط السادس يساوي:

7 8 10(4

13 €

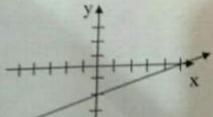

16 0

أجري السعاب إلى الهين لللطة (3-,2) يطنار وهنا وحدة. الم السحاب إلى أسفل يعقمار وهمايين، الم الناظر حواء تندلة

الأصل. ما مجموح إحداليات النقطة المادحة؟

- 2(4
- -2 (5
- -8 (

١- لو الدكل أدناه، ما مساحة الديع المتخلط بالسنتيمتر شريح"



- 5 0
- 7(4 25 (
- 49 (

٧- إذا كانت النقلة (4,3) تقنع في منتصف القطعة السعقيمة x+z الواصلة بسين النقطستين (x,0) و (5,z) ، فسين

- تساوي: 9 1
- 7(4
- 6 (2
- 2 (3

أي مما يلي يمثل معادلة الستقيم البين في الشكل أنثاد؟

- $y = \frac{2}{5}x + 2 d$
- y = 10x + 2
- y = 10x 2 (2
- $y = \frac{2}{5}x 2$ (s

$$2(x^{2}-11x+30) = 0$$

$$\Delta = b^{2}-4ac$$

$$=(-11)^{2}-4x1x30 = 121-120$$

$$= 1>0$$

$$\delta^{6} x_{1} = \frac{-b-\sqrt{\Delta}}{2a} , x_{2} = \frac{-b+\sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-(-11)-1}{2} , x_{2} = \frac{-(-11)+1}{2}$$

$$= 5$$

$$= (5a-1) = 3(5a-1) + 7$$

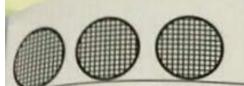
$$= 15a-3+7 = [15q+4]$$

$$2(R(a)+1) = 2(3a+8) = 6q+16$$

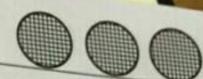
$$15a+4=6a+16$$

$$15a-6a=16-4$$

$$9a=12$$

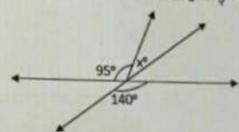

$$a=\frac{12}{9}=\frac{4}{3}$$

$$d(A)(B)(A)(A)(A)(A)(B)(C)(B)(C)(B)$$


= マハモ

(ع) الحراب

(B)/2/1


اللسم الأول: ١١١١١١ - تعوذج: ٣٠٠٠٣/د

٩- تحرك هادي كيلومترين بانجاه الشوق، ثم سار شمالاً ثلاثة كالمؤمنرات، ثم العطف غربًا ومشى كالمؤمنرًا واحدًا. ما المسافة بين نلطة البداية وموضعه الحالي بالكيلومثر؟

4 8 J4 (4 10 (5 V10 (4

٠١- ق الشكل أدناه، ما قيمة ٢x

40 (45 (4

50 (5 55 (

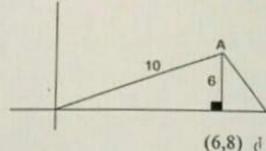
y - 3x = -5 و y - 3x = -5 التعليسل البيساني لعسادلتي المستقيمين+3y + x = 8

أ) مستقيمان متعامدان

ب) ستقيمان متوازيان

ج) يقطعان المحور X في نفس النقطة

د) يقطعان المحور Y في نفس النقطة


١٢- في الشكل أدناه، ما مساحة الأوجه بالمتو الربع؟

3m 11m

ا الله المستقيم المار بالنقطتين (a,b) ، و (c,d) يساوي (2-4a,3-4b) فما ميل الستقيم المار بالنقطتين ((2-4a,3-4b)9(2-4c,3-4d)0.5

2 (4 -0.5 (2 -2 (

1 1- ق الشكل أدناه، ما إحداثيات النقطة A

(8,6)(4

(6,10) ((10,6) (2

١٥- ما مساحة سطح الهرم الرباعي المنتظم الذي طول قاعدتـه 5cm.

وارتفاعه الجانبي 10cm بالسنتيمتر الربع؟

115 d 120(-125 (130 (2

انتهى القسم! ويمكنك فيما تبقى من وقته مراجعة إجاباتك فيه فقط

$$Juhl = \frac{y_2 - y_1}{X_2 - X_1} = \frac{d - b}{c - q} = 0.5$$

$$Juhl = \frac{(3 - 4d) - (3 - 4b)}{(2 - 4c) - (2 - 4q)}$$

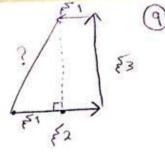
$$= \frac{3 - 4d - 3 + 4b}{2 - 4c - 2 + 4q} = \frac{-4d + 4b}{-4c + 4q}$$

$$= \frac{-4(d - b)}{-4(c - q)}$$

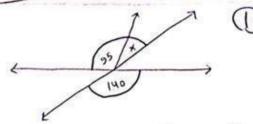
$$= \frac{d - b}{c - q} = 0.5$$

$$A = (x, 6)$$

$$2 - 36 = (x, 6)$$


$$10^{2} = 6^{2} + x^{2}$$

$$X = \sqrt{100 - 36} = \sqrt{64} = 8$$

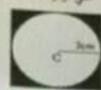

$$30 A = (8, 6)$$

$$18$$

 $\frac{3^{2}+1^{2}}{10V} = \frac{2}{9+1V} = \frac{3^{2}+1^{2}}{10V} = \frac{3}{9+1V} = \frac{3}{10V} = \frac{3}{1$

بالتقابل بالوائس X+95 = 140 x = 140 - 95 = 45° بجانجاب

$$y-3x=8 \rightarrow y=3x+8$$
 $3y+x=8 \rightarrow 3y=-x+8$
 $y=-\frac{1}{3}x+\frac{8}{3}$
 $3x-\frac{1}{3}=-1$


Alord of y axis with a visually axis of 1800

$$2(2x3) + 2(3x11) + 2(11x2)$$
= 12 + 66 + 88 = 166

اً * و و الملكل أدناه ، نسبة مساحة النطقة الطلبة إلى مساحة الدائرة

التي موازها C الساوي:

$$\frac{4}{\pi} - 1 \text{ of }$$

$$1 - \frac{4}{\pi} \approx$$

$$4 - \frac{1}{\pi} \approx$$

$$1 - \frac{1}{\pi} \approx$$

 ١٩- يكم طريقة يمكن توزيع خمس جوائز مختلفة على خمسة طالاب بحيث بأخذ كل طالب جائزة واحدة؟

120 -

625 (

725 0

٢٩- مقرر له شعبتان. يختار منهما وأحمد، وسامي، شعبة عشوائيًا، ما
 ١- احتمال أن يكونا في نفس الشعبة؟

3 (

٢٢- يكم طريقة بمكن تكوين عدد من ثلاث خانات عشرية تتنمي إلى المجموعة (0,2,3,5,7,9) يحيث يقبل القسمة على 5*

600

36 (=

30 1

19 يعمل نواف في معتم يبعد عن متزله مساعة 30km في الجاء القصال الله نقل المنام لساوة 30km غرب موقعه الحالي، الكم مطاون السافة وبالكيلو مثر، من المنام في موقعه الجديد ومشرال

42-52 d

42 (E 30 (J

C , et al , et al , e 19

العلق أدناه، C دائرة فطرها 14m ما الساحة التفريبة
 الدائرة بالقر الربع ا

44 1

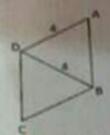
88 (4:

154 (=

308

١٩٨ - ١٥١ كاتبناء سومة جسم 600 منز في الدقيلة ، فكم سرماء

بالستايمتر لكل كالهذا


3600 8

1000

360 (

100 4

المام المامة المين ABCD في المكل أدناه

8V5 d

45 0

4-112 (=

2√12 €

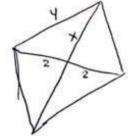
$$\Gamma = 3 cm$$
 (917) = $\pi r^2 = 6 cm$ (10) = $\pi r^2 = 6 cm$ (10)

n! = 5! = 5x4x3x2x1 = 120 (ج) الجوان

= 1 - عوه واحده بيكنام في نفت 2 سے عدد الشعب

حمَّى يَجِل الفيدَ على 5 يب أنه يكوم أحاده 0 او 5 الـ0 مستبعد كان في ين الفاصل طيعب صرفانتين عرب

30 /2 (9) 42 3 30 @


 $X = \sqrt{30^2 + 30^2}$ = \ 900 + 900 $= \int 2(900)$

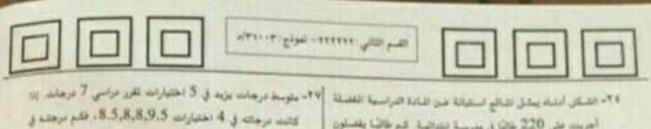
، المرتزاع مُلْقَاءِلِ (رو

(ت) بحرا به = 30 /2

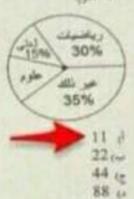
سام الوانؤه = r=7 - (F) T

$$(154)$$
 = 22x7 = $\frac{22}{7}$ x 2 =

الم ستذام صيًا عوري


(P)

$$X = \sqrt{16 - 4} = \sqrt{12}$$


طولاالعَـَوْ = 2x = 2\[العَطرالاتِ مِنْ = 4

2 JIZX 4 X = Just > -

$$\chi^{2} + 2^{2} = 4^{2}$$

أجريت عتى 220 شائيا ق مدرسة التدائية. كم طالبًا يقصلون Taplet Rele

٣٠- سُكِل طلاب أحد الفسول عن عدد الإخوة لديهم، لم جمعت الإجابيات ووضعت في جدول التكتوار أدنياه إذا الحثير طالعه عشوائيًا، فما احتمال أن هدد إخوته 2 على الأقل:

1520	عدد الأخوة
2	0
3	1
5	2
10	3
6	4
4	5

٣٥- أبي شكل معا يأتي يعكن أن يكون مثلاً مضامًا للاستثناء الأتم "إذا تطابقت أخلاع الكثل الوياعي فإنه مريع"

1

بوالمثقل

ج) ٿيه شعرف

د) متوازق الأصلاح

الأختيار الخاسئ

5 11

50 وحدى الإدارات يعمل 5 موظفين إذا كان موظفان يتقاضان 50 ريالاً في الساعة، وموشف 80 ريالاً في الساعة، وموشف 100 ريال في الساعة، وموظف 120 ريمالاً في الساعة، فكم ريمالاً في السافة وسيط ما يتقاضاه موطفو الإدارة؟

> 850 90 €

95 1

٢٩- يحرس للعلم خالد على تقديم أمثلة عديدة على القاهدة الرياضية قبل صيافتها وذلك بالتعاون مع للامينده؛ لأن ذلك ينمني لديهم Splan

أع التعليل

ب) البرهان

ج) الاستقراء

the Watting

٣٠٠ عندما يحل الطالب مسألة رياضية ، يأخذ بعين الاعتبار العلومات الهمة والعلومات غير ثات العلاقة بالسألة. ما الرحلة الناسبة لهذا الإجراء

أ) فهم الساكة

ب) وضع الخطة

ج) للفيد الخطة

دغ التحقق من الحل

اللهى القسر! ويعكنك فيما تبقى من وقته مراجعة إحاباتك فيه فلط

(3)

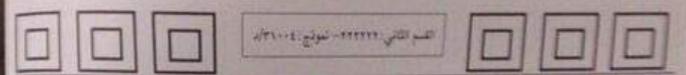
الوسيط: الرقم الذي يطمل المفعد اله على عد المنف الأقل بعد مَرسِب السيانات يضاعدياً

(8) - 1×10

و الجواب الاستقراء جي وهو تتبع الاشكم التوصل إلى القاعره العام

الحواب علم المسائله P منا الأجواب علم المسائلة P منا الأجواد قديد المعلمات والمفلوب والشروط

نسب المواد الاخرى = 35 + 30 + 35 = 80 المرب المواد الاخرى = 30 - 30 = 80 = 90 %


 $\frac{20}{100} = \frac{20}{220} = \frac{20}{220}$ $44 = \frac{20 \times 220}{100} = 0$

ا همال (الحدث) = عدد العلاب الأين لهم 2 إخوه علمالأمل عدد العلاب جيتًا = 25 = 25 =

ابمخران

ك الجواب المعين كفام مع منفائد

 $\frac{24+8+9.5+2}{5}=\frac{34+2}{5}=\frac{$

١٥٠ يتاون تعلى دراسي من 18 سفة إن كان مدد طاعد المناف الأخير 64 بشمًّا، وهذه بقاعد كال صف يقتل عن الطاق خلقته

يتزلة بناسد فلم سد للأمد في العقد الأولية

19 2 1684

日七 10-ai

 $f'(x) = a_0 \cdot f(x) = \frac{1}{2} \sqrt[3]{x^2} = 25 \cdot 10^{-3.0}$

A	B	- 4-
T	T	To
T	F	
P	T	F
F	P	T

AVB 1-8-

B-A 6

A ++ B is

10 24 W . | mdr = 9 05 01 - 14

1.8 20-

3.6 40

 $y = e'' \cdot y = 0$ which the following $x = e^{-x}$

$$x = 1$$
 . $x = 0$ تساوي:

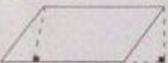
0.0

100

1-1/2

e-1 4

1/(-3)=1, g(-3)=3, /(-3)=2 and opera ر و (fg) (-3) مان (g) (-3) الساوي


13 /

14(-

15 0

16 (4

· الله وسع الأستاذ وخالد) الشكل الألى ما اللهوم الذي بريد اله

أع مساحة متوازي أضلاع

بها تظمرية فسيشاغورس

ع) ساحـــة التعليسل

د) مساحة مثلث قائم الزاوية

التهى القسم! ويمكنك فيما تبقى من وقته مراجعة إجاباتك فيه فقط

$$\int_{0}^{1} e^{x} dx = e^{x} \Big|_{0}^{1}$$

$$= e^{1} - e^{0} = e^{-1}$$

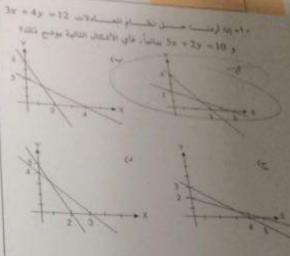
$$= e^{1} - e^{0} = e^{-1}$$

$$(f9)' = f'9 + f9'$$
 $(f9)'(-3) = 1 \times 3 + 2 \times 5)$
 $= 3 + 10 = 3$
 $= 3 + 10 = 3$

(ج) هساحه متوا زی آخالاع : حیث بین آم اطلتوا زی آخالاع محکمه کویله ای مستخیل در خوام لحساب عساحته (م) (کواب

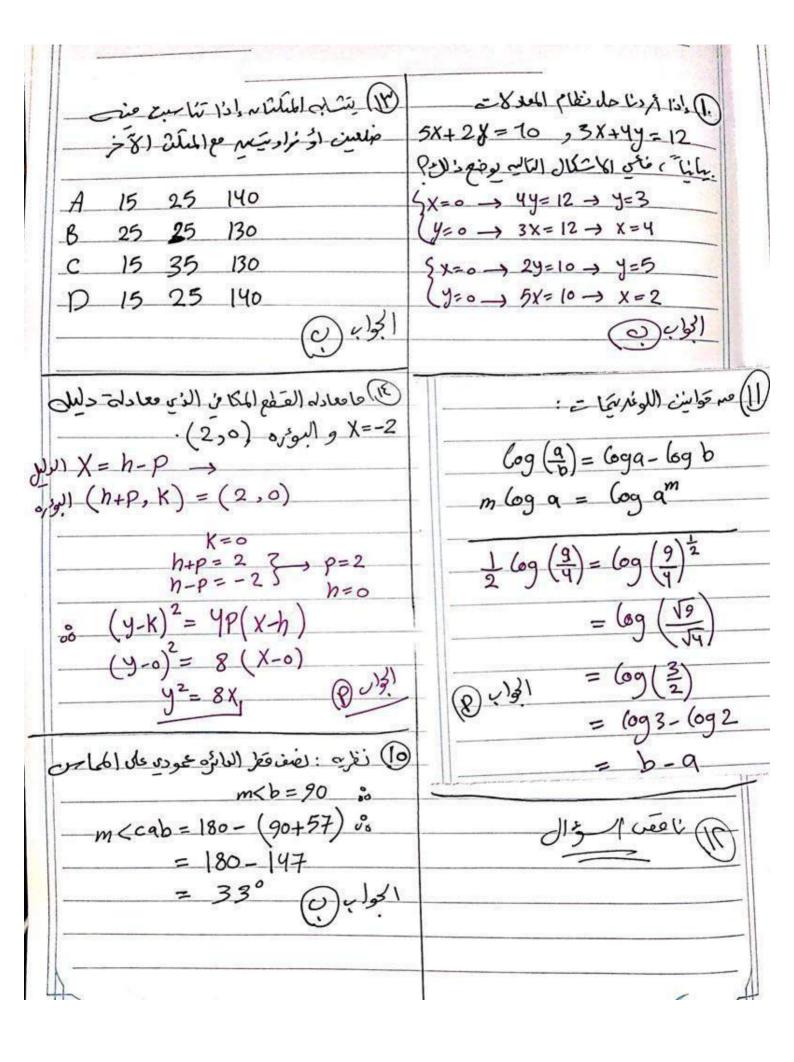
P) الحواب

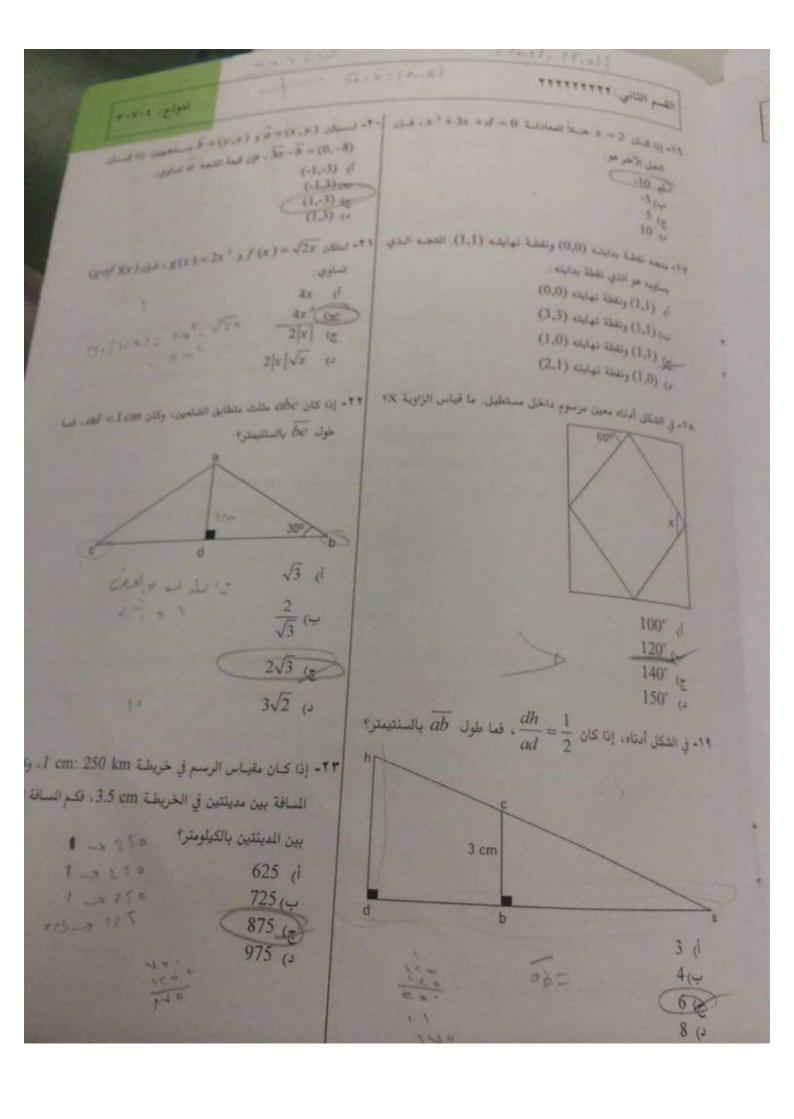
النكال م البكال و النكال م النكال م النكال م النكال م ألم الم النكال م ألم لا ملاء
$$9 \Rightarrow a[\frac{x^2}{2}]_0^3 = 9$$

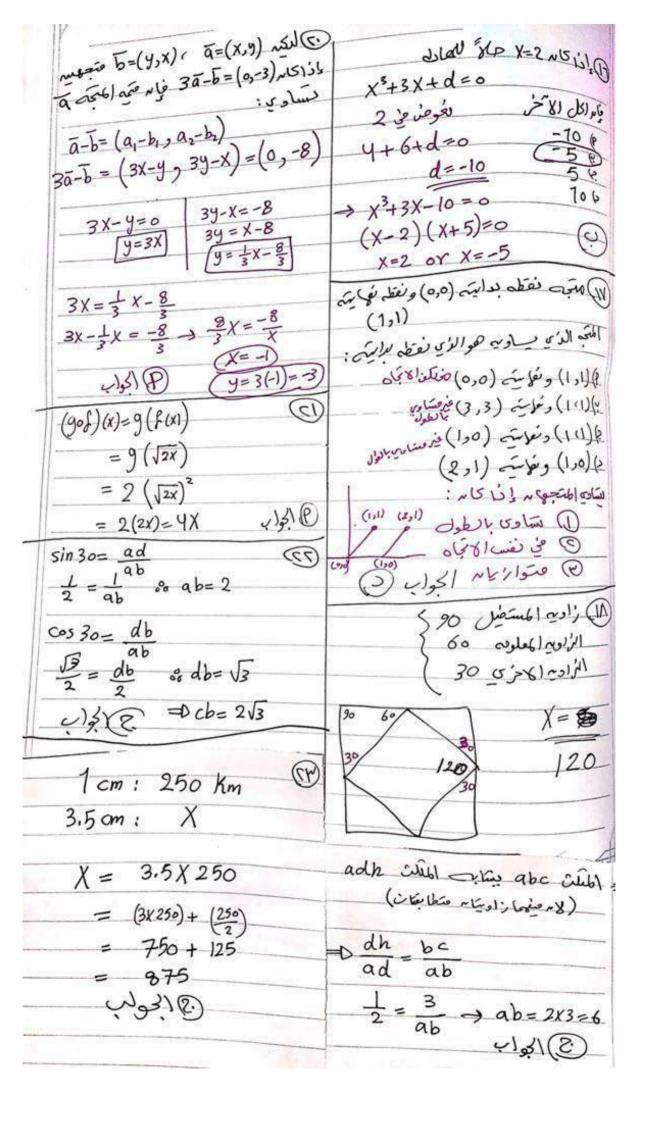

$$\frac{4}{2}(3^2 - 0^2) = 9$$

$$\frac{4}{2}(3^2 - 0^2) = 9$$

$$9a = 18$$


$$a = \frac{18}{9} = 2$$


تموذج: ١٠٧٠ م ١٣٠٠ ق الأدكال أدناء، ما هما التعلق التعليمان D 2500 BAd D,AC C,B DOCG x = -2 با معادلة القطع المكافئ الذي معادلة دليله -1 ف 4(2,0) $y^2 = 8x$ (i $x^2 = 8y$ $x^2 = 4y$ $y^2 = 4x$ (4) اذا كان الستقيم ab مماس للدائرة C عند النقطة الزاوية cab ع 57% b



ين کوي
$$\log\left(\frac{9}{4}\right)$$
 خان $b = \log 3$ ، $a = \log 2$ ناوي: $b = \log 3$ ، $a = \log 2$ ناوي:

حدد السكان في مدينة (1) عام 1430 هـ 92,000 ويا 1,000 ساكن، بينما عدد سكان مدينة (2) عام 59,00 ساكن، فقي أي سنة عدد السكان في المدينتين متساوياً؟

٣٤- رميت قلعة تتود معدنية ١٥ مرات. ما احتصال ظهـور صورة سوة ما ١٠٠- في الشكل أدناه مؤشر يتحرك ليستقر عشـواثياً على أحـد الأجـزا، الثمانية ما احتمال أن يستقر المؤشر على جزء يحمل رقم أقل مين

d 传

٢٩- اشترى أحد 3 كتب قيعة كل واحد منها 15 ريالاً: ثم اشترى كتابين أحدهما بد 10 ريالات و الأخبر بد 20 ريبالاً. ما متوسط أسعار الكثب التي اشتراها أحمد؟

> 15(4) 16 (17 (

٠٠٠ في أي الفنترات التاليبة يقبع الانحسراف العيساري للسدرجات 9{9,10,12,11,8}

> (0.1) [1,2)(-

> > [2,3)

[3,4) (

DC 12 1 TH

واحدة على الأقل؟

 A على استفاعة واحدة إذا كانت السافة بين A على استفاعة بين المحافة بين المحافة بين المحافة بين المحافة بين المحافقة بين المحافة بين المحا و B ثلث السافة بين C, B، وكانت السافة بين B و C تساوي 114 km قان السافة بين A و C بالكيلومتر تساوي:

48 (4 142

 إذا أجريدًا انسحابًا لمستقم معادلت x −1 و بعقدار 5 وحدات إلى اليمين، فما معادلة المستقيم الجديد؟

y = x - 5 T y = x +5 10 y = x -6 (= v = 5x = 1 (2

٢٧- عرض كتاب الرياضيات إحدى العلاقات الرياضية

أزواج مرتبة (1,2) (-1,-2)-2 -1 0 (0,0) 0

إن العرض السابق ينمي لدى الطالب مهارات:

أ) التمثيل والترابط الرياضي

ب) التمثيل والتواصل الرياضي

ج الترابط والاستدلال الرياضي

د) التواصل والاستدلال الرياضي

انتهى القسم! ويمكنك فيما تبقى من وقته مراجعة إجاباتك فيه فقط.

https://telegram.me/ques__math

العين
$$8 = \frac{8}{5} = \frac{8}{5} = \frac{8}{5}$$
 الأجزاء التي تحال رقم اقل هم $8 = \frac{5}{5} = \frac{5}{5}$ وهم اقل هم $8 = \frac{5}{5} = \frac{5}{5}$ وهم احمال الحد $\frac{5}{8} = \frac{5}{8}$ المحال وم واحده $\frac{5}{8} = \frac{3}{8}$

$$\frac{15+15+15+10+20}{5} = \frac{15+15+15+10+20}{5}$$

$$= 15$$

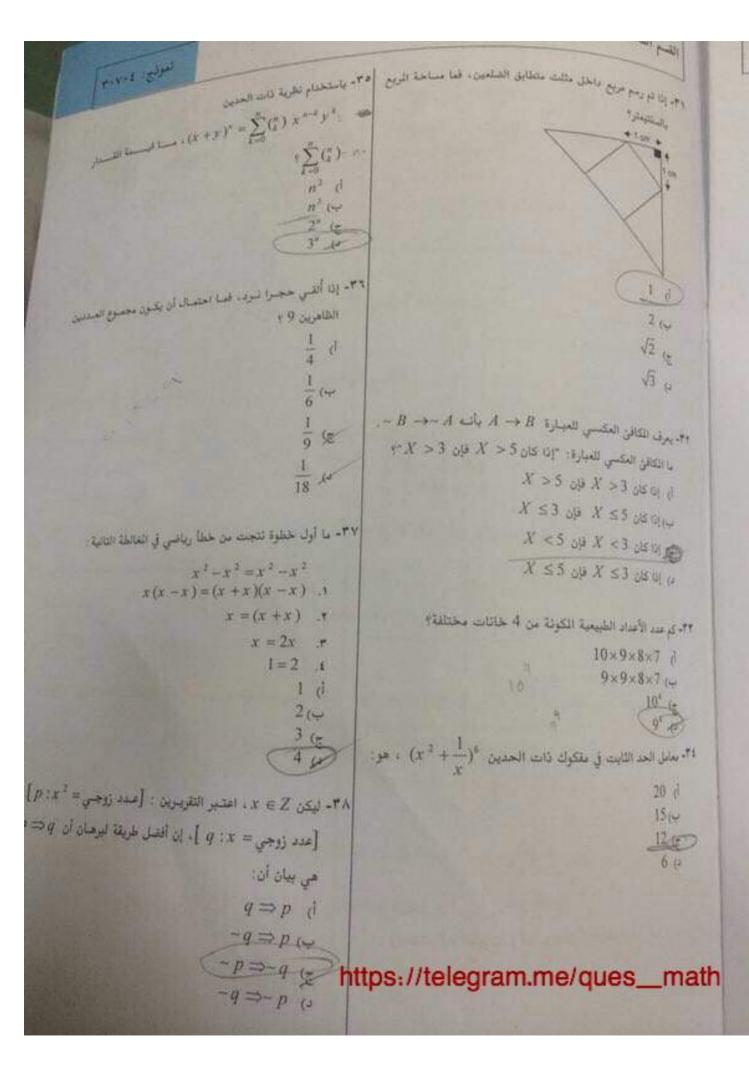
$$(3)(3)(3)(3)$$

$$\sum X = 8+9+10+11+12 = 50 \quad \text{(Y.)}$$

$$\sum X^2 = 64+81+100+121+144=510$$

$$C' = \sum \frac{\sum X^2 - \frac{(\sum X)^2}{n}}{n}$$

$$= \sqrt{\frac{50 - \frac{(50)^2}{5}}{5-1}}$$


$$= \sqrt{\frac{510-500}{4}} = \sqrt{\frac{10}{4}}$$

$$= \frac{1}{2} \sqrt{70} \approx \frac{1}{2} (3) = 7.5$$

$$= \frac{1}{2} \sqrt{70} \approx \frac{1}{2} (3) = 7.5$$

$$AB = \frac{1}{3}BC$$
 $BC = \frac{1}{3}BC + BC$
 $= \frac{1}{3}BC = \frac{1}{3}(114)$
 $= \frac{1}{3}BC = \frac{1}{3}(114)$

https://telegram.me/ques__math

$$\sum_{k=0}^{n} {n \choose k} = {n \choose 0} + {n \choose 1} + \dots + {n \choose n-k} + {n \choose n}$$

$$= 1 + n + \dots + n + 1$$

$$= 2(1) + 2(n) + \dots$$

$$36 = 6 \times 6 = 3$$
 $4 = 6 \times 6 = 3$
 4

$$X^{2}-X^{2}=(X^{2}-X^{2})$$

ا کی لموہ و خاطرہ عادی ولیس فرمہ بیرنے عوبعیون انگلوہ و خاطئی (P) 15-d4

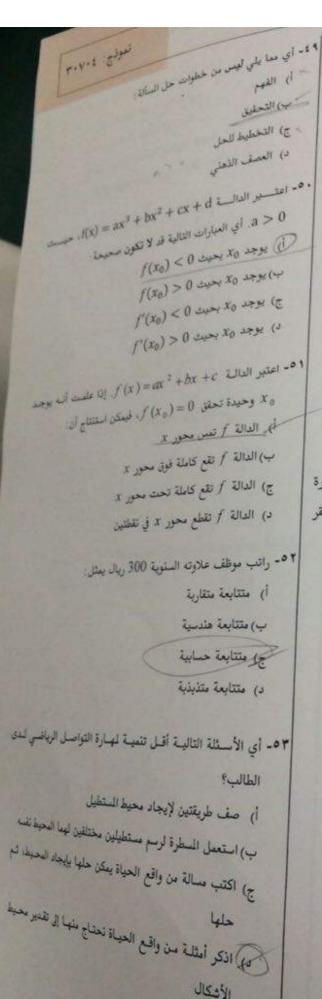
$$X = \sqrt{1^2 + 1^2} = \sqrt{2}$$

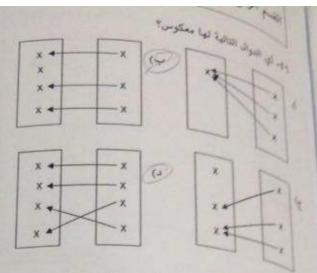
M)

$$(A \rightarrow B) \equiv (-B \rightarrow -A)$$

$$(a+b)^{n} = \bigotimes_{K=0}^{n} \binom{n}{k} a^{n-k} b^{K}$$

$$(x^{2}+\frac{1}{x})^{6} = \bigotimes_{K=0}^{6} \binom{6}{K} (x^{2})^{6-K} (\frac{1}{x})^{K}$$

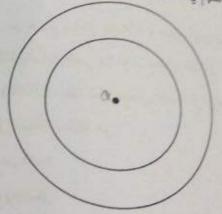

$$= \bigotimes_{K=0}^{6} \binom{6}{K} x^{12-2K} x^{-K}$$


$$= \bigotimes_{K=0}^{6} \binom{6}{K} x^{12-3K}$$

$$= \binom{6}{K} (\frac{1}{2})^{12-3K}$$

اكر الثابت يكوم عندما أس X يساوي

https://telegram.me/ques__math



به يمه التعليل الرياضي لشكل أو مجسم أو علاقة: به يمه التعليل الرياضي به التعليل البياني

به الرسم الهندسي بي الرسم الهندسي د) الرسوم التصويرية

43- إلى الشكل أدناه قطر الدائرة الكبرى يساوي ضعف قطر الدائرة المغرى. إذا صوب رجل سهمه إلى الهدف فإن احتمال أن يستقر المغرى إذا صوب رجل سهمه إلى الهدف فإن احتمال أن يستقر المغرى يساوي:

b(x)=ax3+bx2+cx+d alphier (0) الداله العكسيه: هم الداله التي يكوم فيع حيث مره ، أي العبارات التالي قد لاتكوم عناصر اعجال عي المعكوس لعناصر 8 course ا كمعال المسقابل P يوجد ۵x بحيث ٥٥(X) کم (2)/2/y g(x)>0 mix 8(x.)<0 2 التمثيل الوياجي لشكل ارميس 8'(x0)>0 car ادُ علاقه: P(X) curent dis (العذب) (العذب) ٥٥ (ع) الجواب (1) 8(x)=9x2+bx+c 01) إحتمال (استقرارالسهم في) = مساف الوائرة الصغرى العائرة العاغري) = مام الوائرة الكبرى واذا عالمت أنى يوجد ملا وجده معقم و مرا عنکس استناج اس ع @ الداله ع تعنع كامله فؤدر x نفرض أم عفر الدائرة الصغرى = m ، فد = m ه علم الدائره الكرى = m ع ، فنه = m @ الداله كم تقع كامله تحت محور X -1 - 1 (m2)2 = (m2) T = T (m2) 2 = 1 m2T = @ الداله ع كقلع حور x في نقطتين m2T=T(m)2 = 550176 y=0 n'isi f(x)=0 mll, ٥٥ الدالم عمّ فور x على نقطه واحده (1) [(1) (B) 15 (is (عم عتدا بع حسابيده و عتماليه مم الاعداد 83) Lun c'del = - 61) 169 حدث ركي م الوام بين أي حديث متماليك reidl (P) تابت الحواب (٤) التحقيم (ج) التضاط للحل (٥٣) أقل تنصيمهم دو التواصل الرياملي ؟ و العصف الذهني الواب (2) الجعاب https://telegram.me/ques math

اللسم الرابع : 111111111

٥٥- أي العيارات النائية صحيحة

الله كل مظلوفة قطرية لها معكوس

ب كل معلوقة متماثلة لها معكوس

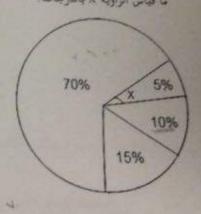
ع) كل مصفوفة متماثلة مصفوفة قطرية مع كل مصفوفة قطرية هي مصفوفة متماثلة

 $\int (x^2 + 2x)^3 (2x + 2x) dx = 40$ $6(x^2 + 2x) + c = 6$

$$\frac{(x^2+2x)^4}{4} \frac{(2x+2)^2}{2} + c \in$$

$$\frac{(x^2+2x)^4}{4}(x^2+2x)+c \ \omega$$

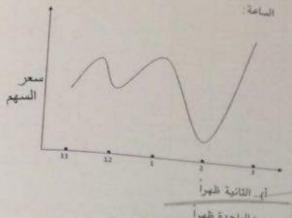
 $\log_2(x+2) = 3$ من العادلة $\log_2(x+2) = 3$


(4) (4

(6) (8 (8) (3

٧٠- يعثل الشكل أدناه تقسيم عدد من الجنسيات في إحدى الطائرات: ما قياس الزاوية × بالدرجات؟

1+3, (9,+1)=3


とこといいか

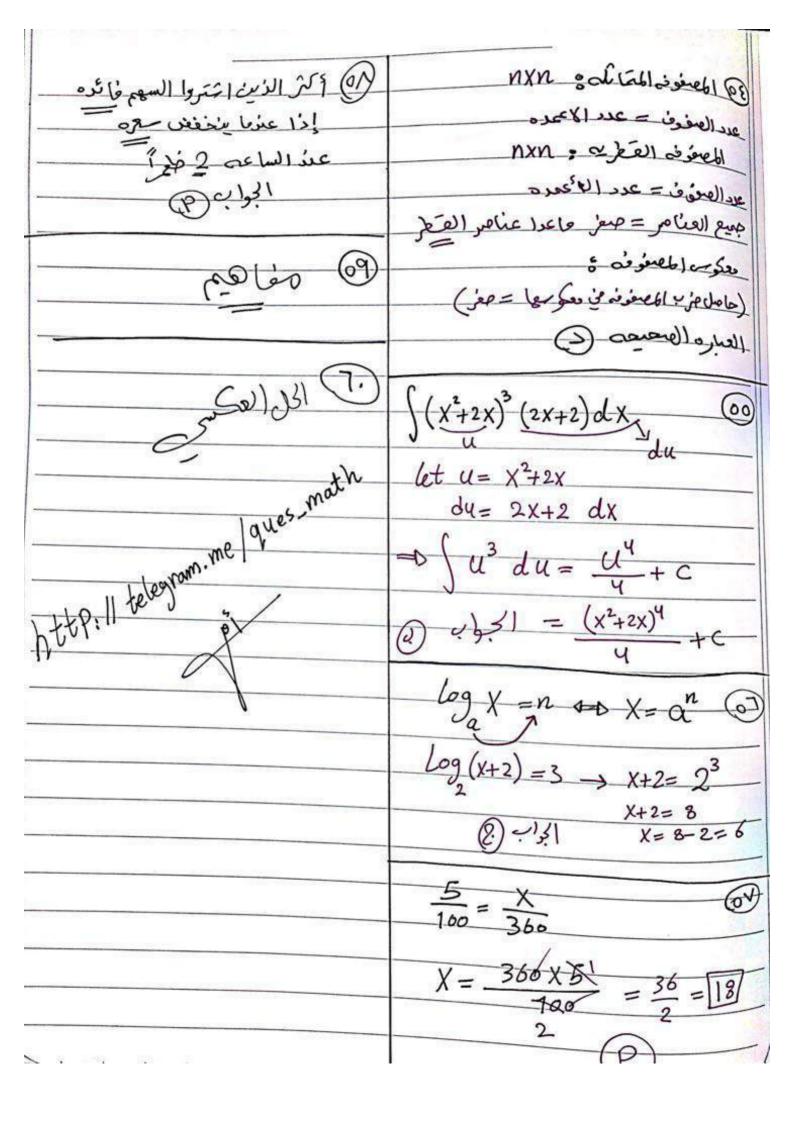
18 6 16(4 10 €

5 (3

٨٥- الشكل أدناه يمثل معر سهم في يوم ما من الساعة الحادية عشرة إلى الساعة الثالثة. أكثر الذين اشتروا السهم فائدة هو من اشترى

ب) الواحدة ظهراً ج) الثانية عشرة ظهراً د) الحادية عشرة صباحاً

٥٩- تصنف كل من: "الزاوية، المثلث، التوازي" على أنها:


ا) تعبيمات

ب) مهارات ج) نظریات د) مقاهیم

. ٦- فيصل أقصر من حاتم بعقدار 15cm و حاتم أطول من أسامة بعقدار 10cm وأسامة أقصر من نواف بعقدار 20cm. فإذا كان طول نواف 170cm ، فما طول فيصل بالسنتمتر؟ الإستراتيجية الأنسب لحل السألة السابقة هي:

البحث عن النمط ب) التخمين والتحقق ر ج) الحل العكسي الله الح س إنشاء قائمة

نقدّر لك التزامك بالتعليمات، ونتمنّى لك مستقبلاً مشرقاً.

أسئلة 35 - 36 - 35

ملزمة

أسئلة كفايات رياضيات

أسئلة سابقه تناسب معايير اختبار كفايات المعلمين تشمل أسئلة المستوى الأول والثاني نرتجي منكم الدعاء فقط في ظهر الغيب ونشكر كل من ساهم معنا في إنتاج هذا العمل وابتغى وجه الله فيه والأجر

تاريخ التعديل:

1437 / 12 / 21

السؤال الحل هامش

 $X_1 = X_2$ 60(t+30)=80t 60t+1800=80t 1800=80t-60t 1800=20t $t = \frac{1800}{20}$ t=90 min

 انطلقت سيارة من المدينة A الى المدينة B بسرعة 60km/h وانطلقت بعدها بنصف ساعة سيارة بسرعة 80km/h ، فبعد كم دقيقة سياتقيان

- 15 min •
- 30 min •
- 60 min •
- 90 min •

a=10 عدد الطلاب باليوم الأول a=8=10 اليوم الثاني انضم عدد طلاب a=80 a=80 a=80 عدد الطلاب في اليومين a=80

٢) في كلية ألتحق عدد من الطلاب في اليوم الأول وفي اليوم الثاني انضم اليهم 8 طلاب ويمثلون %10 ممن التحق في اليوم الأول ، فكم عدد الطلاب في اليومين

- 88
- 98 •
- **77** •
- 66 •

زمن التفريغ= حجم الاسطوانة / سرعة التفريغ حجم الاسطوانة $v=\pi\,r^2 imes h$ حجم الاسطوانة

(نوجد نصف القطر r بدلالة محيط القاعدة) $2\pi r=31.4$

$$r=rac{31.4}{2 imes3.14}=rac{10}{2}=5$$

$$v=\pi\times25\times4=100\pi=314$$

$$(25\times4)=314 \ \min=rac{314}{1}=314$$

) اسطوانة محيط قاعدتها 31.4m وارتفاعها 4m مملوءه بالماء وكان بها فتحة تفرغ 1m³ في دقيقة ، ففي كم دقيقة يتم تفريغها كاملة

- 318 min •
- 314 min •
- 3140 min •
- 3.14 min •

مساحة الارض= 30x40=1200 وحدة مربعة

المساحة المزروعة= (25%+10%) × 1200

1200 × %35 =

 $=\frac{35}{100} \times \frac{35}{100} =$

المساحة غير المزروعة = 1200 - 420 = 780 وحدة مربعة

ارض مستطيلة ابعادها 40, 30 تم زراعة %25 منها ارز و %10 منها قمح ، احسب مساحة المتبقي منها

- 620 •
- 720 •
- **780** •
- 870 •

قطر الدائرة الكبيرة = 200 قطر الدائرة الصغيرة الواحدة= $\frac{200}{20}$ = 10 مساحة الدائرة الكبيرة=(100^2) π مساحة الدائرة الصغيرة =(5^2) π

$$\left(\frac{1}{20}\right)^2 = \left(\frac{5}{100}\right)^2 = \frac{\pi \, 5^2}{\pi 100^2} = \frac{1}{100}$$
 النسبة المطلوبة

 دائرة نصف قطرها 100cm رسم 20 دائرة صغيرة على قطرها، اوجد نسبة المساحة بين احدى هذه الدوائر الصغيرة ومساحة الدائرة الكبيرة

- 200/1 •
- **400/1**
 - 50/1
- 100/1 •

(1)

$$t_1 = \frac{x_1}{v_1} = \frac{480}{100} = 4.8 \ h$$
 $t_2 = \frac{x_2}{v_2} = \frac{480}{120} = 4 \ h$

$$t_2 = \frac{x^2}{v^2} = \frac{480}{120} = 4 \ h$$

$$t = 4.8 - 4 = 0.8 h$$

$$\stackrel{\text{izecut}}{\Longrightarrow} 0.8 \times 60 = 48 \, min$$

سیارتان تتجهان من مدینهٔ A إلى مدينة B الأولى بسرعة 100km/hوالثانية بسرعة 120km/hفما الفرق في زمن الوصول بينهما بالدقائق ، علما بان المسافة بين المدينتين 480km

- 40 min
- 48 min
- 50 min
- 60 min

$$\frac{\sum_{n=1}^{6} x}{6} = 20 \Longrightarrow \sum_{n=1}^{6} x = 20 \times 6 = 120$$

$$\frac{\sum_{n=1}^{2} x}{2} = 50 \Longrightarrow \sum_{n=1}^{2} x = 50 \times 2 = 100$$

$$\sum_{n=1}^{4} x = 120 - 100 = 20$$

$$\frac{\sum_{n=1}^{4} x}{4} = \frac{20}{4} = 5$$

$$\frac{3}{4} = \%75$$
 الكرات البيضاء

$$\%10 = \frac{10}{100} = \frac{2}{5} \times \frac{25}{100} = 10$$
الكرات الحمراء = 10

- 10%
- 15% •
- 20%
- 25%

$$m = \frac{405}{9} = 45$$
 ::

$$2 m = 2 \times 45 = 90 \quad \therefore$$

- 30
- 45
- 60

$$a + b + c = 35$$

$$a+b=35-16=19 \rightarrow 1$$

$$2a = 22 \implies a = 11$$

$$b = 19 - 11 = 8$$

هامش	الحل	السؤال
	عدد ما يباع من الجريدة في اليوم= $\frac{1820}{7}=260$ جريدة	۱۱) هناك جريدة تصدر 1820 جريدة أسبوعيا اذا علمت ان
	متوسط ما يبيع العامل في اليوم = مجموع ما يباع في اليوم	متوسط ما يبيع العامل في اليوم الواحد 20 جريدة فأوجد عدد
		العمال
	$13 = \frac{260}{20}$ عدد العمال = $\frac{260}{20}$	10 • 11 •
		12 • 13 •
	10 km/h ← 1 h الفرق بينهما بعد 20 km/h ← t	۱۲)هناك سيارتان الأولى تسير بسرعة 100km/hوالثانية
	$10 t = 1 \times 20 \qquad \Longleftrightarrow \qquad$	تسير بسرعة 110km/hبعد
		كم دقيقة يصبح الفرق بينهم 20km
	$t = \frac{20}{10} = 2h \qquad \Longleftrightarrow$	20kiii 30 min •
	$t = 60 \text{min} \times 2 = 120 \text{ min}$	60 min •
		90 min •
		120 min •
	${ m x}^2+{ m y}^2=r^2$: بوضع المعادلة على الصورة القياسية	١٣)أوجد مساحة الدائرة التي
	$\frac{x^2}{2} + \frac{y^2}{2} = 6$ نجد أن معادلة الدائرة المعطاة هي :	$\left \frac{x^2}{2} + \frac{y^2}{2} - 6 \right = 0$
	$\frac{1}{2}(x^2+y^2)=6$ عامل مشترك $\stackrel{2}{\Longrightarrow}$ بضرب الطرفين في 2	6 π •
	Z	<mark>12 π ●</mark>
	$x^2 + y^2 = 12$	18 π • 3 π •
	$12\pi = \pi r^2 = 12$ شاحة الدائرة:	
	00 0 5 0 7 1 1	 ١٤)تضم قائمة مطعم 3 أنواع من الشوربة و5 أنواع سلطة و6
	عدد الطرق = 6x5x3= 90	السوربة ون الواع لسطة ون أنواع لمحن أنواع لحم ، بكم طريقة يمكن
		اختيار وجبة مكونة من
		3أصناف
		30 •
		60 •
		90 • 120 •
	سعر الشاحنة الصغيرة = m	۱۰) اشترت شرکة بمبلغ
	سعر لشاحنة الكبيرة = 2m) 585000ريال شاحنتين و 5
	مبلغ الشراء = (2m)= 9m مبلغ الشراء = (2m)	سيارات صغيرة وكانت قيمة
	595000 65000	السياره الصغيرة نصف قيمة
	$\therefore m = \frac{585000}{9} = 65000$	الشاحنة ، كم سعر الشاحنة الواحدة
	$2 m = 2 \times 65000 = 130000$	65000 •
		85000 •
		12000 •
		<mark>130000</mark> •
	(2)	

Ī _	الحل هامش	السؤال
	قانون محيط المستطيل — 2a+2b=48	۱٦) غرفة مستطيلة محيطها 48m
	$\Longrightarrow a + b = 24 \rightarrow (1)$	لو زاد عرضها م 2m ونقص
	$a+2=b-2 \longleftrightarrow (اضلاع المربع متساوية)$	طولها 2m ، الأصبحت مربعة
	$\Longrightarrow a + 4 = b \rightarrow (2)$	وتصبح مساحتها
	$a+a+4=24 \qquad \longleftrightarrow \qquad (1)$ بالتعويض من (2) في (2)	122 •
	= 24 - 4 - 20 $= a = 10$	<mark>144 ●</mark>
	ضلع المربع → a + 2 = 10 + 2 = 12 → ضلع المربع	166 •
	$u+2-10+2-12$ $\rightarrow u+2-10+2-12$ $\rightarrow u+2-10+2-12$ $\rightarrow u+2-10+2-12$ $\rightarrow u+2-10+2-12$ $\rightarrow u+2-10+2-12$	188 •
	مسکه شریع → 12 × 12 − 144	
_	$510 \times \frac{70}{100} = 357 km$ \leftarrow مساحة الماء	۱۷) اذا كانت مساحة الأرض
	$\frac{100}{100} \times \frac{1}{100} = \frac{337}{100} \times \frac{1}{100} \times $	510km مربع ویغطی
		حوالي %70 منها الماء ، فكم
	مساحة اليابسة $m \leftarrow 357 = 357 - 357$	تبلغ مساحة اليابسة
		110 •
		118 •
		120 •
		153 •
		155 •
-	240 km ← 20 L	۱۸) تستهلك سيارة 20 لتر من
	240 KIII ← 20 L	البنزين عندما تقطع مسافة
	72 km ← x	ببرین کا
	240 x = 72 ×20 ←	تقطع مسافة 72km
	240 X = 72 ^20	5L •
	$x = \frac{1440}{240} = 6 L \iff$	6L •
	240	7L •
		8L •
	120 x	۱۹) دائرة مقسمة لثلاث اقسام
	$\frac{120}{360} = \frac{\pi}{100}$	وفيها قسم الحاسب قياس
		زاويته 120 فما نسبته المئوية
	$\implies 120 \times 100 = 360x$	33% •
	$\Longrightarrow \frac{12000}{360} = x$	44% •
	$\longrightarrow \frac{360}{360} - x$	55% •
	$\implies 33\% = x$	66% •
		00%
_	$a^2=a$ مساحة مربع طول ضلعه $a^2=a$	۲۰) مربع اذا جعلنا طول ضلعه
	_	
	مساحة مربع طول ضلعه 3a = 9 مساحة مربع طول ضلعه 3a	المساحة
	$100\% = a^2$	300% •
	$x = 9 a^2$	400% •
	$\implies 9a^2 \times 100\% = a^2x$	650% •
	$\Longrightarrow \frac{900\% a^2}{a^2} = x$	800% •
	$\implies 900\% = x$	000%
	——→ 70070 — X	
	نسبة الزيادة في المساحة = 900%- 100% =800%	
	<u> </u>	I

الحل هامش	السؤال
360° ← 120	۲۱) اذا كانت زاوية الصف
$90^{\circ} \longleftarrow x$	الرابع°90 ، ما عدد طلاب
	هذا الصف اذا كان عدد
$\implies 90^{\circ} \times 120 = 360^{\circ} x$	الطلاب جميعا 120 طالب
$\implies \frac{90 \times 120}{360} = x$	20 •
	25 ●
$\Longrightarrow \frac{90 \times 120}{90 \times 4} = x$ تبسیط \longleftrightarrow	25 • <mark>30 •</mark>
90×4	35 •
$\Longrightarrow 30 = x$	00 0
2 20	00 11 11 11 15 16 11 (88
$2\pi30 \Longleftrightarrow 2\pi r$ محيط العجلة $1 \longleftrightarrow 2\pi30$	۲۲) اذا كان قطر العجلة 60m ،
$15 \longleftarrow x$	كم المسافة التي تقطعها إذا
$\implies 15 \times 2\pi 30 = x$	دارت 15 دورة م
$\implies 900\pi = x$	600 π •
\longrightarrow $500h - \lambda$	800 π •
	<mark>900 π ●</mark>
	1000 π •
	٢٣) أي الزوايا التالية لا تصلح لأن
٣٦١ لأن مجموع زوايا الشكل الرباعي °٣٦٠	تكون زاوية في شكل رباعي
	60 •
	91 •
	<mark>361 ●</mark>
	271 •
	2
	۲٤) اذا كان لدينا مستطيل وقسم
25 25 25	إلى ثلاث مربعات والمربع
	بى الواحد قسم إلى ٢٥ جزء وظلل
	جزء واحد فقط من المربعات
عدد الاجزاء في المستطيل = 25×3=75	الصغيرة أوجد نسبة المظلل
$75 \cdot 1 - \frac{1}{1} - \frac{1}{1} = \frac{1}{1}$	25 : 1 •
نسبة المظلل = $\frac{1}{75}$ = 1 : 75	75 : 1 •
	25:3
	75:3 •
	75:3 ●
سعر الجهاز = m	۲۰)اذا اشتری محمد أجهزة بـ 2220 ريال وكانت الشركة
$\frac{160x}{100} = 2m \times \frac{80}{100} = \%20$ سعر جهازین بعد تخفیض	
	تقدم عروض ، بحیث اذا اشتری جهازین یحصل علی
$\frac{210x}{100} = 3m \times \frac{70}{100} = 30$ سعر 3 اجهزة بعد تخفیض 30%	السرى جهارين يخصن على خصم %20 و اذا اشترى 3
	خصم 20% وادا استرى د أجهزة يحصل على خصم
$\implies 2220 = \frac{160\text{m} + 210\text{m}}{100}$	اجهره يحصل على حصم %30 ، فاذا اشترى جهازين
100	50% ، قادا استرى جهارين ثم ثلاثة أجهزة ، فكم سعر
\implies 222000 = 370m	لم تارك اجهره ، قدم سعر الجهاز الواحد
222000	ابجهار الوا حد • 500
$\implies \frac{222300}{370} = m$	600 •
$\xrightarrow{\text{invision}} \frac{370 \times 600}{370} = \text{m} \longrightarrow 600 = m$	700 •
${370}$ $ {}$ ${}$	800 •

الحل	السؤال
الحل $x \leftarrow -1$ $6l \leftarrow -\frac{2}{6}$ $\implies 6l = \frac{2}{6}x$ $\implies \frac{36}{2} = x \implies 18 = x$ $\implies 18 = 3 \times 6$ $\implies 18 = 3 \times 6$ $\implies 10000 - (99x99) = 100^2 - 99^2$ باستخدام مفکو ک الفرق بین مربعین $= (100 + 99) \times (100 - 99)$ $= 199 \times 1 = 199$	السؤال ٢٦) أسطوانة مملوءة حتى سدسها فإذا أضفنا 6 لترات أصبحت مملوءة حتى النصف ، فكم حجم الأسطوانة
	200 • 140 •
عدد الكرات الموجودة = 35 بفرض ان x عدد الكرات الصفراء الجديدة $ \frac{2}{3} = \frac{10+x}{35+x} $ $ \implies 70 + 2x = 30 + 3x $ $ \implies 70 - 30 = 3x - 2x $ $ \implies 40 = x $	 ٢٨) سلة فيها 10 كرات صفراء و 25 كرة زرقاء ، وأردنا إضافة كرات صفراء بحيث انها تكون 2 على 3 عدد الكرات الموجودة في السلة ، فكم عدد الكرات الصفراء التي سوف نضيفها 30 35 40 45
300 =10×3L 200 =10×2L الفرق بعد 10 ساعات= 300 - 200 =100L	 ٢٩) تستهاك سيارة الحرى نستهاك الساعة ،وسيارة أخرى تستهاك 20L في الساعة . احسب الفرق في عدد اللترات بينهما بعد 10 ساعات ما 100L 100L 120L 210L 500L
عدد الفسائل الذي يزرعها المزارع الواحد في اليوم الواحد= $\frac{300}{60}$ = 5 =	 ٣٠) اذا زرع مزارع 300 فسيلة في 60 يوم، فكم يوم يحتاج 10 عمال لزراعة نفس الفسيلة 6 أيام 8 أيام 10 أيام 11 يوم

الحل هامش	السؤال
	-
$100^{x+3} = 10^{y+6}$	$100^{x+3} = 10^{y+6} (7)$
$100 - 10^{\circ}$	
$10^{2(x+3)} = 10^{y+6}$	اوجد y بدلالة x
10° $= 10^{\circ}$	X = y •
y+6=2x+6	_
	X = 2y •
y=2x	_
y-2A	Y = x+2 •
	Y = 2x •
	Y = ∠X •
	40 1 /
	٣٢) يستطيع سامي قراءة 40
20	· صفحة في 20 دقيقة ، ففي كم
$20 \longleftrightarrow 40$ صفحة	' "
$x \longleftarrow 20$ صفحة	دقيقة يستطيع قراءة 20 صفحة
x	_
$\Longrightarrow x = \frac{20 \times 20}{40}$	<u>8 min</u> •
$\Longrightarrow x = \frac{1}{1000}$	<mark>10 min ●</mark>
40	
$\Longrightarrow x = 10 min$	12 min •
	14 min •

$\frac{\left(2 + 1 \right) \times \left(2 + 1 \right)}{2}$ قانون المصافحات = $\frac{\left(2 + 1 \right) \times \left(2 + 1 \right)}{2}$	٣٣) اجتمع 6 اشخاص اذا صافح
قانون المصافحات = ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك	كلُ شخصُ الآخر مرة واحدة
2	
5×6	فقط ، فكم عدد المصافحات
$15 = \frac{5 \times 6}{2} =$	
2	التي تمت
	<mark>15 ●</mark>
	20 •
	30 •
	45 ●
	4ე •
#1 000 - · · · · ! · ·	450/ . 11 : .16131 /86
عدد المنتسبين= 220 طالب	٣٤) اذا كان في المعهد 15%
	تخصص كيمياء و %5
220 × (0/ 5 + 0/ 45) =	
عدد المتخصصين في المادتين= (15%+5%) × 220	تخصص رياضيات وعدد
	المنتسبين بالمعهد 220 طالب
220 × %20 =	
220 * 7620 =	فكم عدد غير المتخصصين في
	الساحيات لا في الكساء
20	الرياضيات ولا في الكيمياء
$44 = 220 \times \frac{20}{100} =$	11 •
100	
	33 ●
عدد غير المتخصصين في المادتين= 220- 44 = 176 طالب	
عدد غير القلام عندس في العماس – 220 – 110 معتب	122 •
	<mark>176 ●</mark>
	110
$22m \longleftrightarrow 1$ min المسافة بينهم بعد دقيقة	٣٥) سيارة تسير بسرعة
$x \leftarrow 15 min$ المسافة بينهما بعد	53m/min وأخرى تسير
	بسرعة 75m/min انطلقتا
$\Longrightarrow x = 22 \times 15$	معا وفي نفس الاتجاه ، فكم
$\Longrightarrow x = 330 m$	تكون المسافة بينهما بعد 15
	دقيقة
	·
	220 •
	<mark>330 ●</mark>
	230 •
	320 •
	, 3 <u></u>

_		
هامش	الحل	السؤال
	$3 \longleftrightarrow 3 \longleftrightarrow 5$ أيام $2 \longleftrightarrow 2$ أيام $x \longleftrightarrow x = \frac{3 \times 5}{2}$ تناسب عكسي $x = \frac{3 \times 5}{2} \longleftrightarrow x = 7.5$	 ٣٦) اذا كان خالد يعمل في اليوم 5 ساعات فانه ينجز عمله في 3 أيام ، كم يحتاج ساعة في اليوم لكي ينجز عمله في يومين 1.5 3.5 5.5 7.5
	المثلث متطابق الضلعين \therefore زوايا القاعدة متطابقة \Rightarrow	(77) طول ضلعين الأول يساوي 6cm والثاني يساوي 6cm والزاوية 60 احسب طول الضلع الثالث $\frac{6}{3}$ $\frac{6}{3}$
	$a + (a + 2) + (a + 4) = 399$ $\implies 3a = 399 - 6$ $\implies a = \frac{393}{3} = 131$ $\xrightarrow{\text{argued leavesy}} \frac{131 + 133}{2} = \frac{264}{2} = 132$	 ٣٨) ثلاثة اعداد فردية متتالية مجموعهم 999 ، فما هو المتوسط الحسابي للعدد الأول والثاني 130 • 131 131 • 132 133 • 133
	(من قاعدة جمع الاسس اذا كان الاساس واحد) $a^{x+y}=a^x imes a^y$ ضعف العدد $a^{y}=2^{8+1}=2^8$	۳۹) ضعف العدد 8(2) هو 2 ¹⁰ • 2 ¹² • <mark>2⁹ •</mark> 2 ⁷ •
	$a + (a + 2) + (a + 4) + (a + 6) + (a + 8) + (a + 10) = 396$ $\implies 6a = 396 - 30$ $\implies a = \frac{366}{6} = 61$ $\implies \frac{61 + 63}{2} = \frac{124}{2} = 62$	 \$\frac{1}{2}\$ o A A A A A A A A A A A A A A A A A A

هامش	الحل	السؤال
	Aطلاب اللغه العربيه Bطلاب الرياضيات	١٤) اذا كان 40 طالب يدرسون اللغة العربية والرياضيات
	قبن P(A⊌B) = P(A)+P(B) - P(A∩B)	وكان هناك 8 متفوقين في اللغة العربية و6 متفوقين في
	= 8 + 6 - 3 = 11	الرياضيات و3 متفوقين فيهم جميعا ، فكم عدد الغير متفوقين
	29 = 11 - 0 4 د ا لغ ير متفوقين	فيهم جميعا •
		27 • 29 • 32 •
	القاسم المشترك الاكبر لعددين 35,21 هو 7	إلى مربعات اذا علمت ان طول ضلع المربع اكبر من الواحد
	5x7=35	و هو عدد صحيح فاوجد طول ضلع المربع
	3x7=21	3 • 5 • 6 • 7 •
	محيط المستطيل =2(8+6)	٤٣) مثلث قائم الزاوية أطوال
	14x2= 28=	اضلاعه 6,8,10 مساحة المستطيل تساوي ضعف مساحة المثلث حيث طول
	6	ضلع المستطيل 6cm ، احسب محيط المستطيل • 25
	8	27 • 28 • 30 •
	$rac{\sqrt{200}}{2}=rac{\sqrt{10^2+10^2}}{2}$ = R نصف قطر الدائره $\pi R^2=0$	٤٤) مربع محصور داخل دائرة مساحة المربع 100cm فأوجد مساحة الدائرة
	$\pi \left(\frac{\sqrt{200}}{2}\right)^2 =$	π • 25π •
	$50 \pi = \pi \frac{200}{4} =$	14π • <mark>50π •</mark>
	الاطفال 4 : 5 عدد الأجزاء = 5+4 = 9	23) حافلة اذا كان المسافرين عبارة عن أطفال وبالغين ونسبة الأطفال إلى البالغين 5: 4 وكان مجموع الركاب
	$20 = 36 \times \frac{5}{9} = 10$ الأطفال	36 فإن عدد الأطفال • 14
		16 • 18 • 20 •
	(9)	I

	11.	to to
هامش	الحل	السؤال : تا 500 : نام
	$6m^2 = 1 \times 2 \times 3$ حجم الخزان بالمتر = 3 $\times 2 \times 1$	٤٦) صنبور يدفع 500 لتر في الدقيقة وكان المطلوب الزمن
	حجم الخزان باللتر = 6000L 500×t = 6000	الدي يستغرقه في ملء خزان
		على شكل متوازي مستطيلات
	$t = \frac{6000}{500} = 12$	أبعاده 1m , 2m , 3m
		11 • <mark>12 •</mark>
		14 •
		24 •
$2^{x+1} = 256$		x فأوجد قيمة 2 ^{x+1} = 256 (٤٧
2 200	128 2	5 •
$2^x \cdot 2^1 = 256$	64 2 32 2	3 •
256	32 2	5 • 3 • 7 • 9 •
$2^x = \frac{256}{2}$	16 2	9 •
or 400	0 2	
$2^x = 128$	32 2 16 2 8 2 4 2 2 2	
$2^{x} = 2^{7}$	1 - 1	
اِذَا: x=7		
	مساحه المثلث=مساحه الدائرة	
		ومساحة المثلث يساوي مساحة
	$\pi(7)^2 = \frac{1}{2} \times 7 \times h$	
	$= h \frac{\pi(7)^2}{7}$	احسب ارتفاع المثلث
		7π •
	14π=h	<u>12π •</u>
		<mark>14π ●</mark>
		18π •
	O site to the test to	
	طول ضلع المربع=طول قطر الدائره= 8 نصف القطر= 4	۲۶) ما مساحه اکبر دائرة بمکن
	$\pi(4)^2$ مساحه الدائره=	رسمها داخل مربع طول صلعه 8cm
	16π =	ocin 12π •
	1011 -	12π •
		16π ●
		21π •
$\frac{a+(a+1)+(a+2)+\cdots+(a+14)}{a+(a+1)+(a+2)+\cdots+(a+14)}$	_ 1 「	
15	= 15	٥٠) 15 عدد متتالي متوسطهم 15 ، فما متوسط أول خمسة
$\frac{15a + (1 + 2 + \dots + 14)}{12a + (1 + 2 + \dots + 14)} = 15$		أعداد
15		5 •
$\frac{15a+15(7)}{15}=15$		8 • 10 •
15 15(a+7)		10 •
$\frac{15(a+7)}{15} = 15 \gg a + 7 =$: 15	15 •
	15-7=8	
_	-	
50 8+9+10+11+12		
$10 = \frac{50}{5} = \frac{8+9+10+11+12}{5}$ ىداد	متوسط اول خمس اء	
	(10)	
	,	

_		
هامش	الحل	السؤال
	7,3,2	٥١) عددين أوليين مختلفين بحيث
	$\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{11}$	ناتج قسمة عدد أولي على عدد
		أولي يساوي
	عدد کسري دائما	 عدد فردي
		 عدد أولي
		 عدد کسري
		عدد زوجي
		A "T " L "TT AL TT A L
90km/h	A 75km/h	٥٢) قطارين انطلقوا من نقطة Α
-		القطار الأول انطلق بجهة الغرب بسرعة 90km/h
		العرب بشرعة 90K11/11 وانطلق الثاني بجهة الشرق
\wedge	$kmx_1 = 90 \times 2 = 180$	والمنطق التالي بجهة السرق بسرعة 75km/h كم تكون
المسافه	75 · · 2 · · 4501	المسافة بينهم بعد ساعتين
x	$_2 = 75 \times 2 = 150km$	290 km •
33 السرعة الزمن	المسافه= 30km =180+150	310 km •
/ 23 3		330 km •
		350 km •
	مساحه الدائرة= πr^2 مساحه الدائرة	٥٣) اذا كان ضلع المربع يساوي
	نصف القطر= 4	قطر للدائرة وكانت مساحة
	القطر= 8= ضلع المربع	الدائرة تسا <i>وي</i> 16π فكم
	مساحه المربع = 8×8= 64	مساحة المربع
		42 •
		62
		76 •
1 1	1 3+2+1 6	٥٤)حوض ماء تملئه الحنفية الاولى
$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	$\frac{1}{6} = \frac{3+2+1}{6} = \frac{3}{6} = 1$	في ساعتين والثانية في 3
2 3 (5 0 0	ساعات والثالثة في 6 ساعات ،
	ساعه و احده	اذا كان الحوض فارغ وفتحنا
		الحنفيات في وقت واحد بكم
		ساعة يمتلئ الحوض
		<mark>aelm ●</mark>
		• ساعة ونصف
		• ساعتین
		• ساعتين ونصف
$6 x^2 = 6$ ية أوجه المكعب		٥٥) مجموع مساحة أوجه مكعب
	$6x^2 = 96$	يساو <i>ي</i> 96cm ² ما طول ضلع المكعب
	$x^2 = 16$	
	x = 4	3 • 1 •
		3 • 4 • 7 •
		8 •
		1
	(11)	
	(11)	

الحل	السؤال
$\frac{a + (a+1) + (a+2) + (a+3) + (a+4)}{5} = 8$	٥٦) خمسة اعداد متتالية متوسطهم
$\frac{u \cdot (u + 1) \cdot (u + 2) \cdot (u + 3) \cdot (u + 1)}{\pi} = 8$	8 فأوجد أكبر عدد فيها
5 5a ± 10	٥ فاوجد الخبر عدد قيها
$\frac{5a+10}{5} = 8$	8 •
	<mark>10 ●</mark>
a+2=8 , a=6	11 •
الاعداد 6,7,8,9,10	
اکبر عدد 10	12 •
3.	
يجب ان تكون ابعاد متوازى المستطيلات تقبل القسمه على طول حرف المكعب	٥٧) متوازي مستطيلات ابعاده
حجم متوازي المستطيلات $8 \times 4 \times 4 \times 8$	، 4,5,8 نرید ان نضع به
$2 \times 2 \times 2 = 8$ حجم المكعب	مكعبات طول حرف المكعب
$\frac{128}{8} = 16$	الواحد 2cm فكم مكعب يمكن
$\frac{8}{8}$ - 10	ان نضع
	12 •
	14 •
	<mark>16 ●</mark>
	15 •
قواسم العدد 36 2,18,3,12,4,9,6	٥٨) مزرعة مستطيلة الشكل
	,
قواسم العدد 24 2,12,3,8,4,6	ابعادها 360m و 240m ،
	اذا اردنا تقسيمها لمربعات
اذا طول الضلع المربع 120	متساویه، اوجد أطول ضلع
	للمربع
	60 •
	80 •
	<u>100 •</u>
	<mark>120 ●</mark>
من الخيارات نوجد اقل عدد يقبل القسمه على كلا من 6,8,10	٥٩) قط يستطيع ان يصعد درج
الله الحيارات توجد الله عدد يعبل العسمة على خار الله	• • • • • • • • • • • • • • • • • • • •
	ستة ستة بدون باق. وثمانية
أقل عدد من السلالم 120	ثمانية بدون باق . وعشرة
	عشرة بدون باق . فما اقل عدد
	من السلالم يحتوي الدرج
	30 •
	60 •
	<mark>120 •</mark>
	240 ●
	٦٠) تحمل ألواح السيارات في
State No. 2 No.) المملكة 3 حروف و3 ارقام .
↑	المملك و حروف وي ارفام . فكم عدد اللوحات التي تحمل 3
۱۰ ۱۰ ۱۰ عدد الارقام عدد الارقام	
۱۰ ۱۰ ۲ محد الارقام	حروف متطابقة و 3 ارقام
۱ ۱ عدد الارقام المتطابقة ۱×۱×۱ = ۱۰	ليست جميعها متطابقة
· · · · · · · · · · · · · · · · · · ·	25200 •
	27720 ●
→ عدد اللوحات المتطابقة = ٨ ٢ × · ١ = ٢٨٠	
	28000 •
عدد اللوحات المطلوبة = $(\wedge \land \land \land \land)$ عدد اللوحات المطلوبة	28950 •

(12)	
(12)	

الحل هامش	السؤال
$\frac{1}{4} + \frac{1}{3} - \frac{1}{2} = \frac{1}{12}$ 12 mlass	(7) حنفية تملئ الحوض في 4 ساعات وأخرى في 3 ساعات وأخرى في 3 ساعات وهناك مخرج يفرغ الحوض في ساعتين ، لو شغلنا الحنفيتان والمخرج معاً كم ساعة نحتاج لملء الحوض 4 4 6 6
$\frac{a+b+c}{3} = 4 \rightarrow a+b+c = 12$	٦٢) اذا علمت ان متوسط 3 اعداد مختلفة هو 4 ،ومتوسط 4 اعداد أخرى هو 6 ، فإن
$\frac{d+e+f+g}{4} = 6 \to d + e + f + g = 24$ $\frac{12+24}{7} = 5.14$	متوسط جميع الاعداد • 5.14 • 6.24 • 3.75
	3.73
$x_1=4$ t مسافة الأول $x_2=6$ t مسافة الثاني $x_2=6$ t يلتقيان عند الدقيقه $t=140$ $t=140$ $t=14$ المسافه الذي قطعها الأول عند الالتقاء $t=4\times 14=56$	 ٦٣) عداءان يجريان باتجاهين متعاكسين حول مضمار دائري محيطه 140m يجري الأول بسرعة 4m/min والثاني بسرعة 6m/min فكم المسافة التي قطعها الأول عند الالتقاء 65 48 84
$\frac{a+b+c+d}{4} = 20 \to a+b+c+d = 80$ $\frac{a+b+c}{3} = 15 \to a+b+c = 45$ $\therefore d = 80 - 45 = 35$	 ٦٤) المتوسط الحسابي لاربع اعداد يساوي 20 ، فإذا كان المتوسط الحسابي عند استبعاد إحدى هذه الأعداد يساوي 15 ، فإن العدد الذي تم استبعاده هو 5 20 32 35
i نفرض ان القاعده 20 والارتفاع 10 مساحة المثلث = 100 مساحة المثلث = 100 زيادة القاعده = $\frac{30}{100} \times 20 = 20$ القاعده بعد الزياده $\frac{30}{100} \times 20 = 20$ نقصان الارتفاع = $\frac{10}{100} \times 10 = 20$ الارتفاع بعد النقصان $\frac{1}{100} \times 10 = 20$ المساحة المثلث الجديد $\frac{1}{2} \times 20 \times 20 \times 20$ نسبة الزياده في المساحه $\frac{1}{100} \times 100 = 10$	رة (در طول قاعدة المثلث 30% ونقص ارتفاعه %10 ، فما نسبة الزيادة في المساحة 8.5% • 17% • 117% • 108.5% •

	_
الحل هامش	السؤال
$-4=rac{-4}{1}=rac{(y-x)-y}{1}$ ميل المستقيم y معامل $y-y_1=m(x-x_1)$ معادلة المستقيم	٦٦) معادلة المستقيم المار بالنقطة (1 , 2) ويوازي المستقيم Y + 4X = 8
y-1 = -4(x-2) $y-1 = -4x + 8$ $y + 4x = 9$	Y + 4X = 12 • $Y - 4X = 12$ • $Y - 4X = 9$ • $Y + 4X = 9$ •
اذا زاد عدد العمال قلت الآيام $3 + 3 + 3 = 1$ يوم $3 + 3 + 3 = 1$ عمال $3 + 3 = 3 + 3 = 1$ عمال $3 + 3 = 1$	 ٦٧) يستطيع 3 عمال إنجاز عمل ما في 12 يوم ، كم يستغرق 9 عمال لإنجاز هذا العمل ق أيام 4 أيام 5 أيام 6 ايام
$\frac{a+(a+2)+(a+4)+(a+6)+(a+8)+(a+10)}{6} = 8$ $\implies 6a = 48 - 30$ $\implies a = \frac{18}{6} = 3$ $\implies \frac{11+13}{2} = \frac{24}{2} = 12$	 ٦٨) متوسط ست اعداد فردية منتالية 8 ، احسب متوسط آخر عددين 11 • 12 • 13 • 14 •
$x-y = 196$ الفرق بنهما $x-y = 196$ ثمتوسطهما الحسابي $x+y = 48 \Rightarrow x + y = 48 \times 2 = 96$ خد ان بحل النظام نجد ان $x+y = 48 \Rightarrow x + y = 48 \times 2 = 96$ خد ان $x+y = 48 \Rightarrow x + y = 48 \times 2 = 96$ خد النظام نجد ان $x+y = 196 \Rightarrow x = 196 \Rightarrow x = \frac{292}{2} = 146$	 ٦٩ عددان متوسطهما الحسابي 48 والفرق بينهم 196 فما العدد الأكبر 50 146 52 147
2 ميل المستقيم المعطى 2 ميل المستقيم المعمودي عليه $-\frac{1}{2}$ عليه $y-y_1=m(x-x_1)$ $y+4=-\frac{1}{2}(x-2)$ $y+4=-\frac{1}{2}x+1$ $y=-\frac{1}{2}x-3$	$(Y \cdot Y)$ اوجد معادلة المستقيم العمودي على $(Y \cdot ZX + 1)$ عند القطة $(Y \cdot ZX + 1)$ • $(Y $

الحل هامش	السؤال
$(\frac{y-\eta}{2})$ کز الدائرہ $(\frac{y-\eta}{2})$	$X^2+Y^2+4X-6Y=23$
$\left(\begin{array}{c} -\frac{4}{2}, \frac{6}{2} \end{array}\right)$	(-2,3) •
(-2,3)	
_,=	(2,-3)
	(=, 5)
<u> 3, 4,5 ,3,/4</u>	[3 4 5]
0 1 7 0 1	۲۲)فیمهٔ 7
$2 - 1 \times 2 - 1$	12 − 1 31 55 •
/2 / 4/01 = 1	60 •
حددة بطريقة كرامر:	الم
	76 •
$(3 \times 1 \times 3) + (4 \times 7 \times 2) + (5 \times 0 \times -1)$ - $(5 \times 1 \times 2) - (3 \times 7 \times -1) - (4 \times 0 \times 3)$	70 -
= 9 + 56 + 0 - 10 + 21 - 0 = 76	
$\frac{27+36+6+10+21}{6+4+3+7=20}$ د الطلاب $6+4+3+7=20$	۷۳) في احدى المدارس الابتدائية عد
	" \
مال الطالب الاول من الصف السادس $rac{6}{20}$	الصف الثالث و 3 من الصف
مال الطالب الثاني من الصف الثالث $\frac{7}{19}$ $\therefore \frac{6}{20} \times \frac{7}{19} = \frac{42}{380}$	الرابع و 4 من الصف الخامس اح
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	و 6 من الصف السادس تم
$\therefore \frac{3}{20} \times \frac{1}{19} = \frac{12}{380}$	اختيار طالبين لمساعدة
20 19 300	المحرس في مسيم المحرب عد
	احتمال ان يكون الطالب الأول
	من الصف السادس والطالب
	الثاني من الصف الثالث
	1/10 •
	13/20 ◆ 42/380 ◆
	42/400 •
	42/400
فرق الصادات	٧٤) ميل المستقيم المار بالنقطتين
${}$ الميل $={}$ فرق الصادات $}$	(1,4),(-2,3)
قرق السيبات 1 2 1	
$m = \frac{4-3}{1-(-2)} = \frac{1}{3}$	3 • 1/3 • 1/2 •
1 - (-2) 3	1/2 •
	2 •
$y - y_1 = m(x - x_1)$	٧٥) اوجد معادلة الخط المستقيم
y-3 = -2(x+6)	المار بالنقطة (6,3-) وميله 2-
y - 3 = -2x - 12	$Y = 2X - 9 \bullet$
y = -2x - 9	Y = -2X -9 •
	Y = X + 9 •
	Y = -X +9 •

هامش	الحل	السؤال
	y = ax + b معادلة المستقيم	٧٦) ميل المستقيم الذي معادلته
	و یکون المیل a	3X+4Y=5
	نجعل المعادله في الشكل العام	4/5 ●
	$3x + 4y = 5 \rightarrow 4y = -3x + 5$	5/4 ●
	$3x + 4y = 5 \to 4y = -3x + 5$ $y = -\frac{3}{4}x + \frac{5}{4}$	3/4 ●
	$y = -\frac{1}{4}x + \frac{1}{4}$	- 3/4 ●
	الميل هو $\frac{3}{4}$	
	4 تباديل مجموعة من العناصر n ، مأخوذ منها r من العناصر	۷۷) بكم طريقة يمكن ان يجلس 5
		اشخاص في صف به 9
	$P_r^n = \frac{n!}{(n-r)!}$	کر اسی
		15100 •
	$P_5^9 = \frac{9!}{4!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4!}{4!}$	15000 •
	4! 4!	15120 •
	$=72\times7\times30$	
	$= 72 \times 210$	15150 •
	= 15120	
		۷۸)اذا کان هناك 7 اشخاص
		يريدون الجلوس ولم يجدوا
	$P_r^n = \frac{n!}{(n-r)!}$	سوی 3 کراسی، بکم طریقة
	(** *)*	يمكن ملء هذه الكراسي الثلاثة
	$P_3^7 = \frac{7!}{4!} = \frac{7 \times 6 \times 5 \times 4!}{4!}$	معاً
	$I_3 - \frac{1}{4!} - \frac{1}{4!}$	200 •
	$=7\times6\times5$	205 •
	= 210	210 •
	= 210	
		215 •
	تباديل مجموعة من العناصر n ، مأخوذ منها r من العناصر	۷۹) مسجد له 7 أبواب ، بكم
		طريقة يستطيع شخص دخول
	$P_r^n = \frac{n!}{(n-r)!}$	المسجد من باب والخروج من
	` '	الآخر
	$P_2^7 = \frac{7!}{5!} = \frac{7 \times 6 \times 5!}{5!}$	
	$r_2 - \frac{1}{5!} - \frac{1}{5!}$	40 • 42 • 44 •
	$=7\times6$	44
	= 42	46 •
	– 4 2	40 •
	باستخدام التوافيق	۸۰) ارادت 4 نوادي إقامة
	بالسحدام اللوافيق التوافيق: (١. لا يهم الترتيب ، ٢. عدم التكرار)	مباريات لكرة القدم بينها بحيث
	(7)	تلعب هذه النو ادى مثني مثني ،
	$C_r^n = \binom{n}{r} = \frac{n!}{r!}$	تلعب هذه النوادي مثنى مثنى ، فبكم طريقة يمكن إتمام ذلك
	(r) $(n-r)!r!$	12 •
	c ₄ 4!	
	$C_2^4 = \frac{4!}{2! \times 2!}$	6 4
	$4 \times 3 \times 2 \times 1$	10 • 6 • 5 •
	$=\frac{4\times3\times2\times1}{2\times1\times2\times1}$	
	$=\frac{24}{4}$	
	= 6	

هامش	الحل	السؤال
		و ، $f(x) = \sqrt{2x}$ باذا کانت (۸۱)
	$f \circ g(x)) = f(g(x))$	نساوي $f \circ g(x)$ فإن $g(x) = 2x^2$
	$= f(2x^2)$:
	$=\sqrt{2(2x^2)}$	$4x \bullet 2x \bullet$
	$=\sqrt{4x^2}$	$x \bullet$
	=2x	8 <i>x</i> •
	فكرة الحل السريعة: (الزاوية رنصف القطر)	۸۲) إذا كان عددين مركبين مختلفين هما
	الزاوية= نجمع الزاويُتين للمركبتين	(3 , 20°) ، (2 , 3°) فما قيمة العدد
	نصف القطر = نضرب نصفي القطر في بعضهما	المركب z1z2 • (5 , 50°)
	$Z_1 Z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$	(5, 60°) •
	$=6[\cos 50^{\circ}+i\sin 50^{\circ}]$	(6,50°) •
	$(r = 6, \varphi = 50^{\circ}) \Rightarrow (6,50^{\circ})$	(6 , 60°) •
	$y = \log_a x \Rightarrow a^y = x$	ما قيمة χ التي تحقق (۸۳
		$\log_2(x+2) = 3$
	$2^3 = x + 2$	2 • 4 •
	8 = x + 2	4 • 6 • 8 •
	$\Rightarrow x = 6$	8 •
	أقل من 5 وحدات	٨٤) أي المتباينات التالية تصف
	يعني: 5>	مجموعة الأعداد التي تبتعد أقل من 5 وحدات عن العدد 3
	تبعد عن العدد x بمقدار معين(قيمة ما وهنا هي 3 وحدات) يعنى: $x-3$	x+3 < 5
	-	x-3 < 5
	x-3 < 5 إذاً تصبح المتباينة المطلوبة:	x+5 < 3
		x-5 < 3
	احتمال الحدث الأول $P(A) \ ($ رمي محمد الكرة و اصابته الهدف $P(A)$.	٨٥) إذا كان احتمال أن يرمي محمد
	3	الكرة و يصيب الهدف هو 1/3، و احتمال أن يرمى أحمد الكرة و يصيب
	$rac{1}{4}=rac{1}{4}$. $P(B)$. احتمال الحدث الثاني ال $P(B)$	الهدف هو 1/4 ، فما احتمال أن يصيبا
	احتمال أن يصيبا الهدف كليهما معاً (تقاطع الحدث الأول مع الحدث الثاني)	الهدف كليهما معاً : - 1/12
	$P(A) \cap P(B) = P(A) \times P(B)$	1/12
	$=\frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$	5/12 •
	3 4 12	9/12 •
	(17)	
	(17)	

الحل الحل	السؤال
ا الأعداد كبيرة نستخدم طريقة التحليل .	
ا الأعداد صغيرة نتعامل معها بأسلوب بسيط.	
1 لا تقبل القسمة على 4 .	
3 يقبل القسمة على 4 و 6 و 9 معاً . 2 لا تقبل القسمة على 9 .	
2 ، تقبل القسمة على 9 . 7 يقبل القسمة على 4 و 6 و 9 معاً .	
، پېږى ، <u>حسن عي ب</u> ې و ن و و ده .	72 •
3 اجابة صحيحة للسؤال لإنها أصغر من 72	6
رة الحل: تربيع المعادلة الأولى لنستنتج قيمة 2^{2x} .	
	تساوي :
$2^x = 6 \Rightarrow (2^x)^2 = 3$	2 •
$\Rightarrow 2^{2x} = (2^x)^2 = 3$	6 •
$\Rightarrow z - (z) - 3$	12 •
	<mark>36 ●</mark>
	2 2
$(a+b)^2 = a^2 + 2ab + b^2$	يسط العبارة النسبية $\frac{x^2y^2-1}{(xy-1)^2}$ بسط العبارة النسبية
$(a-b)^2 = a^2 - 2ab + b^2$ اسیات:	
$(a^2 - b^2) = (a + b)(a - b)$	$\frac{xy-1}{(xy-1)^2} \bullet $
رِّحظ البُسط عبارة عن مُفكوكُ فرق مربع قيمتين ، و المقام عبارة عن تربيع	$(xy-1)^2$
ق قيمتين	
(xy+1)(xy-1) $(xy+1)$	$\frac{x^2y + 1}{(xy+1)^2} \bullet$
$\frac{(xy+1)(xy-1)}{(xy-1)(xy-1)} \Rightarrow \frac{(xy+1)}{(xy-1)}$	\
ن آخر :	$\frac{xy+1}{}$
(x^2y^2-1) $(xy+1)(xy-1)$ $(xy+1)(xy-1)$ $(xy+1)$	(xy-1)
$\frac{(x^2y^2-1)}{(xy-1)^2} \Rightarrow \frac{(xy+1)(xy-1)}{x^2y^2-2xy+1} \Rightarrow \frac{(xy+1)(xy-1)}{(xy-1)(xy-1)} \Rightarrow \frac{(xy+1)}{(xy-1)}$	$\frac{xy-1}{}$
	(xy+1)
	1: 27 27 22 115 11 (12
$2^x \times 2^y = 3$	
$\Rightarrow 2^{x+y} = 2$	
	(1) 4 •
x + y = 5 الأسس متساوية:	4 • 5 • 6 • 7 •
	7
	, ,
ا أن جذور المعادلة المجهولة عددها ٢ ، فإذا هي معادلة من الدرجة الثانية ،	المعادلة التي جذراها $(\sqrt{3}+2)$ بد
$Ax^2 + Bx + C = 0$: الصورة العامة لمعادلة من الدرجة الثانية هي	(\(\frac{1}{3} \) \(\frac{1}{2} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(
يكن الجذر الأول نسميه a ، و الجذر الثاني تسميه b .	
ما أن فكرة السؤال هي الرجوع للمعادلة الأصلية باستخدام حلولها.	
ا نستخدم الصيغة	x + y = 0
$x^{2} + (a+b)x + (a \times b) = 0; \forall \begin{cases} a = (\sqrt{3} + 2), b = (\sqrt{3} - 2) \end{cases}$	$\begin{cases} 7x^2 + 2\sqrt{3}x + 1 = 0 \end{cases}$
$\Rightarrow x^2 + ((\sqrt{3} + 2) + (\sqrt{3} - 2))x + ((\sqrt{3} + 2)(\sqrt{3} - 2)) = 0$	-
$\Rightarrow x^2 + (2\sqrt{3})x - 1 = 0$	x 12\3x 1-0
$\Rightarrow x + (2\sqrt{3})x - 1 = 0$	
(40)	
(18)	

F	à _	الحل	ile II
-	هامش	<u> </u>	السؤال (٩١) عدد موجب إذا أضيف مربعه إلى
		نعيد صياغة السؤال إلى معادلة: $x^2 + 4x = 12$ ثم نجرب عليها الاختيارات أيها صحيح	أربعة أمثاله كان الناتج 12 ، فما هو
		$12:12^2 + 4 \times 12 \neq 12$	العدد :
		$8:8^2+4\times8\neq12$	12 •
			8 •
		$6:6^2+4\times6\neq12$	6 • <mark>2 •</mark>
		$2:2^2 + 4 \times 2 = 12$	<mark>∠ •</mark>
-		A = A + A + A + A + A + A + A + A + A +	۹۲) مجال
		مجال الدالة الكسرية هو $b=0$: $orall b=0$ أي يعني جميع الأعداد	: هو f (x)= $\frac{x^2-4x-5}{x^2-x-2}$
		الصحيحة ما عدا التي تحقق أصفار المقام	x x 2
		(المقام يساوي الصفر). نبدأ في ايجاد أصفار المقام:	(-∞,-1)∪(2,∞)•
		$x^2 - x - 2 = 0 \Rightarrow (x+1)(x-2) = 0$	(-∞,-2)∪(1,∞)•
		$x = x = 2 = 0 \implies (x + 1)(x = 2) = 0$ $ \vec{x} = 2$ $ \vec{x} = 2$	$(-\infty,-1)(-1,2) \cup (2,\infty) \bullet$
		$R - \{-1,2\}$	(-∞,-2) ∪ (-2,1) ∪ (1,∞)•
-		(' /)	۹۳) عدد أقطار مضلع منتظم له 123
		$\frac{n(n-3)}{2} = \frac{n(n-3)}{2}$ عدد الأقطار	ضلع هو :
		2	7180 •
		n(n-3) 123×120	7280
		$\frac{n(n-3)}{2} \Rightarrow \frac{123 \times 120}{2} = 7380$	<mark>7380 •</mark> 7480 •
_			
		$\varphi = \frac{(n-2) \times 180^{\circ}}{}$	٩٤) المضلع المنتظم الذي زاويته 108
		n	ھو : <mark>● خماسی</mark>
		$\Rightarrow 108^{\circ} = \frac{180^{\circ} n - 360^{\circ}}{}$	• سداس <i>ي</i>
		n $\Rightarrow 108^{\circ}n = 180^{\circ}n - 360^{\circ}$ عدد الأضلاع	• سباعي
		$\Rightarrow 108^{\circ} n - 180^{\circ} n = -360^{\circ}$ $\Rightarrow 108^{\circ} n - 180^{\circ} n = -360^{\circ}$	• ثماني
		$\Rightarrow -72^{\circ}n = -360^{\circ}$	
		$\Rightarrow n = \frac{-360^{\circ}}{-72^{\circ}} = 5$	
-		المعادلة من الدرجة الثالثة يعني يوجد لها ثلاثة حلول .	٩٥) إذا كان x = 3 هو حل للمعادلة
		$x = 1 \Rightarrow 1 - 6 + a - 6 = 0 \Rightarrow a = 11$: فإن $x^3 - 6x^2 + ax - 6 = 0$
		$x = 2 \Rightarrow 8 - 24 + 2a - 6 = 0 \Rightarrow a = 11$	 الحلول الأخرى غير معروفة
		$x = 3 \Rightarrow a = 11$	لإن a مجهولة .
			• يوجد ما لا نهاية من الحلول ا ذي الساداة في ط
			لهذه المعادلة في R . • في كل الأحوال x=3 هو الحل
			الوحيد .
			 مجموعة حل هذه المعادلة هي
			{1,2,3}
		(19)	

هامش	الحل	السؤال
	$x^2 - 49 = 0 \Rightarrow 0$	٩٦) مجموعة حل المعادلة
	$\Rightarrow x^2 = 49$: في R هي x² - 49 = 0
	$\Rightarrow x = \pm 7$	{ -49 , 49 }
	4-7.7	{-7,7} • (7,7) •
	(','')	(-7,7) • [-7,7] •
	$\tan^2 x = 3 \Rightarrow \tan x = \pm \sqrt{3}$	٩٧) مجموعة حل المعادلة
		tan2x – 3 = 0 في الفنرة , 0]
	مر فوض $\sqrt{3}$	$\left[\frac{\pi}{2}\right]$
	$\frac{\sin x}{\cos x} = \frac{\sqrt{3}}{2}$	
	1	$\{\frac{\pi}{3}\}$
	$\sqrt{3}$	$\{\frac{\pi}{6}\}$ •
	$\Rightarrow \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\sqrt{3}}{2}$	6
	$\cos 60^{\circ}$ 1	$\{\frac{-\pi}{3}\}$ •
	$\Rightarrow \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{\sqrt{3}}{1}$	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
	$\therefore \theta = 60 \times \frac{\pi}{180^{\circ}} = \frac{\pi}{3}$	$\{\frac{-\pi}{3}\}$ •
	فراغ العينة = $2^8 = 256$ ، وعدد الحوادث	۹۸) رمیت قطعة عملة 8 مرات ، فما احتمال ظهور الصورة مرتین :
	n - 6, r - 2	، کمدن کهور ، اعظوره شرین . •
	$\binom{n}{r} = \binom{8}{2}$	7/64 •
	(r) (2)	1/8 •
	$\Rightarrow \frac{n!}{r!(n-r)!} = \frac{8!}{2! \times 6!} = 28$	5/16 ●
	احتمال صورتين =عدد الحوادث÷فراغ العينة 7 - 20	
	$\Rightarrow \frac{28}{256} = \frac{7}{64}$	
	$(\sqrt{2x+1})^2 = (\sqrt{2x+2})^2$ بالتربيع نحصل على:	٩٩) حل المعادلة
	$\Rightarrow (\sqrt{2x})^2 + 2\sqrt{2x} + 1 = 2x + 2$: هو $\sqrt{2x} + 1 = \sqrt{2x + 2}$
	$\Rightarrow (2x) + (2\sqrt{2x}) - (2x) = 2 - 1$	1/2 •
	$\Rightarrow (2x) + (2\sqrt{2x}) - (2x) = 2 - 1$ $\Rightarrow 2\sqrt{2x} = -1$	1/4 •
	·	1/8 ● 1/16 ●
	و بتربيع المعادلة الأخيرة نحصل على: 1	1,710
	$4 \times 2x = 1$ وبتربيع المعادلة الأخيرة نحصل على: $x = \frac{1}{8}$	
	$\overline{y} = \{2,4,6\}$	۱۰۰) إذا كانت
	2 (77)	$\cdot x = \{1, 2, 3, 4, 5, 6, 7\}$
		وكانت y = { 1 , 3 , 5 , 7 } فإن متممة y بالنسبة إلى x هي :
		{1,3,5} •
		{2,4,6}
		{6,7} •
		1 {1, 2, 3, 4, 5, 6, 7} •
	(20)	

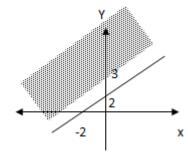
هامش	الحل	السؤال
	احس a و b مستحيلة لأن المركز ليس نقطة الأصل .	۱۰۱) معادلة الدائرة التي تمس محور
	$r^2 = a \Rightarrow r = 3$	الصادات ، و مركزها (3,2) هي :
	معادلة الدائرة هي:	$X^2 + y^2 = 9 \bullet$
	$(x-a)^2 + (y-b)^2 = r : \forall (a,b)$	$X^2 + y^2 = 4$ • $(x-3)^2 + (y-2)^2 = 4$ •
	$\Rightarrow (x-3)^2 + (y-2)^2 = 9$	$\frac{(x-3)^2 + (y-2)^2 = 9}{(x-3)^2 + (y-2)^2 = 9} \bullet$
	$5^{x} = 10$	۲۰۲) إذا كانت ² 10 = 5 ^x ، فإن x
	$\log 5^x = \log 10$	تساوي :
	$\Rightarrow x \log 5 = \log 10$	$\frac{\log 10}{100}$
		log 5
	$\Rightarrow x = \frac{\log 10}{\log 5}$	$\frac{-\log 10}{\log 5}$
	Ç	log 5
		$\frac{\log 5}{\log 10} \bullet$
		1
		$\log \frac{1}{2}$ •
	$\int_{1}^{2} (x-1)dx = \frac{x^{2}}{2} - x \Big _{1}^{2}$	$\int_{1}^{2} (x-1)dx$ أوجد قيمة التكامل (١٠٣
	$\begin{bmatrix} 2^2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	1/4 •
	$\Rightarrow \left\lfloor \frac{2^2}{2} - 2 \right\rfloor - \left\lfloor \frac{1}{2} - 1 \right\rfloor = \frac{1}{2}$	1/3 • 1/2 •
		1/5 •
	قوانين الانحراف المعياري:	١٠٤) لدينا 10 قراءات احصائية
	$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ أو $\sigma = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n-1}}$.	مجموع مربعاتها 520 ، فإذا كان
	$\sigma = \sqrt{\frac{n-1}{n-1}}$ $\sigma = \sqrt{\frac{n-1}{n-1}}$	متوسط هذه القراءات هو 4 ، فإن الانحراف المعياري لها :
	$\sum_{x} (x - \frac{(\sum x)^2}{x})^2$	5 •
	$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N}}$ و أو $\sigma = \sqrt{\frac{\sum x^2 - \frac{(\sum x)}{n}}{N}}$ د المجتمع .۲	<mark>6 ●</mark>
	Y 14 Y 14	16 • 20 •
	نستخدم القانوان الأول للانحراف في المجتمع .	20 •
	$. \left(\frac{n}{n}\right)$ أضفنا $\Sigma x^2 = 520, \overline{x} = \frac{\Sigma x}{n} = 4 \Rightarrow \left(\frac{\Sigma x}{n}\right)^2 = 16 $	
	$\sum_{x} \left(\sum x \right)^2$	
	$\sigma = \sqrt{\frac{\sum x^2 - \left(\frac{\sum x}{n}\right)^2 n}{n}} \Rightarrow \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$	
	$\Rightarrow \sqrt{\frac{520}{10} - 16} = \sqrt{36} = 6$	
	$\int_0^3 ax dx = \frac{ax^2}{2} \int_0^3 = 9$	a اوجد قیمة dx $\int_{0}^{3} ax = 9$ (۱۰۰
	$a\left\lceil \frac{3^2}{2} - 0 \right\rceil = 9$	1 • 2 • 3 • 4 •
	$\Rightarrow a \left[\frac{9}{2} \right] = 9$	3 • 4 •
	$\Rightarrow a = 2$	
	(21)	

		11 11
هامش	الحل	السؤال
	المسافة 18+9+9+4.5+4.5 = 45	 ١٠٦) كرة كاوتشوك ترتد بمقدار نصف المسافة التي تسقط منها ، فإذا سقطت هذه الكرة من سطح على ارتفاع 18m ، فما هي المسافة التي تكون قد قطعتها
	9 9 4.5	عندما ضربت الأرض للمرة الثالثة: • 31.15
	4.5	40.5 • 45 • 63 •
	$\frac{-1}{2}\int -2xe^{-x^2}dx$	$\int_{-\infty}^{\infty} xe^{-x^2} dx$ أوجد قيمة النكامل (۱۰۷)
	$\Rightarrow \frac{-1}{2} \left[e^{-x^2} \right]_{-\infty}^{\infty}$	0 • 1 •
	$\Rightarrow \frac{-1}{2} \left[e^{-\infty} - e^{-\infty} \right]$	∞غير معرف
	$\Rightarrow \frac{-1}{2}(0) = 0$	
	تكون غير قابلة للإنعكاس عندما تكون قيمة المحدد تساوي $\Delta=0\Rightarrow [1\times 0-1\times 0]-0[0-1]+a[-1]=0$ $\Rightarrow -a=0$	تكون غير قابلة $\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ (۱۰۸
	$\Rightarrow a = 0$	للانعكاسُ عندما تكوْن قيمة a :
		0 • 1 • 2 • 3 •
	نعلم الاجابة بالتجريب ، أي نفرض أعداد: $(1)^2$ (1)	n ² + 2n + 5(۱۰۹ أي من مجموعة الأعداد يكون الناتج عدد أولي :
	$n = \frac{1}{2} \Longrightarrow \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right) + 5 = 6.25$	 الأعداد الحقيقية الأعداد الفردية
	$n = 1 \Rightarrow 4^2 + 2(4) + 5 = 29$	 الأعداد الزوجية
	$n = 2 \Rightarrow 2^2 + 2(2) + 5 = 13$	• الأعداد الفردية
	$n = 7 \Rightarrow 7^2 + 2(7) + 5 = 60$ عدد اولي .	
	$3^3 = 27$: y فما قيمة 3 ^{3y} = 27 ³ (١١٠
	$(27)^y = (27)^3 \Rightarrow y = 3$	3
		1/3 • 1/2 •
		1/2
	(22)	l
	· ,	

الحل هامش	السؤال
$y = mx + 1 \to (1)$	y = mx+1) إذا قطع المستقيم 1 (١١١)
$x^2 + 4y^2 = 1 \rightarrow (2)$	القطع الناقص $x^2 + 4y^2 = 1$ في
بالتعويض عن y في معادلة القطع الناقص .	نقطة و احدة فقط ، فما قيمة m^2 :
$x^2 + 4(mx+1)^2 = 1$	1/2 • 1/3 •
$x^2 + 4(m^2x^2 + 2mx + 1) = 1$	1/3 •
$x^2 + (4m^2x^2 + 8mx + 4) - 1 = 0$	3/4 •
$(1+4m^2)x^2+8mx+3=0$	
وهي معادلة من الدرجة الثانية .	
وبما أن المستقيم يتقاطع من القطع في نقطة واحدة ، فهذا يعني أن المميز يساوي الصفر	
$\Delta = 0 \Rightarrow b^2 - 4ac = 0$	
$(8m)^2 - 4(1+4m^2) \times 3 = 0$	
$64m^2 - 12 - 48m^2 = 0$	
$\Rightarrow 16m^2 = 12$	
$m = \frac{12}{100} = \frac{3}{100}$	
16 4	
نرمز للاختبار بالرمز m.	١١٢) متوسط درجات سلطان في أول خمسة اختبارات قصيرة هو 92 ، فإذا
$a_1 = \frac{m_1 + m_2 + m_3 + m_4 + m_5}{5}$	أراد تحسين متوسط درجاته ليصبح 93
مجموع الاختبارات الخمسة= $460 = 5 \times 92$	، فما الدرجة التي يجب أن يحصل عليها
الن نوجد مجموع درجات الاختبارات الستة ثم نطرح منها مجموع درجات	في الاختبار القصير التالي :
الاختبارات الخمسة التي أوجدناها	95 •
$93 = \frac{m_1 + m_2 + m_3 + m_4 + m_5 + m_6}{m_1 + m_2 + m_3 + m_4 + m_5 + m_6}$	98 • 97 •
6	100 •
مجموع الاختبارات الستة $558 = 6 \times 98$ درجة الاختبار الأخير هي: $98 = -460$	
<u> </u>	d 1 A (117
3 3.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{3}{6} = \frac{3.5}{ nf }$	e f C
· · ·	في الشكل A B <i>C</i>
$\Rightarrow \frac{3.5 \times 6}{3} = 7$	me = 6, ln = 3.5, dm
	= 3
	فإن nf
	18 • 10. <u>5</u> •
	7 • 3 •
	3 •
$\int_{0}^{1} kx^{2} dx + \int_{0}^{1} \sqrt{x} dx = 1$	$\int_{1}^{1} (kx^{2} + \sqrt{x})dx = 1 $ إذا كان (١١٤)
$\Rightarrow \frac{kx^3}{3} \int_0^1 + \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \int_0^1 = 1$	0 : k فما قيمة
$\rightarrow 3 \int_0^{+} \frac{3}{3} \int_0^{-1}$	-2 •
\mathcal{L}	-2 • 0 •
$\Rightarrow x \left[\frac{1}{3} - 0 \right] + \frac{2}{3} = 1$	-1 • 1 •
$\begin{bmatrix} 3 & \rfloor & 3 \\ \Rightarrow k + 2 = 3 \end{bmatrix}$	
$\Rightarrow k + 2 = 3$ $\Rightarrow k = 1$	
$\Rightarrow k = 1 \tag{23}$	
(20)	

هامش الحل

> نختار نقطة تنتمى لمنطقة الحل ← (2،2-) نختار نقطة لا تنتمى لمنطقة الحل ← (0،0) نعوض في المتباينات الاربع


F				•
$y \ge x + 2$	$y \ge x - 2$	$y \le x + 2$	$y \le x - 2$	
2 ≥ 0 ✓	2 ≥ -4 ✓	2 ≤ 0 ×	2 ≤ −4 ×	(-2.2)
0 ≥ 2 ×	0 ≥ -2 ✓	0 ≤ 2 ✓	0 ≤ −2 ×	(0.0)
✓	×	×	×	

المتباينة المختارة هي التي تمثل الرسم بحيث (2،2-) تنتمي لمجموعة حلها و (0،0) لا تنتمي لمجموعة حلها

 $\frac{\frac{1}{x} - y}{\frac{1}{y} - x} = \frac{\frac{1 - yx}{x}}{\frac{1 - xy}{y}}$

 $\implies \frac{1-yx}{x} \times \frac{y}{1-xy} = \frac{y}{x}$

١١٥) أي من المتباينات المعطاة يمثلها الجزء المظلل من المستوى الموضح

- $y \le x 2$
- $y \le x + 2$
- $y \ge x 2$
- $y \ge x + 2$

$$x_1+y=1$$
 $x_2y=1 \Rightarrow x_2=rac{1}{y} \Longrightarrow y=rac{1}{x_2}$ والتعريض بشمة $x_1+y=1$

 $\frac{y}{=}$ بالتعریض بقیمة $x + \frac{1}{x} = 1$ بالتعریض بقیمة $x^2 - x + 1 = 0$

$$\xrightarrow{x_{1&2}=} \frac{1 \mp \sqrt{1-4}}{2} = \frac{1 \mp i\sqrt{3}}{2}$$

$$\xrightarrow{x_{2}=} \frac{x_{2}}{2} = \frac{1 \pm i\sqrt{3}}{2} = \frac{i\sqrt{3}}{2} + \frac{i\sqrt{3}}{2} = 1$$

$$x + y = xy = 1$$
 لنفرض أن (۱۱۲) لنفرض أن (۱۲۳

مجموع قيم x التي تحقق المعادلتين:

- $2-\sqrt{3}i$ •
- $2+\sqrt{3}i$

$$2+\sqrt{3}i$$
 •
$$\frac{1}{x}-y$$
 يساوي: $\frac{1}{y}-x$ يساوي x/y •

- -x/y

$$P = \frac{2}{12} = \frac{1}{6}$$
 | Let $P = \frac{2}{12} = \frac{1}{6}$

١١٨) لعب نادي 12 مباراة ودية ، فاز في 6 و خسر في 4 و تعادل في 2 ، بقى أمامه مباراة واحدة ، فما احتمال أن يتعادل فيها استناداً إلى نتائجه السابقة:

- 1/12 •
- 1/10
 - 1/5 •
 - **1/6** •

$$\Rightarrow \begin{vmatrix} k+1 & k-3 \\ 2 & k \end{vmatrix} = 0$$

$$\Rightarrow k(k+1) - 2(k-3) = 0$$

$$\Rightarrow k^2 - k - 6 = 0$$

$$\Rightarrow (k-3)(k+2) = 0$$

$$\Rightarrow k = 3 \text{ or } k = -2$$

$$\mathbf{k}_1 + k_2 = 3 - 2 = 1 \quad \Longrightarrow k = 1$$

(24)

$$(k+1)x + (k+3)y = 0$$

$$2x + ky = 0$$

- -2

هامش	الحل		السؤال
	5x+2y=36	36	۱۲۰)اشترى أحمد x من الدفاتر قيمة
	1	1	كل منها 5 ريالات ، و y من الأقلام
	5*4+2*8=36	20+16=36	قيمة كل منها ريالان ، فكان مجموع ما
	5*2+2*13=36	10+26=36	دفعه للبائع 36 ريال ، فإنه :
	5*5+2*1=36	25+1=36	 هذاك عدد غير منته من الحلول
	ورد في الاعلى	.: يوجد حلان غير الذي	• y = 8 · x = 4 هو الحل الوحيد .
			 يوجد حلان غير الذي ورد في الأعلى .
$(a+b)^n$	$=\binom{n}{r}a^{n-r}b^r$ نانون	من الة	 لا شيء مما ذكر ۱۲۱) ما الحد الثابت في مفكوك
	$1 = (x^2)^{9-r} \left(\frac{1}{r}\right)^r$ عندما قيمة $1 = (x^2)^{9-r} \left(\frac{1}{r}\right)^r$		$(x^2 + \frac{1}{x})^9$
	ربي عداله قيمه $\left(\frac{-}{x}\right)$ $(x) = 1$ الحد الاول هو المعكوس الضربي للأس	بعث ع اعد العب	$\begin{pmatrix} x & +- \\ x \end{pmatrix}$
(w) (w)	$r \Rightarrow 18 = 3r \Rightarrow 6 = r$		64 •
_ (9) الحد الثابت	$r \Rightarrow 18 = 3r \Rightarrow 6 = r$ $9!$ $6! (9 - 6)!$		74 • <mark>84 •</mark>
\longrightarrow $\binom{6}{-}$	6!(9-6)!		<mark>84 ●</mark>
$= \frac{9 \times 8 \times 7 \times 6}{(3 \times 2 \times 1) \times 6}$	$\frac{1}{6!} = 84$		94 •
	1		A(177
	$ DC ^{\frac{1}{3}} = DM \in$	من تعريف القطع المتوسطة -	,
$\Longrightarrow DC =$	= 3 <i>DM</i>		D
طابق الاضلاع ΔCDB	$\Rightarrow AB = 2 DC = 2[3 DM]$	1	M
	$\Rightarrow AB = 2 DC = 2[3 DM]$ $\Rightarrow AD = 6 DM $]	IVI
	$\Longrightarrow AB = 6 DM $		с н в
			المثلث ABC قائم الزاوية في C فإذا
			كانت M نقطة التقاء القطع المتوسطة
			AH , $ CD $ فإن طول $ AB $ هو
			2 DM •
			3 DM •
			5 DM •
			6 DM •
۱۸۰ درجة	ي الاحداثي نجد ان الدوران كان بزاوية	باستخدام الرسم على المستوع	١٢٣) إذا انتقلت النقطة (2,0) إلى
	-2		النقطة (2,0-) بدوران مركزه نقطة
			الأصل و أتجأهه مع عقارب الساعة ،
			فإن زاوية الدوران هي :
	(2,0)	(7.0)	90 • <mark>180 •</mark>
			<mark>180 ●</mark>
			270 •
	0.1		360 • 1۲۶ کان (۱۲۶ کان (۱۲۶ کان (۱۲۶
$\frac{1}{2}\log\frac{9}{4} = \log(6)$	$\left(\frac{1}{-1}\right)^{\frac{1}{2}}$		
	`4`		$\frac{1}{2}\log\left(\frac{9}{4}\right)$ فإن $b = \log 3$
$\Rightarrow \log \begin{vmatrix} 9 \\ - = \end{vmatrix}$	$\log \frac{3}{-} = \log 3 - \log 2$		_ (· /
$\sqrt{4}$	$\log \frac{3}{2} = \log 3 - \log 2$: تساو <i>ي</i> <u>b – a •</u> b / a •
	= b-a		b/a
			5 b
			$\frac{5}{6}\frac{b}{a}$ •
			$\frac{5}{6}(b-a)$ •
	,	OF)	6
		25)	_

هامش	الحل	السؤال
	$\lim_{x \to 1} \frac{x^4 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x^2 - 1)(x^2 + 1)}{x^2 - 1}$	$\lim_{x\to 1} \frac{x^4-1}{x^2-1}$ (140
		$x^2 - 1$
	$\lim_{x \to 1} \lim_{x \to 1} (x^2 + 1) = 1^2 + 1 = 2$	0 •
		1/2 •
		,
	المسافة باستخدام قانون المسافة بين نقطتين نجد ان	- <mark>2</mark> ۱۲۲) المسافة بين النقطتين (0,3) ،
	$D = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$) (4,0) بالوحدات :
	D - V 1 5 - V 25 5	3 •
		4 • <mark>5 •</mark> 7 •
		<mark>5 ●</mark>
		7 •
-		
	$\int \frac{\sin x}{(\cos x)^2} = \int \sin x \; (\cos x)^{-2}$	$\int \frac{\sin x}{\cos^2 x} dx () \forall \forall$
		$\int \cos^2 x$
	$-\sin x$ حيت ان الدالة $\cos x$ مشتقتها هي $\sin x$	$\frac{3\sin^2 x}{2\cos^2 x} + c \bullet$
		$\frac{1}{2\cos^2 x}$
	-2+1 - $(\cos x)^{-1}$	1 + c
	$= \frac{-\frac{-2+1}{-(\cos x)^{-1}}}{-1} + c$	$\frac{1}{\cos^3 x} + c \bullet$
	l l	$\frac{1}{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	$=\frac{1}{\cos x}+c$	$\cos x$
		$\ell n \cos x $ •
	اولا نستبعد اصفار المقام:	١٢٨) مجموعة حل المعادلة
	$X - 1 = 0 \rightarrow X = 1$: هي $\frac{x}{x^2-x}=\frac{1}{x-1}$
	$X^2 - X = 0 \rightarrow X(X - 1) = 0 \rightarrow X = 0 \text{ OR } X = 1$ $\{0, 1\} \text{ (if } X = 0) \text{ (if } X = 0) \text{ (if } X = 0)$	$x^2 - x x - 1$
	۱۰ ـــــر سي (۱ , ۱)	{0,1}
	ثانيا نحل المعادله:	{-1} ●
	$X^2 - X = X^2 - X$	{1} ●
	$X^2 - X^2 = X - X$ $X^2(1-1) = 0$	Φ •
	$X^{2}(0) = 0$	
	جميع الاعداد الحقيقيه ماعدا اصفار المقام لانها لاتنتني لمجال الداله	
	اي ان 1-غير مستبعد	١٢٩) للنظام التالي :
		x-y+z=4 للنظام الثاني :
		x - y + z = 4 $2x + y + z = 7$
		2x + y + z = 7 $-x - 2x + z = -1$
		-x - 2x + z = -1 إذا علمت أن
	$\therefore x = \frac{\Delta x}{x} \Rightarrow \Delta x = 3 \times 6$	
	X	$\begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \end{vmatrix} = 6$
		$\begin{vmatrix} 2 & 1 & 1 & 0 \\ -1 & -2 & 2 & 1 \end{vmatrix}$
		4
		-1 - 2 2
		تساو <i>ي</i>
		3/6 •
	(26)	6/3 •
	(20)	6×3 ◆
		6 •

هامش	الحل	السؤال
		١٣٠) ما معادلة المستقيم الذي يوازي
	$-2x + y = -4 \Rightarrow m_1 = \frac{-a}{b} = \frac{2}{1} = 2$	المستقيم $4-2x+y=-4$ ، و يمر
	ν 1	بالنقطة (5,3) :
	M_2 يو از \mathfrak{g} M_1	y = 2x - 7
	$M_2=2$	x 7
	$y - y_1 = m(x - x_1)$	$y = \frac{x}{2} - 7 \bullet$
	y-3=2(x-5)	$y = 2x + 13 \bullet$
	y = 2x - 7	x . 12
		$y = \frac{x}{2} + 13 \bullet$
	فراغ العينة = 36	١٣١)إذا ألقي حجر نرد مرتين مستقلتين
	مجموع العددين	، فما احتمال أن يكون مجموع العددين
	6+3,3+6	يساوي 9 :
	4+5 , 5+4	1/6 •
	<i>1</i> 1	1/4 •
	$\frac{4}{36} = \frac{1}{9}$	1/9 •
	30 9	1/18 •
	1 x x ² x ³	١٣٢) إذا كان المتوسط الحسابي
	$\frac{1+x+x^2+x^3}{4} = 10$	المعداد الطبيعية $1, x, x^2, x^3$ هو 10،
	$1 + x + x^2 + x^3 = 40$	
	$x + x^2 + x^3 = 39$	فما قيمة x :
	بالتجريب	1 •
	$1 + 1 + 1 = 3 \times$	2 • 3 • 4 •
	$2 + 4 + 8 = 14 \times$	4
	3 + 9 + 27 = 39	
	من القانون $(a+b)^n = \binom{n}{r}a^{n-r}b^r$	١٣٣) الحد الأوسط في مفكوك
	نبحث على الحد الاوسط (حيث ان n=4)	(2x + y)4
	r=0 r=1 r=2 r=3 r=4	$(2x+\frac{y}{2})^4$
	2	$12x^2y^2$ •
4) الحد الاوسط ————————————————————————————————————	$(2x)^{4-2} \left(\frac{y}{2}\right)^2 = \frac{4!}{2!(4-2)!} 2^2 x^2 \frac{y^2}{2^2}$	$6x^2y^2$
(2)	2	$12xy^3 \bullet$
	$= \frac{4 \times 3 \times 2!}{(2)! \times 2!} x^2 y^2 = 6x^2 y^2$	•
		$12x^3y$ •
	e ett 1 ce t de e .	- 1. : NI F : /\ /\ / /
	نستخدم تبادیل بدون تکرار والترتیب مهم	١٣٤) يقف 5 طلاب في دائرة ، و يلعبون لعبة تمرير الكرة ، فإذا مرر كل
	$^{5}p_{2} = 5 \times 4 = 20$	يتعبون تعبه تمرير الدره ، قادا مرر كل طالب الكرة لكل زميل من زملائِه مرة
	كل زميل مرر 4 تمريرات لزملائه	واحدة فما مجموع التمريرات:
	ت رمين مرر 4 مريرات مجموع عدد التمريرات	5 •
	5×4=20	4 •
		12 •
		<mark>20</mark> •
		$9 \times 3^3 + 2 \times 3^3$ المقدار (۱۳۵
	3 ³ (9+2) = 11×3 ³	يساوي :
	عامل مشترك	34 •
		10×3 ³ •
		11×3^3
		2×3^3 •
	(07)	
	(27)	

0.10	الحل	112 11
هامش	١٠٠٠	السؤال ١٣٦) مجموعة حل المعادلة
	$(x^2-1)(x^2+1)=0$	`
	$X^2-1=0$ or $X^2+1=0$: في R في x⁴ −1=0 (1} في
	$X^2=1$ or $x^2=-1$	{-1} •
	$X = \pm 1$	{-1} • {-1 , 1} •
		_
		\emptyset • $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ نابن (۱۳۷
	$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}$	$A = \begin{bmatrix} A & B \end{bmatrix}$
	$A^2 = A \times A = \begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix} \times \begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix}$	A^2
	$\begin{bmatrix} (1 \times 1) + (2 \times 4) & (1 \times 2) + (2 \times 8) \end{bmatrix}$	1-
	$= \begin{bmatrix} (1 \times 1) + (2 \times 4) & (1 \times 2) + (2 \times 8) \\ (4 \times 1) + (8 \times 4) & (4 \times 2) + (8 \times 8) \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \end{bmatrix}$
	_	1 4 19 64
	$= \begin{bmatrix} 9 & 18 \\ 36 & 64 \end{bmatrix}$	
	[36 64]	$\begin{bmatrix} 9 & 18 \\ 36 & 72 \end{bmatrix} \bullet$
		$\begin{bmatrix} 5 & 20 \end{bmatrix}$
		$\begin{vmatrix} 3 & 20 \\ 20 & 80 \end{vmatrix}$ •
		L
		$\begin{bmatrix} 1 & 5 \\ 4 & 9 \end{bmatrix}$ •
		[4 9]
	.42 .40.2 4 .2 .	.43
	$i^{43} = i^{40}i^3 = 1x \ i^3 = -i$	۱۳۸) قيمة العدد المركب 'i ⁴³
	ملاحظة:	-1 • 1 •
		1
	$i^1 = i$	i •
	$i^2 = -1$	
	$i^3 = i^2 x \ i = -i$	
		١٣٩) احتمال اصابة الهدف لنوع من
	p(A) = 0.8	الصواريخ تساوي0.8 ، و تم اطلاق
		صاروخین علی هدف معین .
	p(B) = 0.8	بفرض أن اصابة الصاروخ الأول
	$p(A) \cup p(B) = p(A) + p(B) - p(A) \cap p(B)$	مستقلة عن اصاية الصاروخ الثاني ' فما
	$=0.8+0.8-(0.8\times0.8)$	احتمال أن الهدف قد أصيب :
	=1.6-0.64	<mark>0.96 </mark>
	= 0.96	0.92 •
		0.8 •
	$x = 1.\overline{33}$	١٤٠) قيمة المقدار 1.33 هي :
	$10 \ x = 13.\overline{33}$	1/3 •
	$10 x - x = 13.\overline{33} - 1.\overline{33}$	4/3 •
	9 x = 12	5/3 •
		7/3 •
	$x = \frac{12}{9} = \frac{4}{3}$	
	, 3	
	/ 00 \	
	(28)	
L		

هامش	الحل	السؤال
	اولا: نوجد قيمة الحد الثابتر بالتعويض بقيم $x=2$, $y=3$ اولا: نوجد قيمة الحد الثابتر بالتعويض بقيم $\frac{3(2)-4}{(3)+15} = \frac{6-4}{18} = \frac{2}{18} = \frac{1}{9}$	اذا کان $\frac{3x-4}{y+15}$ عدداً ثابتاً ، و
	(3)+15 18 18 9	y=3 قيمة $x=2$ ، فإذا كانت
	ثانيا: لإيجاد قيمة x عندما y=12 نعوض في المعادلة التالية:	y=12 فما قيمة x عندما تكون
	$\frac{3x-4}{12+15} = \frac{1}{9} \implies \frac{3x-4}{27} = \frac{1}{9} \implies 3x = \frac{27}{9} + 4$	5/3 •
	12+15 9 27 9 9	7/3 •
	$\Rightarrow 3x = 3 + 4 \Rightarrow x = \frac{7}{3}$	8/3 •
	3	10/3 •
		$(1 + 7)^2 (1 + 7)^2$ يساوي :
	$(-\sqrt{4})^2 = (-1)^2(\sqrt{4})^2 = 2^2 = 4$	-4 • -2 •
		-2 •
		2 • 4 •
	نرتب البيانات ترتيب تصاعدي:	١٤٣) إذا علمت أن 7 هو وسيط البيانات
	1,2,3,3, <mark>7</mark> ,8,9,11,13	3,11,2,13, <i>x</i> ,1,3,8,9 ، فما هي قيمة
		$ \begin{array}{c} \vdots x \\ x = 3 \end{array} $
	⋫	x = 5 • $x = 6$ •
	الوسيط	x = 7
		<i>x</i> = 8 •
	بضرب 2- في المعادلة الثانية	النظام التالي هي χ في حل النظام التالي هي χ
	X + 2y = 13	x + 2y = 13
	-4x - 2y = -22	2x + y = 11
	-3x = -9	x=1 •
	$x = \frac{-9}{-3} = 3$	x=3
	-3	$ \begin{array}{ccc} x = -1 & \bullet \\ x = -3 & \bullet \end{array} $
	$F(k) = 0 \Longrightarrow k^2 + 3k + k = 0$	٥٤١) إذا كانت
	$k^2 + 4k = 0$	$k \neq 0 \text{of } f(x) = x^2 + 3x + k$
	k(k+4) = 0	و $f(k)=0$ ، فإن $f(k)=0$ تساوي :
	K=0 or k+4=0	k-4 • 4 •
	✔	<i>k</i> •
	$f(1) = x^2 + 3x - 4 = 1 + 3 - 4 = 0 = k$	$k \bullet 0 \bullet$
	• ` '	
	(29)	

_	
الحل هامش	السؤال
$1 \le x - 2 \le 7 = \begin{cases} x - 2 \le 7 \\ x - 2 \ge 1 \end{cases}$	١٤٦) إذا كان x عدداً حقيقياً ، فما
	$1 \le x-2 \le 7$ العبارة المكافئة للعبارة
عندما $ x-2 \leq x-2 $ فإن مجموعة الحل هي:	:
$\Rightarrow -7 \le x - 2 \le 7 \Rightarrow -5 \le x \le 9$	$-5 \le x \le 1$ أو $3 \le x \le 9$
عندما $ x-2 \ge x-2 $ فإن مجموعة الحل هي:	x=3 by $x=3$
$\Rightarrow x - 2 \ge 1 or x - 2 \le -1$ $\Rightarrow x \ge 3 or x \le 1$	1≤ <i>x</i> ≤3 •
-2 کے 3 -2 کے 3 کے 1	$-5 \le x \le 9$ •
و التي يمكن كتابتها على الشكل $x \le 9$ أو $5 \le x \le 7$	
	١٤٧) إذا أجرينا انسحاباً لمستقيم
X= +5	بمقدار 5 وحدات إلى اليمين $y=x-1$
Y+5 = x-1	، فما معادلة المستقيم الجديد:
Y= x-1-5	y = x - 5 •
Y=x-6	y = x + 5 •
	y = x - 6 •
	y = 5x - 1 •
	۱٤۸) بکم طریقة یمکن لمدیر مدرسة
الترتيب غير مهم ، نستخدم التوافيق	اختيار لجنة مكونة من 4 أعضاء من
/10\ 10! 10!	10 معلمین : •
$\binom{10}{4} = \frac{10!}{4!(10-4)!} = \frac{10!}{4!6!} = 210$	210 •
(1) 1:(10 1): 1:0:	1260 •
	5040 •
*الاختبار الأول :	,
$\frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3} = 76$	76% في ثلاثة اختبارات . ما أقل درجة يجب أن يحصل عليها في
3	ما أقل درجه يجب أن يخصل عليها في الاختبار الرابع فيكون تقديره B (علماً
$x_1 + x_2 + x_3 = 76 \times 3 = 228$	بأن التقدير B يعنى الحصول على
*الاختبار الثاني :	80% حد أدنى)
$\frac{x_1 + x_2 + x_3 + x_4}{4} = 80$	96% •
-	94% •
$x_1 + x_2 + x_3 + x_4 = 80 \times 4 = 320$	<mark>92% •</mark>
*الدرجة المطلوبة هي : %92=320-228	84% •
الترجه المصوبه هي . 70-42=220-20	
$\pi r^2 = 5(2\pi r)$ من المعطى نجد ان:	١٥٠) إذا كانت القيمة العددية لمساحة
$\Rightarrow \pi r^2 = 10\pi r$	دائرة 5 أضعاف القيمة العددية لمحيطها
πr بالقسمة على $r=10$	، فإن نصف قطر الدائرة يساوي :
$\longrightarrow I = 10$	5 •
	10 •
	15 • 20 •
	20 ●
(30)	I
(30)	
	_

هامش	الحل	السؤال
	عدد ثابت يخرج خارج اشارة التكامل a	a فإن $\int_0^3 ax \ dx = 9$ أذا كان (1
	$a \int_0^3 x dx = 9 \iff a \left[\frac{x^2}{2}\right]_0^3 = 9$	تساوي :
	$\frac{a}{2}(3^2 - 0) = 9 \iff \frac{9a}{2} = 9$	1 • 2 • 3 •
	2	2 •
	$a = 9 \div \frac{9}{2} = 9 \times \frac{2}{9} = 2$	3 •
		7 0
	1 -2 +3 -4 +5 -6++999-1000 +1011	۲)
	= (-1) + (-1) + (-1) ++(-1) + 1001	1 -2 +3 -4 +5998
	(2) (2) (2) (3)	+999 -1000 +1001 =
	= - 500 + 1001	
		-1001 •
	= 501	501 • 500 •
		-501
	$\frac{n}{7} = c + \frac{3}{7}$ معطی	۳) إذاكان باقي قسمة العدد n على 7
	$\frac{8n}{7} = 8(\frac{n}{7})$:	يساوي 3 ، فإن باقي قسمة العدد 8n
	,	على 7 يساوي : • 2
	$\therefore 8\left(\frac{n}{7}\right) = 8\left(c + \frac{3}{7}\right)$	2 • 3 • 4 •
	$=8c+\frac{24}{7}=8c+3+\frac{3}{7}$	
	1	5 •
	.'. الباقي 3	
	المقادل	au) أوجد قيمة $ au$ $ au$
	$sin heta=rac{ $ المقابل $ heta= heta$	
	وطول الوتر $= 8$ وطول الضلع المجاور للزاوية $\theta = 1$	3
	 ن يجب ان نوجد طول الضلع المقابل باستخدام نظرية فيثاغورس 	B
	$x^2=3^2-1^2$ حيث x هي الضلع المقابل	
	$\Rightarrow x^2 = 8 \xrightarrow{\text{l'o}} x^2 = 8 \xrightarrow{\text{l'o}} x = \sqrt{8} = 2\sqrt{2}$	1
	$\Longrightarrow \sin\theta = \frac{2\sqrt{2}}{3}$	
	22	
	$2\pi r = 44 \iff 2 \times \frac{22}{7} \times r = 44$	 اإذا علمت أن محيط الدائرة 44 ، فما المائرة (١٤) : (١
	$\Rightarrow r = \frac{44 \times 7}{22 \times 2} = 7$	$(\pi = \frac{22}{7})$ هي مساحة الدائرة (إذا كان
	32×2^{-7} مساحة الدائرة = 32×2^{-7}	:
	177 = 30000000000000000000000000000000000	
	7	I
	(21)	

۵ ۱۰	111	lle II
هامش	الحل العدد الممثل للنسبة 95% من a = 60	السؤال ٦) تقسم الدرجة الكلية في مادة
	العدد الممثل للنسبة 90% من 100 (المجموع الكلي)=(x+a)	# '
	و نحل المعادلة لنوجد قيمة X و نكون قد حسبنا القيمة المطلوبة	الرياضيات الى قسمين:
	$a = 60 \times \frac{95}{100} = 57$	60 درجة للأعمال الفصلية و 40 درجة
	100	للإختبار النهائي . اذا حصل احمد على
	$57 + x = 100 \times \frac{90}{100}$	95% في الاعمال الفصلية ، فما الدرجة
	$\iff x = 90 - 57 = 33$	التي يجب أن يحصل عليها في الاختبار
		النهائي لكي يحصل على معدل %90 في
		المقرر ؟
		31 •
		32 •
		33 •
		34 •
	٠/ ١٥٥ عدد الحزء عدد 420 عدد ١٥٥ عدد الحزء	٧) زرع مزارع 540 نخلة وأثمر منها
	$\%77 = 100 \times \frac{420}{540} = 100 \times \frac{100}{100}$ النسبة المئوية= الكل	420 نخله، فما نسبة الشجر المثمر ؟
	نأخذ أقرب قيمة لـ 77% و نعتبرها الاجابة	25% •
		50% ●
		<mark>75% ●</mark>
		100% •
	عدد عناء بالعدي	 ۸) رمیت قطعة نقدیة 4 مرات، ما
	$\frac{1}{2}$ = $\frac{2}{2}$ احتمال الحدث = $\frac{2}{2}$ عدد عناصر فضاء العينة	احتمال ان تظهر الصوره في 4مرات
	(ظهور صورة عند	معاً ؟
	رمي النقود مرة واحدة)	
	$\frac{1}{16} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ احتمال الحدث	
	طهور صورة في كل مرة	
	ر 1950 عند رمي النقود ٤ مرات)	
	كلمة خالد تتكون من ٤ احرف	٩) بكم طريقة يمكن كتابة أحرف كلمة
	عدد التراتيب المختلفة لها هي	ر خالد) ؟ (خالد) ؟
	$4! = 4 \times 3 \times 2 \times 1 = 24$	
	احتمال حدثین A و B معایساوی حاصل ضرب احتمال	
	الحدث الاول (P(A في احتمال الحدث الثاني (P(B	١٠)صندوق فيه 9 كرات ، إذا كان
	: السحب سيكون بدون احلال	4زرقاء و 5 حمراء ، سحبنا منها 2 معاً ، ما احتمال ان تكون كلها زرقاء
	 فراغ العينة للحدث B سيقل بواحد عن فراغ العينة الحدث A و كذلك عدد الكرات الزرقاء في الحدث B سيقل بواحد عدد 	ç.
	الكرات الزرقاء في الحدث A	$ \frac{1}{9} \bullet $ $ \frac{1}{6} \bullet $ $ \frac{4}{9} \bullet $ $ \frac{6}{9} \bullet $
	, D(4 6 D) - D(4) D(D)	9 1
	$\Longrightarrow P(A \cap B) = P(A) \cdot P(B)$	<mark>-6</mark> •
	$=\frac{4}{9}\times\frac{3}{8}=\frac{1}{6}$	$\frac{4}{9}$ •
		6
		9
	(22)	
	(32)	

هامش	الحل	السؤال
		١١)إذا كان المتوسط الحسابي للعددين
	$\frac{3-2x+2x+7}{2} = y$ llarecuju lla	(2x+7) ، (2x+7) يساوي y فإن
	$\xrightarrow{\text{بالتسيط}} y = \frac{3+7}{2} = 5$	5y يساو <i>ي</i> :
	$\Longrightarrow 5y = 25$	30 •
		<mark>25</mark> • 20 •
		15 •
	$\left[\frac{f}{-1}\right](x) = \frac{\sqrt{x+1}}{1} = (1+x)\sqrt{x+1}$	$f(x) = \sqrt{x+1}$ اِذَا کان (۱۲)
	$\left[\frac{f}{g}\right](x) = \frac{\sqrt{x+1}}{\frac{1}{1+x}} = (1+x)\sqrt{x+1}$	$\left[\frac{f}{g}\right]$ (3) فإن $g(x) = \frac{1}{x+1}$
		نساوي :
	$\left[\frac{f}{g}\right](3) = (1+3)\sqrt{3+1} = 4\sqrt{4} = 4 \times 2 = 8$	$\frac{1}{2}$ • 1 •
	191	
		2 • 8 •
		<mark>8 •</mark>
		$:A^2$ فإن A^2 : A^2 الإذا كان A^2
	. r1 21 r1 21	$\begin{bmatrix} A^{-} & A^$
	$A^2 = A. A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} . \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$	
	$= \begin{bmatrix} (1 \times 1) + (2 \times 2) & (1 \times 2) + (2 \times 4) \\ (2 \times 1) + (4 \times 2) & (2 \times 2) + (4 \times 4) \end{bmatrix}$	
	$= \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$	
	110 203	
	: مجموع أي ضلعين في المثلث أكبر من طول الضلع الثالث	١٤)أي الاعداد التاليه لا تمثل اضلاع
	و لنسهل البحث عن الاجابة نكتفي بجمع أصغر العددين ونقارن	، " . مثلث :
	المجموع بالعدد الثالث	1,2,3 •
	9<8+7 7<6+5 5<4+3 3=2+1	
	لا يمثل عثلث يمثل مثلث يمثل مثلث المثلث المث	3,4,5 •
	مثاث × × × ✓	5,6,7 •
		7,8,9 •
<u> </u>		: تساوي $\ln rac{e^a}{e^b}$ (۱۰
		ا السوي . $\frac{111}{e^b}$ (۱۵
		In (a-b) •
		a-b •
	$\Longrightarrow \ln \frac{e^a}{\rho^b} = \ln e^{a-b} = a - b$	
	e ^s	
	(22)	
	(33)	

هامش	الحل	السؤال
	ن العدد فردي	۱٦) بكم طريقة يمكن كتابة عدد فردي
	· الله الأحاد يجب ان يحتلها عدد فردي بينما منزلة العشرات	مكون من خانتين من الأرقام
	يمكن أن يحتلها أي عدد	§ {1,2,3,4,5,6}
	وُ عَلَى ذَلَكَ فَإِن عَدُ الطرق التي يمكن كتابة عدد فردي مكون	
	من خانتين من الارقام [1,2,3,4,5,6]	
	3 x 6 طريقة أ	
	لأن الاساس واحد نجمع الاسس في حالة الضرب	x فإن $e^{-5x}e^{x}=e^{2}$ (۱۷
	$e^{-5x}.e^x=e^2$	تساوي:
	$e^{-5x+x}=e^2$	2 •
	\Longrightarrow $-5x + x = 2 \Longrightarrow$ $-4x = 2$	-2 •
	$\implies \chi = \frac{2}{-4} = \frac{-1}{2}$	<u>1</u> •
	-4 2	2 - 1
		2
	مساحة الشكل المعطى : (x+10) . (x+5)	X 10 (\\
	$=x^2+15x+50$	x
		5 50
	وهي معادلة من الدرجة الثانية]
		te at testi
		الشكل السابق يمثل:
		 العلاقه بين المربع والمستطيل معادلة من الدرجة الثانية
		 معادلة من الدرجة الثانية معادلة من الدرجة الأولى
		• مساحة المربع
	من خواص التكامل	
	,	$\int_{1}^{6} f(x)dx = 2$ إذا كان (۱۹
	$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$	ن ، $\int_3^6 f(x)dx = 5$
	J_a J_b	: يساوي $\int_1^3 2f(x)$
	$=2\int_{1}^{3} f(x) \cdot \int_{1}^{3} 2f(x)$	
	1	
	$= 2 \left(\int_{1}^{6} f(x) dx - \int_{3}^{6} f(x) dx \right)$	
	= 2 (2-5) = 2 (-3) = -6	
	مساحة الحز ۽ المظال	
	 احتمال ان تقع نقطة في الجزء المظلل = مساحة الجزء المظلل مساحة المربع الخارجي 	(۲.
	·· أي رأس من رؤوس المربع الداخلي يقسم ضلَّع المربع ·	, and the second
	الخارجي بنسبة 1: 1	
	ن باستخدام نظرية فيثاغورس يمكن لنا ايجاد طول ضلع المربع	
	الداخلي و من ثم ايجاد مساحته	رسم مربع داخل المربع الكبير بحيث
	بفرض ان ضلع المربع الخارجي= x	تكون رؤوسه في منتصف اضلاع
	$\Longrightarrow \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2 = 2\frac{x^2}{4}$	المربع الكبير ، اذا وضعنا نقطه
	-	عشوائيه فما احتمال ان تكون في الجزء المظلل:
	بأخذ الجنر الموجب الداخلي $= \frac{1}{\sqrt{2}} x$	الجرء المطلق <u>.</u> • 0.25
	V 2	0.25
	مساحة المربع الداخلي = $\frac{x^2}{2}$	0.125
	مساحة المنطقة المظللة =	0.75
	مساحة المربع الخارجي — مساحة المربع الداخلي	0.73
	$\frac{x^2}{3} = \frac{x^2}{3} - x^2 = \frac{x^2}{3}$	
	2 2	
	$\frac{1}{2} = \frac{\frac{x^2}{2}}{x^2}$: احتمال ان تقع نقطة في الجزء المظلل = .:	
	$2 \qquad x^2 \qquad \qquad 2 \qquad \qquad 2 \qquad \qquad 2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
	(2 4)	
	(34)	

السؤال الحل هامش

:. معادلة الدائرة التي مركزها (h ، k) هي

$$(x-h)^2 + (y-k)^2 = r^2$$

ومن الرسم h=3 و k=4

$$\Rightarrow (x-3)^2 + (y-4)^2 = 1$$

معادلة الدائرة هي :

$$x^2 + y^2 - 3x - 4y = 1 \bullet$$

$$x^2 + y^2 + 3x - 4y = 1$$

$$(x+3)^2 + (y+4)^2 = 1$$

$$(x-3)^2 + (y-4)^2 = 1$$

من الرسم واضح ان الحل هومعادلة من الدرجة الاولى حيث أنها تمثل هندسيا بخط مستقيم .

مه على المعادلة نعوض في التالى:

$$y - y_1 = m(x - x_1)$$

$$(x_1, y_1) = (0, 2)$$
 $(x_2, y_2) = (-2, 0)$

نقطتان تقعان على الخط المستقيم

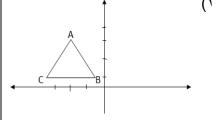
الرسم يمثل المعادلة:

$$y = x + 2 \bullet$$

$$y = -x + 2$$
 •

$$y = x^2 + 2$$
 •

$$y = x - 2 \bullet$$


بشكل عام : صورة (x,y) بالانعكاس حول محور السينات هي(x,-y)

 \implies y - 2 = 1(x - o) \implies y - 2 = x

 \Rightarrow y = x + 2

$$A=(-2,3)$$
 و حيث ان النقطة $A=(-2,3)$ انعكاس $A=(-2,-3)$

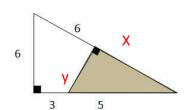
 $m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - 0}{0 - (-2)} = \frac{2}{2} = 1$

انعكاس النقطة A حول محور السينات:

- (2,3)
- (-2,3)
- (2,-3)
- (-2.-3)

ضعف عدد الاضلاع = مجموع رُتب الرؤوس $5 \times 8 = 20 \times 2$ 40 = 40

عدد الرؤوس 8


٤٢)مضلع يتكون من 20 ضلع و رتبة أحد رؤوسه 5 ، فكم رأس له ؟

- 4 •
- **5** •
- 6 •
- <mark>3</mark> ●

(35)

السؤال الحل هامش

٢٥) أوجد مساحة المنطقة المظلله:

لايجاد المساحة المظللة يجب ان نوجد اطوال اضلاع المثلث القائم الداخلي و نرمز للضلع الواقع على وتر المثلث الخارجي بـ x و الضلع الأخر بـ y بـ x و الضلع الأخر بـ y لإيجاد طول x نوجد طول وتر المثلث الخارجي باستخدام نظرية فيثاغورس

$$\Rightarrow (AB)^2 = (BC)^2 + (AC)^2$$
$$= 36 + 64 = 100$$

$$X = 10 - 6 = 4$$
و لإيجاد طول y نطبق نظرية فيثاغورس للمثلث الداخلي

$$\Rightarrow y^2 = 5^2 - 4^2$$
 $\Rightarrow y^2 = 5^2 - 4^2$ $\Rightarrow y^2 = 5^2 - 4^2$ $\Rightarrow y^2 = 5^2 - 4^2$ مساحة المثلث الداخلي $= \frac{1}{2} \times 3 \times 4 = 6$

$$f(x) = \frac{7}{2} x^{\frac{5}{3}}$$

$$\therefore f`(x) = \frac{7}{2} \cdot \frac{5}{3} x^{\frac{5}{3} - 1}$$
$$= \frac{35}{6} x^{\frac{2}{3}}$$

اوجد
$$f(x) = \frac{7}{2}\sqrt[3]{x^5}$$
 أوجد (۲۲

$$\frac{f'(x)}{\frac{21}{10\sqrt{5}}} \bullet$$

$$\frac{35x^{45}}{10} \quad \bullet$$

$$\frac{35}{6x^{\frac{2}{3}}} \quad \bullet$$

$$6x^{3}$$

$$\frac{35x^{\frac{2}{3}}}{6}$$

ترتيب اسبقية العمليات الحسابية بالطريقة التاليه:

من اليسار الى اليمين

١. العمليات داخل الاقواس

٢. الضرب والقسمه

٣. الجمع والطرح

(۲۷

$$4+8\div2\times4=$$

= 4 + 16 = 20 التربيع يلغي الجذر :

$$\sqrt{(x+1)^2} = x+1$$

$$\sqrt{(x-1)^2} = x - 1$$

$$\sqrt{x^2} + 1 = x + 1$$

/ x) إذا كان 0<x فإن العددين

 $\sqrt{(x+1)^2}$) : المتساويين في المجموعة

$$(\sqrt{x^2} + 1, \sqrt{x^2 + 1}, \sqrt{(x - 1)^2},$$

$$\sqrt{x^2+1}$$
 , $\sqrt{x^2}+1$ •

$$\sqrt{(x-1)^2}$$
, $\sqrt{x^2}+1$

$$\sqrt{(x+1)^2}$$
 , $\sqrt{x^2+1}$ •

$$\sqrt{(x-1)^2}$$
 , $\sqrt{(x+1)^2}$ •

(36)

هامش	الحل	السؤال
	$(7+i)(7-i) = 49 - 7i + 7i - i^{2}$ $= 49 + 1 = 50$	$(7+i)(7-i) = \tag{Y9}$
	$i^2 = -1$ ملاحظه	
	زاویتان متحالفتان مجموع قیاسهما °180 $70+5x=180$ $5x=110 \rightarrow x=22$ بما ان لدینا زاویتان متناظرتان ، ینتج لنا زاویتان متجاورتان	۲۰) قیمة x + y قیمة (۳۰)
	3x + 2y = 180 3x + 2y = 180 66 + 2y = 180 2y = 114 $y = 57^{\circ}$ $\therefore x + y = 22 + 57 = 79$	3 x 5 x 5 x
	= f(g(x))fog(x)	$g(x) = f(x) = \tan x$ إذا كان (٣١)
	$= f(\sqrt{x}) = \tan \sqrt{x}$: يساوي $fog(x)$ فإن
		$ \sqrt{\tan x} \bullet \\ x \tan x \bullet \\ \tan \sqrt{x} \bullet $
	نصف قطر الدائرة = المسافة بين النقطه ومركز الدائرة = $\sqrt{(3-0)^2 + (0-4)^2}$ = $\sqrt{25} = 5 = \sqrt{9+16}$	٣٢) اذا كانت النقطة (0,4) تقع على محيط الدائرة ومركز الدائرة (3,0) ، فان نصف قطر الدائرة :
	المتتابعه الهندسية بالصورة $a_n=a_1 r^{n-1}$	٣٣) اذا كان الحد الثاني من متتابعة هندسية يساوي 6- وحدها الخامس 162 فأن الحد العام لهذه المتتابعه
	$\frac{a_5}{a_2} = \frac{a_1 r^{5-1}}{a_1 r^{2-1}}$ $\frac{162}{-6} = \frac{a_1 r^4}{a_1 r} \to -27 = r^3 \to -3 = r$ $ a_1 = \frac{a_1 r^4}{a_1 r^2} \to -27 = r^3 \to -3 = r$	يساوي : $a_{n} = 2(-3)^{n-1} \bullet$ $a_{n} = 2(3)^{n-1} \bullet$ $a_{n} = 3(-2)^{n-1} \bullet$ $a_{n} = 3(2)^{n-1} \bullet$
	$a_n = 2(-3)^{n-1}$ $i \times -1 \times 1 \times \sqrt{-1 \times 3 \times 2} \times \sqrt{2}$ $= \frac{-i \times \sqrt{-1} \times \sqrt{3} \times \sqrt{2} \times \sqrt{2}}{\sqrt{3}}$ $= -i \times i \times 2$ $= -i^2 \times 2 = -(-1) \times 2 = 2$	$ \frac{(\sqrt{-1})(\sqrt{-1})^2(\sqrt{(-1)^2})(\sqrt{-6})(\sqrt{2})}{\sqrt{3}} $ $ \frac{2}{-2} \bullet $ $2i \bullet $ $-2i \bullet $
		1

هامش	الحل	السؤال
	$= \frac{\frac{2}{4} + \frac{1}{4}}{\frac{1}{8}} = \frac{\frac{3}{4}}{\frac{1}{8}} = \frac{3}{4} \div \frac{1}{8}$ $= \frac{3}{4} \times \frac{8}{1} = 6$	$=\frac{\frac{1}{2} + \frac{1}{4}}{\frac{1}{8}}$
	مساحة الأسطوانة = مساحة القاعدة x x x x x x x الارتفاع مساحة الأسطوانة الكبيرة : $54\Pi = 54\Pi$ مساحة الأسطوانة الصغيرة : $2\pi = 2\pi$ نحتاج إلى : $2\pi = 2\pi$	٣٦) كم إسطوانة صغيره نحتاج لتمتلئ الأسطوانة الكبيره:
	(n-1)! = (7-1)!=6!	٣٧)بكم طريقة يستطيع 7 اشخاص الجلوس على طاولة دائرية :
	$4x + 1 = 2x + 2$ $4x - 2x = 2 - 1$ $2x = 1$ $x = \frac{1}{2}$	به المعادلة: $\sqrt{4x+1} = \sqrt{2x+2}$ $= \sqrt{2x+2}$ $= \frac{1}{2}$ $= \frac{1}{4}$ $= \frac{1}{4}$
	الزاوية المركزية = ضعف الزاوية المحيطية $x=2\times 35=70^\circ$	۳۹)أوجد قياس X : 35 X
	(38)	

هامش	الحل	السؤ ال
	$0 \ge 0$ لابد ماتحت الجذر يكون	مجال الداله $f(x) = \sqrt{x-4}$ هو عند الداله
$x-4 \ge 0$		[4,∞) •
$x \geq 4$	$x \in [4, \infty)$	[-4,4] •
	$x \in [4,\infty)$	(−∞ ,4] •
$y = \sqrt{x} - x + 1$./2	• (∞, 4–] ۱٤)إذا كانت
$y - \sqrt{x} - x + 1$ $= -x + 1$	− √ <i>x</i>	$y = (\sqrt{x} + 1)(1 - \sqrt{x})$
y' = -1		y − (√x + 1)(1 − √x) فإن 'y تساوي :
		<mark>-1 •</mark> 1 •
		$\left(\frac{1}{2\sqrt{x}}+1\right)\left(1-\frac{1}{2\sqrt{x}}\right)$ •
	تكون الدالة f متصلة	$\left(\frac{1}{2\sqrt{x}}+1\right)+\left(1-\frac{1}{2\sqrt{x}}\right)$ • $f(x)=$ اذا کانت $f(x)=$
	$\lim_{x \to -1} f(x) = f(-1)$	$\begin{pmatrix} x^2 - 1 & y \neq -1 \end{pmatrix}$
		$\int_{1}^{\infty} \frac{x^2-1}{x+1} , x \neq -1$
	$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \frac{2x}{1}$	a, x = -1
	$\lim_{x\to -1} 2x = 2(-1) = -2$	ماهي قيمة a التي تجعل الداله f متصله :
	$\therefore f(-1) = -2$	-1 • 2 •
	•	1 •
		1 • -2 •
	إذا كانت معادلة الدائرة	
	$x^{2} + y^{2} + ax + bx + c = 0$	x^2) مركز الدائرة التي معادلتها x^2
	$\left(\frac{-a}{2}, \frac{-b}{2}\right)$ فإن مركز الدائرة	$y^2 + 4x - 6y - 23 = 0$
	:c. 11	(-2,3) ●
	المركز (4 6 ـ)	(2,-3) •
	$=\left(\frac{-4}{2},\frac{6}{2}\right)$	(3,-2) • (-3,2) •
	=(-2,3)	(
	(7- /	
$\frac{X}{4} = 12 \rightarrow X = 4$	8	٤٤) اذا كان متوسط درجات اربع طلاب
		يساوي 12 ، اذا حذفنا اعلى درجة يصبح المتوسط 11 فما قيمة اعلى
$\frac{10^{-1}}{3} =$	$11 \rightarrow 48 - Y = 33$	يصبح المتوسط ۱۱ قما قيمه اعلى درجه ؟
Y =	=48-33=15	
ي تعطيني القطر (صفر)	هي القيم التو	٤٥) قيم x التي تجعل محدد المصفوفه
	\	$\begin{bmatrix} x & 5 & 7 \\ 0 & 1+x & 6 \\ 0 & 0 & \frac{2x-1}{a} \end{bmatrix}$ يساوي صفر أ
$ \begin{array}{ccc} \bullet & 1+x=0 \\ \bullet & \frac{2x-1}{3}=0 \end{array} $		$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & \frac{2x-1}{2x-1} \end{bmatrix}$
	$\Rightarrow 2x - 1 = 0$ $\Rightarrow 2x = 1$	L 3 J
	$\Rightarrow 2x - 1$ $\Rightarrow x = \frac{1}{2}$	•
	2	$0, 1, \frac{1}{2} \bullet$
		$0, -1, \frac{-1}{2} \bullet$
		$0, -1, \frac{1}{2} \bullet$
		$0, 1, \frac{-1}{2}$ •
		0,1,2
	(39)	
	(••)	

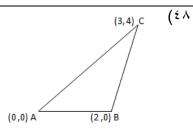
هامش		الحل	
		ي مربع المقام :	نضرب الطرفين في
	$(x^2 + 2x - 3)^2 \times {x^2 + }$	$\frac{2}{-2x-3} < 0 \times (x^2 +$	$+2x-3)^2$
	$2(x^2 + 2x - 3) < 0$		
	2(x-1)(x+3) < x = 1 or x = -3		
	-3 + مع	1 - ضد	+ مع
	χ^2 إشارة	χ^2 إشارة	χ^2 إشارة

٤٦) أوجد مجموعة حل المتباينه

السؤ ال

$$\frac{2}{x^2 + 2x - 3} < 0$$

نختار الفتره السالبه لانه أقل من صفر مجموعة الحل (1, 3-)


p	q	~p	~q	~p ∧ ~q	$p \lor (\sim p \land \sim q)$
T	Τ	F	F	F	T
Т	F	F	Τ	F	T
F	Τ	Τ	F	F	F
F	F	Τ	Τ	T	T

$\sim p \rightarrow \sim q$	
T	l
T	
F	
Т	ı

$p \lor (\sim p \land \cdot$	~q))(٤Y
------------------------------	---------

- صائبة دائما
- $\sim p \rightarrow \sim q$
 - مكافئ
- البعد بين التقطتين

$$\overline{AC} = \sqrt{(3-0)^2 + (4-0)^2}$$

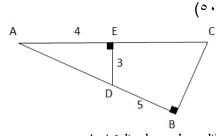
= $\sqrt{9+16} = \sqrt{25} = 5$

 $\frac{1}{2}$ يساوي : في الشكل أعلاه، طول

$$\lim_{x \to \infty} \frac{x^4 + 3}{x^3 - 2}$$
 اوجد قيمة أوجد

نلاحظ ان درجة البسط اكبر من درجة المقام

$$= \infty \lim_{X \to \infty} \frac{x^4 + 3}{x^3 - 2}$$


المثلثان متناسبان: لان قياس زاويتان من المثلث الاول تساوي قياس زاويتان من المثلث الاخر

$$\overline{AD} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$\frac{\overline{AE}}{\overline{AB}} = \frac{\overline{ED}}{\overline{BC}}$$

$$\frac{4}{10} = \frac{3}{\overline{BC}}$$

$$\overline{BC} = \frac{30}{4} = 7.5$$

(الرسم ليس على المقياس) أوجد طول <u>BC</u>:

هامش	السؤال الحل
	١٥)أي من الأتي لا يعد من عناصر المعرفه الرياضيه:
	 المفاهيم
	• التعاميم
	• العمليات
	• المهارات
	٢٥) تحديد الاستير اتيجية المناسبة للحل تقع في اي مرحله عند العالم بوليا:
	• فهم المسأله
	 وضع الخطة
	• تنفيذ الخطة
	• التحقق من الحل
	٥٣) اذا نجح سعد في اختباراته فسيسافر مع زملائه ، إذا سافر مع زملائه فسيذهب الى ابها ، هذه العباره توافق العباره الشرطية :
	• اذا سافر سعد ، فإنه نجح في اختبار اته
	• اذا ذهب سعد الى ابها ، فسيذهب مع زملائه
	 اذا نجح سعد في اختبار اته ، فسيذهب الى ابها
	 اذا ذهب سعد الى ابها ، فإنه نجح في اختباراته
	٥٤) عدد أرجل الخراف والطيور معاً هي 64، فكم خروف وكم طائر ؟ الاستراتيجية التي تستخدم لحل هذه
	المسألة هي :
	• الرسم
	 التخمين والتحقق
	• النمط
	 الاستنتاج الرياضي
	٥٥)أي مما يلي لايعد من طرق البرهان الرياضي :
	• الاستدلال الرياضي
	• الاستقراء الرياضي المستقراء الرياضي المستقراء الرياضي المسلم ا
	• المثال المضاد - :: الناب
	 نقض الفرض ٥٦) اذا قام المعلم بإعطاء طلابه عدداً من المثلثات ، وطلب منهم قیاس زوایاها،
	نه القياسات لكل مثلت ، وبعد ذلك اخبر هم ان "مجموع زوايا المثلث
	ب ع الله المعلم على الله الله الله الله على الله الله الله الله الله الله الله ال
	• التركيبية
	• التحليلية
	 و الاستقرائيه
	 الاستنتاجية
	٥٧) الخطوة الأولى في حل المسألة عن جورج بوليا:
	• الحل
	• الفهم مالية على المالية على المال
	• التحقق
	• التخطيط
	 ٥٨)قدرة الطالب على شرح مفهوم بإسلوبه الخاص يعتبر من أساليب : الاستنتاج الرياضي
	● الاستناج الرياضي ● الترابط الرياضي
	• الترابط الرياضي • التمثيل الرياضي
	التواصل الرياضي المرياضي المر
	التواقعين الرياطني

استثنائي 1438

AND REAL PROPERTY.	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	WHITE EVER AND STATE OF THE STATE OF	NAME OF TAXABLE PARTY.
	ایات ریــــــــــــــــــــــــــــــــــــ	45 14	-
Real Real Property lives	THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN		The second second

The state of the s	
الإجــابة	السفال
$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{n}$ $\left(\frac{3}{4}\right)^{2} \times \sqrt{\frac{4}{4}} = 9 \times \frac{2}{3} = 6$	$\left(\frac{1}{3}\right)^2 \left(\frac{4}{9}\right)^{\frac{1}{2}} = (1)$
ا : المحور المغرج بين برطو ويقام واحد رونتالية غاى صاحبه المبط و المعكم الدنس هو الذكت على الدنس على حدى المعلم نظام بين على المدى على حدى المعلم نظام بين على المدى المعلم المع	يهما اكــــبر (2) أيهما أكـــبر $\frac{10}{11}$, $\frac{9}{10}$, $\frac{8}{9}$, $\frac{7}{8}$
$\frac{-1}{x} = \frac{1}{4} = \frac{1}{x} = \frac{1}{2}$ $\frac{1}{x} = \frac{1}{4} = \frac{1}{x} = \frac{1}{2}$ $\frac{1}{x} = \frac{1}{4} = \frac{1}{x} = \frac{1}{2}$ $\frac{1}{x} = \frac{1}{4} = \frac{1}{2}$	(3) رجل طوله 2 m وطول ظله 1 m وطول ظله 4 m وطال الجاء الم 4 m في المجاد الم 4 m في المجاد الم 4 m في المجاد الم 4 سول المجاد الم 1 في المجاد المجاد الم 1 في المجاد الم 1 في المجاد المجاد الم 1 في المجاد المجاد المجاد الم 1 في المجاد المجاد المجاد المجاد المجاد المجاد المجاد المجاد الم 1 في المجاد ا
ملافظة: إذا وُجِد كر معامه وعدة مخطية يجب المتفلف منز عضلية يجب المتفلف منز - 2 - 1 	$\frac{2i-i}{i} = (4)$ $\begin{array}{c} 1 & * \\ -1 & * \\ 0 & * \\ 2 & * \end{array}$
ملافات: عن مثل عنده لا ستله عزجد داخماً اکلها عنی استثرله الدّ عبغر عاخماً اکلها عنی استثرله الدّ عبغر عاضماً عنی استثرله الدّ عبغر عاضماً المحلفا عنی استثرله الدّ عبغر عاضماً المحلفا عنی استثرله الدّ عبغر عاضماً المحلفا عنی استثرله الدّ عبغر عاضماً عنی استثرله الدّ عبغر عاضماً عنی استثرله الدّ عبغر عاضماً عنی استثرله الدّ عبغر عاضماً عنی استثرله الدّ عبد المحلفا عنی استثرله الدّ عبد المحلفا الدّ عبد المحلفا	9 , 4 , 3 العدد الذي يقبل القسمة على 5 , 4 , 9

اعداد الأستاذ / سلطان البشرى العماد الأستاذ / سلطان البشرى العماد الأستاذ / سلطان البشرى

Physical Company of the Company	The state of the s	STREET, STREET		TO STATE OF THE
		. 94.4	بار که	924
			ـــــــار دهــــــــــــــــــــــــــــــــــــ	
ALCOHOLD SHAPE TO SHAPE THE RESIDENCE OF THE PARTY OF THE		THE RESIDENCE OF THE PARTY OF T	CONTRACTOR OF THE PARTY OF THE	

ایات ریـــافـــیات	احد بار که
الإجـــابة	الســـفال
24 0-1 sept el sin beció i: \[\frac{24}{24}(1+\frac{2}{5}) = \frac{(16)(5)}{(16)(5)} = 415 \]	$\sqrt{2^4 + 2^6} = (6)$
$\frac{(xy-1)(xy-1)}{(xy-1)(xy-1)} = \frac{xy+1}{xy-1}$	$\frac{x^2 y^2 - 1}{(x y - 1)^2} = \tag{7}$
عشر تا بلغت الدنع المن (المن المن المن المن المن المن المن المن	$\begin{bmatrix} -2 & 6 \ a & 4 \end{bmatrix}$ قيسمة $\begin{bmatrix} 1 & 2 & 6 \ a & 4 \end{bmatrix}$ $= \frac{4}{3}$ $= \frac{4}{3}$ $= \frac{4}{3}$ $= \frac{1}{2}$ $= \frac{4}{3}$ $= \frac{4}{3}$ $= \frac{1}{2}$ $= \frac{4}{3}$ $= \frac{4}{3}$ $= \frac{4}{3}$
المتعال هو الفيحة الله كثر تكراراً ن المتعال = 2	(9) أوجد المنوال للقيم 8,2,3,7,2,2
الرقب أرلاً الما رضائدي أوتنا زلياً 3x ، 2x+2 ، x عد العَسِم رُوعِي خي صَمِ لِلتَوْمِي عد العَسِم رُوعِي خي صَم لِلتَوْمِي ولعت مع على 2 2x+2+2x+3 = 2x+5	x > 2 أوجد الوسيط للأعداد إذا كان (10) 10 أوجد $(2x + 3, 3x, x, 2x + 2)$

اعداد الأستاذ / سلطان البشرى ۲Scanned by CamScanner

.,		MANUFACTURE STANCE	CONTRACTOR Y
اضـــيات	ایات ریــــــــــــــــــــــــــــــــــــ	- is de	741
PROBLEM SERVICE AND AN ARRANGE AND ARRANGE	A CONTRACTOR OF THE PARTY OF TH		-

ایات ریــــان اطــــیات	اخت بار کف
الإجابة	الســــــــــــــــــــــــــــــــــــ
ع اقدا كانت العَبِم مَتَا بِعِهِ عَامِلِيَةُ عِ النبي الله البرسية = 16+11 = 2 = 13.5	: الم <mark>توسط الحسابي للأعداد :</mark> 11) المتوسط الحسابي للأعداد : 11 , 12 , 13 , 14 , 15 , 16
ع در (الله عنه عنه عنه عنه عنه الله الله عنه ا	: اعتبرال دالة (12) $f(x) = \sqrt{\frac{1}{4}x + 1}$ $g(x) = 4x^2 + 3$ $go f(x)$
$ X \leq a \iff -a \leq x \leq a$ $-1 \leq 2x - 3 \leq 1$ $2 \leq 2x \leq 4$ $1 \leq x \leq 2$ $-x \in [1/2]$	(13) حسل المتسباينة التساليسة : 2 x - 3 € 1
$x = 0$ are simple the entry $x = 0$ $e^{0} - 1 = \frac{1 - 1}{1} = \frac{0}{1} = 0$ $x \to 0$	$\lim_{X \to 0} \frac{e^X - 1}{1} \tag{14}$
اربعد ا مد سر المعرف الله الله الله الله الله الله الله الل	$\lim_{X \to 1} \frac{x^2 + x - 2}{x - 1} \tag{15}$

إعداد الأستاذ / سلطان البشرى

Scanned by CamScanner

اختر بار کف ایات ریات

×-2=0 → ¥=2	غرجد حغز اكعقام
-∞	2∞
-x+2	x-2 2
x-2.	x-2 12
-1	1
سرا + بسرته بن	اء کسنے ا۔ سرکے ا۔
: لايع مد لا كي	س ,لسرى = ١-

$$\lim_{X \to 2} \frac{|x-2|}{x-2} \tag{16}$$

0	
ع ىنظرمنى	ا فند کلمبر اکترب
x4 +1 = 2x	(===)
x -2x+1=	طار فعط ()
$x^{2}-1)(x^{2}-1)$	= 0

$$(x^{2}-1)(x^{2}-1)=0$$

$$(x^{2}-1)^{2}=0 \Rightarrow x^{2}-1=0$$

$$\Rightarrow x^{2}=1 \Rightarrow x=\pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\forall x = 1 \Rightarrow x = \pm 1$$

$$\sqrt{x^4 + 1} = \sqrt{2x}$$

$$1 \div$$

$$-1 \div$$

$$\pm 1 \div$$

$$\pm 1 \div$$

$$\pm 1 \div$$

$$\int (x-1) dx$$

$$\Rightarrow \frac{(x-1)^3}{3} + C$$

$$\int (x-1)^2 dx = (18)$$

$$\frac{1}{x-2} + C *$$

$$2(x-2)^3 + C *$$

$$\frac{(x-2)^3}{3} + C *$$

$$x^2 - x + C *$$

إذا كانت العبارة الشرطية
$$A \longrightarrow A$$
 فان $A \longrightarrow A$ خان $A \longrightarrow B$ *

 $A \longrightarrow B$ *

TO COMPANY OF THE PARTY OF THE PARTY.	Control of the Contro	The state of the s	Contract of the last of the la
	ایات ریـــــــ		
	() (a) ()	45 14	15
HISTORY OF THE STATE OF THE STA	Committee of the Commit	THE RESERVE TO SERVE THE PARTY OF THE PARTY	SOME YEAR OF

14
هذا السدّ ال يعتمد على ضع B.A
معنالب عمعطاة فإذا عائنة
A = B كلا صائية فالإ خياء
الماني سيكون صحيح.

(20) أى التقارير التالية صائبة

_وال

$$B \longrightarrow \sim A *$$

توعد ۲ طرق ۱۵ مایک شد اله ۲ مایک تو الآ الا بر ستخدام المخیارات و التعدیفت ماعلالت (3 x - 1) (x - 2) = 0

(3 x - 1) (x - 2)

:
$$\frac{21}{x^2 - 7x + 2} = 0$$

* الما بط (١) صابت عي عامه دامة اذا *

كانت الادني، بن نيد تل صائبة TIT * كانت الادني من عائد المن عن عامة واحده إذا

کانت اور لی رہے کی مامئے F, F

* الربط (﴿) اِنَدَاکَامَ مَامِ مَاطِلِهِ

مَا مِلْهُ وَاحِدَة مُقَعِد إِذَا كَانْتَ لِوْدِ لَى ٢

4 خزالام ،

* ہرابط (جے) اڈا مقصد اڈا سکویہ صابت اڈا کانت العیاران مت ابھ ر اہما خاطئة معا أرصائية معاً) کلا تعملن صداب .

(22) جـدول الصواب الأتى يُمـثل:

A	В	?
T	T	T
T	F	(F)
F	T	T
F	F	T

$$A \rightarrow B$$
 *

$$B \rightarrow A *$$

(23) إذا كان : X = 2 حسلاً للمسعادلة

$$x^2 - 3x + d = 0$$

فإن الحل الأخسسر هسو:

رد ا ا (۲-2) = 0

المعادلة إذا محقط المعادلة الا تعدد نبي المعادلة عدد المعادلة الله المعادلة الله المعادلة الدي المعادلة المعاد

اختـــبار كفــايات ريــافــيات

الإج<u>ابة</u> (ابسائة - الأخيا - 3 - 4 (حينها)

(111) - (010) = (1-011-0) = (11)

بنعث في الأنهاج الرتبة الحفط و عمم المروع المدي يطلع فا بجد بعد لطرع = (١١١) فنحده الد فيتمار الذكرير لذى:

(2,1)-(1,0) = (2-1,1-0)

= (1,1)

الســــفال

(24) متــجه نقطة بـدايته (0,0) ونقطة

نهایته (1,1)، المتجه الذی یساویه هو الذی نقطهٔ بدایسته

* (1,1) ونقطة نهايته (0,0)

* (1,1) ونقطة نهايته (3,3) *

* (1,1) ونقطة نهايته (1,1)

* (1 , 0) ونقطة نهايته (2 , 1)

عدد کے ہود کے اللہ کا = 2 - 1

y= x-1+5

(25) إذا أجرينا اسحابا لستقيم معادلته

y = x - بمسقدار 5 وحسدات

للأعلى ، فيما معادلة الستقيم الجديد

$$y = x - 6$$

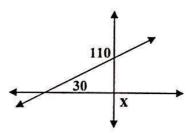
$$y = x + 4$$

$$y = 5 x - 1$$

على رَحَم ال بمعلمين إلزادية في وية 100 مدر المعلمية الزاديسية ما عدا لمجارة طا مدر المجارة طا في 4 30 = 100

والزادية ولا تعان إلزادية لا باكرات

ن كاريم 8° = ٢


ملح اكرية المحملة لـ ١١٥ ع مح

: (8:-(30+70) =80

دیما ایم افزاری × تقابل براوید ۵۰ میکای

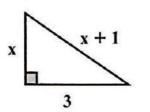
x = 80 ~ méstéro ..

x أوجد قياس السزاوية (26)

60 *

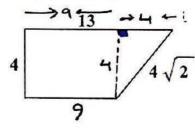
70 ×

80 |*

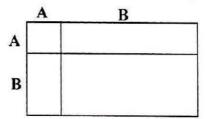

90 *

اختربار كفريات ريات

ابة	الإج
ساعن حيدات	بدطبية نطية
(x+1)2 = (x)2+	(3)2
x + 2x + 1 = x	44
ex - 8 =	x=4
3+4+5=(12) 5=	الععلان



(27) أوجد محيط المشاث كقيمة عددية


عل ال عمر طربة ما حة عبه المعنون علا = 4 × (13 + 9) × أو على عمر طربة تقسيم إسكار إلى معطورات على عمر طربة تقسيم إسكار إلى معطورات على عمر طربة تقسيم إسكار إلى معطورات ما قائم عمود = 4 × 9 × 2 = 8 من ما حة أسكار كاملاً = 36 + 36 من على على على على المعادد المعاد

(28) إذا كان الشكل أدناه مساحة غرفة ، فكم متر نحستاج لفرشها بالسسجاد :

(a+b) = 2 + 2ab+b2

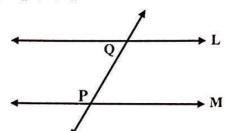
(29) الشكل المقابل يُمشثل

- * نظریة فیثاغــورس
 - ﴿ فرق بين مربعين
- * مربع كسامل
- * محموع سيعين

اختــــبار كفـــايات ريــ

_ابه							الإجـــــ
m	P	+	m	B	-	180	مغالمته

6x-6= (80° => X= 186=31


m < P = 4 x + 5

m<p = 4(31)+5 = 129

فال الس

ا متوازیان ، إذا M , L متوازیان ، إذا M , L

2 x - 11 ، فما قياس الزاوية p

F 64 = 100 × 1000 × 64

$$\frac{1}{2} = \frac{-(-1)}{2} = \frac{2 \sqrt{100}}{2} = \frac{2y - x = 0}{2} = \frac{2y - x = 0}{2} = \frac{32}{2}$$

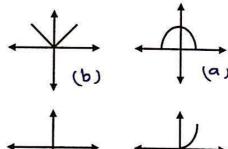
x je récise sp hara q+x m= f

2y=x=y=1x

X beauty (: m = 1

1 *

-1 *


 $-\frac{1}{2}$ *

حنفًا هيئ مسا لماغي ١ منع أكفانا ماليسم كمه روسة (b) 5(a)

معنع اخاركام أطراع اعتمد من ا يما ه واحد مكوم روجية الله عن ا ما معدم معتلفة مثل (د)

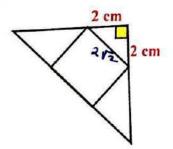
سکوم فردیت

(33) أي الأشكال التالية يمثل دالة مرحم

اختراد كفرايات ريات

فال الإجابة

مم المثلث منظامِم لفعلعن وقا عم المرافية (مه اغد ازم) عيد أم هلا لفط بالكث من لمثلاً = 212


LV2/6 L

(2/2) = 4(2) (8)

الســــفال

(34) إذا تسم رسم مسريع داخسل متسلت

الضلعين ، فما مساحة المربع بالسنتيمتر المربع ؟

لايع بدريم مرضق وحيفيت السؤال كاكم

(35) ثلاث صنابير ماء ، إذا فتح الصنبور الثانى ساعة من الأول ، وفتح الثالث نصف ساعة ، اختر الرسم البياني المنساسب :

 $Z_{1}(3,20)$ i $Z_{2}=(4,40)$ $Z_{1}Z_{2}=r_{1}v_{2}[cos(q_{1}q_{1})+isin(q_{1}q_{2})]$ =3.4[cos(60)+isin(60)] $=12[\frac{1}{2}+i\frac{13}{2}]$ =(6+6)(3i)

 $z_1(3,20^\circ)$ إذا كان العدد المسركب ($z_2(4,40^\circ)$) , $z_2(4,40^\circ)$, القطيبي z_1z_2

 $f(x) = (x-2)^{2}+2$ $f(x) = x^{2}-4x+4+2$ $f(x) = x^{2}-4x+6$ f(x) = (2x-4)

f(x) إذا كان الرسم التالي للدالة (37) فإن مشتقتها تساوي:

اض یات	0.700	36.11	721
The second second second	ایات ریا	ــبار هــــ	

الإجـــابة	السفال
ملع العنب = عدد طرق سعب کرتسیم مس (سین به کران میم العندمت (لانهتم بالشرکسین) $C_2 = \frac{7 \times 6}{3 \times 1} = 21$	(38) صندوق یحتوی علی 3 کـــرات بیــضاء و 4 کــرات حـــمراء ، إذا شحــبت کــرتان
A مادية سمية كريسم ما عدة بيمناء طدفرى عمل	ما إحتمال أن تكون الكرتان بيضاء والأخرى حمراء $rac{4}{7} imes rac{3}{7} imes rac{3}{7}$
$3c \times 4c = 3 \times 4 = 12$ $\rho(A) = \frac{12}{21} = \frac{4}{7}$	$\frac{4}{12}$ * $\frac{3}{12}$ *
هذا لديهم اكتركتيب لدّم مزع للعربيبير مثلة (الدُ طعنر) الدُّرة ع) هرنف ه (الدُرْمة) الدُّ طعنر) : مَوا طبعم	(39) عسلبة ألسوان فيسها 11 لسون ، إذا لونسين ، كسم لسون جسديد يظهر لسنا ؟
$C^{5} = \frac{3}{11 \times 10} = 22$	121 * 110 *
1244	68 *
$a_1 = 27$ $a_6 = 12$ $5d = -15 \implies d = -3$ $a_4 = a_1 + 3d \implies a_4 = 27 + 3(-3) = (8)$	(40) متابعة حسابية حسدها الأول 27 ، حدها السادس 12 ما هنو الحسد السرابع ؟
مُلِعُ العينة لعجرا مند = في = 36 عنهمر ملابع بد سوى نوع مرب ما هد (313) بعد ما من صنيه العدد آ اله هماك = الهذا	(41) إذا ألتى حسجرا نسسرد، فسما إحتسمال أن يكسون ضسرب العسددين الظساهرين 9 ؟
المعمليات عليد عا فيهة	(42) مــدرسة فيــها 15 فــصل ، وكــل فــصل فــيه 40 طــالب ، إذا تــم اختــــيار وفــــــد 4 مــــــــــــــــــــــــــــــــــــ

اضيات اختـــبار كفـــايات ريــ

الله الله الله الله الله الله الله الله			
الإذ	الســـــفال		
	(43) ما الاستراتيجية الأنسب لحل المسألة التالة " إذا كان كل صندوق صغير يحتوى على 4 كرات ، وكل صندوق متوسط يحتوى على 6 صناديق صغيرة وكان لدى المحل 50 صندوقاً متوسط الحجم ، فما عدد الكرات الموجودة " الحل العك		
	(44) المعرفة الرياضية التي تعرف بانها (علاقة ثابتة بين مفهومين رياضيين أو أكثر) تسمى : * (تعميما رياضيا) * مهارة رياضية * مشكلة رياضية * مصطلحاً رياضياً		
*	خ كل علاقة تطبيق وكل تطبيق تقابل خلاقة تطبيق تقابل كل علاقة تطبيق تقابل وكل علاقة تطبيق خلاقة تطبيق خلاقة خ		
	(46) قطع شخص مسافة A إلى B ، ثم قطع نصف ما قطع ، ثم قطع ، نصف الأخرر ، ما نوع المتتابع		

إعداد الأستاذ / سلطان البشرى

اختــــــبار كفـــــايات ريـــــاضـــيات

١,						
9	الإجـــابة	السفال				
	100	(47) إذا قذف جسم لأعلى ، يتم حساب أعلى نقطة يصل إليها المقذوف بإستخـــــدام :				
	رزدا أعطاله السبحة نستخدم المتناصل . (وهنا أعلى المعلى نقطت بعني صانع إدا تختار المتصامل)	التفاضل * التكامل				
13.	المرزة: ه قدرة اكثرد على تغيير تفكيره بتغيراً	 الـــدالة الأســـية الدالة اللوغاريتمية 				
	المريدة : هل قلية ، المرد على المرصول الى إنتاج المحدد عكسه مع مترته المرد على المرصول الى انتاج المرمدد عكسه المدندة المرد على إنتاج أنكام المرصول إنتاج أنكام أرصلا جديدة على المنافة المسكلة.	(48) عندما تبتكر طرق حل جديدة ، تنمى لديك مهارة * المرونـــة * الأصـالة * الطلاقـــة				
	-	* الإفـــاضة (49) إذا قام مُعلم بإعطاء طلابه منقلة وطلب منهم قياس زوايا دائرة وأخبرهم أن مجموع زوايا الدائرة 360.				
		ما طريقة التدريس التى طبقها المسلم * التركيب ية * التحليا ية * الإستقرانية				
Action to the second second		 ﴿ الْإِسْتَنْ تَاجِيةً ﴾ ﴿ 50) أى من الأتى ليـــس لـــه علاقــــــــــــــــــــــــــــــــــــ				
		 ب ميل المستقيم ب السيدالة ب المنحسني 				
		على شرح مفهوم بأسلوبه الخاص في المسلوبة الخاص يعتبر من أساليب				
		 * الإستنتاج الرياضي * الــــــــــــــــــــــــــــــــــــ				
Contraction of the last		* (التواصل الرياضي)				

		GENERAL TRANSPORTATION OF THE PARTY OF THE P	ATTENDED BY
"d. •4	ایات ریـــــایات ر		00.4
		45 1	L
STATE OF THE PARTY	A STATE OF THE PARTY OF THE PAR	THE RESERVE THE PERSON NAMED IN	Halbing of the Sold

الإجـــابة	السوال
× زی کام لدیوجد للدالت (لا عبر مربد مرب مکار الله الله الله الله الله الله الله ال	$f(x) = a x^2 + b x + c : محسر السدالة الله الله الله الله الله الله الله ا$

y = x-1 إذا اجرينا انسحابا للمستقيم 1 \times بمقدار 5 وحدات الى اليمين. فما معادلة المستقيم الجديد

$$y = x - 5 \circ$$

$$y = x + 5 \circ$$

$$y = x - 6 \circ$$

$$y = 5x - 1 \circ$$

۱٤۸ بكم طريقة يمكن لمدير مدرسة اختيار لجنة مكونة من 4 أعضاء من 10 معلمين.

5040 o

الإختبار الرابع فيكون تقديره B بأن القدير B يعني الحصول علي المحدد الذي)

۳ ؛ ۱ . إذا علمت أن 7 هو وسيط البيانات 3,11,2,13,x,1,3,8,9

$$x=3$$

$$x=6$$

$$x = 7$$

$$x = 8$$

ع ١٠٤. قيمة ٢ في حل هذا النظام

$$x + 2y = 13$$
$$2x + y = 11$$

$$x=1$$
 o

$$x = 3$$
 o

$$x = -1$$
 o

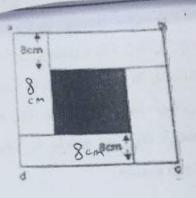
$$x = -3$$

و با ازا کانت
$$f(x) = x^2 + 3x + k$$
 و ازا کانت ازا کانت

$$f(1)$$
 فإن $f(k)=0$ و $k\neq 0$

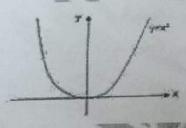
1306

١٤٦. إذا كان عد عددا حقيقيا، فما العبارة


$$1 \leq |x-2| \leq 7$$
 المكافئة للعبارة

$$-5 \le x \le 1$$
 le $1 \le x \le 9$

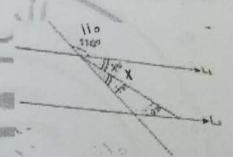
$$x \le 1$$
 0 1 $3 \le x$ 0


$$1 \le x \le 3$$
 \circ

$$-5 \le x \le 9$$
 o

10 ° . المربع abcd طول ضلعه 28cm، ما مساحة المربع المظلل.

١٥٤. إذا تم عمل انسحاب للقطع المكافئ في الشكل التالي ليكون رأسه (1,2-)، فما معادلة القطع الجديد


$$y-1=(x+2)^2$$

$$y + 1 = (x - 2)^2$$
 o

$$y + 2 = (x - 1)^2$$
 o

$$y-2=(x+1)^2 \quad \circ$$

. 10. إذا كاتت القيمة العددية لمساحة دائرة 5 اضعاف القيمة العددية لمحيطها، فإن نصف قطر الدائرة يساوي

۱ ه ۱ و اذا كان المستقيمان l_1, l_2 متوازيان، فما قيمة الزاوية χ

$$\lim_{x\to 2} \frac{x^5-32}{x^2-4} \cdot 10 \text{ Y}$$

١٥٨. اظهرت دراسة إحصانية أن 22 طالباً

مثلث منطبق الضلعين الضلعين الضلعين الضلعين ية الخرع الله المنت الماحة الجزء ab=acالمظلل 8cm²، فما مساحة المثلث على

24 0

16 0

١٥٦ كم عدداً طبيعيا مكون من 3 ارقام يمكن تكوينه باستعمال الارقام 1,4,6 دون تكرار الرقم الواحد اكثر من مرة.

3 0

6

24 0

 $A = \{a, d, e, f\},$ 11.17 $\mathcal{C}=\{a,f,l\}$ ، $\mathcal{B}=\{b,c,e\}$ من کتاب، فإذا تبقی فاذا تبقی آورا احمد 70% من کتاب، فإذا تبقی $(B \cup C) \cap A$

من كل 30 طالباً، يخطئون في حل

المسائل الرياضية. إذا قدمت مسالة

رياضية لعدد 600 طالب، فكم عدد

الطلبة الذين من المتوقع ان يجيبوا

٩ ٥٠ . إذا كان عدد الساعات التدريبية لمحمد

ساعة، فأي القيم التالية ستقل

خلال 5 ايام متتالية 1,2,2,3,4 ، فإذا

تدرب في الاول ساعتين بدلاً من

اجابة صحيحة

160

220

420 o

ه المدي

٥ المتوال

ه الوسيط

1396 هـ - 1976 م المتوسط الحد

80 0

 $\{a, e, f\}$

{a, d, e, f} o

له 42 صفحة ،فكم عدد صفحات

الكتاب

60 0

70 0

100 0

140 0

 $\{a, e, f, l\}$ o

 $\{a,b,c,e,f,l\}$ o

40 0

32

١١١. إدا حال (7k + 1) عدداً زوجياً حيث فأن $(7k+1)^2$ هو عدد $k \epsilon N$ ه زوجي مؤلف 120 1200 B 5x 5x ٥ فردي مؤلف ٥ فردي اولي زوجي اولي 171. اوجد قياس الزاوية C في الشكل. g(x) = -3x - 4 اذا کانت ۱۹۶ f(x) = 5x - 6فإن 10 0 [fog](-2)20 0 60 70 2 50 50 AB || CD | il ala || 177 *X فان ، $\angle CFD = 70^{\circ} \cdot \overline{AB} \perp \overline{EF}$ قياس الزاوية DCF ١٦٥. قيمة الزاوية x 20 100 0 30 0 110 0 40 120 50 o 130

 $\int \sin x^2 x dx$ قيمة ١٧.

$$-\frac{\cos x^2}{2} + c$$
 o

$$\frac{x^2\cos x^2}{2} + c \quad \circ$$

$$\frac{\cos x^2}{2} + c \quad \circ$$

$$\frac{\sin^2 x^2}{2} + c \quad \circ$$

الدالة العكسية f^{-1} للدالة x > 16

$$x \ge 16$$
 حيث $f(x) = \sqrt{x - 16}$

$$x-16$$
 \circ

$$x^2 - 16$$
 o

$$x^2 + 16$$
 °

 $\int_0^1 \int_0^1 xy \, dx \, dy \quad \text{and} \quad 1 \vee 1$

 $\sum_{n=0}^{\infty} \frac{5}{2^n}$ قیمة ۱۲۷.

 $\lim_{n o \infty} rac{|x|}{x}$ قيمة النهاية النهاية

ادا کان $x + \frac{1}{x} = \sqrt{5}$ فما قیمة ادا. ۱۹۸

$$x^6 + \frac{1}{x^6}$$

التي تجعل الدالة متصلة c قيمة ١٧٣

$$f(x) = \begin{cases} x+3, & x \le 2\\ cx+6, & x > 2 \end{cases}$$

$$f(x) = \frac{5}{\sqrt{x^2+9}}$$
 مجال الدالة، ١٦٩

$$(0,\infty)$$
 o

$$(-\infty,\infty)$$
 o

١٧٨. نصف قطر الدانرة

$$x^2 + y^2 + 8y = 9.$$

3

4

5 0

5 0

المعادلة x=2 كان x=2 كان ١٧٩.

الأخر $x^2 + 3x + d = 0$

-10 c

-5 0

5

10 。

۱۸۰ اذا القي حجر نرد مرة واحدة، فما احتمال ظهور عدد فردي او العدد 6

1/2 0

1/6

2/3 0

3/2 1976 - 1396

١٨١. قيمة النهاية

 $\lim_{n\to\infty}\{ln(n+1)-ln(n)\}$

Ln 2

2 0

1 0

0 0

١٧٤. اوجد مركز ونصف قطر الكرة

 $(x-1)^2 + y^2 + (z+1)^2 = 64$

ه (1,0,-1) ، 8 وحدة طول

o (1,0,1) ، 8 وحدة طول

o (1,0,-1) ، 4 وحدة طول.

o (1,0,1) ، 4 وحدة طول

 $f(x) = \frac{x-1}{x+3}$ مجال الدالة ۱۷۰

R\{1} .

R\{−3} ∘

 $(-3,\infty)$ o

(1,∞) ∘

١٧٦. الدالة العكسية ألا الدالة

f(x) = 3x - 4

 $\frac{x}{3}+4$ o

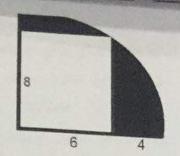
 $\frac{x+4}{3}$

 $\frac{x-4}{2}$

 $\frac{x}{3}-4$

١٧٧. اذا كانت (x, y) جميع النقاط في

 $x \le 0, xy \ge 0$ التي تحقق


فإن هذه النقاط تمثل الربع.

ه الاول

ه الثاني

و الثالث

ه الرابع

١٨٢. مساحة الجزء المظلل في الشكل

$$25\pi - 24$$

$$25\pi - 36$$

$$25\pi - 48$$

$$25\pi - 24$$

١٨٧. اوجد مساحة الجز المظلل في الشكل

إذا كان نصف قطر الدائرة 10cm

$$50\pi - 50$$

$$50\pi - 75$$
 \circ

 $50\pi - 100$

نها $y = 2\cos x - 3$ فما باکت $y = 2\cos x - 3$ فما اکبر قیمة ممکنة y

-3 0

-1 0

1 0

2 0

ه ۱۸۳. إذا كان a,b عددين صحيحين موجبين، فأي مما يلي عدد نسبياً

√ab ∘

ab/ba o

ba o

a^b o

y = mx + 1 إذا قطع المستقيم $x^2 + 4y^2 = 1$ في القطع الناقص m^2 فقطة فقطة فقطة فقطة فقطة في المدة فقطة فقطة في المدة فقطة في المدة فقطة فقطة في المدة في

1/4 0

1/2 0

3/2 0

3/4 0

 $\sum_{n=0}^{\infty} \left(\frac{2^n+5^n}{7^n}\right)$ مجموع المتسلسلة ، ۱۸٥

١٨٨. ما الكسر الذي يساوي 135.0

71/495 0

64/495 0

63/495 0

67/495 0

14/10 0

7/6 0

49/10 0

49/11 0

27

١٨٩. مبنى A طوله 100m، وكل شهر يتم بناء 1/4m يضاف الى طوله، ومبني B طوله 80m وكل شهر يتم بناء 1/2m يضاف الى طوله. بعد كام شهر

يصبح طول المبنيين متساوياً.

$$y = -3x \quad \circ$$

$$y = -3x - 8 \quad \circ$$

$$y = 3x + 4 \quad \circ$$

$$y = (2x - 1)(-2x - 3) \quad \circ$$

y = f(g(x)) تمثیل الدالة

- ا مستقیماً میله y = f(x) کان ۱۹۲

ويتقاطع مع محور y عند 2، وكان

-3 میتقیما y = g(x)

ويتقاطع مع محور y عند 2-، فما

١٩٣. صندوق أبعاده اعداد صحيحة فردية ومساحته السطحية ٨، أي من الاعداد التالية يمكن المسلحة السطحية للصندوق

125

85

55

• ١٩ . نظام التكلفة في سيارة اجرة كما يلي: تكلفة اول نصف كيلومتر او جزء منه 3 ريال، ثم بعد ذلك 0.6 ريال بعد ذلك لأى نصف كيلومتر او جزء منه. أي من الدوال الاتية تمثل التكلفة الاجمالية لمسافة m كيلومتر بالريال، حيث m عدد صحيح موجب

$$3 + 0.6(m - 1)$$
 o

$$\begin{array}{c} 3 + 0.6(m - 1) & \circ \\ 1976 - A & 1393 + 0.6(\frac{m}{2} - 1) & \circ \end{array}$$

3+0.6(2m-1) o

$$3 + 0.6[2(m-1)]$$
 o

١٩٤. إذا كان عدد البالغين في صالة رياضية 6 أمثال عدد الاطفال، فأي مما يلي لا يمكن أن يكون عدد الاشخاص في هذه الصالة

١٩١. ما العدد الصحيح الذي يحقق

$$log_x 729 = 2x$$

2 0

3 0

105 0

90 0

84 0

70 0

$$\frac{\frac{1}{x}-y}{\frac{1}{y}-x}$$
 المقدار ١٩٥.

$$x/y$$
 o

$$-x/y$$
 o

$$y/x$$
 o

$$y^2$$
 إذا كانت مساحة المربع الصغير ومساحة المربع الكبير x^2 فإن مساحة

المستطيل.

$$2x^2+5y^2$$
 o

$$x^2 + 3xy + 6y^2$$
 o

$$x^2 + 5xy + 6y^2$$

وکان
$$P(x)=Ae^{bt}$$
 وکان Y ۰۰

$$P(10) = 450 \ \ \ \ \ P(0) = 150$$

فما قيمة ط.

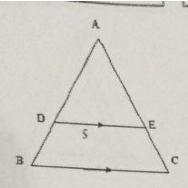
ln3/ln10 o

ln3/10

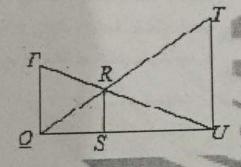
$$\ln \frac{1}{3}$$

١٩٦. ما مجموعة قيم لا التي تجعل النظام

$$\begin{pmatrix} 5-k & -12 \\ 2 & -5-k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$


عدد غير منته من الحلول.

$$R - \{-1, 1\}$$
 o

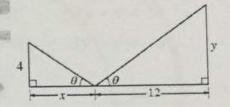

$$2x + 3y = 6$$
 اذا كان المستقيم ١٩٨. إذا

$$3x + ky = 9$$
 عمودياً على المستقيم

$$\sqrt{3x+7}+4=0$$
 حل المعادلة. ٢٠١

 $\Delta ABC=75$, ΔABC المثلث . Y ، o . BC=7, BC=5 الشكل . BC=7

TU=6, RS=2 و TU=6, RS=2 و PQ=0 فإن طول TU||RS||PQ=0

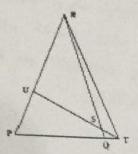

3 0

5/2 0

7/2 0

$$f(x) = x^2 + 8x = 10$$
 إذا كاتت . ٢٠٢ والله معرفة على مجموعة الاعداد الحقيقية فإن

- و الدالة لها رأس عند النقطة (6-4,-)
 - و الدالة تمثل تقاطع مستقيمين.
- الدالة ليس لها رأس أي جذور
 حقيقية.
- الدالة تتقاطع مع محمور x عند
 النقطتين (10,0-)، (8,0-).


- ٣٠٢. أي العبارات صانية
- x تتناسب طردیا مع x و م
- x تتناسب عكسياً مع x ه
- 2 تتناسب طرديا مع x
 - x عكسيا مع y^2 ه تتناسب عكسيا مع

٤ • ٢ . انعكاس النقطة (6-,7) حول المستقيم

$$y = -x$$

- (6,7) 0
- (-7,6) 0
- (7,6) 0
- (6,-7) 。

$$x$$
 قيمة $3^{81^x} = 27^{3^x}$. ۲۰۷

$$m \angle PRQ = 40^{\circ}, PR = QR$$
 ۲۱۱ فيان قياس $m \angle QTU = 25^{\circ}$ فيان قياس

٢٠٨. معادلة المستقيم المار بالنقطة (3,5)

$$y + 3x = 6$$
 وعمودي علي المستقيم

$$y + 3x = 6$$

$$3y + x = 6$$

$$3y - x = 12$$
 o

$$3y + x = 18$$
 o

$$3y + x = -6 \circ$$

 $m \angle RSU$

450

55°

٢١٢. قام طالب بأخذ 9 قياسات، ثم الغي اكبر قيمتين واصغر قيمتين، فتبقي 5 قيم

أي مما يلي لن يتأثر بحذ القيم الاربع.

المتوسط الحسايي

1396 هـ - 1976 م الوسيط

الانحراف المعياري

٢٠٩. قيمة المقدار

$$\frac{3-i}{1+i} + \frac{1+i}{3-i} - \frac{1}{5} - \frac{2i}{5}$$

0 0

1-2*i*

1 + 2i

2-2i o

$$[p \wedge (p \wedge (\sim p \vee q))] \vee q \cdot$$

$$p \wedge q \circ$$

$$p \lor q \circ$$

$$\sim p \vee q \circ$$

$$\frac{x+1}{x+2} + \frac{x}{x+3}$$
قیمة ۲۱۳.

$$\frac{2x+1}{2x+5}$$
 \circ

$$\frac{x^2+x}{x^2+6} \circ$$

$$\frac{2x^2+6x+3}{x^2+5x+6} =$$

 $x^2 + 5x + 6$ ا با بازا کانت P(1,-2) تقع فی منتصف P(1,-2)القطعة المستقيمة AB، وكانت .B فإن A(-3,4) (-1,1) o (-1/2,1/2) o (3,4) 0 (5,-8) • ٥ ١ ٢. يعمل خالد في احدى الشركات، فإذا عمل الاسبوع الاول أقل 10% من الساعات المطلوبة منه اسبوعيا، وفي الأسبوع الثاني عمل 45 ساعة هو اكثر مما عمل في الاسبوع الاول ب %25% فما العدد التقريبي للساعات المطلوبة منه اسبوعياً. 30 0

۲۱۷. عداءان يجريان باتجاهين متعاكسين 600m حول مضمار دانري محيطه 80m/min يجري الاول بسرعة 70m/min والثاني والثاني بنتقيان العدانين.

3 0

4

5

$$x$$
 قيمة $(3^2 + 2^4)^3 = 5^x$ ۲۱۸

5 0

6 0

7 0

8

۲۱۹. قيمة ۱۹(i – 1).

16 0

161 . 1976 - 1396

-16 0

-16i o

۲۱۶. مكعب طول حرفه Icm، فما اطول

مسافة بين راسين من رؤوسه.

 $\sqrt{2}$ o

34

40

42

 $\sqrt{3}$ o

√5 °

√7 °

. ٢٢. تصدر صحيفة 7000 عدد اسبوعياً،

فكم تصدر في السنة.

35500 ∘

35000 ∘

355000 0

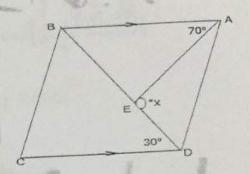
400000 0

32

٢٢١. إذا انطلقت سيارتان من نقطة واحدة، واتجهت الاولي في اتجاه الشمال بسرعة 60m/h والأخرى في اتجاه الغرب 80m/h. فما اقصر مسافة بين

- 90m o
- 100m
- 110m
- 120m o
- السيارتين.
- 6π o
- 12π o
- 18π o
- 24π

٢٢٥ مندوق يحتوي على 3 كرات حمراء 2 بيضاء، سحب كرتين معا، فما


\$ ٢٢. كرة نصف قطرها 13cm، قطعها

ما محيط الدائرة الناتجة.

مستوى يبعد عن المركز بمقدار 5cm.

احتمال ان تكونا حمراوان.

- 0.3
- 0.4
- 0.5

- a 1396

٢ ٢ ٢. قيمة الزاوية ٢.

- 90° °
- 100°
- 110°
- 120°

 $\frac{dy}{dx} = \frac{x^2}{y}$ حل المعادلة التفاضلية. ٢٢٣

$$y = \frac{x^3}{2} + c \quad \circ$$

$$y = \frac{x^3}{6} + c \quad \circ$$

$$3y^2 = \frac{x^3}{2} + c \quad \circ$$

$$3y^2 = 2x^3 + c \quad \circ$$

No. مِلْ الْحَالِ الْحَالَ الْحَالِ الْحَالْحِلْ الْحَالِ الْ 420 140: 420 100×42: Olsellose C 100 ~ ((101) U = 1) 0) Np 8 = 22-30 = 01/20 m No 20 (10) المسؤال (١٥٩) المدي حيث للوي مساديس الدكست أما الما ي معاديس 4 - 1 = 3 - 7 - 2 = ach ver such es (BUC) - 996 f/l/b/c/e3 1 A= (a/de/f) = 296e6f3 . @ ds1 الحوال (۱۲۱) ز-50 + 7X = 120 عوى لمراس المامليات ليعيد عورة لما 12X = 120 70 57(10) = 7X = c vois, or lie (S) JE1

No. Date. (177) US CDIEF (ABIEF & ABICD NI 6015 P= DCF valet, CDIFF vist 90 = < FDC 180 - (70+90) P db, 20 = 180 - 160 D(√X+1)² Nb. (Lubous) KAN Custure; suc (√K+1) ~ (1-14) dig $(7K+1) \cdot (7K+1) = (7K+1)^{2}$ $(7K+1) \cdot (7K+1) = (7K+1)^{2}$ $(7K+1) \cdot (7K+1) = (7K+1)^{2}$ · P J31 $f\circ g(-2) \to f(-3x-4)(-2) \to 5(-3x-4)-6$ -15x-20-6(-2,=2k)-15x-20-6 (-2,=2) = 5° (170) 013 = 5° (170) 013 180 - 50 = 13° 5° (170) 013 = 13° X= 13° 3) 0131 White the Replies to $y^{2} + 16 + 16$ $y^{2} + 16 + 16 = y = \sqrt{x - 16} + 16 = \sqrt{x - 16}$ $y^{2} + 16 + 16 = \sqrt{x - 16}$ $y^{2} + 16 = \sqrt{x - 16}$

No. Wing as capping in Quille Maix $\frac{1}{(11)} = \sqrt{5}$ $(x + \frac{1}{x})^2 = \sqrt{5}$ $(x + \frac{1}{x})^2 = \sqrt{5}$ (X2+1)25-2 (X2+2-X-1+X=5 $(X^2 + \frac{1}{X^2}) = 3$ $(X^2 + \frac{1}{X^2})^2 = 3^2$ $\frac{\chi^{4} + \frac{1}{\chi^{4}} \cdot 2\frac{1}{\chi^{2}} \cdot \chi^{2}}{\chi^{4} + \frac{1}{\chi^{4}} \cdot \frac{2}{\chi^{2}}} = 9$ 2(1 del books) x6+(x2+ 1)+ 1 = 21 $x^{6} + \frac{1}{x^{6}} = 21 - 3 = 18 = 9 03$ الم الم المسلل هندسة و عنوسته المسابية و عنوسه المسابية و المالية و المسابية Sn = 21 $5\frac{1}{2} = 5.\frac{1}{1-\frac{1}{2}} = 5.\frac{1}{2} \Rightarrow 5x2 = 10$ Jan = 5 - Del dis (179) dis المال عنوادی مرز وار افل الحذی و مندوس $X^{2} + 970 \Rightarrow X^{2} = -9 \Rightarrow X = \pm \sqrt{-3} \Rightarrow X = \pm 3i$ (3) US) $(-\infty/\infty)$ olds) $= \pm \sqrt{2}$

Sinx2dx = -1Cosx2 + C رضانا ما رون $= -\frac{\cos x^2}{2} + C$ $\bigcirc OS1$ ~! IVI 015 is in blession) Sydxdy = Sydxdy = [x²]ydy = [1 ydy] lim f(x) - lim f(x)

n-x0

1 1-xx+

1-xx+

1-xx+

1-xx+

1-xx-1-1

1-xx-1-1 dud entitla l (0,99 ju as (1) 1 + 1 lim f(x) = f(2) $C(x) + 6 \times \frac{1}{2}$ 2C + 6 = 2 + 3 2C + 6 = 5 = 2C = 5 - 6 = x + 32 C = - 1 3 C = - 1 2

 $\frac{\sqrt{2}}{(2-\alpha)^2+(y-b)^2} = (x-1)^2 + y^2 + (z+1)^2 = 6y$ $= (x-2)^2 + y^2 + (z+1)^2 = 6y$ $= (x-1)^2 + (x-$ 1) 5,008 = 564 = Jeel (aid)

(B) 33,

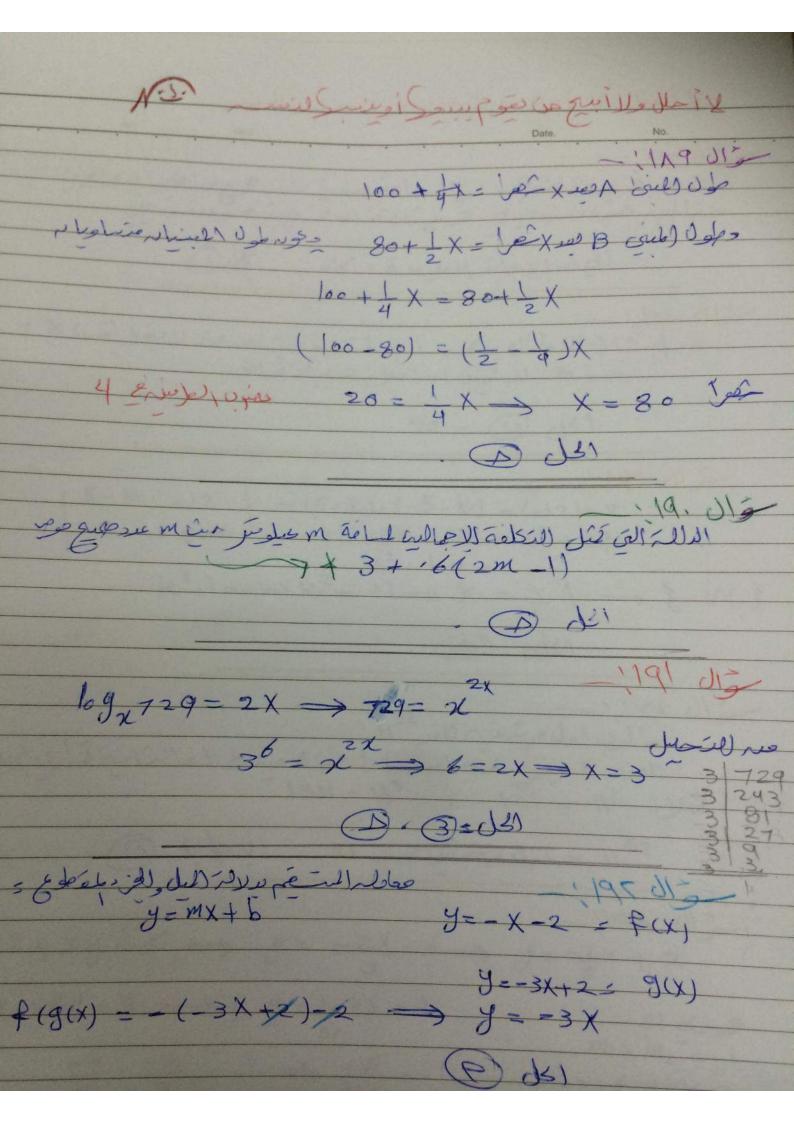
(No 01)

(No 01)

(No 01)

(No 01)

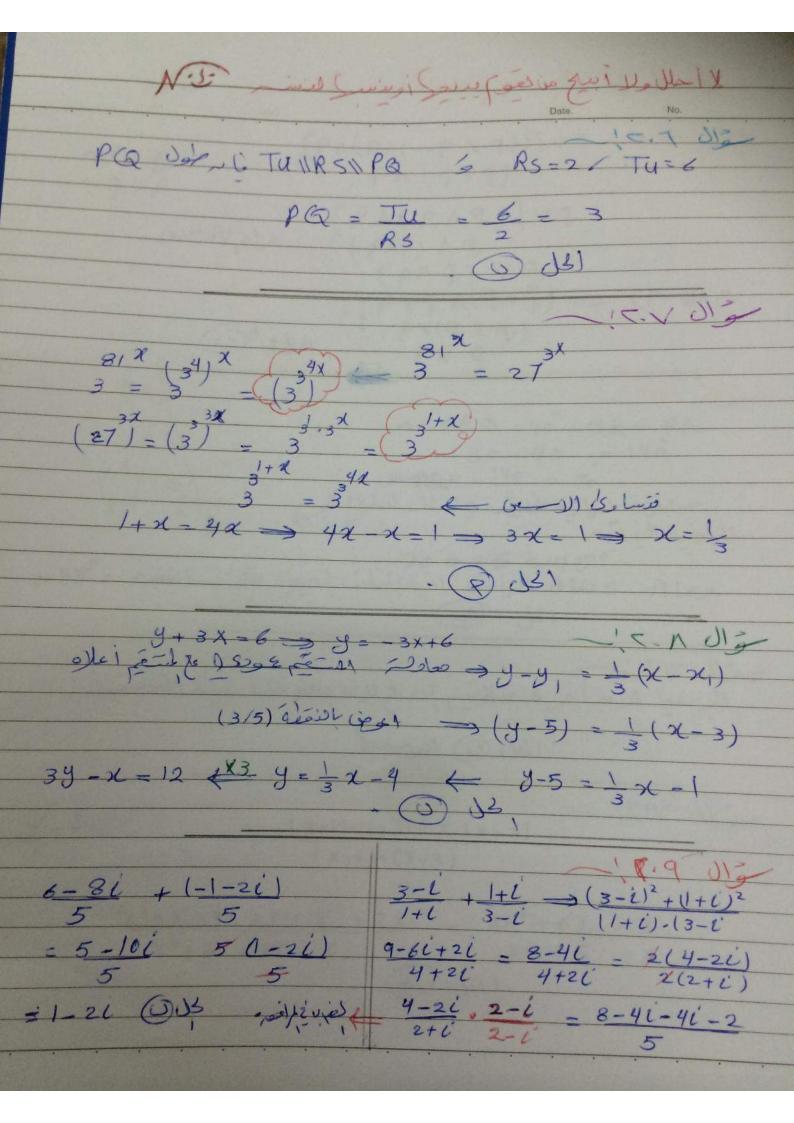
(No 01) $\frac{X-1}{X+3} \Longrightarrow X+3=0 \Longrightarrow X=-3$ $\frac{X-1}{X+3} \Longrightarrow X+3=0 \Longrightarrow X=-3$ $3+4=3\times \longrightarrow 3+4=\chi \xrightarrow{x+4} xy$ $x^{2} + y^{2} + 8y = 9 + 4^{2} + 0^{2}$ ships x + y = 0 by y = 0 and y = 0. $y^{2} + y^{2} + 8y = 9 + 4^{2} + 0^{2}$ ships x + y = 0 by y = 0. $y^{2} + y^{2} + 8y = 9 + 4^{2} + 0^{2}$ ships x + y = 0 by y = 0.


Kink of int an reading lines I want of NO all Ibx = 2 x2+3x+d=0 (d aces6) 10-= d $x^2 + 3x - 10 = 0$ (x-2) (x+5) - 0 13/20, 20 10 X=2 6 X=-5 0/5 Per @ 0 41/21 21/3/5/6 3: 6 sell of ASSigner points

4/3/5/6 3: 6 sell of ASSigner points

4/4/5/6 3: 6 sell of ASSigner p $\lim_{n\to\infty} (\ln(n+1) - \ln(n)) = \lim_{n\to\infty} \ln \frac{\ln \ln n}{n}$ $\lim_{n\to\infty} \ln \left(\frac{n}{n} + \frac{1}{n}\right) = \lim_{n\to\infty} \ln 1 + \ln \frac{1}{\infty} = 0 + 0 = 0$ عنى يختل عالم اليوفية لولا نضع ٥-١٨ $y = 2\cos x - 3 \implies y = 2\cos(0) - 3$ $y = 2\cos(0) - 3$ $y = 2\cos(0) - 3$ $-1 = y = 2\cos(0) - 3$ (12.3 = 56 # Sirvine 6 3 2 2 8 => crisise

ab a (3 b) Using 32 9 = ---


reduce y= 2 = 1 = (2)°=1 =(1-=)+(1-=) $\frac{3}{2}\left(\frac{2^{n}}{7^{n}}+\frac{5^{n}}{7^{n}}\right)$ of (2)" + 2 (5)" > 11 100 48 = 8×6 = (x)(x) (2) = (b)(d) (a) (a) · (A) USI 2517-48 = A Diel (abril) · (5) db1

(aposition and the state of the 90 - 0 131 $\frac{5-16-12}{2} = (5-12) \cdot (-5-12) - (-12) - 2$ $\frac{2}{5-12} = (5-12) \cdot (-5-12) - (-12) - 2$ 12-1=0= K2-1=0 K2-1=0= K2-1=0 K2-1=0= K2-1=0 (A) ols1 (3) 4) (2) = 11⁵² 2X+3y=6 > y===2X+6 > y===2X+2 $3X + Ky = 9 \longrightarrow y = 1 - 3X + 9$ $-3 \cdot -2 = -1 \longrightarrow +6 = -1 \longrightarrow -3K = +6 -3K = -2$ $-3 \cdot 3K = -1 \longrightarrow -3K = +6 -3K = -2$

No. 692 gag stagle sie e y2 jed at falm 6 x2 21 = me chi put 5xy = 2) المستطالات = 5xy 5xy = 3) y = 5 y $P(x) = Ae^{bt}$ $P(0) = Ae^{0} > 150 = Ae^{0} = -e^{0} = 10b$ P(10) = 450 = 150e P(10) = 450 = 150elin3 = b * · (D) 131 V3X+7 + 4=0 -> \(\frac{3}{3}\) \(\frac{1}{3}\) \(\frac{1}\) \(\frac{1}{3}\) \(\frac{1}{3}\) \(\frac{1}

 $X = \frac{b}{2a} = \frac{aaida}{b} =$ لا محا دالاصالى الصادى أعرض غ (لحاملة بالإصافي السين F(-4) = (-4) = 8 (-4) - 10 (() = 16-32-10 = -26 + () = (() = 16-32-10 = -26 + () = () عرارم: و ما المع عكم على الم (D) ds1 y=-x (11-6) viol (-766) 3 35, * (61-7) < (JS) (-126) (66-7) adm DADE = 75 x 49 AABC=75 - 1.001-BCZY 6 DE=5 DADE = 147 2010 DABC = 52 ADLO DADE (7)2 DABC-DADE = 147-75 = 72 (A) (B) 75 = 25 DADE 49

Limit Surface pui V. Mail V. Date No.

Lieralpoit $XI+Xz \rightarrow 3+X = 1 \rightarrow -3+X=2 \rightarrow X=5$ ₩ + 42 = = -2 → 4+7=-4 → 7=-8 (x/y) = (5/-8) (5) ds1 اذاعل بالاسوى الاول اعلى معم (الطلون د ١٥ / (ه ف اغتل ١٥٥) مهملك والاسوى النشائ اشتقل اللوم الاول د 25 / (٩٥) خ 25 د ١١٥) $\frac{39}{345} = \frac{45 \times 100}{115} = \frac{100}{115}$ $\frac{115}{115} = \frac{45 \times 100}{115} = \frac{115}{115}$ $\frac{115}{115} = \frac{40}{115} = \frac{115}{115}$ $\frac{1}{1+2} = \frac{1^2 + \sqrt{2}^2}{3} = \chi^2$ $\frac{1+2=3=\chi^2}{3} = \chi=\sqrt{3}$ (x) (x)

 $(3^{2} + 2^{4})^{3} = 5^{2} \implies (9 + 16)^{3} = 5^{2}$ $(25)^3 = 5^{\chi} \longrightarrow (5^2)^3 = 5^{\chi}$ $\frac{\text{Onlogicalise}(5^{\frac{2}{3}})^3}{5^6-5^{\frac{1}{3}}} \rightarrow \frac{6-1}{5^6-5^{\frac{1}{3}}} \rightarrow \frac{6-1}{5^6-5^{\frac$ (i-1)8 -[(i-1)2]) (i2-2i+1)4 -(x-2i+1)4 $(-2i)^{4} = (-2)^{4}(i)^{4} = 16(1) = 16$ · P 22, الم الغراب من المعرب من ال (60)2+(80)2=x2 3600+6400= x2 (10000 = x² (100 = x) (5) ds, 70 + 30 = 100

N'S Vide U Pus is car year levin I bisin Date: No. (ydy = 1x2dx y2 7 X3 + C 392 = 2x3+C مؤلل عرب عط الوائنء على علام - (0) /s (Time) / 1 / 10 (الضلح الادل ع) + (الضلح (مناي) = الوس $(13)^2 = (5)^2 + \chi^2$ 169 = 25 + X2 x2=169-25 -> x2=144 2=12 3 db, 24 T = 2. T.12 = 2 TY = x 2 00000 P C USSNIJEPI 3 · 2 - 6 c · 3 5 · 4 - 20 c · 3 · (3) K1 أرحوعا اللما دعم بتونوم النفاج

Dete. No. [PN(PN(~P V9))] V9 -: CI. dl= ~P=q PN(9 V9) ~ 9 = p [PA(PA9)]V9 0-150/0)'s (PAP) AQ (PAQ) VQ PV9 A(9V9) -> (PV9)A9 B J5, PV(9,19) m 2 p R a = 40°, Q R = P R

180-40 = 140°

m p Q R = 140°

m p 1511 112 · (S) (S) الوسط للم سأكر عن فالعَم لاربع لانه دهم فعط هيمه (المستعب . 150 O 16-20 1514 Ola $\begin{array}{c} \chi_{+1} + \chi \\ \chi_{+2} \end{array} \longrightarrow \begin{array}{c} (\chi_{+1}) \cdot (\chi_{+3}) + \chi \cdot (\chi_{+2}) \\ (\chi_{+2}) \cdot (\chi_{+3}) \end{array}$ $\frac{(x^{2}+x+3x+3+x^{2}+2x)}{(x^{2}+2x+3x+6)} = \frac{2x^{2}+6x+3}{x^{2}+5x+6}$ $\frac{(x^{2}+x+3x+3+6)}{(x^{2}+2x+3x+6)} = \frac{2x^{2}+6x+3}{(x^{2}+5x+6)}$

اختبار 1438

مروبارنوبارس و ال اذا كانت درطت طالب في أربع مواد 87 00) 48) 100 عكم درجته من المان إلا مع عن عبى مقرط درجانه بن المواد الحنب 89 🚳 85 @ 95 1 930 الحل_ $\frac{100 + 84 + 90 + 87 + X}{5} = 90 \implies 361 + X = 450$ (Derie) " X=450-361= 89 الما من طريقة على ولا قالد؟ 8 6 36 1 24 عدر مروف كلة خالد = 4 ع بسر لطريد = 14 = 24. (فقرة ع) (2) = 2, (2) = X = (6) 131 long (mn m) [4] n 6 n a 1 >n∈ \$1,2) € 2 orlin () n = n $n=2 \Rightarrow \binom{2}{n} = \binom{2}{2} = 1 \quad f(\binom{n}{2}) = \binom{2}{2} = 1$ 2 con ded gel - lest 6 $\Rightarrow \times = \binom{n}{2} = \binom{2}{2} = 1$ (النترة (

15181:

$$= \alpha \mathcal{L}_{n6} \left(\left(\left(27\right)^{\frac{1}{2}} \right)^{\frac{2}{3}} \right) = q^{\alpha}$$

1 @

4 (d)

 $\left(\left(\left[27 \right]^{\frac{1}{2}} \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} = \left(\left(\left[3^{3} \right]^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} = 3 \times \frac{1}{2} \times 1 \times 1 \times \frac{2}{3} = 9$

(b cib) (3 + 3) (2a + 4) $\Rightarrow 2a = 4$ $\Rightarrow a = 2$

: ac xy (xy+1) - x2y2: - 1211 0

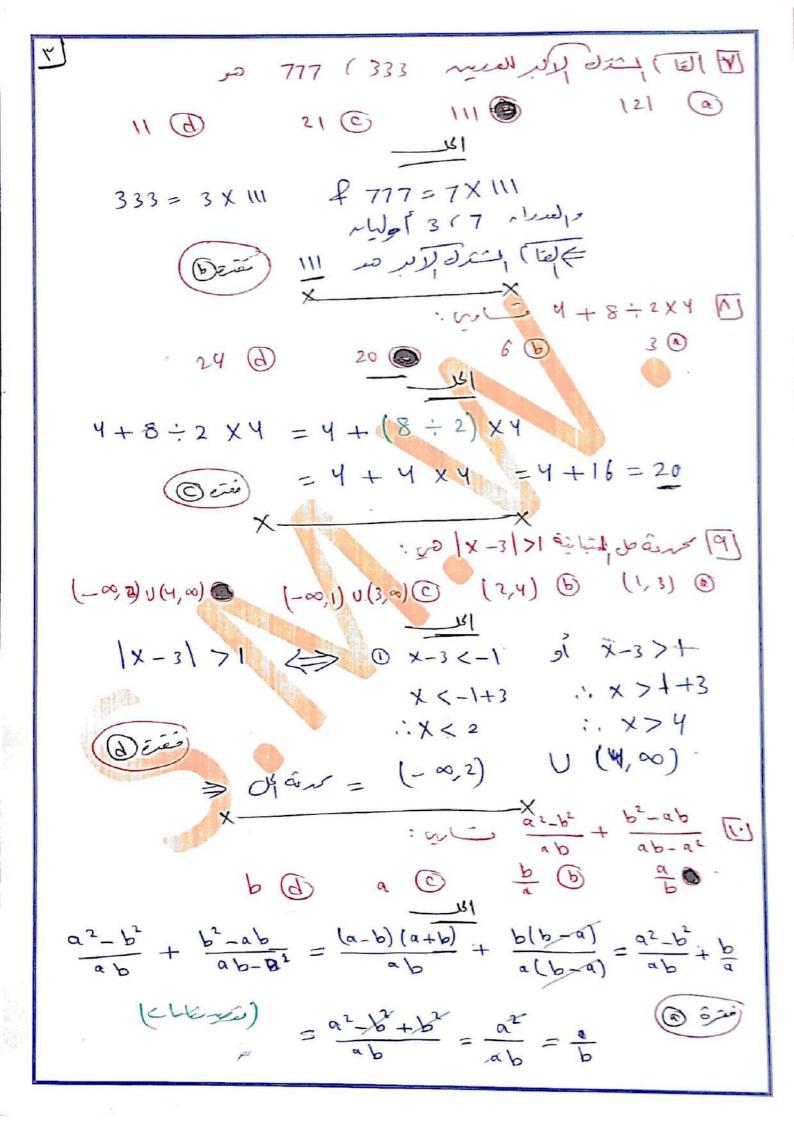
X333-X595 +X7 @ X3A3 + X595 + X7

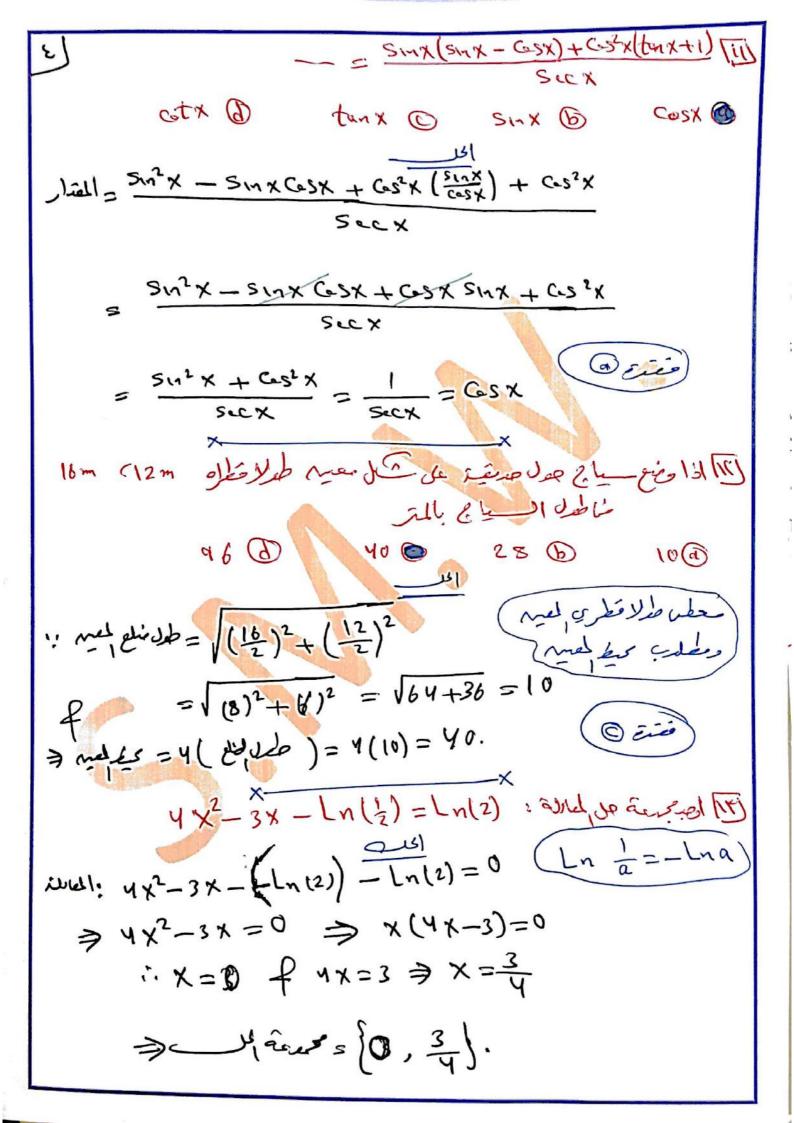
X32+3X5A5+X7@ 13 CX + C1X E- CX

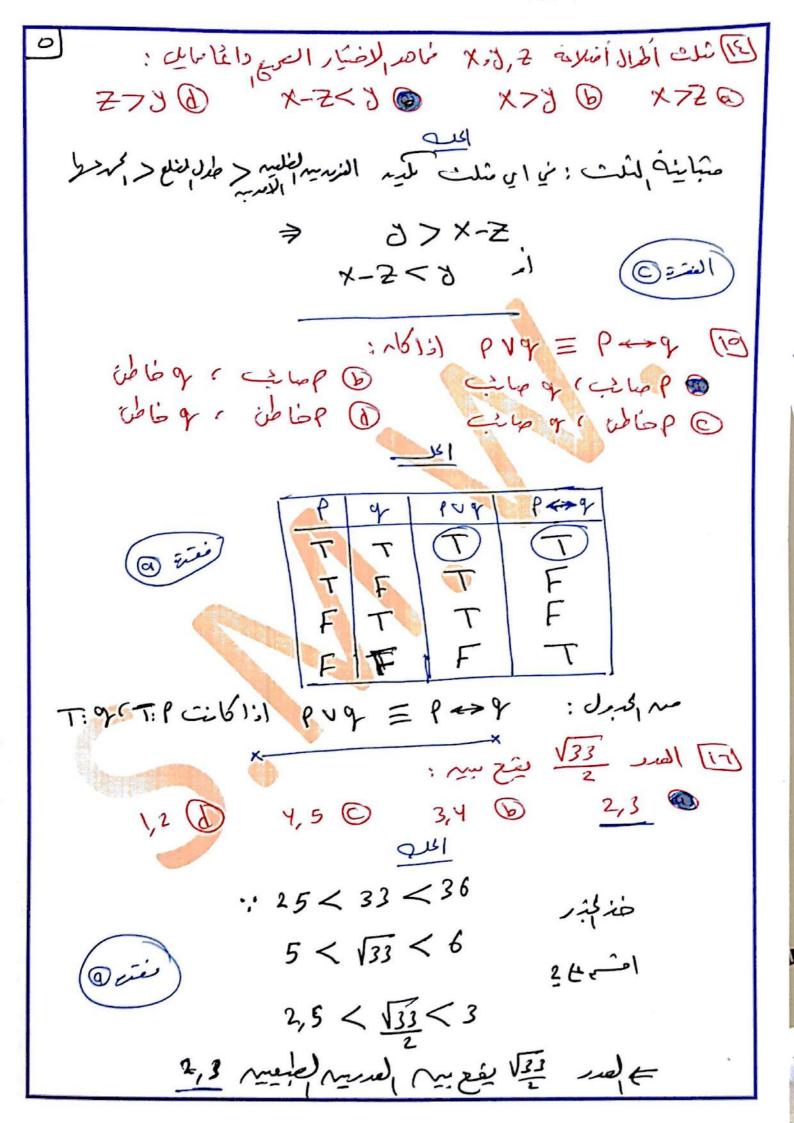
 $xA(xA+1)_{5}-x_{5}A_{5}=xA(x_{5}A_{5}+5xA+1)-x_{5}A_{5}$

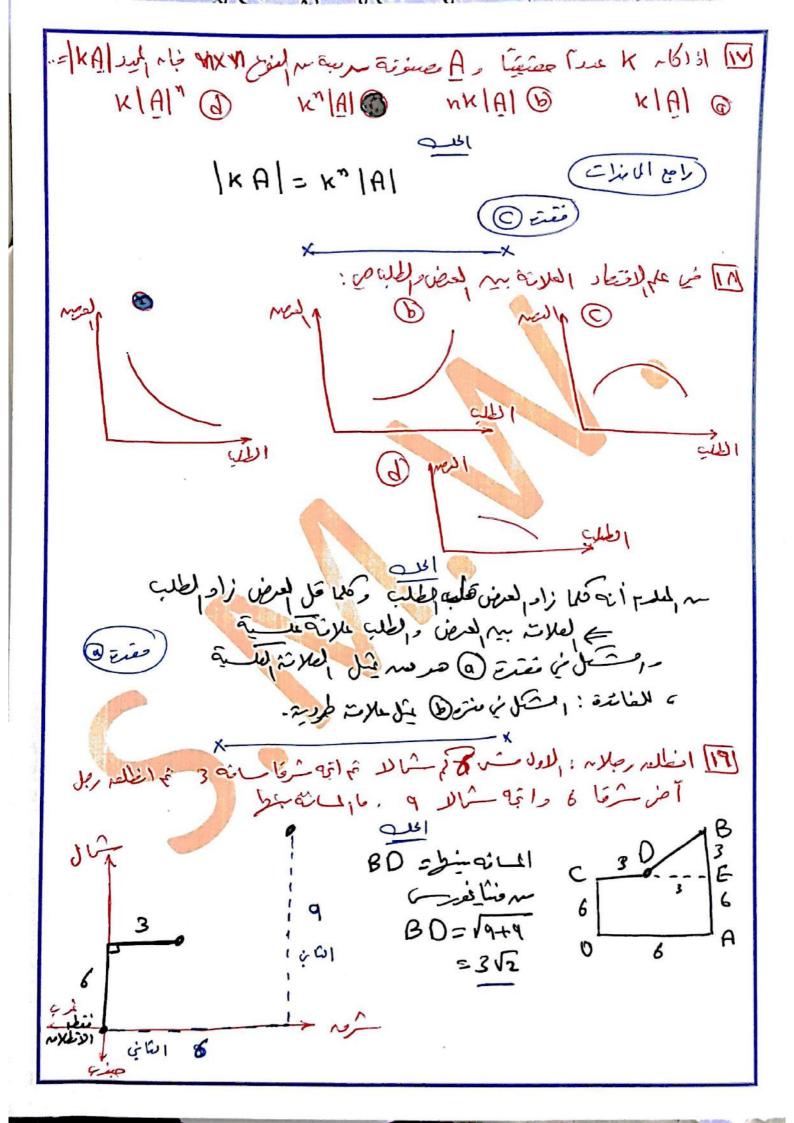
= X, A, + 5X, A, + XA - X, A,

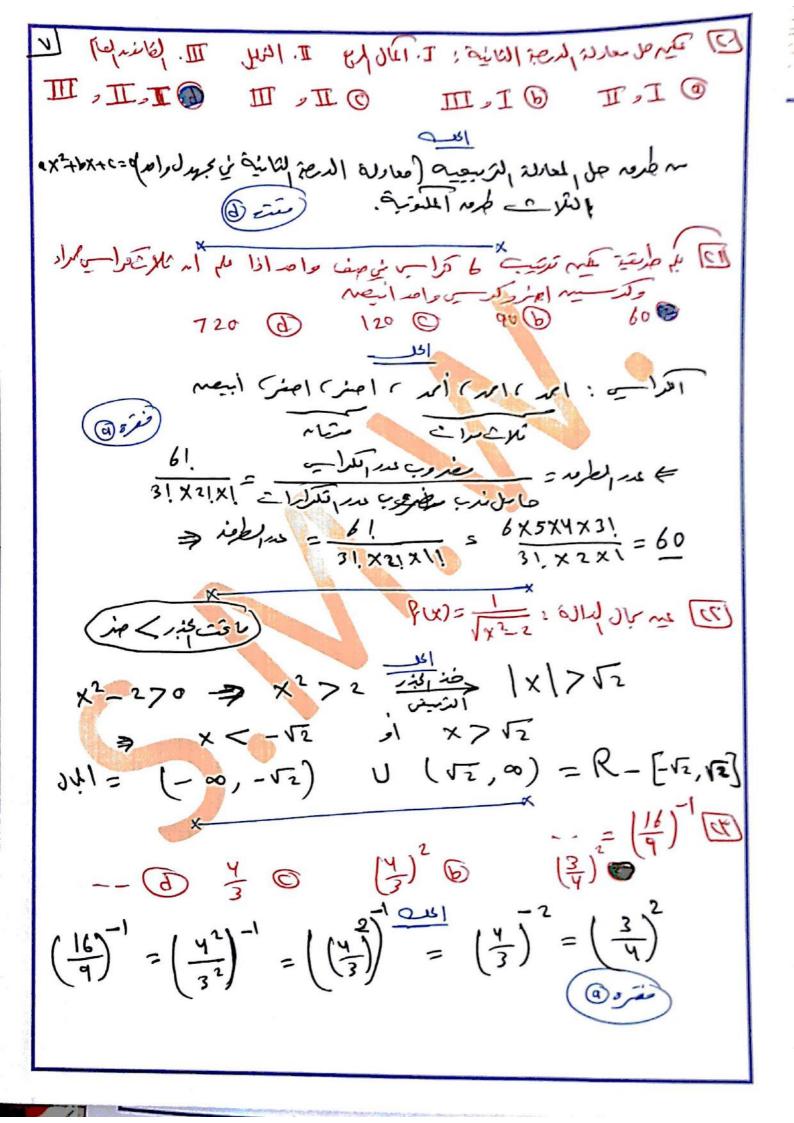
 $= X_3 \beta_3 + X_5 \beta_5 + X\beta.$

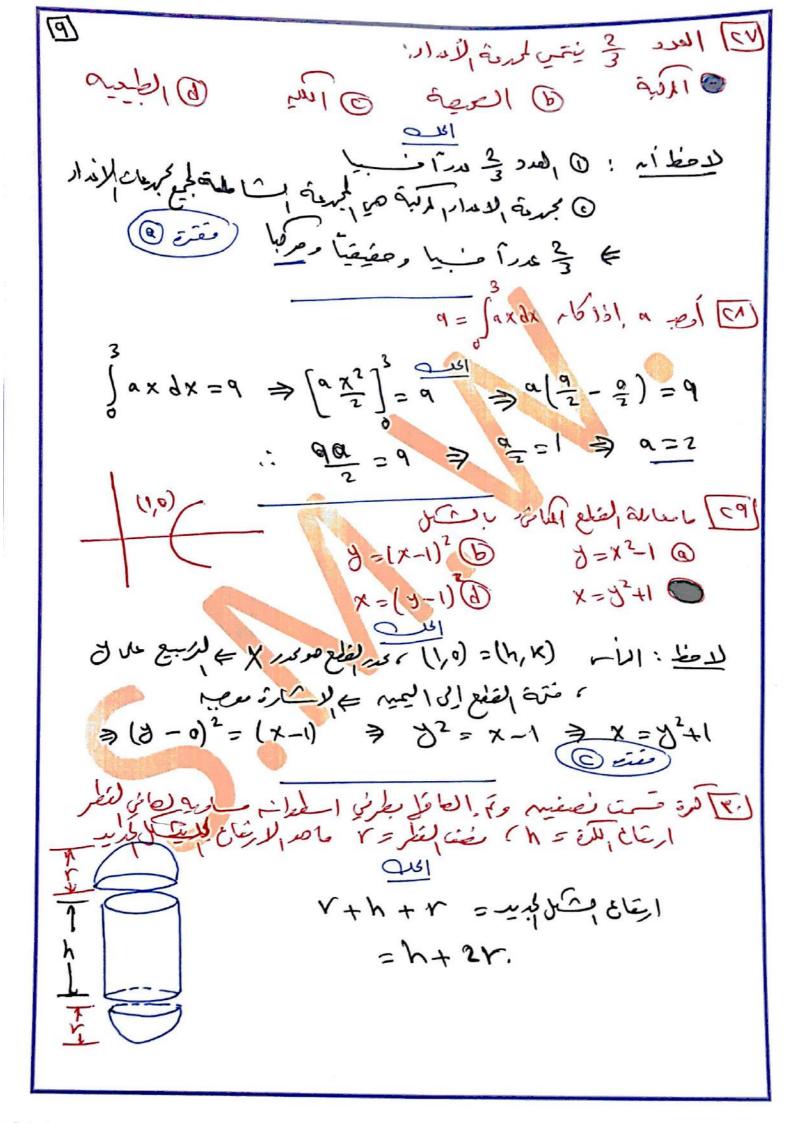

wi (7-i) (7+i) []

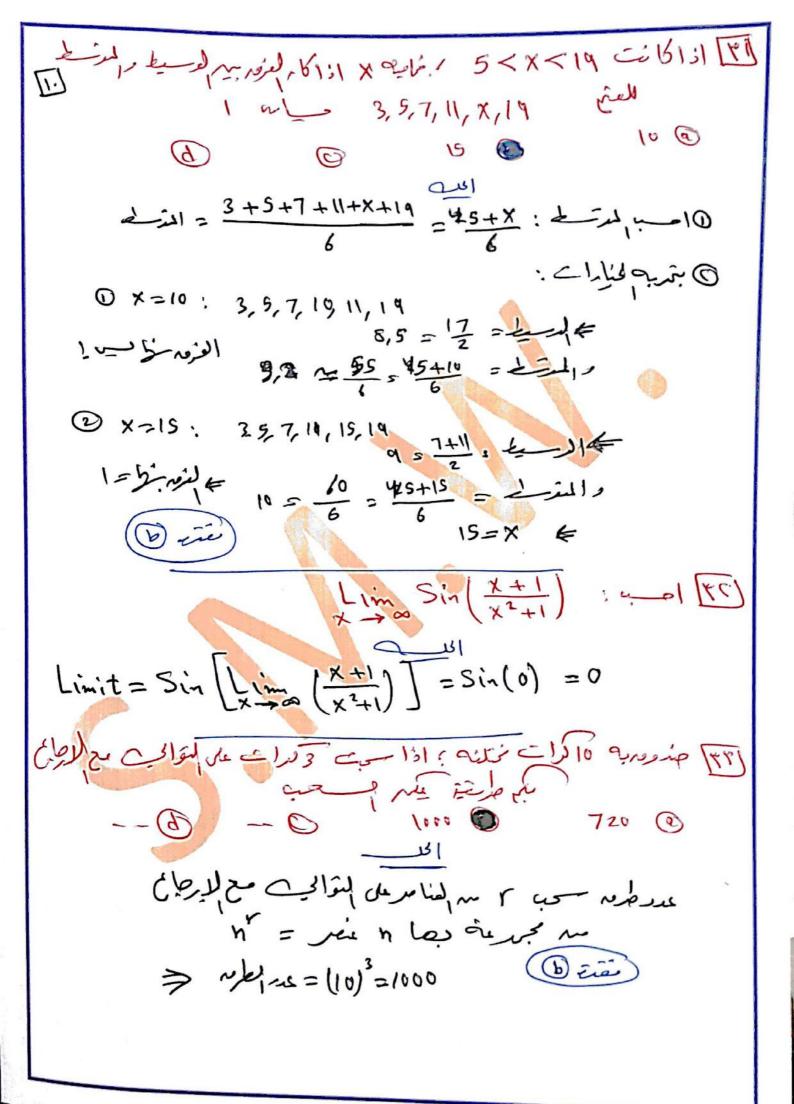

48 6 50

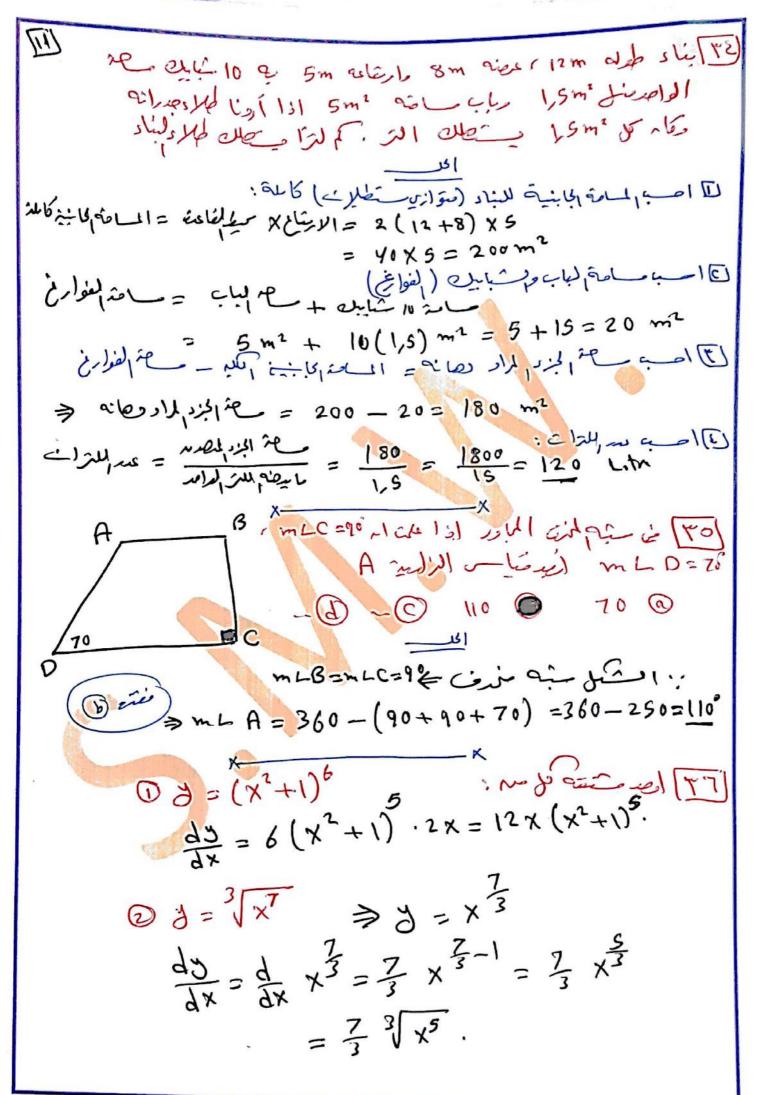

49=i (1) 49+i (C)

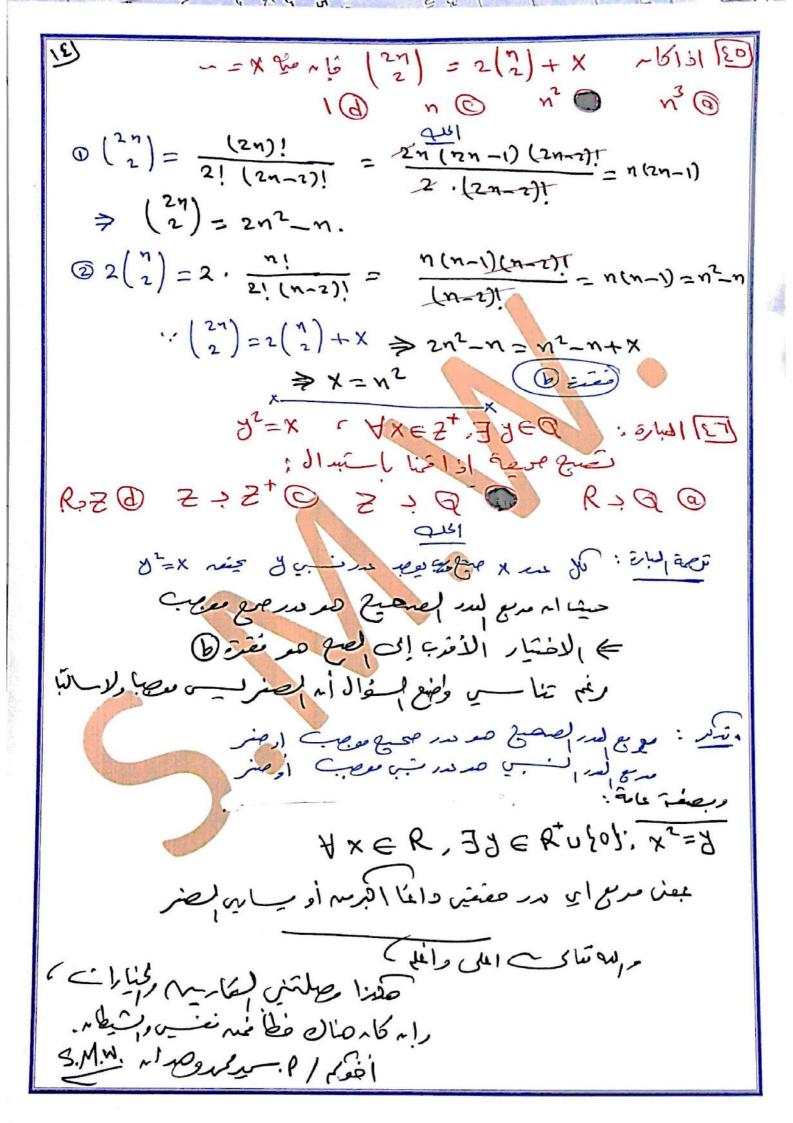

mudaisto $(7-i)(7+i) = (7)^{2} + (1)^{2}$ المترافير (a+ib) (a-ib) = 92 + /2

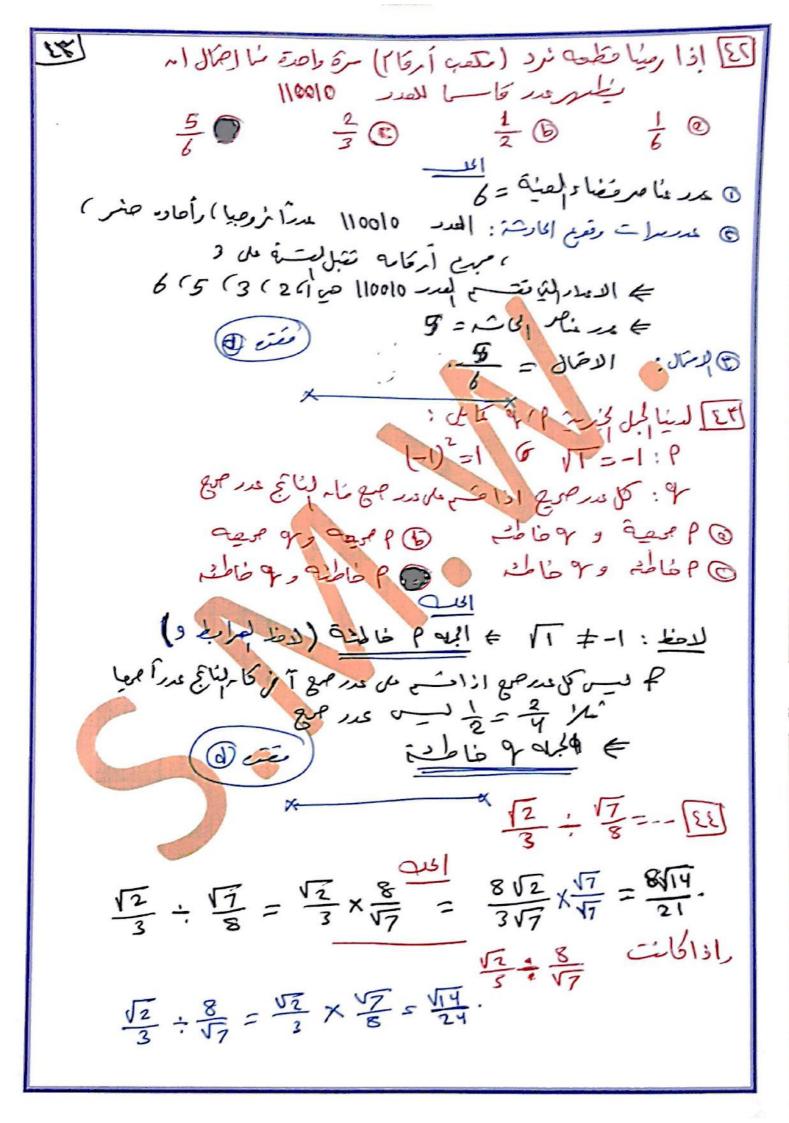

معيوم (۵)

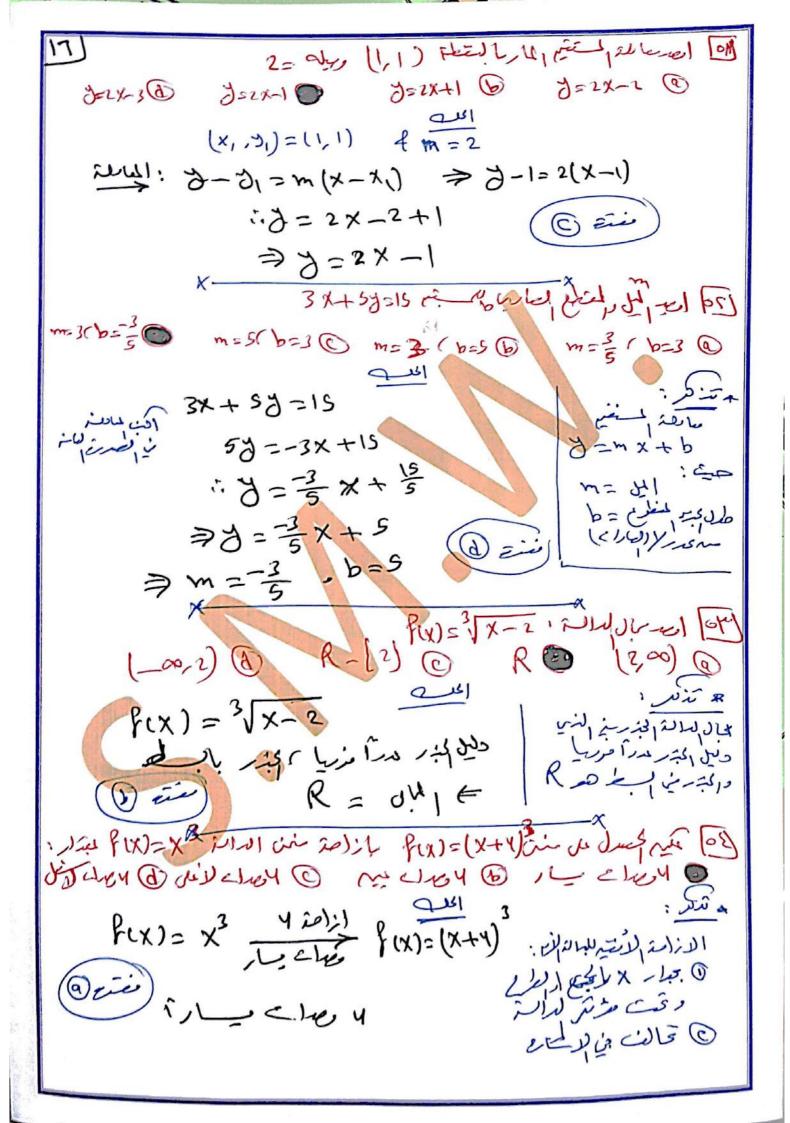


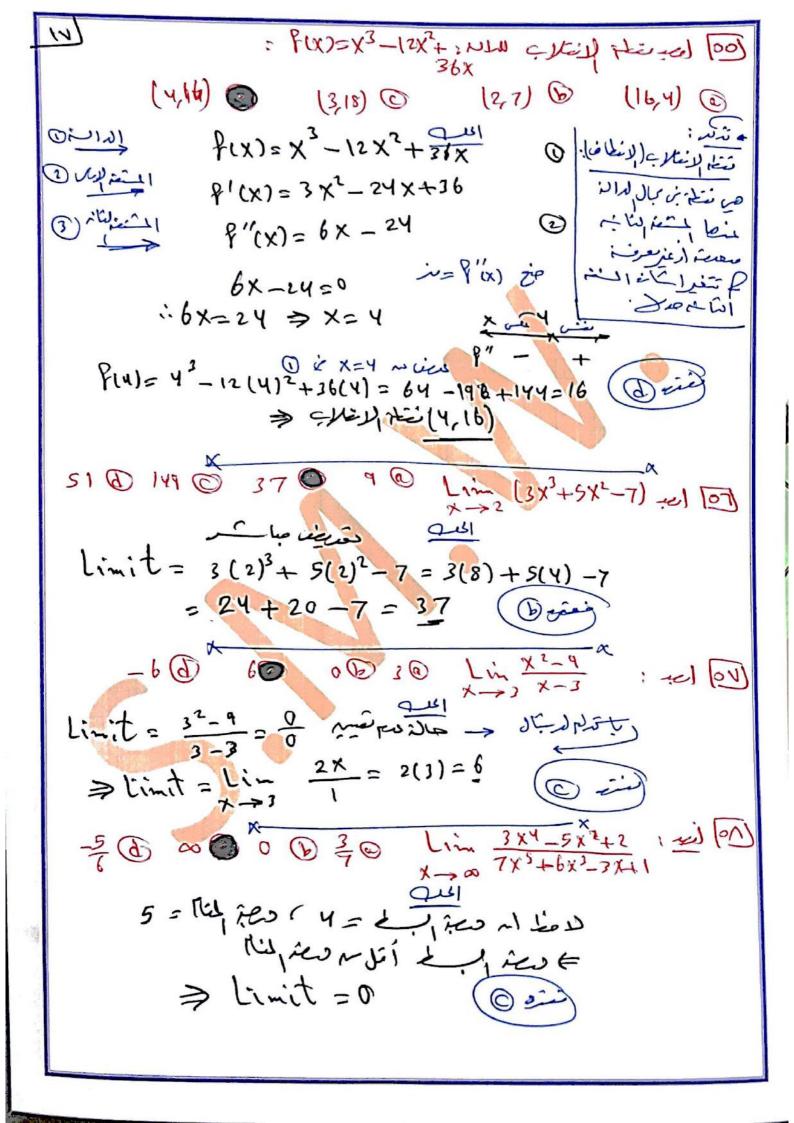


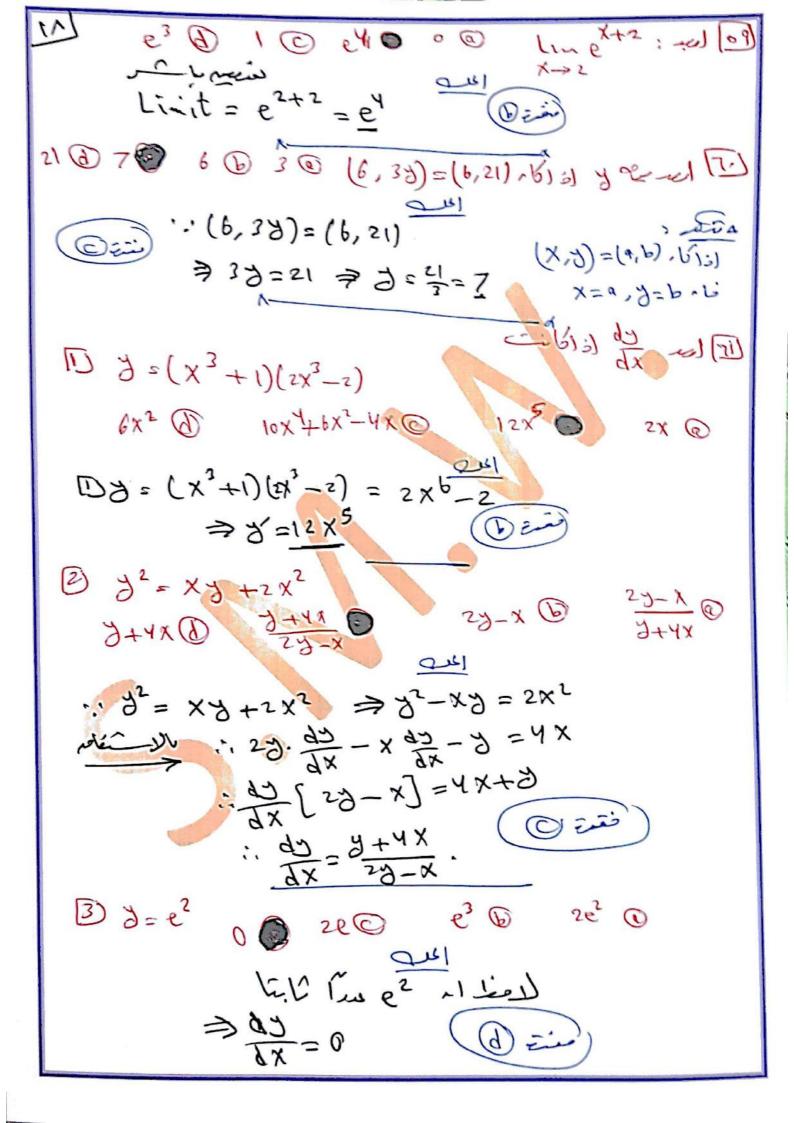


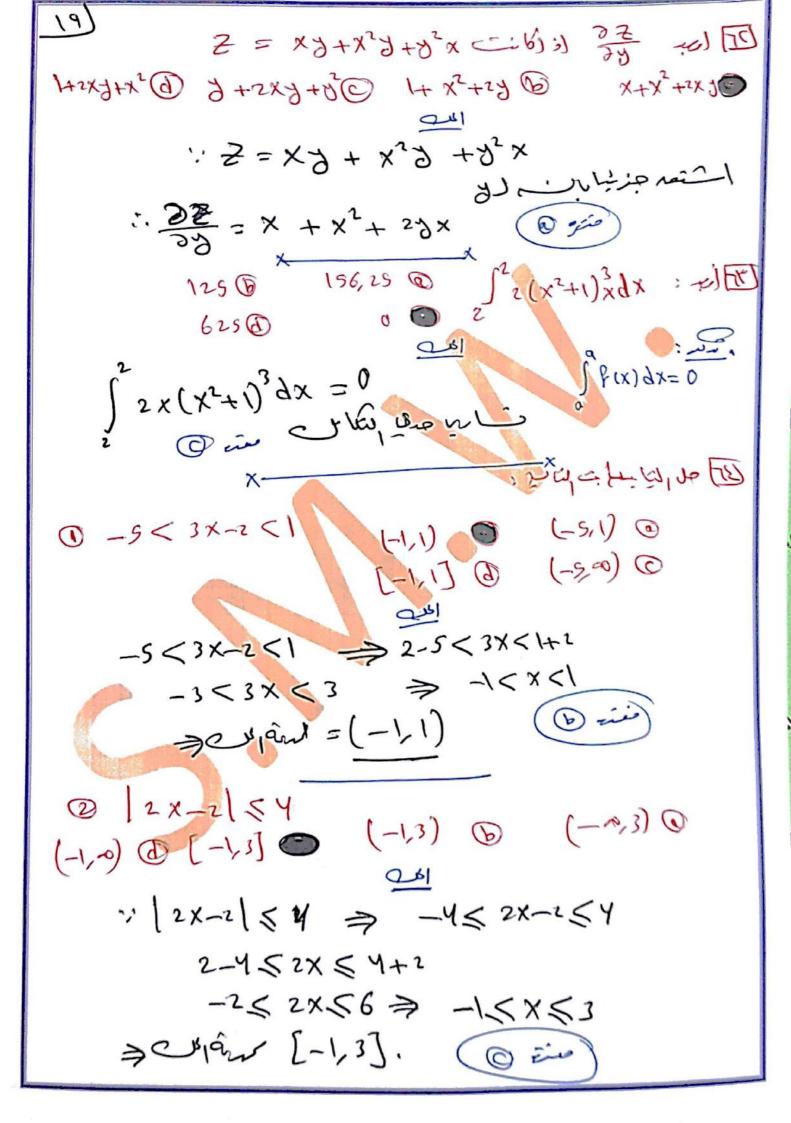


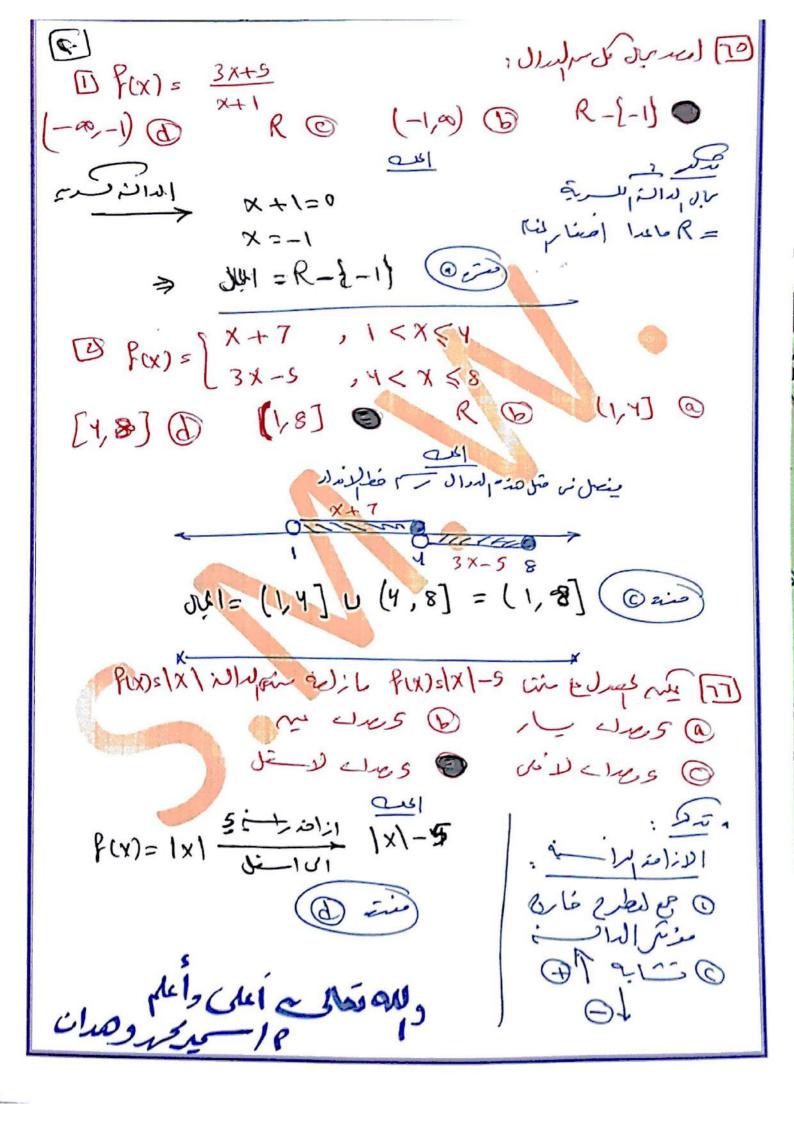





(15) (16) (14) (4 5 (38 (39 Noch C-16) - 16) (16) (16) هذا: عينة (ذكر: الطلاء ولم يذكر طلاء نصل شلابه . . . عينة (ذكر: الطلاء ولم يذكر طلاء نصل شلابه عنه المحالاء على المحالاء · X 0. [-] [-] [0 @ اكب قامد الافران لمايم العينه رعوهن: 0= [(44-4)2+(42-40)2+(38-40)2+(36-40)2 : 0= = = 16+4+4+16 = = = 170 = = x2VIO = VIO. $\left(\frac{-2a^{5}}{a^{1}b^{2}}\right)^{3} = \frac{(-2)^{3}(a^{3})^{3}}{(x^{2})^{3}} = \frac{2u}{-8a^{9}}$ = (5 n+1) + (n+1) [40] (2n+1)2+(n+1)2=((2n)2+2(2n).1+113)+(m)2+2(m).41] = 4n2 + 4n+1 + n2+2n+1 = 5 n2 + 6 n + 2. الذاكام م الم م الم الم الم الله لا x م الماكة الله لا x $\Rightarrow \chi^2 = 2S \Rightarrow \chi = \pm S.$ · ×==== 12x2+3x+1=0 : 2bled , Jo [1] 12×2+ 3×+1=0 $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{9 - 4(12)(1)}}{2(12)} = \frac{-3 \pm \sqrt{-39}}{24}$ a=12, b=3, C=1 ⇒ ×5 录士型(>) 数与)专士型().






 $((729)^{\frac{1}{2}})^{\frac{1}{3}})^{2}$ * أوجد ناجي: حدالباله * 12X-3/21 * على لمادنة x2 = 4 12cm (16cm obstalle * ارب میا b(x) = 1 = 1 = 1 = 1 = x × اعد شخت بدار ۱۵ (۱+۱) و ۱ « العبر فعدل المهر الألب العفع إلى من ١٤٧١ = ١٤٥١ م ١٤٦٠ ه م اذاكانت م مصنرته رمية مم لنع 3x3 ركام ١٩١٤ م يد سامه إسطع إلمان المرسع ر المامه المام المام المام المام (2,3) مربع المديم المستم 1 +× 4= ال

انتهت ,,, والله الموفق لاتنسونا من دعائكم