Workshop Solutions to Sections 3.1 and 3.2

1) $\begin{aligned} \lim _{x \rightarrow-2}\left(x^{3}-2 x+1\right) & =(-2)^{3}-2(-2)+1 \\ & =-8+4+1=-3 \end{aligned}$	2) $\begin{aligned} \lim _{x \rightarrow 2}\left(3 x^{2}+x-4\right) & =3(2)^{2}+(2)-4 \\ & =12+2-4=10\end{aligned}$
3) $\begin{aligned} \lim _{x \rightarrow 1}\left(x^{2}+3 x-5\right)^{3} & =\left((1)^{2}+3(1)-5\right)^{3} \\ & =(1+3-5)^{3}=(-1)^{3}=-1 \end{aligned}$	4) $\begin{aligned} \lim _{x \rightarrow-2}\left(2 x^{3}+3 x^{2}+5\right) & =2(-2)^{3}+3(-2)^{2}+5 \\ & =2(-8)+3(4)+5 \\ & =-16+12+5=1 \end{aligned}$
5) $\lim _{x \rightarrow-2} \frac{x^{2}-2}{x-2}=\frac{(-2)^{2}-2}{(-2)-2}=\frac{4-2}{-2-2}=\frac{2}{-4}=-\frac{1}{2}$	6) $\lim _{x \rightarrow 2} \frac{x^{3}+5}{x^{2}+1}=\frac{(2)^{3}+5}{(2)^{2}+1}=\frac{8+5}{4+1}=\frac{13}{5}$
$\text { 7) } \begin{gathered} \lim _{x \rightarrow 0} \frac{x^{2}+3 x+5}{x^{2}-3}=\frac{(0)^{2}+3(0)+5}{(0)^{2}-3}=\frac{0+0+5}{0-3} \\ =\frac{5}{-3}=-\frac{5}{3} \end{gathered}$	8) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-5}=\frac{(1)-1}{(1)^{2}+(1)-5}=\frac{1-1}{1+1-5}=\frac{0}{-3}=0$
9) $\begin{gathered} \lim _{x \rightarrow-1} \sqrt{x^{3}-10 x+7}=\sqrt{(-1)^{3}-10(-1)+7} \\ =\sqrt{-1+10+7}=\sqrt{16}=4 \end{gathered}$	10) $\begin{aligned} & \lim _{x \rightarrow-1} \frac{1-(x+4)^{-2}}{x-2}=\frac{1-((-1)+4)^{-2}}{(-1)-2} \\ &= \frac{1-(-1+4)^{-2}}{-1-2}=\frac{1-(3)^{-2}}{-3}=\frac{1-\frac{1}{3^{2}}}{-3} \\ &=\frac{1-\frac{1}{9}}{-3}=\frac{\frac{8}{9}}{-3}=\frac{8}{9} \times \frac{1}{-3}=\frac{8}{-27}=-\frac{8}{27} \end{aligned}$
$\text { 11) } \begin{aligned} \lim _{x \rightarrow-1} \frac{x^{3}+2 x}{8-2 x} & =\frac{(-1)^{3}+2(-1)}{8-2(-1)}=\frac{-1-2}{8+2}=\frac{-3}{10} \\ & =-\frac{3}{10} \end{aligned}$	12) $\lim _{x \rightarrow 4} \frac{x^{2}-3 x}{5+x}=\frac{(4)^{2}-3(4)}{5+(4)}=\frac{16-12}{5+4}=\frac{4}{9}$
13) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{5+x}=\frac{(4)^{2}-4(4)}{5+(4)}=\frac{16-16}{5+4}=\frac{0}{9}=0$	$\text { 15) } \begin{aligned} \lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{x^{2}(x-5)}{x^{2}} \\ & =\lim _{x \rightarrow 0}(x-5)=(0)-5=-5 \end{aligned}$
14) $\lim _{x \rightarrow 4} \frac{3^{-1}-(2 x-5)^{-1}}{4-x}=\lim _{x \rightarrow 4} \frac{\frac{1}{3}-\frac{1}{2 x-5}}{4-x}$	$\text { 16) } \begin{aligned} \lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36} & =\lim _{x \rightarrow 6} \frac{x-6}{(x-6)(x+6)}=\lim _{x \rightarrow 6} \frac{1}{x+6} \\ & =\frac{1}{(6)+6}=\frac{1}{12} \end{aligned}$
$=\lim _{x \rightarrow 4} \frac{4-x}{2 x-8}$	17) $\lim _{x \rightarrow 6} \frac{x^{2}-36}{x-6}=\lim _{x \rightarrow 6} \frac{(x-6)(x+6)}{x-6}=\lim _{x \rightarrow 6}(x+6)$
$\begin{aligned} & =\lim _{x \rightarrow 4} \frac{-2(4-x)}{3(2 x-5)(4-x)}=\lim _{x \rightarrow 4} \frac{-2}{3(2 x-5)} \\ & =\frac{-2}{3(2(4)-5)}=\frac{-2}{3(8-5)}=\frac{-2}{9}=-\frac{2}{9} \end{aligned}$	$\text { 18) } \begin{gathered} \lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\lim _{x \rightarrow-6} \frac{x+6}{(x-6)(x+6)}=\lim _{x \rightarrow-6} \frac{1}{x-6} \\ =\frac{1}{(-6)-6}=\frac{1}{-12}=-\frac{1}{12} \end{gathered}$
$\text { 19) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3} \\ & =\lim _{x \rightarrow 3}\left(x^{2}+3 x+9\right)=(3)^{2}+3(3)+9 \\ & =9+9+9=27 \end{aligned}$	$\text { 20) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x-3}{x^{3}-27} & =\lim _{x \rightarrow 3} \frac{x-3}{(x-3)\left(x^{2}+3 x+9\right)} \\ & =\lim _{x \rightarrow 3} \frac{1}{x^{2}+3 x+9}=\frac{1}{(3)^{2}+3(3)+9} \\ & =\frac{1}{9+9+9}=\frac{1}{27} \end{aligned}$

$\text { 21) } \begin{aligned} \lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8} & =\lim _{x \rightarrow-2} \frac{x+2}{(x+2)\left(x^{2}-2 x+4\right)} \\ & =\lim _{x \rightarrow-2} \frac{1}{x^{2}-2 x+4} \\ & =\frac{1}{(-2)^{2}-2(-2)+4}=\frac{1}{4+4+4}=\frac{1}{12} \end{aligned}$	$\text { 22) } \begin{aligned} \lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{x+2} \\ & =\lim _{x \rightarrow-2}\left(x^{2}-2 x+4\right)=(-2)^{2}-2(-2)+4 \\ & =4+4+4=12 \end{aligned}$
$\text { 23) } \begin{gathered} \lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+1)}{x-4}=\lim _{x \rightarrow 4}(x+1) \\ =(4)+1=5 \end{gathered}$	$\text { 24) } \begin{gathered} \lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-8 x+15}=\lim _{x \rightarrow 3} \frac{(x+7)(x-3)}{(x-5)(x-3)}=\lim _{x \rightarrow 3} \frac{x+7}{x-5} \\ =\frac{(3)+7}{(3)-5}=\frac{10}{-2}=-5 \end{gathered}$
$\text { 25) } \begin{aligned} & \lim _{x \rightarrow 0} \frac{x}{1-(1-x)^{2}}=\lim _{x \rightarrow 0} \frac{x}{1-\left(1-2 x+x^{2}\right)} \\ &=\lim _{x \rightarrow 0} \frac{x}{1-1+2 x-x^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x}{2 x-x^{2}}=\lim _{x \rightarrow 0} \frac{x}{x(2-x)} \\ &=\lim _{x \rightarrow 0} \frac{1}{2-x}=\frac{1}{2-(0)}=\frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { 26) } \lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{x-2}=\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(x+6)-8}=\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(\sqrt[3]{x+6})^{3}-8} \\ & =\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(\sqrt[3]{x+6}-2)\left((\sqrt[3]{x+6})^{2}+2 \sqrt[3]{x+6}+4\right)} \\ & =\lim _{x \rightarrow 2} \frac{1}{(\sqrt[3]{x+6})^{2}+2 \sqrt[3]{x+6}+4} \\ & =\frac{1}{(\sqrt[3]{(2)+6})^{2}+2 \sqrt[3]{(2)+6}+4}=\frac{1}{4+4+4}=\frac{1}{12} \end{aligned}$
27) $\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x+25}-5}{x} \\ &=\lim _{x \rightarrow 0}\left[\frac{\sqrt{x+25}-5}{x} \times \frac{\sqrt{x+25}+5}{\sqrt{x+25}+5}\right] \\ &=\lim _{x \rightarrow 0} \frac{(x+25)-25}{x(\sqrt{x+25}+5)} \\ &=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+25}+5)} \\ &=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+25}+5}=\frac{1}{\sqrt{(0)+25}+5} \\ &=\frac{1}{5+5}=\frac{1}{10} \end{aligned}$	28) $\begin{aligned} & \lim _{x \rightarrow 0} \frac{x}{\sqrt{x+25}-5}=\lim _{x \rightarrow 0}\left[\frac{x}{\sqrt{x+25}-5} \times \frac{\sqrt{x+25}+5}{\sqrt{x+25}+5}\right] \\ &=\lim _{x \rightarrow 0} \frac{x(\sqrt{x+25}+5)}{(x+25)-25} \\ &=\lim _{x \rightarrow 0} \frac{x(\sqrt{x+25}+5)}{x} \\ &=\lim _{x \rightarrow 0}(\sqrt{x+25}+5)=\sqrt{(0)+25}+5 \\ &=5+5=10 \end{aligned}$
29) $\begin{aligned} & \lim _{x \rightarrow 2} \frac{x-2}{2-\sqrt{6-x}}=\lim _{x \rightarrow 2}\left[\frac{x-2}{2-\sqrt{6-x}} \times \frac{2+\sqrt{6-x}}{2+\sqrt{6-x}}\right] \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{4-(6-x)} \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{4-6+x} \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{x-2} \\ &=\lim _{x \rightarrow 2}(2+\sqrt{6-x})=2+\sqrt{6-(2)} \\ &=2+2=4 \end{aligned}$	30) $\lim _{x \rightarrow 2} \frac{2-\sqrt{6-x}}{x+2}=\frac{2-\sqrt{6-(2)}}{(2)+2}=\frac{2-2}{4}=0$ 31) $\begin{aligned} & \lim _{x \rightarrow 3} \frac{1-\sqrt{x-2}}{2-\sqrt{x+1}} \\ &=\lim _{x \rightarrow 3}\left[\frac{1-\sqrt{x-2}}{2-\sqrt{x+1}} \times \frac{1+\sqrt{x-2}}{1+\sqrt{x-2}}\right. \\ &\left.\times \frac{2+\sqrt{x+1}}{2+\sqrt{x+1}}\right] \\ &=\lim _{x \rightarrow 3}\left[\frac{1-(x-2)}{4-(x+1)} \times \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}\right] \\ &=\lim _{x \rightarrow 3}\left[\frac{3-x}{3-x} \times \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}\right] \\ &=\lim _{x \rightarrow 3} \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}=\frac{2+\sqrt{(3)+1}}{1+\sqrt{(3)-2}}=\frac{2+2}{1+1} \\ & \quad=\frac{4}{2}=2 \end{aligned}$

32) If $2 x \leq f(x) \leq 3 x^{2}-8$, then

$$
\lim _{x \rightarrow 2} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 2} 2 x=2(2)=4
$$

and

$$
\lim _{x \rightarrow 2}\left(3 x^{2}-8\right)=3(2)^{2}-8=12-8=4
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 2} f(x)=4
$$

34) $\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=$

We know that the sine of any angle is between
-1 and 1. So,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \sin \left(\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that
$\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=0$
36) If $4(x-1) \leq f(x) \leq x^{3}+x-2$, then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 1}(4(x-1))=4((1)-1)=4 \times 0=0
$$

and

$$
\lim _{x \rightarrow 1}\left(x^{3}+x-2\right)=(1)^{3}+(1)-2=1+1-2=0
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 1} f(x)=0
$$

33) $\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=$

We know that the cosine of any angle is between -1 and 1. So,

$$
-1 \leq \cos \left(x+\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \cos \left(x+\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=0
$$

35) If $\frac{x^{2}+1}{x-1} \leq f(x) \leq x-1$, then

$$
\lim _{x \rightarrow 0} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+1}{x-1}=\frac{(0)^{2}+1}{(0)-1}=\frac{1}{-1}=-1
$$

and

$$
\lim _{x \rightarrow 0}(x-1)=(0)-1=-1
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0} f(x)=-1
$$

37) If

$$
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}=3
$$

then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}= & \frac{\lim _{x \rightarrow 3}(f(x)+4)}{\lim _{x \rightarrow 3}(x-1)}=\frac{\lim _{x \rightarrow 3} f(x)+\lim _{x \rightarrow 3}(4)}{\lim _{x \rightarrow 3}(x)-\lim _{x \rightarrow 3}(1)} \\
& =\frac{\lim _{x \rightarrow 3} f(x)+4}{3-1}=\frac{\lim _{x \rightarrow 3} f(x)+4}{2}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 3} f(x)+4}{2}=3
$$

$$
\lim _{x \rightarrow 3} f(x)+4=6 \Leftrightarrow \lim _{x \rightarrow 3} f(x)=2
$$

$$
\text { 38) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{2^{-1}-(3 x-4)^{-1}}{2} & =x \\
& =\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{3 x-4}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-4-2}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-6}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3(x-2)}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{3(x-2)}{2(3 x-4)(2-x)} \\
& =\lim _{x \rightarrow 2} \frac{-3(2-x)}{2(3 x-4)(2-x)}=\lim _{x \rightarrow 2} \frac{-3}{2(3 x-4)} \\
& =\frac{-3}{2(3(2)-4)}=\frac{-3}{2 \times 2}=-\frac{3}{4}
\end{aligned}
$$

40) If

$$
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)}=1
$$

then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)} & =\frac{\lim _{x \rightarrow 1}(f(x)+3 x)}{\lim _{x \rightarrow 1}\left(x^{2}-5 f(x)\right)} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+\lim _{x \rightarrow 1}(3 x)}{\lim _{x \rightarrow 1}\left(x^{2}\right)-\lim _{x \rightarrow 1}(5 f(x))} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+3(1)}{(1)^{2}-5 \lim _{x \rightarrow 1} f(x)}=\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}=1
$$

$\lim _{x \rightarrow 1} f(x)+3=(1)\left(1-5 \lim _{x \rightarrow 1} f(x)\right)$

$$
\begin{aligned}
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+3=1-5 \lim _{x \rightarrow 1} f(x) \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+5 \lim _{x \rightarrow 1} f(x) \stackrel{1-3}{=} \\
& \Leftrightarrow 6 \lim _{x \rightarrow 1} f(x)=-2 \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

39) $\lim _{x \rightarrow 0} \frac{(x+1)^{3}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{3}+3 x^{2}+3 x+1\right)-1}{x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x^{3}+3 x^{2}+3 x}{x} \\
& =\lim _{x \rightarrow 0} \frac{x\left(x^{2}+3 x+3\right)}{x}=\lim _{x \rightarrow 0}\left(x^{2}+3 x+3\right) \\
& =(0)^{2}+3(0)+3=3
\end{aligned}
$$

41) $\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-2)(x-4)}{(x-4)(x+5)} \\
& =\lim _{x \rightarrow 4} \frac{x-2}{x+5}=\frac{(4)-2}{(4)+5}=\frac{2}{9}
\end{aligned}
$$

42) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x-3)(x+2)} \\
& =\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{x-3}=\frac{(-2)^{2}-2(-2)+4}{(-2)-3} \\
& =\frac{4+4+4}{-5}=\frac{12}{-5}=-\frac{12}{5}
\end{aligned}
$$

43) $\lim _{x \rightarrow 1}\left[\frac{x^{2}-2}{x+4}+x^{2}-2 x\right]=\frac{(1)^{2}-2}{(1)+4}+(1)^{2}-2(1)$

$$
=\frac{1-2}{1+4}+1-2=\frac{-1}{5}-1=\frac{-1-5}{5}=-\frac{6}{5}
$$

44) $\begin{aligned} & \lim _{x \rightarrow-2} \frac{4 x^{2}+}{}+6 x-4 \\ & 2 x^{2}-8 \\ &=\lim _{x \rightarrow-2} \frac{2\left(2 x^{2}+3 x-2\right)}{2\left(x^{2}-4\right)} \\ &=\lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x^{2}-4} \\ &=\lim _{x \rightarrow-2} \frac{(2 x-1)(x+2)}{(x-2)(x+2)} \\ &=\lim _{x \rightarrow-2} \frac{2 x-1}{x-2}=\frac{2(-2)-1}{(-2)-2}=\frac{-4-1}{-2-2} \\ &=\frac{-5}{-4}=\frac{5}{4} \end{aligned}$	45) $\begin{aligned} & \lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{5}-}-x^{3} \\ &=\lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}\left(x^{2}-1\right)} \\ &= \lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}(x-1)(x+1)} \\ &=\lim _{x \rightarrow-1} \frac{x-3}{x^{3}(x-1)}=\frac{(-1)-3}{(-1)^{3}((-1)-1)} \\ &= \frac{-1-3}{(-1)(-2)}=\frac{-4}{2}=-2 \end{aligned}$
$\text { 46) } \begin{aligned} & \lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}\left(x^{2}-9\right)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x-3)(x+3)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x+3)}{2 x+3}=\frac{\sqrt{2(3)+1}((3)+3)}{2(3)+3} \\ & =\frac{6 \sqrt{7}}{9}=\frac{2 \sqrt{7}}{3} \end{aligned}$	47) $\begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{3-2 x}-1}{x-1}=\lim _{x \rightarrow 1}\left[\frac{\sqrt{3-2 x}-1}{x-1} \times \frac{\sqrt{3-2 x}+1}{\sqrt{3-2 x}+1}\right] \\ & =\lim _{x \rightarrow 1} \frac{(3-2 x)-1}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2-2 x}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2(1-x)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & \quad=\lim _{x \rightarrow 1} \frac{-2(x-1)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & \quad=\lim _{x \rightarrow 1} \frac{-2}{\sqrt{3-2 x}+1}=\frac{-2}{\sqrt{3-2(1)}+1} \\ & \quad=\frac{-2}{\sqrt{3-2}+1}=\frac{-2}{2}=-1 \end{aligned}$
$\text { 48) } \begin{aligned} & \lim _{x \rightarrow 0} \frac{(x+1)^{2}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+2 x+1\right)-1}{x} \\ &=\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x}=\lim _{x \rightarrow 0} \frac{x(x+2)}{x} \\ &=\lim _{x \rightarrow 0}(x+2)=(0)+2=2 \end{aligned}$	$\text { 49) } \begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \\ = & \lim _{x \rightarrow 1}\left[\frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \times \frac{\sqrt{2 x+2}+2}{\sqrt{2 x+2}+2} \times \frac{\sqrt{3 x-2}+1}{\sqrt{3 x-2}+1}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(2 x+2)-4}{(3 x-2)-1} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2 x-2}{3 x-3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2(x-1)}{3(x-1)} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2}{3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right]=\frac{2}{3} \times \frac{\sqrt{3(1)-2}+1}{\sqrt{2(1)+2}+2} \\ & =\frac{2}{3} \times \frac{\sqrt{1}+1}{\sqrt{4}+2}=\frac{2}{3} \times \frac{2}{4}=\frac{1}{3} \end{aligned}$

50) $\lim _{x \rightarrow 2} \frac{3-\sqrt{2 x+5}}{x-2}$ $\begin{aligned} & =\lim _{x \rightarrow 2}\left[\frac{3-\sqrt{2 x+5}}{x-2} \times \frac{3+\sqrt{2 x+5}}{3+\sqrt{2 x+5}}\right] \\ & =\lim _{x \rightarrow 2} \frac{9-(2 x+5)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{4-2 x}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{2(2-x)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{-2(x-2)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{-2}{3+\sqrt{2 x+5}}=\frac{-2}{3+\sqrt{2(2)+5}} \\ & =\frac{-2}{3+\sqrt{9}}=\frac{-2}{6}=-\frac{1}{3} \\ & \hline \end{aligned}$	51) $\begin{gathered} \lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}+1}=\frac{(-1)^{2}+3(-1)+2}{(-1)^{2}+1}=\frac{1-3+2}{1+1} \\ =\frac{0}{2}=0 \end{gathered}$ 52) If $\lim _{x \rightarrow k} f(x)=-\frac{1}{2}$ and $\lim _{x \rightarrow k} g(x)=\frac{2}{3}$ Then $\lim _{x \rightarrow k} \frac{f(x)}{g(x)}=\frac{-\frac{1}{2}}{\frac{2}{3}}=-\frac{1}{2} \times \frac{3}{2}=-\frac{3}{4}$
53) $\begin{aligned} \lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x} & =\lim _{x \rightarrow 0}\left[\frac{\sqrt{x+4}-2}{x} \times \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right] \\ & =\lim _{x \rightarrow 0} \frac{(x+4)-4}{x(\sqrt{x+4}+2)} \\ & =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+4}+2)} \\ & =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+4}+2}=\frac{1}{\sqrt{(0)+4}+2} \\ & =\frac{1}{\sqrt{4}+2}=\frac{1}{4} \end{aligned}$	54) $\begin{gathered} \lim _{x \rightarrow-1} \frac{x^{2}-5 x-6}{x+1}=\lim _{x \rightarrow-1} \frac{(x-6)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-6) \\ =(-1)-6=-7 \end{gathered}$ $\text { 55) } \begin{aligned} \lim _{x \rightarrow 0} \frac{(x+3)^{-1}-3^{-1}}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{x+3}-\frac{1}{3}}{x}=\lim _{x \rightarrow 0} \frac{\frac{3-(x+3)}{3(x+3)}}{x} \\ =\lim _{x \rightarrow 0} \frac{-x}{3 x(x+3)}=\lim _{x \rightarrow 0} \frac{-1}{3(x+3)} \\ =\frac{-1}{3((0)+3)}=\frac{-1}{9}=-\frac{1}{9} \end{aligned}$
56) If $\lim _{x \rightarrow 1} f(x)=3$ $\lim _{x \rightarrow 1} g(x)=-4$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\lim \left[\frac{5 f(x)}{}+h(x)\right]=\underline{\lim _{x \rightarrow 1} 5 f(x)}$	57) If $\lim _{x \rightarrow 1} g(x)=-4$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\begin{aligned} \lim _{x \rightarrow 1} \sqrt{g(x) h(x)} & =\sqrt{\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right]}=\sqrt{(-4)(-1)} \\ & =\sqrt{4}=2 \end{aligned}$
$\begin{aligned} & \begin{aligned} & \lim _{x \rightarrow 1} f(x) \\ & 2 \lim _{x \rightarrow 1} g(x) \end{aligned}+\lim _{x \rightarrow 1} h(x) \\ = & \frac{5(3)}{2(-4)}+(-1)=\frac{15}{-8}-1=-\frac{15}{8}-1 \\ = & \frac{-15-8}{8}=-\frac{23}{8} \end{aligned}$	58) If $\begin{gathered} \lim _{x \rightarrow 1} f(x)=3 \\ \lim _{x \rightarrow 1} g(x)=-4 \end{gathered}$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\begin{gathered} \lim _{x \rightarrow 1}[2 f(x) g(x) h(x)]=2\left[\lim _{x \rightarrow 1} f(x)\right]\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right] \\ =2(3)(-4)(-1)=24 \end{gathered}$

Workshop Solutions to Section 3.3

1) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{-}} f(x)=\lim _{x \rightarrow(-2)^{-}}(2 x+5)=2(-2)+5=-4+5$ $=1$
3) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow-2} f(x)=
$$

Solution:
$\lim _{x \rightarrow-2} f(x)$ does not exist because

$$
\lim _{x \rightarrow(-2)^{-}} f(x) \neq \lim _{x \rightarrow(-2)^{+}} f(x)
$$

5) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

Solution:
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-7 x\right)=(1)^{2}-7(1)=1-7=-6$
7) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 3^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(5)=5$
9) If $f(x)=\left\{\begin{array}{l}\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0\end{array}\right.$ then

$$
\lim _{x \rightarrow 2^{+}} f(x)=
$$

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4
\end{array}\right. \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(\frac{x+3}{x+2}\right)=\frac{(2)+3}{(2)+2}=\frac{5}{4}$
2) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{+}} f(x)=\lim _{x \rightarrow(-2)^{+}}(2 x+3)=2(-2)+3=-4+3$ $=-1$
4) If $f(x)=\left\{\begin{aligned} x^{2}-2 x+3 ; & x \geq 3 \\ x^{3}-3 x-12 ; & x<3\end{aligned}\right.$ then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{3}-3 x-12\right)=(3)^{3}-3(3)-12$

$$
=27-9-12=6
$$

$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{2}-2 x+3\right)=(3)^{2}-2(3)+3$
$=9-6+3=6$
$\therefore \lim _{x \rightarrow 3} f(x)=6$
6) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 1^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(5)=5$
8) If $f(x)=\left\{\begin{array}{c}x^{2}-7 x ; \quad x<1 \\ 5 ; \quad 1 \leq x \leq 3 \\ 3 x+1 ; \quad x>3\end{array}\right.$ then
$\lim _{x \rightarrow 3^{+}} f(x)=$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(3 x+1)=3(3)+1=9+1=10 \\
& \text { 10) If } f(x)=\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\
\frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0
\end{array}\right. \text { then } \\
& \lim _{x \rightarrow 2^{-}} f(x)=
\end{aligned}
$$

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4
\end{array}\right. \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(-\frac{x+3}{x+2}\right)=-\frac{(2)+3}{(2)+2}=-\frac{5}{4}
$$

11)

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=
$$

Solution:
$f(x)=\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}\frac{x-a}{x-a} & ; x-a>0 \\ \frac{-(x-a)}{x-a} ; & x-a<0\end{array}=\left\{\begin{aligned} 1 ; & x>a \\ -1 ; & x<a\end{aligned}\right.\right.$

$$
\therefore \quad \lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{-}} \frac{-(x-a)}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
$$

13)

$$
\lim _{x \rightarrow a} \frac{|x-a|}{x-a}=
$$

Solution:

$\lim _{x \rightarrow a} \frac{|x-a|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}
$$

It is clearly obvious from questions (11) and (12) above.
15)

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} ; & a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{ll}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; & ; a<x
\end{array}=\left\{\begin{array}{r}
-1 ; x<a \\
1 ; \\
x>a
\end{array}\right.\right. \\
& \therefore \\
& \lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
\end{aligned}
$$

17)

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=
$$

Solution:

$$
\begin{gathered}
f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}
\frac{x+a}{x+a} ; & x+a>0 \\
\frac{-(x+a)}{x+a} ; & x+a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>-a \\
-1 ; & x<-a
\end{aligned}\right.\right. \\
\therefore \quad \lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{-}}(-1)=-1
\end{gathered}
$$

12)

$$
\lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=
$$

Solution:

$$
\begin{aligned}
f(x) & =\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}
\frac{x-a}{x-a} ; & x-a>0 \\
\frac{-(x-a)}{x-a} ; & x-a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>a \\
-1 ; & x<a
\end{aligned}\right.\right. \\
\therefore & \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{+}} \frac{(x-a)}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

14)

$$
\lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} & ; a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{l}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; a<x
\end{array}=\left\{\begin{aligned}
-1 ; & x<a \\
1 ; & x>a
\end{aligned}\right.\right. \\
& \therefore \\
& \quad \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

16)

$$
\lim _{x \rightarrow a} \frac{|a-x|}{x-a}=
$$

Solution:
$\lim _{x \rightarrow a} \frac{|a-x|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}
$$

It is clearly obvious from questions (14) and (15) above.
18)

$$
\lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=
$$

Solution:
$f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}\frac{x+a}{x+a} & ; x+a>0 \\ \frac{-(x+a)}{x+a} ; & x+a<0\end{array}=\left\{\begin{aligned} 1 ; & x>-a \\ -1 ; & x<-a\end{aligned}\right.\right.$
$\therefore \quad \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{+}}(1)=1$
19)

$$
\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}=
$$

Solution:
$\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}$ does not exist because

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a} \neq \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}
$$

It is clearly obvious from questions (17) and (18) above.

$$
\lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$f(x)=\frac{2 x-|x|}{x^{2}+|x|}= \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\ \frac{2 x-(-x)}{x^{2}+(-x)} ; & x<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; x>0 \\
\frac{2 x+x}{x^{2}-x} ; & x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{+}} \frac{1}{x+1}=\frac{1}{0+1}=1
$$

22)

$$
\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:
$\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}$ does not exist because

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|} \neq \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}
$$

It is clearly obvious from questions (20) and (21) above.
24)

$$
\lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=\lim _{x \rightarrow 0} \frac{(\cos x+3)(\cos x-1)}{(2 \cos x+1)(\cos x-1)} \\
& \quad=\lim _{x \rightarrow 0} \frac{\cos x+3}{2 \cos x+1}=\frac{\cos (0)+3}{2 \cos (0)+1} \\
& \quad=\frac{1+3}{2(1)+1}=\frac{4}{3}
\end{aligned}
$$

26) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

28) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

21)

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$$
\begin{aligned}
f(x)=\frac{2 x-|x|}{x^{2}+|x|} & = \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\
\frac{2 x-(-x)}{x^{2}+(-x)} ; x<0\end{cases} \\
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; & x>0 \\
\frac{2 x+x}{x^{2}-x} ; x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; & x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{-}} \frac{3}{x-1}=\frac{3}{0-1}=-3
$$

23)

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{(\cos x-\sin x)(\cos x+\sin x)} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\cos x+\sin x}=\frac{1}{\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)} \\
&=\frac{1}{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}=\frac{1}{\frac{2}{\sqrt{2}}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

25)

$$
\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=
$$

Solution:
$\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=\sin ^{2}(0)+3 \tan (0)-4$

$$
=0+3(0)-4=-4
$$

27) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

29) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

30) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

32) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

34)

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=1
$$

36)

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{x^{2}}=2 \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \\
& =2\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^{2}=2(1)^{2}=2
\end{aligned}
$$

38)

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2 / 5}}+2\right)=
$$

Solution:

$$
\lim _{x \rightarrow-\infty}\left(\frac{1}{x^{2} / 5}+2\right)=0+2=2
$$

40)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{4 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3-0+0}{9+0+0}=\frac{1}{3}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

33) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

35)

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=1
$$

37)

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}=
$$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}
\end{gathered}=\sqrt{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}-\frac{3}{x}+4\right)}=\sqrt{0-0+4}
$$

39)

$$
\lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{0+0}{9+0+0}=0
\end{aligned}
$$

41)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{array}{r}
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{2}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{-3+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3+0-0}{-9-0+0}=\frac{1}{3}
\end{array}
$$

42)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{5}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}}$

$$
=\lim _{x \rightarrow \infty} \frac{3 x^{3}-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3(\infty)-0+0}{9+0+0}=\infty
$$

44)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right) \\
& =\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}-3 x+7}-x\right) \times \frac{\left(\sqrt{x^{2}-3 x+7}+x\right)}{\left(\sqrt{x^{2}-3 x+7}+x\right)}\right] \\
& =\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}-3 x+7\right)-x^{2}}{\sqrt{x^{2}-3 x+7}+x}\right)=\lim _{x \rightarrow \infty}\left(\frac{-3 x+7}{\sqrt{x^{2}-3 x+7}+x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{-3 x}{x}+\frac{7}{x}}{\frac{\sqrt{x^{2}-3 x+7}}{x}+\frac{x}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{\frac{x^{2}}{x^{2}}-\frac{3 x}{x^{2}}+\frac{7}{x^{2}}}+1} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{1-\frac{3}{x}+\frac{7}{x^{2}}}+1} \\
& \quad=\frac{-3+0}{\sqrt{1-0+0}+1}=\frac{-3}{1+1}=-\frac{3}{2}
\end{aligned}
$$

46)

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty} x^{2}\left(\frac{x^{2}}{x^{2}}-\frac{5 x}{x^{2}}+\frac{4}{x^{2}}\right) \\
& \quad=\lim _{x \rightarrow \infty} x^{2}\left(1-\frac{5}{x}+\frac{4}{x^{2}}\right)=(\infty)^{2}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty}\left(x^{2}\right)=\infty
$$

43)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{5}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
& \quad=\lim _{x \rightarrow-\infty} \frac{-3 x^{3}+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3(-\infty)+0-0}{-9-0+0}=-\infty
\end{aligned}
$$

45)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=
$$

Solution:

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)
$$

$$
=\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}+x}-x\right) \times \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}\right]
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+x\right)-x^{2}}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}+x}}{x}+\frac{x}{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{x}{x^{2}}}+1}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{1+1}
$$

$$
=\frac{1}{2}
$$

47)

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{x^{4}}{x^{4}}-\frac{2 x^{3}}{x^{4}}+\frac{9}{x^{4}}\right) \\
& \quad=\lim _{x \rightarrow-\infty} x^{4}\left(1-\frac{2}{x}+\frac{9}{x^{4}}\right)=(-\infty)^{4}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty}\left(x^{4}\right)=\infty
$$

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=
$$

Solution:
$\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{3 x^{2}-8}}{-x}+\frac{2}{-x}}{\frac{x}{-x}+\frac{5}{-x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}-8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{3-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\frac{\sqrt{3-0}-0}{-1-0}=-\sqrt{3}
\end{aligned}
$$

50) The horizontal asymptotes of

$$
f(x)=\frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

Solution:
First, we have to find

$$
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

It is clear from the previous questions (48) and (49) that

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\sqrt{3}
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=-\sqrt{3}
$$

Thus, the horizontal asymptotes are

$$
y= \pm \sqrt{3}
$$

52) The horizontal asymptote of

$$
f(x)=\frac{7 x^{2}+5}{3 x^{2}+2}
$$

Solution:
First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{7 x^{2}+5}{3 x^{2}+2} \\
\lim _{x \rightarrow \infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow \infty} \frac{\frac{7 x^{2}}{x^{2}}+\frac{5}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{7+\frac{5}{x^{2}}}{3+\frac{2}{x^{2}}}=\frac{7+0}{3+0}=\frac{7}{3}
\end{gathered}
$$

$\lim _{x \rightarrow-\infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}}{-x^{2}}+\frac{5}{-x^{2}}}{\frac{3 x^{2}}{-x^{2}}+\frac{2}{-x^{2}}}$

$$
=\lim _{x \rightarrow-\infty} \frac{-7-\frac{5}{x^{2}}}{-3-\frac{2}{x^{2}}}=\frac{-7-0}{-3-0}=\frac{7}{3}
$$

Thus, the horizontal asymptote is

$$
y=\frac{7}{3}
$$

53) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{x^{2}+2 x-3}}{2 x+7}
$$

Solution:
First, we have to find

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{x}}{\frac{2 x}{x}+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{2+\frac{7}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{2+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{2+\frac{7}{x}}=\frac{\sqrt{1+0-0}}{2+0}=\frac{1}{2} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{-x}}{\frac{2 x}{-x}+\frac{7}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{-2-\frac{7}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}}=\frac{\sqrt{1+0-0}}{-2-0}=-\frac{1}{2}
\end{aligned}
$$

Thus, the horizontal asymptotes are

$$
\text { 55) } \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} & \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}-8}}{-x}+\frac{3}{-x}}{\frac{x}{-x}+\frac{1}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\frac{\sqrt{4-0}-0}{-1-0}=-2
\end{aligned}
$$

54) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}
$$

Solution:

First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1} \\
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x-3}}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{7 x}{x^{2}}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{2+0-0}=\frac{0}{2}=0 \\
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{\frac{-x^{2}}{2 x^{2}}+\frac{7 x}{-x^{2}}-\frac{1}{-x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2-\frac{7}{x}+\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{-2-0+0}=\frac{0}{-2}=0
\end{gathered}
$$

Thus, the horizontal asymptote is

$$
y=0
$$

56)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}-8}}{x}+\frac{3}{x}}{\frac{x}{x}+\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\sqrt{4-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\frac{\sqrt{4-0}+0}{1+0}=2
\end{aligned}
$$

Workshop Solutions to Sections 3.4 and 3.5

1) $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=$

Solution:
If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=\infty
$$

3) $\lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=-\infty
$$

5) $\lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=$

Solution:
If $x \rightarrow-3^{+}$, then $x>-3 \Rightarrow x+3>0$

$$
\therefore \quad \lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=\infty
$$

7) $\lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=$

Solution:
If $x \rightarrow 2^{+}$, then $x>2 \Rightarrow x-2>0$ and $3 x-1>0$

$$
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=\infty
$$

9) $\lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\Rightarrow 1-x>0 \text { and }(x+2)^{2}>0
$$

$$
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
$$

11) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{gathered}
\Rightarrow \quad x-1<0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{gathered}
$$

13) $\lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{+}$, then $x^{2}>4$

$$
\begin{gathered}
\Rightarrow x^{2}-4>0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{gathered}
$$

2) $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=-\infty
$$

4) $\lim _{x \rightarrow 3^{-}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \quad \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=\infty
$$

6) $\lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{-}$, then $x<-3 \Rightarrow x+3<0$

$$
\therefore \lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=-\infty
$$

8) $\lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=$

Solution:

If $x \rightarrow 2^{-}$, then $x<2 \Rightarrow x-2<0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=-\infty
$$

10) $\lim _{x \rightarrow-2^{-}} \frac{1-x}{(x+2)^{2}}=$

Solution:

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{gathered}
\Rightarrow \quad 1-x>0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
\end{gathered}
$$

12) $\lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=$

Solution:

$$
\begin{aligned}
& \text { If } x \rightarrow-2^{-} \text {, then } x<-2 \\
& \qquad \quad x-1<0 \text { and }(x+2)^{2}>0 \\
& \therefore \quad \lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{aligned}
$$

14) $\lim _{x \rightarrow 2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{-}$, then $x^{2}<4$

$$
\begin{gathered}
\Rightarrow x^{2}-4<0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{gathered}
$$

15) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:

If $x \rightarrow-2^{+}$, then $x^{2}<4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4<0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{aligned}
$$

17) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2<0 \text { and } 6 x-1<0 \\
& \quad \therefore \lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

19) $\lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{+}$, then $x>3$

$$
\begin{aligned}
& \Rightarrow x-3>0, x+2>0 \text { and }-1<0 \\
& \therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

21) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=-\infty
$$

23) The vertical asymptote of $f(x)=\frac{1-x}{2 x+1}$ is

Solution:
We see that the function $f(x)$ is not defined when
$2 x+1=0 \Rightarrow x=-\frac{1}{2}$. Since

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{+}} \frac{1-x}{2 x+1}=\infty
$$

and

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2 x+1}=-\infty
$$

then, $x=-\frac{1}{2}$ is a vertical asymptote.
16) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow-2^{-}$, then $x^{2}>4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{aligned}
$$

18) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

20) $\lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{-}$, then $x<3$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and }-1<0 \\
& \quad \therefore \lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

22) $\lim _{x \rightarrow(\pi / 2)} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{-}} \tan x=\infty
$$

24) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-4}$ is

Solution:
We see that the function $f(x)$ is not defined when $x^{2}-4=0 \Rightarrow x= \pm 2$. Since

$$
\lim _{x \rightarrow 2^{+}} \frac{3-x}{x^{2}-4}=\infty, \quad \lim _{x \rightarrow 2^{-}} \frac{3-x}{x^{2}-4}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-4}=-\infty, \quad \lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-4}=\infty
$$

then, $x= \pm 2$ are vertical asymptotes.
25) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-x-6}$ is

Solution:

$$
\begin{gathered}
f(x)=\frac{3-x}{x^{2}-x-6}=\frac{3-x}{(x-3)(x+2)}=\frac{-(x-3)}{(x-3)(x+2)} \\
=-\frac{1}{x+2}
\end{gathered}
$$

We see that the function $f(x)$ is not defined when

$$
x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0
$$

$\Rightarrow x=3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow 3} \frac{3-x}{(x-3)(x+2)} \\
& \quad=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-3)(x+2)}=\lim _{x \rightarrow 3} \frac{-1}{x+2}=-\frac{1}{5}
\end{aligned}
$$

then, $x=3$ is a removable discontinuity.

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{+}} \frac{3-x}{(x-3)(x+2)}=\infty
$$

and

$$
\lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{-}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

then, $x=-2$ is a vertical asymptote only.
27) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+5 x+6}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+5 x+6}=\frac{x-7}{(x+3)(x+2)}
$$

We see that the function $f(x)$ is not defined when $x+3=0$ or $x+2=0 \Rightarrow x=-3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{(x+3)(x+2)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{(x+3)(x+2)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{+}} \frac{x-7}{(x+3)(x+2)}=-\infty \\
& \lim _{x \rightarrow-2^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{-}} \frac{x-7}{(x+3)(x+2)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=-2$ are vertical asymptotes.
29) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}-3 x}$ is Solution:

$$
f(x)=\frac{x-7}{x^{2}-3 x}=\frac{x-7}{x(x-3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x-3=0 \Rightarrow x=0$ or $x=3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{+}} \frac{x-7}{x(x-3)}=-\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{-}} \frac{x-7}{x(x-3)}=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x-3)}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x-3)}=-\infty
\end{aligned}
$$

then, $x=3$ and $x=0$ are vertical asymptotes.
26) The vertical asymptote of $f(x)=\frac{7-x}{x^{2}-5 x+6}$ is Solution:

$$
f(x)=\frac{7-x}{x^{2}-5 x+6}=\frac{7-x}{(x-3)(x-2)}
$$

We see that the function $f(x)$ is not defined when $x-3=0$ or $x-2=0 \Rightarrow x=3$ or $x=2$.
Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{7-x}{(x-3)(x-2)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{7-x}{(x-3)(x-2)}=-\infty
\end{aligned}
$$ and

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{7-x}{(x-3)(x-2)}=-\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{7-x}{(x-3)(x-2)}=\infty
\end{aligned}
$$

then, $x=3$ and $x=2$ are vertical asymptotes.
28) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+3 x}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+3 x}=\frac{x-7}{x(x+3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x+3=0 \Rightarrow x=0$ or $x=-3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{x(x+3)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{x(x+3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x+3)}=-\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x+3)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=0$ are vertical asymptotes.
30) The vertical asymptotes of $f(x)=\frac{2 x^{2}+1}{x^{2}-9}$ are Solution:

$$
f(x)=\frac{2 x^{2}+1}{x^{2}-9}=\frac{2 x^{2}+1}{(x+3)(x-3)}
$$

We see that the function $f(x)$ is not defined when $x^{2}-9=0 \Rightarrow x= \pm 3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow-3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty
\end{aligned}
$$

then, $x= \pm 3$ are vertical asymptotes.
31) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous at $a=2$ because
$1-f(2)=\frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$2-\lim _{x \rightarrow 3^{-}} \frac{x+1}{x^{2}-9}=\lim _{x \rightarrow 2} \frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$3-\quad \lim _{x \rightarrow 2} \frac{x+1}{x^{2}-9}=f(2)$
OR
We know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{2\} \in D_{f}$.
Note: Any function is continuous on its domain.
34) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous on its domain which is $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$.
36) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, \\ 5, x=0 \\ 5,\end{array}\right.$ is discontinuous at $a=0$ because
1- $f(0)=5$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x) \neq f(0)$
38) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 1, & x=1\end{array}\right.$ is continuous at $a=1$ because
1- $f(1)=1$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x)=f(1)$
40) The function $f(x)=\left\{\begin{array}{ll}2 x+3, & x>2 \\ 3 x+1, & x \leq 2\end{array}\right.$ is continuous at $a=2$ because
1- $f(2)=3(2)+1=7$
2- $\lim _{x \rightarrow 2^{+}}(2 x+3)=2(2)+3=7$
$\lim _{x \rightarrow 2^{-}}(3 x+1)=3(2)+1=7$
$\therefore \lim _{x \rightarrow 2} f(x)=7$
3- $\lim _{x \rightarrow 2} f(x)=f(2)$
42) The function $f(x)=\sqrt{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4 \geq 0 \Rightarrow x^{2} \geq 4 \Rightarrow \sqrt{x^{2}} \geq \sqrt{4} \\
& \Rightarrow|x| \geq 2 \quad \Leftrightarrow \quad x \geq 2 \text { or } x \leq-2
\end{aligned}
$$

Hence,
$D_{f}=(-\infty,-2] \cup[2, \infty)$.
44) The function $f(x)=\frac{x+3}{\sqrt{4-x^{2}}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
4-x^{2}>0 \Rightarrow-x^{2}>-4 \Rightarrow x^{2}<4
$$

$\Rightarrow \sqrt{x^{2}}<\sqrt{4} \Rightarrow|x|<2 \Leftrightarrow-2<x<2$
Hence,

$$
D_{f}=(-2,2) .
$$

32) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at $a= \pm 3$ because we know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{ \pm 3\} \notin D_{f}$.
33) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at ± 3 because $\{ \pm 3\} \notin D_{f}$.
34) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, x \neq 0 \\ 3,\end{array}\right.$ is continuous at $a=0$ because
1- $f(0)=3$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x)=f(0)$
35) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 7 & , x=1\end{array}\right.$ is discontinuous at $a=1$ because
1- $f(1)=7$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x) \neq f(1)$
36) The function $f(x)=\frac{x^{2}-x-2}{x-2}$ is discontinuous at $a=2$ because $\{2\} \notin D_{f}$.
37) The function $f(x)=\frac{x+3}{\sqrt{x^{2}-4}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4>0 \Rightarrow x^{2}>4 \Rightarrow \sqrt{x^{2}}>\sqrt{4} \\
& \quad \Rightarrow|x|>2
\end{aligned} \Leftrightarrow \quad x>2 \text { or } x<-2
$$

Hence,
$D_{f}=(-\infty,-2) \cup(2, \infty)$.
43) The function $f(x)=\sqrt{4-x^{2}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& 4-x^{2} \geq 0 \Rightarrow-x^{2} \geq-4 \Rightarrow x^{2} \leq 4 \\
& \Rightarrow \sqrt{x^{2}} \leq \sqrt{4} \Rightarrow|x| \leq 2 \quad \Leftrightarrow \quad-2 \leq x \leq 2
\end{aligned}
$$

Hence,

$$
D_{f}=[-2,2] .
$$

45) The function $f(x)=\frac{x+1}{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x^{2}-4 \neq 0 \Rightarrow x^{2} \neq 4 \Rightarrow x \neq \pm 2
$$

Hence,
$D_{f}=\mathbb{R} \backslash\{ \pm 2\}$
$=(-\infty,-2) \cup(-2,2) \cup(2, \infty)=\{x \in \mathbb{R}: x \neq \pm 2\}$.
46) The function $f(x)=\log _{2}(x+2)$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x+2>0 \Rightarrow x>-2
$$

Hence,

$$
D_{f}=(-2, \infty) .
$$

48) The function $f(x)=5^{x}$ is continuous on its domain.
Hence,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

50) The function $f(x)=\sin ^{-1}(3 x-5)$ is continuous on its domain where $f(x)$ is defined, we mean that
$-1 \leq 3 x-5 \leq 1 \Leftrightarrow 4 \leq 3 x \leq 6 \Leftrightarrow \frac{4}{3} \leq x \leq 2$. Hence,

$$
D_{f}=\left[\frac{4}{3}, 2\right] .
$$

52) The number c that makes $f(x)=\left\{\begin{array}{cc}c+x, & x>2 \\ 2 x-c, & x \leq 2\end{array}\right.$ is continuous at $x=2$ is
Solution:
$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow+^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}(c+x) & =\lim _{x \rightarrow 2^{-}}(2 x-c) \\
c+2 & =4-c \\
c+c & =4-2 \\
2 c & =2 \\
c & =1
\end{aligned}
$$

54) The number c that makes
$f(x)=\left\{\begin{array}{cc}\frac{\sin c x}{x}+2 x-1, & x<0 \\ 3 x+4 & , x \geq 0\end{array}\right.$ is continuous at 0 is
Solution:
$\lim _{x \rightarrow 0} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{-}} f(x) \\
\lim _{x \rightarrow 0^{+}}(3 x+4) & =\lim _{x \rightarrow 0^{-}}\left(\frac{\sin c x}{x}+2 x-1\right) \\
3(0)+4 & =c(1)+2(0)-1 \\
4 & =c-1 \\
c & =4+1 \\
c & =5
\end{aligned}
$$

56) The number c that makes $f(x)=\left\{\begin{array}{cl}c^{2} x^{2}-1, & x \leq 3 \\ x+5, & x>3\end{array}\right.$ is continuous at 3 is
Solution:
$\lim _{x \rightarrow 3} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow \mathbf{x}^{-}} f(x) \\
\lim _{x \rightarrow 3^{+}}(x+5) & =\lim _{x \rightarrow 3^{-}}\left(c^{2} x^{2}-1\right) \\
(3)+5 & =c^{2}(3)^{2}-1 \\
8 & =9 c^{2}-1 \\
9 c^{2} & =8+1 \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

47) The function $f(x)=\sqrt{x-1}+\sqrt{x+4}$ is continuous on its domain where $f(x)$ is defined, we mean that $x-1 \geq 0$ and $x+4 \geq 0 \Rightarrow x \geq 1 \cap x \geq-4$
Hence,
$D_{f}=[1, \infty)$.
48) The function $f(x)=e^{x}$ is continuous on its domain.
Hence,
$D_{f}=\mathbb{R}=(-\infty, \infty)$.
49) The function $f(x)=\cos ^{-1}(3 x+5)$ is continuous on its domain where $f(x)$ is defined, we mean that $-1 \leq 3 x+5 \leq 1 \Leftrightarrow-6 \leq 3 x \leq-4 \Leftrightarrow-2 \leq x \leq-\frac{4}{3}$. Hence,

$$
D_{f}=\left[-2,-\frac{4}{3}\right] .
$$

53) The number c that makes
$f(x)=\left\{\begin{array}{cc}c x^{2}-2 x+1, & x \leq-1 \\ 3 x+2, & x>-1\end{array}\right.$ is continuous at -1 is

Solution:

$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-\mathbf{l}^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(3 x+2) & =\lim _{x \rightarrow-1^{-}}\left(c x^{2}-2 x+1\right) \\
3(-1)+2 & =c(-1)^{2}-2(-1)+1 \\
-1 & =c+3 \\
c & =-1-3 \\
c & =-4
\end{aligned}
$$

55) The value c that makes $f(x)=\left\{\begin{array}{l}c x^{2}+2 x, x \leq 2 \\ x^{3}-c x,\end{array}, x>2\right.$ is continuous at 2 is

Solution:

$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right) & =\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right) \\
(2)^{3}-c(2) & =c(2)^{2}+2(2) \\
8-2 c & =4 c+4 \\
-2 c-4 c & =4-8 \\
-6 c & =-4 \\
c & =\frac{-4}{-6} \\
c & =\frac{2}{3}
\end{aligned}
$$

57) The number c that makes $f(x)= \begin{cases}x-2, & x>5 \\ c x-3, & x \leq 5\end{cases}$ is continuous at 5 is

Solution:

$\lim _{x \rightarrow 5} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{-}} f(x) \\
\lim _{x \rightarrow 5^{+}}(x-2) & =\lim _{x \rightarrow)^{-}}(c x-3) \\
(5)-2 & =c(5)-3 \\
3 & =5 c-3 \\
5 c & =3+3 \\
5 c & =6 \\
c & =\frac{6}{5}
\end{aligned}
$$

58) The number c that makes $f(x)= \begin{cases}x+3, & x>-1 \\ 2 x-c, & x \leq-1\end{cases}$ is continuous at -1 is Solution:
$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow 1^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(x+3) & =\lim _{x \rightarrow 1^{-}}(2 x-c) \\
(-1)+3 & =2(-1)-c \\
2 & =-2-c \\
c & =-2-2 \\
c & =-4
\end{aligned}
$$

Chapter 2

Limits and Continuity

2.1

Rates of Change and Limits

TABLE 2.1 Average speeds over short time intervals

$$
\text { Average speed: } \frac{\Delta y}{\Delta t}=\frac{16\left(t_{0}+h\right)^{2}-16 t_{0}^{2}}{h}
$$

Length of time interval
h

1
0.1
0.01
0.001
0.0001

Average speed over interval of length h starting at $\boldsymbol{t}_{0}=1$

48
33.6
32.16
32.016
32.0016

Average speed over interval of length h starting at $\boldsymbol{t}_{0}=2$

80
65.6
64.16
64.016
64.0016

DEFINITION Average Rate of Change over an Interval

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

FIGURE 2.1 A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.

FIGURE 2.2 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p / \Delta t$ of the secant line.

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies/day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).

TABLE 2.2 The closer x gets to 1 , the closer $f(x)=\left(x^{2}-1\right) /(x-1)$ seems to get to 2

Values of \boldsymbol{x} below and above 1

$$
f(x)=\frac{x^{2}-1}{x-1}=x+1, \quad x \neq 1
$$

0.9	1.9
1.1	2.1
0.99	1.99
1.01	2.01
0.999	1.999
1.001	2.001
0.999999	1.999999
1.000001	2.000001

FIGURE 2.4 The graph of f is identical with the line $y=x+1$ except at $x=1$, where f is not defined (Example 5).

(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

FIGURE 2.5 The limits of $f(x), g(x)$, and $h(x)$ all equal 2 as x approaches 1 . However, only $h(x)$ has the same function value as its limit at $x=1$ (Example 6).

FIGURE 2.6 The functions in Example 8.

(a) Unit step function $U(x)$

(b) $g(x)$

(c) $f(x)$

FIGURE 2.7 None of these functions has a limit as x approaches 0 (Example 9).

2.2

Calculating Limits Using the Limits Laws

THEOREM 1 Limit Laws

If L, M, c and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { then }
$$

1. Sum Rule:

$$
\lim _{x \rightarrow c}(f(x)+g(x))=L+M
$$

The limit of the sum of two functions is the sum of their limits.
2. Difference Rule:

$$
\lim _{x \rightarrow c}(f(x)-g(x))=L-M
$$

The limit of the difference of two functions is the difference of their limits.
3. Product Rule:

$$
\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M
$$

The limit of a product of two functions is the product of their limits.
4. Constant Multiple Rule: $\quad \lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.
5. Quotient Rule: $\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.
6. Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)
The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

THEOREM 2 Limits of Polynomials Can Be Found by Substitution

If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0} .
$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution

 If the Limit of the Denominator Is Not ZeroIf $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

Identifying Common Factors

It can be shown that if $Q(x)$ is a polynomial and $Q(c)=0$, then $(x-c)$ is a factor of $Q(x)$. Thus, if the numerator and denominator of a rational function of x are both zero at $x=c$, they have $(x-c)$ as a common factor.

(a)

(b)

FIGURE 2.8 The graph of
$f(x)=\left(x^{2}+x-2\right) /\left(x^{2}-x\right)$ in part (a) is the same as the graph of $g(x)=(x+2) / x$ in part (b) except at $x=1$, where f is undefined. The functions have the same limit as $x \rightarrow 1$ (Example 3).

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

FIGURE 2.9 The graph of f is sandwiched between the graphs of g and h.

FIGURE 2.10 Any function $u(x)$ whose graph lies in the region between $y=1+\left(x^{2} / 2\right)$ and $y=1-\left(x^{2} / 4\right)$ has limit 1 as $x \rightarrow 0$ (Example 5).

FIGURE 2.11 The Sandwich Theorem confirms that (a) $\lim _{\theta \rightarrow 0} \sin \theta=0$ and (b) $\lim _{\theta \rightarrow 0}(1-\cos \theta)=0$ (Example 6).

THEOREM 5 If $f(x) \leq g(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself, and the limits of f and g both exist as x approaches c, then

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x)
$$

2.3

The Precise Definition of a Limit

FIGURE 2.12 Keeping x within 1 unit of $x_{0}=4$ will keep y within 2 units of $y_{0}=7$ (Example 1).

$$
\begin{aligned}
& L+\frac{1}{10} \overbrace{\uparrow}+\frac{1}{10} f(x)\} \begin{array}{l}
y \\
f(x) \text { lies } \\
\text { in here }
\end{array}
\end{aligned}
$$

FIGURE 2.13 How should we define
$\delta>0$ so that keeping x within the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ will keep $f(x)$
within the interval $\left(L-\frac{1}{10}, L+\frac{1}{10}\right)$?

DEFINITION Limit of a Function

Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches $\boldsymbol{x}_{\boldsymbol{0}}$ is the number \boldsymbol{L}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L,
$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon .
$$

FIGURE 2.14 The relation of δ and ϵ in the definition of limit.

How to Find Algebraically a δ for a Given f, L, x_{0}, and $\epsilon>0$

The process of finding a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

can be accomplished in two steps.

1. Solve the inequality $|f(x)-L|<\epsilon$ to find an open interval (a, b) containing x_{0} on which the inequality holds for all $x \neq x_{0}$.
2. Find a value of $\delta>0$ that places the open interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ centered at x_{0} inside the interval (a, b). The inequality $|f(x)-L|<\epsilon$ will hold for all $x \neq x_{0}$ in this δ-interval.

FIGURE 2.15 If $f(x)=5 x-3$, then
$0<|x-1|<\epsilon / 5$ guarantees that
$|f(x)-2|<\epsilon$ (Example 2).

FIGURE 2.16 For the function $f(x)=x$, we find that $0<\left|x-x_{0}\right|<\delta$ will guarantee $\left|f(x)-x_{0}\right|<\epsilon$ whenever $\delta \leq \epsilon$ (Example 3a).

FIGURE 2.17 For the function $f(x)=k$, we find that $|f(x)-k|<\epsilon$ for any positive δ (Example 3b).

FIGURE 2.18 An open interval of radius 3 about $x_{0}=5$ will lie inside the open interval $(2,10)$.

FIGURE 2.19 The function and intervals in Example 4.

> FIGURE 2.20 An interval containing $x=2$ so that the function in Example 5 satisfies $|f(x)-4|<\epsilon$.

2.4

One-Sided Limits and Limits at Infinity

FIGURE 2.21 Different right-hand and

 left-hand limits at the origin.

FIGURE 2.22 (a) Right-hand limit as x approaches c.
(b) Left-hand limit as x approaches c.

FIGURE $2.23 \lim _{x \rightarrow 2^{-}} \sqrt{4-x^{2}}=0$ and
$\lim _{x \rightarrow-2^{+}} \sqrt{4-x^{2}}=0$ (Example 1).

THEOREM 6

A function $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$
\lim _{x \rightarrow c} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

FIGURE 2.24 Graph of the function in Example 2.

DEFINITIONS Right-Hand, Left-Hand Limits

We say that $f(x)$ has right-hand limit L at $\boldsymbol{x}_{\boldsymbol{0}}$, and write

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L \quad \text { (See Figure 2.25) }
$$

if for every number $\epsilon>0$ there exists a corresponding number $\delta>0$ such that for all x

$$
x_{0}<x<x_{0}+\delta \quad \Longrightarrow \quad|f(x)-L|<\epsilon
$$

We say that f has left-hand limit L at $\boldsymbol{x}_{\boldsymbol{0}}$, and write

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L \quad \text { (See Figure 2.26) }
$$

if for every number $\epsilon>0$ there exists a corresponding number $\delta>0$ such that for all x

$$
x_{0}-\delta<x<x_{0} \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

FIGURE 2.25 Intervals associated with the definition of right-hand limit.

FIGURE 2.26 Intervals associated with the definition of left-hand limit.

FIGURE $2.27 \lim _{x \rightarrow 0^{+}} \sqrt{x}=0$ in Example 3.

FIGURE 2.28 The function $y=\sin (1 / x)$ has neither a right-hand nor a left-hand limit as x approaches zero (Example 4).

NOT TO SCALE
FIGURE 2.29 The graph of $f(\theta)=(\sin \theta) / \theta$.

THEOREM 7

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad(\theta \text { in radians }) \tag{1}
\end{equation*}
$$

FIGURE 2.30 The figure for the proof of Theorem 7. TA/OA $=\tan \theta$, but $O A=1$, so $T A=\tan \theta$.

DEFINITIONS Limit as x approaches ∞ or $-\infty$

1. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number M such that for all x

$$
x>M \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

2. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number N such that for all x

$$
x<N \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

FIGURE 2.31 The graph of $y=1 / x$.

FIGURE 2.32 The geometry behind the argument in Example 6.

THEOREM 8 Limit Laws as $x \rightarrow \pm \infty$

If L, M, and k, are real numbers and

$$
\lim _{x \rightarrow \pm \infty} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow \pm \infty} g(x)=M \text {, then }
$$

1. Sum Rule:
2. Difference Rule:

$$
\lim _{x \rightarrow \pm \infty}(f(x)+g(x))=L+M
$$

3. Product Rule:

$$
\lim _{x \rightarrow \pm \infty}(f(x)-g(x))=L-M
$$

$$
\lim _{x \rightarrow \pm \infty}(f(x) \cdot g(x))=L \cdot M
$$

4. Constant Multiple Rule:

$$
\lim _{x \rightarrow \pm \infty}(k \cdot f(x))=k \cdot L
$$

5. Quotient Rule:

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0
$$

6. Power Rule: If r and s are integers with no common factors, $s \neq 0$, then

$$
\lim _{x \rightarrow \pm \infty}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)

FIGURE 2.33 The graph of the function in Example 8. The graph approaches the line $y=5 / 3$ as $|x|$ increases.

FIGURE 2.34 The graph of the function in Example 9. The graph approaches the x-axis as $|x|$ increases.

DEFINITION Horizontal Asymptote

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

FIGURE 2.35 A curve may cross one of

 its asymptotes infinitely often (Example 11).

FIGURE 2.36 The function in Example 12 has an oblique asymptote.

2.5

Infinite Limits and Vertical Asymptotes

FIGURE 2.37 One-sided infinite limits:

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

FIGURE 2.38 Near $x=1$, the function $y=1 /(x-1)$ behaves the way the function $y=1 / x$ behaves near $x=0$. Its graph is the graph of $y=1 / x$ shifted 1 unit to the right (Example 1).

(a)

(b)

FIGURE 2.39 The graphs of the functions in Example 2. (a) $f(x)$ approaches infinity as $x \rightarrow 0$. (b) $g(x)$ approaches infinity as $x \rightarrow-3$.

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that $f(x)$ approaches infinity as \boldsymbol{x} approaches \boldsymbol{x}_{0}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if for every positive real number B there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)>B .
$$

2. We say that $\boldsymbol{f}(\boldsymbol{x})$ approaches negative infinity as \boldsymbol{x} approaches $\boldsymbol{x}_{\boldsymbol{0}}$, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

if for every negative real number $-B$ there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)<-B
$$

FIGURE 2.40 For $x_{0}-\delta<x<x_{0}+\delta$, the graph of $f(x)$ lies above the line $y=B$.

FIGURE 2.41 For $x_{0}-\delta<x<x_{0}+\delta$, the graph of $f(x)$ lies below the line $y=-B$.

DEFINITION Vertical Asymptote

A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

FIGURE 2.42 The coordinate axes are asymptotes of both branches of the hyperbola $y=1 / x$.

FIGURE 2.43 The lines $y=1$ and $x=-2$ are asymptotes of the curve $y=(x+3) /(x+2)$ (Example 5).

FIGURE 2.44 Graph of
$y=-8 /\left(x^{2}-4\right)$. Notice that the curve approaches the x-axis from only one side. Asymptotes do not have to be two-sided (Example 6).

FIGURE 2.45 The graphs of $\sec x$ and $\tan x$ have infinitely many vertical asymptotes (Example 7).

FIGURE 2.46 The graphs of $\csc x$ and $\cot x$ (Example 7).

FIGURE 2.47 The graph of $f(x)=\left(x^{2}-3\right) /(2 x-4)$ has a vertical asymptote and an oblique asymptote (Example 8).

FIGURE 2.48 The graphs of f and g, (a) are distinct for $|x|$ small, and (b) nearly identical for $|x|$ large (Example 9).

2.6

Continuity

FIGURE 2.49 Connecting plotted points by an unbroken curve from experimental data $Q_{1}, Q_{2}, Q_{3}, \ldots$ for a falling object.

FIGURE 2.50 The function is continuous on $[0,4]$ except at $x=1, x=2$, and $x=4$ (Example 1).

FIGURE 2.51 Continuity at points a, b, and c.

DEFINITION Continuous at a Point

Interior point: A function $y=f(x)$ is continuous at an interior point \boldsymbol{c} of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Endpoint: A function $y=f(x)$ is continuous at a left endpoint \boldsymbol{a} or is continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b), \quad \text { respectively }
$$

FIGURE 2.52 A function
that is continuous at every domain point (Example 2).

FIGURE 2.53 A function
that is right-continuous, but not left-continuous, at the origin. It has a jump discontinuity there (Example 3).

Continuity Test

A function $f(x)$ is continuous at $x=c$ if and only if it meets the following three conditions.

1. $f(c)$ exists
(c lies in the domain of f)
2. $\lim _{x \rightarrow c} f(x)$ exists (f has a limit as $x \rightarrow c$)
3. $\lim _{x \rightarrow c} f(x)=f(c) \quad$ (the limit equals the function value)

FIGURE 2.54 The greatest integer

function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

FIGURE 2.55 The function in (a) is continuous at $x=0$; the functions in (b) through (f) are not.

FIGURE 2.56 The function $y=1 / x$ is continuous at every value of x except $x=0$. It has a point of discontinuity at $x=0$ (Example 5).

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples:
$k \cdot f$, for any number k
5. Quotients:
f / g provided $g(c) \neq 0$
6. Powers:
$f^{r / s}$, provided it is defined on an open interval containing c, where r and s are integers

FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

FIGURE 2.58 The graph suggests that $y=\left|(x \sin x) /\left(x^{2}+2\right)\right|$ is continuous (Example 8d).

FIGURE 2.59 The graph (a) of $f(x)=(\sin x) / x$ for $-\pi / 2 \leq x \leq \pi / 2$ does not include the point $(0,1)$ because the function is not defined at $x=0$. (b) We can remove the discontinuity from the graph by defining the new function $F(x)$ with $F(0)=1$ and $F(x)=f(x)$ everywhere else. Note that $F(0)=\lim _{x \rightarrow 0} f(x)$.

(a)

(b)

FIGURE 2.60 (a) The graph of $f(x)$ and (b) the graph of its continuous extension $F(x)$ (Example 9).

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

FIGURE 2.61 The function
$f(x)= \begin{cases}2 x-2, & 1 \leq x<2 \\ 3, & 2 \leq x \leq 4\end{cases}$
does not take on all values between
$f(1)=0$ and $f(4)=3$; it misses all the
values between 2 and 3 .

FIGURE 2.62 Zooming in on a zero of the function $f(x)=x^{3}-x-1$. The zero is near $x=1.3247$.

2.7

Tangents and Derivatives

FIGURE $2.63 L$ is tangent to the circle at P if it passes through P perpendicular to radius $O P$.

FIGURE 2.64 Exploding myths about tangent lines.

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

FIGURE 2.66 Finding the slope of the parabola $y=x^{2}$ at the point $P(2,4)$ (Example 1).

DEFINITIONS Slope, Tangent Line

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

FIGURE 2.67 The slope of the tangent
line at P is $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right) .
$$

FIGURE 2.68 The two tangent lines to $y=1 / x$ having slope $-1 / 4$ (Example 3).

1. The slope of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at $x=x_{0}$
4. The derivative of f at $x=x_{0}$
5. The limit of the difference quotient, $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$

FIGURE 2.69 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away.

CH. 2
2.2

The limit of the function
\qquad

为
0566664790

CH. 2
2.2

The limit of A function

If: $f(x)=x+3$
what is the value of $f(x)$ approaches it? when x approaches 2 .

$$
\begin{aligned}
& \Rightarrow \lim _{\left.x \rightarrow 2^{(}\right)} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=5 \\
& \therefore \lim _{x \rightarrow 2} f(x)=5
\end{aligned}
$$

Definition :
If: $f(x)$ approaches L when x approaches a

$$
f(x) \longrightarrow L \quad \text { when } x \longrightarrow a
$$

- x close to a on either side of a but $\neq a$
- $F(x)$ tends to get closer and closer to L.

$$
\lim _{x \rightarrow a} f(x)=L
$$

Note that:

(1) If: $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$

$$
\lim _{x \rightarrow a} f(x)=L
$$

(2) If: $\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x)$
$\leftrightarrow \lim _{x \rightarrow a} f(x)$ does not exist.
عدم
(does not exist) (ئُوا إِى الـُها

$* \lim _{x \rightarrow 1^{-}} f(x)=5 * \lim _{x \rightarrow 1^{+}} f(x)=0$
()$\left._{\sim}^{-N}\right)$
$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist

$$
\begin{array}{r}
\lim _{x \rightarrow 2^{-}} f(x)=2 * \lim _{x \rightarrow 2^{+}} f(x)=2 \\
\cup \sim_{-}=\sqrt{n}
\end{array}
$$

$$
\therefore \lim _{x \rightarrow 2} f(x)=2
$$

$\lim _{x \rightarrow 8^{\infty}} f(x)=1 * \lim _{x \rightarrow 8^{+}} f(x)=3$

$\therefore \lim _{x \rightarrow 8} f(x)$ does not exist
$* F(1)=0 * F(4)=0$
$* F(7)$ does not exist
$* F(6)=2$ * $F(8)=1$

The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) $\lim _{x \rightarrow 2}[f(x)+g(x)]$
(b) $\lim _{x \rightarrow 1}[f(x)+g(x)]$
$\lim _{x \rightarrow 2^{-}} g(x)=3 * \lim _{x \rightarrow 2^{+}} g(x)=1$
$\cup \sim$ - 11
$\therefore \lim _{x \rightarrow 2} g(x)$ does mot exist

$$
\begin{aligned}
& * \lim _{x \rightarrow 5} g(x)=2 \times \lim _{x \rightarrow 5}+g(x)=2 \\
& \therefore \lim _{x \rightarrow 5} g(x)=2
\end{aligned}
$$

Which of the following statements about the function $v=f(x)$ graphed here are true, and Use the graph below to determine whether the statements about the function $y=f(x)$ are true or false.

$$
\begin{aligned}
& * \lim _{x \rightarrow-3^{+}} f(x)=9 \\
& * \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0 \\
& \therefore \lim _{x \rightarrow 0} f(x)=0
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow 3} f(x) \text { does not exist }
$$

$\lim _{x \rightarrow 6} f(x)=0$

$$
* f(-2)=9 * F(0)=3 * F(3)=0
$$

$\lim _{x \rightarrow 1} f(x)=-160_{-} \quad 6$

$$
\left(r_{\square}\right) \neq \dot{r} \sim N
$$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 0} F(x) \text { does not exist } \\
& F(0)=1 \times F(1)=0 \quad F(2)=1
\end{aligned}
$$

For the function $h(x)$ whose graph is given.

Find:

$$
\begin{aligned}
& \lim _{x-3} h(x)=\underset{\approx}{\approx} \\
& \lim _{x-3^{+}} h(x)=4 \\
& \because \lim _{x \rightarrow-3} h(x)=\lim _{x \rightarrow-3^{+}} h(x)=4 \Rightarrow x \lim _{x \rightarrow-3^{2}} h(x)=4
\end{aligned}
$$

* $h(-3)$ does not exist.
(2) $\lim _{x \rightarrow 0^{-}} h(x)=\underset{\sim}{\approx} \quad * \lim _{x \rightarrow 0} h(x)=-\underset{\approx}{-1}$
$* \lim _{x \rightarrow 0} h(x)$ does not exist $* h(0)=1$
(3) $\lim _{x \rightarrow 5^{+}} h(x)=3 \quad \lim _{x \rightarrow 5} h(x)=$ does not exist
$\Rightarrow \lim _{x \rightarrow 5} h(x)$ does not exist.

Use the given graph of $F(x)$ to find:

$$
\begin{aligned}
& \text { (1) } \lim _{x \rightarrow 1} f(x) \quad v, \quad \text { نوب. } \\
& \lim _{x \rightarrow 1^{-}} f(x)=2 \quad * \lim _{x \rightarrow i^{+}} f(x)=3
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist. (0, ser g)
(2) $\lim _{x \rightarrow 5} F(x)=4$
(3) $F(5)$
does not exist the pit Then
use the given graph of $f(x)$ to find:
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=-1 \quad * \lim _{x \rightarrow 0_{0}^{+}} f(x)=-2
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist

(2)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=2 \quad \lim _{x \rightarrow 2^{+}} f(x)=0 \\
& \text { v } \\
& \therefore \lim _{x \rightarrow 0} f(x) \text { does not exist }
\end{aligned}
$$

(3) $F(2)=1$
(4) $\lim _{x \rightarrow 4} f(x)=3$

Use the given graph of $f(x)$ to find:
(1) $\lim _{x \rightarrow 0} F(x)=3$
(2) $\lim _{x \rightarrow 3^{-}} f(x)=4 * \lim _{x \rightarrow 3^{+}} f(x)=2$

$\therefore \lim _{x \rightarrow 3} f(x)$ does not exist
(3) $f(3)=3$

DEFINITION The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

(a) $\lim _{x \rightarrow a^{-}} f(x)=\infty$

(b) $\lim _{x \rightarrow a^{+}} f(x)=\infty$

(c) $\lim _{x \rightarrow a^{-}} f(x)=-\infty$

(d) $\lim _{x \rightarrow a^{+}} f(x)=-\infty$ $x=a \quad$ is vertical asymptote.

Find the equation of the vertical asymptote:

V. asymptote: $X=3$

V. asymptote:
$X= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$.
V. asymptote:

- odd $v i j^{2} \pi$ Jus

$$
O R X=\frac{(2 n+1) \pi}{2}
$$ where x is whole dr, s number

جـــمال السـعـدي استاذ الرياضيات والإحصاء للمرهـلح الجامعية

For the function R whose graph is shown, state the following.
(a) $\lim _{x \rightarrow 2} R(x)=-\infty$
(b) $\lim _{x \rightarrow 5} R(x)=\infty$
(c) $\lim _{x \rightarrow-3^{-}} R(x)=-\infty$
(d) $\lim _{x \rightarrow-3^{+}} R(x)=\infty$
(e) The equations of the vertical asymptotes.

$$
6
$$

* $X=-3$

$$
* \quad x=2
$$

$* x=5$

For the function f whose graph is shown, state the following.
(a) $\lim _{x \rightarrow-7} f(x)=-\infty$ (b) $\lim _{x \rightarrow-3} f(x)=\infty$ (c) $\lim _{x \rightarrow 0} f(x)=\infty$
(d) $\lim _{x \rightarrow 6^{-}} f(x)=-\infty$ (e) $\lim _{x \rightarrow 6^{+}} f(x)=\infty$
(f) The equations of the vertical asymptotes.
$* X=-7 * X=-3 * X=0 * X=6$

Find the infinite limit
ي洝

(1) $\lim _{x \rightarrow 5^{+}} \frac{6}{x-5}=\frac{+6}{+(5-5)}=\frac{6}{0}=\infty$
(2) $\lim _{x \rightarrow 5} \frac{6}{x-5}=\frac{+6}{-(5-5)}=-\frac{6}{0}=-\infty$ 5, 5

(3) $\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{2}}=\frac{2-1}{(1-1)^{2}}=\frac{1}{0}=\infty$

$v_{\text {V_ }}$
a

(4) $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}=\frac{+e^{5}}{-(5-5)^{3}}=-\frac{e^{5}}{0}=-\infty$
$15,{ }^{2}$

(5) $\lim _{x \rightarrow 5^{+}} \ln (x-5)=-\infty$

 - نِ
(6) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{x^{2}(x+2)}=\frac{-3}{+0}=-\infty$

 .07778 yg .
(7) $\lim _{x \rightarrow-4} \frac{2 x}{x+4}=\frac{-8}{+(-4+4)}=-\frac{8}{0}=-\infty$
(8) $\lim _{x \rightarrow-1} \frac{3 x}{2 x+2}=\frac{-3}{-(-2+2)}=+\frac{3}{0}=\infty$
(9) $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=\frac{+1}{-0}=-\infty$
(10) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\frac{+1}{x^{+} 0}=\infty$

(11) $\lim _{x \rightarrow 0^{-}} \frac{2}{x^{2 / 3}}=\lim _{x \rightarrow 0} \frac{2}{\sqrt[3]{x^{2}}}=\frac{+2}{+0}=\infty$
(12)

$$
\lim _{x \rightarrow 0^{-}} \frac{2}{x^{3 / 5}}=\lim _{x \rightarrow 0^{-}} \frac{2}{\sqrt[5]{x^{3}}}=\frac{+2}{-0}=-\infty
$$

 الذ

Note: $\frac{-\pi}{2}$ 并 270
(13)

$$
\begin{aligned}
& \lim _{x \rightarrow(-\pi / 2)^{-}} \sec x \\
& =\lim _{x \rightarrow\left(-\frac{\pi}{2}\right)^{-}} \frac{1}{\cos x \rightarrow}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{+1}{-0} \\
& =-\infty
\end{aligned}
$$

(14) $\lim _{\substack{x \rightarrow\left(\frac{\pi}{2}\right)^{-} \\ \text {J, الـ, }}} \tan x=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sin x}{\cos x}=\frac{+1}{+0}=\infty$ ~寝
(15) $\lim _{\substack{x \rightarrow\left(-\frac{\pi}{2}\right)^{+} \\ \text {E, }}} \tan x=\lim _{x \rightarrow\left(-\frac{\pi}{2}\right)^{+}} \frac{\sin x}{\cos x}=\frac{-1}{+0}=-\infty$ ك suend

$$
2.3
$$

Limits by using
limits Laws

جمال السعدي

0566664790
2.3

Calculating limits
using the limits laws
In this section:
To calculate limits we use the following, properties of limits called "The limits laws"
limit Laws
suppose that: $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$
and c is constant.
(1) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=L \pm M$

(2) $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$
(3) $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

$$
=\frac{L}{M} \quad(I f: M \neq 0)
$$

(4) $\lim _{x \rightarrow 2}[c f(x)]=c \lim _{x \rightarrow 2} f(x)=c \cdot L$
(5) $\lim _{x \rightarrow a} c=c$ - Wl where c is constant
(6) $\lim _{x \rightarrow a} x=a$ $a \rightarrow x$ mergil
(7) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}=L^{n}$
(8) $\lim _{x \rightarrow a} x^{n} \quad a \rightarrow x \rightarrow a^{n}$ mengil
(9) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad$ (If:n is evem; a must be positive)
(10) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}$
(If: n is even L must be positive)

Example:
Evaluate the following limits
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right) \\
& \text { [by direct substitution] } \\
& \text { 人 }
\end{aligned}
$$

$$
\begin{aligned}
& =2(5)^{2}-3(5)+4 \\
& =50-15+4 \\
& =39
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)} \\
& =\frac{-8+88-1}{5+6}=\frac{-1}{11}
\end{aligned}
$$

Example:

Use the limit laws and graphs of F and g in figure to evaluate the following limits (if they exist).

$$
\text { (1) } \begin{aligned}
& \lim _{x \rightarrow-2}[f(x)+5 g(x)] \\
= & \lim _{x \rightarrow-2} f(x)+5 \lim _{x \rightarrow-2} g(x) \\
= & 1+5(-1) \\
= & 1-5=-4
\end{aligned}
$$

$$
\left\{\begin{array}{l}
* \lim _{x \rightarrow-2} f(x)=1 \\
* \lim _{x \rightarrow-2} g(x)=-1
\end{array}\right.
$$

(2) $\lim _{x \rightarrow 1}[f(x) g(x)]$

Does not exist
because:
the $\lim _{x \rightarrow 1} g(x)$ is not exist
where $\lim _{x \rightarrow 1^{+}} g(x) \neq \lim _{x \rightarrow 1^{-}} g(x)$

$$
\text { (3) } \lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)}=\frac{1.4}{0} \Rightarrow \begin{aligned}
& \lim _{x \rightarrow 2} g(x)=0 \\
& \text { Does not exist } \\
& \text { zero hell } \sim \text { y) }
\end{aligned}
$$

$$
\begin{array}{ll}
* & \lim _{x \rightarrow 2} f(x) \approx 1.4 \\
* & \lim _{x \rightarrow 2} g(x)=0 \\
\Rightarrow & \text { Does not exist }
\end{array}
$$

- صا
-寝
(Does not exist)
Example:

$$
f(x)= \begin{cases}\sqrt{x-4} & ; x>4 \\ 8-2 x & ; x<4\end{cases}
$$

Find the $\lim _{x \rightarrow 4} f(x)$?

$$
\lim _{x \rightarrow \ddagger} \sqrt{x-4}=\sqrt{4-4}=\sqrt{0}=0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{-}}(8-2 x)=8-2(4)=8-8=0
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow 4} f(x)=0
$$

Example:

$$
f(x)=\left\{\begin{array}{ll}
2 x+1 & ; x \neq 3 \\
x+5 & ; x=3
\end{array} \text { find: } \lim _{\text {fim }} f(x)\right.
$$

$$
\lim _{x \rightarrow 3} F(x)=\lim _{x \rightarrow 3}(2 x+1)=2(3)+1=7
$$ جـــال السـعديا استاذ الرياضيات والإحمـاء للمرجـلد الججالمعي2 -07ราระดด.

$f(x)=1 \quad 1$ a lend
 जئهم

Example:

$$
\text { Find: } \lim _{x \rightarrow 0} \frac{|x|}{x} \text { ? }
$$

$$
|x|
$$

$$
\text { * } \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{\prime}}{x}=\lim _{x \rightarrow 0^{+}}(1)=1 \quad \text { ن- }=1 \pm\left|\dot{q}^{j}\right|
$$

$$
* \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x)}{x}=\lim _{x \rightarrow 0^{-}}(-1)=-1 \text { (1) }
$$

$$
\because \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)
$$

$\therefore \lim _{x \rightarrow 0} f(x)$ Does not exist.

(20)

ي

- The greatest integer function (zzallall)
is defined by
$\mathbb{[} \times \mathbb{\rrbracket}=$ the largest integer that is less than or equal to x

$$
\llbracket x \rrbracket=a \text { for } a \leqslant x<a+1
$$

Note: \square

[I $]$ [En $]=$

Example: find the value of:

$$
\begin{aligned}
& {[2 \rrbracket=2,[\llbracket-2 \rrbracket=-2,[2.9 \rrbracket=2([-2.9]=-3}
\end{aligned}
$$

Example: Find $\lim _{x \rightarrow 3} \mathbb{I} \times \mathbb{I}$

نهـ
(1) If: $f(x) \leqslant g(x) \Rightarrow \lim _{x \rightarrow a} f(x) \leqslant \lim _{x \rightarrow a} g(x)$
(2) (squeeze theorem)

If: $F(x) \leqslant g(x) \leqslant h(x)$

and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$
then $\lim _{x \rightarrow a} g(x)=L$
Example:
If: $4 x-9 \leqslant f(x) \leqslant x^{2}-4 x+7$ for $x \geqslant 0$
Find: $\lim _{x \rightarrow 4} F(x)$?

* $\lim _{x \rightarrow 4+-7}(4 x-9)=16-9=7$
$\cdots \lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right)=18-16+7=7$

Example: (1) $\lim _{x \rightarrow 0} x_{i} x_{0}^{2} \cdot \sin \frac{1}{x}=0$

$$
-1 \leqslant \sin _{\cos } \leqslant 1
$$

sinscos J'gmis)

الـــــــعـــدي!

(….......
 هـ ; N STop $-\infty$ (ím $\begin{aligned} & i \\ & \text { (1) }\end{aligned}$ a \rightarrow x.
 . 07777 हV9.

Exercises:
(1) $\lim _{x \rightarrow 2}(2 x+1)=2(2)+1=5$ stop.
(2) $\lim _{y \rightarrow 5} \frac{y^{2}}{5-y}=\frac{(5)^{2}}{5-5}=\frac{25}{0}=\infty$
(3) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\frac{4+2-6}{2-2}=\frac{0}{0} \quad$ (I.f.)
$\lim _{x \rightarrow 2} \frac{(x+3)(x-2)}{(x-2)}=\lim _{x \rightarrow 2}(x+3)=2+3=5<\mu \sin !$ is

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\lim _{x \rightarrow 2} \frac{2 x+1}{1}=2(2)+1=5
$$

(4) $\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}=\frac{16-20+4}{16-12-4}=\frac{0}{0} \quad$ (I.F.)

$$
\lim _{x \rightarrow-4} \frac{(x+4)(x+1)}{(x+4)(x-1)}=\lim _{x \rightarrow-4} \frac{x+1}{x-1}=\frac{-3}{-5}=\frac{3}{5} \text { fin } 5 \text { in } *
$$

$$
\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}=\lim _{x \rightarrow-4} \frac{2 x+5}{2 x+3}=\frac{-8+5}{-8+3}=\frac{-3}{-5}=\frac{3}{5}
$$

$$
\begin{aligned}
& \text { (5) } \lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\frac{16-16}{16-12-4}=\frac{0}{0} \text { (I.f.) } \\
& =\lim _{x \rightarrow 4} \frac{2 x-4}{2 x-3}=\frac{8-4}{8-3}=\frac{4}{5}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \text { () } \lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}=\frac{9-9}{18-21+3}=\frac{0}{0} \text { (I.f.) } \\
& =\lim _{t \rightarrow-3} \frac{2 t}{4 t+7}=\frac{-6}{-12+7}=\frac{-6}{-5}=\frac{6}{5}
\end{aligned}
$$

(7) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)=\frac{1}{0}-\frac{1}{0}=\infty-\infty$ (I.f.)

$$
\begin{aligned}
& =\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t(t+1)}\right)=\lim _{t \rightarrow 0}\left(\frac{t+1}{t(t+1)}-\frac{1}{t(t+1)}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{t+1-1}{t(t+1)}\right)=\lim _{t \rightarrow 0} \frac{t}{t(t+1)} \\
& \\
& =\lim _{t \rightarrow 0} \frac{1}{t+1}=\frac{1}{0+1} \\
& \operatorname{man}_{t \rightarrow 1}=\frac{1}{1}=
\end{aligned}
$$

 . - 9779 รタ。

$$
\begin{array}{r}
\text { (8) } \lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}=\frac{(4+0)^{2}-16}{0}=\frac{16-16}{0}=\frac{0}{0} \\
\quad(I \cdot f \cdot) \\
=\lim _{h \rightarrow 0} \frac{2(4+h)^{\prime} \cdot 1}{111}=\lim _{h \rightarrow 0} 2(4+h)=2(4+0)=8
\end{array}
$$

$$
\begin{aligned}
& \text { (9) } \lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\frac{1-1}{1-1}=\frac{0}{0} \quad \text { (I.f.) } \\
& =\lim _{x \rightarrow 1} \frac{3 x^{2}}{2 x}=\lim _{x \rightarrow 1} \frac{3 x}{2}=\frac{3(1)}{2}=\frac{3}{2}
\end{aligned}
$$

(10)

$$
\begin{aligned}
& 0 \lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}=\frac{-2+2}{-8+8}=\frac{0}{0} \begin{array}{c}
(I \cdot f \cdot) \\
(\text { by } L \cdot H \cdot R)
\end{array} \\
& =\lim _{x \rightarrow-2} \frac{1}{3 x^{2}}=\frac{1}{3(-2)^{2}}=\frac{1}{3(4)}=\frac{1}{12}
\end{aligned}
$$

(11)

$$
\begin{array}{r}
\text { (1) } \lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}=\frac{9-9}{3-3}=\frac{0}{0} \quad \begin{array}{r}
(I \cdot f \cdot) \\
(\text { by L.H.R) } \\
=\lim _{t \rightarrow 9} \frac{+1}{\not-\frac{1}{2 \sqrt{t}}}=\lim _{t \rightarrow 9} t \cdot \frac{2 \sqrt{t}}{t}=2 \sqrt{9}=2(3) \\
=6
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { (12) } \lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}=\frac{\sqrt{9}-3}{7-7}=\frac{0}{0} \text { (I.f.) } \\
& =\lim _{x \rightarrow 7} \frac{\frac{1}{2 \sqrt{x+2}}}{1}=\lim _{x \rightarrow 7} \frac{1}{2 \sqrt{x+2}}=\frac{1}{2 \sqrt{9}}=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (13) } \lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}=\frac{\sqrt{1+0}-1}{0}=\frac{1-1}{0}=\frac{0}{0}(I \cdot f \cdot) \\
& \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2 \sqrt{1+h}}}{1}=\lim _{h \rightarrow 0} \frac{1}{2 \sqrt{1+h}}=\frac{1}{2 \sqrt{1+0}}=\frac{1}{2}
\end{aligned}
$$

(14)

$$
\begin{aligned}
& 14) \lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}=\frac{16-16}{2-2}=\frac{0}{0} \text { (I.f.) } \\
& =\lim _{x \rightarrow 2} \frac{4 x^{3}}{1}=4(2)^{3}=4(8)=32
\end{aligned}
$$

$$
\begin{aligned}
& \text { (15) } \lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\frac{\frac{1}{4}+\frac{1}{-4}}{4+(-4)}=\frac{\frac{1}{4}-\frac{1}{4}}{4-4}=\frac{0}{0} \text { (I.C. } \\
& =\lim _{x \rightarrow-4} \frac{0+\left(-\frac{1}{x^{2}}\right)}{0+1}=\lim _{x \rightarrow-4}-\frac{1}{x^{2}}=-\frac{1}{(-4)^{2}}=-\frac{1}{16} \quad-\frac{1}{x^{2}}
\end{aligned}
$$

 . 8 .

$$
\begin{aligned}
& \text { (16) } \lim _{x \rightarrow 9} \frac{x^{2}-81}{\sqrt{x}-3}=\frac{81-81}{3-3}=\frac{0}{0}(I \cdot f \cdot) \\
& =\lim _{x \rightarrow 9} \frac{2 x}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow 9} 2 x \cdot 2 \sqrt{x} \\
& = \\
& \lim _{x \rightarrow 9} 4 x \sqrt{x}=4(9) \sqrt{9}=36(3)=108
\end{aligned}
$$

$$
\begin{aligned}
& \text { (17) } \lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}=\frac{3^{-1}-3^{-1}}{0}=\frac{0}{0}(I \cdot f \cdot) \\
& =\lim _{h \rightarrow 0} \frac{-1(3+h)^{-2} \cdot 1}{1}=\lim _{h \rightarrow 0} \frac{-1}{(3+h)^{2}} \\
& =\frac{-1}{(3+0)^{2}}=\frac{-1}{(3)^{2}}=\frac{-1}{9}
\end{aligned}
$$

(18)

$$
\begin{aligned}
& \text { (19) } \lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)=\frac{1}{0}-\frac{1}{0}=\underset{\text { (I.f.) }}{\infty} \\
& \text { - N } \\
& \lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{\sqrt{1+t}}{t \sqrt{1+t}}\right)=\lim _{t \rightarrow 0}\left(\frac{1-\sqrt{1+t}}{t \sqrt{1+t}}\right) \\
& =\frac{0}{0} \text { (I.f.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (亿ヒ, 行) } \\
& \lim _{t \rightarrow 0} \frac{1-\sqrt{1+t}}{t \sqrt{1+t}} \cdot \frac{1+\sqrt{1+t}}{1+\sqrt{1+t}} \\
& =\lim _{t \rightarrow 0} \frac{1-(1+t)}{t \sqrt{1+t}(1+\sqrt{1+t})}=\lim _{t \rightarrow 0} \frac{x-K-t}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\lim _{t \rightarrow 0} \frac{-t}{t \sqrt{1+t}(1+\sqrt{1+t})}=\lim _{t \rightarrow 0} \frac{-1}{\sqrt{1+t}(1+\sqrt{1+t})} \\
& =\frac{-1}{\sqrt{1+0}(1+\sqrt{1+0})}=\frac{-1}{1(1+1)}=\frac{-1}{2}
\end{aligned}
$$

（20）

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{x^{3}+x^{2}}}{\sin ^{5} \frac{\pi}{x}} \underset{t}{\sin }=0 \quad \text { a }
\end{aligned}
$$

$$
\begin{gathered}
x-3=0 \\
x=3
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}}(2 x+x-3) \\
& =\lim _{x \rightarrow 3^{+}}(3 x-3)=9-3=6 \quad-(x-3) \mid(x-3) \\
& * \lim _{x \rightarrow 3^{-}}(2 x-x+3) \\
& =\lim _{x \rightarrow 3^{-}}(x+3)=3+3=6 \lim ^{\prime} \\
& \because \lim _{x \rightarrow 3^{+}} \quad=\lim _{x \rightarrow 3}=6 \Rightarrow \lim _{x \rightarrow 3}(2 x+|x-3|)=6
\end{aligned}
$$

(22) $\lim _{x \rightarrow-6} \frac{2 x+12}{|x+6|}$

$$
\begin{aligned}
& x+6=0 \\
& x=-6
\end{aligned}
$$

$* \lim _{x \rightarrow-6^{+}} \frac{2(x+6)}{(x+6)}=2$
$\left.\lim _{x \rightarrow-0^{-}} \frac{2(x+6)}{-(x+6)}=\frac{2}{-1}=-2-(x+6) \right\rvert\,(x+6)$
$\therefore \lim _{x \rightarrow-6^{+}} \neq \lim _{x \rightarrow-6^{-}}$र- الـ
$\therefore \lim _{x \rightarrow-6} \frac{2 x+12}{|x+6|}$ does not exist

17

$$
\begin{aligned}
& \text { (23) } \lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|_{1}}\right) \\
& =\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{-x_{R}, \prime^{\prime}}\right. \\
& =\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}+\frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0^{-}}\left(\frac{2}{x}\right)=\frac{2}{0}=\infty
\end{aligned}
$$

الماده تئرنغ المطانم

$$
x=0
$$

(24)

$$
\text { 4) } \begin{aligned}
& \lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x_{k}}\right) ; \\
& = \\
& \lim _{x \rightarrow 0^{+}}(0)=0
\end{aligned}
$$

(25) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$ does not exist.

 -077775V4.
(26)
let: $g(x)= \begin{cases}x ; & x<1 \\ 3 ; & x=1 \\ 2-x^{2} ; & 1<x \leq 2 \\ x-3 ; & x>2\end{cases}$
Evaluat each of the following limits if it exists:
(1) $\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}(x)=1 \quad x \frac{15}{12-x^{2} \frac{2}{1} x-3}$
(2) $\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}\left(2-x^{2}\right)=2-1=$ (1)

$(4) g(1)=3$
(5) $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}}\left(2-x^{2}\right)=2-4=-2$
(6) $\lim _{x \rightarrow 2^{+}} g(x)=\lim _{x \rightarrow 2^{+}}(x-3)=2-3=-1$
(7) $\lim _{x \rightarrow 2} g(x)$ does not exist
(27) If n is integer 209, Find

(2) $\lim _{x \rightarrow x^{+}} \llbracket x \rrbracket=n$ تَ
(3) $\lim _{x \rightarrow n}[x \rrbracket$ does not exist

(28) If: $f(x)=[x \rrbracket+\llbracket-x \rrbracket$
find: $\lim _{x \rightarrow 2} f(x)$? and $f(2)$?

$$
\begin{aligned}
& \left.* \lim _{x \rightarrow 2^{+}}(\llbracket x \rrbracket]+\llbracket-x \rrbracket\right)=(2)+(-3)=2-3=-1 \\
& \lim _{x \rightarrow 2^{-}}\left(\left[\prod_{7}\right]+\llbracket-x \rrbracket\right)=(1)+(-2)=1-2=-1 \\
& \lim _{x \rightarrow 2} f(x)=-1 \\
& \begin{aligned}
* F(2) & =\llbracket 2 \rrbracket+\llbracket-2 \rrbracket \\
& =2+(-2)=2-2=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (29) If: } \lim _{x \rightarrow 1} \frac{f(x)-8}{x-1}=10 \\
& \text { Find } \lim _{x \rightarrow 1} f(x) \text { ? } \\
& \because \lim _{x \rightarrow 1 \rightarrow x} \frac{f_{x}(x)-8}{\rightarrow x-1}=10 \\
& \Rightarrow \frac{\lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} 8}{\lim _{x \rightarrow 1} x-\lim _{x \rightarrow 1} 1}=10 \\
& \Rightarrow \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} 8=10\left(\lim _{x \rightarrow 1} x-\lim _{x \rightarrow 1} 1\right) \\
& \Rightarrow \lim _{x \rightarrow 1} f(x)-8=10(1-1) \\
& \Rightarrow \lim _{x \rightarrow 1} f(x)=10 \longrightarrow_{0}(0)+8 \\
& \therefore \lim _{x \rightarrow 1} f(x)=8
\end{aligned}
$$

(30) If:

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5
$$

Find:

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 0} f(x) \\
& \because \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5 \\
& \frac{\lim _{x \rightarrow 0} f(x)}{\lim _{x \rightarrow 0} x^{2}}=5 \\
& \Rightarrow \lim _{x \rightarrow 0} f(x)=5 \cdot \lim _{x \rightarrow 0} x^{2} \\
& \lim _{x \rightarrow 0} f(x)=5 \cdot(0)^{2} \\
& \therefore \lim _{x \rightarrow 0} f(x)=0
\end{aligned}
$$

$$
\text { (b) } \lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

$$
\because \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5
$$

$$
\lim _{x \rightarrow 0}\left(\frac{F(x)}{x} \cdot \frac{1}{x}\right)=5
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{x}=5
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=\frac{5}{\lim _{x \rightarrow 0} \frac{1}{x}}
$$

$$
=\frac{5}{\frac{1}{0}}
$$

$$
=5 \cdot \frac{0}{1}
$$

$$
\therefore \lim _{x \rightarrow 0} \frac{F(x)}{x}=5 \cdot(0)=0
$$

 .077รารู9.
(31) $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}=\frac{\sqrt{6-2}-2}{\sqrt{3-2}-1}=\frac{\sqrt{4}-2}{\sqrt{1}-1}$

$$
=\frac{2-2}{1-1}=\frac{0}{0}(I \cdot f \cdot)
$$

TLiN

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{\frac{-1}{2 \sqrt{6-x}}}{\frac{-1}{2 \sqrt{3-x}}} \\
& =\lim _{x \rightarrow 2} \frac{-x}{2 / \sqrt{6-x}} \cdot \frac{4 / \sqrt{3-x}}{-x} \\
& =\lim _{x \rightarrow 2} \frac{\sqrt{3-x}}{\sqrt{6-x}}=\frac{\sqrt{3-2}}{\sqrt{6-2}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}
\end{aligned}
$$

(32) If there a number a such that:

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+2 x+a+3}{x^{2}+x-2} \quad \text { exist }
$$

(1) Find the value of a.
(2) Find the value of the limit.

$$
\begin{aligned}
& \text { (1): } \lim _{x \rightarrow-2} \frac{3(-2)^{2}+2(-2)+2+3}{(-2)^{2}+(-2)-2} \\
& =\frac{12-2 a+a+3}{4-2-2}=\frac{15-a}{0} \\
& \text {-9ونو exist 气 } \because \\
& \text { o = ' الـ } \\
& 15-a=0 \Rightarrow-a=-15 \Rightarrow a=15
\end{aligned}
$$

(2) $\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+15+3}{x^{2}+x-2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+18}{x^{2}+x-2}=\frac{12-30+18}{4-2-2}=\frac{0}{(I \cdot f \cdot)} \\
& (6 y L . H \cdot R)=\lim _{x \rightarrow-2} \frac{6 x+15}{2 x+1}=\frac{-12+15}{-4+1}=\frac{3}{-3}=-
\end{aligned}
$$

(33) Find: $\begin{aligned} & \lim _{x \rightarrow 0} \widetilde{\sqrt{x}} \\ & \text { zero } \\ & \text { zenin }\end{aligned}$

$$
e^{\sin \left(\frac{\pi}{x}\right)}
$$

$$
\begin{aligned}
& -1 \leqslant \sin \left(\frac{\pi}{x}\right) \leqslant 1 \\
& e^{-1} \leqslant e^{\sin \left(\frac{\pi}{x}\right)} \leqslant e^{1}
\end{aligned}
$$

e, $e^{-1} 0,3 \sin e^{\sin \left(\frac{\pi}{x}\right)} \therefore$

2.5 Continuity nin

جمال السعدي

0566664790
2.5

Continuity

- Continuous at the number $X=a \leftarrow \sim$ n es
-requires three things

(1) $f(a)$ is defined (ainasacall)
(2) $\lim _{x \rightarrow a} f(x)$ exist (0) 2 Lid l)

(3) $\lim _{x \rightarrow a} f(x)=F(a)\left(\right.$ ald $^{2 n}=$ - \& 11$)$

尼

Example: From the figure
$F(1)$ is not defined
$\therefore f(x)$ is discontinuous at x

* $x=3$
$\lim _{x \rightarrow 3} f(x)$ does not exist
$\therefore f(x)$ is discontinuous at $x=3$
* $x^{t} x=5$

$$
(F(5)=3) \quad\left(\lim _{x \rightarrow 5} f(x)=1\right)
$$

$\therefore f(x)$ is discontinuous at $x=5$. هтเารยร.

Example:
Where are each of the following functions discontinuous?
(1) $f(x)=\frac{x^{2}-x-2}{x-2}$
$F(2)$ is not defined
So $f(x)$ is discontinuous at $x=2$

or $f(x)$ is continuous on $R-\{2\}$

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

' ${ }^{\top} f f(f)=$ on $(-\infty, 2) \cup(2, \infty)$
(2) $f(x)=\llbracket x \rrbracket$
$F(x)$ is discontinuous at all of the integers where the $\lim _{x \rightarrow n} \llbracket x \rrbracket$ does not exist (where n is integer)
 $f(x)=\llbracket x \rrbracket$
(3) $f(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist
So $f(x)$ is discontinuous at $x=0$
$f(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$

Definition:

If: $\lim _{x \rightarrow a^{+}} f(x)=f(a) \Rightarrow f$ is continuous a in from the right a.

If: $\lim _{x \rightarrow a^{-}} F(x)=F(a) \Rightarrow F$ is continuous a, תتش from the left a.

Example:
IF: $\quad f(x)=\llbracket x \rrbracket$
at each integer a
$* \lim _{x \rightarrow a^{+}} F(x)=\lim _{x \rightarrow a^{+}} I x I=a \quad * F(a)=a$
$\therefore f(x)$ is continuous from the right a (a)

* $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} \mathbb{I} x \mathbb{\square}=a-1 \quad * f(a)=a$
$\therefore F(x)$ is discontinuous from the left a

73. (a) From the graph of f, state the numbers at which f is discontinuous and explain why.
(b) For each of the numbers stated in part: (a), determine whether f is continuous from the right, or from the left, or neither.

* at $x=-4 \quad F(x)$ is discontinuous
where $f(-4)$ undefined
$f(x)$ neither continuous from right nor from left.
* at $x=-2 \quad f(x)$ is discontinuous (Jump) $F(x)$ is continuous from the left. $\left(\lim _{x \rightarrow-2} f(x)=F(-2)\right)$
* at $x=2 \quad F(x)$ is discontinuous (Jump) $F(x)$ is continuous from the right. $\left(\lim _{x \rightarrow \frac{1}{2}} f(x)=f(2)\right)$
* at $x=4 \quad F(x)$ is discontinuous (Jump) $F(x)$ is continuous from the right. $\left(\lim _{x \rightarrow 4^{+}} f(x)=f(4)\right)$

4. From the graph of g, state the intervals on which g is continuous.
$*[-4,-2) *(-2,2)$
$*[2,4) \quad *(4,6) *(6,8)$

ج-

- Continuous on the interval
(polynomial) os a os sis $f(x)=\sim \mathcal{C} 1 ; 1$ (1) $R=(-\infty, \infty)$ is areas ret (rational) or $f(x)=i \operatorname{rin}(2)$
$R-\{($ (E) $), \mid$ en $\mid\}$ bs anear re
(root function) 2, $f(x)=$ 놉 (3)

6

Note that:

The following types of function amos on tote? are continuous on their domain.

* trigonometric function.

* Inverse trigonometric function.
* exponential function. a
* logarithmic function.
ar, الد

Example:
(1) $F(x)=\ln (x-2)$

No ane ho d le
2 العُتر
$\therefore f(x)$ is continuous on $(2, \infty)$
(2) $f(x)=\tan ^{-1} x$ Wu sis $\tan ^{-1} x$ al,
$\therefore f(x)$ is continuous on $(-\infty, \infty)$
(3) $f(x)=\ln (x-2)+\tan ^{-1} x$ N
$\therefore f(x)$ is continuous
on $(2, \infty) \cap(-\infty, \infty)=(2, \infty)$

Example:

Where is the function $f(x)$ continuous?
(1) $f(x)=\frac{\ln x+\tan ^{-1} x}{x^{2}-1}$

「位
$\therefore f(x)$ is continuous
on $(-\infty, \infty) \cap(0, \infty)-\{-1,1\}$

$$
\begin{aligned}
& =(0, \infty)-\{-1,1\} \\
& =(0,1) \cup(1, \infty)
\end{aligned}
$$

(2) $F(x)=2 x^{3}-x^{2}+1 \rightarrow$ polynomial , roses $f(x)$ is continuous on $(-\infty, \infty)=R$
(3) $* f(x)=2 * f(x)=\sqrt{5} \quad * f(x)=-\frac{2}{3} \quad * f(x)=0$ are continuous on $(-\infty, \infty)^{3}=R$

$$
\begin{aligned}
& \underset{(-\infty, \infty)}{\downarrow} \underset{(0, \infty)}{\downarrow} \\
& x^{2}-1=0 \\
& x^{2}=1 \\
& x= \pm 1
\end{aligned}
$$

(4) $f(x)=|x-3|$ continuous on $(-\infty, \infty)$

$\therefore f(x)$ contimuous on $R-\{3\}=(-\infty, 3) \cup(3, \infty)$
(6) $f(x)=\frac{1}{|x|-3} \quad \begin{array}{ll}|x|-3=0 \text { 位 } \mid, \text { Lex } \mid \\ & |x|=3 \Rightarrow x=+3\end{array}$

$$
|x|=3 \Rightarrow x= \pm 3
$$

$\therefore F(x)$ continuous on $R-\{-3,3\}=(-\infty,-3) \cup(-3,3) \cup(3, \infty)$

$\therefore f(x)$ continuous on $R .{ }_{|x|=-3 \text { mong (discard) }}^{|x|+3}$ (
(8) $F(x)=\frac{3 x}{x^{2}-9} \Rightarrow \begin{aligned} & x^{2}-9=0 \text { Tied, Linal } \\ & x^{2}=9 \Rightarrow x= \pm 3\end{aligned}$

$$
x^{2}=9 \Rightarrow x= \pm 3
$$

$\therefore f(x)$ continuous on $R-\{-3,3\}=(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
(9) $f(x)=\frac{3 x}{x^{2}+9}$, lieialw(E)

$$
x^{2}+9 \sim \sim 1
$$

$\therefore f(x)$ contimuous on R. zerow, $=\sim i$ ner μ

$\therefore f(x)$ continuous on $R=(-\infty, \infty)$
(11) $F(x)=\frac{2 x-1}{\sqrt[3]{x^{2}-4}}$
(Él)

 . 0 тाтาร9.
（12）$f(x)=\sqrt[5]{x^{2}-x} \quad($ اقذ： والجْر
－R w Uner $f(x)$ ：－
（13）$F(x)=\frac{2}{x}$
Or．\quad ，
متصطه كله
Quens
$\therefore F(x)$ continuous on $R-\{0\}$
oR $f(x)$ is discontinuous at $x=0$
（14）$f(x)=\frac{2 x-1}{x^{2}-5 x+6}-5 x \quad \approx$ rivi，lip
$f(x)$ is continuous

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& (x-3)(x-2)=0 \\
& x=3 \cdot x=2
\end{aligned}
$$

（15）$f(x)=\frac{2 x-1}{x^{2}-5 x+6}+\frac{2 x^{2}}{3}$
discontinuous at $x=$ 「保，误

$$
x=2,3
$$

(16) Find the interval on which(1) $f(x)=\sqrt{|x|-2}$ is continuous. e 年

$$
\begin{aligned}
& |x|-2 \geqslant 0 \\
& |x| \geqslant 2 \\
& x \geqslant 2 \text { or } x \leq-2 \quad \text { aris } \\
& x \frac{\operatorname{cocec}^{-2}}{-2} \quad 2
\end{aligned}
$$

$\therefore f(x)$ is continuous on $(-\infty,-2] \cup[2, \infty)$
(2) $f(x)=\sqrt{2-|x|}$

$$
\begin{aligned}
& \Rightarrow-|x| \geqslant-2 \quad 2-|x| \geq 0 \\
& \Rightarrow-|x| \leq 2 \\
&-2 \leq x \leq 2
\end{aligned}
$$

$\therefore f(x)$ is contimuous on $[-2,2]$
(17) $f(x)=\sqrt{x^{2}-16}$

"野

$$
\begin{aligned}
& x^{2}-16=0 \\
& x^{2}=16 \\
& x= \pm 4
\end{aligned}
$$

$f(x)$ continuous on $(-\infty,-4] \cup[4, \infty)$
** $f(x)$ discontimuous on $(-4,4)$
(18) $f(x)=\frac{2 x}{\sqrt{x^{2}-16}}$

CLEllis aी qieo
 008
$f(x)$ continuous on $(-\infty,-4) \cup(4, \infty)$

Note that:

$$
f(x)= \begin{cases}g(x) & ; x \geqslant 2 \\ h(x) & ; x<2\end{cases}
$$

$x=a$ is ovéod dllig is
:~1

$$
\lim _{x \rightarrow a^{+}} g(x)=\lim _{x \rightarrow a^{-}} h(x)=g(a)
$$

$$
\begin{aligned}
& \text { io (ive mill }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)= \begin{cases}x^{3}-4 ; & x \geqslant 2 \\
x^{2} ; & x<2\end{cases} \\
& x^{2} / \frac{2}{1} x^{3}-4
\end{aligned}
$$

* $f(x)$ is continuous on $(-\infty, 2)$ and $(2, \infty)$ because: it is polynomail, 2 , 0 os
* at $x=2$ ane to ar

- $F(2)=\left(2^{3}-4\right)=8-4=\frac{4}{\sqrt{n}}$ व'少 ans *

$$
\therefore \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=f(2)
$$

$\therefore f(x)$ is continuous at $x=2$
** $f(x)$ is continuous on $(-\infty, \infty)$

Example:
Find the value of c which makes

$$
f(x)= \begin{cases}c x+5 & ; x<2 \\ c x^{2}+1 & ; x \geqslant 2\end{cases}
$$

is continuous at $x=2$

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}}\left(c x^{2}+1\right) & =\lim _{x \rightarrow 2}(c x+5) \\
c\left(2^{2}\right)+1 & =c(2)+5 \\
4 c+1 & =2 c+5 \\
4 c-2 c & =5-1 \\
2 c=4 & \Longrightarrow c=2
\end{aligned}
$$

14

Note that:
的 ($x \neq a$) ا ا

 $x=2$ in

Example:

$$
\text { If: } f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-16}{x-4} ; x \neq 4 \\
7 & ; x=4
\end{array}\right.
$$

Is $f(x)$ continuous at $x=4$?

$$
\begin{align*}
& x \neq 4 \text { is } j \text { 앙요 } \text { * } \\
& \lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=\frac{16-16}{4-4}=\frac{0}{0} \\
& \text { by L.H.R } \\
& \lim _{x \rightarrow 4} \frac{2 x}{1}=8 \\
& x=4 \text { is in (ل) لا } \\
& F(4)=7 \\
& \because \lim _{x \rightarrow 4} f(x) \neq f(4) \quad \text { aldong } \neq \text { ald }
\end{align*}
$$

$\therefore f(x)$ is discontinuous at $x=4$

Intermediate value theorem vern, il ا الen -

 where $a \leqslant c \leqslant b$

$$
\Longrightarrow f(a) \leqslant f(c) \leqslant f(b)
$$

Example:
for the function $f(x)=x^{3}-x^{2}+x$
there is a number $c \in[1,3]$
such that $f(c)=$
[A] -
(B) 10
(c) -1
[D] 40
Solution 3

$$
\begin{aligned}
& \because \quad c \in[1,3] \\
& 1 \leqslant c \leqslant 3
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leqslant f(c) \leqslant 21
\end{aligned}
$$

- 1 <21 (1)

- Removable discontinuity \rightarrow Uther
 a is aver on 1
 : Un If a is a heir
\because 응
造

Example:
which of the following functions f has removable discontinuity?
(1) $f(x)=\frac{x^{4}+1}{x-1} \quad$ discontinuous at $x=1$

$$
\lim _{x \rightarrow 1} \frac{x^{4}+1}{x-1}=\frac{1+1}{1-1}=\frac{2}{0}=\frac{-5}{0}=\infty
$$

\therefore discontinuity is not removabledreivilindilitin
(2) $f(x)=\frac{x^{4}-1}{x-1}$ Qr_كr,

$F(x)$ is discontinuous at $x=1$

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}=\frac{1-1}{1-1}=\frac{0}{0}(I \cdot f)
$$

\Rightarrow we can removable discontinuity年

$$
\begin{aligned}
* \lim _{x \rightarrow 1} \frac{4 x^{3}}{1} & =4\left(1^{3}\right)=4 \\
& \Rightarrow \quad g(x)=\left\{\begin{array}{l}
\frac{x^{4}-1}{x-1} ; x \neq 1 \\
f(1) ; x=1 \\
f
\end{array}\right.
\end{aligned}
$$

9 Page 128
If: f and g are continuous functions with $f(3)=5$ and $\lim _{x \rightarrow 3}[2 f(x)-g(x)]=4$
Find: $g(3)$?

$$
\begin{aligned}
\lim _{x \rightarrow 3}[2 f(x)-g(x)] & =4 \\
2 f(3)-g(3) & =4 \\
2(5)-g(3)^{\boxed{ }} & =4 \Rightarrow g(3)=10-4=6
\end{aligned}
$$

|

18

Example: page 125
Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \arcsin \left(\frac{1-\sqrt{x}}{1-x}\right) \\
& =\arcsin \left(\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}\right) \\
& =\arcsin \left(\lim _{x \rightarrow 1} \frac{-\frac{1}{2 \sqrt{x}}}{-1}\right) \\
& =\arcsin \left(\lim _{x \rightarrow 1} \frac{1}{2 \sqrt{x}}\right) \\
& =\arcsin \left(\frac{1}{2 \sqrt{1}}\right) \\
& =\sin \left(\frac{1}{2}\right)=30=\frac{\pi}{6}
\end{aligned}
$$

2.6

- limits at infinity. - Horizontal asymptotes.

$$
\begin{aligned}
& \text { (. . . } \\
& \text { Math. } 110
\end{aligned}
$$

جمال السعدي

أيستان الريا
0566664790
2.6

- Limits at infinity
- Horizontal asymptotes

Note that:

$$
\begin{aligned}
& *(\infty)^{n}=\infty \quad n \quad \text { n }
\end{aligned}
$$

$$
\begin{aligned}
& *(\pm \infty)^{n}=\text { zero } \quad \text { ll } n \text { 念p } \\
& \text { * } \frac{2 s}{ \pm \infty}=0 \\
& \text { * } \frac{ \pm \infty}{2 \pm}= \pm \infty \\
& \text { * }\left(\frac{a}{b}\right)^{\infty}=0 \quad \text { biosini } a=i r 1 ; 1 \Rightarrow\left(\frac{2}{3}\right)^{\infty}=0 \\
& *\left(\frac{a}{b}\right)^{\infty}=\infty \quad \text { bis } \sqrt{i} a=i r \left\lvert\, ; 1 \Rightarrow\left(\frac{3}{2}\right)^{\infty}=\infty\right. \\
& * e^{\infty}=\infty \quad * e^{\infty}=0 \\
& * \tan ^{-1} \infty=\frac{\pi}{2} \quad * \tan ^{-1}-\infty=\frac{-\pi}{2}
\end{aligned}
$$

QLinl

$$
\lim _{x \rightarrow \pm \infty} \frac{\frac{1}{\Gamma}}{r^{2}}
$$

(1) $\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-x}{3 x^{2}+1}=\frac{2}{3}$

(2) $\lim _{x \rightarrow \pm \infty} \frac{2 x+1}{x^{2}-x}=0$
(位) Zero

$$
\begin{array}{r}
(3) \lim _{x \rightarrow \infty} \frac{\left(x^{3}\right)-2 x^{2}}{(x)+1} \\
=+\infty=\infty
\end{array}
$$

$\times \mathrm{m}$

$$
\begin{aligned}
& * \lim _{x \rightarrow-\infty} \frac{\left(2 x^{3}-x-2\right.}{2 x+\left(x^{2}\right)}=\frac{-\infty}{+}=-\infty \\
& * \lim _{x \rightarrow-\infty} \frac{\left(2 x^{3}-x-2\right.}{\left.2 x-x^{2}\right)}=-\infty=\infty
\end{aligned}
$$

Find the limits:
 - E. ال
 ∞
(3) $\lim _{x \rightarrow-\infty}\left(\frac{2}{3}\right)^{x}=\left(\frac{2}{3}\right)^{-\infty}=\left(\frac{3}{2}\right)^{\infty}=\infty$
(4) $\lim _{x \rightarrow-\infty}\left(\frac{\pi}{e}\right)^{x}=\left(\frac{\pi}{e}\right)^{-\infty}=\left(\frac{e}{\pi}\right)^{\infty}=0$
$\pi \approx 3.14 \dot{0}-\dot{p}-1 \quad e \approx 2.7$
(5) $\lim _{x \rightarrow \pm \infty} \frac{1}{2+\frac{1}{x}}=\frac{1}{2+\frac{1}{ \pm \infty}}=\frac{1}{2+0}=\frac{1}{2}$
(6) $\lim _{x \rightarrow \infty} \frac{\left(x^{-1}\right)+x^{-4}}{\left(x^{-2}\right)-x^{-3}}$
$-1 \leftarrow \frac{1}{6}$ llapio آ

$$
=\frac{+}{+} \infty=\infty
$$

$$
\begin{aligned}
& \text { (7) } \lim _{x \rightarrow \infty}(\sqrt{x+2}-\sqrt{x})=\infty-\infty \quad \text { (I.f.) } \\
& =\lim _{x \rightarrow \infty} \sqrt{x+2-\sqrt{x}} \cdot \frac{\sqrt{x+2}+\sqrt{x}}{\sqrt{x+2}+\sqrt{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\mathscr{x}+2-\not / x}{\sqrt{x+2}+\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x+2}+\sqrt{x}}=\frac{2}{\infty}=0
\end{aligned}
$$

(9) $\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{2}}}{4+x}=\frac{-\sqrt{4}}{1}=-2$
(10)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right)}{1+\frac{1}{x}}=\frac{\cos \left(\frac{1}{\infty}\right)}{1+\frac{1}{\infty}} \\
=\frac{\cos 0}{1+0}=\frac{1}{1}=1
\end{aligned}
$$

: "

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)=0
$$

ذ

- o 号

Example:

$$
-1 \leqslant \sin \cos \leqslant 1
$$

Find the limits
(1)

$$
\begin{array}{cc}
\lim _{x \rightarrow \infty} \frac{1}{x} & \cos x=0 \\
\vdots & \downarrow \\
\frac{1}{\infty}=0 & -1 \leq \cos x \leq 1 \\
0,23^{+}
\end{array}
$$

(الشٌ

- ip pup

$$
\begin{aligned}
& \text { - الاوكه * } \\
& \lim _{x \rightarrow \infty} \frac{1}{x}=\frac{1}{\infty}=0 \\
& \text { cosx }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \lim _{x \rightarrow \infty} \frac{\sin 2 x}{x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \sin 2 x=0 \\
& \vdots \\
& \frac{1}{\infty}=0 \quad-1 \leqslant \sin 2 x \leq 1 \\
& 0,9,3^{\circ}
\end{aligned}
$$. 077795 V 9.

Find the limit:

$$
\begin{aligned}
& \text { (1) } \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-\sqrt{x^{2}-x}=\infty-\infty \text { (I.f.) } \\
& \text { pur } \\
& \text { - } \\
& \text { بُرْ } \\
& =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right) \cdot \frac{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}}{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}} \\
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}+x\right)-\left(x^{2}-x\right)}{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}}=\lim _{x \rightarrow \infty} \frac{x^{2}+x-x^{2}+x}{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \frac{2}{\sqrt{1}+\sqrt{1}}=\frac{2}{1+1}=\frac{2}{2}=\square
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{3}{x^{2}}-\cos \frac{1}{x}\right)\left(1+\sin \frac{1}{x}\right)(-\operatorname{coses} \\
&=\left(\frac{3}{\infty}-\cos \frac{1}{\infty}\right)\left(1+\sin \frac{1}{\infty}\right) \\
&=(0-\cos 0)(1+\sin 0) \\
&=(0-1)(1+0)=(-1)(1)=-1
\end{aligned}
$$

(3) $\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right)}{1+\frac{1}{x}}$

$$
=\frac{\cos \left(\frac{1}{\infty}\right)}{1+\frac{1}{\infty}}=\frac{\cos 0}{1+0}=\frac{1}{1}=1
$$

هِ

$$
* \lim _{x \rightarrow \pm \infty} \frac{\sin a x}{b x}=0 \Rightarrow \lim _{x \rightarrow \pm \infty} \frac{\sin x}{3 x}=0
$$

$x \lim _{x \rightarrow \pm \infty} \frac{\cos 2 x}{b x}=0 \Rightarrow \lim _{x \rightarrow \pm \infty} \frac{\cos 3 x}{5 x}=$

Example:
Find: $\lim _{x \rightarrow-\infty} \frac{2-x+\sin x}{x+\cos x}$
" x هو

$$
\begin{aligned}
=\lim _{x \rightarrow-\infty} \frac{\frac{2}{x}-1+\frac{\sin x}{x}}{1+\frac{\cos x}{x}}=\frac{0-1+0}{1+0} & =\frac{-1}{1} \\
& =-1
\end{aligned}
$$

جـــــال الســـديا استاذ الرياضيات واوإهصاء للمرحنـة الجالمعية

Page 141
(11) Guess the value of the limit:
 ©
$x: 1 \quad 2 \quad \cdots 10 \quad \cdots \infty$

$x^{2}: 1 \quad 4 \cdots \cdots 100 \rightarrow \infty$

$$
\frac{2 \mu}{\infty}=0
$$

${ }_{2}^{x}: 2 \quad 4 \ldots \ldots \quad 1024 \cdots \infty$

$$
\therefore \lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=\frac{3 s}{\infty}=0
$$

承 $\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}}=\frac{\infty}{3+\infty}=\infty$
(28) $\lim _{x \rightarrow \infty} \cos x \quad \cos x$ ن $\operatorname{cin}^{-\infty}$ * ~ -1, 1 L
\therefore Does Not Exist.

* * $\lim _{x \rightarrow \infty}|\cos x|=1$

1 bes en ned - 1 ra a
(35)
(31)
(33) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}=\frac{-\infty}{\infty}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}}-1}{\frac{1}{e^{x}}+2} \\
& =\frac{\frac{1}{\infty}-1}{\frac{1}{\infty}+2}=\frac{0-1}{0+2}=\frac{-1}{2}
\end{aligned}
$$

استاذ الرياضياتووالوهحساء للمردرلة الجنمعية .077778V8.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(x^{4}+x^{5}\right) \\
& \text { 3-1 } \\
& =\lim _{x \rightarrow-\infty} x^{4} \cdot(1+x) \\
& =(-\infty)^{4} \cdot(1-\infty) \underbrace{\text { ت }} \\
& =(\infty) \cdot(-\infty)=-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \\
& \text { - Lألهُ } \\
& e^{\infty}=0 \text { 亿ne }
\end{aligned}
$$

(34)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{4}\right) \\
& =\lim _{x \rightarrow \infty} \tan ^{-1}\left[x^{2}\left(1-x^{2}\right)\right] \\
& =\tan ^{-1}[\infty \cdot(1-\infty)] \\
& =\tan ^{-1}[\infty \cdot-\infty]=\tan ^{-1}[-\infty]=-\frac{\pi}{2}
\end{aligned}
$$

(36) $\lim _{x \rightarrow(\pi / 2)^{+}} e^{\tan x}=e^{-\infty}=0$線

* tan all
* $\tan 90=\infty$
page 142
(57) Find: $\lim _{x \rightarrow \infty} f(x)$ if $\frac{10 e^{x}-21}{2 e^{x}}<f(x)<\frac{5 \sqrt{x}}{\sqrt{x}-1}$ by: Sandwich theorem

$$
\begin{aligned}
& * \lim _{x \rightarrow \infty} \frac{10 e^{x}-21}{2 e^{x}}=\frac{10}{2}=5 \quad \Rightarrow \lim _{x \rightarrow \infty} f(x)=5 \\
& * \lim _{x \rightarrow \infty} \frac{5 \sqrt{x}}{\sqrt{x}-1}=\frac{5}{1}=5
\end{aligned}
$$

Horizontal asymptotes

Example: Find horizontal asymptotes
(1)

$$
\begin{aligned}
& f(x)=\frac{x^{2}-5 x+6}{x^{2}-4} \\
& y=\lim _{x \rightarrow \pm \infty} \frac{x^{2}-5 x+6}{x^{2}-4}=\frac{1}{1}=1 \\
& \therefore y=1 \quad \text { is horizontal asymptote } \\
& \Longrightarrow(y=1 \text { is h.asym. })
\end{aligned}
$$

 . 07714 Eva.
(2) $f(x)=\frac{2 x-1}{\sqrt{x^{2}+1}}$ $: ~ 1$ doy *

* $y=\lim _{x \rightarrow \infty} \frac{(2 x)-1}{\sqrt{x^{2}+1}}=\frac{+2}{+1}=2$
* $y=\lim _{x \rightarrow-\infty} \frac{(2 x-1}{\sqrt{x^{2}+1}}=\frac{+2}{-1}=-2$
$\Rightarrow y=2, y=-2$ are h. asym.
(3) $f(x)=\frac{|x+2|}{x+4}$

لا يد هـئ أهاد

* $y=\lim _{x \rightarrow \infty} \frac{x+2}{x+4}=\frac{1}{1}=1$

* $y=\lim _{x \rightarrow-\infty} \frac{-(x+2)}{x+4}=\frac{-1}{1}=-1$
$\Rightarrow y=1, y=-1$ are h. asym.
(4) $f(x)=\frac{x^{4}}{|x|}$
$* \quad y=\lim _{x \rightarrow \infty} \frac{x^{4}}{x}=\lim _{x \rightarrow \infty} x^{3}=\infty$
* $y=\lim _{x \rightarrow-\infty} \frac{x^{4}}{(-x)}=\lim _{x \rightarrow-\infty}-x^{3}=-(-\infty)=\infty$

Vertical asymptotes on

Example：
find the vertical asymptotes：
（1）

$$
\begin{aligned}
& f(x)=\frac{2 x-1}{x-2} \\
& f(2)=\frac{2(2)-1}{2-2}=\frac{3}{0}=\frac{35}{0}\left[\begin{array}{l}
\text { fl len } \\
x-2=0 \\
x=2
\end{array}\right] \\
& \Rightarrow x=2 \text { is V.asym. }
\end{aligned}
$$

 － 0 年年年V9．

$$
\begin{aligned}
& \text { (2) } f(x)=\frac{x^{2}-5 x+6}{x^{2}-4} \\
& * f(2)=\frac{4-10+6}{4-4}=\frac{0}{0}
\end{aligned}
$$

$$
x^{2}-4=0
$$

$$
x^{2}=4
$$

$\Rightarrow x=2$ is mot V.asym.

$$
x= \pm 2
$$

$$
* f(-2)=\frac{4+10+6}{4-4}=\frac{20}{0}=\frac{2 s}{0}
$$

$\Rightarrow X=-2$ is V. asym.

The horizontal and vertical asymptotes of f are

(a) $y=-2, \quad y=2, \quad x=1$
(b) $x=-2, \quad x=2, \quad y=1$
(c) $x=-2, \quad x=0, \quad y=1$
(d) $x=0, \quad x=2, \quad y=1$

For the function g whose graph is given, state the following.
(a) $\lim _{x \rightarrow \infty} g(x)=2$
(b) $\lim _{x \rightarrow-\infty} g(x)=-2$
(c) $\lim _{x \rightarrow 3} g(x)=\infty$
(d) $\lim _{x \rightarrow 0} g(x)=-\infty$
(e) $\lim _{x \rightarrow-2^{+}} g(x)=-\infty$ (0) The equations of the asymptotes asymptotes

$$
x=-2 \quad, x=0 \quad(x=3
$$

*H. as ymptotes

$$
y=-2 \quad, y=2
$$

For the function f whose graph is given, state the following.
(a) $\lim _{x \rightarrow 2} f(x)=\infty$
(b) $\lim _{x \rightarrow-1^{-}} f(x)=\infty$
(c) $\lim _{x \rightarrow-1^{+}} f(x)=-\infty$
(d) $\lim _{x \rightarrow \infty} f(x)=1$
(e) $\lim _{x \rightarrow-\infty} f(x)=2$
(f) The equations of the asymptotes $* \mathrm{~V} \cdot$ asymptotes

$$
x=-1 \quad 6 x=2
$$

* H. as ymptotes

$$
y=1 \quad<\quad y=2
$$

2.7

- Derivatives.
- Rates of change.

$$
\begin{array}{|l|}
\hline \text { M. (ياضيات } 110 \\
\text { Math. }
\end{array}
$$

جمال السعدي

0566664790
2.7

Derivatives
and Rates of change

The slope of tangent line to the curve $y=f(x)$
at the point $P(a, f(a))$
is $m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
viécós

$$
=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example:
(1) Find the equation of the tangent line to $y=x^{2}$ at the point $p(1,1)$

$$
\text { * slope } m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$$
\begin{aligned}
& \\
& f(a) \\
= & f(1) \\
= & 1^{2} \\
= & 1
\end{aligned}
$$

$$
=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{0}{0} \text { (If.) }
$$

$$
=\lim _{x \rightarrow 1} \frac{2 x}{1}=2
$$

* eq. of the tangent line

$$
\begin{aligned}
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=2(x-1)+1 \\
& y=2 x-2+1 \\
& y=2 x-1
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\{-i, f-i: \dot{p} i \mu \\
\because y=x^{2} a+(i, i) \\
y^{\prime}=2 x \\
* m=2(1)=2 \\
y=m\left(x-x_{1}\right)+y_{1} \\
y=2(x-1)+1 \\
y=2 x-2+1 \\
y=2 x-1
\end{array}\right.
$$

(2) find the equation of the tangent line to $y=\frac{3}{x}$ at the point $(3,1)$

$$
\begin{aligned}
& \because y=\frac{3}{x} \\
& \Rightarrow y^{\prime}=\frac{-3}{x^{2}} \quad \text { at }(3,1) \\
& \Rightarrow m=\frac{-3}{(3)^{2}}=\frac{-1}{3}
\end{aligned}
$$

* eq. of tangent line

$$
\begin{aligned}
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=-\frac{1}{3}(x-3)+1 \\
& y=-\frac{1}{3} x+1+1 \\
& \left\{\begin{array}{l}
y=-\frac{1}{3} x+2 \\
y+\frac{1}{3} x-2=0 \\
3 y+x-6=0\}
\end{array}\right.
\end{aligned}
$$ استاذ الرياضيات والإحصاء للمرجلة الجالمعية -0777ระv9.

Velocity

＊Displacement：$S=f(a+h)-f(a)$

$$
=f\left(t_{2}\right)-f\left(t_{1}\right)
$$

＊Average velocity：$V=\frac{S}{t}=\frac{\text { displacement }}{\text { time }}$

$$
=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

$$
\begin{aligned}
& \text { * Instantaneous velocity }= \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& a b l l
\end{aligned}
$$

Note that：
S Nビース $\triangle V$
Ni si

Example：
（16）Page $\mid 51$
The displacement（in meters）is given by

$$
s=t^{2}-8 t+18
$$

（1）Find the average velocity over the intervals
（a）$[3,4]$

$$
\because s=t^{2}-8 t+18
$$

$$
V=\frac{d S}{d t}=2 t-8
$$

＊Average velocity

$$
=\frac{V(4)-V(3)}{4-3}
$$

$$
=\frac{(2(4)-8)-(2(3)-8)}{4-3}
$$

$$
=\frac{0-(-2)}{1}=\frac{2}{1}=2 \mathrm{~m} / \mathrm{sec}
$$

（b）$[4,4.5]$

$$
\begin{aligned}
& \because S=t^{2}-8 t+18 \\
& 2=1,2 \pi \\
& V=\frac{d s}{d t}=2 t-8
\end{aligned}
$$

＊Average velocity

$$
\begin{aligned}
& =\frac{V(4.5)-V(4)}{4.5-4} \\
& =\frac{(2(4.5)-8)-(2(4)-8)}{4.5-4} \\
& =\frac{9-8}{\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2 \mathrm{~m} / \mathrm{seq}
\end{aligned}
$$

（2）Find the instantaneous velocity when $t=4$

$$
\left.\begin{array}{l}
\because S=t^{2}-8 t+18 \\
\therefore V=2 t-8
\end{array}\right) \triangleq
$$

instantaneous velocity at $t=4$

$$
V V(4)=2(4)-8=0
$$

 .0977 亿多車。

Derivatives الـشتّقا

The derivative of the function f at the number a is denoted by: $=$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

Example
Find the derivative
of the function $f(x)=x^{2}-8 x+9$
by definition. basil $^{\prime}\left(1 ;=-4\right.$ and $f^{\prime}(3)$.
(

$$
\begin{aligned}
& F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-8(x+h)+9\right]-\left[x^{2}-8 x+9\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{\prime}+2 x h+h^{2}-8 x-8 h+/ / x^{2}-x^{2}+8 / / / /}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-8 h}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h-8)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-8)=2 x-8 \\
& \left.\Rightarrow F^{\prime}(x)=2 x-8\right] \Rightarrow F(3)=-2
\end{aligned}
$$

=الاضْتبا, امنتيار
فـرناكِ

$$
\begin{aligned}
\because F(x) & =x^{2}-8 x+9 \\
\therefore f^{\prime}(x) & =2 x-8 \\
\Rightarrow F^{\prime}(3) & =2(3)-8 \\
& =6-8 \\
& =-2
\end{aligned}
$$

Page 151
Each limit represents the derivative of some function $\underset{=}{f}$ at some number $\underset{\underline{a}}{ }$

* State such $\underset{\underline{f}}{ }$ and $\underline{\underline{a}}$ in each case.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

h र?
$\Rightarrow f(x)=x^{10} \quad, a=1$
(32) $\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h}$
$x \rightarrow$ xt

$$
\Rightarrow F(x)=\sqrt[4]{x} \quad 6 a=16\left[\begin{array}{c}
h \text { espoo } 20 \\
a \quad 0 \\
-a=16
\end{array}\right]
$$

(33) $\lim _{x \rightarrow i} \frac{2^{x}-32}{x-5}$

Cinply piw

$$
\begin{aligned}
& \lim _{x \rightarrow-a ;} \frac{f(x)-f(a)}{x-a} \\
\Rightarrow & f(x)=2^{x} \quad r a=5 \leftarrow \text {, } a=, a
\end{aligned}
$$

(34) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan x-1}{x-\frac{\pi}{4}}$

$$
\Rightarrow F(x)=\tan x \quad \text { / } a=\frac{\pi}{4}+\infty,
$$

(35)

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h} \\
& \Rightarrow f(x)=\cos x \quad 6 a=\pi \text { 世he゙गभti, } \mu: a
\end{aligned}
$$

Rates of change مدلنت التَيُم

$$
\text { * } \frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \rightarrow y \text { y }
$$

* Instantaneous rate of change

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-f(x)}{\Delta x}
$$

(汤)

- تِّ
$f^{\prime}(a)$ b $\mid \dot{\prime}$ *
- $a \rightarrow x$ M

Example: page 151 Find $F^{\prime}(a) ?$
(25) $f(x)=3-2 x+4 x^{2} \hat{\wedge}$ 少

$$
\begin{aligned}
& F^{\prime}(x)=-2+8 x \\
& Y F^{\prime}(a)=-2+8 a
\end{aligned}
$$

(27)

$$
\begin{aligned}
& f(t)=\frac{2 t+1}{t+3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \cdot(t+3)-1 \cdot(2 t+1)}{(t+3)^{2}} \\
& =\frac{2 t+6-2 t-1}{(t+3)^{2}}=\frac{5}{(t+3)^{2}} \\
& \Rightarrow f^{\prime}(a)=\frac{5}{(a+3)^{2}} \quad \underset{\substack{t \jmath_{a}+1}}{a+1}
\end{aligned}
$$

(30)

$$
\begin{aligned}
& f(x)=\sqrt{3 x+1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(a)=\frac{3}{2 \sqrt{3 a+1}}
\end{aligned}
$$

(22) page 151

If: $g(x)=1-x^{3} \quad$ find $g^{\prime}(0) ?$
and use it to find the equation
of tangent line to the curve $y=1-x^{3}$
at the point $(0,1)$
$\dot{x}_{1} \quad \dot{y_{1}}$
$\xrightarrow{x_{1}} \underbrace{y_{1}}$ Solution 3

$$
\begin{gathered}
\because g(x)=1-x^{2} \\
\therefore g^{\prime}(x)=-3 x^{2} \\
m=g^{\prime}(0)=-3(0)=0 \\
\therefore\{m=0\}
\end{gathered}
$$

5\%/eq. of tangent line u L Jas

\Rightarrow eq. of tangent line
$\rightarrow(0,0$ i) is $\quad y=m\left(x-x_{1}^{-}\right)+y i$

$$
\begin{aligned}
& y=0(x-0)+1 \\
& y=0+1 \quad y=y=1
\end{aligned}
$$

 - 0 ตรับรจจ.
(17) page 151
for the function g whose graph is given arrange the following numbers
in increasing order:

$$
0 \quad g^{\prime}(-2) \quad g^{\prime}(0) \quad g^{\prime}(2) \quad g^{\prime}(4)
$$

and explain reasoning.

$$
\begin{aligned}
& \left.\Rightarrow g^{\prime}(0)<0\right] 2
\end{aligned}
$$

(18) page 151
(a) Find an eq. of the tangent line to $y=g(x)$ at $x=5$
if $g(5)=-3$ and $g(5)=4$
Solution
eq. of tangent lime is:

$$
\begin{aligned}
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=4(x-5)+(-3) \\
& y=4 x-20-3 \Rightarrow y=4 x-23
\end{aligned}
$$

 passes through the point $(0,2)$ 就 find $F(4)$ and $f^{\prime}(4)$?

$$
\begin{aligned}
& \downarrow \\
& x \quad{ }_{y}^{\prime} \\
& \hline
\end{aligned}
$$ oudernees:

$$
(4, f(4))
$$

* eq. of tangent: $y=m\left(x-x_{1}\right)+y_{1}$

$$
y=F^{\prime}(4)(x-4)+3:(0,2)
$$

$2=f^{\prime}(4)(0-4)+3$ auction' ${ }^{(0)}$

$$
\begin{aligned}
& \Rightarrow 2=-4 F^{\prime}(4)+3 \\
& \Rightarrow 4 F^{\prime}(4)=3-2 \\
& \Rightarrow 4 F^{\prime}(4)=1 \Rightarrow F^{\prime}(4)=\frac{1}{4}
\end{aligned}
$$

استاذ الرياضيات والإحمساء للمرحـلة الجامعية -077778V8.
page 150
(7) Find the eq. of the tangent line to the curve at the given point

$$
y=\sqrt{x}
$$

$$
\left(\begin{array}{cc}
1 & 1 \\
\vdots & 1 \\
x_{1} & y_{1}
\end{array}\right)
$$

(Solution :

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { m } \\
& \Rightarrow m=\frac{1}{2 \sqrt{1}}=\frac{1}{2} \cdots \text { slope. }
\end{aligned}
$$

\therefore eq. of the tangent line:

$$
\begin{aligned}
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=\frac{1}{2}(x-1)+1 \\
& y=\frac{1}{2} x-\frac{1}{2}+1 \Rightarrow y=\frac{1}{2} x+\frac{1}{2}
\end{aligned}
$$

,

G18ull Jha

2.8

The derivative as function

The derivative of a function f at a fixed number a
is:

$$
F^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If: we replace $\underline{=}$ by a variable \underline{x}
we obtain \mathcal{F}^{\prime} as a new function
called the derivative of f and defined by
equation: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Example: If: $f(x)=3 x^{2}-1$ find $f^{\prime}(x)$?

$$
\begin{aligned}
& \text { by def. } F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}-1\right]-\left[3 x^{2}-1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-\neq-3 x^{2}+\not /}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{7(6 x+3 h)}{h}=\lim _{h \rightarrow 0}(6 x+3 h)=6 x}{h}
\end{aligned}
$$

by rule

$$
\begin{aligned}
& y=3 x^{2}-1 \\
& y=6 x
\end{aligned}
$$

S.|-

- If: $\quad y=f(x)$

The notations for the derivative are:

$$
y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)
$$

~tän in dor
os

- f is differentiable at a if $f(a)$ exist.
- f is differentiable on open interval:
(a, b) or (\hat{a}, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$

if it is differentiable at every number -
in the interval.
a insonein or

- Theorem: If f is differentiable at a then $\underset{=}{f}$ is continuous at a

- There are functions that are continuous but not differentiable.
For example: $f(x)=|x|$ is continuous at $x=0$ but not differentiable at $x=0$
$f(x)=|x| \quad$ is continuous at $x=0$
because: $\lim _{x \rightarrow 0}(x)=\lim _{x \rightarrow-0_{0}}(-x)=f(0)=0 \Rightarrow$ ancon and

$$
F(x)= \begin{cases}x & \text { if } x>0 \\ -x & \text { if } x<0\end{cases}
$$

- $F(x)=|x|$ is not differentiable at $x=0$
because:

$$
\begin{aligned}
& F^{\prime}(x)= \begin{cases}1 & \text { if } x>0 \\
-1 & \text { if } x<0\end{cases}
\end{aligned}
$$

Notes
和

- This functions are iot differentiable of $x=a$

(a) A comer or Kink

(b) A

scontinuity

(c) A Vertical tangent

35.

36.

37.

38.

(38) $F(x)$ is not differer iable at $x=-1 \rightarrow$ (discon inuous)

$$
x=2 \rightarrow(\operatorname{cor} n-)
$$

Higher order derivative品

$$
G_{y}^{\text {ald }}=F(x)
$$

$$
y=f(x)=\frac{d f}{d x}
$$

$$
C_{y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} f}{d x^{2}}}^{a^{2}(x)=1}
$$

$$
y^{(4)}=f^{(4)}(x)=\frac{d^{4} f}{d x^{4}}
$$

$y=x^{5}-3 x^{3}+4 x^{2}-2 x+1$ find $y^{(5)} ?$

$$
\begin{aligned}
& y^{\prime}=5 x^{4}-9 x^{2}+8 x-2 \\
& y^{\prime \prime}=20 x^{3}-18 x+8 \\
& y^{z}=60 x^{2}-18 \\
& y^{(4)}=120 x \\
& y^{(5)}=120
\end{aligned}
$$

> , s.siosis retioms
> zero $=$ تiens $\sin _{6}$
> (6) $y^{(6)}-4 b 1>1$
> $\Longrightarrow y^{(6)}=0 \leftarrow 0,{ }^{y}$

(1) $y=x$ (5) $y=-x$ (6) $y=-x^{2}$
3. Match the graph of each function in (a)-(c) with the graph of its derivative in $1=3$. Give reasons for your choices.

- Lead

$$
\begin{aligned}
& f(-2) \\
& x=-2, \text { wll in }
\end{aligned}
$$

(مi) aldl jsed unll
Harizomtal

$$
\therefore F(-2)=0
$$

$$
F(2)>0
$$

$j e r$ U-LH
 (x)

$$
\therefore f(2)>0 \quad \mathrm{Fa} \mathrm{\| se}
$$

$f(x)$ is differentiable
8

$$
x=1
$$

false
$F(x)$ not diff.
because: there is corner.

The accompanying figure shows the graph of $y=$ $f^{\prime}(x)$. Then $f^{\prime}(-2)=$.
(a) -3
(b) 0
(c) 1
(d) 3

$$
f^{\prime}(-2)
$$

$$
x=-2 \text {, , الد }
$$

ألما
Horizontal

The accompanying figure shows the graph of $y=$ $f(x)$. Then $f^{\prime}(2)>0$.
(a) True
(b) False

$$
\begin{aligned}
& x=2 \text { ins ininn unllu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { × الا تَاه الهو } \\
& \text { - } \\
& \therefore f^{\prime}(2)>0 \\
& \therefore f^{\prime}(2)>0 \quad \text { True }
\end{aligned}
$$

$x=0$ is aton

* $f(x)$ is continuous at x a o (Jump) $\quad x \leqslant$

$$
\begin{aligned}
& \lim _{x \rightarrow \theta^{+}}((x)=2 \\
& \lim _{x \rightarrow 0} f(x)=3
\end{aligned}
$$

$$
\therefore f(x)
$$

is discontinuous $\theta+x=0$
f is differentiable at $x=1$.
(a) True
(b) False

$f(x)$ is differentiable

$$
\text { at } x=1
$$

(False)
because: $f(x)$ is not diff. \Rightarrow There is corner.

$$
\text { at } x=1
$$

