Workshop Solutions to Sections 3.1 and 3.2

1) $\lim_{n \to \infty} (n^3 - 2n + 1) = (-2)^3 - 2(-2) + 1$	2) $\lim_{n \to \infty} (2n^2 + n + 4) = 2(2)^2 + (2) = 4$
1) $\lim_{x \to -2} (x^3 - 2x + 1) = (-2)^3 - 2(-2) + 1$	2) $\lim_{x \to 2} (3x^2 + x - 4) = 3(2)^2 + (2) - 4$
$= -8 + 4 + 1 = -3$ 3) $\lim_{x \to 1} (x^2 + 3x - 5)^3 = ((1)^2 + 3(1) - 5)^3$	$= 12 + 2 - 4 = 10$ 4) $\lim_{x \to -2} (2x^3 + 3x^2 + 5) = 2(-2)^3 + 3(-2)^2 + 5$
$\lambda \rightarrow 1$	4) $\lim_{x \to -2} (2x^3 + 3x^2 + 5) = 2(-2)^3 + 3(-2)^2 + 5$
$= (1+3-5)^3 = (-1)^3 = -1$	= 2(-8) + 3(4) + 5
$x^2 - 2 - (-2)^2 - 2 - 4 - 2 - 2 - 1$	= -16 + 12 + 5 = 1 6) $\lim_{x \to 2} \frac{x^3 + 5}{x^2 + 1} = \frac{(2)^3 + 5}{(2)^2 + 1} = \frac{8 + 5}{4 + 1} = \frac{13}{5}$
5) $\lim_{x \to -2} \frac{x^2 - 2}{x - 2} = \frac{(-2)^2 - 2}{(-2) - 2} = \frac{4 - 2}{-2 - 2} = \frac{2}{-4} = -\frac{1}{2}$	6) $\lim_{x \to 0} \frac{x+3}{x^2+1} = \frac{(2)+3}{(2)^2+1} = \frac{6+3}{4+1} = \frac{15}{5}$
$x \to -2$ $x = 2$ $(-2) = 2$ $-2 = 2$ -4 2	$x \rightarrow 2 x^{2} + 1 (2)^{2} + 1 4 + 1 5$
7) $\lim_{x \to 0} \frac{x^2 + 3x + 5}{x^2 - 3} = \frac{(0)^2 + 3(0) + 5}{(0)^2 - 3} = \frac{0 + 0 + 5}{0 - 3}$ $= \frac{5}{-3} = -\frac{5}{3}$	8) $\lim_{x \to 1} \frac{x-1}{x^2 + x - 5} = \frac{(1)-1}{(1)^2 + (1) - 5} = \frac{1-1}{1+1-5} = \frac{0}{-3} = 0$
$=\frac{5}{-2}=-\frac{5}{2}$	
$\frac{-3}{9} \lim_{x \to -1} \sqrt{x^3 - 10x + 7} = \sqrt{(-1)^3 - 10(-1) + 7}$ $= \sqrt{-1 + 10 + 7} = \sqrt{16} = 4$	10) $\lim_{x \to -1} \frac{1 - (x+4)^{-2}}{x-2} = \frac{1 - ((-1) + 4)^{-2}}{(-1) - 2}$
	$1 - (-1 + 4)^{-2}$ $1 - (3)^{-2}$ $1 - \frac{1}{23}$
	$=\frac{1-(-1+4)^{-2}}{-1-2}=\frac{1-(3)^{-2}}{-3}=\frac{1-\frac{1}{3^2}}{-3}$
	$1 - \frac{1}{2} = \frac{3}{2} - \frac{3}{2} - \frac{3}{2}$
	$=\frac{1-\frac{1}{9}}{-3}=\frac{\frac{8}{9}}{-3}=\frac{8}{9}\times\frac{1}{-3}=\frac{8}{-27}=-\frac{8}{27}$
	-3 -3 9 -3 -27 27
11) $\lim_{x \to -1} \frac{x^3 + 2x}{8 - 2x} = \frac{(-1)^3 + 2(-1)}{8 - 2(-1)} = \frac{-1 - 2}{8 + 2} = \frac{-3}{10}$	12) $\lim_{x \to 4} \frac{x^2 - 3x}{5 + x} = \frac{(4)^2 - 3(4)}{5 + (4)} = \frac{16 - 12}{5 + 4} = \frac{4}{9}$
$=-\frac{10}{10}$	
$= -\frac{10}{10}$ 13) $\lim_{x \to 4} \frac{x^2 - 4x}{5 + x} = \frac{(4)^2 - 4(4)}{5 + (4)} = \frac{16 - 16}{5 + 4} = \frac{0}{9} = 0$	15) $\lim_{x \to 0} \frac{x^3 - 5x^2}{x^2} = \lim_{x \to 0} \frac{x^2(x-5)}{x^2} = \lim_{x \to 0} (x-5) = (0) - 5 = -5$
	$x \rightarrow 0$ (c) c) c
14) $\lim_{x \to 4} \frac{3^{-1} - (2x - 5)^{-1}}{4 - x} = \lim_{x \to 4} \frac{\frac{1}{3} - \frac{1}{2x - 5}}{4 - x}$	16) $\lim_{x \to 6} \frac{x-6}{x^2-36} = \lim_{x \to 6} \frac{x-6}{(x-6)(x+6)} = \lim_{x \to 6} \frac{1}{x+6}$
3(2x-5)	$=\frac{1}{(6)+6}=\frac{1}{12}$
$=\lim_{x\to 4}\frac{\overline{4-x}}{4-x}$	
$= \lim_{x \to 4} \frac{1}{3(2x-5)(4-x)}$	17) $\lim_{x \to 6} \frac{x^2 - 36}{x - 6} = \lim_{x \to 6} \frac{(x - 6)(x + 6)}{x - 6} = \lim_{x \to 6} (x + 6)$ $= (6) + 6 = 12$
$= \lim_{x \to 4} \frac{2(x-4)}{3(2x-5)(4-x)}$	
$= \lim_{x \to 4} \frac{-2(4-x)}{3(2x-5)(4-x)} = \lim_{x \to 4} \frac{-2}{3(2x-5)}$ $= \frac{-2}{3(2(4)-5)} = \frac{-2}{3(8-5)} = \frac{-2}{9} = -\frac{2}{9}$	18) $\lim_{x \to -6} \frac{x+6}{x^2 - 36} = \lim_{x \to -6} \frac{x+6}{(x-6)(x+6)} = \lim_{x \to -6} \frac{1}{x-6}$
$= \frac{-2}{3(2(4)-5)} = \frac{-2}{3(8-5)} = \frac{-2}{9} = -\frac{2}{9}$	$=\frac{1}{(-6)-6}=\frac{1}{-12}=-\frac{1}{12}$
$\frac{3(2(1) - 3)}{x^3 - 27} = \frac{3(2(1) - 3)}{(x - 3)(x^2 + 3x + 9)}$	r - 3 $r - 3$
19) $\lim_{x \to 3} \frac{x^3 - 27}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3}$	20) $\lim_{x \to 3} \frac{x}{x^3 - 27} = \lim_{x \to 3} \frac{x}{(x - 3)(x^2 + 3x + 9)}$
$\lim_{x \to 3^{-}} \frac{x - 3}{x - 3} = \lim_{x \to 3^{-}} (x^2 + 3x + 9) = (3)^2 + 3(3) + 9$	1 1
=9+9+9=27	$= \lim_{x \to 3} \frac{1}{x^2 + 3x + 9} = \frac{1}{(3)^2 + 3(3) + 9}$
	$=\frac{1}{9+9+9}=\frac{1}{27}$
	>+>+> 2/

$$\begin{aligned} 21) \lim_{k\to 2} \frac{x+2}{x^{1}+8} &= \lim_{k\to -2} \frac{x+2}{(x+2)(x^{2}-2x+4)} \\ &= \lim_{x\to -2} \frac{x+2}{x^{2}-2x+4} \\ &= \frac{1}{4+4+4} \\ &= \frac{1}{12} \end{aligned} \\ 22) \lim_{x\to -2} \frac{x^{2}+2}{x^{2}-2x+4} \\ &= \lim_{x\to -2} \frac{x^{2}-2x+4}{x^{2}-2} \\ &= \lim_{x\to -2} \frac{x^{2}-2x-2}{x^{2}-2(2-2)+4} \\ &= \frac{4+4+4}{x^{2}+4} \\ &= \frac{4+4+4}{x^{2}+4} \\ &= \frac{4+4+4}{x^{2}+4} \\ &= \frac{4}{(4+4+4)} \\ &= \frac{4}{(4+4+4)} \\ &= \frac{1}{(2)} \\ &= \lim_{x\to -2} \frac{x^{2}-2x}{x^{2}-2} \\ &= \lim_$$

32) If $2x \le f(x) \le 3x^2 - 8$, then	Γ (1)1
$\lim_{x \to 2} f(x) \leq 5x \text{o, then}$	33) $\lim_{x \to 0} \left[x \cos\left(x + \frac{1}{x}\right) \right] =$
x · 2	We know that the cosine of any angle is between
Solution: $\lim_{x \to a} 2x = 2(2) = 4$	-1 and 1. So,
$\lim_{x \to 2} 2x = 2(2) = 4$	$-1 \le \cos\left(x + \frac{1}{x}\right) \le 1$
and $11 (2, 2, 0) = 2(2)^2 = 0$	
$\lim_{x \to 2} (3x^2 - 8) = 3(2)^2 - 8 = 12 - 8 = 4$	Now, multiply throughout by x , we get
It follows from the Sandwich Theorem that	$-x \le x \cos\left(x + \frac{1}{x}\right) \le x$
$\lim_{x \to 2} f(x) = 4$	But $\lim_{x\to 0} x = 0$ and $\lim_{x\to 0} (-x) = 0$.
	It follows from the Sandwich Theorem that
	$\lim_{x \to 0} \left[x \cos\left(x + \frac{1}{x}\right) \right] = 0$
34) $\lim_{x \to 0} \left[x \sin\left(\frac{1}{x}\right) \right] =$	35) If $\frac{x^2+1}{x-1} \le f(x) \le x-1$, then
We know that the sine of any angle is between	$\lim_{x \to 0} f(x) =$
-1 and 1. So,	Solution:
$-1 \leq \sin\left(\frac{1}{r}\right) \leq 1$	
$-1 \leq \sin\left(\frac{-x}{x}\right) \leq 1$	$\lim_{x \to 0} \frac{x^2 + 1}{x - 1} = \frac{(0)^2 + 1}{(0) - 1} = \frac{1}{-1} = -1$
Now, multiply throughout by <i>x</i> , we get	and
$-x \le x \sin\left(\frac{1}{x}\right) \le x$	$\lim_{x \to 0} (x - 1) = (0) - 1 = -1$
But $\lim_{x\to 0} x = 0$ and $\lim_{x\to 0} (-x) = 0$.	It follows from the Sandwich Theorem that
It follows from the Sandwich Theorem that	$\lim_{x \to 0} f(x) = -1$
	x~0
$\lim_{x \to 0} \left[x \sin\left(\frac{1}{x}\right) \right] = 0$ 36) If $4(x-1) \le f(x) \le x^3 + x - 2$, then	
	37) If
$\lim_{x \to 1} f(x) =$	$\lim_{x \to 3} \frac{f(x) + 4}{x - 1} = 3,$
Solution:	
$\lim_{x \to 1} (4(x-1)) = 4((1)-1) = 4 \times 0 = 0$	then $\lim_{x \to \infty} f(x) = 0$
and	$\lim_{x \to 3} f(x) =$
$\lim_{x \to 1} (x^3 + x - 2) = (1)^3 + (1) - 2 = 1 + 1 - 2 = 0$	Solution: $\lim_{x \to \infty} f(x) + 4 \lim_{x \to \infty} f(x) + \lim_{x \to \infty} f(x)$
It follows from the Sandwich Theorem that	$\lim_{x \to 3} \frac{f(x) + 4}{x - 1} = \frac{\lim_{x \to 3} (f(x) + 4)}{\lim_{x \to 3} (x - 1)} = \frac{\lim_{x \to 3} f(x) + \lim_{x \to 3} (4)}{\lim_{x \to 3} (x) - \lim_{x \to 3} (1)}$ $= \frac{\lim_{x \to 3} f(x) + 4}{3 - 1} = \frac{\lim_{x \to 3} f(x) + 4}{2}$
$\lim_{x \to 1} f(x) = 0$	$x \to 3$ $x - 1$ $\lim_{x \to 3} (x - 1)$ $\lim_{x \to 3} (x) - \lim_{x \to 3} (1)$
$x \rightarrow 1$	$\lim_{x \to 3} f(x) + 4 \lim_{x \to 3} f(x) + 4$
	Now
	$\frac{\lim_{x \to 3} f(x) + 4}{2} = 3$
	2 - 5
	$\lim_{x \to \infty} f(x) + 4 - 6 \Leftrightarrow \lim_{x \to \infty} f(x) - 2$
	$\lim_{x \to 3} f(x) + 4 = 6 \Leftrightarrow \lim_{x \to 3} f(x) = 2$

$$\begin{array}{l} 38) \lim_{x \to 2} \frac{2^{-1} - (3x - 4)^{-1}}{2 - x} \\ = \lim_{x \to 2} \frac{1}{2 - \frac{1}{2 - x}} \\ = \lim_{x \to 2} \frac{1}{2 - \frac{1}{2 - x}} \\ = \lim_{x \to 2} \frac{2}{2 - x} \\ = \frac{1}{2 - \frac{3}{2 - x}} \\ = \frac{1}{2 - \frac{3}{2 -$$

$$\begin{aligned} 44) \lim_{x \to -2} \frac{4x^{2} + 6x - 4}{2x^{2} - 8} \\ &= \lim_{x \to -2} \frac{2(2x^{2} + 3x - 2)}{2(x^{2} - 4)} \\ &= \lim_{x \to -2} \frac{2x^{2} + 3x - 2}{x^{2} - 4} \\ &= \lim_{x \to -2} \frac{2x^{2} + 3x - 2}{x^{2} - 4} \\ &= \lim_{x \to -2} \frac{2x^{2} - 1}{x^{2} - 2} \\ &= \frac{2x^{2} - 1}{x^{2} - 2} \frac{2(-2) - 1}{(-2) - 2} = \frac{-4 - 1}{-2 - 2} \\ &= \frac{-5}{4} \\ 46) \lim_{x \to 3} \frac{\sqrt{2x + 1}(x^{2} - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x^{2} - 9)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 3)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 1}(x - 3)(x + 3)}{(2x + 2)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 2}(x - 3)}{(2x + 2)(x - 3)} \\ &= \lim_{x \to -3} \frac{\sqrt{2x + 2}(x - 3)}{(x - 1)(\sqrt{3 - 2x + 1})} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 1)(\sqrt{3 - 2x + 1})} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ \\ &= \lim_{x \to -3} \frac{(x - 2)}{(x - 2)} \\ \\ &=$$

$3 - \sqrt{2x + 5}$	$x^{2} + 3x + 2$ $(-1)^{2} + 3(-1) + 2$ $1 - 3 + 2$
50) $\lim_{x \to 2} \frac{3 - \sqrt{2x + 3}}{x - 2}$	51) $\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 + 1} = \frac{(-1)^2 + 3(-1) + 2}{(-1)^2 + 1} = \frac{1 - 3 + 2}{1 + 1}$
$= \lim_{x \to 2} \left[\frac{3 - \sqrt{2x + 5}}{x - 2} \times \frac{3 + \sqrt{2x + 5}}{3 + \sqrt{2x + 5}} \right]$	$=\frac{0}{2}=0$
	_
$= \lim_{x \to 2} \frac{9 - (2x + 5)}{(x - 2)(3 + \sqrt{2x + 5})}$	52) If
$x \to 2 (x - 2)(3 + \sqrt{2x} + 5)$	$\lim_{x \to k} f(x) = -\frac{1}{2}$
$= \lim_{x \to 2} \frac{4 - 2x}{(x - 2)(3 + \sqrt{2x + 5})}$	
$x \to 2 (x - 2)(3 + \sqrt{2x} + 5)$	and
$= \lim_{x \to 2} \frac{2(2-x)}{(x-2)(3+\sqrt{2x+5})}$	$\lim_{x \to k} g(x) = \frac{2}{3}$
$x \to 2(x-2)(3+\sqrt{2}x+5)$	$x \rightarrow \kappa \qquad 3$
$= \lim_{x \to 2} \frac{-2(x-2)}{(x-2)(3+\sqrt{2x+5})}$	
$\lim_{x \to 2} (x - 2) (3 + \sqrt{2x + 5})$	$\lim_{x \to k} \frac{f(x)}{g(x)} = \frac{-\frac{1}{2}}{\frac{2}{3}} = -\frac{1}{2} \times \frac{3}{2} = -\frac{3}{4}$
$-\lim_{n \to \infty} \frac{-2}{-2} - \frac{-2}{-2}$	$\lim_{x \to k} g(x) = \frac{2}{2} = 2^2 + 4$
$= \lim_{x \to 2} \frac{1}{3 + \sqrt{2x + 5}} = \frac{1}{3 + \sqrt{2(2) + 5}}$	3
$= \frac{-2}{3+\sqrt{9}} = \frac{-2}{6} = -\frac{1}{3}$ 53) $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} = \lim_{x \to 0} \left[\frac{\sqrt{x+4}-2}{x} \times \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} \right]$	
$\sqrt{x+4} - 2$, $\sqrt{x+4} - 2$, $\sqrt{x+4} + 2$	$x^2 - 5x - 6$ $(x - 6)(x + 1)$
53) $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} \times \frac{1}{\sqrt{x+4}+2}$	54) $\lim_{x \to -1} \frac{x^2 - 5x - 6}{x + 1} = \lim_{x \to -1} \frac{(x - 6)(x + 1)}{x + 1} = \lim_{x \to -1} (x - 6)$
(x+4)-4	=(-1)-6=-7
$= \lim_{x \to 0} \frac{(x+4) - 4}{x(\sqrt{x+4} + 2)}$	
	(x + 2)
$=\lim_{x\to 0}\frac{x}{x(\sqrt{x+4}+2)}$	$(x+3)^{-1}-3^{-1}$ $\frac{1}{x+2}-\frac{1}{2}$ $\frac{5-(x+3)}{3(x+3)}$
	55) $\lim_{x \to 0} \frac{(x+3)^{-1} - 3^{-1}}{x} = \lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x} = \lim_{x \to 0} \frac{\frac{3 - (x+3)}{3(x+3)}}{x}$
$= \lim_{x \to 0} \frac{1}{\sqrt{x+4}+2} = \frac{1}{\sqrt{(0)+4}+2}$	-x -1
1 1	$= \lim_{x \to 0} \frac{1}{3x(x+3)} = \lim_{x \to 0} \frac{1}{3(x+3)}$
$=\frac{1}{\sqrt{4}+2}=\frac{1}{4}$	1 -1 -1 -1
	$= \lim_{x \to 0} \frac{-x}{3x(x+3)} = \lim_{x \to 0} \frac{-1}{3(x+3)} = \lim_{x \to 0} \frac{-1}{3(x+3)}$ $= \frac{-1}{3(0+3)} = \frac{-1}{9} = -\frac{1}{9}$
56) If	57) If
$\lim_{x \to 1} f(x) = 3$	$\lim_{x \to 1} g(x) = -4$
	and
$\lim_{x \to 1} g(x) = -4$	$\lim_{x \to 1} h(x) = -1$
and	then x→1
$\lim_{x \to 1} h(x) = -1$	
$x \rightarrow 1$ then	$\lim_{x \to 1} \sqrt{g(x)h(x)} = \sqrt{\left[\lim_{x \to 1} g(x)\right] \left[\lim_{x \to 1} h(x)\right]} = \sqrt{(-4)(-1)}$
	$=\sqrt{4}=2$
$\lim_{x \to 1} \left[\frac{5f(x)}{2g(x)} + h(x) \right] = \frac{\lim_{x \to 1} 5f(x)}{\lim_{x \to 1} 2g(x)} + \lim_{x \to 1} h(x)$	
$\begin{bmatrix} x \to 1 \\ 2y(x) \end{bmatrix} \lim_{\substack{x \to 1 \\ y \to 1}} 2y(x) x \to 1$	
$= \frac{5\lim_{x \to 1} f(x)}{2\lim_{x \to 1} g(x)} + \lim_{x \to 1} h(x)$ $= \frac{5(3)}{2(-4)} + (-1) = \frac{15}{-8} - 1 = -\frac{15}{8} - 1$	58) If
$-2\lim_{x \to 1} g(x) + \lim_{x \to 1} h(x)$	$\lim_{x \to 1} f(x) = 3$
	$\lim_{x \to 1} g(x) = -4$
$= \frac{1}{2(-4)} + (-1) = \frac{1}{-8} - 1 = -\frac{1}{8} - 1$	and
$=\frac{-15-8}{8}=-\frac{23}{8}$	$\lim_{x \to 1} h(x) = -1$
$-\frac{-8}{8}-\frac{-8}{8}$	then x→1
	$\lim_{x \to 1} \left[2f(x)g(x)h(x) \right] = 2 \left[\lim_{x \to 1} f(x) \right] \left[\lim_{x \to 1} g(x) \right] \left[\lim_{x \to 1} h(x) \right]$
	= 2(3)(-4)(-1) = 24

Workshop Solutions to Section 3.3

1) If $f(x) = \begin{cases} 2x+3; \ x \ge -2\\ 2x+5; \ x < -2 \end{cases}$ then	2) If $f(x) = \begin{cases} 2x+3; \ x \ge -2\\ 2x+5; \ x < -2 \end{cases}$ then
$\lim_{x \to (-2)^{-}} f(x) =$	$\lim_{x \to (-2)^+} f(x) =$
Solution: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (2x + 5) = 2(-2) + 5 = 4 + 5$	$\frac{\text{Solution:}}{1}$
$\lim_{x \to (-2)^{-}} f(x) = \lim_{x \to (-2)^{-}} (2x + 5) = 2(-2) + 5 = -4 + 5$	$\lim_{x \to (-2)^+} f(x) = \lim_{x \to (-2)^+} (2x+3) = 2(-2) + 3 = -4 + 3$
1	
$= 1$ 3) If $f(x) = \begin{cases} 2x+3; \ x \ge -2\\ 2x+5; \ x < -2 \end{cases}$ then	$= -1$ 4) If $f(x) = \begin{cases} x^2 - 2x + 3; \ x \ge 3 \\ x^3 - 3x - 12; \ x < 3 \end{cases}$ then
3) If $f(x) = \begin{cases} 2x + 5; x < -2 \end{cases}$ then	4) If $f(x) = \begin{cases} x & 2x + 6, x = 0 \\ x^3 - 2x - 12, x < 2 \end{cases}$ then
$\lim_{x \to -2} f(x) =$	$\frac{1}{12}, x < 3$
	$\lim_{x \to 3} f(x) =$
Solution:	Solution:
$\overline{\lim_{x \to -2} f(x)}$ does not exist because	$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^3 - 3x - 12) = (3)^3 - 3(3) - 12$
$\lim_{x \to (-2)^-} f(x) \neq \lim_{x \to (-2)^+} f(x)$	$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x^3 - 3x - 12) = (3)^3 - 3(3) - 12$ $= 27 - 9 - 12 = 6$
$x \rightarrow (-2)^ x \rightarrow (-2)^+$	$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x^2 - 2x + 3) = (3)^2 - 2(3) + 3$
	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
	$x \to 3^{+}$ = 9 - 6 + 3 = 6
	$\lim_{x \to 3} f(x) = 6$
$(x^2 - 7x: x < 1)$	$\therefore \lim_{x \to 3} f(x) = 6$ 6) If $f(x) = \begin{cases} x^2 - 7x \ ; & x < 1 \\ 5 \ ; & 1 \le x \le 3 \\ 3x + 1 \ ; & x > 3 \end{cases}$ then
5) If $f(x) = \begin{cases} x^2 - 7x; & x < 1 \\ 5; & 1 \le x \le 3 \\ 3x + 1; & x > 3 \end{cases}$ then	6) If $f(x) = \begin{cases} 5 & x \\ 5 & x \\ 1 & x \\ 2 & x \\ 3 & x \\ 1 & x \\ 3 & x \\ 1 & x \\ 1 & x \\ 2 & x \\ 3 & x \\ 1 & x \\ 1 & x \\ 2 & x \\ 1 & x \\ 1 & x \\ 2 & x \\ 1 & x \\ 1 & x \\ 2 & x \\ 1 & x$
3r+1 $r>3$	(3r+1 + r > 3)
$\lim_{x \to 1^-} f(x) =$	$\lim_{x \to 1^+} f(x) =$
–	
Solution: $(2 - 7) = (4)^2 = 7(4) = 4$	Solution:
$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 - 7x) = (1)^2 - 7(1) = 1 - 7 = -6$	$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (5) = 5$
$\frac{\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 - 7x) = (1)^2 - 7(1) = 1 - 7 = -6}{\begin{cases} x^2 - 7x ; & x < 1 \\ 5 ; & 1 \le x \le 3 \\ 3x + 1 ; & x > 3 \end{cases}}$	$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (5) = 5$ 8) If $f(x) = \begin{cases} x^{2} - 7x; & x < 1 \\ 5; & 1 \le x \le 3 \\ 3x + 1; & x > 3 \end{cases}$ then
7) If $f(x) = \begin{cases} 5 & 1 \le x \le 3 \\ 5 & 1 \le x \le 3 \end{cases}$ then	8) If $f(x) = \begin{cases} 5 & 1 \le x \le 3 \\ 5 & 1 \le x \le 3 \end{cases}$ then
3x + 1 : $x > 3$	(3r+1); $r > 3$
$\lim_{x \to 3^-} f(x) =$	$\lim_{x \to 3^+} f(x) =$
	x · 5
Solution:	$\frac{\text{Solution:}}{1}$
$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (5) = 5$	$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (3x+1) = 3(3) + 1 = 9 + 1 = 10$
$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (5) = 5$ 9) If $f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; & x^2 - 4 < 0 \end{cases}$ then	$\left(\frac{x^2+x-6}{x^2}, x^2-4>0\right)$
9) If $f(x) = \begin{cases} x^{2-4}, x & 1 \neq 0 \\ x^{2} & \text{then} \end{cases}$	10) If $f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; & x^2 - 4 < 0 \end{cases}$ then
$\left(\frac{x^2+x-6}{x^2}\right); x^2-4 < 0$	$\left(\frac{x^2+x-6}{x^2}\right); x^2-4 < 0$
$\lim_{x \to 2^+} f(x) =$	$\lim_{x \to 2^-} f(x) =$
Solution:	Solution:
$(x^2 + x - 6)^2$	$(x^2 + x - 6)$
$\int \frac{1}{x^2 - 4}; x^2 - 4 > 0$	$f(x) = \int \frac{x^2 - 4}{x^2 - 4}; x^2 - 4 > 0$
$f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; \ x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; \ x^2 - 4 < 0 \end{cases}$	$\int (x)^{2} = \int x^{2} + x - 6$
$(-4-x^2); x^2-4 < 0$	$f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; \ x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; \ x^2 - 4 < 0 \end{cases}$
$(x^2 + x - 6)$	
$=\begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; \ x^2 > 4\\ \frac{x^2 + x - 6}{-(x^2 - 4)}; \ x^2 < 4 \end{cases}$	$=\begin{cases} \frac{x^2+x-6}{x^2-4}; \ x^2 > 4\\ \frac{x^2+x-6}{-(x^2-4)}; \ x^2 < 4 \end{cases}$
$= \begin{cases} x^2 + x - 6 \end{cases}$	$= \begin{cases} x^2 + x - 6 \end{cases}$
$\left \frac{1}{-(x^2-4)}; x^2 < 4\right $	$\left(\frac{1}{-(x^2-4)}; x^2 < 4\right)$
	$=\begin{cases} \frac{(x+3)(x-2)}{(x-2)(x+2)}; x > 4\\ \frac{(x+3)(x-2)}{-(x-2)(x+2)}; x < 4 \end{cases}$
$=\begin{cases} \frac{(x+3)(x-2)}{(x-2)(x+2)}; \ x > 4\\ \frac{(x+3)(x-2)}{-(x-2)(x+2)}; \ x < 4 \end{cases}$	$\left \frac{(x+3)(x-2)}{(x-2)(x+2)}; x > 4 \right $
$= \begin{cases} (x-2)(x+2) \\ (x+2)(x-2) \end{cases}$	$=\begin{cases} (x-2)(x+2) \\ (x+2)(x-2) \end{cases}$
$\left \frac{(x+3)(x-2)}{(x-2)}; x < 4 \right $	$\left \frac{(x+3)(x-2)}{(x-2)}; x < 4 \right $
$(-(x-2)(x+2))^{-1}$	(-(x-2)(x+2))
$\left(\begin{array}{c} \frac{x+3}{x+3}; & x>2 \text{ or } x<-2 \end{array} \right)$	$\left(\begin{array}{c} \frac{x+3}{x+2}; & x>2 \text{ or } x<-2 \end{array}\right)$
$=\begin{cases} x+2\\ x+2 \end{cases}$ then	$=\begin{cases} x+2\\ x+2 \end{cases}$ then
$= \begin{cases} \frac{x+3}{x+2}; & x > 2 \text{ or } x < -2 \\ -\frac{x+3}{x+2}; & -2 < x < 2 \end{cases}$ then	$= \begin{cases} \frac{x+3}{x+2}; & x > 2 \text{ or } x < -2 \\ -\frac{x+3}{x+2}; & -2 < x < 2 \end{cases} $ then
(x+2)	\times $\lambda + \Delta$
$\therefore \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(\frac{x+3}{x+2}\right) = \frac{(2)+3}{(2)+2} = \frac{5}{4}$	$\therefore \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \left(-\frac{x+3}{x+2} \right) = -\frac{(2)+3}{(2)+2} = -\frac{5}{4}$
$x \rightarrow 2^{+} \qquad x \rightarrow 2^{+} \backslash x + 2/ (2) + 2 4$	$x \to z$ $x \to z^-$ ($x + 2/$ (2) + 2 4

11)

$$\lim_{x \to w} \frac{|x-a|}{x-a} = \lim_{x \to w} \frac$$

30) If $m \neq 0$, then	31) If $m \neq 0$, then
Solution:	Solution:
$\lim_{x \to 0} \frac{\sin(nx)}{\sin(mx)} =$ $\lim_{x \to 0} \frac{\sin(nx)}{\sin(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\sin(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\sin(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$	$\lim_{x \to 0} \frac{\sin(nx)}{\tan(mx)} =$ $\lim_{x \to 0} \frac{\sin(nx)}{\tan(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\sin(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\tan(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$
32) If $m \neq 0$, then	33) If $m \neq 0$, then
$\lim_{x \to 0} \frac{\tan(nx)}{\tan(mx)} =$ Solution:	$\lim_{x \to 0} \frac{\tan(nx)}{\sin(mx)} =$ Solution:
$\lim_{x \to 0} \frac{\tan(nx)}{\tan(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\tan(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\tan(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$	$\lim_{x \to 0} \frac{\tan(nx)}{\sin(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\tan(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\sin(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$
34) $\lim_{x \to 0} \frac{\sin(1 - \cos x)}{1 - \cos x} =$ $\lim_{x \to 0} \frac{\sin(1 - \cos x)}{1 - \cos x} = 1$	35) $\lim_{x \to 0} \frac{\sin(\sin(2x))}{\sin(2x)} =$ <u>Solution:</u> $\lim_{x \to 0} \frac{\sin(\sin(2x))}{\sin(2x)} = 1$
36)	37)
$\lim_{x \to 0} \frac{1 - \cos(2x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos(2x)}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2} = 2\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2$ $= 2\left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2 = 2(1)^2 = 2$	$\lim_{x \to \infty} \sqrt{\frac{1}{x^2} - \frac{3}{x} + 4} = \frac{1}{\sum_{x \to \infty} \sqrt{\frac{1}{x^2} - \frac{3}{x} + 4}} = \sqrt{\lim_{x \to \infty} \left(\frac{1}{x^2} - \frac{3}{x} + 4\right)} = \sqrt{0 - 0 + 4}$ $= 2$
38)	39)
$\lim_{\chi \to \infty} \left(\frac{1}{\chi^{2/5}} + 2 \right) =$ Solution:	$\lim_{x \to \infty} \frac{3x + 15}{9x^2 + 4x - 13} =$ Solution:
$\lim_{\chi \to -\infty} \left(\frac{1}{\chi^{2/5}} + 2 \right) = 0 + 2 = 2$	$\lim_{x \to \infty} \frac{3x + 15}{9x^2 + 4x - 13} = \lim_{x \to \infty} \frac{\frac{3x}{x^2} + \frac{15}{x^2}}{\frac{9x^2}{x^2} + \frac{4x}{x^2} - \frac{13}{x^2}}$ $= \lim_{x \to \infty} \frac{\frac{3}{x} + \frac{15}{x^2}}{9 + \frac{4}{x} - \frac{13}{x^2}} = \frac{0 + 0}{9 + 0 + 0} = 0$
40) $\lim_{x \to \infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to \infty} \frac{3x^2 - 8x + 15}{\frac{x^2}{9x^2} - \frac{8x}{x^2} + \frac{15}{x^2}}{\frac{3x^2}{x^2} - \frac{13}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{8}{x} + \frac{15}{x^2}}{9 + \frac{4}{x} - \frac{13}{x^2}} = \frac{3 - 0 + 0}{9 + 0 + 0} = \frac{1}{3}$	41) $\lim_{x \to -\infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} =$ Solution: $\lim_{x \to -\infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to -\infty} \frac{\frac{3x^2}{-x^2} - \frac{8x}{-x^2} + \frac{15}{-x^2}}{\frac{9x^2}{-x^2} + \frac{4x}{-x^2} - \frac{13}{-x^2}}$ $= \lim_{x \to -\infty} \frac{-3 + \frac{8}{x} - \frac{15}{x^2}}{-9 - \frac{4}{x} + \frac{13}{x^2}} = \frac{-3 + 0 - 0}{-9 - 0 + 0} = \frac{1}{3}$

$$\begin{array}{l} 42) \\ \frac{1}{\lim_{x \to \infty} \frac{3x^{5} - 8x + 15}{9x^{2} + 4x - 13}} = \\ \frac{3}{2} \\ \frac{3}{2} \\ \frac{3x^{5} - 8x + 15}{9x^{2} + 4x - 13} = \\ \frac{3x^{5} - 8x + 15}{9x^{2} + 4x^{2} - 13} = \\ \frac{3x^{5} - 8x^{5} - 8x + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5} - 8x^{5} - 8x^{5} - 8x^{5} + 1}{12} = \\ \frac{3x^{5$$

$$\begin{array}{l} \text{48} \\ \text{49} \\ \begin{array}{l} \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \text{Solution:} \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \frac{1}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \\ \frac{1}{x + 5} = \\ \frac{$$

$$\begin{array}{l} 53) \text{ The horizontal asymptote of} \\ f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 - 2x - 3}}{2x + 7} \\ \hline f(x) = \frac{\sqrt{x^2 - 3}}{2x^2 + 7x - 1} \\ \hline f(x) = \frac{\sqrt{x^2 - 3}}{2x^2$$

1) $\lim_{x \to 3^+} \frac{2}{x-3} =$ 2) $\lim_{x \to 3^-} \frac{2}{x-3} =$ Solution: Solution: If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$ $\therefore \lim_{x \to 3^+} \frac{2}{x - 3} = \infty$ If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$ $\therefore \lim_{x \to 3^-} \frac{2}{x - 3} = -\infty$ 3) $\lim_{x \to 3^+} \frac{-2}{x-3} =$ 4) $\lim_{x \to 3^-} \frac{-2}{x-3} =$ Solution: Solution: If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$ If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$ $\therefore \lim_{x \to 3^-} \frac{2}{x-3} = \infty$ $\therefore \lim_{x \to 3^+} \frac{-2}{x-3} = -\infty$ 6) $\lim_{x \to -3^-} \frac{2}{x+3} =$ 5) $\lim_{x \to -3^+} \frac{2}{x+3} =$ Solution: Solution: If $x \to -3^+$, then $x > -3 \implies x + 3 > 0$ If $x \to -3^-$, then $x < -3 \implies x + 3 < 0$ $\therefore \lim_{x \to -3^-} \frac{2}{x+3} = -\infty$ $\therefore \lim_{r \to -3^+} \frac{2}{r+3} = \infty$ 7) $\lim_{x \to 2^+} \frac{3x - 1}{x - 2} =$ 8) $\lim_{x \to 2^-} \frac{3x - 1}{x - 2} =$ Solution: Solution: If $x \to 2^+$, then $x > 2 \implies x - 2 > 0$ and 3x - 1 > 0If $x \to 2^-$, then $x < 2 \implies x - 2 < 0$ and 3x - 1 > 0 $\therefore \lim_{x \to 2^-} \frac{3x - 1}{x - 2} = -\infty$ $\therefore \lim_{x \to 2^+} \frac{3x - 1}{x - 2} = \infty$ 9) $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$ 10) $\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^2} =$ Solution: Solution: If $x \to -2^+$, then x > -2If $x \to -2^-$, then x < -2 $\Rightarrow 1-x > 0 \text{ and } (x+2)^2 > 0$ $\therefore \lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$ \Rightarrow 1-x>0 and (x+2)²>0 $\therefore \lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$ 11) $\lim_{x \to -2^+} \frac{x-1}{(x+2)^2} =$ 12) $\lim_{x \to -2^{-}} \frac{x-1}{(x+2)^2} =$ Solution: Solution: If $x \to -2^+$, then x > -2If $x \to -2^-$, then x < -2 $\implies x-1 < 0$ and $(x+2)^2 > 0$ \Rightarrow x-1 < 0 and $(x+2)^2 > 0$: $\lim_{x \to -2^+} \frac{x-1}{(x+2)^2} = -\infty$ $\therefore \lim_{x \to -2^-} \frac{x-1}{(x+2)^2} = -\infty$ $\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} =$ $\lim_{x \to 2^{-}} \frac{6x - 1}{x^2 - 4} =$ 13)14) Solution: Solution: If $x \to 2^+$, then $x^2 > 4$ If $x \to 2^-$, then $x^2 < 4$ $\Rightarrow x^2 - 4 > 0$ and 6x - 1 > 0 $\Rightarrow x^2 - 4 < 0$ and 6x - 1 > 0 $\therefore \quad \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$ $\therefore \quad \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$

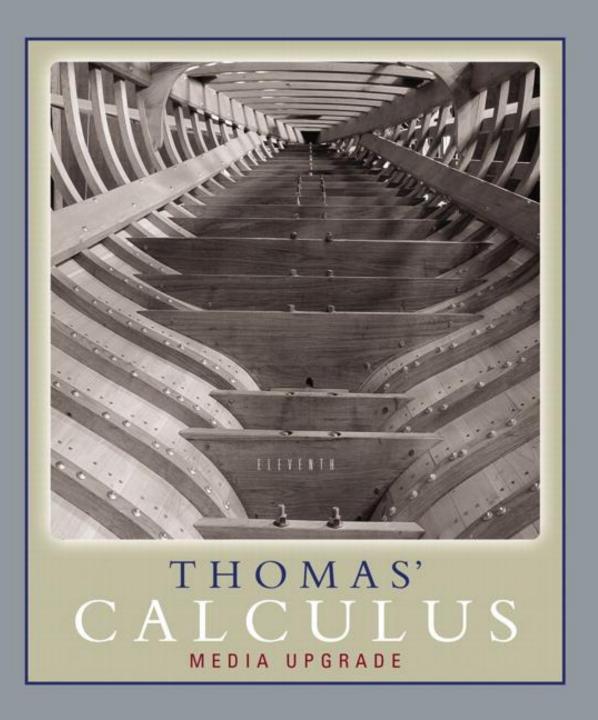
$$\begin{array}{ll} 15 & \lim_{x \to -2} \frac{6x - 1}{x^2 - 4} = \\ & \text{Solution:} \\ \text{if } x \to -2^2, \text{ then } x^2 < 4 \\ & \Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 < 0 \\ & \therefore & \lim_{x \to -2} \frac{6x - 1}{x^2 - 4} = \infty \end{array} \qquad \begin{array}{ll} 16 & \lim_{x \to -2} \frac{6x - 1}{x^2 - 4} = \\ & \text{Solution:} \\ \text{if } x \to -2^2, \text{ then } x^2 - 4 \\ & \Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 < 0 \\ & \therefore & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 16 & \lim_{x \to -2} \frac{6x - 1}{x^2 - 4} = \\ & \Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 < 0 \\ & \therefore & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 18 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{6x - 1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -1} \frac{1}{x^2 - x^2 - 4} = 0 \\ & \lim_{x \to -1} \frac{1}{x^2 - x - 6} = \\ & \text{Solution:} \end{array} \qquad \begin{array}{ll} 180 & \lim_{x \to -2} \frac{1}{x^2 - 4} = 0 \\ &$$

26) The vertical asymptote of $f(x) = \frac{7-x}{x^2-5x+6}$ is 25) The vertical asymptote of $f(\overline{x}) = \frac{3-x}{x^2-x-6}$ is Solution Solution: $f(x) = \frac{7 - x}{x^2 - 5x + 6} = \frac{7 - x}{(x - 3)(x - 2)}$ $f(x) = \frac{3-x}{x^2 - x - 6} = \frac{3-x}{(x-3)(x+2)} = \frac{-(x-3)}{(x-3)(x+2)}$ We see that the function f(x) is not defined when x-3=0 or $x-2=0 \implies x=3$ or x=2. x + 2We see that the function f(x) is not defined when Since $\lim_{x \to 3^+} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 3^+} \frac{7 - x}{(x - 3)(x - 2)} = \infty$ $\lim_{x \to 3^-} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 3^-} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$ $x^{2} - x - 6 = 0 \implies (x - 3)(x + 2) = 0$ \Rightarrow x = 3 or x = -2. Since $\lim_{x \to 3} \frac{3-x}{x^2 - x - 6} = \lim_{x \to 3} \frac{3-x}{(x-3)(x+2)}$ $= \lim_{x \to 3} \frac{-(x-3)}{(x-3)(x+2)} = \lim_{x \to 3} \frac{-1}{x+2} = -\frac{1}{5}$ and $\lim_{x \to 2^+} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 2^+} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$ $\lim_{x \to 2^-} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 2^-} \frac{7 - x}{(x - 3)(x - 2)} = \infty$ then, x = 3 is a removable discontinuity. $\lim_{x \to -2^+} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^+} \frac{3-x}{(x-3)(x+2)} = \infty$ and then, x = 3 and x = 2 are vertical asymptotes. $\lim_{x \to -2^{-}} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^{-}} \frac{3-x}{(x-3)(x+2)} = -\infty$ then, x = -2 is a vertical asymptote only 27) The vertical asymptote of $f(x) = \frac{x-7}{x^2+5x+6}$ is 28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is Solution: Solution: $f(x) = \frac{x-7}{x^2+5x+6} = \frac{x-7}{(x+3)(x+2)}$ $f(x) = \frac{x-7}{x^2+3x} = \frac{x-7}{x(x+3)}$ We see that the function f(x) is not defined when We see that the function f(x) is not defined when x = 0 or $x + 3 = 0 \implies x = 0$ or x = -3. Since x + 3 = 0 or $x + 2 = 0 \implies x = -3$ or x = -2. $\lim_{x \to -3^+} \frac{x-7}{x^2+3x} = \lim_{x \to -3^+} \frac{x-7}{x(x+3)} = \infty$ $\lim_{x \to -3^-} \frac{x-7}{x^2+3x} = \lim_{x \to -3^-} \frac{x-7}{x(x+3)} = -\infty$ Since $\lim_{x \to -3^+} \frac{x-7}{x^2+5x+6} = \lim_{x \to -3^+} \frac{x-7}{(x+3)(x+2)} = \infty$ $\lim_{x \to -3^{-}} \frac{x-7}{x^2+5x+6} = \lim_{x \to -3^{-}} \frac{x-7}{(x+3)(x+2)} = -\infty$ and $\lim_{x \to 0^+} \frac{x-7}{x^2+3x} = \lim_{x \to 0^+} \frac{x-7}{x(x+3)} = -\infty$ $\lim_{x \to 0^-} \frac{x-7}{x^2+3x} = \lim_{x \to 0^-} \frac{x-7}{x(x+3)} = \infty$ and $\lim_{x \to -2^+} \frac{x-7}{x^2 + 5x + 6} = \lim_{x \to -2^+} \frac{x-7}{(x+3)(x+2)} = -\infty$ $\lim_{x \to -2^{-}} \frac{x-7}{x^2 + 5x + 6} = \lim_{x \to -2^{-}} \frac{x-7}{(x+3)(x+2)} = \infty$ then, x = -3 and x = 0 are vertical asymptotes. then, x = -3 and x = -2 are vertical asymptotes. 29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is 30) The vertical asymptotes of $f(x) = \frac{2x^2+1}{x^2-9}$ are Solution: Solution: $f(x) = \frac{x-7}{x^2-3x} = \frac{x-7}{x(x-3)}$ $f(x) = \frac{2x^2 + 1}{x^2 - 9} = \frac{2x^2 + 1}{(x + 3)(x - 3)}$ We see that the function f(x) is not defined when We see that the function f(x) is not defined when x = 0 or $x - 3 = 0 \implies x = 0$ or x = 3. Since $x^2 - 9 = 0 \implies x = \pm 3$. Since $\lim_{x \to 3^+} \frac{x - 7}{x^2 - 3x} = \lim_{x \to 3^+} \frac{x - 7}{x(x - 3)} = -\infty$ $\lim_{x \to 3^+} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to 3^+} \frac{2x^2 + 1}{(x + 3)(x - 3)} = \infty$ $\lim_{x \to 3^{-}} \frac{x-7}{x^2-3x} = \lim_{x \to 3^{-}} \frac{x-7}{x(x-3)} = \infty$ $\lim_{x \to 3^{-}} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to 3^{-}} \frac{2x^2 + 1}{(x + 3)(x - 3)} = -\infty$ and and $\lim_{x \to 0^+} \frac{x-7}{x^2 - 3x} = \lim_{x \to 0^+} \frac{x-7}{x(x-3)} = \infty$ $\lim_{x \to -3^+} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to -3^+} \frac{2x^2 + 1}{(x + 3)(x - 3)} = -\infty$ $\lim_{x \to -3^-} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to -3^-} \frac{2x^2 + 1}{(x + 3)(x - 3)} = \infty$ $\lim_{x \to 0^{-}} \frac{x-7}{x^2-3x} = \lim_{x \to 0^{-}} \frac{x-7}{x(x-3)} = -\infty$ then, x = 3 and x = 0 are vertical asymptotes. then, $x = \pm 3$ are vertical asymptotes.

31) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous at $a = 2$ because $1 - f(2) = \frac{(2)+1}{(2)^2-9} = \frac{3}{-5} = -\frac{3}{5}$ $2 - \lim_{x \to 3^-} \frac{x+1}{x^2-9} = \lim_{x \to 2} \frac{(2)+1}{(2)^2-9} = \frac{3}{-5} = -\frac{3}{5}$ $3 - \lim_{x \to 2} \frac{x+1}{x^2-9} = f(2)$ OR We know that $D_f = \mathbb{R} \setminus \{\pm 3\}$, so $\{2\} \in D_f$.	32) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at $a = \pm 3$ because we know that $D_f = \mathbb{R} \setminus \{\pm 3\}$, so $\{\pm 3\} \notin D_f$. 33) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at ± 3 because $\{\pm 3\} \notin D_f$.
Note: Any function is continuous on its domain.	$(\sin 3x \dots \sqrt{2})$
34) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on its domain which is $D_f = \mathbb{R} \setminus \{\pm 3\}$.	35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 3 & , x = 0 \end{cases}$ is continuous at a = 0 because 1- $f(0) = 3$ 2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$ 3- $\lim_{x \to 0} f(x) = f(0)$
36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0\\ 5, & x = 0 \end{cases}$ is discontinuous	37) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1}, & x \neq 1 \\ 7, & x = 1 \end{cases}$ is
at $a = 0$ because 1- $f(0) = 5$	discontinuous at $a = 1$ because 1- $f(1) = 7$
2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$	2- $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1} = \lim_{x \to 1} \frac{(2x - 1)(x - 1)}{x - 1} = \lim_{x \to 1} (2x - 1) = 1$
3- $\lim_{x \to 0} f(x) \neq f(0)$	$3- \lim_{x \to 1} f(x) \neq f(1)$
38) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1}, & x \neq 1 \\ 1 & , x = 1 \end{cases}$ is continuous at $a = 1$ because 1- $f(1) = 1$ 2- $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1} = \lim_{x \to 1} \frac{(2x - 1)(x - 1)}{x - 1} = \lim_{x \to 1} (2x - 1) = 1$ 3- $\lim_{x \to 1} f(x) = f(1)$	39) The function $f(x) = \frac{x^2 - x - 2}{x - 2}$ is discontinuous at $a = 2$ because $\{2\} \notin D_f$.
40) The function $f(x) = \begin{cases} 2x + 3, \ x > 2 \\ 3x + 1, \ x \le 2 \end{cases}$ is	41) The function $f(x) = \frac{x+3}{\sqrt{x^2-4}}$ is continuous on its
continuous at $a = 2$ because 1- $f(2) = 3(2) + 1 = 7$	domain where $f(x)$ is defined, we mean that $x^2 - 4 > 0 \implies x^2 > 4 \implies \sqrt{x^2} > \sqrt{4}$
2- $\lim_{x \to 1} (2x + 3) = 2(2) + 3 = 7$	$\Rightarrow x > 2 \iff x > 2 \text{ or } x < -2$
$\lim_{x \to 2^{-}} (3x + 1) = 3(2) + 1 = 7$	Hence, $D_f = (-\infty, -2) \cup (2, \infty)$.
$\therefore \lim_{x \to 2} f(x) = 7$	
3- $\lim_{x \to 2} f(x) = f(2)$	
42) The function $f(x) = \sqrt{x^2 - 4}$ is continuous on its domain where $f(x)$ is defined, we mean that $x^2 - 4 \ge 0 \implies x^2 \ge 4 \implies \sqrt{x^2} \ge \sqrt{4}$ $\implies x \ge 2 \iff x \ge 2$ or $x \le -2$	43) The function $f(x) = \sqrt{4 - x^2}$ is continuous on its domain where $f(x)$ is defined, we mean that $4 - x^2 \ge 0 \implies -x^2 \ge -4 \implies x^2 \le 4$ $\implies \sqrt{x^2} \le \sqrt{4} \implies x \le 2 \iff -2 \le x \le 2$
Hence, $D_f = (-\infty, -2] \cup [2, \infty).$	Hence, $D_f = [-2,2]$.
44) The function $f(x) = \frac{x+3}{\sqrt{4-x^2}}$ is continuous on its	45) The function $f(x) = \frac{x+1}{x^2-4}$ is continuous on its
domain where $f(x)$ is defined, we mean that $4 - x^2 > 0 \implies -x^2 > -4 \implies x^2 < 4$	domain where $f(x)$ is defined, we mean that $x^2 - 4 \neq 0 \implies x^2 \neq 4 \implies x \neq +2$
$ \begin{array}{c} 4 - x^2 > 0 \implies -x^2 > -4 \implies x^2 < 4 \\ \implies \sqrt{x^2} < \sqrt{4} \implies x < 2 \implies -2 < x < 2 \end{array} $	$x^2 - 4 \neq 0 \implies x^2 \neq 4 \implies x \neq \pm 2$ Hence,
Hence,	$D_f = \mathbb{R} \setminus \{\pm 2\}$
$D_f = (-2,2) .$	$= (-\infty, -2) \cup (-2, 2) \cup (2, \infty) = \{x \in \mathbb{R} : x \neq \pm 2\}.$

$(AC) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + $		
46) The function $f(x) = \log_2(x+2)$ is continuous on	47) The function $f(x) = \sqrt{x-1} + \sqrt{x+4}$ is continuous	
its domain where $f(x)$ is defined, we mean that	on its domain where $f(x)$ is defined, we mean that	
$x + 2 > 0 \implies x > -2$	$x-1 \ge 0$ and $x+4 \ge 0 \implies x \ge 1 \cap x \ge -4$	
Hence,	Hence,	
$D_f = (-2, \infty) .$	$D_f = [1, \infty) .$ 49) The function $f(x) = e^x$ is continuous	
48) The function $f(x) = 5^x$ is continuous	49) The function $f(x) = e^x$ is continuous	
on its domain .	on its domain .	
Hence,	Hence,	
$D_f = \mathbb{R} = (-\infty, \infty)$.	$D_f = \mathbb{R} = (-\infty, \infty)$	
$D_f = \mathbb{R} = (-\infty, \infty).$ 50) The function $f(x) = \sin^{-1}(3x - 5)$ is continuous	$D_f = \mathbb{R} = (-\infty, \infty)$. 51) The function $f(x) = \cos^{-1}(3x + 5)$ is continuous	
on its domain where $f(x)$ is defined, we mean that	on its domain where $f(x)$ is defined, we mean that	
$-1 \le 3x - 5 \le 1 \Leftrightarrow 4 \le 3x \le 6 \Leftrightarrow \frac{4}{3} \le x \le 2.$	$-1 \le 3x + 5 \le 1 \iff -6 \le 3x \le -4 \iff -2 \le x \le -\frac{4}{3}.$	
Hence,	Hence,	
$D_f = \left[\frac{4}{3}, 2\right].$	$D_f = \left[-2, -\frac{4}{3}\right].$	
52) The number c that makes $f(x) = \begin{cases} c+x, x > 2\\ 2x-c, x < 2 \end{cases}$	53) The number c that makes	
is continuous at $x = 2$ is	$f(x) = \begin{cases} cx^2 - 2x + 1, \ x \le -1 \\ 3x + 2, \ x > -1 \end{cases}$ is continuous at -1 is	
Solution: $\lim_{x \to \infty} f(x)$ exists if	Solution: lime $f(u)$ switch if	
$\lim_{x \to 2} f(x) \text{ exists if}$	$\lim_{x \to -1} f(x)$ exists if	
$ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) $	$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$	
$\lim_{x \to 2^+} (c + x) = \lim_{x \to 2^-} (2x - c)$	$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$ $\lim_{x \to -1^+} (3x+2) = \lim_{x \to -1^-} (cx^2 - 2x + 1)$	
c + 2 = 4 - c	$x \to -1^+$ $3(-1) + 2 = c(-1)^2 - 2(-1) + 1$	
c + c = 4 - 2	-1 = c + 3	
2c = 2	c = -1 - 3	
c = 1		
54) The number <i>c</i> that makes	$c = \tau$	
	$c = -4$ 55) The value c that makes $f(x) = \begin{cases} cx^2 + 2x, \ x \le 2\\ x^3 - cx \ x > 2 \end{cases}$	
$f(x) = \begin{cases} \frac{\sin cx}{x} + 2x - 1, \ x < 0\\ 3x + 4, \ x > 0 \end{cases}$ is continuous at 0 is	is continuous at 2 is	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Solution:	
Solution:	$\lim_{x \to 2} f(x)$ exists if	
$\lim_{x \to 0} f(x)$ exists if		
$ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) $	$ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) $	
$x \to 0$, $x \to 0$ (Sin Cx)	$\lim_{x \to 2^+} (x^3 - cx) = \lim_{x \to 2^-} (cx^2 + 2x)$	
$\lim_{x \to 0^+} (3x+4) = \lim_{x \to 0^-} \left(\frac{\sin cx}{x} + 2x - 1 \right)$	$ (2)^{3} - c(2) = c(2)^{2} + 2(2) $	
3(0) + 4 = c(1) + 2(0) - 1	8 - 2c = 4c + 4	
4 = c - 1	-2c - 4c = 4 - 8	
c = 4 + 1	-6c = -4	
<i>c</i> = 5		
	$c = \frac{-4}{-6}$ $c = \frac{2}{3}$	
	$c = \frac{-}{3}$	
56) The number <i>c</i> that makes $f(x) = \begin{cases} c^2 x^2 - 1, & x \le 3 \\ x + 5, & x \ge 3 \end{cases}$		
	(, <u> </u>	
is continuous at 3 is	is continuous at 5 is	
Solution:	Solution:	
$\lim_{x \to 3} f(x)$ exists if	$\lim_{x \to 5} f(x)$ exists if	
$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(x)$	$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^-} f(x)$	
$\lim_{x \to 3^{+}} (x + 5) - \lim_{x \to 3^{-}} (c^2 x^2 - 1)$	$\lim_{x \to 5^+} (x - 2) = \lim_{x \to 5^-} (cx - 3)$	
$\lim_{x \to 3^+} (x+5) = \lim_{x \to 3^-} (c^2 x^2 - 1)$		
$(3) + 5 = c^2(3)^2 - 1$	(5) - 2 = c(5) - 3	
$8 = 9c^2 - 1$	3 = 5c - 3 5c = 3 + 3	
$9c^2 = 8 + 1$		
$c^{2} = 1$	5c = 6	
$c = \pm 1$	$c = \frac{0}{5}$	
	<u>ې</u>	

58) The number c that makes $f(x) = \begin{cases} x+3, x > -1 \\ 2x-c, x \leq -1 \end{cases}$	
is continuous at -1 is	
Solution:	
$\lim_{x \to -1} f(x)$ exists if	
$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$	
$\lim_{x \to -1^+} (x+3) = \lim_{x \to -1^-} (2x-c)$	
(-1) + 3 = 2(-1) - c	
2 = -2 - c	
c = -2 - 2	
c = -4	



Chapter 2

Limits and Continuity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.1

Rates of Change and Limits

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

5	e speeds over short time interpreter speed: $\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)}{h}$	
Length of time interval <i>h</i>	Average speed over interval of length h starting at $t_0 = 1$	Average speed over interval of length h starting at $t_0 = 2$
1	48	80
0.1	33.6	65.6
0.01	32.16	64.16
0.001	32.016	64.016
0.0001	32.0016	64.0016

DEFINITION Average Rate of Change over an Interval

The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

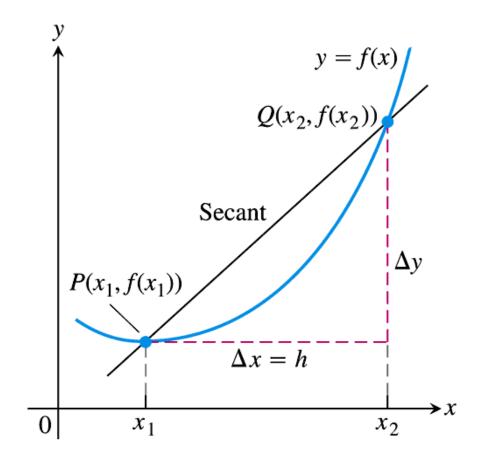


FIGURE 2.1 A secant to the graph y = f(x). Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $[x_1, x_2]$.

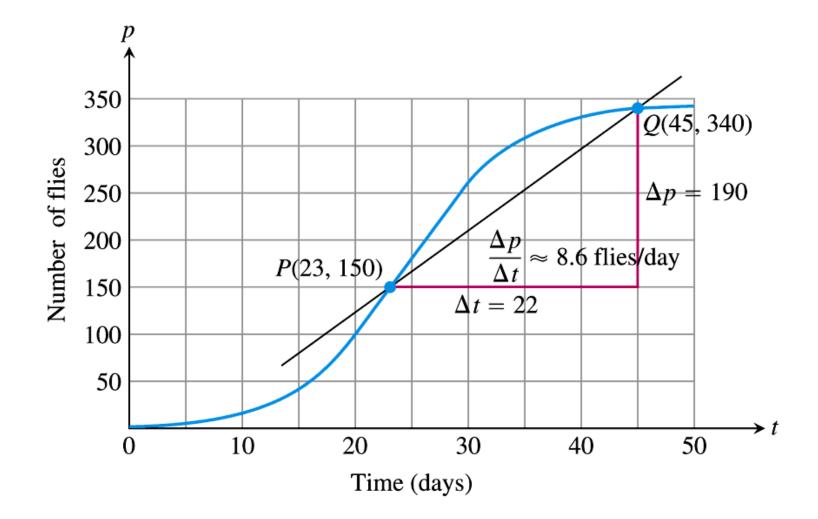


FIGURE 2.2 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p/\Delta t$ of the secant line.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 2 - 7

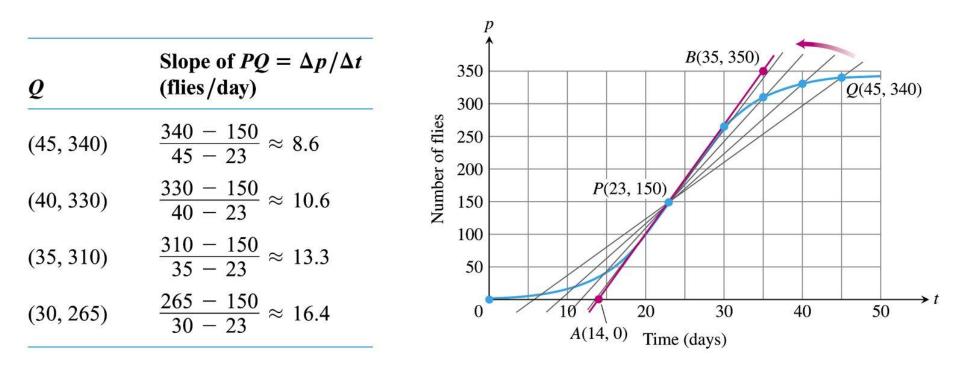


FIGURE 2.3 The positions and slopes of four secants through the point *P* on the fruit fly graph (Example 4).

TABLE 2.2 The closer x gets to 1, the closer $f(x) = (x^2 - 1)/(x - 1)$ seems to get to 2	
Values of x below and above 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq 1$
0.9	1.9
1.1	2.1
0.99	1.99
1.01	2.01
0.999	1.999
1.001	2.001
0.999999	1.999999
1.000001	2.000001

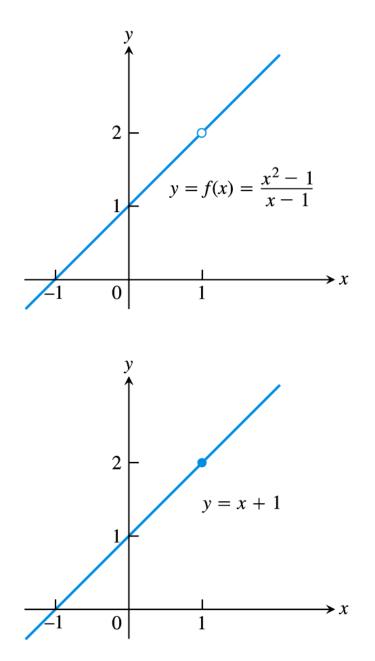


FIGURE 2.4 The graph of f is identical with the line y = x + 1except at x = 1, where f is not defined (Example 5).

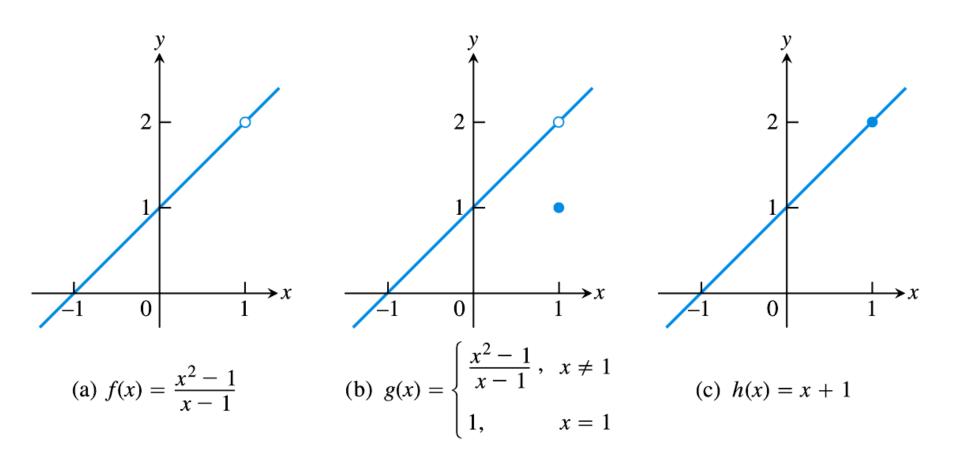


FIGURE 2.5 The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has the same function value as its limit at x = 1 (Example 6).

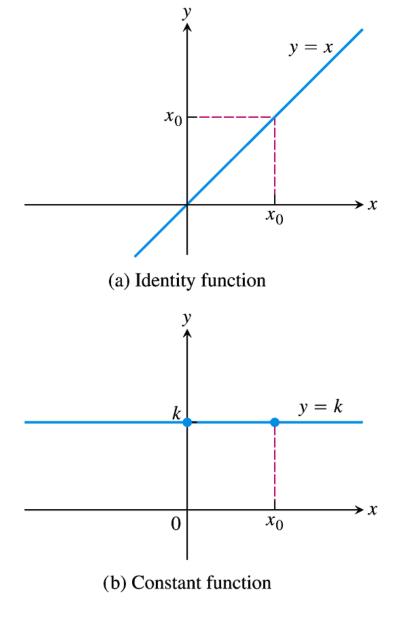


FIGURE 2.6 The functions in Example 8.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 2 - 12

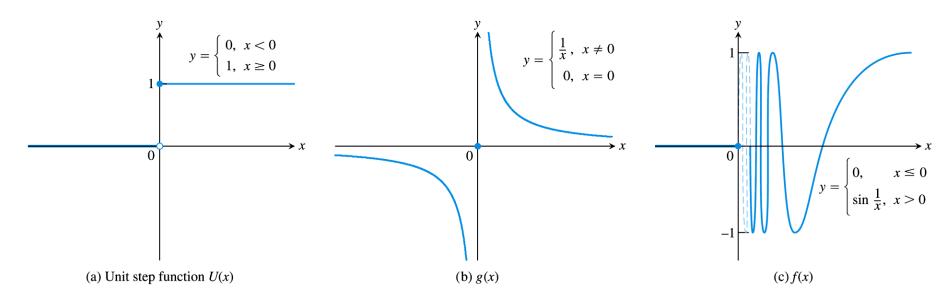


FIGURE 2.7 None of these functions has a limit as *x* approaches 0 (Example 9).

2.2

Calculating Limits Using the Limits Laws

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 1 Limit Laws

If L, M, c and k are real numbers and

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \text{ then}$$

1. Sum Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. *Power Rule*: If *r* and *s* are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number. **THEOREM 2** Limits of Polynomials Can Be Found by Substitution If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

Identifying Common Factors

It can be shown that if Q(x) is a polynomial and Q(c) = 0, then (x - c) is a factor of Q(x). Thus, if the numerator and denominator of a rational function of x are both zero at x = c, they have (x - c) as a common factor.

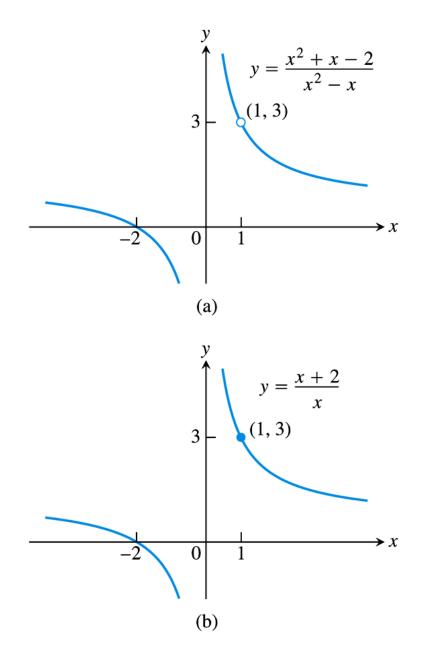


FIGURE 2.8 The graph of $f(x) = (x^2 + x - 2)/(x^2 - x)$ in part (a) is the same as the graph of g(x) = (x + 2)/x in part (b) except at x = 1, where f is undefined. The functions have the same limit as $x \rightarrow 1$ (Example 3).

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

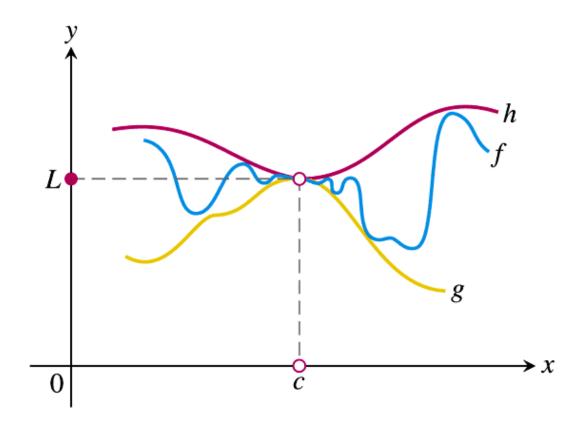


FIGURE 2.9 The graph of f is sandwiched between the graphs of g and h.

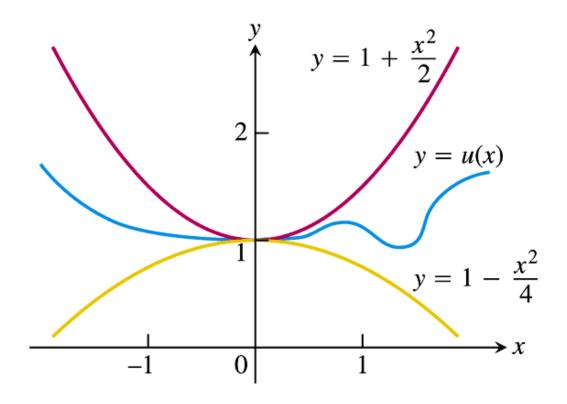


FIGURE 2.10 Any function u(x)whose graph lies in the region between $y = 1 + (x^2/2)$ and $y = 1 - (x^2/4)$ has limit 1 as $x \rightarrow 0$ (Example 5).

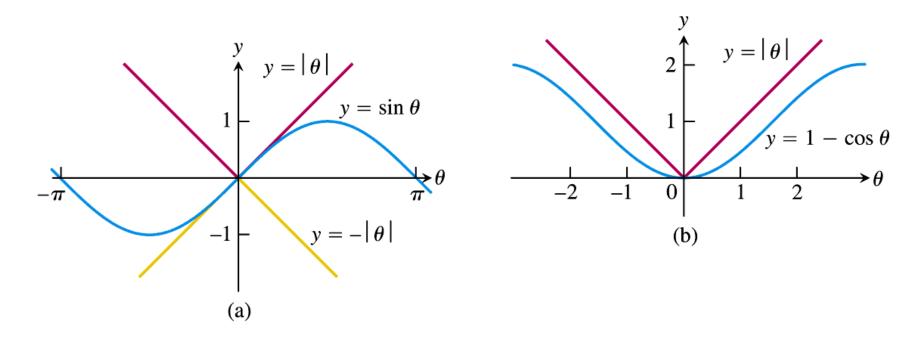


FIGURE 2.11 The Sandwich Theorem confirms that (a) $\lim_{\theta \to 0} \sin \theta = 0$ and (b) $\lim_{\theta \to 0} (1 - \cos \theta) = 0$ (Example 6).

THEOREM 5 If $f(x) \le g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

2.3

The Precise Definition of a Limit

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

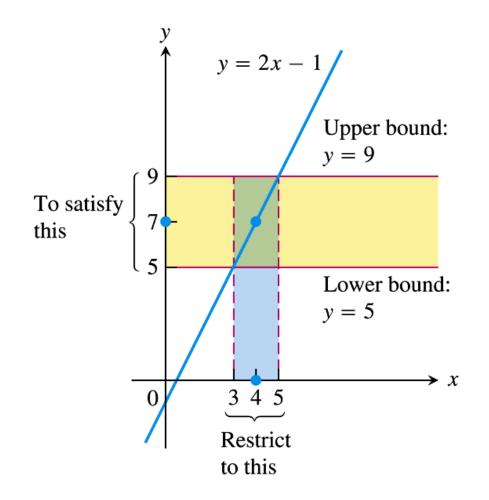


FIGURE 2.12 Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$ (Example 1).

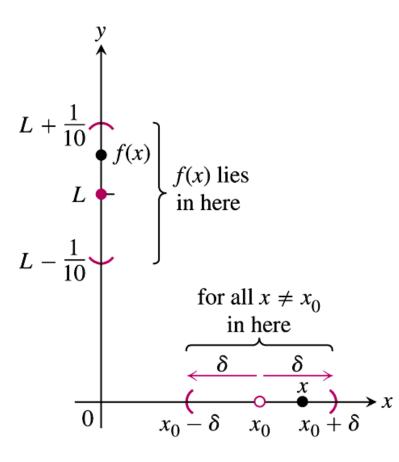


FIGURE 2.13 How should we define $\delta > 0$ so that keeping *x* within the interval $(x_0 - \delta, x_0 + \delta)$ will keep f(x) within the interval $\left(L - \frac{1}{10}, L + \frac{1}{10}\right)$?

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all *x*,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

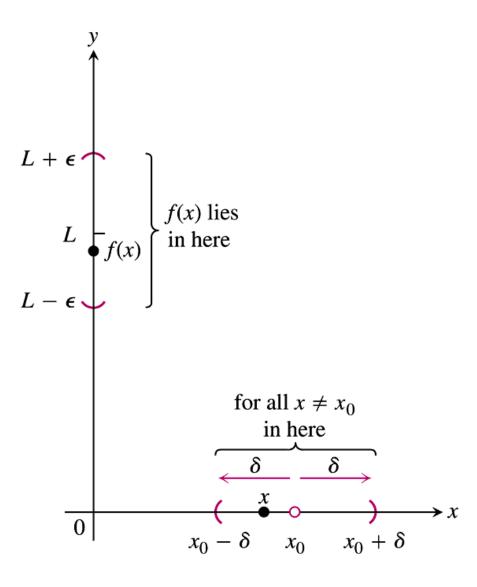


FIGURE 2.14 The relation of δ and ϵ in the definition of limit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

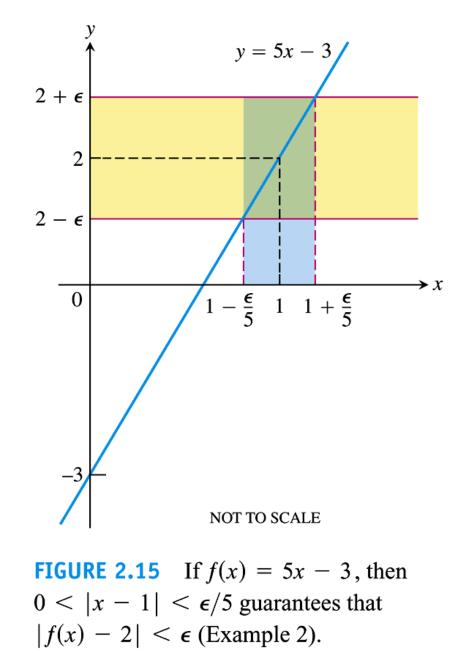
How to Find Algebraically a δ for a Given *f*, *L*, x_0 , and $\epsilon > 0$

The process of finding a $\delta > 0$ such that for all x

 $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$

can be accomplished in two steps.

- **1.** Solve the inequality $|f(x) L| < \epsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- 2. Find a value of $\delta > 0$ that places the open interval $(x_0 \delta, x_0 + \delta)$ centered at x_0 inside the interval (a, b). The inequality $|f(x) L| < \epsilon$ will hold for all $x \neq x_0$ in this δ -interval.



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

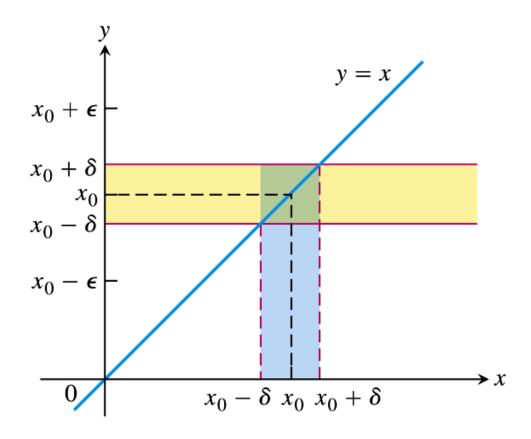


FIGURE 2.16 For the function f(x) = x, we find that $0 < |x - x_0| < \delta$ will guarantee $|f(x) - x_0| < \epsilon$ whenever $\delta \le \epsilon$ (Example 3a).

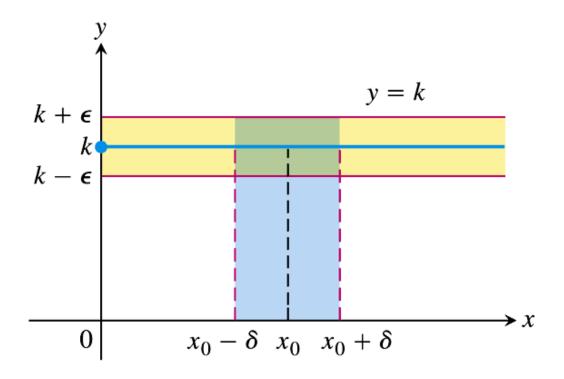
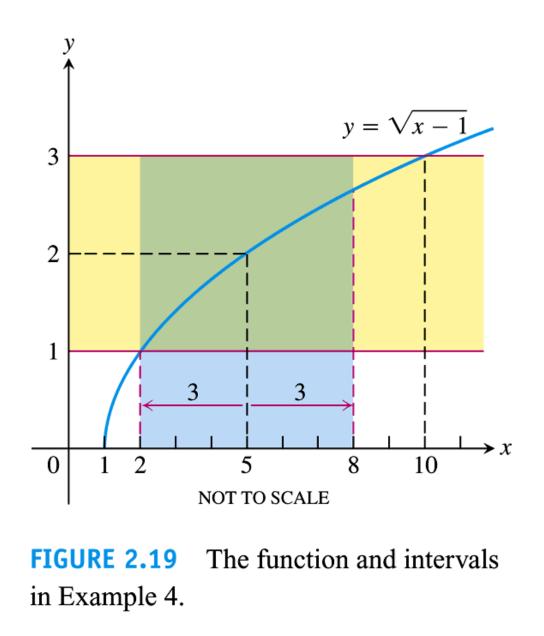


FIGURE 2.17 For the function f(x) = k, we find that $|f(x) - k| < \epsilon$ for any positive δ (Example 3b).

FIGURE 2.18 An open interval of radius 3 about $x_0 = 5$ will lie inside the open interval (2, 10).



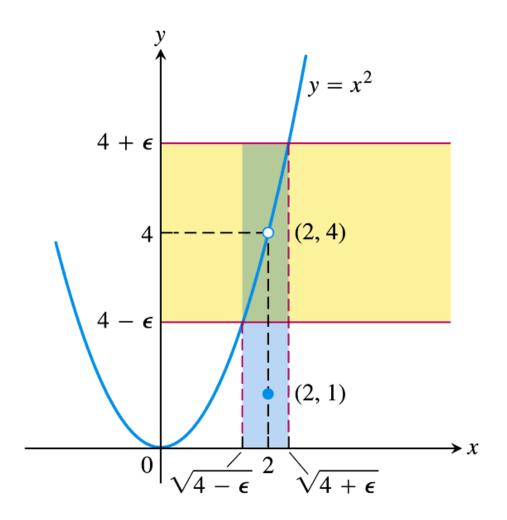


FIGURE 2.20 An interval containing x = 2 so that the function in Example 5 satisfies $|f(x) - 4| < \epsilon$.

2.4

One-Sided Limits and Limits at Infinity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

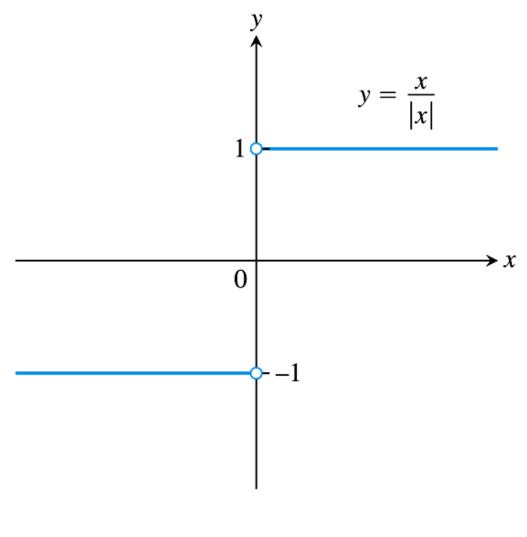


FIGURE 2.21 Different right-hand and left-hand limits at the origin.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

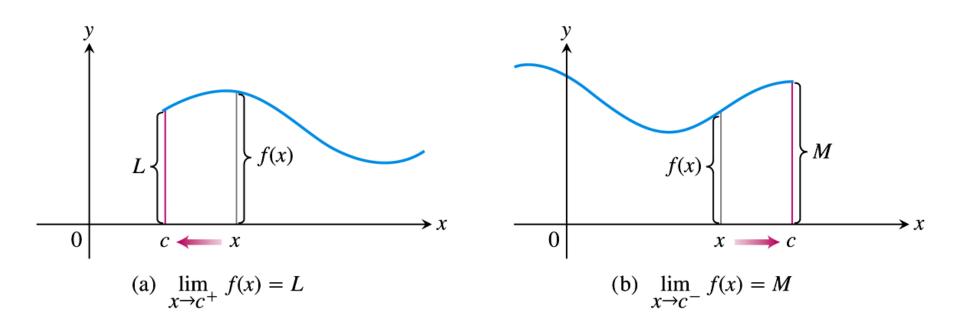
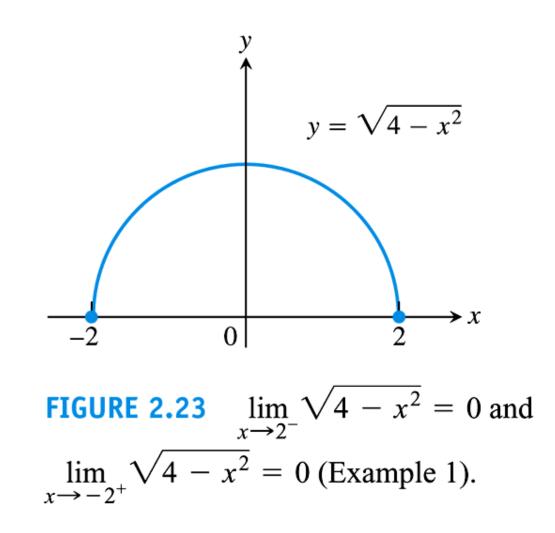


FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c.



THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L.$$



DEFINITIONS Right-Hand, Left-Hand Limits

We say that f(x) has **right-hand limit** L at x_0 , and write

$$\lim_{x \to x_0^+} f(x) = L \qquad \text{(See Figure 2.25)}$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all *x*

$$x_0 < x < x_0 + \delta \qquad \Rightarrow \qquad |f(x) - L| < \epsilon.$$

We say that f has left-hand limit L at x_0 , and write

$$\lim_{x \to x_0^-} f(x) = L \qquad \text{(See Figure 2.26)}$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \qquad \Rightarrow \qquad |f(x) - L| < \epsilon.$$

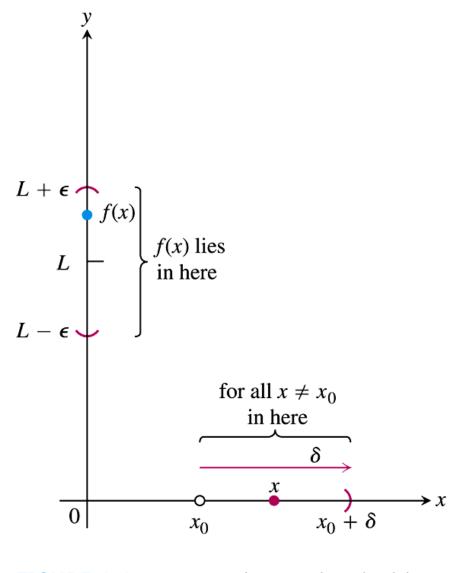


FIGURE 2.25 Intervals associated with the definition of right-hand limit.

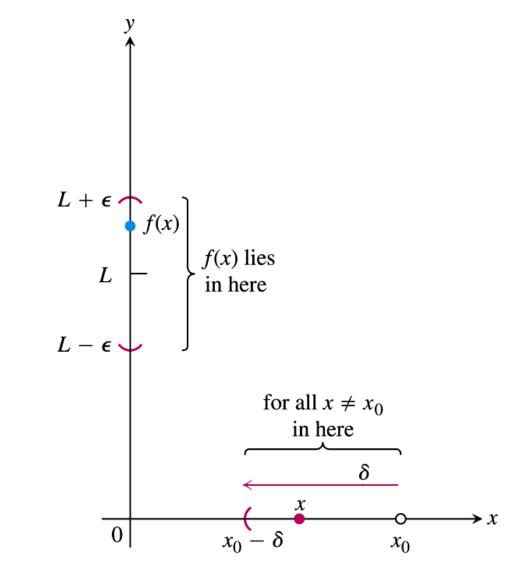
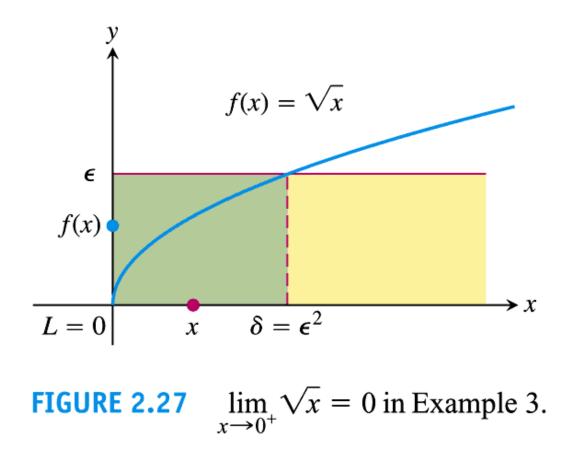


FIGURE 2.26 Intervals associated with the definition of left-hand limit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



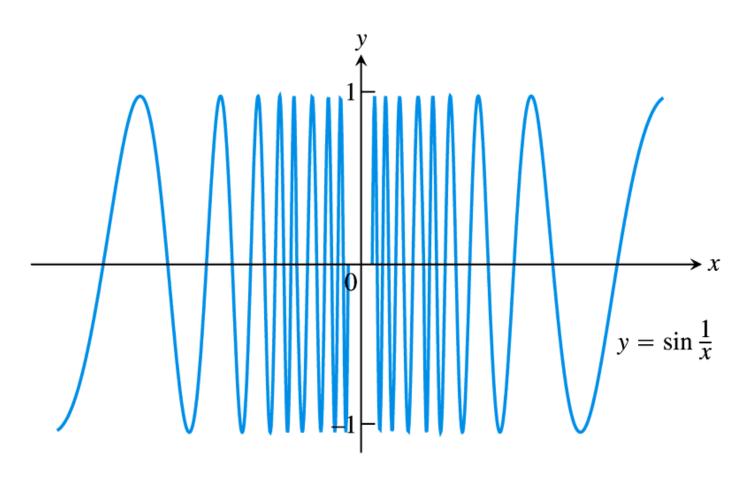


FIGURE 2.28 The function $y = \sin(1/x)$ has neither a right-hand nor a left-hand limit as x approaches zero (Example 4).

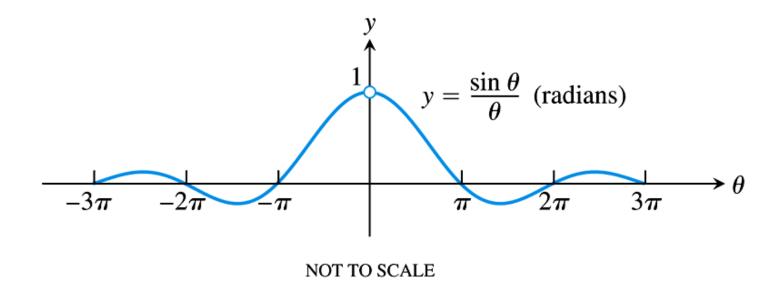


FIGURE 2.29 The graph of $f(\theta) = (\sin \theta)/\theta$.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 7

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians}) \tag{1}$$

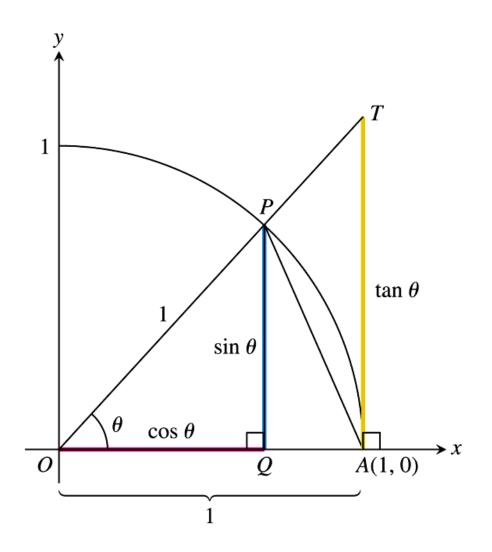


FIGURE 2.30 The figure for the proof of Theorem 7. $TA/OA = \tan \theta$, but OA = 1, so $TA = \tan \theta$.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITIONS Limit as x approaches ∞ or $-\infty$

1. We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number M such that for all x

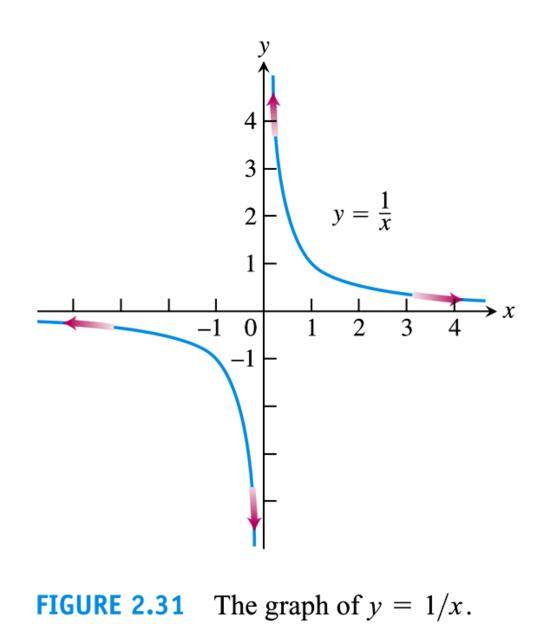
$$x > M \implies |f(x) - L| < \epsilon.$$

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon.$$



Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

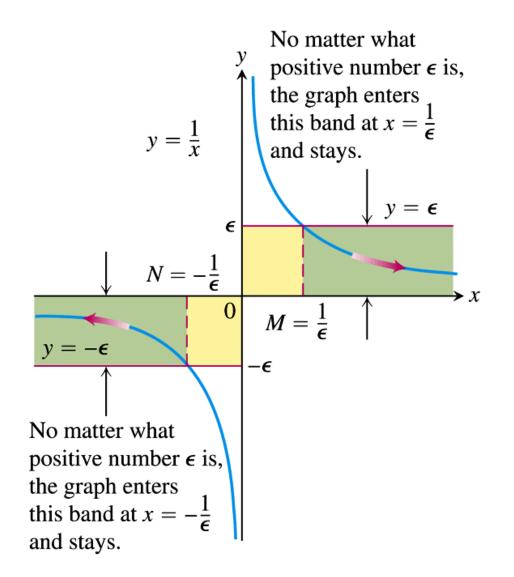


FIGURE 2.32 The geometry behind the argument in Example 6.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 8 Limit Laws as $x \to \pm \infty$

If L, M, and k, are real numbers and

 $\lim_{x \to \pm \infty} f(x) = L \quad \text{and} \quad \lim_{x \to \pm \infty} g(x) = M, \text{ then}$ 1. Sum Rule: 2. Difference Rule: 3. Product Rule: 4. Constant Multiple Rule: 5. Quotient Rule: $\lim_{x \to \pm \infty} f(x) = L + M$ $\lim_{x \to \pm \infty} (f(x) - g(x)) = L - M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = k \cdot L$ $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

6. Power Rule: If r and s are integers with no common factors, $s \neq 0$, then $\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

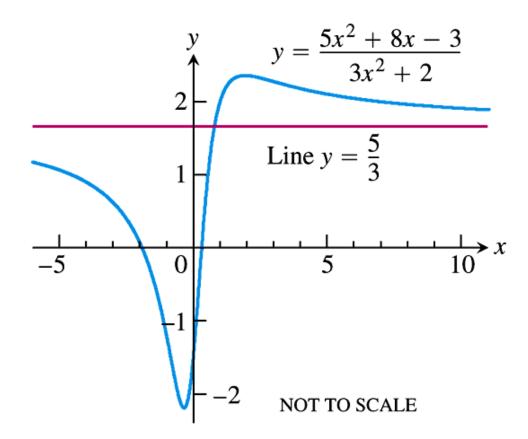


FIGURE 2.33 The graph of the function in Example 8. The graph approaches the line y = 5/3 as |x| increases.

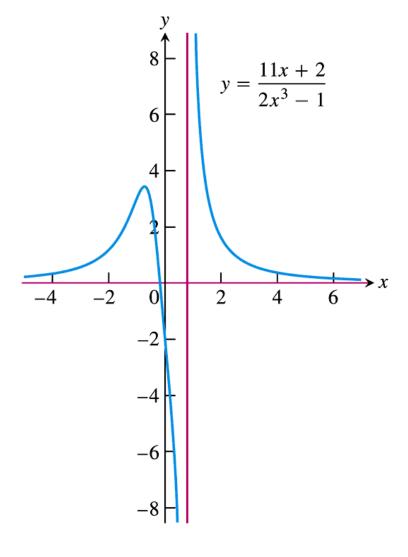


FIGURE 2.34 The graph of the function in Example 9. The graph approaches the *x*-axis as |x| increases.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

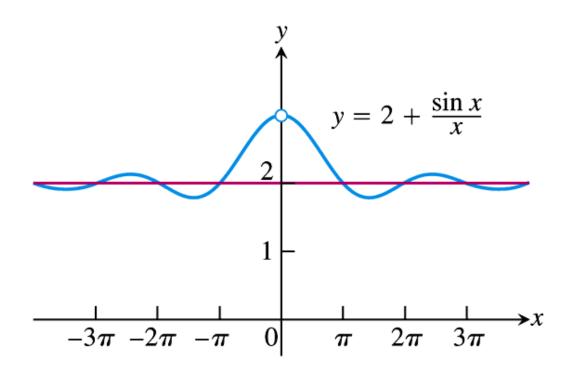


FIGURE 2.35 A curve may cross one of its asymptotes infinitely often (Example 11).

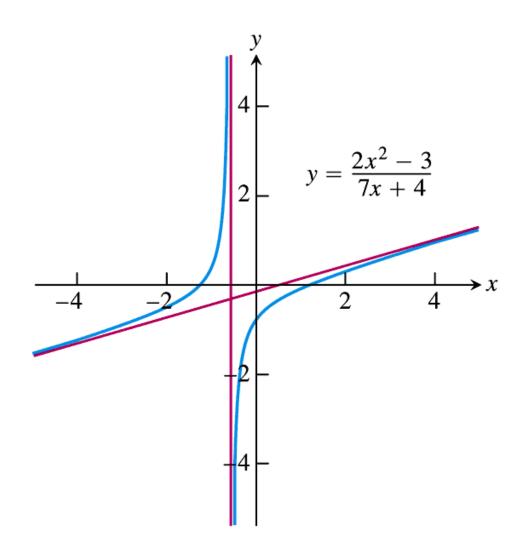


FIGURE 2.36 The function in Example 12 has an oblique asymptote.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.5

Infinite Limits and Vertical Asymptotes

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

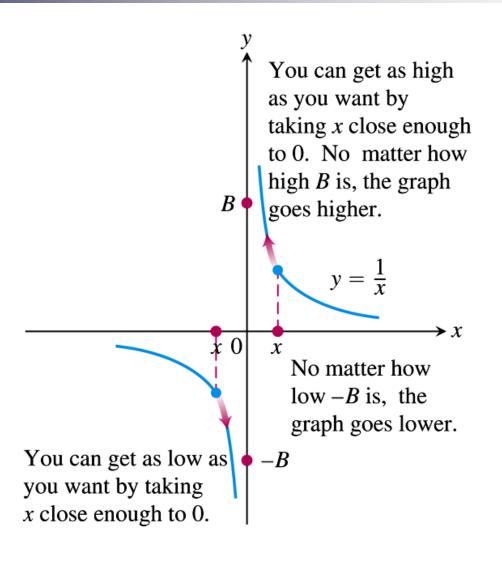


FIGURE 2.37 One-sided infinite limits: $\lim_{x \to 0^+} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty$

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

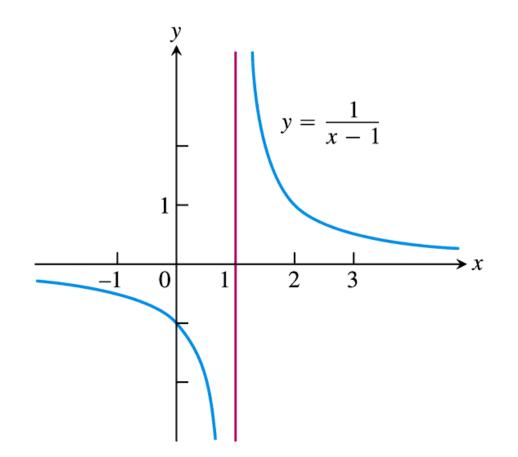
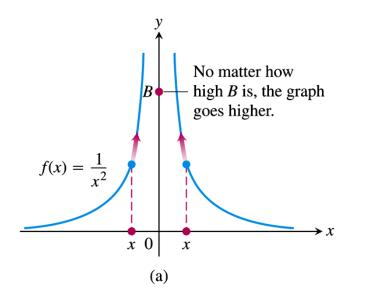


FIGURE 2.38 Near x = 1, the function y = 1/(x - 1) behaves the way the function y = 1/x behaves near x = 0. Its graph is the graph of y = 1/x shifted 1 unit to the right (Example 1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



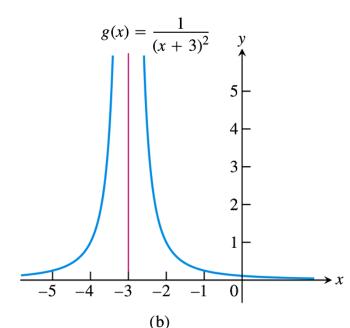


FIGURE 2.39 The graphs of the functions in Example 2. (a) f(x) approaches infinity as $x \rightarrow 0$. (b) g(x) approaches infinity as $x \rightarrow -3$.

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x_0 , and write

$$\lim_{x\to x_0}f(x)=\infty,$$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all *x*

$$0 < |x - x_0| < \delta \qquad \Rightarrow \qquad f(x) > B.$$

2. We say that f(x) approaches negative infinity as x approaches x_0 , and write

$$\lim_{x\to x_0}f(x)=-\infty,$$

if for every negative real number -B there exists a corresponding $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies f(x) < -B.$$

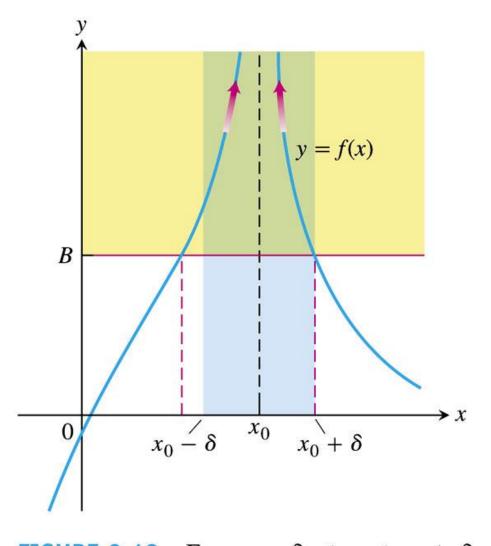


FIGURE 2.40 For $x_0 - \delta < x < x_0 + \delta$, the graph of f(x) lies above the line y = B.

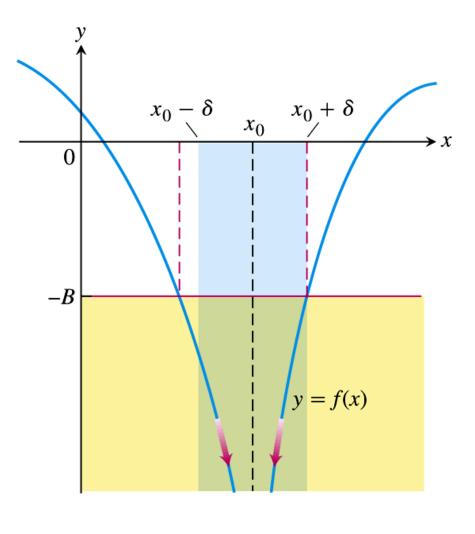


FIGURE 2.41 For $x_0 - \delta < x < x_0 + \delta$, the graph of f(x) lies below the line y = -B.

DEFINITION Vertical Asymptote A line x = a is a vertical asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$

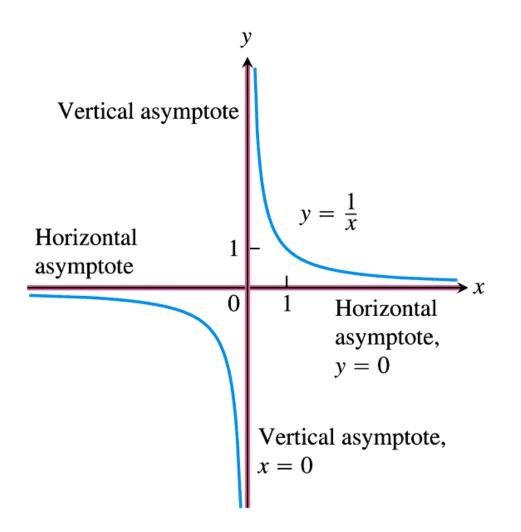


FIGURE 2.42 The coordinate axes are asymptotes of both branches of the hyperbola y = 1/x.

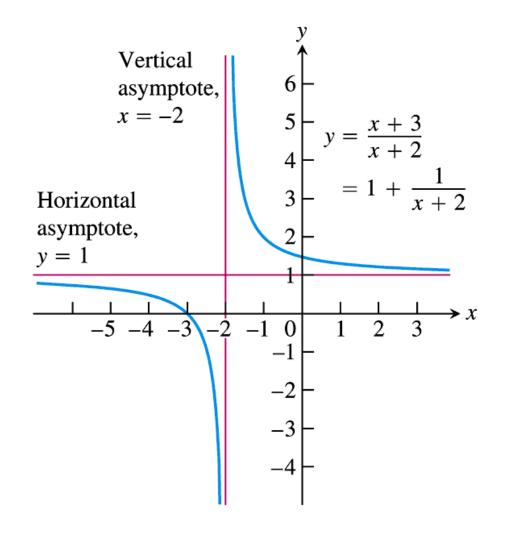


FIGURE 2.43 The lines y = 1 and x = -2 are asymptotes of the curve y = (x + 3)/(x + 2) (Example 5).

Slide 2 - 69

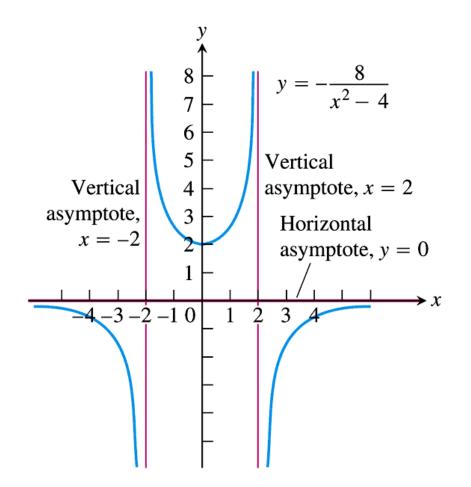


FIGURE 2.44 Graph of $y = -8/(x^2 - 4)$. Notice that the curve approaches the *x*-axis from only one side. Asymptotes do not have to be two-sided (Example 6).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

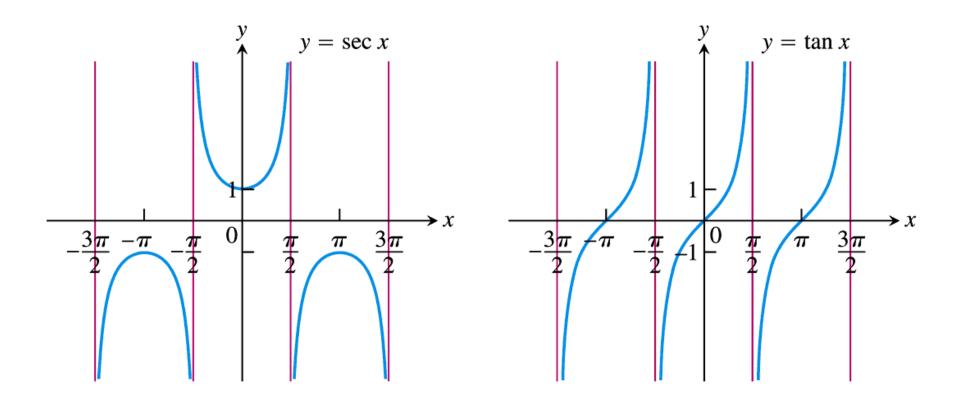


FIGURE 2.45 The graphs of sec *x* and tan *x* have infinitely many vertical asymptotes (Example 7).

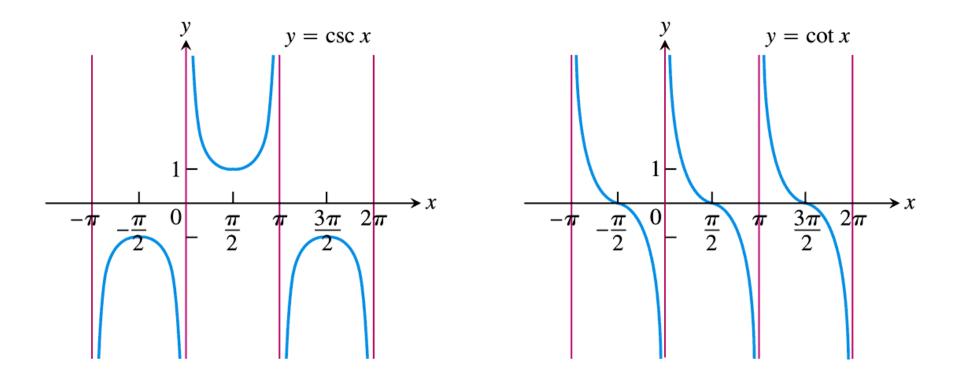


FIGURE 2.46 The graphs of $\csc x$ and $\cot x$ (Example 7).

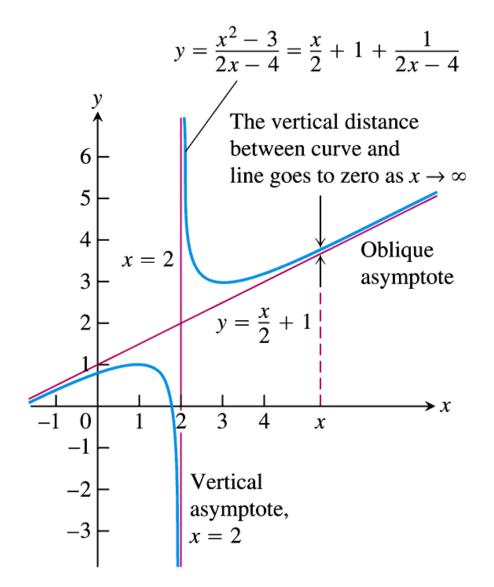


FIGURE 2.47 The graph of $f(x) = (x^2 - 3)/(2x - 4)$ has a vertical asymptote and an oblique asymptote (Example 8).

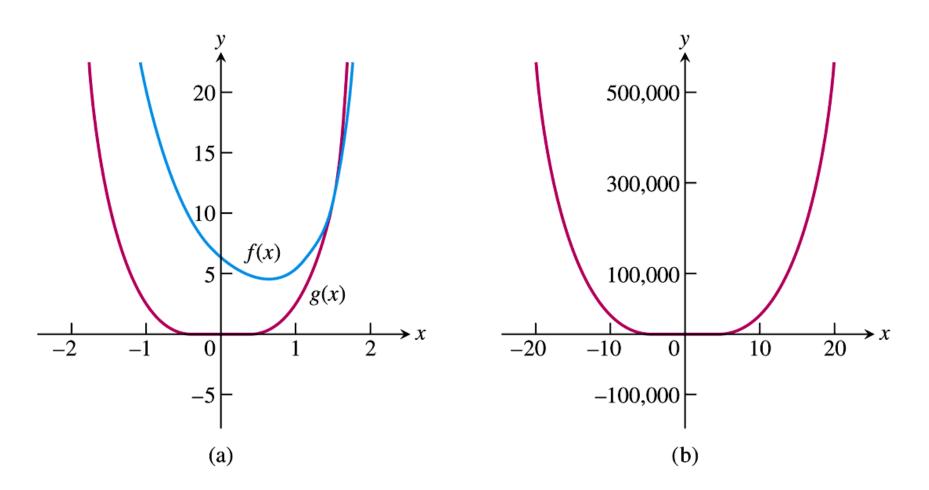


FIGURE 2.48 The graphs of *f* and *g*, (a) are distinct for |x| small, and (b) nearly identical for |x| large (Example 9).

2.6

Continuity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

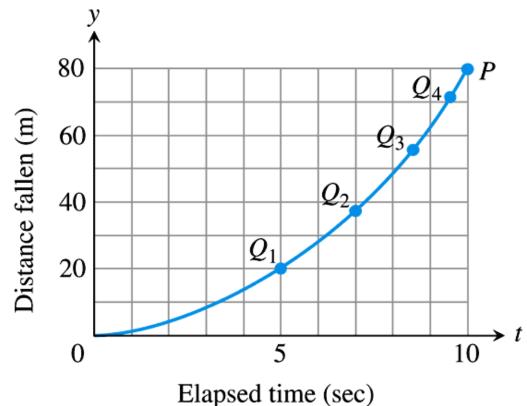


FIGURE 2.49 Connecting plotted points by an unbroken curve from experimental data Q_1, Q_2, Q_3, \ldots for a falling object.

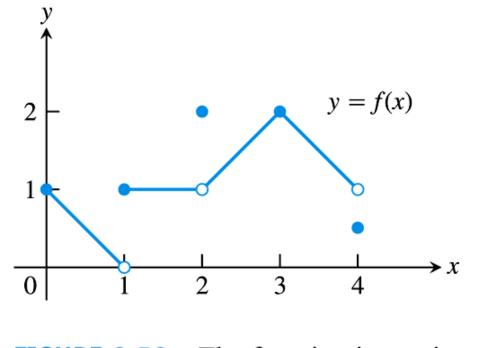


FIGURE 2.50 The function is continuous on [0, 4] except at x = 1, x = 2, and x = 4 (Example 1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

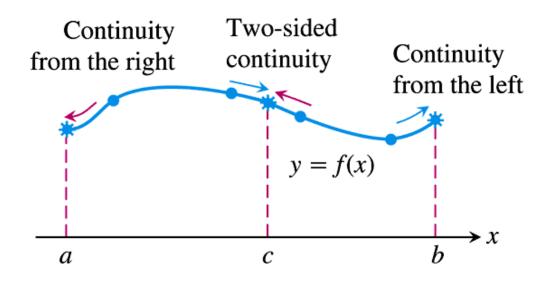


FIGURE 2.51 Continuity at points *a*, *b*, and *c*.

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to c} f(x) = f(c).$$

Endpoint: A function y = f(x) is continuous at a left endpoint *a* or is continuous at a right endpoint *b* of its domain if

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$$

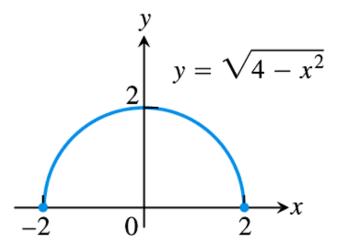


FIGURE 2.52 A function that is continuous at every domain point (Example 2).

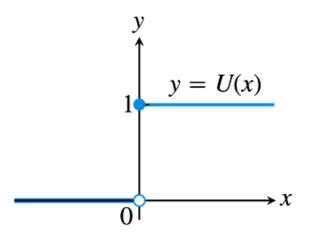


FIGURE 2.53 A function that is right-continuous, but not left-continuous, at the origin. It has a jump discontinuity there (Example 3).

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three conditions.

- 1. f(c) exists (c lies in the domain of f)
- 2. $\lim_{x\to c} f(x)$ exists (*f* has a limit as $x \to c$)
- 3. $\lim_{x\to c} f(x) = f(c)$ (the limit equals the function value)

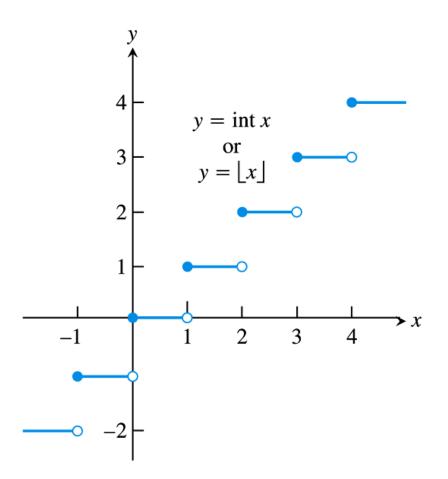


FIGURE 2.54 The greatest integer function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

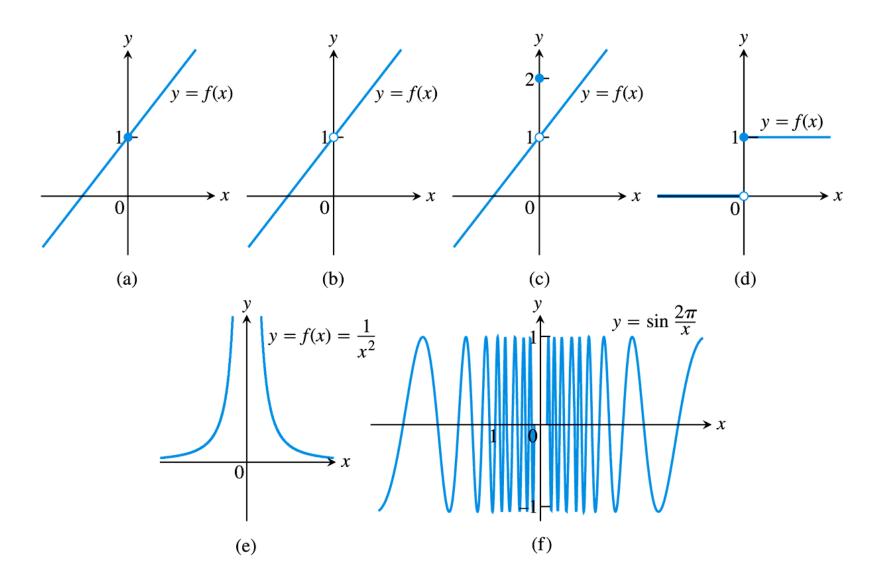


FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

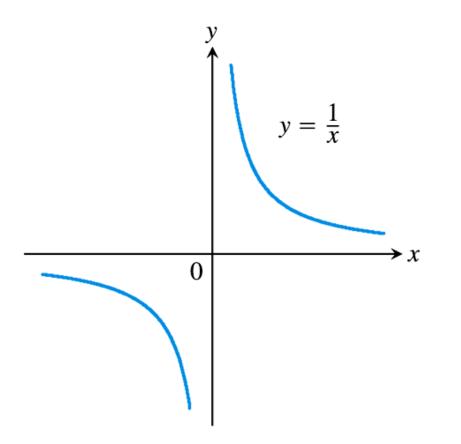


FIGURE 2.56 The function y = 1/x is continuous at every value of x except x = 0. It has a point of discontinuity at x = 0 (Example 5).

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

1. Sums:f + g2. Differences:f - g3. Products: $f \cdot g$ 4. Constant multiples: $k \cdot f$, for any number k5. Quotients:f/g provided $g(c) \neq 0$ 6. Powers: $f^{r/s}$, provided it is defined on an open interval containing c, where r and s are integers

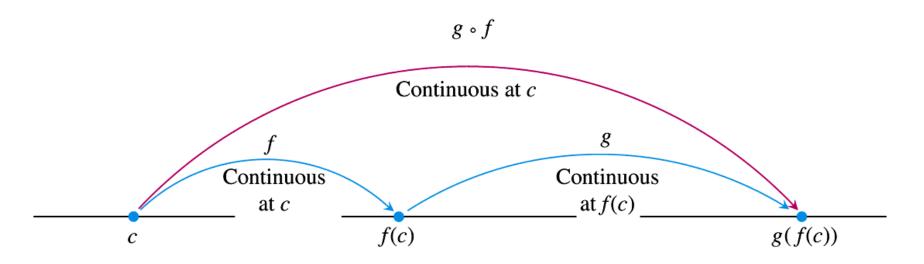


FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

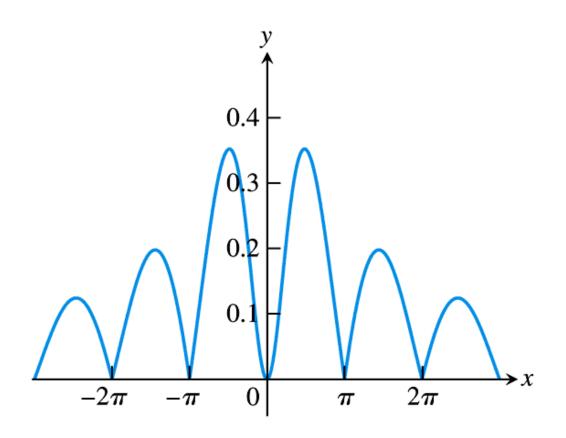


FIGURE 2.58 The graph suggests that $y = |(x \sin x)/(x^2 + 2)|$ is continuous (Example 8d).

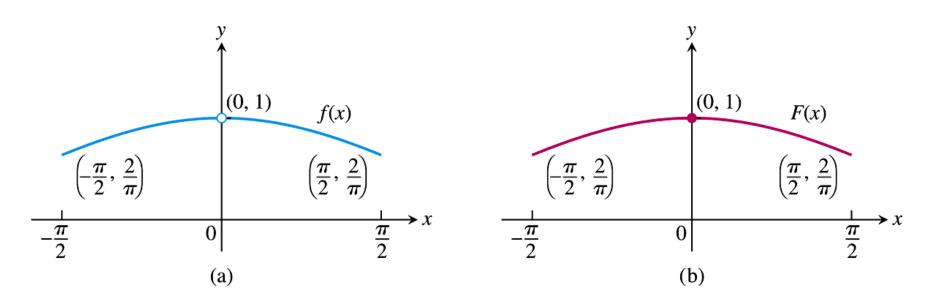


FIGURE 2.59 The graph (a) of $f(x) = (\sin x)/x$ for $-\pi/2 \le x \le \pi/2$ does not include the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discontinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x) everywhere else. Note that $F(0) = \lim_{x \to 0} f(x)$.

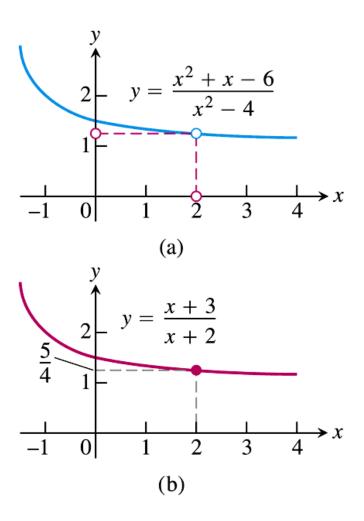
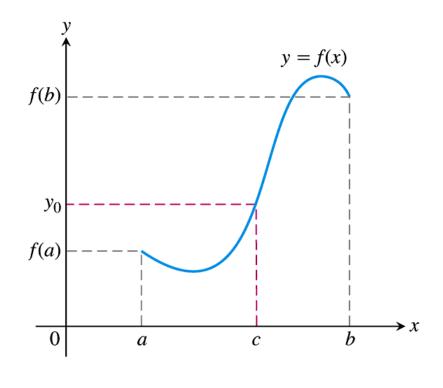
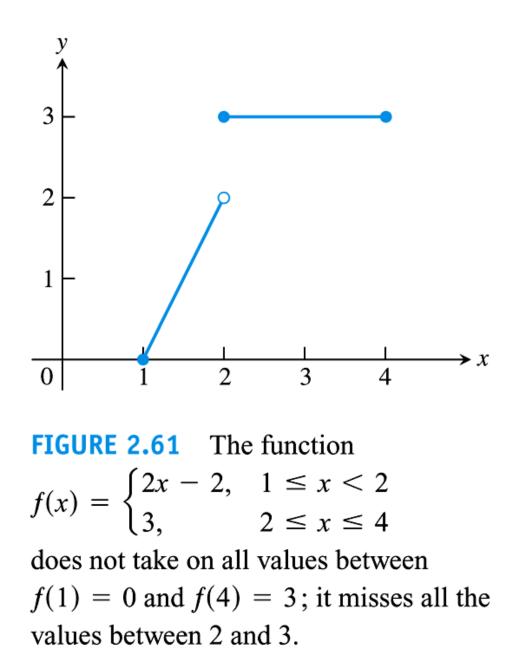


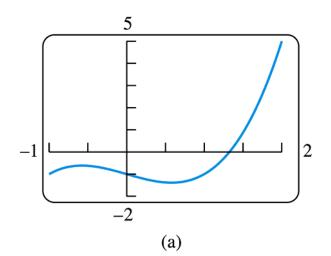
FIGURE 2.60 (a) The graph of f(x) and (b) the graph of its continuous extension F(x) (Example 9).

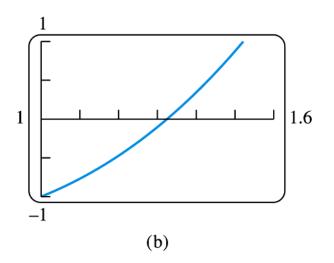
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 11 The Intermediate Value Theorem for Continuous Functions A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].









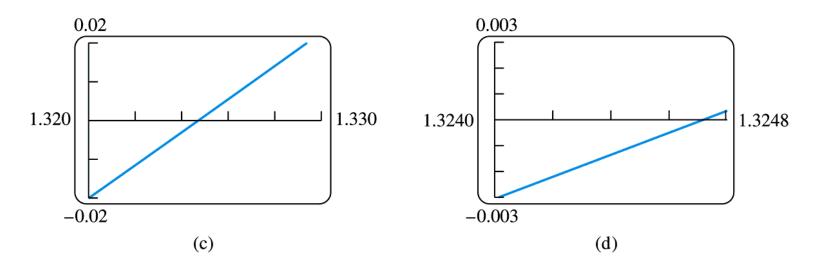


FIGURE 2.62 Zooming in on a zero of the function $f(x) = x^3 - x - 1$. The zero is near x = 1.3247.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.7

Tangents and Derivatives

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

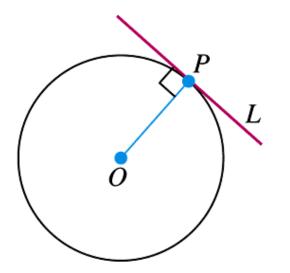


FIGURE 2.63 *L* is tangent to the circle at *P* if it passes through *P* perpendicular to radius OP.

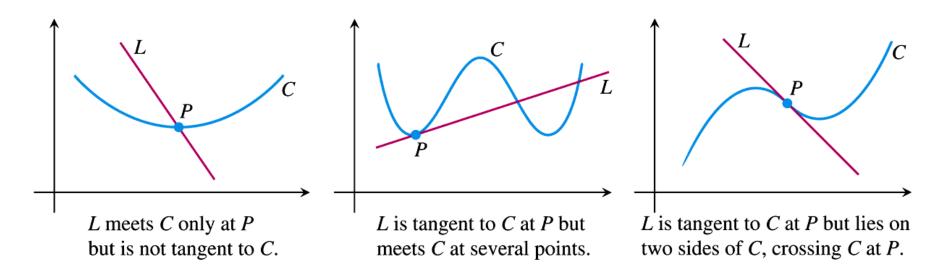


FIGURE 2.64 Exploding myths about tangent lines.

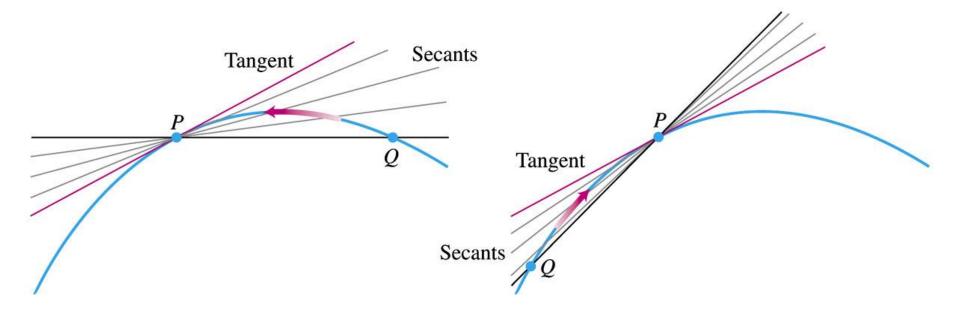


FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at *P* is the line through *P* whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

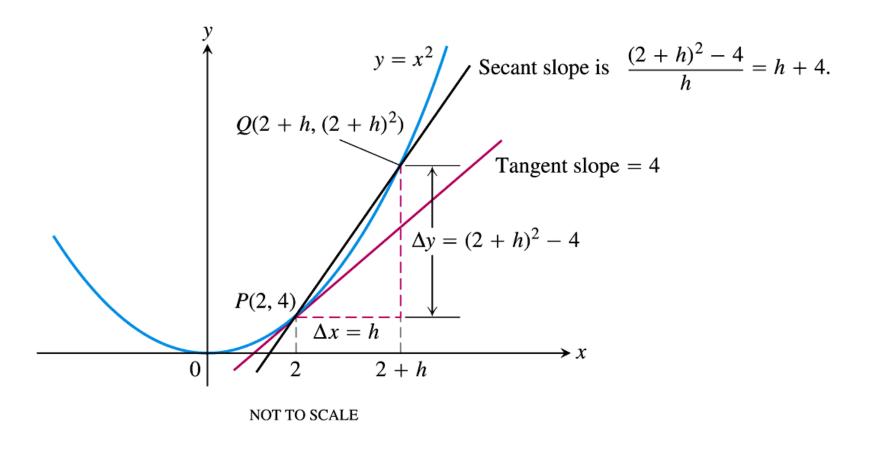


FIGURE 2.66 Finding the slope of the parabola $y = x^2$ at the point P(2, 4) (Example 1).

DEFINITIONS Slope, Tangent Line

The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (provided the limit exists).

The **tangent line** to the curve at *P* is the line through *P* with this slope.

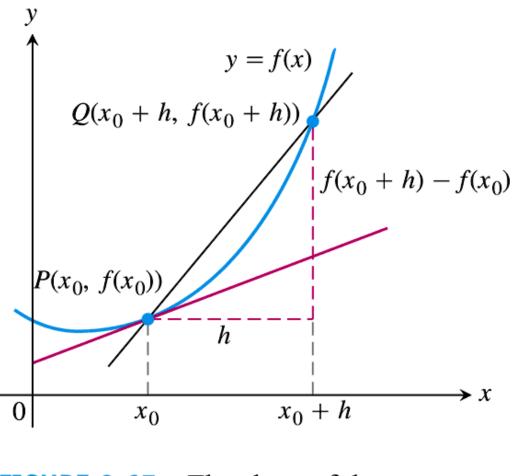


FIGURE 2.67 The slope of the tangent line at P is $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$.

Finding the Tangent to the Curve y = f(x) at (x_0, y_0)

- **1.** Calculate $f(x_0)$ and $f(x_0 + h)$.
- 2. Calculate the slope

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

3. If the limit exists, find the tangent line as

$$y=y_0+m(x-x_0).$$

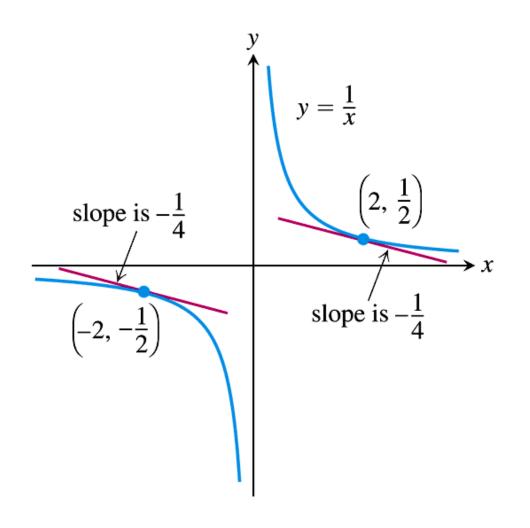


FIGURE 2.68 The two tangent lines to y = 1/x having slope -1/4 (Example 3).

- 1. The slope of y = f(x) at $x = x_0$
- 2. The slope of the tangent to the curve y = f(x) at $x = x_0$
- 3. The rate of change of f(x) with respect to x at $x = x_0$
- 4. The derivative of f at $x = x_0$
- 5. The limit of the difference quotient, $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$

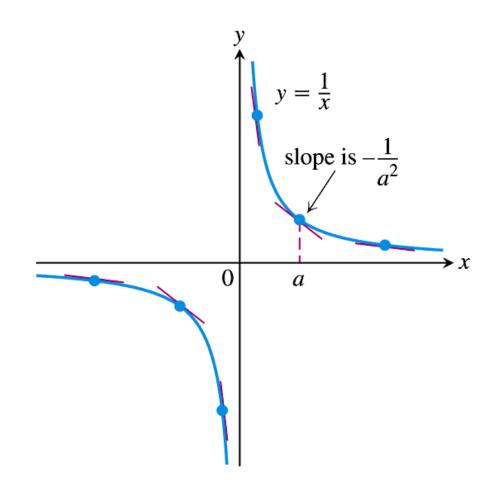
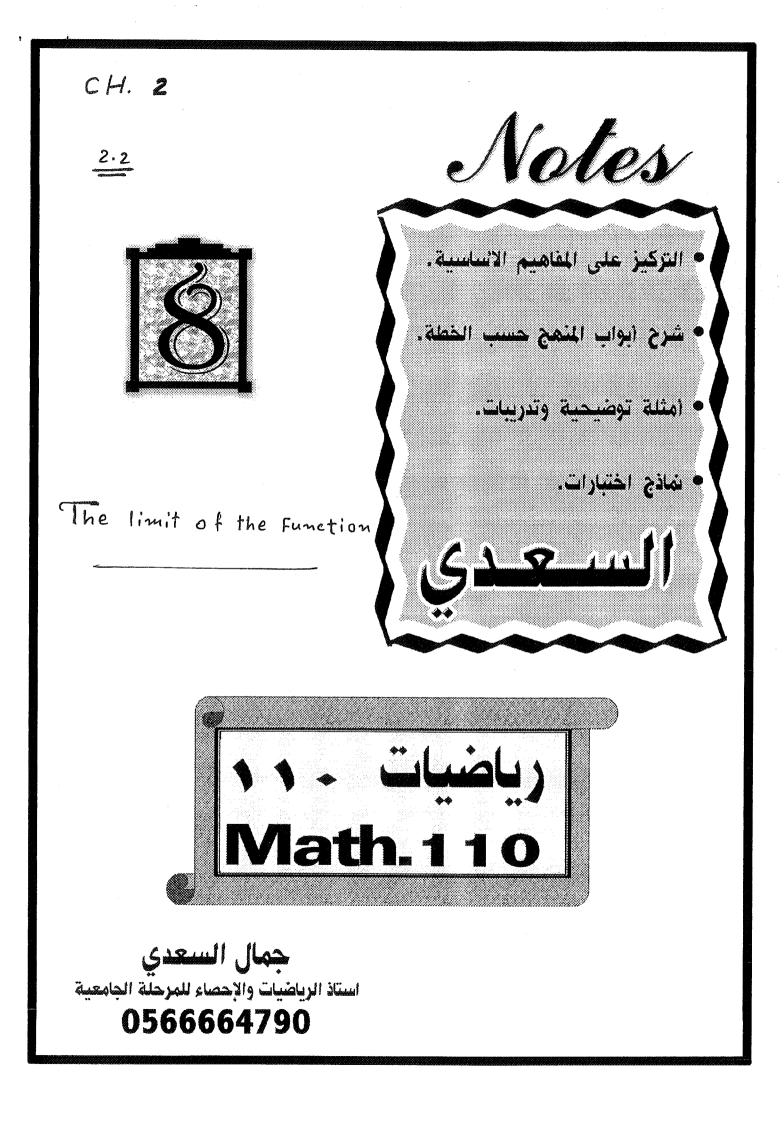
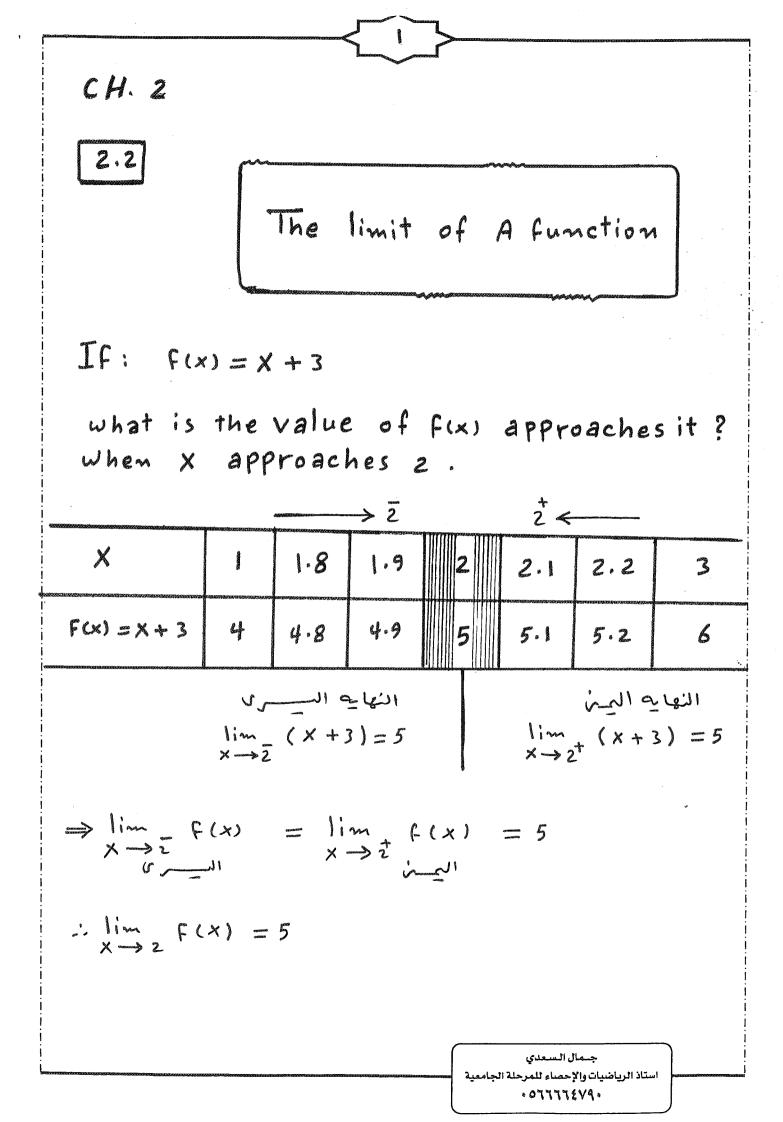


FIGURE 2.69 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away.





$$\frac{2}{2}$$

$$\frac{Definition :}{IF: F(x) approaches L} \quad when X approaches A
F(x) $\longrightarrow L$ $when X \longrightarrow A$
• X close to a on either side of a but $\neq A$
• F(x) tends to get closer and closer to L.

$$\lim_{X \longrightarrow A} F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad V \longrightarrow E = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = \lim_{X \longrightarrow A} F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

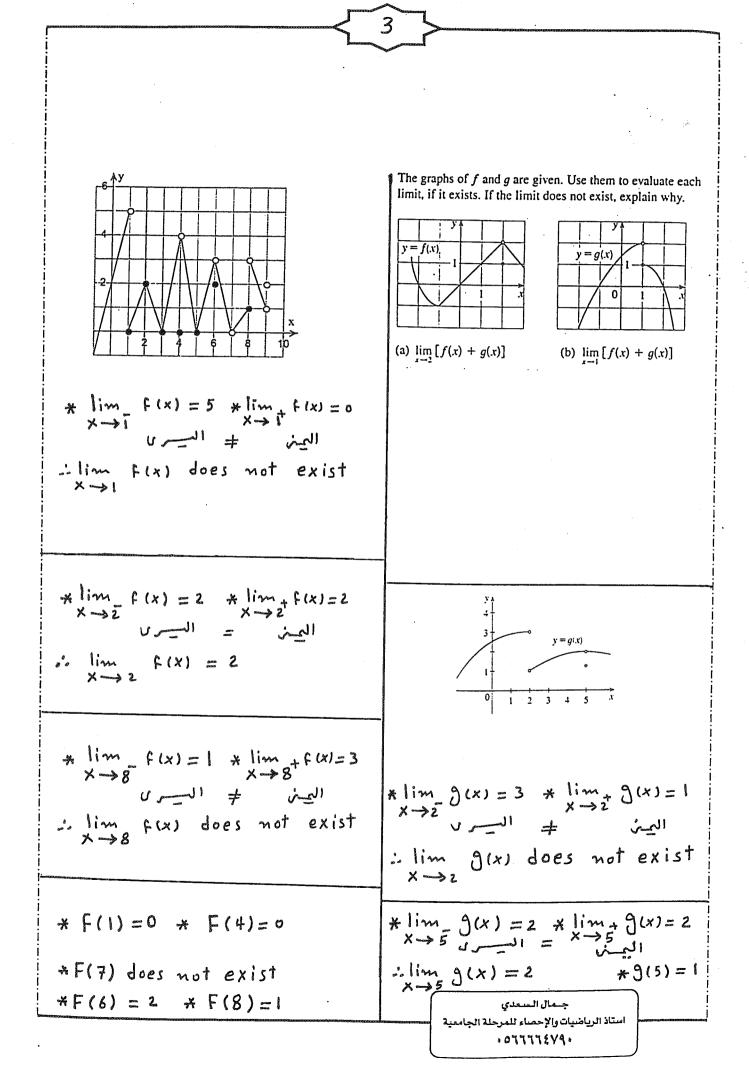
$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$

$$\frac{Vote that :}{X \longrightarrow A} \quad F(x) = L$$$$

ר ו



Which of the following statements about the function v = f(x) graphed here are true, and Use the graph below to determine whether the statements about the function y = f(x) are true or false.

*
$$\lim_{x \to -3} f(x) = 9$$

* $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) =$
 $\lim_{x \to 0} y = y = y$

*
$$\lim_{X \to 3} f(x) = 9$$
 * $\lim_{X \to 3^+} f(x) = 0$
.: $\lim_{X \to 3^+} (x) = 0$
:: $\lim_{X \to 3^+} (x) = 0$
* $\lim_{X \to 6^+} f(x) = 0$

$$y=f(x)$$

 $y=f(x)$
 -2 -1 1 2 3

Ц

σ

Ø

* lim f(x) = 0 U____ 1 = 1

*
$$\lim_{X \to 0^+} F(x) = 0$$
 in $\lim_{X \to 0^+} F(x) = 0$
: $\lim_{x \to 0^+} F(x) = 0$ exist

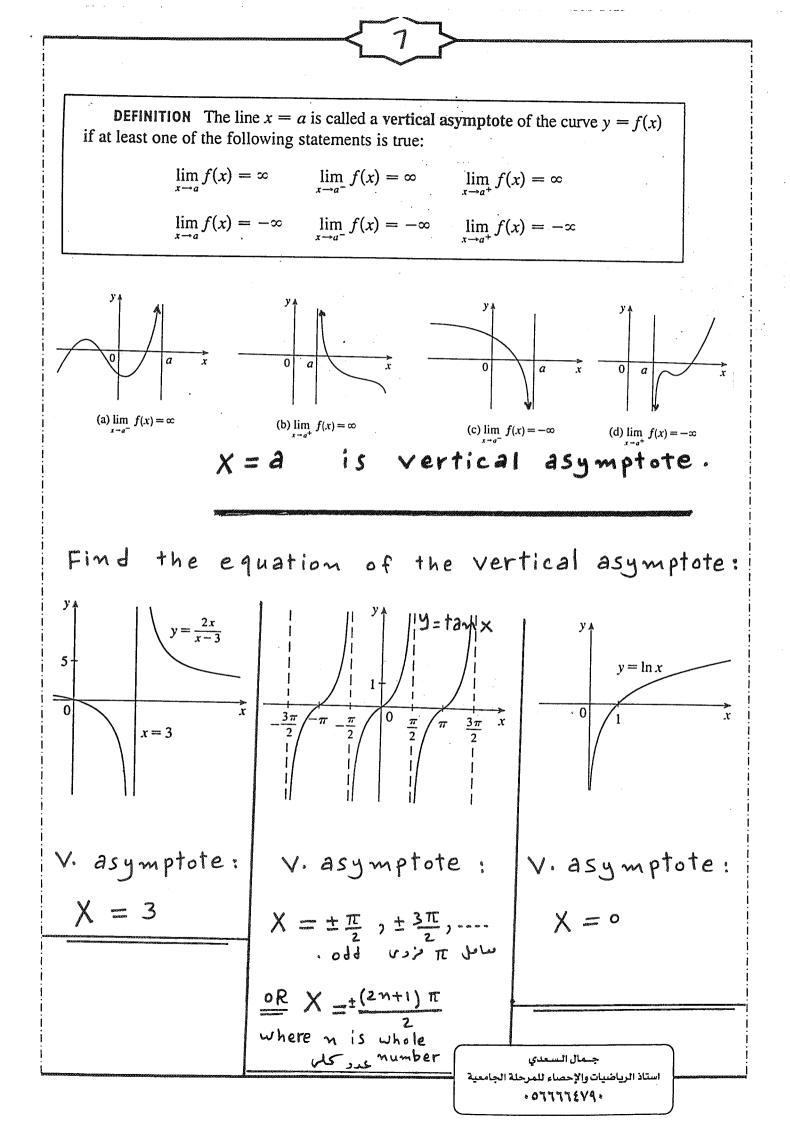
*
$$\lim_{X \to T} F(x) = 0$$
 in a leil

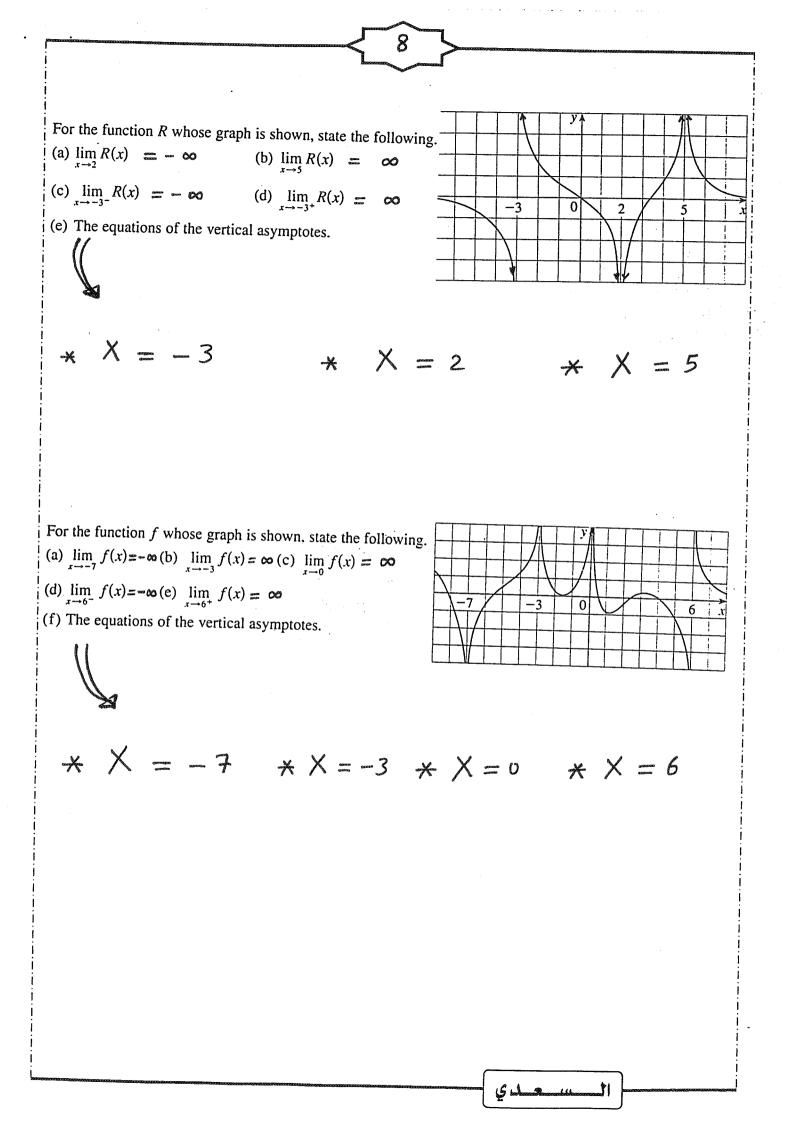
$$*F(-2) = 9 *F(0) = 3 *F(3) = 0 *F(0) = 1 *F(1) = 0 *F(2) = 1$$

جـمال السعدي استاذ الرياضيات والإحصاء للمرحلة الجامعية · 077772V9·

For the function
$$h(x)$$
 whose $graph$
is given.
Find:
 $(D*lim_{x-3}h(x) = 4$
 $*\lim_{x-3}h(x) = 4$
 $\lim_{x \to -3}h(x) = \lim_{x \to -3}h(x) = 4 \implies \lim_{x \to -3}h(x) = 4$
 $\lim_{x \to -3}h(x) = \lim_{x \to -3}h(x) = 4 \implies \lim_{x \to -3}h(x) = 4$
 $\lim_{x \to -3}h(x) = \lim_{x \to -3}h(x) = 4 \implies \lim_{x \to -3}h(x) = 4$
 $\lim_{x \to -3}h(x) = \lim_{x \to -3}h(x) = 4 \implies \lim_{x \to -3}h(x) = 4$
 $\lim_{x \to -3}h(x) = \lim_{x \to -3}h(x) = 4 \implies \lim_{x \to -3}h(x) = 4$
 $\lim_{x \to -3}h(x) = 1 \implies \lim_{x \to -3}h(x) = -1$
 $\lim_{x \to 3}h(x) = 1 \implies \lim_{x \to 3}h(x) = -1$
 $\lim_{x \to 3}h(x) = 1 \implies \lim_{x \to 3}h(x) = -1$
 $\lim_{x \to 3}h(x) = 1 \implies \lim_{x \to 3}h(x) = -1$
 $\lim_{x \to 3}h(x) = 1 \implies \lim_{x \to 3}h(x) = -1$
 $\lim_{x \to 5}h(x) = 1 \implies \lim_{x \to 5}h(x) = -1$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = does not exist$
 $\lim_{x \to 5}h(x) = 3 \implies \lim_{x \to 5}h(x) = 0$

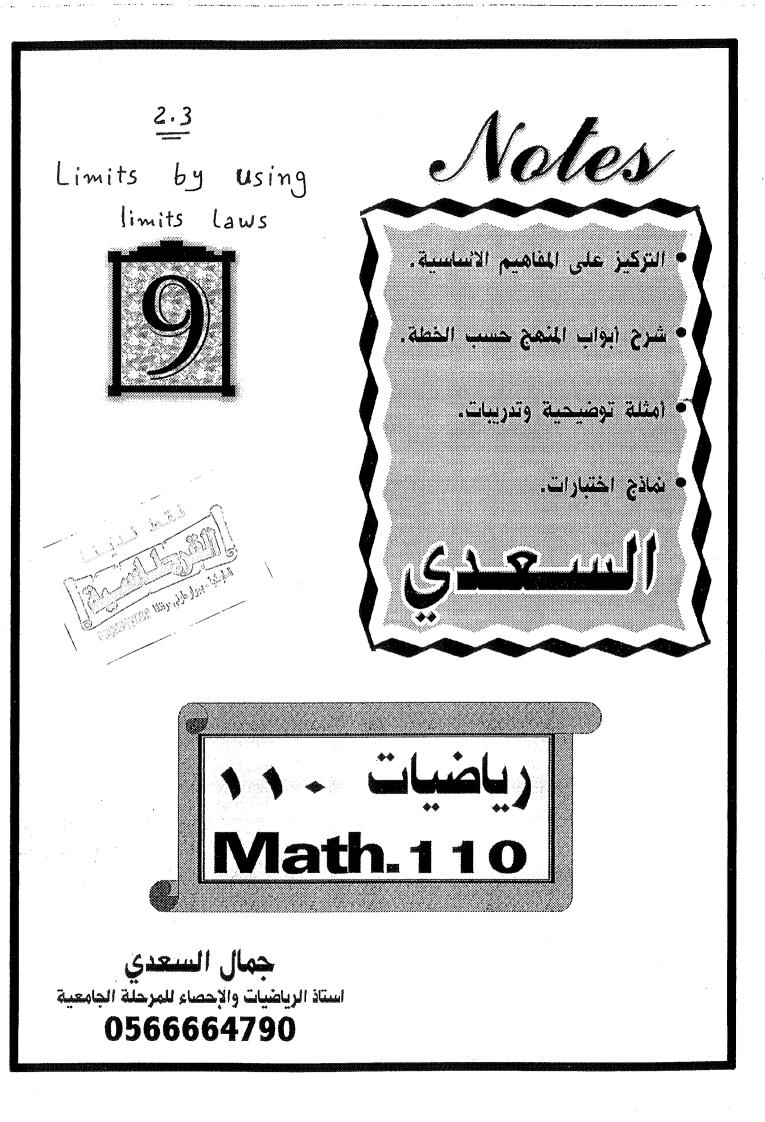
6 Use the given graph of F(x) to Find: نوج النهاية المين والسير ما (F(x) X ->> I * $\lim_{X \to T} F(x) = 2$ * $\lim_{X \to T} F(x) = 3$ 0 2 4 X v__املونا ≠ نيماء لونا... (in f(x) does not exist. (ospere) 2 lim F(x) = 4 3 F(5) does not exist Use the given graph of fixi to Find: - 2 × -> ٥ ريالغاية المين + النهاية السرى X in lim f(x) does not exist X -> 0 X ->> 2 النهاية المين + النهاية السيرى :- lim F(x) does not exist X->0 (3) F(2) = 1 $\bigoplus_{x \to 4} F(x) = 3$ use the given graph of f(x) to find; .2 $0 \lim_{X \to 0} F(X) = 3$ 0 $\textcircled{alim}_{x \rightarrow 3} F(x) = 4 \qquad \# \lim_{x \rightarrow 3} F(x) = 2$ النهاية المين بح النهاية السيرى 3 F(3) = 3 $\frac{1}{x \rightarrow 3}$ f(x) does not exist ال_____ ا





$$\begin{array}{c}
10 \\
\hline
10 \\
10 \\
\hline
10 \\
10 \\
\hline
10 \\
\hline
10 \\
10 \\
\hline
10 \\
\hline
10 \\
10 \\
\hline
10 \\
10 \\
\hline
10 \\$$

Note: - 17 , it 270 $(3) \lim_{X \longrightarrow (-\pi/2)^{-}} \operatorname{Sec} X$ $\frac{-\frac{1}{2}}{+\frac{3\pi}{2}}=270$ * على يسابها من من الربع المثالث $= \lim_{X \to (-\frac{\pi}{2})} \frac{1}{\cos x}$ * 11 might -- 11 -1 12/14 - lim مرُ الربع الث لث مزاربع الثالث avi + | 2003555 2003555 200355 = - ∞ $\begin{array}{c} 14 \\ X \longrightarrow \left(\frac{\pi}{2}\right) \end{array}$ $= \lim_{X \to (\frac{\pi}{2})} \frac{\sin x}{\cos x} = \frac{+1}{+0} = \infty$ tanx مَن آلربغ الأول كل الدوال المثلية وم م (15) $\lim_{X \longrightarrow \left(-\frac{\pi}{2}\right)^{+}}$ $tan x = \lim_{X \to (-\pi)^+} \frac{\sin x}{\cos x} = \frac{-1}{+0} = -\infty$ ف الربع الرابع إلىمنيات بالنجاح التوفيق السعدئ



$$2.3$$

$$Calculating (limits)$$

$$Using the limits laws$$
In this section:
To calculate limits we use the following
properties of limits Called " The limits laws"
limit Laws
Suppose that: lim f(x) = L, lim g(x) = M
 $x \rightarrow a$ and c is constant.

$$0 \lim_{x \rightarrow a} [f(x) \pm g(x)] = \lim_{x \rightarrow a} f(x) \pm \lim_{x \rightarrow a} g(x) = L \pm M$$

$$C \lim_{x \rightarrow a} [f(x) \pm g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \pm M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

$$C \lim_{x \rightarrow a} [f(x) g(x)] = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = L \cdot M$$

··· –

3 Example : Evaluate the following limits $\bigcirc \lim_{X \to 5} (2x^2 - 3x + 4)$ [by direct substitution] = 2 lim x² - 3 lim x + lim 4 ~ ogen vier vier * $= 2(5)^{2} - 3(5) + 4$ = 50 - 15 + 4= 39 $\textcircled{2} \lim_{X \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$ lim 5 - 3 lim X $(-2)^{3}+2(-2)^{2}-1$ List List 5 - 3 (-2) Service and a service of the service $= \frac{-8+8-1}{5+6} = \frac{-1}{11}$ جيمال السعدى استاذ الرياضيات والإحصاء للمرحلة الجامعية · 077772V9 ·

$$Example:$$
Use the limit laws and graphs of F and g
in figure to evaluate the following limits
(if they exist).

$$O \lim_{X \to -2} [f(x) + 5g(x)]$$

$$= \lim_{X \to -2} f(x) + 5 \lim_{X \to -2} g(x)$$

$$= 1 + 5 (-1)$$

$$= 1 - 5 = [-4]$$

$$i \lim_{X \to -2} f(x) = 1$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to -2} f(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to -2} g(x) = -1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$\Rightarrow \lim_{X \to -2} g(x) = -1$$

$$(i \lim_{X \to 1} g(x) = 1)$$

$$(i \lim_{X \to 2} g(x) = 0)$$

$$\Rightarrow Does mod exist$$

$$(i \lim_{X \to 2} g(x) = 0)$$

$$\Rightarrow Does mod exist$$

$$(i \lim_{X \to 2} g(x) = 0)$$

$$\Rightarrow Does mod exist$$

$$(i \lim_{X \to 2} g(x) = 0)$$

$$\Rightarrow Does mod exist$$

$$(i \lim_{X \to 2} g(x) = 0)$$

5 النهايه من جاله الدوال المعرفة بأكمر من ماعده (مرعس أو أكش) الحالة الأولى: وجود العلامات > ، <) * رؤم، النهاية المين بالتعوميم فن الفرع الذي الحتوي على علامة أبر ص * " " السري " " " " " " " " " " " " " اذا كانت : النهاج المين = النهاج السيرى تكون النهاية تومبوده . اذاكانت : النهاية المين + النهاية السرى تكون النهاية غير موجوده . (Does not exist) P Example: $F(x) = \begin{cases} \sqrt{x-4} \\ 0 \\ 0 \\ 0 \end{cases}$; X >4 IF: Find the lim F(x)? X --> 4 * يُوجد النهاية الميرَ من الفرع الذي الحموما على أكم من $\lim_{X \to t} \sqrt{x-4} = \sqrt{4-4} = \sqrt{0} = 0$ * يؤجد النهاية السرى من العرم الذي المتويا على احمد من $\lim_{X \to \bar{4}} (8 - 2X) = 8 - 2(4) = 8 - 8 = 0$ Zero = v, I a light = inde light --Zero veres exist or eque f(x) = 0: Um $X \rightarrow 4$ الاله الناشه: وجود علامه +) = Example : 5 2×+1 ; x ≠ 3 $F(x) \equiv$ Find: lim fix)? x + 5 $i \times = 3$ x + 5 $i \times = 3$ x + 5 $i \times 3$ $i \times 3$ x + 5 $i \times 3$ $i \times 3$ lim X->3 $F(x) = \lim_{X \to 3} (2X+1) = 2(3) + 1 = 7$ جيمال السعدى استاذ الرياضيات والإحصاء للمرحلة الجامعية · 077772V9.

6

Example: Find: $\lim_{X \to 0} \frac{|x|}{x}$? |x| |x|

 $\begin{array}{c} & \lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x) \\ & x \to 0 \end{array}$

∴ lim f(x) Does not exist. ×→0

س جل ي

١٤

الماأم النهاية عن يوجوده لعدم تسادم النهاسين · Up in all

• The greatest integer function (22all alls)
is defined by

$$[x] = the largest integer that is
less than or equal to X
$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x] = a \text{ for } a \leq X < a+1$$

$$[x$$$$

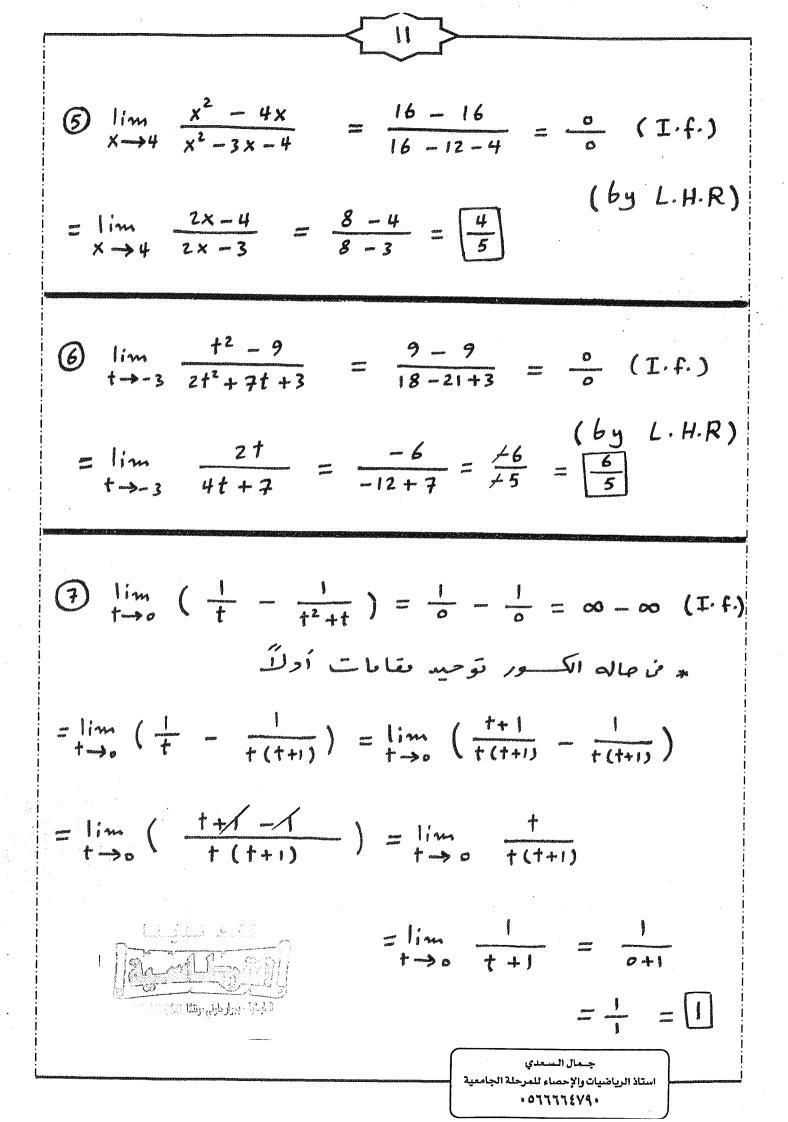
1

Ĺ

$$\frac{2}{2}$$

$$\frac{2}$$

مرم جداً : عند إيمار النعاية f(x) lim X->2 (x) تحوم ما a - x ms النابتح: عدد أ) ٥٥ أك ٥٥-00-00 (i <u>00</u> (i <u>0</u> : E. WI نتوقف * فعل الب والمقا) STOP * أختصر المت به بسم الب مرالعا) * فدومهم معد الأختصار عم x ب B * فر عاله وجود $(\nabla - \nabla) (i (\nabla - \nu) (i) (\nu - \nabla))$ conjugate + vill'ein _____i * ف) حاله وجود كرور م توجد مقامات. • حناك تعرف أرحع وأحط (بدلاً من التحليل) رجو احتظام قادره لوستال م Hopital Rule (جو ا بأمر فتستعد البيط والمغا كل على حد ٥ ثم التعويم بدالاشتغام عم لابه اذاكان الناتح دبد الاشتقامه : (1) acc id on i on ingen ingen (1) (2) ان ان المع نشته مره آجری و نیوم س x د 6 جي تدجل على الناجى عدد 1) مه () مه - . جسمال السعدى استاذ الرياضيات والإحصاء للمرحلة الجامعية ·07777279.



$$\begin{array}{c}
 13 \\
 13 \\
 13 \\
 12 \\
 11 \\
 11 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\
 12 \\$$

I

i

l

1 I

> ۱ Ì

$$\begin{array}{c} 14\\ \hline (1) \\ x \rightarrow 9 \\ x \rightarrow 9 \\ \hline \sqrt{x} - 3 \\ \end{array} = \frac{81 - 81}{3 - 3} = \frac{0}{0} (1 \cdot f \cdot) \\ (by \ L \cdot H \cdot R) \\ = \lim_{X \rightarrow 9} \frac{2x}{\frac{1}{2\sqrt{x}}} = \lim_{X \rightarrow 9} 2x \cdot 2\sqrt{x} \\ = \lim_{X \rightarrow 9} 4x \sqrt{x} = 4(9) \sqrt{9} = 36(3) = 108 \\ \hline (1) \\ \lim_{H \rightarrow 0} \frac{(3 + h)^{1} - 3^{1}}{h} = \frac{3^{-1} - 3^{1}}{0} = \frac{0}{0} (1 \cdot f \cdot) \\ (by \ L \cdot H \cdot R) \\ = \lim_{H \rightarrow 0} \frac{-1(3 + h)^{2} \cdot 1}{1} = \lim_{H \rightarrow 0} \frac{-1}{(3 + h)^{2}} \\ = \frac{-1}{(3 + 0)^{2}} = \frac{-1}{(3)^{2}} = \frac{-1}{9} \\ \hline (1) \\ \hline (1) \\ \lim_{H \rightarrow 0} \frac{\sqrt{x^{2} + 9} - 5}{x + 4} = \frac{\sqrt{16 + 9} - 5}{-4 + 4} = \frac{0}{0} (1 \cdot f \cdot) \\ (by \ L \cdot H \cdot R) \\ = \lim_{X \rightarrow -4} \frac{\sqrt{x^{2} + 9} - 5}{x + 4} = \lim_{X \rightarrow -4} \frac{x}{\sqrt{x^{2} + 9}} \\ = \lim_{X \rightarrow -4} \frac{2\sqrt{x^{2} + 9}}{1} = \lim_{X \rightarrow -4} \frac{x}{\sqrt{x^{2} + 9}} \\ = \frac{-4}{\sqrt{16 + 9}} = \frac{-4}{\sqrt{25}} = \frac{-4}{5} \\ \hline (2) \\ \hline (2) \\ \hline (3) \\ \hline (3) \\ \hline (4) \\ \hline (5) \hline (5) \\ \hline (5) \hline (5) \\ \hline (5) \\ \hline (5) \hline (5)$$

i

Ī

.

$$16$$

$$(2) \lim_{X \to 3} (2x + |x-3|) \qquad \text{ sublit} \qquad x-3 = 0 \\ x = 3 \\ \text{ indiverse of the second second$$

-- -- ----

$$\begin{array}{c}
13\\
\hline 13\\$$

$$18$$

$$18$$

$$18$$

$$1et : g(x) = \begin{cases} x & j & x < 1 \\ 3 & j & x = 1 \\ 2 - x^{2} & j & (x & x < 2) \\ (x - 3 & j & x > 2 \end{cases}$$

$$Evaluat each of the following limits if it exists:
$$(1) \lim_{x \to T} g(x) = \lim_{x \to T} (x) = \left[1\right] \quad x \stackrel{(1)}{\xrightarrow{x \to T}} \xrightarrow{x \to T} (x) = \left[1\right] \quad x \stackrel{(1)}{\xrightarrow{x \to T}} \xrightarrow{x \to T} (x) = \left[1\right]$$

$$(2) \lim_{x \to T} g(x) = \lim_{x \to T} (2 - x^{2}) = 2 - 1 = \left[1\right]$$

$$(3) \lim_{x \to 1} g(x) = 1 (1 = (x - 1) g(x)] = (x - 1) g(x) = (1 - 1) g(x)$$

$$(4) g(1) = 3$$

$$(5) \lim_{x \to Z} g(x) = \lim_{x \to Z} (2 - x^{2}) = 2 - 4 = \left[-2\right]$$

$$(6) \lim_{x \to Z} g(x) = \lim_{x \to Z} (x - 3) = 2 - 3 = \left[-1\right]$$

$$(7) \lim_{x \to Z} g(x) does not exist$$

$$(10) \lim_{x \to Z} g(x) does not exist$$

$$(11) \lim_{x \to Z} g(x) does not exist$$

$$(12) \lim_{x \to Z} g(x) does not exist$$

$$(13) \lim_{x \to Z} g(x) does not exist$$

$$(14) \lim_{x \to Z} g(x) does not exist$$$$

19 عدد صحيح IF n is integer عدد صحيح Find = n-1 (,___]ali وعوسه ما مر - 1 (3) lim [x] does not exist لأسرالنها مالين لج النهام السرى $28 \quad \text{If}: \quad f(x) = [x] + [-x]$ Find: lim f(x)? and f(z)? * $\lim_{x \to 2^+} ([x] + [-x]) = (2) + (-3) = 2-3 = -1$ * $\lim_{x \to 2} ([[x]] + [[-x]]) = (1) + (-2) = 1 - 2 = -1$: النها به المرين = النها به السري $i \lim_{x \to 2} F(x) = -1$ $* F(2) = \llbracket 2 \rrbracket + \llbracket -2 \rrbracket$ = 2 + (-2) = 2 - 2 = 0 جمال السعدى استاذ الرياضيات والإحصاء للمرحلة الجامعية ·07777274.

$$20$$

$$(2) If: \lim_{X \to 1} \frac{f(x) - 8}{x - 1} = 10$$
Find $\lim_{X \to 1} f(x)$?
$$x \to 1$$

$$(x) = \frac{1}{x \to 1} = 10$$
Find $\lim_{X \to 1} f(x)$?
$$(x) = \frac{1}{x \to 1} = 10$$
Find $\lim_{X \to 1} \frac{1}{x \to 1} = 10$
Find $\lim_{X \to 1} \frac{1}{x \to 1} = 10$
Find $\lim_{X \to 1} \frac{1}{x \to 1} = 10$
Find $f(x) = \lim_{X \to 1} 8 = 10 (\lim_{X \to 1} x - \lim_{X \to 1} 1)$

$$(x) = \lim_{X \to 1} \frac{1}{x \to 1} = 10 (1 - 1)$$

$$(x) = 10 (0) + 8$$
Find $f(x) = 8$
Find

-1 i

i

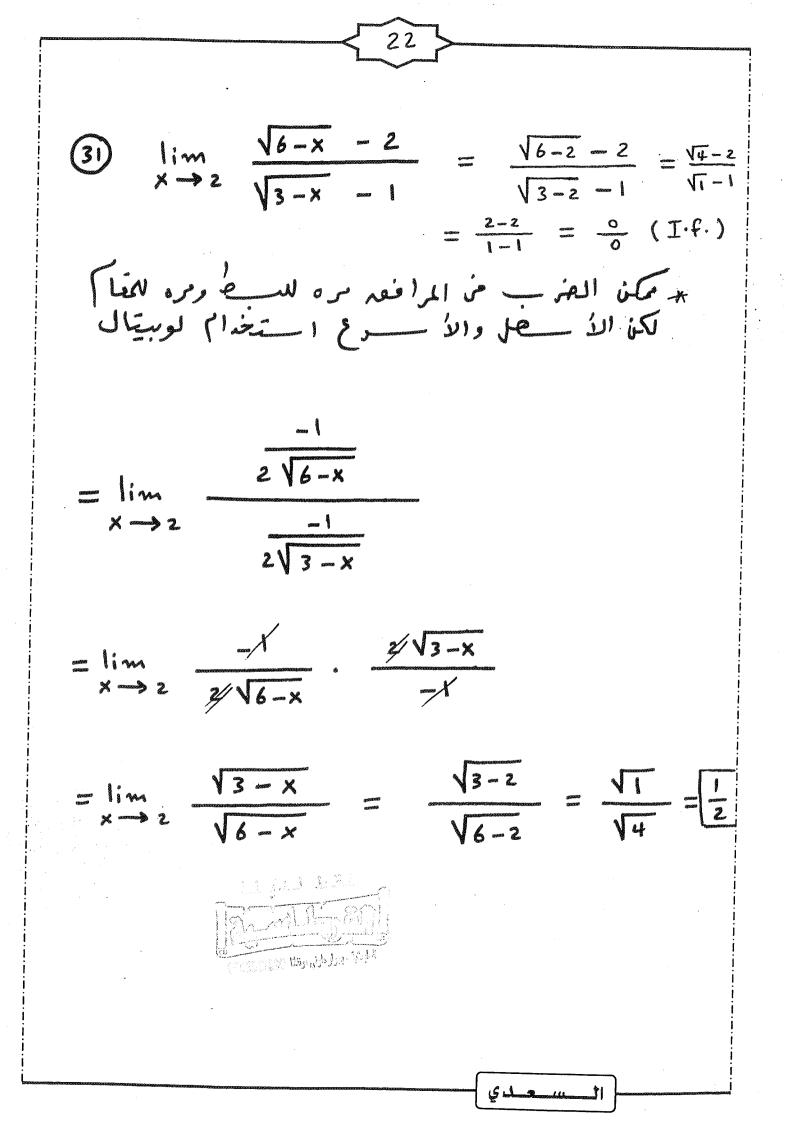
ł

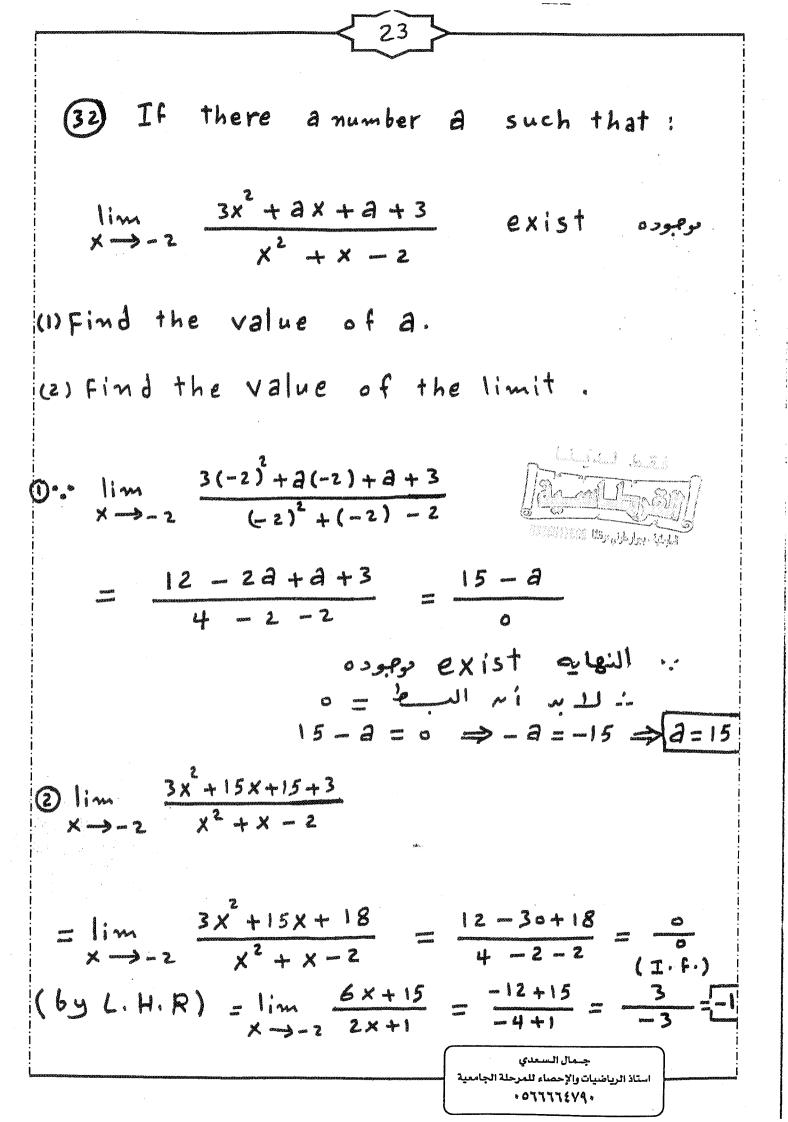
1

i i

3) If:

$$\lim_{X \to 0} \frac{f(x)}{x^2} = 5$$
Find:
(a) $\lim_{X \to 0} F(x)$
 $\therefore \lim_{X \to 0} \frac{f(x)}{x^2} = 5$
 $\lim_{X \to 0} \frac{f(x)}{x} = 5$
 $\lim_{X \to 0} \frac{f(x)}{x} = 5$. $\lim_{X \to 0} \frac{f(x)}{x} \cdot \lim_{X \to 0} \frac{1}{x} = 5$
 $\lim_{X \to 0} \frac{f(x)}{x} = \frac{5}{10}$
 $\lim_{X \to 0} \frac{f(x)}{x} = \frac{5}{10}$
 $\lim_{X \to 0} \frac{f(x)}{x} = \frac{5}{10}$
 $\lim_{X \to 0} \frac{f(x)}{x} = 5 \cdot (0)^2$
 $\lim_{X \to 0} \frac{f(x)}{x} = \frac{5}{10}$
 $\lim_{X \to 0} \frac{f(x)}{x} = 5 \cdot (0) = [0]$
 $\lim_{X \to 0} \frac{f(x)}{x} = 5 \cdot (0) = [0]$

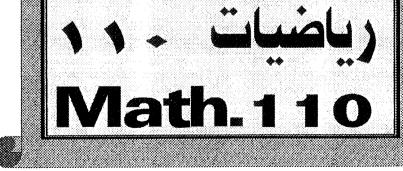




(3) Find:
$$\lim_{X \to 0} \sqrt{X} \stackrel{\text{sin}(\frac{\pi}{X})}{\underset{x \to 0}{\text{pero}}}$$

 $2 \text{ ero } \underbrace{\lim_{x \to 0} \sqrt{X}}_{x \to 0} \stackrel{\text{sin}(\frac{\pi}{X})}{\underset{x \to 0}{\text{pero}}} \stackrel{\text{sin}(\frac{\pi}{X})}{\underset{x \to 0}{\text{pero}}} \leq 1$
 $\overline{e} \leq e^{1} (\overline{e}) \leq 1$
 $\overline{e} = 1$

2.5 Continuity الأتصال Notes التركيز على المفاهيم الأساسية. ا شرح أبواب المنهج حسب الخطة. • أمثلة توضيحية وتدريبات. • نماذج اختبارات. 8 111



جمال السعدي استاذ الرياضيات والإحصاء للمرحلة الجامعية 0566664790

2.5
Continuity
Ultimity
Continuous at the number
$$X = a \leftrightarrow b$$
 is discontinuous at the number $X = a \leftrightarrow b$ is discontinuous at $X = a$
F(x) is discontinuous at $X = a$ is discontinuous at $X = a$
implies the figure $f(x) = f(x)$ is discontinuous at $X = a$
 $f(x) = f(x)$ is discontinuous at $X = a$
 $f(x) = f(x)$ is discontinuous at $X = a$
 $f(x) = f(x) = a$ is discontinuous at $X = a$
 $f(x) = f(x) = a$ is discontinuous at $X = a$
 $f(x) = f(x) = a$ is discontinuous at $X = a$
 $f(x) = f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$ is discontinuous at $X = a$
 $f(x) = a$

Example:
Where are each of the following
Functions discontinuous?

$$O \ f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(z) \ \text{ is not defined}$$
So $f(x) \ \text{ is discontinuous at } X = 2$

$$O \ f(x) \ \text{ is continuous on } R - \{2\}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) \ \text{ is continuous on } R - \{2\}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) \ \text{ is continuous on } R - \{2\}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) \ \text{ is continuous on } R - \{2\}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

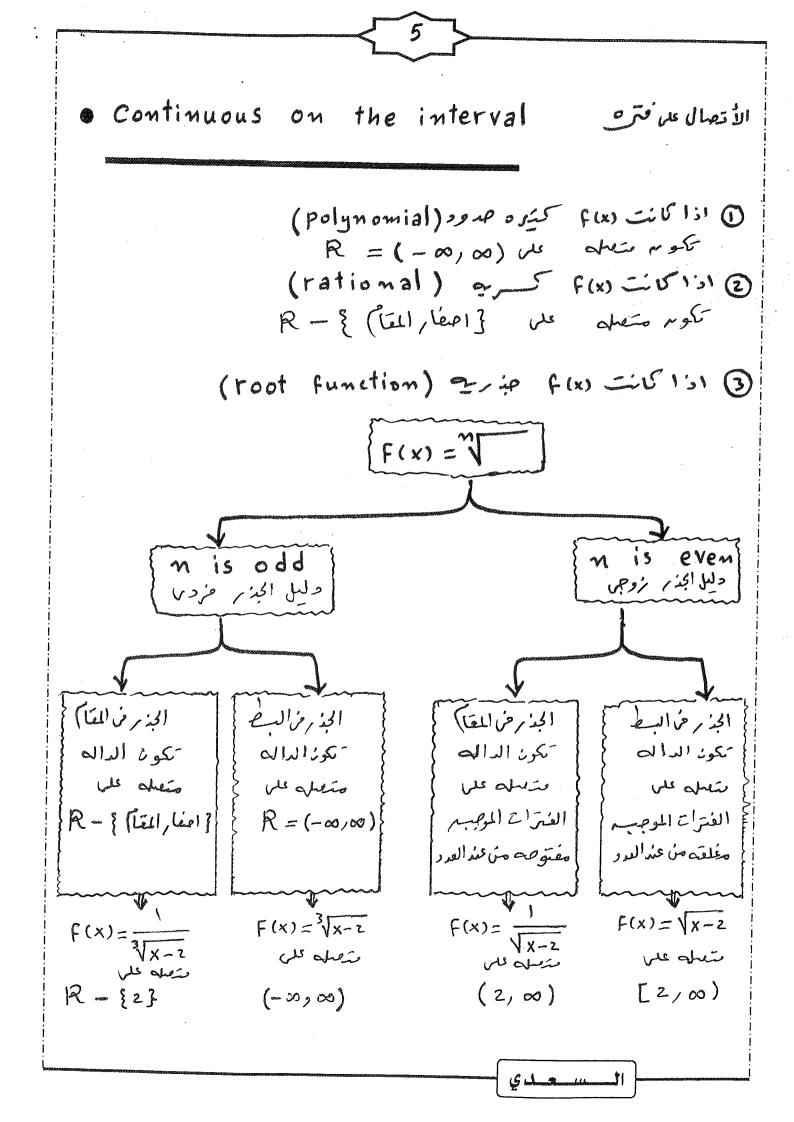
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$f(x)$$

(2) (a) From the graph of f, state the numbers at which f is dis-
continuous and explain why.
(b) For each of the numbers state in part (a), determine
whether f is continuous from the right, or from the left.
or neither.

* Af
$$x = -4$$
 F(x) is discontinuous
where F(-4) undefined
F(x) meither continuous From right nor from left.
* at $x = -2$ f(x) is discontinuous (Jump)+0:25
F(x) is continuous from the left. ($\lim_{x\to -2} F(x) = F(-2)$)
* at $x = 2$ F(x) is discontinuous (Jump)
F(x) is continuous From the right. ($\lim_{x\to -2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* at $x = 4$ f(x) is discontinuous (Jump)
F(x) is continuous from the right. ($\lim_{x\to +2} F(x) = F(-2)$)
* $(-2, 2)$ $(-2, 2)$ $(-4, -2)$ (-2) (-2) (-4) (-2) (-2) (-4) (-2) (-2) (-2) (-4) (-2) (-2) (-2) (-4) (-2) $($



6 Note that : The following types of function outros جمالعا are continuous on their domain . الدوال المكسك * trigonometric function . * Inverse trigonometric function. 2 Les aufil Usul * exponential function _ الدوال الأ م * logarithmic function. الدوال اللوفار بمريه Exmple : cho at into the الفترات الموجب مفتوحه من عنه العدد 2 -- f(x) is continuous on (2,00) \bigcirc f(x) = tan'xداله ۲۵ متعلم علم بالها :- F(x) is continuous on (-00,00) 3 f(x) = lm(x-z) + tan xis apsi المجال المشترك : f(x) is continuous $0 \ (2, \ \infty) \ (- \ \infty, \ \infty) = (2, \ \infty)$ جمال السعدى استاذ الرياضيات والإحصاء للمرحلة الجامعية ·077772V4·

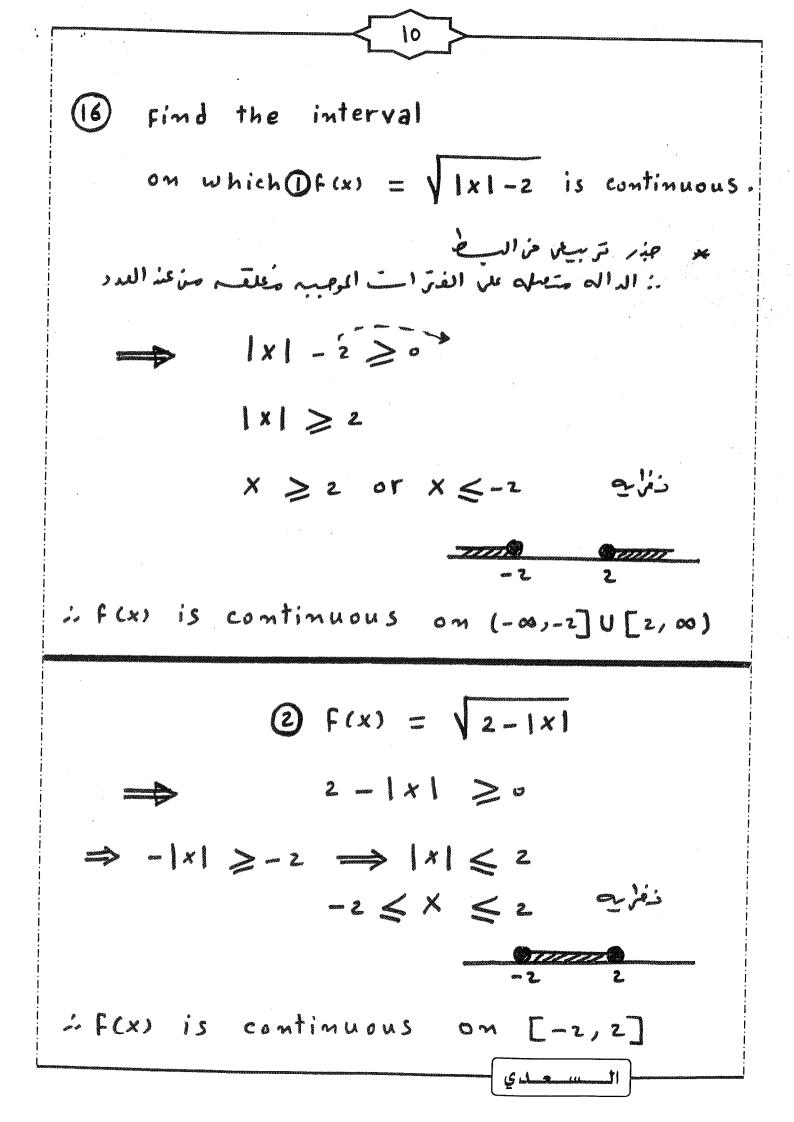
$$\frac{7}{2}$$
Example:
Where is the function $f(x)$ continuous?

$$f(x) = \frac{\ln x + tan^{1}x}{x^{2} - 1}$$

$$\int_{(-\infty,\infty)}^{tan^{1}x} (\ln x \text{ old}) \int_{(-\infty)}^{tan^{1}y} (\ln x \text{ old}) \int_{($$

(a)
$$f(x) = |x-3|$$
 Continuous on $(-\infty,\infty)$
(b) $f(x) = \frac{1}{|x-3|}$ Continuous on $(-\infty,\infty)$
(c) $f(x) = \frac{1}{|x|-3|}$ R- $\{lii\},lin\}, us obtain
 \therefore $f(x)$ continuous on $R - \{3\} = (-\infty,3)U(3,\infty)$
(c) $f(x) = \frac{1}{|x|-3|}$ $|x|-5=0$ $[lii], liop1$
 $|x|=3 \Rightarrow x=\pm 3$
 \therefore $f(x)$ Continuous on $R - \{-3,3\} = (-\infty,-3)U(3,3)U(3,\infty)$
(c) $f(x) = \frac{2x-1}{|x|+3|}$ $(lii+3=0)$ $(lii+1)$
 $(|x|+3=0)$ $(lii+1)$
 $(|x|-3,3)U(3,30)$
(f) $f(x) = \frac{3x}{x^2+9}$ $(|x|-3,3] = (-\infty,-3)U(-3,3)U(3,30)$
(g) $f(x) = \frac{3x}{x^2+9}$ $(|x|-3,3] = (-\infty,-3)U(-3,3)U(-3,3)U(3,30)$
(g) $f(x) = \frac{3x}{x^2+9}$ $(|x|-3,3] = (-\infty,-3)U(-3,3)U(-3,3)U(3,30)$
(g) $f(x) = \frac{3x}{x^2+9}$ $(|x|-3,3] = (-\infty,-3)U(-3,3$$

(2)
$$f(x) = \sqrt[5]{x^2-x}$$
 (vir $x - x^2$)
 $e^{\frac{1}{2}}$
 $e^{\frac{1}$



$$\frac{11}{12}$$

$$F(x) = \sqrt{x^{2}-16}$$

$$\frac{1}{x^{2}-16}$$

$$\frac{1}{$$

$$f(x) = \begin{cases} x^{3} - 4 & j & x \ge 2 \\ x^{2} & j & x < 2 \end{cases}$$

$$F(x) = \begin{cases} x^{3} - 4 & j & x \ge 2 \\ x^{2} & j & x < 2 \end{cases}$$

$$\frac{12}{x^{2}}$$

$$x < z$$

$$\frac{12}{x^{2}}$$

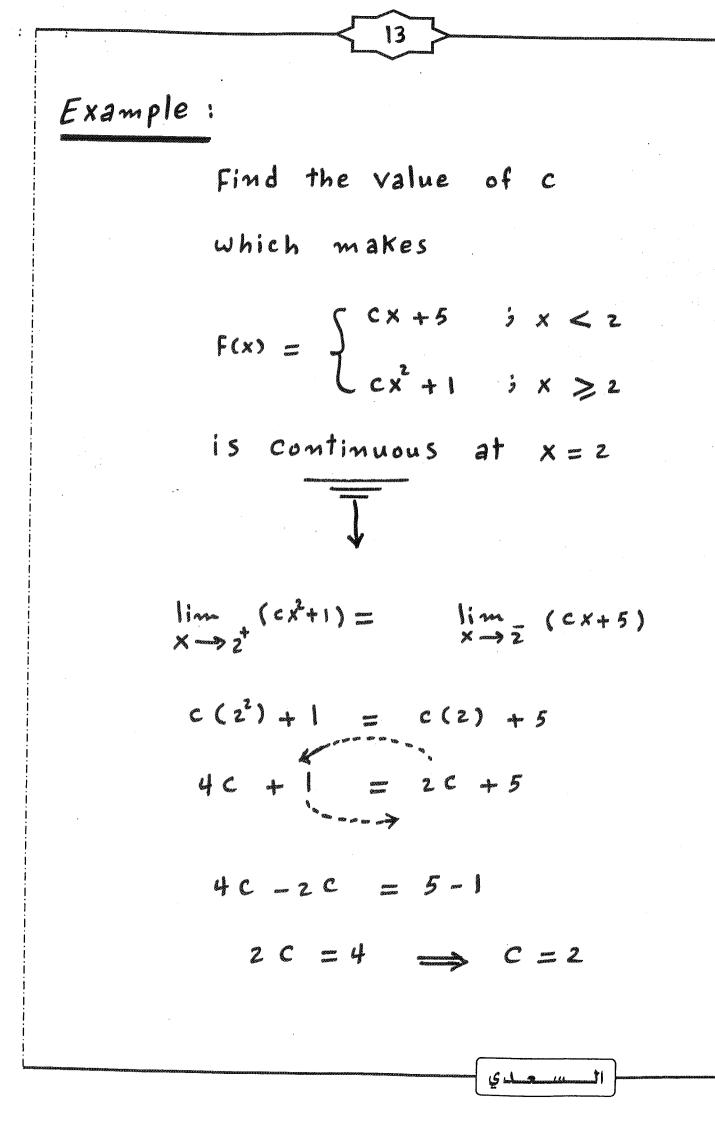
$$x < z$$

$$\frac{12}{x^{2}}$$

$$x < z$$

$$\frac{12}{x^{2}}$$

$$\frac{12}$$



$$\frac{14}{(x \neq a)}$$
Note that:

$$(x \neq a) \quad (x \neq a) \quad (x \neq a)$$

$$(x = a) \quad (x = a)$$

$$(x =$$

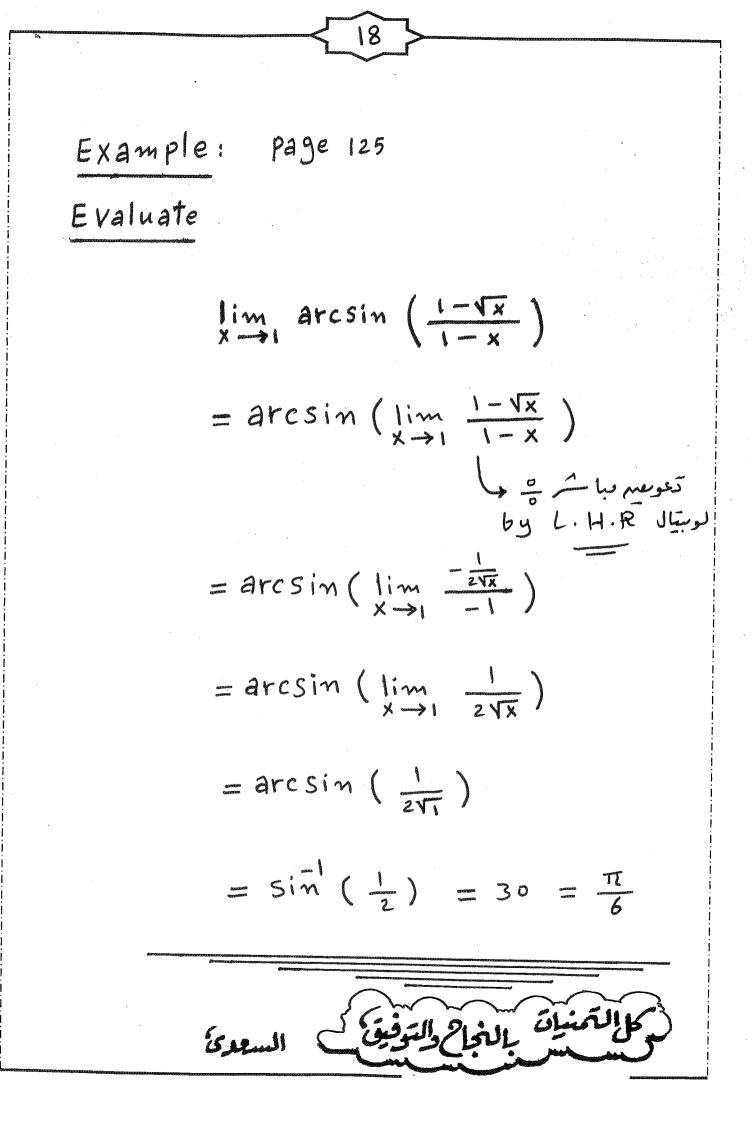
Intermediate value theorem
Intermediate value theorem

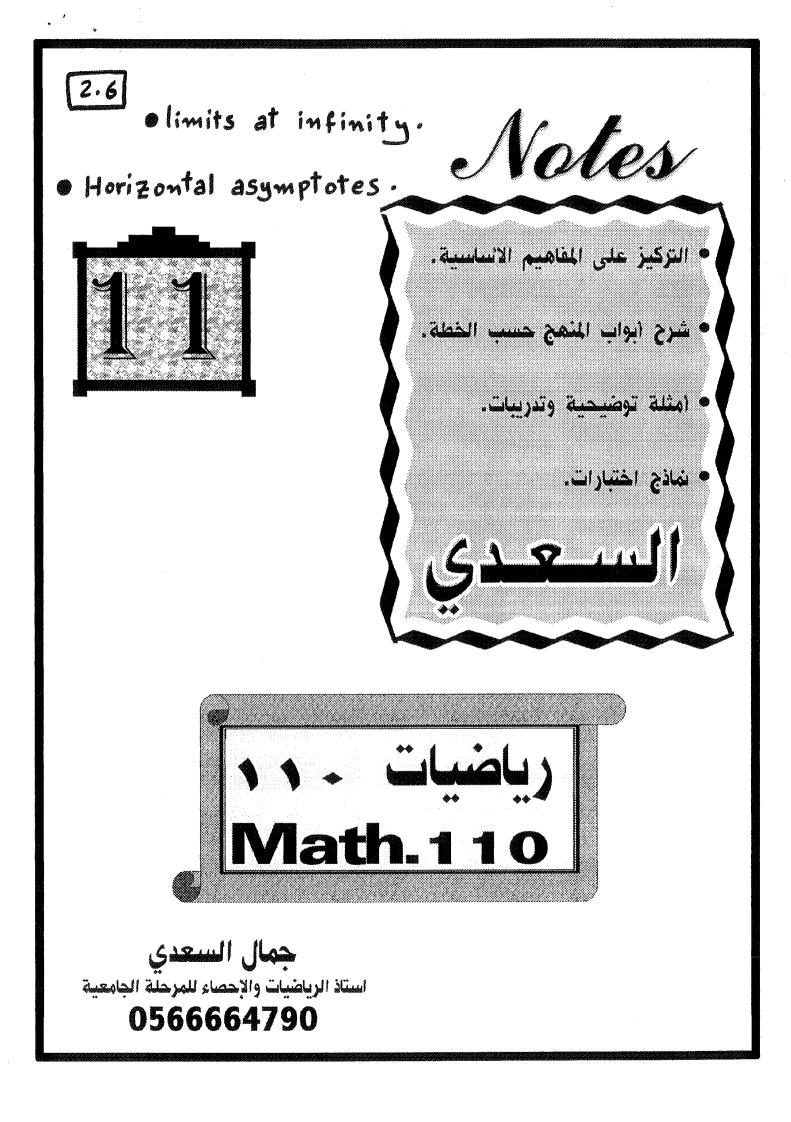
$$[a,b]$$
 where $a \in c$
 c (a, w) (d, w) (d, w)
 c (d, w) (d, w)
 c (d, w) (d, w)
 d (d, w)
 $(d,$

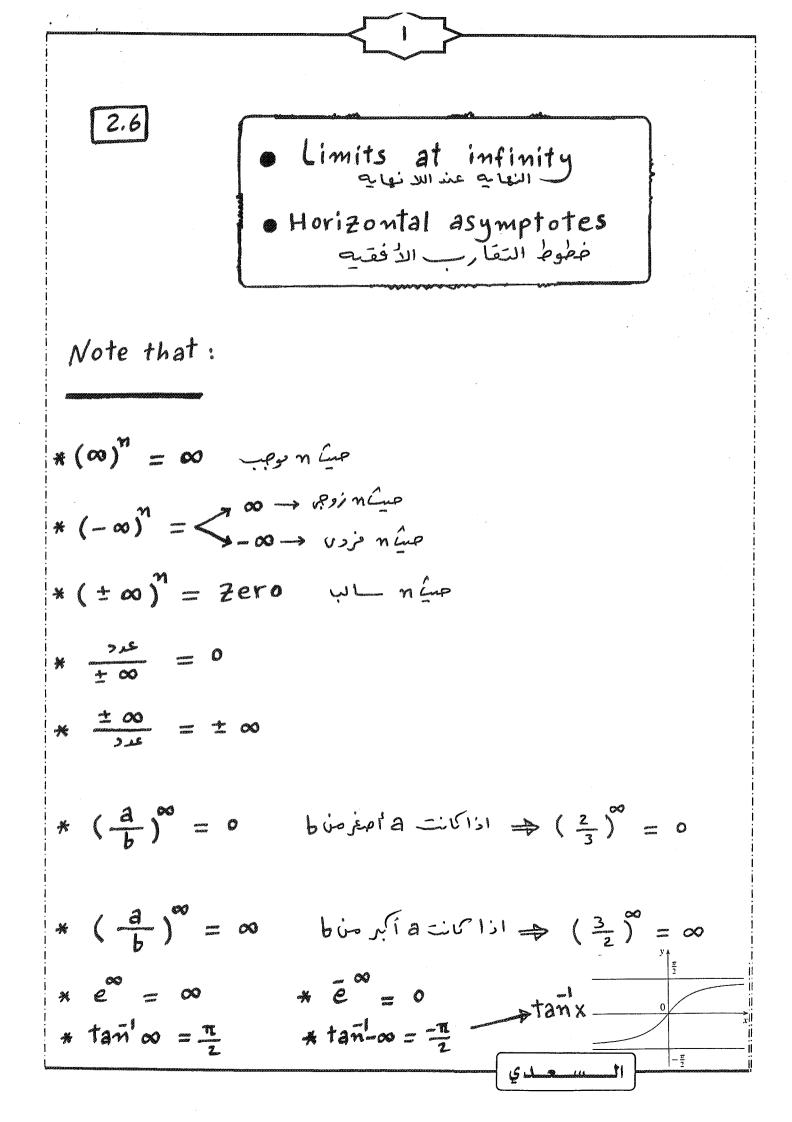
·

;

$$\begin{array}{rcl}
 & 17 \\
\hline
 & 17 \\
\hline
 & 17 \\
\hline
 & 18 \\
\hline
 & 18$$







$$\frac{2}{x \rightarrow \pm \infty} \frac{1}{2x^{2} - x} = \frac{2}{2x}$$

$$\frac{1}{(1)} \frac{1}{10} \frac{1}{x \rightarrow \pm \infty} \frac{1}{2x^{2} - x} = \frac{2}{3}$$

$$\frac{1}{(1)} \frac{1}{10} \frac{1}{x \rightarrow \pm \infty} \frac{1}{3x^{2} + 1} = \frac{2}{3}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

-

Find the limits:
(1)
$$\lim_{X \to \infty} \left(\frac{2}{3}\right)^{X} = \left(\frac{2}{3}\right)^{\infty} = 0$$
 (Tail is just by the product of the pr

JI.

$$\int \frac{1}{2} \int \frac{$$

(3)
$$\lim_{X \to \infty} \frac{\cos(\frac{1}{X})}{1 + \frac{1}{X}} \qquad \stackrel{i}{\longrightarrow} \qquad \lim_{X \to \infty} \frac{\cos(\frac{1}{X})}{1 + \frac{1}{X}} \qquad \stackrel{i}{\longrightarrow} \qquad \lim_{X \to \pm \infty} \frac{\cos(\frac{1}{X})}{1 + \frac{1}{X}} = \frac{\cos(\frac{1}{X})}{1 + \cos(\frac{1}{X})} = \frac{1}{1} = []$$

$$\Rightarrow \lim_{X \to \pm \infty} \frac{\sin(\frac{1}{X})}{\frac{1}{X}} = 0 \qquad \Rightarrow \lim_{X \to \pm \infty} \frac{\sin(\frac{1}{X})}{\frac{1}{X}} = 0$$

$$\Rightarrow \lim_{X \to \pm \infty} \frac{\cos(\frac{1}{X})}{\frac{1}{X}} = 0 \qquad \Rightarrow \lim_{X \to \pm \infty} \frac{\cos(\frac{1}{X})}{\frac{1}{X}} = 0$$

$$\Rightarrow \lim_{X \to \pm \infty} \frac{\cos(\frac{1}{X})}{\frac{1}{X}} = 0 \qquad \Rightarrow \lim_{X \to \pm \infty} \frac{\cos(\frac{1}{X})}{\frac{1}{X}} = 0$$

Example:

Find:
$$\lim_{X \to -\infty} \frac{2 - X + \sin x}{x + \cos x}$$

$$X + \cos x$$

$$X = \cos x$$

$$\lim_{X \to -\infty} \lim_{X \to -\infty} \frac{\frac{2}{x} - 1 + \frac{\sin x}{x}}{1 + \frac{\cos x}{x}} = \frac{0 - 1 + 0}{1 + 0} = \frac{-1}{1}$$

$$= \frac{-1}{1}$$

$$\begin{array}{c} 10 \\ \hline 10$$

Horizontal asymptotes

$$\Rightarrow i y = L is h. asym.$$

 $y = lim + j i y = L is h. asym.$
 $y = t L are h. asym.$
 $y = t L are h. asym.$
 $+\infty < i - \infty$
 $i No h. asym.$
Example : Find horizontal asymptotes
() $f(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$ (izu $-p_{2} = \frac{1}{1} = 1$
 $y = 1$ is horizontal asymptote
 $\Rightarrow (y = 1$ is h. asym.)
 $y = y = 1$ is horizontal asymptote
 $\Rightarrow (y = 1$ is h. asym.)
 $y = y = 1$

$$12$$

$$(2) f(x) = \frac{2x-1}{\sqrt{x^2+1}}$$

$$\sqrt[3]{x^2} = |x| = \frac{2x-1}{\sqrt{x^2+1}}$$

$$\sqrt[3]{x^2} = |x| = \frac{2x-1}{\sqrt{x^2+1}}$$

$$\frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$$

$$\frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$$

$$\frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$$

$$\frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$$

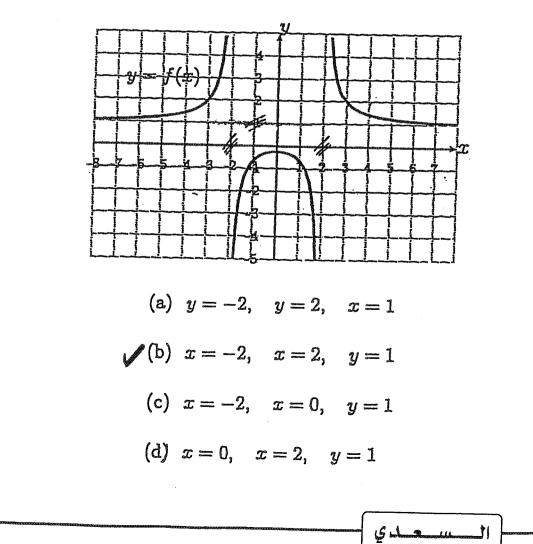
$$\frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+$$

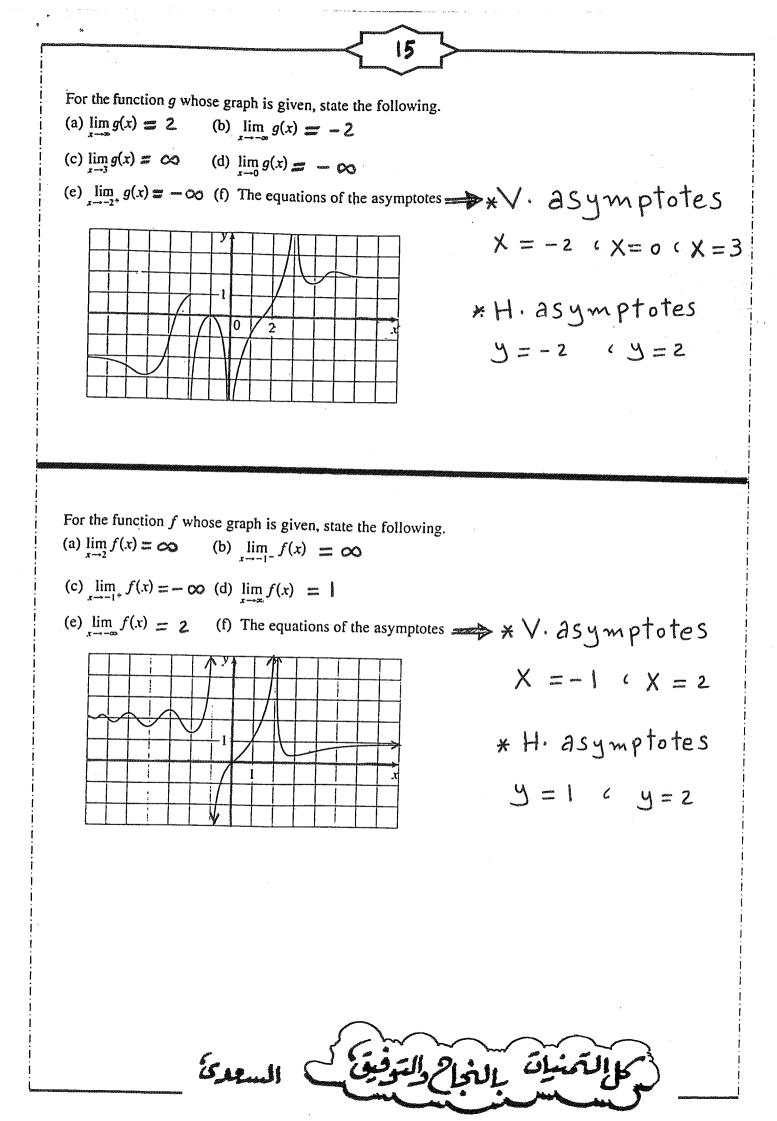
$$\frac{13}{4}$$
Vertical asymptotes
 $a_{i} = (i)^{j} - (i)^{j} + (i)^$

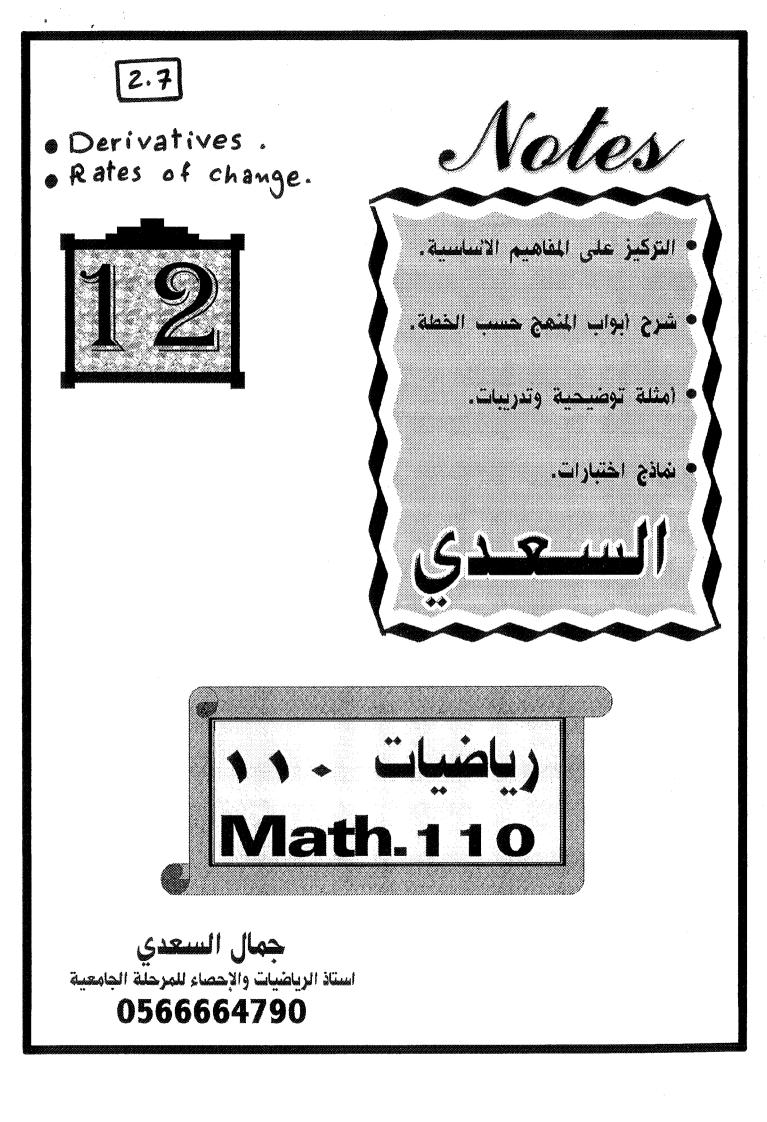
.

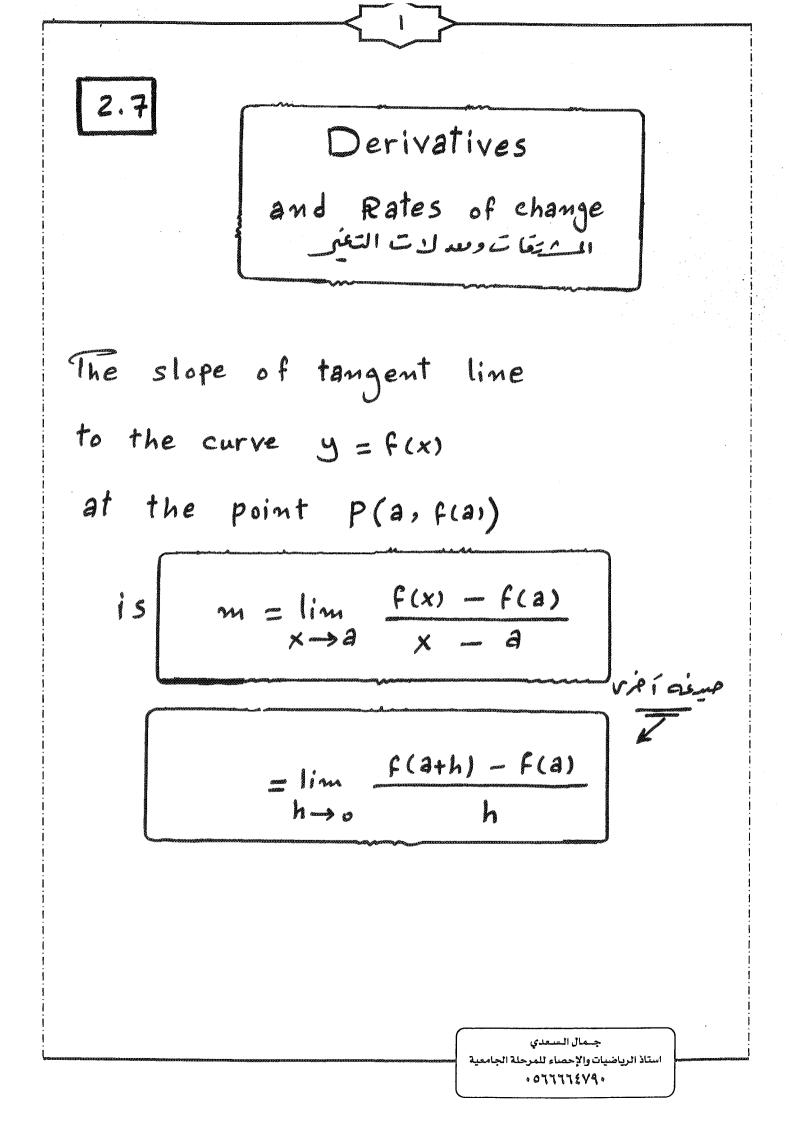
$$\begin{array}{rcl}
& 14 \\
\hline & & \\
\hline \\ \hline & & \\
\hline \\ \hline \\ \hline & & \\
\hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$$

The horizontal and vertical asymptotes of f are





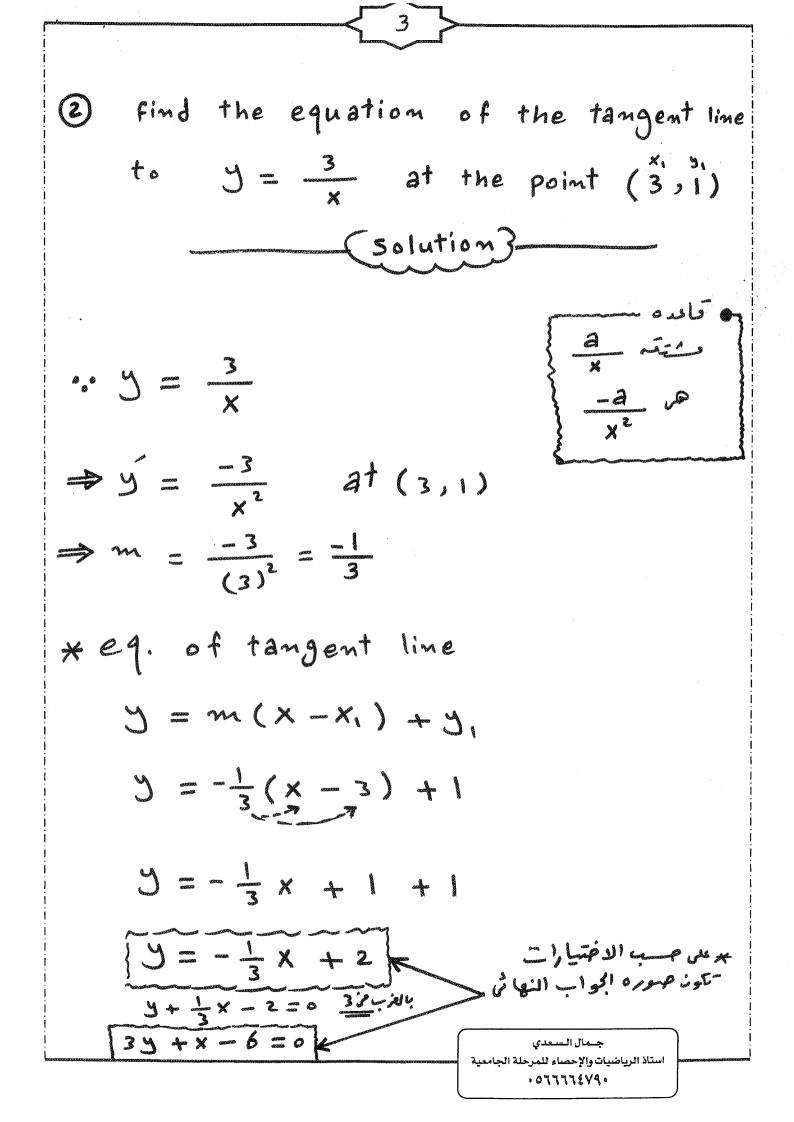




Example :
() Find the equation of the tangent line
to
$$y = x^2$$
 at the point $p(1, 1)$
 $x = 1$ ($x = 1$)
 $y = 2x = 2 + 1$
 $y = 2x = 2 + 1$

.

•



Velocit * Displace * Average التو يفه . * Instantan Note th

5
Example: (Page 151
The displacement (in meters) is given by

$$S = t^2 - 8t + 18$$

() Find the average velocity over
the intervals
(a) [3,4]
 $v = \frac{1}{d5} = 2t - 8$
 $v = \frac{1}{d5} = 2t - 8$

$$\frac{6}{6}$$
Derivatives - is denoted by:
The derivative of the function f
at the number a is denoted by:

$$F(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$$

$$= \lim_{h \to 0} \frac{F(x) - F(a)}{x - a}$$

$$\frac{Example}{x - a}$$
Example
of the function $F(x) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by definition $(instit) = x^2 - 8x + 9$
by $(instit) = x^2 - 8x + 9$
 $F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{(x+h)^2 - 8(x+h) + 9] - [x^2 - 8x + 9]}{h}$
 $= \lim_{h \to 0} \frac{(x+h)^2 - 8(x+h) + 9] - [x^2 - 8x + 9]}{h}$
 $= \lim_{h \to 0} \frac{(x+h)^2 - 8(x+h) + 9] - [x^2 - 8x + 9]}{h}$
 $= \lim_{h \to 0} \frac{(x+h)^2 - 8(x+h) + 9}{h} = \lim_{h \to 0} \frac{K(2x+h-8)}{h}$
 $= \lim_{h \to 0} \frac{(2x+h-8)}{h} = \lim_{h \to 0} \frac{K(2x+h-8)}{h}$
 $= \lim_{h \to 0} \frac{(2x+h-8)}{h} = 2x - 8$
 $h \to 0$
 $= \lim_{h \to 0} \frac{(2x+h-8)}{h} = 2x - 8$
 $h \to 0$
 $f(x) = 2x - 8$
 $f(x) = 2x - 8$
 $h \to 0$
 $f(x) = 2x - 8$
 $f(x)$

Page 151
Each limit represents the derivative
of some function
$$\underline{f}$$
 at some number \underline{a}
* State such \underline{f} and \underline{a} in each case.
(3) $\lim_{h \to 0} \frac{(1+h)^{10}-1}{h}$
 $\lim_{h \to 0} \frac{f(a+h)^{-1}-1}{h}$
 $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$
 $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$
 $\lim_{a \to 0} \frac{f(a+h)-f(a)-f(a)}{h}$
 $\lim_{a \to 0} \frac{f(a+h)-f(a)-f(a)}{h}$
 $\lim_{a \to 0} \frac{f(a+h)-2}{h}$
 $\lim_{a \to 0} \frac{f(a+h)-2}{h}$

t L

ļ. i -

$$33 \lim_{X \to 3} \frac{|\vec{x}| - 32}{|x - 5|}$$

$$33 \lim_{X \to 3} \frac{|\vec{x}| - 32}{|x - 5|}$$

$$4 \lim_{X \to 3} \frac{|\vec{x}| - f(a)}{|x - a|}$$

$$\Rightarrow f(x) = 2 \quad (a = 5 + \frac{1}{2})$$

$$\Rightarrow f(x) = \frac{x}{2} \quad (a = 5 + \frac{1}{2})$$

$$34 \lim_{X \to \frac{\pi}{4}} \frac{tanx - 1}{|x - \frac{\pi}{4}|}$$

$$\Rightarrow f(x) = tanx \quad (a = \frac{\pi}{4} + \frac{1}{2})$$

$$\Rightarrow f(x) = tanx \quad (a = \frac{\pi}{4} + \frac{1}{2})$$

$$\Rightarrow f(x) = tanx \quad (a = \pi + \frac{1}{4})$$

$$\Rightarrow f(x) = \cos((\pi + h) + 1)$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$h \to o \quad h$$

$$\Rightarrow f(x) = \cos(x + h) + 1$$

$$\frac{9}{x}$$
Rates of change $x_{1} = \frac{1}{x_{2}} = \frac{9}{x_{2}} = \frac{9}{x_{2}} = \frac{1}{x_{2}} = \frac{1}{x_{1}} = \frac{1}{x_{$

11
(2) page 151
If:
$$g(x) = 1 - x^3$$
 find $g'(o)$?
and use it to find the equation
of tangent line to the curve $y = 1 - x^3$
at the point $(o, 1)$
 x_1, y_3, y_4
 $(o, 1)$
 $(o,$

(1) page 151 for the function g whose graph is given arrange the following numbers in increasing order: 0 g'(-2) g(0) g(2) 9(4) and explain reasoning. y = g(x) $\begin{array}{c} \begin{array}{c} \theta_2 \\ \theta_2 \\ \theta_3 \end{array}$ • الزاوي : التر يصنعها الما سم المنعن م الاتجاه الموجب لمحور x من أعل م جاده : معناه المبل موجب ٥ (٢) ٢ الداله تر اير ع محکما زاد قبار مالزاویه الحاده کلیا ازداد المل ای زادت المشتریه ال 6 6 6 6 4 6 كليا زوايا جاده .: المنتقات موجبه. الرسم يومنح أم $\theta_{4} < \theta_{3} < \theta_{1} \Rightarrow \begin{pmatrix} 9'(4) < 9'(2) < 9'(-2) \\ \theta_{4} \xrightarrow{is} & \theta_{3} \xrightarrow{is} & \theta_{1} \xrightarrow{is} \end{pmatrix}$ عنہ 33 Q, ins منفجه : معناه الميل اب ٥ × (٢) ٢ الداله تساق D2 زارید وندم م .: الم يوت عندها سالبه عسك

13 (18) page 151 (a) Find an eq. of the tangent line to y = g(x) at x = 5if g(5) = -3 and g'(5) = 4(solution) ** (×1,3) eq. of tangent line 5 9(5)=-3 is: **m = g (5)=4 $y = m(x - X_i) + y_i$ y = 4(x - 5) + (-3) $y = 4x - 20 - 3 \Rightarrow y = 4x - 23$ (b) If the tangent to y = f(x) at (4,3) and intervented and in التماس passes through the point (0,2) * Find F(4) and F(4) ? تقع وم المذحن .. بتحق معادلته - (Solution)-* [F(4) = 3] ((4, 5)) is ab i -) is with a first a * eq. of tangent: $y = m(x - x_1) + y_1$ y = F(4)(x - 4) + 3 $2 = F(4)(0-4) + 3 \quad \text{(0, 2)}$ $\Rightarrow 2 = -4 \tilde{F}(4) + 3$ $\Rightarrow 4 F(4) = 3 - 2$ \Rightarrow 4 F(4) = 1 \Rightarrow $\left| F(4) = \frac{1}{4} \right|$ استاذ الرياضيات والإحصاء للمرحلة الجامعية ·077772V4.

14 Page 150 7 Find the eq. of the tangent line to the curve at the given point $y = \sqrt{x}$ > (1,1) ↓ ↓ ×, 9, -(solution3_ عوصہ دیم × ب ۱ فرانک تک تحصل علی مہ $y' = \frac{1}{2\sqrt{x}}$ $\Rightarrow m = \frac{1}{2N_1} = \left(\frac{1}{2}\right) \dots \Rightarrow slope.$. eq. of the tangent line : $\mathcal{Y} = m(\mathbf{X} - \mathbf{X}_1) + \mathbf{Y}_1$ $y = \frac{1}{2}(x - 1) + 1$ $y = \frac{1}{2}x - \frac{1}{2} + 1 \Rightarrow y = \frac{1}{2}x + \frac{1}{2}$ كالتمنيات بالنجاح ولتوفيق لد ي



2.8
The derivative as a function
The derivative of a function
$$f$$
 at a fixed number a
is: $f(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
If: we replace a by a variable x
we obtain f as a new function
called the derivative of f and defined by
equation $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Example: If: $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $Example: If: f(x) = 3x^2 - 1$ Find $f(x)$?
by def. $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{2x^2 + 6xh + 3h^2 - 8x^2 + 4}{h}$
 $= \lim_{h \to 0} \frac{x(6x + 3h)}{h} = \lim_{h \to 0} (6x + 3h) = 6x$

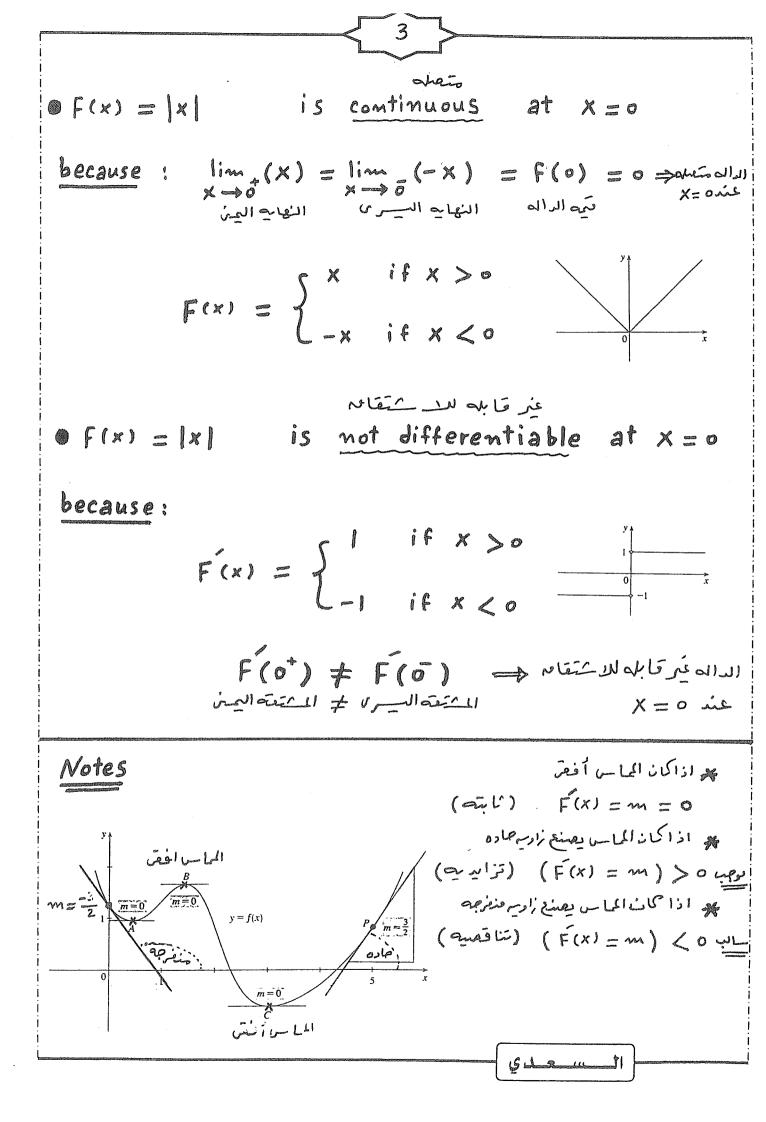
L

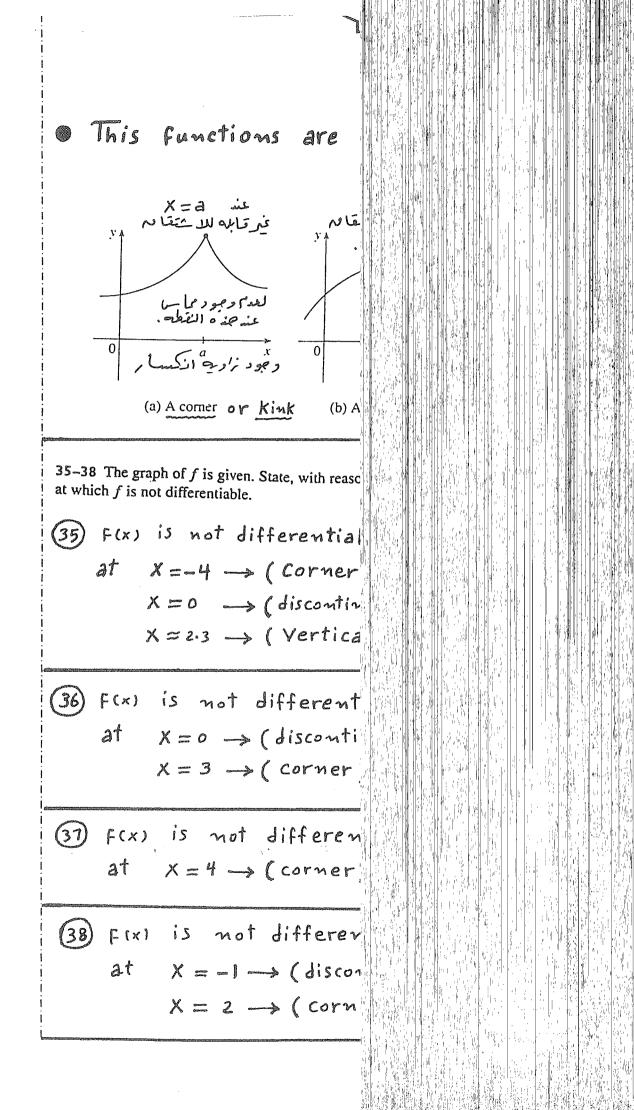
I

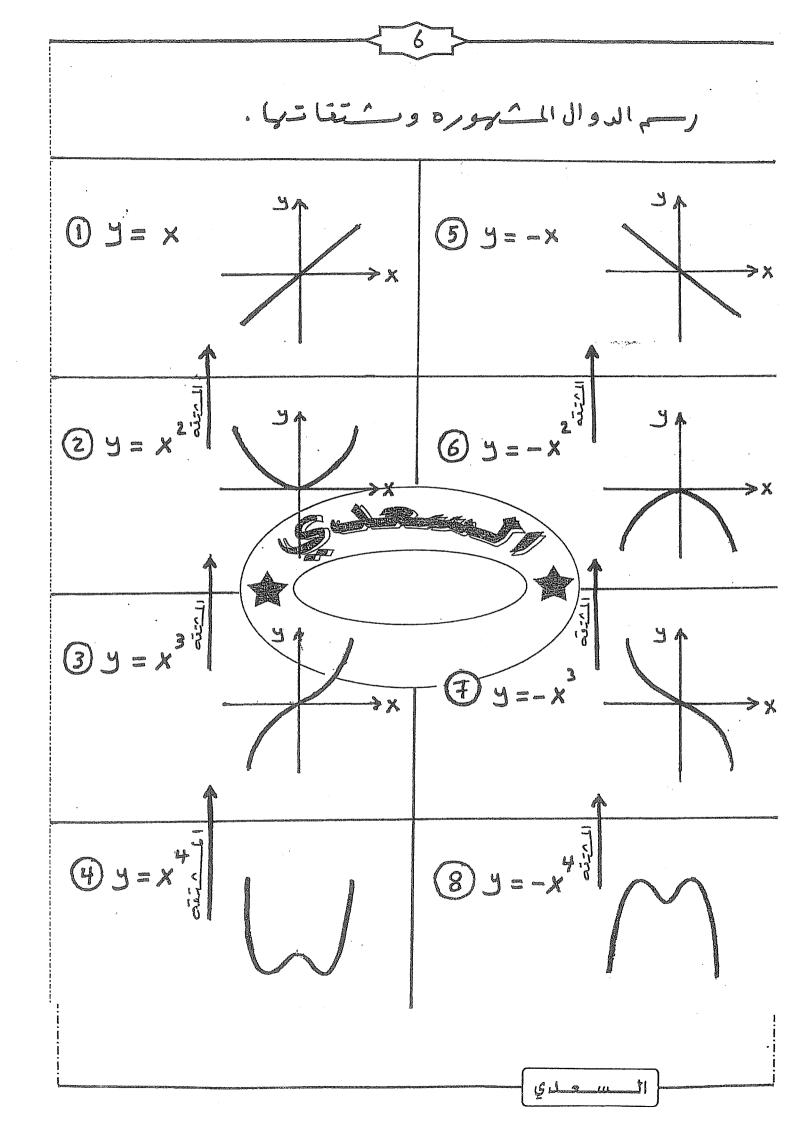
١

I

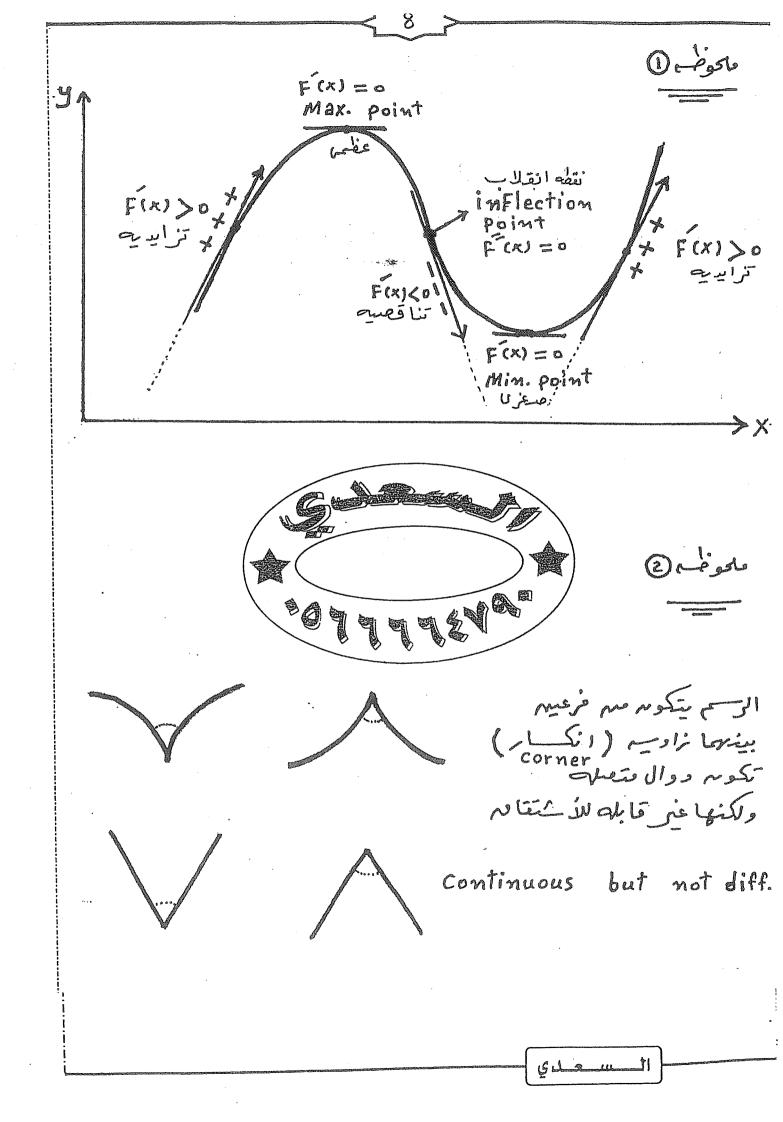
• If: y = f(x)رموز aug 1 The notations for the derivative are: $y' = F(x) = \frac{dy}{dx} = \frac{dF}{dx} = \frac{d}{dx}F(x) = DF(x)$ ما لق الما مع الة روجوده • <u>F</u> is differentiable at <u>a</u> if F(a) exist. فتره مفتوعه is differentiable on open interval : (a, b) or (a, oo) or (- oo, a) or (- oo, oo) عدد كل عند قابله للا شقامه if it is differentiable at every number د افل الفتر ه in the interval. * اذا كانت الداله قابله للا شيقًا معند a فإنها تكوم متعله عند a • Theorem: If f is differentiable at a then f is continuous at a * توجد دوال متعلمه ولكنها غير قابله للا شقام مثال: [x] = (x) • There are functions that are continuous but not differentiable. for example: f(x) = [X] is continuous at x=0 but not differentiable at x=0 استاذ الرياضيات والإحصاء للمرحلة الجامعية



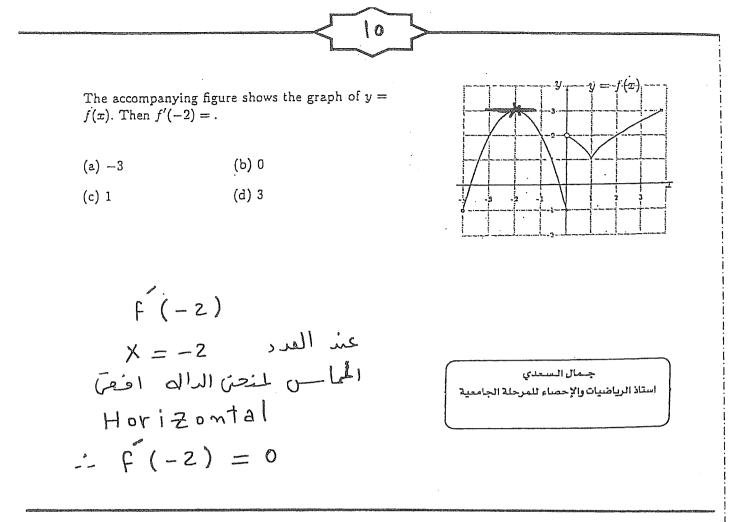








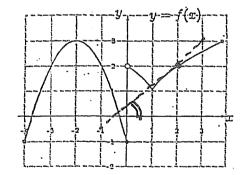
9 y= f(x) f(-z)2n Iler 2 - 2 X الماس لنعن الداله افعن Horizontal :. F(-2) = 0 F(2)>0 K i white (يعنع زاري منزميم مع مور ٢) Xa 2 : F(2) < 0 تناقيه False ·. f(2) > 0 f(x) is differentiable. at x = 1False F(x) not diff. because: there is corner. X سے جبک ي 11

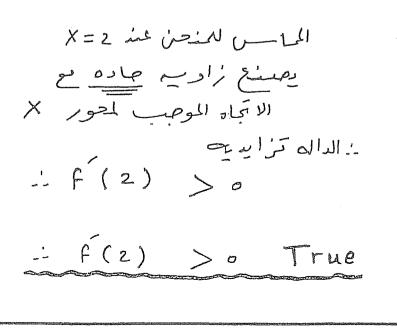


The accompanying figure shows the graph of y = f(x). Then f'(2) > 0.

(a) True

(b) False





المسيب محل ي

$$x = 0 \text{ is drive
(Jump) X = 0$$

$$f(X) = 2$$

$$x \to 0$$

$$f(X) = 2$$

$$f(X) = 3$$

$$f(X) = 3$$