The Structure of the atom

Dalton's Atomic Theory

> Elements are composed of extremely small particles called atoms. All atoms of same element are alike.

The separation of atoms and union of atoms occur in chemical reactions.
 In these reactions, no atom is created or destroyed, and no one atom of one element is converted into an atom of another element.

A chemical compound is the result of the combination of atoms of two or more elements in a simple numerical ratio.

The structure of the atom

Atoms are made up of the following particles:
mass
Electrons: negatively charged
$9.1095 \times 10^{-31} \mathrm{~kg}$
Protons: positively charged
$1.67252 \times 10^{-27} \mathrm{~kg}$
Neutrons: neutral
$1.67495 \times 10^{-27} \mathrm{~kg}$

The atom

neutrons and protons form what we call the nucleus
the mass of the nucleus constitute most of the mass of the atom
the atom is neutral in charge
elements are represented by symbols and numbers

$$
{ }_{Z}^{A} \text { Symbol }
$$

A
the mass number $=$ number of protons + number of neutrons

Z
 the atomic number $=$ number of protons = number of electrons

the number of neutrons can be calculated as
$\mathbf{N}=\mathbf{A}-\mathbf{Z}$

Nuclides that have identical Z and different A

 (i.e. differ in number of neutrons) are: isotopes| Example | ${ }_{1}^{1} H$ | ${ }_{1}^{2} H$ |
| :--- | :--- | :--- |${ }_{1}^{3} H$

All three are isotopes of hydrogen

The periodic table

A molecule is formed from two or more atoms
$\mathrm{H}_{2} \mathrm{O}$
Cl_{2}
$\mathbf{N H}_{3}$

Ions bear negative or positive charges
$\mathbf{N a}^{+}$
Al ${ }^{3+}$
O^{2-}

Example

Determine the number of electrons, protons, and neutrons for $\mathbf{K}^{+}, \mathbf{B r}-, \mathbf{A r}, \mathbf{A l}^{3+}$

Electrons	Neutrons	protons

${ }^{39} \mathrm{~K}^{+}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{1 9}$
${ }^{80} \mathrm{Br}^{-}$	$\mathbf{3 6}$	$\mathbf{4 5}$	$\mathbf{3 5}$
${ }_{35}^{40} \mathrm{Ar}$ 18	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{1 8}$
${ }_{13}^{27} \mathrm{Al}^{3+}$	$\mathbf{1 0}$	$\mathbf{1 4}$	$\mathbf{1 3}$

Atomic mass

The mass of an atom is related to the number of electrons, protons, and neutrons it has.

One cannot weigh a single atom, but it is possible to determine the mass of one atom relative to another experimentally.

By international agreement, an atom of the carbon isotope ${ }^{12} \mathrm{C}$ has a mass of exactly $\mathbf{1 2}$ atomic mass units (amu)

Average Atomic mass

Most naturally occurring elements have more than one isotope. This means that the reported mass in the tables is the average mass of the naturally occurring mixture of isotopes.

Example:
The natural abundances of ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ are $\mathbf{9 8 . 8 9 \%}$ and 1.11% respectively

The average atomic mass of carbon $=$ (0.9889)(12.0000amu) $+(\mathbf{0 . 0 1 1 0})(\mathbf{1 3 . 0 3 3 5 a m u})$
$=12.01 \mathrm{amu}$

Molar mass and Avogadro's number

The mole
The amount of substance that contain as many elementary entities (atoms, molecules......) as there are atoms in exactly $\mathbf{1 2}$ grams of the ${ }^{12} \mathrm{C}$ isotope.

This number is determined experimentally, the current accepted value is
1 mole $=6.022045 \times 10^{23}$ particles

This number is called Avogadro's number
we have seen that
1 mole of ${ }^{12} \mathrm{C}$ has a mass of exactly 12 g and contains $6.022 \times \mathbf{1 0}^{23}$ atoms this mass of ${ }^{12} \mathrm{C}$ is its molar mass

Molar Mass
the mass of one mole of units

Numerically:

molar mass of ${ }^{12} \mathrm{C}$ in grams $=$ atomic mass of ${ }^{12} \mathrm{C}$ in amu

the atomic mass of $\mathbf{N a}=22.99 \mathrm{amu}$
the molar mass of $\mathbf{N a}=22.99 \mathrm{~g}$
Example:
How many grams of Mn are there in 0.356 mol of Mn
Molar mass of $\mathrm{Mn}=\mathbf{5 4 . 9 4} \mathbf{g}$
$1 \mathrm{~mol} \mathrm{Mn} \equiv 54.94 \mathrm{~g}$ Mn
$0.356 \mathrm{~mol} \mathrm{Mn} \equiv \mathrm{x} \quad \mathrm{g} \mathbf{M n}$

$$
x=\frac{0.356 \mathrm{~mol} \times 54.94 \mathrm{~g}}{1 \mathrm{~mol}}=19.6 \mathrm{~g}
$$

Example:

How many atoms of $\mathbf{Z n}$ are there in $\mathbf{0 . 3 5 6} \mathbf{~ m o l ~ o f ~} \mathbf{Z n}$?

Molar mass of $\mathbf{Z n}=\mathbf{6 5 . 3 9} \mathbf{g}$
$1 \mathrm{~mol} \mathrm{Zn} \equiv 6.022 \times 10^{23}$ atoms
$0.356 \mathrm{~mol} \mathrm{Zn} \equiv \mathrm{x}$ atoms

$$
x=\frac{0.356 \mathrm{~mol} \times 6.022 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}}=2.14 \times 10^{23} \mathrm{atoms}
$$

Example:

Calculate the mass of one S atom.

Molar mass of $\mathbf{S}=\mathbf{3 2 . 0 7} \mathbf{g}$
$32.07 \mathrm{~g} \equiv 6.022 \times 10^{23}$ atoms
$\mathbf{x} \quad \mathrm{g} \equiv 1 \quad$ atom

$$
x=\frac{1 \text { atoms } \times 32.07 \mathrm{~g}}{6.022 \times 10^{23} \text { atoms }}=5.325 \times 10^{-23} \mathrm{~g}
$$

Naming Compounds

Ionic compounds consist of positive ions (cations) and
Negative ions (anions)
Cations names are similar to that of the element

Cation Name

$\mathbf{N a}^{+}$
 Sodium ion

\mathbf{K}^{+}
$\mathrm{NH}_{4}{ }^{+}$
Mg ${ }^{2+}$
Fe^{2+}
Fe^{3+}

Potassium ion

Ammonium ion
Magnesium ion
I ron (II) or ferrous
I ron (III) or ferric

Anions named by adding "ide" to the element's name

Cl^{-}	Chloride	OH^{-}	Hydroxide
I^{-}	Iodide	NO_{3}^{-}	Nitrate
CO_{3}^{2-}	Carbonate	O^{2-}	Oxide
CN^{-}	Cyanide	SO_{4}^{2-}	Sulfate
		PO_{4}^{3-}	Phosphate

Ionic compounds names start with the positive ion followed by the negative ion

$$
\begin{array}{ll}
\mathrm{NaCl} & \text { Sodium Chloride } \\
\mathrm{KI} & \text { Potassium Iodide }
\end{array}
$$

$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ Sodium Carbonate

KCN
Potassium Cyanide

$$
\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \quad \text { Magnesium Nitrate }
$$

$\mathrm{CaSO}_{4} \quad$ Calcium Sulfate

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

Ammonium Phosphate

Non-ionic compounds HCl

Hydrogen chloride

HBr
Hydrogen bromide

CO
Carbon monoxide
CO_{2}
Carbon dioxide

Chemical Formulas

Simple formula(empirical formula)
The formula that is written using the simplest whole-number ratio

Molecular formula
Shows the exact number of atoms of each element in the smallest unit of a substance

Water

Simple formula:
Molecular formula:
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$

Hydrogen peroxide

Simple formula:
Molecular formula:
$\mathrm{H}_{2} \mathrm{O}_{2}$

Molecular weight of molecules (molar mass)

The sum of the atomic molar masses of atoms in the molecule.

Example
What is the molecular weight of CH_{4} ?
Molecular weight of $\mathrm{CH}_{4}=12.01+\mathbf{4}(1.008)=16.04 \mathrm{~g}$

This means that one mole of CH_{4} weighs 16.04 g

Example: How many moles are there in $6.07 \mathrm{~g}^{\text {of } \mathrm{CH}_{4} \text { ? }}$

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{CH}_{4} \equiv \mathbf{1 6 . 0 4} \mathrm{~g} \\
& x \mathrm{~mol} \mathrm{CH}_{4} \equiv \mathbf{6 . 0 7} \mathrm{~g} \\
& x=\frac{6.07 \mathrm{~g} \times 1 \mathrm{~mol}}{16.04 \mathrm{~g}}=0.378 \mathrm{~mol}
\end{aligned}
$$

Example
Determine the molecular formula of a compound that has a simple formula of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ and a molecular weight of $\mathbf{2 8 4 \mathrm { g }} / \mathbf{m o l}$.

Molar mass of the simple formula $=(31 \times 2)+(16 \times 5)=142 \mathrm{~g}$
The ratio between the two formulas $=\frac{284 g}{142 g}=2$
The molecular formula of the compound =

$$
\mathbf{P}_{(2 \times 2)} \mathbf{O}_{(5 \times 2)}=\mathbf{P}_{4} \mathbf{O}_{10}
$$

Percent composition of a compound

The percent composition by mass is the percent by mass of each element the compound contains.
Example
The percent composition of $\mathbf{H}_{2} \mathrm{O}$ is calculated as follows:

$$
\begin{aligned}
& \% \mathbf{H}=\frac{2 \times 1.008 \mathrm{~g}}{18.016} \times 100=11.19 \% \\
& \mathbf{\%} \mathbf{O}=\frac{16.0 \mathrm{~g}}{18.016} \times 100=88.8 \%
\end{aligned}
$$

Problem:
Calculate the percent composition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Example:
Vitamin C is composed of $\mathbf{4 0 . 9 2 \%}$ carbon (c), $\mathbf{4 . 5 8 \%}$ hydrogen (H), and 54.5% oxygen (O). determine the empirical formula of vitamin C.

Because the sum of the percentages is 100 it is appropriate to consider 100 grams of vitamin C

In a 100 g of Vitamin C there will be:
40.92 gC
4.58 g H
54.50 gO
using the molar mass of the elements we can find out number of moles:

$$
\mathbf{n}_{\mathrm{C}}=\frac{40.92 \mathrm{~g}}{12.01 \mathrm{~g} / \mathrm{mol}}=3.407 \mathrm{~mol}
$$

$\mathbf{n}_{\mathbf{H}}=\frac{4.58 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}}=4.54 \mathrm{~mol}$
$\mathbf{n}_{\mathbf{O}}=\frac{54.50 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}}=3.406 \mathrm{~mol}$
the formula that gives the ratios of the atoms in vitamin \mathbf{C} is $\mathrm{C}_{3.407} \mathrm{H}_{4.54} \mathrm{O}_{3.406}$

To arrive to the simple formula we have to convert these numbers to whole numbers by dividing all subscripts by the smallest one

$$
\begin{aligned}
& \text { C: } \frac{3.407}{3.406}=1 \\
& \text { H: } \frac{4.54}{3.406}=1.33 \\
& \text { O: } \frac{3.406}{3.406}=1
\end{aligned}
$$

Now the formula is : $\mathbf{C}_{1} \mathrm{H}_{1.33} \mathrm{O}_{1}$
We still need to convert 1.33 to an integer

This can be done by trial and error:

$$
\begin{aligned}
& 1 \times 1.33=1.33 \\
& 2 \times 1.33=2.66 \\
& 3 \times 1.33=3.99 \approx 4
\end{aligned}
$$

so we have to multiply all subscripts by 3 to get the smallest whole numbers in the formula
$\mathrm{C}_{1 \times 3} \mathrm{H}_{3 \times 1.33} \mathrm{O}_{3 \times 1}$
The simple formula of vitamin C is $\mathrm{C}_{3} \mathbf{H}_{4} \mathrm{O}_{3}$

