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Definition of sequences

A sequence is a function whose domain is the set of positive integers. It
is denoted by {an} = a1, a2, a3, . . . , an, . . . (entire seq) and
{an} = a1, a2, a3, . . . , an (finite seq).

Example: Find the first four terms and nth term of each:

(a) { n
n+1} (b) {2 + (0.1)n} (c) {(−1)n+1 n2

3n−1}

(d) {4} (e) a1 = 3 and ak+1 = 2ak for k > 1.
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Definition of convergent sequence (c′gt)

A sequence is {an} has a limit L, or converges to L denoted by either
lim

n→∞

an = L or an → L as n → ∞ .

Definition of divergent sequence (d′gt)

A sequence {an} is called if

lim
n→∞

an does not exist.

lim
n→∞

an = +∞ or lim
n→∞

an = −∞.

Definition of constant sequence

A {an} is constant if an = c for every n, c ∈ R and
lim

n→∞

an = lim
n→∞

c = c.
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Theorem 1

Let {an} be a sequence and f be a function such that

f(n) = an

f(x) exists for every real number x > 1

then

1 If lim
x→∞

f(x) = L, then lim
n→∞

f(n) = L

2 If lim
x→∞

f(x) = ∞ (or −∞), then lim
n→∞

f(n) = ∞ (or −∞).

Examples:

(1) If an = 1 + ( 1
n ), determine whether {an} converges or diverges.

(2) Determine whether {an} converges or diverges

(a){ 1
4n2 − 1} (b) {(−1)n−1}
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L’ Hopital’s rule

It is a method for computing a limit of form lim
n→∞

f(n)

g(n)
if

lim
n→∞

an = lim
n→∞

f(n)

g(n)
=

∞
∞ , then we can use L’ Hopital’s rule which is

defined as lim
n→∞

f ′(n)

g′(n)
.

Theorem 2 (properties)

Let lim
n→∞

an = L and lim
n→∞

bn = K

lim
n→∞

(an ± bn) = L ± K.

lim
n→∞

(an.bn) = L.K.

lim
n→∞

an

bn
=

L

K
, K 6= 0.

lim
n→∞

Can = CL.
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Theorem 3 (Absolute value)

For a seq {an}, lim
n→∞

|an| = 0 ⇔ lim
n→∞

an = 0.

Theorem 4 (Geometric seq)

lim
n→∞

rn = 0 if |r| < 1

lim
n→∞

rn = ∞ if |r| > 1

Example: Determine whether the following sequences converge or
diverge

(1) { 5n
e2n

}, (2) {(−2
3 )n} (3) {(1.01)n} (4) { 2n2

5n2−3}
(5) {6(−5

6 )n} (6) {8 − (7
8 )n} (7) {1000− n} (8) { 4n4+1

2n2
−1}

(9) { en

4 }.
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Theorem 5 (Sandwich)

If an, bn and cn are sequences such that

an 6 bn 6 cn for every n

lim
n→∞

an = L = lim
n→∞

bn, then lim
n→∞

cn = L.

Theorem 6

A bounded, monotonic sequence has limit.

Notations

1 −1 6 sin(θ) 6 1

2 −1 6 cos(θ) 6 1

3 0 6 cos2(θ) 6 1

4 −π
2 6 tan−1(θ) 6

π
2

5 cos(πn) = (−1)n
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Examples

⊲ Determine whether the following sequences converge or diverge, if they
converge find its limits.

(1) { lnn
n } (2) { tan−1 n

n } (3) {e−n lnn} (4) { cos2 n
3n

}

(5) {(−1)n+1 1
n} (6) { cosn

n } (7) { n2

2n−1 − n2

2n+1}

(8) {(1 + 1
n )2} (9) {n1/n}

Solution:
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Definition of infinite series

series are the sum of the terms of an infinite sequence. It is denoted by

∞∑

n=1

an = a1 + a2 + a3 + · · · + an + . . . (1)

Partial sums of series in (1)

First partial sum: S1 = a1

Second partial sum: S2 = a1 + a2

Third partial sum: S3 = a1 + a2 + a3
...
nth partial sum: Sn = a1 + a2 + · · · + an

Seq of partial sum: Sn = S1 + S2 + · · · + Sn + · · · = {Sn}

If this seq {Sn} is convergent, let say equal to s, if lim
n→∞

Sn exists, then

the series

∞∑

n=1

an is convergent.
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Examples

Find (a) S1, S2, S3 and Sn (b) the sum of the series, if it converges

(1)
∞∑

n=1

5

(5n + 2)(5n + 7)
(2)

∞∑

n=1

1√
n + 1 +

√
n

(3)
∞∑

n=1

1

n(n + 1)
(4)

∞∑

n=1

1

4n2 − 1

Solution:
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Definition of Harmonic series

the harmonic series is
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · · + 1

n
+ . . .

Definition of Geometric series

a series of the type

∞∑

n=0

arn, where a and r are real numbers, with a 6= 0.

Theorem 1

The geometric series

∞∑

n=0

arn

convergent if |r| < 1 and its S = a
1−r

divergent if |r| > 1
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Examples

Discuss the convergence of the following series

(1): 0.6 + 0.06 + 0.006 + · · · + 6
(10)n

+ . . .

(2): 0.628 + 0.000628 + · · · + 628
(1000)n

+ . . .

(3): 2 + 2
3 + 2

32 · · · + 2
3n−1 + . . .

Solution:
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